WO2020185059A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2020185059A1
WO2020185059A1 PCT/KR2020/095038 KR2020095038W WO2020185059A1 WO 2020185059 A1 WO2020185059 A1 WO 2020185059A1 KR 2020095038 W KR2020095038 W KR 2020095038W WO 2020185059 A1 WO2020185059 A1 WO 2020185059A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
red
comparative example
substituted
Prior art date
Application number
PCT/KR2020/095038
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
김형석
이상우
서상덕
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200030984A external-priority patent/KR102578116B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005443.3A priority Critical patent/CN112789741A/zh
Publication of WO2020185059A1 publication Critical patent/WO2020185059A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present invention relates to an organic light-emitting device having improved driving voltage, efficiency, and lifetime.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • Patent Document 2 Korean Patent Publication No. 10-2010-0023783
  • the present invention relates to an organic light-emitting device having improved driving voltage, efficiency, and lifetime.
  • the present invention provides the following organic light emitting device:
  • the light-emitting layer comprises a compound represented by the following formula (1) and a compound represented by the following formula (2),
  • Ar 1 is substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S,
  • L is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S, and two adjacent to each other among R 1 , R 2 , R 3 and R 4 A C 6-60 aromatic ring, or a C 2-60 heteroaromatic ring including any one or more selected from the group consisting of N, O, and S may be formed,
  • R 5 , R 6 , R 7 and R 8 are each independently hydrogen; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S.
  • Ar 2 and Ar 3 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S.
  • the above-described organic light emitting device is excellent in driving voltage, efficiency, and lifetime.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • a substrate 1 is a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, a hole blocking layer 7, an electron injection and transport layer 8 and a cathode 4 It shows an example of an organic light emitting device made of.
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, and a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 6 to 30 carbon atoms. According to an exemplary embodiment, the number of carbon atoms of the heterocyclic group is 6 to 20.
  • heterocyclic group examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phen
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the description of the aforementioned heterocyclic group may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that two substituents are bonded to each other.
  • the anode and cathode used in the present invention mean an electrode used in an organic light-emitting device.
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light-emitting device may further include a hole injection layer between the anode and a hole transport layer to be described later.
  • the hole injection material is a layer that injects holes from the electrode, and the hole injection material has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and is generated in the light emitting layer.
  • a compound that prevents the transfer of the excitons into the electron injection layer or the electron injection material and has excellent thin film formation ability is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene
  • metal porphyrin oligothiophene
  • arylamine-based organic material arylamine-based organic material
  • hexanitrile hexaazatriphenylene-based organic material hexaazatriphenylene-based organic material
  • quinacridone-based organic material quinacridone-based organic material
  • perylene perylene
  • the hole transport layer used in the present invention is a layer that receives holes from the anode or the hole injection layer formed on the anode and transports holes to the emission layer, and can be transferred to the emission layer by transporting holes from the anode or the hole injection layer as a hole transport material.
  • a material with high mobility for holes is suitable.
  • the hole transport material examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the light-emitting layer used in the present invention is a layer capable of emitting light in a visible light region by combining holes and electrons transferred from an anode and a cathode, and a material having good quantum efficiency against fluorescence or phosphorescence is preferable.
  • the emission layer includes a host material and a dopant material, and may include a compound represented by Chemical Formula 1 and Chemical Formula 2 as a host.
  • Formula 1 may be represented by any one of the following Formulas 1-1 to 1-3:
  • Ar 1 may be a substituted or unsubstituted C 2-60 heteroaryl containing 2 or more N, and more preferably, Ar 1 is a substituted or unsubstituted C 2- containing 2 or more N 20 may be heteroaryl, and more preferably, Ar 1 may be a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted quinoxalinyl, and most preferably, Ar 1 is from the group consisting of Can be any one chosen:
  • L is a single bond; Or it may be a substituted or unsubstituted C 6-20 arylene, and more preferably, L may be a single bond.
  • R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a benzene ring.
  • R 5 , R 6 , R 7 and R 8 are each independently hydrogen; Or it may be a substituted or unsubstituted C 2-20 heteroaryl including any one or more selected from the group consisting of N, O and S, and more preferably, R 5 , R 6 , R 7 and R 8 Each independently may be hydrogen or carbazolyl, and the carbazolyl may be unsubstituted or substituted with any one of phenyl, biphenylyl, naphthyl, naphthyl phenyl, and phenyl naphthyl, most preferably , R 5 , R 6 , R 7 and R 8 may each independently be hydrogen or any one selected from the group consisting of:
  • R 5 , R 6 , R 7 and R 8 may be a C 2-20 heteroaryl including any one or more selected from the group consisting of substituted or unsubstituted N, O and S And, more preferably, at least one of R 5 , R 6 , R 7 and R 8 may be a substituted or unsubstituted carbazolyl.
  • the compound represented by Formula 1 may be prepared by a manufacturing method such as Reaction Scheme 1-1 below, for example, and when R 5 , R 6 and R 8 are hydrogen and R 7 is carbazole, as an example, the following Scheme 1 It can be prepared by the same production method as -2, and other compounds can be prepared similarly.
  • Ar 1 , L and R 1 to R 8 are the same as defined in Formula 1, and X 1 and X 2 are each independently halogen, preferably X 1 and Each X 2 is independently chloro or bromo.
  • Reaction Schemes 1-1 and 1-2 are amine substitution reactions, preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction may be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • Ar 2 and Ar 3 are each independently substituted or unsubstituted C 6-20 aryl; Or substituted or unsubstituted N, O, and may be a C 2-20 heteroaryl containing any one or more selected from the group consisting of S, more preferably, Ar 2 and Ar 3 are each independently, substituted Or it may be an unsubstituted C 6-20 aryl, and most preferably, Ar 2 and Ar 3 are each independently, phenyl, biphenylyl, terphenylyl, dimethyl fluorenyl, naphthyl, naphthyl phenyl, Or phenyl naphthyl.
  • the compound represented by Formula 2 may be prepared by the same method as in Scheme 2 below, for example, and other compounds may be prepared similarly.
  • Ar 2 and Ar 3 are as defined in Chemical Formula 2, X 3 is halogen, and preferably X 3 is chloro or bromo.
  • Reaction Scheme 2 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction may be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the weight ratio of the compound represented by Formula 1 and the compound represented by Formula 2 in the emission layer is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70:30 or 40:60 to 60:40.
  • the emission layer may further include a dopant in addition to the host.
  • the dopant material is not particularly limited as long as it is a material used in an organic light-emitting device. Examples include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group, and the styrylamine compound is substituted or unsubstituted
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • representative compounds that can be used as dopant materials are as follows:
  • the hole blocking layer is a layer between the electron transport layer and the light emitting layer to prevent holes injected from the anode from being recombined in the light emitting layer and passing to the electron transport layer, and is also referred to as a hole suppressing layer or a hole blocking layer.
  • a material having high ionization energy is preferable for the hole blocking layer.
  • the organic light-emitting device according to the present invention may include an electron transport layer between the emission layer and the cathode.
  • the electron transport layer is a layer that receives electrons from the electron injection layer formed on the cathode or the cathode, transports electrons to the emission layer, and inhibits the transfer of holes from the emission layer.
  • an electron transport material electrons are well injected from the cathode.
  • a material that can be received and transferred to the emission layer a material having high mobility for electrons is suitable.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer, and a material having high mobility for electrons is suitable.
  • the electron transport material include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the organic light-emitting device may further include an electron injection layer between the electron transport layer and the cathode.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film formation ability is preferable.
  • materials that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preore And derivatives thereof, such as nilidene methane, anthrone, and the like, metal complex compounds, and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • FIGS. 1 and 2 The structure of the organic light emitting device according to the present invention is illustrated in FIGS. 1 and 2.
  • 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • 2 is a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, a hole blocking layer 7, an electron injection and transport layer 8 and a cathode 4 It shows an example of an organic light emitting device made of.
  • the organic light emitting device according to the present invention can be manufactured by sequentially stacking the above-described configurations. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming each of the above-described layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method of a host and a dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • a glass substrate coated with a thin film of 1000 ⁇ of ITO (indium tin oxide) was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • Compound HI-1 was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 ⁇ , but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following compound HT-1 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • the compound 1 prepared above and the following compound Dp-7 were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed by vacuum vapor deposition of the following compound HB-1 with a film thickness of 30 ⁇ on the emission layer.
  • the following compound ET-1 and the following compound LiQ were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) with a thickness of 12 ⁇ and aluminum with a thickness of 1000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • the deposition rate of organic materials was maintained at 0.4 ⁇ 0.7 ⁇ /sec, the deposition rate of lithium fluoride at the cathode was 0.3 ⁇ /sec, and the deposition rate of aluminum was 2 ⁇ /sec, and the vacuum degree during deposition was 2*10. Maintaining -7 to 5*10 -6 torr, an organic light emitting device was manufactured.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 below was used instead of Compound 1 in the organic light-emitting device of Comparative Example 1.
  • an organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compounds shown in Table 2 below were used in the light-emitting layer and the hole transport layer, respectively, instead of Compound 1 and Compound HT-1. .
  • the lifetime T95 refers to the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).
  • an embodiment of the present invention was superior to the case where the compound represented by Formula 2 was used in the hole transport region (Comparative Examples 26 to 73), and included the compound represented by Formula 1 or the compound represented by Formula 2.
  • the result was superior to that of the organic light emitting device (Comparative Examples 74 to 137) including any one of compounds C-1 to C-12 not included in the present invention as a cohost.
  • substrate 2 anode

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 3월 14일자 한국 특허 출원 제10-2019-0029417호 및 2020년 3월 12일자 한국 특허 출원 제10-2020-0030984호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.
선행기술문헌
특허문헌
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
(특허문헌 2) 한국특허 공개번호 제10-2010-0023783호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극,
음극,
상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure PCTKR2020095038-appb-img-000001
상기 화학식 1에서,
Ar 1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
L은 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
R 1, R 2, R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고, R 1, R 2, R 3 및 R 4 중 인접한 둘은 서로 결합하여 C 6-60 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로방향족 고리를 형성할 수 있고,
R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이다.
[화학식 2]
Figure PCTKR2020095038-appb-img-000002
상기 화학식 2에서,
Ar 2 및 Ar 3는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이다.
상술한 유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다.
도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(5) 정공수송층(6), 발광층(3), 정공저지층(7), 전자 주입 및 수송층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2020095038-appb-img-000003
또는
Figure PCTKR2020095038-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020095038-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020095038-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020095038-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020095038-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 6 내지 20이다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 상기 양극과 후술할 정공수송층 사이에 정공주입층을 추가로 포함할 수 있다.
상기 정공 주입 물질로는 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는, 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
정공수송층
본 발명에서 사용되는 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층으로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다.
일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 상기 화학식 1 및 상기 화학식 2로 표시되는 화합물을 호스트로 포함할 수 있다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시될 수 있다:
[화학식 1-1]
Figure PCTKR2020095038-appb-img-000009
[화학식 1-2]
Figure PCTKR2020095038-appb-img-000010
[화학식 1-3]
Figure PCTKR2020095038-appb-img-000011
상기 화학식 1-1 내지 화학식 1-3에서,
Ar 1, L, R 5, R 6, R 7 및 R 8에 대한 설명은 상기 화학식 1에서 정의한 바와 같다.
바람직하게는, Ar 1은 치환 또는 비치환된 2 이상의 N을 포함하는 C 2-60 헤테로아릴일 수 있고, 보다 바람직하게는, Ar 1은 치환 또는 비치환된 2 이상의 N을 포함하는 C 2-20 헤테로아릴일 수 있고, 보다 바람직하게는, Ar 1은 치환 또는 비치환된 퀴나졸리닐, 또는 치환 또는 비치환된 퀴녹살리닐일 수 있고, 가장 바람직하게는, Ar 1은 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2020095038-appb-img-000012
.
바람직하게는, L은 단일결합; 또는 치환 또는 비치환된 C 6-20 아릴렌일 수 있고, 보다 바람직하게는, L은 단일결합일 수 있다.
바람직하게는, R 1, R 2, R 3 및 R 4 중 인접한 둘은 서로 결합하여 벤젠 고리를 형성할 수 있다.
바람직하게는, R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고, 보다 바람직하게는, R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소 또는 카바졸릴일 수 있고, 상기 카바졸릴은 비치환되거나, 페닐, 비페닐릴, 나프틸, 나프틸 페닐, 및 페닐 나프틸 중 어느 하나로 치환될 수 있고, 가장 바람직하게는, R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2020095038-appb-img-000013
.
바람직하게는, R 5, R 6, R 7 및 R 8 중 적어도 하나는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고, 보다 바람직하게는, R 5, R 6, R 7 및 R 8 중 적어도 하나는 치환 또는 비치환된 카바졸릴일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2020095038-appb-img-000014
Figure PCTKR2020095038-appb-img-000015
Figure PCTKR2020095038-appb-img-000016
Figure PCTKR2020095038-appb-img-000017
Figure PCTKR2020095038-appb-img-000018
Figure PCTKR2020095038-appb-img-000019
Figure PCTKR2020095038-appb-img-000020
Figure PCTKR2020095038-appb-img-000021
Figure PCTKR2020095038-appb-img-000022
Figure PCTKR2020095038-appb-img-000023
Figure PCTKR2020095038-appb-img-000024
Figure PCTKR2020095038-appb-img-000025
Figure PCTKR2020095038-appb-img-000026
Figure PCTKR2020095038-appb-img-000027
Figure PCTKR2020095038-appb-img-000028
Figure PCTKR2020095038-appb-img-000029
Figure PCTKR2020095038-appb-img-000030
Figure PCTKR2020095038-appb-img-000031
Figure PCTKR2020095038-appb-img-000032
.
상기 화학식 1로 표시되는 화합물은, 일례로 하기 반응식 1-1과 같은 제조 방법으로 제조할 수 있으며, R 5, R 6 및 R 8이 수소이고, R 7이 카바졸인 경우, 일례로 하기 반응식 1-2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 1-1]
Figure PCTKR2020095038-appb-img-000033
[반응식 1-2]
Figure PCTKR2020095038-appb-img-000034
상기 반응식 1-1 및 1-2에서, Ar 1, L 및 R 1 내지 R 8은 상기 화학식 1에서 정의한 바와 같으며, X 1 및 X 2는 각각 독립적으로, 할로겐이고, 바람직하게는 X 1 및 X 2는 각각 독립적으로, 클로로 또는 브로모이다.
상기 반응식 1-1 및 1-2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, Ar 2 및 Ar 3는 각각 독립적으로, 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고, 보다 바람직하게는, Ar 2 및 Ar 3는 각각 독립적으로, 치환 또는 비치환된 C 6-20 아릴일 수 있고, 가장 바람직하게는, Ar 2 및 Ar 3는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 디메틸 플루오레닐, 나프틸, 나프틸 페닐, 또는 페닐 나프틸일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2020095038-appb-img-000035
Figure PCTKR2020095038-appb-img-000036
Figure PCTKR2020095038-appb-img-000037
Figure PCTKR2020095038-appb-img-000038
Figure PCTKR2020095038-appb-img-000039
Figure PCTKR2020095038-appb-img-000040
Figure PCTKR2020095038-appb-img-000041
Figure PCTKR2020095038-appb-img-000042
Figure PCTKR2020095038-appb-img-000043
Figure PCTKR2020095038-appb-img-000044
Figure PCTKR2020095038-appb-img-000045
Figure PCTKR2020095038-appb-img-000046
.
상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2]
Figure PCTKR2020095038-appb-img-000047
상기 반응식 2에서, Ar 2 및 Ar 3는 상기 화학식 2에서 정의한 바와 같으며, X 3는 할로겐이고, 바람직하게는 X 3는 클로로 또는 브로모이다.
상기 반응식 2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 발광층에서 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 중량비는 10:90 내지 90:10이고, 보다 바람직하게는 20:80 내지 80:20, 30:70 내지 70:30 또는 40:60 내지 60:40이다.
한편, 상기 발광층은 호스트 외에 도펀트를 추가로 포함할 수 있다. 상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
일례로, 도펀트 재료로 사용될 수 있는 대표적인 화합물은 아래와 같다:
Figure PCTKR2020095038-appb-img-000048
Figure PCTKR2020095038-appb-img-000049
Figure PCTKR2020095038-appb-img-000050
Figure PCTKR2020095038-appb-img-000051
.
정공저지층
상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층 또는 정공차단층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.
전자수송층
본 발명에 따른 유기 발광 소자는, 상기 발광층과 음극 사이에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는 상기 전자수송층과 음극 사이에 전자주입층을 추가로 포함할 수 있다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는, 기판(1), 양극(2), 정공주입층(5) 정공수송층(6), 발광층(3), 정공저지층(7), 전자 주입 및 수송층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
제조예 1: 화합물 1의 제조
Figure PCTKR2020095038-appb-img-000052
질소 분위기에서 중간체 1-1(20 g, 83.3 mmol), 중간체 1-2(38.2 g, 83.3 mmol), tripotassium phosphate(35.4 g, 166.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.9 g, 1.7 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1(35.3 g, 수율 64 %, MS: [M+H]+= 663)을 얻었다.
제조예 2: 화합물 2의 제조
Figure PCTKR2020095038-appb-img-000053
질소 분위기에서 중간체 2-1(20 g, 83.3 mmol), 중간체 2-2(38.2 g, 83.3 mmol), tripotassium phosphate(35.4 g, 166.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.9 g, 1.7 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2(37.5 g, 수율 68 %, MS: [M+H]+= 663)을 얻었다.
제조예 3: 화합물 3의 제조
Figure PCTKR2020095038-appb-img-000054
질소 분위기에서 중간체 3-1(20 g, 83.3 mmol), 중간체 3-2(44.5 g, 83.3 mmol), tripotassium phosphate(35.4 g, 166.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.9 g, 1.7 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3(33.2 g, 수율 54 %, MS: [M+H]+= 739)을 얻었다.
제조예 4: 화합물 4의 제조
Figure PCTKR2020095038-appb-img-000055
질소 분위기에서 중간체 4-1(20 g, 83.3 mmol), 중간체 4-2(44.5 g, 83.3 mmol), tripotassium phosphate(35.4 g, 166.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.9 g, 1.7 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4(33.8g, 수율 55 %, MS: [M+H]+= 739)을 얻었다.
제조예 5: 화합물 5의 제조
Figure PCTKR2020095038-appb-img-000056
질소 분위기에서 중간체 5-1(20 g, 83.3 mmol), 중간체 5-2(48.7 g, 83.3 mmol), tripotassium phosphate(35.4 g, 166.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.9 g, 1.7 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5(33.5 g, 수율 51 %, MS: [M+H]+= 789)을 얻었다.
제조예 6: 화합물 6의 제조
Figure PCTKR2020095038-appb-img-000057
질소 분위기에서 중간체 6-1(20 g, 43.9 mmol), 중간체 6-2(7.3 g, 43.9 mmol), sodium tert-butoxide(8.4 g, 87.9 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6(13.4 g, 수율 52 %, MS: [M+H]+= 587)을 얻었다.
제조예 7: 화합물 7의 제조
Figure PCTKR2020095038-appb-img-000058
질소 분위기에서 중간체 7-1(20 g, 69 mmol), 중간체 7-2(35 g, 69 mmol), tripotassium phosphate(29.3 g, 137.9 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.7 g, 1.4 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7(35.2 g, 수율 67 %, MS: [M+H]+= 763)을 얻었다.
제조예 8: 화합물 8의 제조
Figure PCTKR2020095038-appb-img-000059
질소 분위기에서 중간체 8-1(20 g, 54.6 mmol), 중간체 8-2(29.2 g, 54.6 mmol), tripotassium phosphate(23.2 g, 109.3 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 8(27.4 g, 수율 58 %, MS: [M+H]+= 865)을 얻었다.
제조예 9: 화합물 9의 제조
Figure PCTKR2020095038-appb-img-000060
질소 분위기에서 중간체 9-1(20 g, 69 mmol), 중간체 9-2(40.3 g, 69 mmol), tripotassium phosphate(29.3 g, 137.9 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.7 g, 1.4 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 9(32.9 g, 수율 57 %, MS: [M+H]+= 839)을 얻었다.
제조예 10: 화합물 10의 제조
Figure PCTKR2020095038-appb-img-000061
질소 분위기에서 중간체 10-1(20 g, 39.6 mmol), 중간체 10-2(6.6 g, 39.6 mmol), sodium tert-butoxide(7.6 g, 79.2 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물10(14.1 g, 수율 56 %, MS: [M+H]+= 637)을 얻었다.
제조예 11: 화합물 11의 제조
Figure PCTKR2020095038-appb-img-000062
질소 분위기에서 중간체 11-1(20 g, 54.6 mmol), 중간체 11-2(25 g, 54.6 mmol), tripotassium phosphate(23.2 g, 109.3 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.1 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 11(21.5 g, 수율 50 %, MS: [M+H]+= 789)을 얻었다.
제조예 12: 화합물 12의 제조
Figure PCTKR2020095038-appb-img-000063
질소 분위기에서 중간체 12-1(20 g, 54.6 mmol), 중간체 12-2(27.8 g, 54.6 mmol), tripotassium phosphate(23.2 g, 109.3 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 12(29.3 g, 수율 64 %, MS: [M+H]+= 839)을 얻었다.
제조예 13: 화합물 13의 제조
Figure PCTKR2020095038-appb-img-000064
질소 분위기에서 중간체 13-1(20 g, 63.3 mmol), 중간체 13-2(33.8 g, 63.3 mmol), tripotassium phosphate(26.9 g, 126.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.3 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 13(31.9 g, 수율 62 %, MS: [M+H]+= 815)을 얻었다.
제조예 14: 화합물 14의 제조
Figure PCTKR2020095038-appb-img-000065
질소 분위기에서 중간체 14-1(20 g, 63.3 mmol), 중간체 14-2(33.8 g, 63.3 mmol), tripotassium phosphate(26.9 g, 126.6 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.3 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 14(25.8 g, 수율 50 %, MS: [M+H]+= 815)을 얻었다.
제조예 15: 화합물 15의 제조
Figure PCTKR2020095038-appb-img-000066
질소 분위기에서 중간체 15-1(20 g, 37.7 mmol), 중간체 15-2(6.3 g, 37.7 mmol), sodium tert-butoxide(7.2 g, 75.3 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 15(17 g, 수율 68 %, MS: [M+H]+= 663)을 얻었다.
제조예 16: 화합물 16의 제조
Figure PCTKR2020095038-appb-img-000067
질소 분위기에서 중간체 16-1(20 g, 50.8 mmol), 중간체 16-2(16.3 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 16(19.3 g, 수율 60 %, MS: [M+H]+= 636)을 얻었다.
제조예 17: 화합물 17의 제조
Figure PCTKR2020095038-appb-img-000068
질소 분위기에서 중간체 17-1(20 g, 50.8 mmol), 중간체 17-2(20.2 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 17(19.5 g, 수율 54 %, MS: [M+H]+= 712)을 얻었다.
제조예 18: 화합물 18의 제조
Figure PCTKR2020095038-appb-img-000069
질소 분위기에서 중간체 18-1(20 g, 50.8 mmol), 중간체 18-2(18.3 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 18(18.9 g, 수율 55 %, MS: [M+H]+= 676)을 얻었다.
제조예 19: 화합물 19의 제조
Figure PCTKR2020095038-appb-img-000070
질소 분위기에서 중간체 19-1(20 g, 50.8 mmol), 중간체 19-2(18.3 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 19(18.5 g, 수율 54 %, MS: [M+H]+= 676)을 얻었다.
제조예 20: 화합물 20의 제조
Figure PCTKR2020095038-appb-img-000071
질소 분위기에서 중간체 20-1(20 g, 50.8 mmol), 중간체 20-2(20.4 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 20(23.6 g, 수율 65 %, MS: [M+H]+= 716)을 얻었다.
제조예 21: 화합물 21의 제조
Figure PCTKR2020095038-appb-img-000072
질소 분위기에서 중간체 21-1(20 g, 50.8 mmol), 중간체 21-2(18.8 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 21(20.5 g, 수율 59 %, MS: [M+H]+= 686)을 얻었다.
제조예 22: 화합물 22의 제조
Figure PCTKR2020095038-appb-img-000073
질소 분위기에서 중간체 22-1(20 g, 50.8 mmol), 중간체 22-2(20.2 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 22(22.4 g, 수율 62 %, MS: [M+H]+= 712)을 얻었다.
제조예 23: 화합물 23의 제조
Figure PCTKR2020095038-appb-img-000074
질소 분위기에서 중간체 23-1(20 g, 50.8 mmol), 중간체 23-2(17 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 23(16.8 g, 수율 51 %, MS: [M+H]+= 650)을 얻었다.
제조예 24: 화합물 24의 제조
Figure PCTKR2020095038-appb-img-000075
질소 분위기에서 중간체 24-1(20 g, 50.8 mmol), 중간체 24-2(15 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 2 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 24(21 g, 수율 68 %, MS: [M+H]+= 610)을 얻었다.
제조예 25: 화합물 25의 제조
Figure PCTKR2020095038-appb-img-000076
질소 분위기에서 중간체 25-1(20 g, 50.8 mmol), 중간체 25-2(18.8 g, 50.8 mmol), sodium tert-butoxide(9.8 g, 101.5 mmol)을 Xylene 400 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 3 시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 25(21.6 g, 수율 62 %, MS: [M+H]+= 686)을 얻었다.
비교예 1
ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 앞서 제조한 화합물 1과 하기 화합물 Dp-7을 98:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ을 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure PCTKR2020095038-appb-img-000077
상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2*10 -7 ~ 5*10 -6 torr를 유지하여, 유기 발광 소자를 제작했다.
비교예 2 내지 비교예 25
비교예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 26 내지 비교예 73
비교예 1의 유기 발광 소자에서 화합물 1 및 화합물 HT-1 대신 하기 표 2에 기재된 화합물을 각각 발광층 및 정공수송층에 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 74 내지 비교예 105
비교예 1의 유기 발광 소자에서 화합물 1 대신 표 3에 기재된 제1 호스트와 제2 호스트 화합물을 1:1의 중량비로 발광층에 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 표 3에 기재된 화합물 C-1 내지 C-4는 아래와 같다.
Figure PCTKR2020095038-appb-img-000078
비교예 106 내지 비교예 137
비교예 1의 유기 발광 소자에서 화합물1 대신 표 4에 기재된 제1 호스트와 제2 호스트 화합물을 1:1의 중량비로 발광층에 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 표 4에 기재된 화합물 C-5 내지 C-12는 아래와 같다.
Figure PCTKR2020095038-appb-img-000079
실시예 1 내지 실시예 70
비교예 1의 유기 발광 소자에서 화합물1 대신 표 5에 기재된 제1 호스트와 제2 호스트 화합물을 1:1의 중량비로 발광층에 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 대하여 10 mA/cm 2의 전류 밀도를 갖는 전류를 인가하였을 때, 전압, 효율, 수명을 측정(6000 nit 기준)하고 그 결과를 하기 표 1 내지 표 5에 나타내었다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 발광층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 1 화합물 1 4.22 17.8 157 적색
비교예 2 화합물 2 4.41 16.5 191 적색
비교예 3 화합물 3 4.45 16.1 193 적색
비교예 4 화합물 4 4.48 16.3 181 적색
비교예 5 화합물 5 4.28 17.2 138 적색
비교예 6 화합물 6 4.30 17.5 194 적색
비교예 7 화합물 7 4.46 15.7 190 적색
비교예 8 화합물 8 4.40 16.5 197 적색
비교예 9 화합물 9 4.29 17.0 131 적색
비교예 10 화합물 10 4.35 17.1 191 적색
비교예 11 화합물 11 4.27 17.2 140 적색
비교예 12 화합물 12 4.20 17.1 164 적색
비교예 13 화합물 13 4.51 15.6 152 적색
비교예 14 화합물 14 4.47 15.8 137 적색
비교예 15 화합물 15 4.33 17.0 194 적색
비교예 16 화합물 16 5.01 7.3 31 적색
비교예 17 화합물 17 4.98 8.0 27 적색
비교예 18 화합물 18 5.07 7.5 34 적색
비교예 19 화합물 19 5.05 7.8 32 적색
비교예 20 화합물 20 5.04 8.2 29 적색
비교예 21 화합물 21 4.96 7.9 30 적색
비교예 22 화합물 22 5.00 8.1 22 적색
비교예 23 화합물 23 4.92 9.3 24 적색
비교예 24 화합물 24 5.05 7.4 26 적색
비교예 25 화합물 25 5.09 7.6 29 적색
구분 발광층 정공수송층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 26 화합물1 화합물 18 4.31 18.1 177 적색
비교예 27 화합물 19 4.30 17.5 181 적색
비교예 28 화합물 20 4.27 18.0 183 적색
비교예 29 화합물 21 4.30 17.5 168 적색
비교예 30 화합물 22 4.35 18.8 179 적색
비교예 31 화합물 23 4.38 17.7 192 적색
비교예 32 화합물 24 4.31 19.4 184 적색
비교예 33 화합물 25 4.36 18.2 173 적색
비교예 34 화합물2 화합물 18 4.43 17.5 201 적색
비교예 35 화합물 19 4.37 17.3 207 적색
비교예 36 화합물 20 4.38 17.8 204 적색
비교예 37 화합물 21 4.32 17.9 203 적색
비교예 38 화합물 22 4.38 16.9 201 적색
비교예 39 화합물 23 4.40 18.6 208 적색
비교예 40 화합물 24 4.33 18.5 204 적색
비교예 41 화합물 25 4.41 17.8 201 적색
비교예 42 화합물5 화합물 18 4.32 19.5 211 적색
비교예 43 화합물 19 4.30 18.7 204 적색
비교예 44 화합물 20 4.30 18.8 213 적색
비교예 45 화합물 21 4.33 19.5 207 적색
비교예 46 화합물 22 4.38 18.4 218 적색
비교예 47 화합물 23 4.22 19.9 201 적색
비교예 48 화합물 24 4.29 18.3 219 적색
비교예 49 화합물 25 4.34 19.8 211 적색
비교예 50 화합물6 화합물 18 4.35 18.4 214 적색
비교예 51 화합물 19 4.41 19.9 191 적색
비교예 52 화합물 20 4.45 18.3 200 적색
비교예 53 화합물 21 4.48 18.8 192 적색
비교예 54 화합물 22 4.40 19.1 180 적색
비교예 55 화합물 23 4.37 18.3 204 적색
비교예 56 화합물 24 4.35 18.5 202 적색
비교예 57 화합물 25 4.42 18.8 194 적색
비교예 58 화합물11 화합물 16 4.36 18.5 161 적색
비교예 59 화합물 17 4.30 18.3 154 적색
비교예 60 화합물 19 4.38 18.7 158 적색
비교예 61 화합물 21 4.31 18.0 170 적색
비교예 62 화합물 22 4.41 17.5 165 적색
비교예 63 화합물 23 4.33 18.0 159 적색
비교예 64 화합물 24 4.30 18.2 168 적색
비교예 65 화합물 25 4.31 18.6 187 적색
비교예 66 화합물12 화합물 16 4.33 18.3 193 적색
비교예 67 화합물 17 4.38 17.1 181 적색
비교예 68 화합물 19 4.35 17.5 188 적색
비교예 69 화합물 21 4.39 19.0 182 적색
비교예 70 화합물 22 4.31 18.4 174 적색
비교예 71 화합물 23 4.38 17.9 187 적색
비교예 72 화합물 24 4.40 17.7 173 적색
비교예 73 화합물 25 4.44 17.2 178 적색
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 74 화합물1 C-1 4.46 17.0 187 적색
비교예 75 C-2 4.48 16.8 198 적색
비교예 76 C-3 4.41 16.1 180 적색
비교예 77 C-4 4.45 17.7 183 적색
비교예 78 화합물2 C-1 4.48 16.8 196 적색
비교예 79 C-2 4.41 16.9 208 적색
비교예 80 C-3 4.50 17.0 196 적색
비교예 81 C-4 4.53 17.5 208 적색
비교예 82 화합물5 C-1 4.48 16.1 191 적색
비교예 83 C-2 4.51 17.7 187 적색
비교예 84 C-3 4.40 16.0 193 적색
비교예 85 C-4 4.54 17.0 184 적색
비교예 86 화합물6 C-1 4.32 16.7 174 적색
비교예 87 C-2 4.50 17.8 181 적색
비교예 88 C-3 4.37 17.0 192 적색
비교예 89 C-4 4.42 17.2 207 적색
비교예 90 화합물7 C-1 4.58 16.3 193 적색
비교예 91 C-2 4.45 17.1 194 적색
비교예 92 C-3 4.52 16.0 187 적색
비교예 93 C-4 4.49 17.5 170 적색
비교예 94 화합물9 C-1 4.46 17.3 180 적색
비교예 95 C-2 4.48 17.7 193 적색
비교예 96 C-3 4.34 16.1 177 적색
비교예 97 C-4 4.39 17.1 188 적색
비교예 98 화합물12 C-1 4.42 16.0 192 적색
비교예 99 C-2 4.30 17.5 194 적색
비교예 100 C-3 4.49 17.4 197 적색
비교예 101 C-4 4.47 16.2 184 적색
비교예 102 화합물15 C-1 4.43 17.3 176 적색
비교예 103 C-2 4.49 17.1 171 적색
비교예 104 C-3 4.41 17.8 177 적색
비교예 105 C-4 4.37 16.5 184 적색
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 106 C-5 화합물16 4.38 14.0 173 적색
비교예 107 C-6 4.41 14.3 161 적색
비교예 108 C-7 4.49 15.2 153 적색
비교예 109 C-8 4.51 14.5 137 적색
비교예 110 C-9 4.41 15.8 159 적색
비교예 111 C-10 4.44 14.0 152 적색
비교예 112 C-11 4.43 15.8 171 적색
비교예 113 C-12 4.37 16.7 193 적색
비교예 114 C-5 화합물18 4.49 15.2 181 적색
비교예 115 C-6 4.35 16.5 172 적색
비교예 116 C-7 4.43 15.0 165 적색
비교예 117 C-8 4.57 17.8 151 적색
비교예 118 C-9 4.48 15.5 172 적색
비교예 119 C-10 4.43 16.3 182 적색
비교예 120 C-11 4.32 14.1 180 적색
비교예 121 C-12 4.45 16.0 191 적색
비교예 122 C-5 화합물20 4.46 15.5 171 적색
비교예 123 C-6 4.39 17.0 179 적색
비교예 124 C-7 4.41 16.5 164 적색
비교예 125 C-8 4.37 15.7 131 적색
비교예 126 C-9 4.43 15.9 179 적색
비교예 127 C-10 4.39 15.3 163 적색
비교예 128 C-11 4.42 16.1 164 적색
비교예 129 C-12 4.38 16.4 183 적색
비교예 130 C-5 화합물24 4.44 16.8 192 적색
비교예 131 C-6 4.37 17.1 180 적색
비교예 132 C-7 4.47 16.0 163 적색
비교예 133 C-8 4.36 15.8 152 적색
비교예 134 C-9 4.44 16.4 154 적색
비교예 135 C-10 4.49 17.5 167 적색
비교예 136 C-11 4.31 17.3 172 적색
비교예 137 C-12 4.30 16.1 197 적색
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물1 화합물 18 4.12 20.1 257 적색
실시예 2 화합물 19 4.13 19.7 241 적색
실시예 3 화합물 20 4.08 21.5 224 적색
실시예 4 화합물 21 3.98 19.6 261 적색
실시예 5 화합물 22 4.03 20.4 237 적색
실시예 6 화합물 23 3.97 20.8 257 적색
실시예 7 화합물 24 4.02 21.0 224 적색
실시예 8 화합물 25 4.05 19.9 234 적색
실시예 9 화합물2 화합물 18 4.21 19.5 347 적색
실시예 10 화합물 19 4.18 19.0 352 적색
실시예 11 화합물 20 4.20 19.8 340 적색
실시예 12 화합물 21 4.17 20.0 372 적색
실시예 13 화합물 22 4.23 19.4 338 적색
실시예 14 화합물 23 4.15 20.3 356 적색
실시예 15 화합물 24 4.24 19.2 348 적색
실시예 16 화합물 25 4.15 19.4 361 적색
실시예 17 화합물5 화합물 18 4.08 20.2 240 적색
실시예 18 화합물 19 3.97 20.7 222 적색
실시예 19 화합물 20 4.05 21.1 238 적색
실시예 20 화합물 21 3.91 19.9 227 적색
실시예 21 화합물 22 4.03 20.5 242 적색
실시예 22 화합물 23 4.01 20.8 236 적색
실시예 23 화합물 24 3.94 21.0 230 적색
실시예 24 화합물 25 3.90 20.4 241 적색
실시예 25 화합물6 화합물 18 4.11 20.5 354 적색
실시예 26 화합물 19 4.07 19.9 381 적색
실시예 27 화합물 20 4.13 21.1 397 적색
실시예 28 화합물 21 4.02 20.6 362 적색
실시예 29 화합물 22 4.10 19.7 388 적색
실시예 30 화합물 23 4.09 20.5 358 적색
실시예 31 화합물 24 4.13 19.8 392 적색
실시예 32 화합물 25 4.10 21.1 377 적색
실시예 33 화합물7 화합물 16 4.25 18.7 320 적색
실시예 34 화합물 17 4.19 17.8 307 적색
실시예 35 화합물 19 4.21 18.4 333 적색
실시예 36 화합물 21 4.17 17.9 318 적색
실시예 37 화합물 22 4.20 18.7 321 적색
실시예 38 화합물 23 4.23 18.3 328 적색
실시예 39 화합물 24 4.15 18.5 309 적색
실시예 40 화합물 25 4.19 18.2 314 적색
실시예 41 화합물9 화합물 16 4.07 20.1 261 적색
실시예 42 화합물 17 3.97 19.7 232 적색
실시예 43 화합물 19 4.00 20.3 241 적색
실시예 44 화합물 21 4.03 20.2 259 적색
실시예 45 화합물 22 4.01 19.8 234 적색
실시예 46 화합물 23 3.97 20.4 250 적색
실시예 47 화합물 24 4.03 19.6 237 적색
실시예 48 화합물 25 4.01 20.7 221 적색
실시예 49 화합물10 화합물 16 4.14 20.4 352 적색
실시예 50 화합물 17 4.11 21.5 337 적색
실시예 51 화합물 19 4.17 20.7 348 적색
실시예 52 화합물 21 4.09 19.9 350 적색
실시예 53 화합물 22 4.13 21.0 358 적색
실시예 54 화합물 23 4.11 20.3 321 적색
실시예 55 화합물 24 4.16 21.8 359 적색
실시예 56 화합물 25 4.07 20.9 335 적색
실시예 57 화합물11 화합물 16 4.06 20.7 265 적색
실시예 58 화합물 17 3.99 21.6 251 적색
실시예 49 화합물 19 3.95 20.4 247 적색
실시예 50 화합물 21 4.01 19.3 268 적색
실시예 51 화합물 22 4.00 22.0 230 적색
실시예 52 화합물 23 3.94 21.1 237 적색
실시예 53 화합물 24 3.98 19.7 250 적색
실시예 54 화합물 25 3.97 20.4 244 적색
실시예 55 화합물12 화합물 16 4.00 20.8 271 적색
실시예 56 화합물 17 4.03 19.6 280 적색
실시예 57 화합물 19 3.98 19.3 264 적색
실시예 58 화합물 21 4.05 20.4 267 적색
실시예 59 화합물 22 4.02 19.2 274 적색
실시예 60 화합물 23 4.01 18.9 259 적색
실시예 61 화합물 24 3.97 20.4 268 적색
실시예 62 화합물 25 4.03 19.7 275 적색
실시예 63 화합물15 화합물 16 4.11 20.1 337 적색
실시예 64 화합물 17 4.04 20.5 328 적색
실시예 65 화합물 19 4.06 19.6 340 적색
실시예 66 화합물 21 4.10 21.1 317 적색
실시예 67 화합물 22 4.07 19.4 319 적색
실시예 68 화합물 23 4.09 20.8 324 적색
실시예 69 화합물 24 4.13 19.9 330 적색
실시예 70 화합물 25 4.02 20.0 334 적색
실시예 1 내지 70 및 비교예 1 내지 137에 의해 제작된 유기 발광 소자에 대하여, 상기 표 1 내지 표 5의 결과를 얻었다. 상기 결과를 보면 발광층에 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 코호스트로 사용하여 공증착한 유기 발광 소자의 구동전압, 효율, 수명 측정 결과가 가장 우수했다. 발광층에 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 사용한 유기 발광 소자는 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물만을 단일 호스트로 포함하는 유기 발광 소자(비교예 1 내지 비교예 25)보다 우수한 결과를 나타냈다. 또한, 본 발명의 일 실시예는 화학식 2로 표시되는 화합물을 정공 수송 영역에 사용한 경우(비교예 26 내지 비교예 73)보다 우수하였으며, 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물을 포함하되, 본 발명에 포함되지 않는 화합물 C-1 내지 C-12 중 어느 하나를 코호스트로 포함하는 유기 발광 소자(비교예 74 내지 비교예 137) 보다도 우수한 결과를 나타냈다.
이상의 결과로부터, 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 조합하면 발광층 내에서 정공의 양이 많아지면서 발광층 내에 전자와 정공이 더 안정적인 균형을 유지하여 효율과 수명이 상승함을 유추할 수 있다. 결론적으로 본 발명의 화합물 조합을 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다.
부호의 설명
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 정공저지층 8: 전자 주입 및 수송층

Claims (12)

  1. 양극,
    음극,
    상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2020095038-appb-img-000080
    상기 화학식 1에서,
    Ar 1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    L은 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    R 1, R 2, R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고, R 1, R 2, R 3 및 R 4 중 인접한 둘은 서로 결합하여 C 6-60 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로방향족 고리를 형성할 수 있고,
    R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이다.
    [화학식 2]
    Figure PCTKR2020095038-appb-img-000081
    상기 화학식 2에서,
    Ar 2 및 Ar 3는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 1-1]
    Figure PCTKR2020095038-appb-img-000082
    [화학식 1-2]
    Figure PCTKR2020095038-appb-img-000083
    [화학식 1-3]
    Figure PCTKR2020095038-appb-img-000084
    상기 화학식 1-1 내지 화학식 1-3에서,
    Ar 1, L, R 5, R 6, R 7 및 R 8에 대한 설명은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar 1은 치환 또는 비치환된 2 이상의 N을 포함하는 C 2-60 헤테로아릴인,
    유기 발광 소자.
  4. 제1항에 있어서,
    Ar 1은 치환 또는 비치환된 퀴나졸리닐, 또는 치환 또는 비치환된 퀴녹살리닐인,
    유기 발광 소자.
  5. 제1항에 있어서,
    Ar 1은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020095038-appb-img-000085
    .
  6. 제1항에 있어서,
    L은 단일결합인,
    유기 발광 소자.
  7. 제1항에 있어서,
    R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소 또는 카바졸릴이고,
    상기 카바졸릴은 비치환되거나, 페닐, 비페닐릴, 나프틸, 나프틸 페닐 및 페닐 나프틸 중 어느 하나로 치환된,
    유기 발광 소자.
  8. 제1항에 있어서,
    R 5, R 6, R 7 및 R 8은 각각 독립적으로, 수소 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020095038-appb-img-000086
    .
  9. 제1항에 있어서,
    R 5, R 6, R 7 및 R 8 중 적어도 하나는 치환 또는 비치환된 카바졸릴인,
    유기 발광 소자.
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020095038-appb-img-000087
    Figure PCTKR2020095038-appb-img-000088
    Figure PCTKR2020095038-appb-img-000089
    Figure PCTKR2020095038-appb-img-000090
    Figure PCTKR2020095038-appb-img-000091
    Figure PCTKR2020095038-appb-img-000092
    Figure PCTKR2020095038-appb-img-000093
    Figure PCTKR2020095038-appb-img-000094
    Figure PCTKR2020095038-appb-img-000095
    Figure PCTKR2020095038-appb-img-000096
    Figure PCTKR2020095038-appb-img-000097
    Figure PCTKR2020095038-appb-img-000098
    Figure PCTKR2020095038-appb-img-000099
    Figure PCTKR2020095038-appb-img-000100
    Figure PCTKR2020095038-appb-img-000101
    Figure PCTKR2020095038-appb-img-000102
    Figure PCTKR2020095038-appb-img-000103
    Figure PCTKR2020095038-appb-img-000104
    Figure PCTKR2020095038-appb-img-000105
    .
  11. 제1항에 있어서,
    Ar 2 및 Ar 3는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 디메틸 플루오레닐, 나프틸, 나프틸 페닐, 또는 페닐 나프틸인,
    유기 발광 소자.
  12. 제1항에 있어서,
    상기 화학식 2 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020095038-appb-img-000106
    Figure PCTKR2020095038-appb-img-000107
    Figure PCTKR2020095038-appb-img-000108
    Figure PCTKR2020095038-appb-img-000109
    Figure PCTKR2020095038-appb-img-000110
    Figure PCTKR2020095038-appb-img-000111
    Figure PCTKR2020095038-appb-img-000112
    Figure PCTKR2020095038-appb-img-000113
    Figure PCTKR2020095038-appb-img-000114
    Figure PCTKR2020095038-appb-img-000115
    Figure PCTKR2020095038-appb-img-000116
    Figure PCTKR2020095038-appb-img-000117
    .
PCT/KR2020/095038 2019-03-14 2020-03-13 유기 발광 소자 WO2020185059A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005443.3A CN112789741A (zh) 2019-03-14 2020-03-13 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0029417 2019-03-14
KR20190029417 2019-03-14
KR10-2020-0030984 2020-03-12
KR1020200030984A KR102578116B1 (ko) 2019-03-14 2020-03-12 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2020185059A1 true WO2020185059A1 (ko) 2020-09-17

Family

ID=72426444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/095038 WO2020185059A1 (ko) 2019-03-14 2020-03-13 유기 발광 소자

Country Status (2)

Country Link
KR (1) KR20210156260A (ko)
WO (1) WO2020185059A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061594A (ko) * 2015-11-26 2017-06-05 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20170087691A (ko) * 2016-01-21 2017-07-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180041581A (ko) * 2016-10-14 2018-04-24 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR101857632B1 (ko) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180111558A (ko) * 2017-03-30 2018-10-11 주식회사 엘지화학 유기 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
CN103772268B (zh) 2008-08-22 2017-01-04 株式会社Lg化学 用于有机电子器件的材料以及使用所述材料的有机电子器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061594A (ko) * 2015-11-26 2017-06-05 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20170087691A (ko) * 2016-01-21 2017-07-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180041581A (ko) * 2016-10-14 2018-04-24 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20180111558A (ko) * 2017-03-30 2018-10-11 주식회사 엘지화학 유기 발광 소자
KR101857632B1 (ko) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
KR20210156260A (ko) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2021025328A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021125649A1 (ko) 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2021091165A1 (ko) 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021251661A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021182833A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021182834A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2020231021A1 (ko) 유기 발광 소자
WO2020185059A1 (ko) 유기 발광 소자
WO2023085789A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2023096318A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080339A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023096454A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023003146A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096465A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769675

Country of ref document: EP

Kind code of ref document: A1