WO2020183834A1 - 光学部材用ポリカーボネート樹脂組成物 - Google Patents

光学部材用ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
WO2020183834A1
WO2020183834A1 PCT/JP2019/048962 JP2019048962W WO2020183834A1 WO 2020183834 A1 WO2020183834 A1 WO 2020183834A1 JP 2019048962 W JP2019048962 W JP 2019048962W WO 2020183834 A1 WO2020183834 A1 WO 2020183834A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
polycarbonate resin
mass
resin composition
parts
Prior art date
Application number
PCT/JP2019/048962
Other languages
English (en)
French (fr)
Inventor
黒川 晴彦
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019064082A external-priority patent/JP2020152883A/ja
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Publication of WO2020183834A1 publication Critical patent/WO2020183834A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a polycarbonate resin composition for an optical member, and more particularly to a polycarbonate resin composition for an optical member having low thermal stability, heat-resistant discoloration, and low chargeability.
  • Polycarbonate resin is excellent in transparency, mechanical properties, thermal properties, electrical properties, weather resistance, etc., and is used for optical members such as light guide plates.
  • the hue of the polycarbonate resin is colored yellower than that of polymethylmethacrylate or the like
  • a planar light source device or the like using the light guide plate of the polycarbonate resin has a problem that the chromaticity difference in the light guide plate is large. Therefore, a light guide plate made of a polycarbonate resin or the like is required to improve brightness and light transmittance and to reduce coloring due to oxidation.
  • Patent Document 1 provides a polycarbonate resin composition for a light guide plate, which does not impair the original characteristics of an aromatic polycarbonate resin, does not cause cloudiness or decrease in permeability, and has good permeability and hue.
  • an aromatic polycarbonate resin composition for a light guide plate containing 0.01 to 1 part by weight of polyalkylene glycol in an aromatic polycarbonate resin is disclosed.
  • the compatibility of polyalkylene glycol with the polycarbonate resin is not always sufficient, so that the obtained light guide plate tends to be cloudy, the transparency tends to deteriorate, and the hue tends to deteriorate.
  • Optical members such as light guide plates are required to have a higher degree of transparency and hue. This requirement becomes even more stringent especially in the case of an optical member having a long optical path length, for example, an optical member having an optical path length of 50 mm or more.
  • Patent Document 2 a copolymerized polycarbonate glycol containing 40 to 80 mol% of tetramethylene glycol unit, 5 to 45 mol% of (2-methyl) ethylene glycol unit, and 5 to 50 mol% of ethylene glycol unit. It was proposed that the polycarbonate resin composition contained therein is excellent in transparency, heat-resistant discoloration, and releasability.
  • An object (problem) of the present invention is to provide a polycarbonate resin composition for an optical member, which is excellent in thermal stability and charging characteristics (hard to be charged) without impairing the original characteristics of the polycarbonate resin.
  • the present inventor has a polyoxytetramethylene glycol-based structure in which a polyoxytetramethylene glycol-based random polymer component is bonded via an alkylene diol (B2).
  • B2 alkylene diol
  • a resin composition containing 4 parts by mass is a multi-component polymer having a structure in which polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are bonded via an alkylene diol (B2).
  • a polycarbonate resin composition for an optical member which has a number average molecular weight (Mn) of 1000 to 3000.
  • the polyoxytetramethylene glycol-based multi-element polymer (B) contains 10 mol% or less of units derived from the alkylene diol (B2) in all the diol components constituting the multi-element polymer (B).
  • the alkylene diol (B2) is an alkylene diol monomer in which the main chain may be branched with 2 to 6 carbon atoms, or any of the above [1] to [3] which is a dimer thereof.
  • the polycarbonate resin composition for an optical member according to any one of [4].
  • Polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are random copolymers containing oxytetramethylene glycol units and other oxyalkylene glycol units other than oxytetramethylene glycol units.
  • the oxyalkylene glycol units other than the oxytetramethylene glycol units in the polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are ethylene glycol, (2-methyl) ethylene glycol, trimethylene glycol, and the like.
  • Polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are copolymers containing oxytetramethylene glycol units and oxy (2-methyl) ethylene glycol units, and are alkylene diols (B2).
  • the polycarbonate resin composition for an optical member according to any one of the above [1] to [7], wherein) is ethylene glycol or diethylene glycol.
  • the above [1] to [8] containing 0.005 to 0.2 parts by mass of the epoxy compound and / or the oxetane compound (D) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • a molded product for an optical member comprising the polycarbonate resin composition according to any one of the above [1] to [9].
  • the polycarbonate resin composition of the present invention is excellent in thermal stability, heat-resistant discoloration and antistatic properties (antistatic properties) without impairing the original properties of the polycarbonate resin, and thus is suitably used for various optical members. Can be done.
  • the polycarbonate resin composition for an optical member of the present invention contains 100 parts by mass of an aromatic polycarbonate resin (A) and 0.1 to 3 parts by mass of a polyoxytetramethylene glycol-based multiplex polymer (B) and a phosphorus-based stabilizer.
  • a polyoxytetramethylene glycol-based multi-component polymer (B) is a multi-component polymer having a structure in which polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are bonded via an alkylene diol (B2). It is characterized in that the number average molecular weight (Mn) is 1000 to 3000.
  • the polycarbonate resin composition of the present invention contains an aromatic polycarbonate resin (A).
  • the aromatic polycarbonate resin (A) is an aromatic polycarbonate polymer obtained by reacting an aromatic hydroxy compound with a phodiester of phosgene or carbonic acid.
  • the aromatic polycarbonate polymer may have a branch.
  • the method for producing the aromatic polycarbonate resin is not particularly limited, and conventional methods such as a phosgene method (interfacial polymerization method) and a melting method (transesterification method) can be used.
  • aromatic dihydroxy compounds include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4-hydroxy-3-methylphenyl).
  • Propane 2,2-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy) -3,5-dibromophenyl) propane, 4,4-bis (4-hydroxyphenyl) heptane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-dihydroxybiphenyl, 3,3', 5 , 5'-Tetramethyl-4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) ketone And so on.
  • aromatic dihydroxy compounds 2,2-bis (4-hydroxyphenyl) propane (that is, bisphenol A) is particularly preferable. Further, the aromatic dihydroxy compound may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin (A) When producing the aromatic polycarbonate resin (A), a small amount of polyhydric phenol or the like having 3 or more hydroxy groups in the molecule may be added in addition to the aromatic dihydroxy compound. In this case, the aromatic polycarbonate resin has branches. Examples of the polyhydric phenol having three or more hydroxy groups include fluoroglucolcin, 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene-2, 4,6-dimethyl-2,4.
  • the amount of the polyhydric phenol used is preferably 0.01 to 10 mol%, more preferably 0.1 to 2 mol%, based on the aromatic dihydroxy compound (100 mol%). Is.
  • carbonic acid diester is used as a monomer instead of phosgene.
  • Typical examples of the carbonic acid diester include substituted diaryl carbonate typified by diphenyl carbonate, ditril carbonate and the like, dimethyl carbonate, diethyl carbonate, dialkyl carbonate typified by di-tert-butyl carbonate and the like. These carbonic acid diesters can be used alone or in admixture of two or more. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable.
  • the above carbonic acid diester may be replaced with a dicarboxylic acid or a dicarboxylic acid ester in an amount of preferably 50 mol% or less, more preferably 30 mol% or less.
  • Typical dicarboxylic acids or dicarboxylic acid esters include terephthalic acid, isophthalic acid, diphenyl terephthalate, diphenyl isophthalate and the like.
  • a catalyst When producing an aromatic polycarbonate resin by the transesterification method, a catalyst is usually used.
  • the type of catalyst is not limited, but generally, basic compounds such as alkali metal compounds, alkaline earth metal compounds, basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds are used. Of these, alkali metal compounds and / or alkaline earth metal compounds are particularly preferable. These may be used alone or in combination of two or more.
  • it is common to inactivate the catalyst with a p-toluenesulfonic acid ester or the like.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A) is preferably 10,000 to 30,000.
  • a light guide plate such as a backlight for a liquid crystal
  • it is preferably 10,000 to 15,000, more preferably 10,500 or more, still more preferably 11,000 or more, particularly 11,500 or more, and most preferably 12. It is 000 or more, more preferably 14,000 or less.
  • 15,000 to 23,000 is preferable for light guides and lenses that guide light from a light source such as an LED in a headlamp (head lamp) for a vehicle such as an automobile or a motorcycle, and fluidity. It is more preferably 17,000 to 20,000 in terms of hue. Further, in a light guide for lighting or the like, it is preferably 15,000 to 24,000, and more preferably 17,000 to 20,000 from the viewpoint of fluidity and hue.
  • the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by setting the viscosity average molecular weight to the upper limit of the above range or less, the present invention It is possible to suppress and improve the decrease in fluidity of the polycarbonate resin composition of the present invention, improve the molding processability, and facilitate the molding process.
  • Two or more kinds of aromatic polycarbonate resins having different viscosity average molecular weights may be mixed and used. In this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned suitable range may be mixed.
  • the ultimate viscosity [ ⁇ ] is a value calculated by the following formula by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the aromatic polycarbonate resin (A) is arbitrary and may be appropriately selected and determined, but is usually 1000 ppm or less, preferably 800 ppm or less, and more preferably 600 ppm or less. Thereby, the retention heat stability and the color tone of the polycarbonate resin can be further improved. Further, the lower limit thereof is usually 10 ppm or more, preferably 30 ppm or more, and more preferably 40 ppm or more, particularly in the case of the polycarbonate resin produced by the melt transesterification method. As a result, it is possible to suppress a decrease in molecular weight and further improve the mechanical properties of the resin composition.
  • the unit of the terminal hydroxyl group concentration is the mass of the terminal hydroxyl group expressed in ppm with respect to the mass of the polycarbonate resin.
  • the measuring method is colorimetric quantification by the titanium tetrachloride / acetic acid method (the method described in Macromol. Chem. 88 215 (1965)).
  • the aromatic polycarbonate resin is not limited to a mode containing only one type of polycarbonate resin, and includes, for example, a mode containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights. It may be used in combination with an alloy (mixture) of a polycarbonate resin and another thermoplastic resin.
  • a polycarbonate resin is a copolymer of an oligomer or a polymer having a siloxane structure for the purpose of further improving flame retardancy and impact resistance; a phosphorus atom for the purpose of further improving thermal oxidation stability and flame retardancy.
  • the aromatic polycarbonate resin may contain a polycarbonate oligomer in order to improve the appearance and fluidity of the molded product.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1500 or more, preferably 2000 or more, and usually 9500 or less, preferably 9000 or less.
  • the contained polycarbonate ligomer is preferably 30% by mass or less of the aromatic polycarbonate resin (including the polycarbonate oligomer).
  • the aromatic polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin recycled from a used product (so-called material recycled polycarbonate resin).
  • the regenerated polycarbonate resin is preferably 80% by mass or less, and more preferably 50% by mass or less of the aromatic polycarbonate resin. Since the regenerated polycarbonate resin is likely to be deteriorated by heat deterioration, aging deterioration, etc., if such a polycarbonate resin is used in a larger amount than the above range, the hue and mechanical properties can be deteriorated. Because there is sex.
  • the polycarbonate resin composition for an optical member of the present invention is a polyoxytetramethylene glycol-based composition having a structure in which polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are bonded via an alkylene diol (B2). Contains the multi-dimensional polymer (B).
  • the polymer (B) preferably has a structure represented by the following formula (1).
  • YXY'(1) In the above formula (1), X is a residue obtained by removing the hydroxyl group from the alkylene diol (B2), and Y and Y'are polyoxytetramethylene glycol-based random polymer components (B1) and (B3). , Each may be the same or different.
  • an alkylene diol component having poor thermal stability such as ethylene glycol or diethylene glycol
  • the polymer compared to the case where those alkylene diols are introduced into the terminal structure. It is preferable because the decomposition of B) is unlikely to occur and the thermal stability becomes more excellent.
  • alkylene diol (B2) preferably, an alkylene diol monomer in which the number of carbon atoms in the main chain may be branched at 2 to 6 or a dimer thereof is used.
  • linear alkylene glycol having 2 to 6 carbon atoms in the main chain include ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, and the like, and these are two types even if one type is used alone. The above mixture may be used. Of these, ethylene glycol and trimethylene glycol are particularly preferable.
  • Branched alkylene glycols having 2 to 6 carbon atoms in the main chain include (2-methyl) ethylene glycol, (2-ethyl) ethylene glycol, (2-methyl) trimethylene glycol, and (3-methyl) trimethylene.
  • Glycol (2-ethyl) trimethylene glycol, (3-ethyl) triethylene glycol, (2,2-dimethyl) trimethylene glycol, (2,2-methylethyl) trimethylene glycol, (2,2-diethyl) Trimethylene glycol (ie, neopentyl glycol), (3,3-dimethyl) trimethylene glycol, (3,3-methylethyl) trimethylene glycol, (3,3-diethyl) trimethylene glycol, (3-methyl) Tetramethylene glycol, (4-methyl) tetramethylene glycol, (3-ethyl) tetramethylene glycol, (4-ethyl) tetramethylene glycol, (3,3-dimethyl) tetramethylene glyco
  • branched alkylene glycol (2-methyl) ethylene glycol, (2-ethyl) ethylene glycol, and (2-methyl) trimethylene glycol are preferable.
  • alkylene diol dimer in which the main chain of the alkylene diol (B2) may be branched at 2 to 6 carbon atoms are preferably diethylene glycol, dipropylene glycol, dineopentyl glycol and the like. Be done.
  • alkylene diols (B2) ethylene glycol, (2-methyl) ethylene glycol, trimethylene glycol, (2-ethyl) ethylene glycol, neopentyl glycol, and dimers thereof are particularly preferable. Of these, diethylene glycol and dineopentyl glycol are particularly preferable as dimers.
  • the alkylene diol (B2) may be used alone or in combination of two or more. Further, as the alkylene diol (B2), a small amount of the alicyclic diol compound and the aromatic diol may be used in combination as long as the effects of the present invention are not impaired. When the alicyclic diol compound and / or the aromatic diol is used in combination, the amount is based on 100% by mass of the total of the alkylene diol (B2), the alicyclic diol compound and the aromatic diol, preferably less than 5% by mass. It is preferably less than 3% by mass, particularly less than 2% by mass, particularly less than 1% by mass.
  • Examples of the alicyclic diol compound include cyclobutanediols such as 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediol, and 1,3-cyclohexane.
  • cyclobutanediols such as 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediol, and 1,3-cyclohexane.
  • Diols such as 2-methyl-1,4-cyclohexanediol
  • cyclohexanedimethanols such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol
  • 2, Norbornane diethanols such as 2-bis (4-hydroxycyclohexyl) propane (ie, hydride bisphenol A), 2,3-norbornandimethanol, 2,5-norbornandimethanol, tricyclodecanedimethanol, pentacyclopentadecane.
  • 2,2,4,4-tetramethyl-1,3-cyclobutanediol, cyclohexanediols, cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane (ie, hydrogen) Bisphenol A) is more preferred, especially 2,2-bis (4-hydroxycyclohexyl) propane (ie, bisphenol A hydride).
  • aromatic diol examples include bisphenol A, 4,4'-methylenediphenol, bisphenol A, 4,4'-dihydroxybiphenyl and the like.
  • the polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are a polymer component having an oxytetramethylene glycol unit [-CH 2 CH 2 CH 2 CH 2- O-] and an oxytetramethylene glycol unit. It is a random copolymer component having other oxyalkylene glycol units other than the above.
  • the other oxyalkylene glycol unit may be either a linear type or a branched type oxyalkylene glycol unit.
  • the number of carbon atoms in the oxyalkylene glycol unit is preferably 2 to 20, more preferably 2 to 16, further preferably 2 to 12, and particularly preferably 2 to 10.
  • linear oxyalkylene glycol unit examples include ethylene glycol, trimethylene glycol, pentamethylene glycol, and hexamethylene glycol as alkylene glycols. These may be one kind alone or a mixture of two or more kinds. Of the above, ethylene glycol and trimethylene glycol are more preferable.
  • Examples of branched oxyalkylene glycol units include (2-methyl) ethylene glycol, (2-ethyl) ethylene glycol, (2-methyl) trimethylene glycol, and (3-methyl) as alkylene glycols. Trimethylene glycol, (2-ethyl) trimethylene glycol, (3-ethyl) triethylene glycol, (2,2-dimethyl) trimethylene glycol, (2,2-methylethyl) trimethylene glycol, (2,2- Diol (diethyl) trimethylene glycol (ie, neopentyl glycol), dineopentyl glycol, (3,3-dimethyl) trimethylene glycol, (3,3-methylethyl) trimethylene glycol, (3,3-diethyl) trimethylene Glycol, (3-methyl) tetramethylene glycol, (4-methyl) tetramethylene glycol, (3-ethyl) tetramethylene glycol, (4-ethyl) tetramethylene glycol, (3,
  • (2-methyl) ethylene glycol (2,2-diethyl) trimethylene glycol (ie, neopentyl glycol), and (3-methyl) tetramethylene glycol.
  • the oxyalkylene glycol unit has been described above by taking glycol as an example for convenience, the oxyalkylene glycol unit is not limited to these glycols, and may be these alkylene oxides or their polyether-forming derivatives.
  • the polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are oxytetramethylene glycol units, ethylene glycol other than oxytetramethylene glycol, (2-methyl) ethylene glycol, trimethylene glycol, and neopentyl glycol.
  • a random copolymer composed of (2-methyl) tetramethylene glycol units is more preferable, and a random copolymer composed of trimethylene glycol, (2-methyl) ethylene glycol, and (2-methyl) ethylene glycol units is particularly preferable.
  • polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are random copolymers, they are aromatic because they suppress the crystallization of the polyoxytetramethylene glycol-based multiplex polymer (B).
  • Compatibility with the polycarbonate resin (A) and handleability are improved. Further, the compatibility with the polycarbonate resin is further improved by the polyoxytetramethylene glycol-based multi-component polymer (B) in which this is bonded with an alkylene diol (B2).
  • the polymer (B) can be produced by a known method.
  • a glycol that forms the above-mentioned oxyalkylene glycol unit in the presence of an alkylene diol (B2), or an alkylene oxide or a polyether-forming derivative thereof can be prepared by a known method described in, for example, JP-A-2018-184557.
  • It can be produced by polymerizing with an alkylene diol (B2) as an initiator in the presence of a Lewis acid catalyst under appropriate reaction conditions.
  • it can be produced by addition polymerization of tetrahydrofuran and an alkylene oxide forming an oxyalkylene glycol unit other than the oxytetramethylene glycol unit using the alkylene diol (B2) as an initiator.
  • the amount of the alkylenediol (B2) component to which the polyoxytetramethylene glycol-based random polymer components (B1) and (B3) are bonded is the amount of the polyoxytetramethylene glycol-based multiplex polymer (B).
  • the content is preferably the smallest, and the content is preferably 10 mol% or less, more preferably 8 mol% or less, still more preferably 7 mol% or less, and particularly preferably 5 mol. % Or less, preferably 1 mol% or more, more preferably 2 mol% or more, still more preferably 3 mol% or more.
  • the thermal stability of the polymer (B) becomes good, and when it exceeds the above upper limit value, the molecular chain length is shortened, so that the heat of the polymer (B) is increased. Stability is reduced and a large amount of mold deposits are likely to occur.
  • the mol% when the alkylene diol (B2) is a dimer such as diethylene glycol or dineopentyl glycol is calculated assuming that the number of moles of the dimer is 2 mol.
  • the mass ratio of the content of the unit derived from oxytetramethylene glycol is preferably 55 to 80% by mass.
  • the compatibility with the aromatic polycarbonate resin (A) becomes good, and when it is less than 55% by mass or exceeds 80% by mass, it is aromatic.
  • the compatibility with the polycarbonate resin (A) tends to deteriorate.
  • the amount of the oxytetramethylene glycol unit is preferably 56% by mass or more, more preferably 57% by mass or more, preferably 75% by mass or less, more preferably 70% by mass or less, still more preferably 65% by mass.
  • the mass ratio of the units other than oxytetramethylene glycol in the components excluding the alkylenediol (B2) component is preferably 20 to 47% by mass, more preferably 30% by mass. As described above, it is preferably 43% by mass or less, more preferably 40% by mass or less, and particularly preferably 38% by mass or less.
  • the mass ratio of the alkylenediol (B2) component, the oxytetramethylene glycol unit, and the oxyalkylene glycol unit other than the oxytetramethylene glycol in the polymer (B) is 1 H-NMR measuring device (specifically, , For example, 500 MHz manufactured by Brunker), and can be obtained by measuring with deuterated chloroform as a solvent.
  • the number average molecular weight of the polymer (B) is 1000 to 3000. By setting the number average molecular weight to 1000 to 3000, compatibility with the aromatic polycarbonate resin (A) and suppression of mold deposits can be achieved at the same time, and if it is less than 1000, the mold deposits during molding increase to 3000. If it exceeds, the compatibility with the aromatic polycarbonate resin (A) is lowered, the light transmittance is lowered, and the hue improving effect is deteriorated.
  • the number average molecular weight is preferably 1500 or more, more preferably 1800 or more, further preferably 2000 or more, preferably 2800 or less, more preferably 2600 or less, further 2400 or less, and particularly preferably 2200 or less. ..
  • the number average molecular weight of the polymer (B) referred to here is the number average molecular weight Mn calculated based on the hydroxyl value measured based on JIS K1577.
  • the content of the polymer (B) is 0.1 to 3 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). With such a content, the hue, heat-resistant discoloration, and non-chargeability are excellent.
  • the preferable content of the polymer (B) is 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably 2.5 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). It is less than or equal to parts by mass, more preferably less than 2 parts by mass, and even more preferably less than or equal to 1.8 parts by mass.
  • the polycarbonate resin composition for an optical member of the present invention contains a phosphorus-based stabilizer.
  • a phosphorus-based stabilizer By containing a phosphorus-based stabilizer, the hue of the polycarbonate resin composition of the present invention is further improved.
  • Any known phosphorus-based stabilizer can be used. Specific examples include phosphoric acid, phosphonic acid, phosphite, phosphinic acid, polyphosphoric acid and other phosphorus oxo acids; acidic sodium pyrophosphate, potassium pyrophosphate, acidic calcium pyrophosphate and other acidic pyrophosphate metal salts; phosphoric acid.
  • Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, zinc phosphate; phosphate compounds, phosphite compounds, phosphonite compounds and the like can be mentioned, with phosphite compounds being particularly preferred.
  • phosphite compound By selecting the phosphite compound, a polycarbonate resin composition having higher discoloration resistance and continuous productivity can be obtained.
  • the phosphite compound is a trivalent phosphorus compound represented by the general formula: P (OR) 3 , and R represents a monovalent or divalent organic group.
  • Examples of such phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl-phenyl) phosphite, and tris (2,4-di-tert-butylphenyl) phos.
  • the aromatic phosphite compound represented by the following formula (1) or (2) is more preferable because the heat-resistant discoloration property of the polycarbonate resin composition of the present invention is effectively enhanced. ..
  • R 1 , R 2 and R 3 may be the same or different, respectively, and represent an aryl group having 6 to 30 carbon atoms.
  • R 4 and R 5 may be the same or different, respectively, and represent an aryl group having 6 or more and 30 or less carbon atoms. ]
  • phosphite compound represented by the above formula (1) triphenylphosphine, tris (monononylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite and the like are preferable. Of these, tris (2,4-di-tert-butylphenyl) phosphite is more preferable.
  • organic phosphite compound include "ADEKA STAB 1178" manufactured by ADEKA, “Sumilyzer TNP” manufactured by Sumitomo Chemical, "JP-351” manufactured by Johoku Chemical Industry, and "ADEKA STAB” manufactured by ADEKA. 2112 ”,“ Irgaphos 168 ”manufactured by BASF,“ JP-650 ”manufactured by Johoku Chemical Industry Co., Ltd. and the like.
  • Examples of the phosphite compound represented by the above formula (2) include bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,6-di-tert-). Those having a pentaerythritol diphosphite structure such as butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are particularly preferable. Specific examples of such an organic phosphite compound are preferably "ADEKA STAB PEP-36" manufactured by ADEKA and "Doverphos S-9228" manufactured by Doverchemical.
  • the phosphorus-based stabilizer may contain one type, or two or more types may be contained in any combination and ratio.
  • the content of the phosphorus-based stabilizer (C) is 0.005 to 0.4 parts by mass, preferably 0.007 parts by mass or more, more preferably 0.007 parts by mass or more, based on 100 parts by mass of the aromatic polycarbonate resin (A). 0.008 parts by mass or more, more preferably 0.01 parts by mass or more, preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, particularly preferably 0.15 parts by mass or less, 0 Most preferably, it is 1 part by mass or less.
  • the content of the phosphorus-based stabilizer (C) is less than 0.005 parts by mass in the above range, the hue improving effect is insufficient, and the content of the phosphorus-based stabilizer (C) exceeds 0.4 parts by mass. In that case, the heat-resistant discoloration property deteriorates.
  • the resin composition of the present invention preferably further contains an epoxy compound and / or an oxetane compound.
  • epoxy compound a compound having one or more epoxy groups in one molecule is used. Specifically, phenylglycidyl ether, allylglycidyl ether, t-butylphenylglycidyl ether, 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexylcarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl.
  • the epoxy compounds may be used alone or in combination of two or more.
  • the content of the epoxy compound is preferably 0.005 to 0.2 parts by mass, more preferably 0.007 parts by mass or more, and more preferably 0.007 parts by mass or more, based on 100 parts by mass of the aromatic polycarbonate resin (A). It is preferably 0.15 parts by mass or less, more preferably 0.1 parts by mass or less, and particularly preferably 0.05 parts by mass or less. If the content of the epoxy compound is less than 0.005 parts by mass, the hue and heat-resistant discoloration tend to be insufficient, and if it exceeds 0.2 parts by mass, not only the heat resistance is deteriorated but also the hue is lowered. , Gas is easily generated during molding.
  • any compound having one or more oxetane groups in the molecule can be used, and a monooxetane compound having one oxetane group in the molecule and a monooxetane compound having two or more oxetane groups in the molecule can be used. Any bifunctional or higher functional polyoxetane compound can be used. By containing the oxetane compound, good hue and high heat-resistant discoloration can be further improved.
  • R 1 represents an alkyl group
  • R 2 represents an alkyl group or a phenyl group
  • R 3 represents a divalent organic group which may have an aromatic ring
  • n represents 0 or 1.
  • R 1 is an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group. Particularly preferably, it is an ethyl group.
  • R 2 is an alkyl group or a phenyl group, preferably an alkyl group having 2 to 10 carbon atoms, and may be any of a chain alkyl group, a branched alkyl group and an alicyclic alkyl group. Alternatively, it may be a chain or branched alkyl group having an ether bond (ether-based oxygen atom) in the middle of the alkyl chain.
  • R 2 examples include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl group, nonyl group, decyl group, 3-Okishipenchiru group, a cyclohexyl group, a phenyl
  • R 2 is preferably a 2 -ethylhexyl group, a phenyl group, or a cyclohexyl group.
  • Specific examples of the compound of the general formula (IA) include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, and 3-hydroxymethyl-. Preferred examples thereof include 3-normal butyl oxetane and 3-hydroxymethyl-3-propyl oxetane. Among them, 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane and the like are particularly preferable. As a specific example of the compound of the general formula (Ib), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane and the like are particularly preferable.
  • R 3 is a divalent organic group which may have an aromatic ring, and examples thereof include an ethylene group, a propylene group, a butylene group, a neopentylene group and an n-pentamethylene group.
  • n- hexamethylene group typically a straight or branched alkylene group having 1 to 12 carbon atoms, a phenylene group, the formula: -CH 2 -Ph-CH 2 - or -CH 2 -Ph-Ph-CH 2 - (Here, Ph indicates a phenyl group), a divalent group, a hydrogenated bisphenol A residue, a hydrogenated bisphenol F residue, a hydrogenated bisphenol Z residue, a cyclohexanedimethanol residue, and a tricyclode.
  • Candimethanol residues and the like can be mentioned.
  • Specific examples of the compound of the general formula (II) include bis (3-methyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) ether, and bis (3-propyl-3-oxetanylmethyl).
  • Ether bis (3-butyl-3-oxetanylmethyl) ether, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-3) Il) methoxy] methyl ⁇ oxetane, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, etc. It can be mentioned particularly preferably.
  • the oxetane compound may be used alone or in combination of two or more.
  • the content of the oxetane compound is preferably 0.005 to 0.2 parts by mass, more preferably 0.007 parts by mass or more, and particularly preferably 0. parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). It is 01 parts by mass or more, more preferably 0.15 parts by mass or less, further preferably 0.1 parts by mass or less, and particularly preferably 0.05 parts by mass or less. If the content of the oxetane compound is less than 0.005 parts by mass, the hue and heat-resistant discoloration tend to be insufficient, and if it exceeds 0.2 parts by mass, the heat-resistant discoloration tends to deteriorate, and during molding. Gas is likely to be generated.
  • the epoxy compound and the oxetane compound are preferably contained together, and the total content in that case is 0.005 to 0.2 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). Is preferable.
  • the polycarbonate resin composition of the present invention has other additives other than those described above, such as antioxidants, mold release agents, ultraviolet absorbers, fluorescent whitening agents, pigments, dyes, polymers other than polycarbonate resins, and difficulties. It can contain additives such as a fuel agent, an impact resistance improver, an antistatic agent, a plasticizer, and a compatibilizer. These additives may be used alone or in combination of two or more.
  • thermoplastic polyester resins such as acrylic resins having an aromatic ring structure, polyethylene terephthalate resins, polytrimethylene terephthalates, and polybutylene terephthalate resins; polystyrene resins and high impact polystyrene resins (HIPS).
  • AS resin Acrylonitrile-styrene copolymer
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylene propylene rubber-styrene copolymer
  • polyamide resin examples thereof include polyimide resin; polyetherimide resin; polyphenylene ether resin; polyphenylene sulfide resin; and polysulfone resin.
  • the other resin one type may be contained, or two or more types may be contained in any combination and ratio.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further 5 parts by mass or less, particularly, with respect to 100 parts by mass of the polycarbonate resin (A). It is preferably 3 parts by mass or less, particularly 1 part by mass or less.
  • the method for producing the polycarbonate resin composition of the present invention is not limited, and a known method for producing the polycarbonate resin composition can be widely adopted, and the aromatic polycarbonate resin (A), the polymer (B) and the phosphorus-based stabilizer (C) can be widely adopted. , And other ingredients to be blended as needed are premixed using various mixers such as tumblers and henschel mixers, and then Banbury mixers, rolls, brabenders, single-screw kneading extruders, and twin-screw kneading extruders.
  • various mixers such as tumblers and henschel mixers, and then Banbury mixers, rolls, brabenders, single-screw kneading extruders, and twin-screw kneading extruders.
  • melt-kneading examples thereof include a method of melt-kneading with a mixer such as a machine or a kneader.
  • the temperature of melt-kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • the polycarbonate resin composition for an optical member of the present invention can manufacture an optical member by molding pellets obtained by pelletizing the above-mentioned polycarbonate resin composition by various molding methods. Further, the resin melt-kneaded by an extruder can be directly molded into an optical member without passing through pellets.
  • the polycarbonate resin composition of the present invention has excellent compatibility, has a good hue even at a high processing temperature, has excellent antistatic properties, and generates extremely little gas during molding. Therefore, particularly by an injection molding method. , Suitable for molding optical members.
  • the resin temperature during injection molding is determined by the size and thickness of the target molded product and the injection capacity of the molding machine. In the molding of the polycarbonate resin composition of the present invention, it is usually used in the range of 280 ° C. to 390 ° C., preferably 280 ° C. to 360 ° C., but it should be molded at a low temperature as long as the state of filling property and molding strain allows. Is desirable.
  • optical member examples include parts of devices / appliances that directly or indirectly use a light source such as an LED, an organic EL, an incandescent lamp, a fluorescent lamp, and a cathode tube, and include a light guide plate, a surface light emitting body member, and a lighting member. Is exemplified as a typical example, and is particularly suitable for an optical component having a long optical path length of 50 mm or more.
  • the light guide plate is for guiding the light of a light source such as an LED in a liquid crystal backlight unit, various display devices, and a lighting device, and the light input from the side surface or the back surface is usually provided on the front surface. It diffuses due to the unevenness and emits uniform light. Its shape is usually flat, and the surface may or may not have irregularities. Molding of the light guide plate is usually preferably performed by an injection molding method, an ultra-high speed injection molding method, an injection compression molding method or the like.
  • the light guide plate using the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices.
  • Examples of such devices include various mobile terminals such as mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like.
  • it can be suitably used when the optical path length is as long as 50 mm or more.
  • a light guide member for external lighting for example, a light guide for guiding light from a light source such as an LED in a headlight (headlamp) for a vehicle such as an automobile or a motorcycle, a rear lamp, a fog lamp, or the like.
  • a lens or the like is also suitable, and can be suitably used particularly when the optical path length is as long as 50 mm or more.
  • the polycarbonate resin composition of the present invention is excellent in thermal stability, heat-resistant discoloration and antistatic properties (antistatic properties), it can be extremely suitably used for various optical members, and its industrial utility is very high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

芳香族ポリカーボネート樹脂(A)100質量部に対し、ポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部含有する樹脂組成物であって、 ポリオキシテトラメチレングリコール系多元重合体(B)が、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を、アルキレンジオール(B2)を介して結合した構造を有する多元重合体であって、数平均分子量(Mn)が1000~3000であることを特徴とする光学部材用ポリカーボネート樹脂組成物。

Description

光学部材用ポリカーボネート樹脂組成物
 本発明は、光学部材用ポリカーボネート樹脂組成物に関し、詳しくは、熱安定性、耐熱変色性及び帯電性の少ない光学部材用ポリカーボネート樹脂組成物に関する。
 ポリカーボネート樹脂は、透明性、機械的性質、熱的性質、電気的性質及び耐候性等に優れ、導光板等の光学部材に使用されている。しかし、ポリカーボネート樹脂の色相はポリメチルメタクリレート等に比べて黄色く着色するので、ポリカーボネート樹脂の導光板を用いた面状光源装置等には、導光板内の色度差が大きいという問題があった。そのため、ポリカーボネート樹脂製の導光板等には、輝度や光線透過率を向上させる他、酸化による着色を少なくすることが求められる。
 特許文献1には、芳香族ポリカーボネート樹脂本来の特性を何ら損なうことなく、更に、白濁や透過率の低下がなく、透過率および色相の良好な、導光板用ポリカーボネート樹脂組成物を提供することを目的として、芳香族ポリカーボネート樹脂に、ポリアルキレングリコールを0.01~1重量部含有して成る導光板用芳香族ポリカーボネート樹脂組成物が開示されている。
 しかしながら、ポリアルキレングリコールはポリカーボネート樹脂との相溶性が必ずしも十分ではなく、そのため得られる導光板は白濁が生じやすく、透明性が悪くなりやすく、色相も悪化しやすいという問題がある。
 特に、各種の液晶表示装置においては、薄肉化や大型薄肉化が著しいスピードで進行しており、導光板への入光を直下型から横側エッジから行うエッジ型が採用されるようになり、このような導光板等の光学部材においては、より高度の透明性と色相を有することが要求される。この要求は、特に光路長が長い光学部材、例えば50mm以上の光路長を有する光学部材の場合にはより厳しくなる。
 出願人は、特許文献2にて、テトラメチレングリコール単位40~80モル%、(2-メチル)エチレングリコール単位5~45モル%及びエチレングリコール単位5~50モル%を含む共重合ポリアルキレングリコールを含有するポリカーボネート樹脂組成物が、透明性と耐熱変色性に優れ、かつ離型性に優れることを提案した。
特開2004-051700号公報 特開2018-203985号公報
 しかしながら、特許文献2で提案したポリカーボネート樹脂組成物は、エチレングリコール由来の単位が熱安定性を悪くし、また帯電しやすい(埃が付きやすい)という問題があることが判明した。
 本発明の目的(課題)は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、熱安定性及び帯電特性(帯電しにくい)に優れた光学部材用ポリカーボネート樹脂組成物を提供することにある。
 本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリオキシテトラメチレングリコール系ランダム重合体成分を、アルキレンジオール(B2)を介して結合した構造を有するポリオキシテトラメチレングリコール系共重合体を含有することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
 本発明は、以下の光学部材用ポリカーボネート樹脂組成物および成形品に関する。
[1]芳香族ポリカーボネート樹脂(A)100質量部に対し、ポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部含有する樹脂組成物であって、
 ポリオキシテトラメチレングリコール系多元重合体(B)が、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を、アルキレンジオール(B2)を介して結合した構造を有する多元重合体であって、数平均分子量(Mn)が1000~3000であることを特徴とする光学部材用ポリカーボネート樹脂組成物。
[2]アルキレンジオール(B2)は、ポリオキシテトラメチレングリコール系多元重合体(B)を構成する全ジオール成分中、最も含有率の少ないジオール成分である上記[1]に記載の光学部材用ポリカーボネート樹脂組成物。
[3]ポリオキシテトラメチレングリコール系多元重合体(B)は、多元重合体(B)を構成する全ジオール成分中、アルキレンジオール(B2)に由来する単位の含有率が10モル%以下であり、オキシテトラメチレングリコールに由来する単位の含有量の質量比率が55~80質量%である上記[1]または[2]に記載の光学部材用ポリカーボネート樹脂組成物。
[4]アルキレンジオール(B2)が、主鎖の炭素数が2~6で分岐していてもよいアルキレンジオール単量体、またはそれらの二量体である上記[1]~[3]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[5]アルキレンジオール(B2)が、エチレングリコール、2-(メチル)エチレングリコール、(2-エチル)エチレングリコール、トリメチレングリコール、ネオペンチルグリコール、またはそれらの二量体である上記[1]~[4]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[6]ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)が、オキシテトラメチレングリコール単位と、オキシテトラメチレングリコール単位以外の他のオキシアルキレングリコール単位を含有するランダム共重合体である上記[1]~[5]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[7]ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)中のオキシテトラメチレングリコール単位以外のオキシアルキレングリコール単位が、エチレングリコール、(2-メチル)エチレングリコール、トリメチレングリコール、および(2-エチル)エチレングリコールに由来する単位から選ばれる上記[1]~[6]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[8]ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)が、オキシテトラメチレングリコール単位とオキシ(2-メチル)エチレングリコール単位を含む共重合体であって、アルキレンジオール(B2)がエチレングリコールまたはジエチレングリコールである上記[1]~[7]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[9]さらに、エポキシ化合物及び/又はオキセタン化合物(D)を、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.005~0.2質量部含有する上記[1]~[8]のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のポリカーボネート樹脂組成物からなる光学部材用成形品。
[11]成形品が、光学部品の光路長が50mm以上の、自動車灯火用のライトガイド、照明用ライトガイド、または、バックライト用導光板である上記[10]に記載の成形品。
[12]芳香族ポリカーボネート樹脂(A)100質量部に対し、アルキレンジオール(B2)を開始剤として、テトラヒドロフラン及び他のアルキレンオキシドを付加重合して得られたポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部配合することを特徴とする光学部材用ポリカーボネート樹脂組成物の製造方法。
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、熱安定性、耐熱変色性及び帯電特性(帯電防止性)に優れるので、各種の光学用部材に好適に使用することができる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明する。
 なお、本明細書において、「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本発明の光学部材用ポリカーボネート樹脂組成物は、芳香族ポリカーボネート樹脂(A)100質量部に対し、ポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部含有する樹脂組成物であって、
 ポリオキシテトラメチレングリコール系多元重合体(B)が、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を、アルキレンジオール(B2)を介して結合した構造を有する多元重合体であって、数平均分子量(Mn)が1000~3000であることを特徴とする。
[芳香族ポリカーボネート樹脂(A)]
 本発明のポリカーボネート樹脂組成物は、芳香族ポリカーボネート樹脂(A)を含有する。
 芳香族ポリカーボネート樹脂(A)は、芳香族ヒドロキシ化合物と、ホスゲン又は炭酸のジエステルとを反応させることによって得られる芳香族ポリカーボネート重合体である。上記芳香族ポリカーボネート重合体は分岐を有していてもよい。芳香族ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)、溶融法(エステル交換法)等の従来法によることができる。
 芳香族ジヒドロキシ化合物の代表的なものとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。
 上記芳香族ジヒドロキシ化合物の中では、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が特に好ましい。
 また、上記芳香族ジヒドロキシ化合物は、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 芳香族ポリカーボネート樹脂(A)を製造する際に、上記芳香族ジヒドロキシ化合物に加えてさらに分子中に3個以上のヒドロキシ基を有する多価フェノール等を少量添加してもよい。この場合、芳香族ポリカーボネート樹脂は分岐を有するものになる。
 上記3個以上のヒドロキシ基を有する多価フェノールとしては、例えばフロログルシン、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-3、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタンなどのポリヒドロキシ化合物、あるいは3,3-ビス(4-ヒドロキシアリール)オキシインドール(即ち、イサチンビスフェノール)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチン等が挙げられる。この中でも、1,1,1-トリス(4-ヒドロキシルフェニル)エタン又は1,3,5-トリス(4-ヒドロキシフェニル)ベンゼンが好ましい。上記多価フェノールの使用量は、上記芳香族ジヒドロキシ化合物を基準(100モル%)として好ましくは0.01~10モル%となる量であり、より好ましくは0.1~2モル%となる量である。
 エステル交換法による重合においては、ホスゲンの代わりに炭酸ジエステルがモノマーとして使用される。炭酸ジエステルの代表的な例としては、ジフェニルカーボネート、ジトリルカーボネート等に代表される置換ジアリールカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等に代表されるジアルキルカーボネートが挙げられる。これらの炭酸ジエステルは、1種類を単独で、又は2種類以上を混合して用いることができる。これらのなかでも、ジフェニルカーボネート、置換ジフェニルカーボネートが好ましい。
 また上記の炭酸ジエステルは、好ましくはその50モル%以下、さらに好ましくは30モル%以下の量を、ジカルボン酸又はジカルボン酸エステルで置換してもよい。代表的なジカルボン酸又はジカルボン酸エステルとしては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル及びイソフタル酸ジフェニル等が挙げられる。このようなジカルボン酸又はジカルボン酸エステルで炭酸ジエステルの一部を置換した場合には、ポリエステルカーボネートが得られる。
 エステル交換法により芳香族ポリカーボネート樹脂を製造する際には、通常、触媒が使用される。触媒種に制限はないが、一般的にはアルカリ金属化合物、アルカリ土類金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が使用される。中でもアルカリ金属化合物及び/又はアルカリ土類金属化合物が特に好ましい。これらは、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。エステル交換法では、上記触媒をp-トルエンスルホン酸エステル等で失活させることが一般的である。
 芳香族ポリカーボネート樹脂(A)の粘度平均分子量は、10,000~30,000であることが好ましい。
 液晶用バックライト等の導光板では、10,000~15,000であることが好ましく、より好ましくは10,500以上、さらに好ましくは11,000以上、特には11,500以上、最も好ましくは12,000以上であり、より好ましくは14,500以下である。
 また、自動車あるいはオートバイ等の車両用前照灯(ヘッドランプ)あるいはリアランプ等におけるLED等の光源からの光を導光するライトガイドやレンズ等では15,000~23,000が好ましく、流動性・色相の点からさらに好ましくは17,000~20,000である。
 また、照明用のライトガイド等では15,000~24,000が好ましく、流動性・色相の点からさらに好ましくは17,000~20,000である。
 粘度平均分子量を上記範囲の下限値以上とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、粘度平均分子量を上記範囲の上限値以下とすることにより、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。
 なお、粘度平均分子量の異なる2種類以上の芳香族ポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
 なお、芳香族ポリカーボネート樹脂(A)の粘度平均分子量[Mv]は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度25℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、η=1.23×10-4Mv0.83から算出される値を意味する。また、極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000001
 芳香族ポリカーボネート樹脂(A)の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 芳香族ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
 また、成形品の外観の向上や流動性の向上を図るため、芳香族ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。さらに、含有されるポリカーボネートリゴマーは、芳香族ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
 さらに芳香族ポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。
 ただし、再生されたポリカーボネート樹脂は、芳香族ポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
[ポリオキシテトラメチレングリコール系多元重合体(B)]
 本発明の光学部材用ポリカーボネート樹脂組成物は、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を、アルキレンジオール(B2)を介して結合した構造を有するポリオキシテトラメチレングリコール系多元重合体(B)を含有する。
 重合体(B)は、好ましくは下記式(1)で示される構造を有する。
  Y-X-Y’  (1)
 上記式(1)中、Xはアルキレンジオール(B2)から水酸基を除いた残基であり、また、Y、Y’はポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)であり、それぞれ同一でも異なっていてもよい。
 上記式(1)の構造例として、例えばエチレングリコール、ジエチレングリコール等の熱安定性に劣るアルキレンジオール成分をXに導入した場合は、それらのアルキレンジオールが末端構造に導入された場合と比べ重合体(B)の分解が起こりにくく、熱安定性がより優れたものになるため好ましい。
 アルキレンジオール(B2)としては、好ましくは主鎖の炭素数が2~6で分岐していてもよいアルキレンジオール単量体、またはそれらの二量体が使用される。
 主鎖の炭素数が2~6の直鎖型のアルキレングリコールとしては、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等が好ましく挙げられ、これらは1種単独であっても2種以上の混合であってもよい。
 これらの中では、エチレングリコール、トリメチレングリコールが特に好ましい。
 主鎖の炭素数が2~6の分岐型のアルキレングリコールとしては、(2-メチル)エチレングリコール、(2-エチル)エチレングリコール、(2-メチル)トリメチレングリコール、(3-メチル)トリメチレングリコール、(2-エチル)トリメチレングリコール、(3-エチル)トリエチレングリコール、(2,2-ジメチル)トリメチレングリコール、(2,2-メチルエチル)トリメチレングリコール、(2,2-ジエチル)トリメチレングリコール(即ち、ネオペンチルグリコール)、(3,3-ジメチル)トリメチレングリコール、(3,3-メチルエチル)トリメチレングリコール、(3,3-ジエチル)トリメチレングリコール、(3-メチル)テトラメチレングリコール、(4-メチル)テトラメチレングリコール、(3-エチル)テトラメチレングリコール、(4-エチル)テトラメチレングリコール、(3,3-ジメチル)テトラメチレングリコール、(3,3-メチルエチル)テトラメチレングリコール、(3,3-ジエチル)テトラメチレングリコール、(4,4-ジメチル)テトラメチレングリコール、(4,4-メチルエチル)テトラメチレングリコール、(4,4-ジエチル)テトラメチレングリコール、(3-メチル)ペンタメチレングリコール、(4-メチル)ペンタメチレングリコール、(5-メチル)ペンタメチレングリコール、(3-エチル)ペンタメチレングリコール、(4-エチル)ペンタメチレングリコール、(5-エチル)ペンタメチレングリコール、(3,3-ジメチル)ペンタメチレングリコール、(3,3-メチルエチル)ペンタメチレングリコール、(3,3-ジエチル)ペンタメチレングリコール、(4,4-ジメチル)ペンタメチレングリコール、(4,4-メチルエチル)ペンタメチレングリコール、(4,4-ジエチル)ペンタメチレングリコール、(5,5-ジメチル)ペンタメチレングリコール、(5,5-メチルエチル)ペンタメチレングリコール、(5,5-ジエチル)ペンタメチレングリコール等が挙げられる。これらは1種単独であっても2種以上の混合であってもよい。
 分岐型のアルキレングリコールとしては、上記の中でも、(2-メチル)エチレングリコール、(2-エチル)エチレングリコール、(2-メチル)トリメチレングリコールが好ましい。
 アルキレンジオール(B2)としての主鎖の炭素数が2~6で分岐していてもよいアルキレンジオールの二量体の具体例としては、ジエチレングリコール、ジプロピレングリコール、ジネオペンチルグルコール等が好ましく挙げられる。
 アルキレンジオール(B2)としては、上記した中でも特に好ましいのは、エチレングリコール、(2-メチル)エチレングリコール、トリメチレングリコール、(2-エチル)エチレングリコール、ネオペンチルグリコール、およびこれらの二量体であり、二量体として特に好ましいのはジエチレングリコール、ジネオペンチルグリコールである。
 アルキレンジオール(B2)は、1種もしくは2種類以上併用して用いても良い。また、アルキレンジオール(B2)は、本発明の効果を損なわない範囲で脂環式ジオール化合物、芳香族ジオールを小量併用してもよい。脂環式ジオール化合物及び/又は芳香族ジオールを併用する場合の量は、アルキレンジオール(B2)と脂環式ジオール化合物と芳香族ジオールの合計100質量%基準で、好ましくは5質量%未満、より好ましくは3質量%未満、中でも2質量%未満、特には1質量%未満であることが好ましい。
 脂環式ジオール化合物としては、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等のシクロブタンジオール類、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、2-メチル-1,4-シクロヘキサンジオールなどのシクロヘキサンジオール類、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールなどのシクロヘキサンジメタノール類、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(即ち、水素化ビスフェノールA)、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノールなどのノルボルナンジメタノール類、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、1,3-アダマンタンジオール、2,2-アダマンタンジオール、デカリンジメタノール、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどが挙げられる。
 上記の中では、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、上記シクロヘキサンジオール類、上記シクロヘキサンジメタノール類、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(即ち、水素化ビスフェノールA)がより好ましく、特に2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(即ち、水素化ビスフェノールA)が好ましい。
 芳香族ジオールとしては、例えばビスフェノールA、4,4’-メチレンジフェノール、ビスフェノールA、4,4’-ジヒドロキシビフェニル等が挙げられる。
 ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)は、オキシテトラメチレングリコール単位[-CHCHCHCH-O-]を有する重合体成分と、オキシテトラメチレングリコール単位以外の他のオキシアルキレングリコール単位を有するランダム共重合体成分である。
 他のオキシアルキレングリコール単位としては、直鎖型あるいは分岐型のオキシアルキレングリコール単位のいずれであってもよい。オキシアルキレングリコール単位の炭素数としては、2~20が好ましく、より好ましくは2~16、さらには2~12が好ましく、特に好ましくは2~10である。
 直鎖型のオキシアルキレングリコール単位の例としては、これをアルキレングリコールとして挙げると、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコールが好ましく挙げられる。これらは1種単独であっても2種以上の混合であってもよい。
 上記の中で、より好ましいのはエチレングリコール、トリメチレングリコールである。
 分岐型のオキシアルキレングリコール単位の例としては、これをアルキレングリコールとして挙げると、(2-メチル)エチレングリコール、(2-エチル)エチレングリコール、(2-メチル)トリメチレングリコール、(3-メチル)トリメチレングリコール、(2-エチル)トリメチレングリコール、(3-エチル)トリエチレングリコール、(2,2-ジメチル)トリメチレングリコール、(2,2-メチルエチル)トリメチレングリコール、(2,2-ジエチル)トリメチレングリコール(即ち、ネオペンチルグリコール)、ジネオペンチルグリコール、(3,3-ジメチル)トリメチレングリコール、(3,3-メチルエチル)トリメチレングリコール、(3,3-ジエチル)トリメチレングリコール、(3-メチル)テトラメチレングリコール、(4-メチル)テトラメチレングリコール、(3-エチル)テトラメチレングリコール、(4-エチル)テトラメチレングリコール、(3,3-ジメチル)テトラメチレングリコール、(3,3-メチルエチル)テトラメチレングリコール、(3,3-ジエチル)テトラメチレングリコール、(4,4-ジメチル)テトラメチレングリコール、(4,4-メチルエチル)テトラメチレングリコール、(4,4-ジエチル)テトラメチレングリコール、(3-メチル)ペンタメチレングリコール、(4-メチル)ペンタメチレングリコール、(5-メチル)ペンタメチレングリコール、(3-エチル)ペンタメチレングリコール、(4-エチル)ペンタメチレングリコール、(5-エチル)ペンタメチレングリコール、(3,3-ジメチル)ペンタメチレングリコール、(3,3-メチルエチル)ペンタメチレングリコール、(3,3-ジエチル)ペンタメチレングリコール、(4,4-ジメチル)ペンタメチレングリコール、(4,4-メチルエチル)ペンタメチレングリコール、(4,4-ジエチル)ペンタメチレングリコール、(5,5-ジメチル)ペンタメチレングリコール、(5,5-メチルエチル)ペンタメチレングリコール、(5,5-ジエチル)ペンタメチレングリコール等が挙げられる。
 これらは1種単独であっても2種以上の混合であってもよい。
 上記の中で、より好ましいのは、(2-メチル)エチレングリコール、(2,2-ジエチル)トリメチレングリコール(即ち、ネオペンチルグリコール)、(3-メチル)テトラメチレングリコールである。
 以上、オキシアルキレングリコール単位を、便宜的にグリコールを例として記載したが、これらグリコールに限らず、これらのアルキレンオキシドや、これらのポリエーテル形成性誘導体であってもよい。
 ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)は、オキシテトラメチレングリコール単位と、オキシテトラメチレングリコール以外のエチレングリコール、(2-メチル)エチレングリコール、トリメチレングリコール、ネオペンチルグリコール、(2-メチル)テトラメチレングリコール単位からなるランダム共重合体がより好ましく、トリメチレングリコール、(2-メチル)エチレングリコール、(2-メチル)エチレングリコール単位からなるランダム共重合体が特に好ましい。
 ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)は、ランダム共重合体であることにより、ポリオキシテトラメチレングリコール系多元重合体(B)の結晶化を抑制させるため、芳香族ポリカーボネート樹脂(A)との相溶性およびハンドリング性が向上する。またこれをアルキレンジオール(B2)で結合したポリオキシテトラメチレングリコール系多元重合体(B)によりポリカーボネート樹脂との相溶性がより向上する。
 重合体(B)を製造するには公知の方法により製造できる。例えば、アルキレンジオール(B2)の存在下に、上記したオキシアルキレングリコール単位を形成するグリコール、あるいはこれらのアルキレンオキシドやポリエーテル形成性誘導体を、例えば特開2018-184557等に記載の公知の方法で、ルイス酸触媒の存在下、アルキレンジオール(B2)を開始剤として、適切な反応条件で重合させることにより、製造することができる。
 好ましくは、アルキレンジオール(B2)を開始剤として、テトラヒドロフラン、及びオキシテトラメチレングリコール単位以外の他のオキシアルキレングリコール単位を形成するアルキレンオキシドを付加重合することにより、製造することができる。
 重合体(B)において、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を結合した、アルキレンジオール(B2)成分の量は、ポリオキシテトラメチレングリコール系多元重合体(B)を構成する全ジオール成分中、最も含有率が少ないことが好ましく、含有量は好ましくは10モル%以下、より好ましくは8モル%以下、さらに好ましくは7モル%以下であり、特に好ましくは5モル%以下であり、好ましくは1モル%以上、より好ましくは2モル%以上、さらに好ましくは3モル%以上である。
 アルキレンジオール(B2)成分が上記上限値以下であることで、重合体(B)の熱安定性が良好となり、上記上限値を超えると、分子鎖長が短くなるため重合体(B)の熱安定性が低下し、金型付着物が多く発生しやすい。
 なお、ここで、アルキレンジオール(B2)が、ジエチレングリコールやジネオペンチルグリコール等の二量体である場合のモル%は、二量体のモル数を2モルとして計算される。
 重合体(B)において、オキシテトラメチレングリコールに由来する単位の含有量の質量比率が55~80質量%であることが好ましい。
 オキシテトラメチレングリコール単位の質量比率が55~80質量%であることで、芳香族ポリカーボネート樹脂(A)との相溶性が良好となり、55質量%を下回ったり、80質量%を超えると、芳香族ポリカーボネート樹脂(A)との相溶性が悪くなりやすい。
 オキシテトラメチレングリコール単位の量は56質量%以上であることが好ましく、より好ましくは57質量%以上であり、好ましくは75質量%以下であり、より好ましくは70質量%以下、さらに好ましくは65質量%以下、特に好ましくは63質量%以下である。
 また、重合体(B)において、アルキレンジオール(B2)成分を除いた成分中、オキシテトラメチレングリコール以外の単位の質量比率は、20~47質量%であることが好ましく、より好ましくは30質量%以上であり、好ましくは43質量%以下であり、より好ましくは40質量%以下、特に好ましくは38質量%以下である。
 なお、重合体(B)におけるアルキレンジオール(B2)成分、オキシテトラメチレングリコール単位、及びオキシテトラメチレングリコール以外の他のオキシアルキレングリコール単位の質量比率は、H-NMR測定装置(具体的には、例えばBrunker社製の500MHz)を用い、重水素化クロロホルムを溶媒として測定して求めることができる。
 重合体(B)の数平均分子量は1000~3000である。数平均分子量を1000~3000とすることで、芳香族ポリカーボネート樹脂(A)との相溶性および金型付着物抑制の両立ができ、1000を下回ると成形時の金型付着物が増加となり、3000を超えると、芳香族ポリカーボネート樹脂(A)との相溶性が低下し光線透過率の低下、色相改善効果が悪くなる。数平均分子量は1500以上であることが好ましく、より好ましくは1800以上、さらに好ましくは2000以上であり、好ましくは2800以下であり、より好ましくは2600以下、さらには2400以下、特には2200以下が好ましい。
 なお、ここでいう重合体(B)の数平均分子量は、JIS K1577に基づいて測定した水酸基価に基づいて算出される数平均分子量Mnである。
 重合体(B)の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.1~3質量部である。このような含有量とすることで、色相と耐熱変色性と非帯電性に優れたものとなる。重合体(B)の好ましい含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.2質量部以上であり、より好ましくは0.3質量部以上であり、好ましくは2.5質量部以下、より好ましくは2質量部以下、さらに好ましくは1.8質量部以下である。
[リン系安定剤(C)]
 本発明の光学部材用ポリカーボネート樹脂組成物は、リン系安定剤を含有する。リン系安定剤を含有することで、本発明のポリカーボネート樹脂組成物の色相がより向上する。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;ホスフェート化合物、ホスファイト化合物、ホスホナイト化合物などが挙げられるが、ホスファイト化合物が特に好ましい。ホスファイト化合物を選択することで、より高い耐変色性と連続生産性を有するポリカーボネート樹脂組成物が得られる。
 ここでホスファイト化合物は、一般式:P(OR)で表される3価のリン化合物であり、Rは、1価または2価の有機基を表す。
 このようなホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレン-ジホスファイト、6-[3-(3-tert-ブチル-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]-ジオキサホスフェピン等が挙げられる。
 このようなホスファイト化合物のなかでも、下記式(1)または(2)で表される芳香族ホスファイト化合物が、本発明のポリカーボネート樹脂組成物の耐熱変色性が効果的に高まるため、より好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
Figure JPOXMLDOC01-appb-C000003
[式(2)中、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
 上記式(1)で表されるホスファイト化合物としては、なかでもトリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等が好ましく、なかでもトリス(2,4-ジ-tert-ブチルフェニル)ホスファイトがより好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、ADEKA社製「アデカスタブ1178」、住友化学社製「スミライザーTNP」、城北化学工業社製「JP-351」、ADEKA社製「アデカスタブ2112」、BASF社製「イルガフォス168」、城北化学工業社製「JP-650」等が挙げられる。
 上記式(2)で表されるホスファイト化合物としては、なかでもビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトのようなペンタエリスリトールジホスファイト構造を有するものが特に好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、ADEKA社製「アデカスタブPEP-36」、Doverchemical社製「Doverphos S-9228」等が好ましく挙げられる。
 なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 リン系安定剤(C)の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対して、0.005~0.4質量部であり、好ましくは0.007質量部以上、より好ましくは0.008質量部以上、さらに好ましくは0.01質量部以上であり、また、好ましくは0.3質量以下、さらに好ましくは0.2質量部以下、特に好ましくは0.15質量部以下、0.1質量部以下であることが最も好ましい。リン系安定剤(C)の含有量が前記範囲の0.005質量部未満の場合は、色相改善効果が不十分となり、リン系安定剤(C)の含有量が0.4質量部を超える場合は、耐熱変色性がかえって悪化する。
[エポキシ化合物、オキセタン化合物(D)]
 本発明の樹脂組成物は、さらに、エポキシ化合物及び/又はオキセタン化合物を含有することが好ましい。
 エポキシ化合物として、1分子中にエポキシ基を1個以上有する化合物が用いられる。具体的には、フェニルグリシジルエーテル、アリルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキシルカルボキシレート、2,3-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、4-(3,4-エポキシ-5-メチルシクロヘキシル)ブチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシシクロヘキシルエチレンオキシド、シクロヘキシルメチル3,4-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6’-メチルシロヘキシルカルボキシレート、ビスフェノール-Aジグリシジルエーテル、テトラブロモビスフェノール-Aグリシジルエーテル、フタル酸のジグリシジルエステル、ヘキサヒドロフタル酸のジグリシジルエステル、ビス-エポキシジシクロペンタジエニルエーテル、ビス-エポキシエチレングリコール、ビス-エポキシシクロヘキシルアジペート、ブタジエンジエポキシド、テトラフェニルエチレンエポキシド、オクチルエポキシタレート、エポキシ化ポリブタジエン、3,4-ジメチル-1,2-エポキシシクロヘキサン、3,5-ジメチル-1,2-エポキシシクロヘキサン、3-メチル-5-t-ブチル-1,2-エポキシシクロヘキサン、オクタデシル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、シクロヘキシル-2-メチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2-イソプロピル-3,4-エポキシ-5-メチルシクロヘキシルカルボキシレート、オクタデシル-3,4-エポキシシクロヘキシルカルボキシレート、2-エチルヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,6-ジメチル-2,3-エポキシシクロヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,5-エポキシ無水テトラヒドロフタル酸、3-t-ブチル-4,5-エポキシ無水テトラヒドロフタル酸、ジエチル4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、ジ-n-ブチル-3-t-ブチル-4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、エポキシ化大豆油、エポキシ化アマニ油などを好ましく例示することができる。
 これらの中でも、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキシルカルボキシレート、2,3-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、4-(3,4-エポキシ-5-メチルシクロヘキシル)ブチル-3’,4’-エポキシシクロヘキシルカルボキシレート等が特に好ましい。
 エポキシ化合物は、単独で用いても2種以上組み合わせて用いてもよい。
 エポキシ化合物の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.005~0.2質量部であり、より好ましくは0.007質量部以上であり、また、より好ましくは0.15質量以下、さらに好ましくは0.1質量部以下、特に好ましくは0.05質量部以下である。エポキシ化合物の含有量が0.005質量部未満の場合は、色相、耐熱変色性が不十分となりやすく、0.2質量部を超える場合は、耐熱性がかえって悪化するだけでなく、色相の低下、成形時のガスが発生しやすい。
 オキセタン化合物としては、分子内に1以上のオキセタン基を有する化合物であればいずれも使用することができ、分子中にオキセタン基を1個有するモノオキセタン化合物および分子中にオキセタン基を2個以上有する2官能以上のポリオキセタン化合物のいずれもが使用できる。
 オキセタン化合物を含有することによって、良好な色相と高度の耐熱変色性を一層向上させることができる。
 モノオキセタン化合物としては、下記の一般式(I-a)、(I-b)または(II)で表される化合物などを好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(式中、Rはアルキル基、Rはアルキル基またはフェニル基を示し、Rは芳香環を有していてもよい2価の有機基、nは0または1を示す。)
 上記一般式(I-a)、(I-b)及び(II)において、Rはアルキル基であるが、好ましくは炭素数1~6のアルキル基であり、メチル基またはエチル基が好ましく、特に好ましくはエチル基である。
 また、Rはアルキル基またはフェニル基であるが、好ましくは炭素数2~10のアルキル基であり、鎖状のアルキル基、分岐したアルキル基または脂環式アルキル基のいずれであってもよく、或いはアルキル鎖の途中にエーテル結合(エーテル系酸素原子)を有する鎖状または分岐状のアルキル基であってもよい。Rの具体例としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3-オキシペンチル基、シクロヘキシル基、フェニル基などを挙げることができる。そのうちでも、Rは2-エチルヘキシル基、フェニル基、シクロヘキシル基が好ましい。
 一般式(I-a)の化合物の具体例としては、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタンなどを好ましく挙げることができる。そのうちでも、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン等が特に好ましい。
 一般式(I-b)の化合物の具体例としては、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン等が特に好ましい。
 一般式(II)において、Rは芳香環を有していてもよい2価の有機基であるが、その例としては、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n-ペンタメチレン基、n-ヘキサメチレン基等の炭素数1~12の直鎖状または分岐状のアルキレン基、フェニレン基、式:-CH-Ph-CH-または-CH-Ph-Ph-CH-(ここで、Phはフェニル基を示す)で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基などを挙げることができる。
 一般式(II)の化合物の具体例としては、ビス(3-メチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-プロピル-3-オキセタニルメチル)エーテル、ビス(3-ブチル-3-オキセタニルメチル)エーテル、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン等を特に好ましく挙げることができる。
 オキセタン化合物は、単独で用いても2種以上組み合わせて用いてもよい。
 オキセタン化合物の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.005~0.2質量部であり、さらに好ましくは0.007質量部以上、特に好ましくは0.01質量部以上であり、また、より好ましくは0.15質量以下、さらに好ましくは0.1質量部以下、特に好ましくは0.05質量部以下である。オキセタン化合物の含有量が、0.005質量部未満の場合は、色相、耐熱変色性が不十分となりやすく、0.2質量部を超える場合は、耐熱変色性が却って悪化しやすく、成形時のガスが発生しやすい。
 エポキシ化合物とオキセタン化合物は、両者を併せて含有することも好ましく、その場合の合計の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.005~0.2質量部であることが好ましい。
[添加剤等]
 本発明のポリカーボネート樹脂組成物は、上記した以外のその他の添加剤、例えば、酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、顔料、染料、ポリカーボネート樹脂以外の他のポリマー、難燃剤、耐衝撃改良剤、帯電防止剤、可塑剤、相溶化剤などの添加剤を含有することができる。これらの添加剤は一種または二種以上を配合してもよい。
 ポリカーボネート樹脂以外の他の樹脂としては、例えば、芳香環構造を有するアクリル樹脂、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)などのスチレン系樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂等が挙げられる。
 その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。ただし、その他の樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A)100質量部に対し、20質量部以下とすることが好ましく、10質量部以下がより好ましく、さらに5質量部以下、中でも3質量部以下、特には1質量部以下とすることが好ましい。
[ポリカーボネート樹脂組成物の製造方法]
 本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、芳香族ポリカーボネート樹脂(A)、重合体(B)及びリン系安定剤(C)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
[光学部材]
 本発明の光学部材用ポリカーボネート樹脂組成物は、上記したポリカーボネート樹脂組成物をペレタイズしたペレットを各種の成形法で成形して光学部材を製造することができる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して光学部材にすることもできる。
 本発明のポリカーボネート樹脂組成物は、相溶性に優れ、高温の加工温度においても良好な色相を有し、帯電防止性に優れ、且つ成形時のガス発生が極めて少ないことから、特に射出成形法により、光学部材を成形するのに好適に用いられる。
 射出成形の際の樹脂温度は、目的とする成形品の大きさ、厚み、成形機の射出能力によって決定される。本発明のポリカーボネート樹脂組成物の成形においては通常280℃~390℃、好ましくは280℃~360℃の範囲で使用されるが、充填性、成形ひずみの状態が許す限り、低い温度で成形することが望ましい。従来のポリカーボネート樹脂組成物を用いた場合には、成形時の樹脂温度を高めると、成形品の黄変が生じやすくなるという問題もあったが、本発明の樹脂組成物を使用することで、上記の温度範囲であっても、良好な色相を有する成形品、特に光学部材を製造することが可能となる。
 なお、樹脂温度とは、直接測定することが困難な場合はバレル設定温度として把握される。
 光学部材としては、LED、有機EL、白熱電球、蛍光ランプ、陰極管等の光源を直接または間接に利用する機器・器具の部品が挙げられ、導光板や面発光体用部材、照明用部材等が代表的なものとして例示され、特に光路長が50mm以上と長い光学部品に特に好適である。
 導光板は、液晶バックライトユニットや各種の表示装置、照明装置の中で、LED等の光源の光を導光するためのものであり、側面または裏面等から入れた光を、通常表面に設けられた凹凸により拡散させ、均一の光を出す。その形状は、通常平板状であり、表面には凹凸を有していても有していなくてもよい。
 導光板の成形は、通常、好ましくは射出成形法、超高速射出成形法、射出圧縮成形法などにより行われる。
 本発明のポリカーボネート樹脂組成物を用いた導光板は、液晶バックライトユニットや各種の表示装置、照明装置の分野で好適に使用できる。このような装置の例としては、携帯電話、モバイルノート、ネットブック、スレートPC、タブレットPC、スマートフォン、タブレット型端末等の各種携帯端末、カメラ、時計、ノートパソコン、各種ディスプレイ、照明機器等が挙げられ、特に光路長が50mm以上と長い場合にも好適に使用することができる。
 また、光学部材としては、車外照明用導光部材、例えば自動車あるいはオートバイ等の車両用前照灯(ヘッドランプ)あるいはリアランプ、フォグランプ等において、LED等の光源からの光を導光するライトガイドやレンズ等も好適であり、特に光路長が50mm以上と長い場合にも好適に使用することができる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
 以下の実施例及び比較例で使用した原料は以下の表1の通りである。
 表1中、「PTMG」はポリオキシテトラメチレングリコール、「PPG」はポリ(2-メチル)エチレングリコール、「PEG」はポリエチレングリコール、「EG」はエチレングリコール、「DEG」はジエチレングリコール、「BPA」はビスフェノールAの略である。
Figure JPOXMLDOC01-appb-T000006
(実施例1~31、比較例1~5)
[樹脂組成物ペレットの製造]
 上記した各成分を、以下の表2~5に記した割合(質量部)で配合し、タンブラーにて20分混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチック機械社製「VS-40」)により、シリンダー温度250℃、100rpmで溶融混練し、吐出されるストランドをペレタイザーに入れ、ストランドカットしてペレットを得た。
[色相(YI)の評価]
 上記で得られたペレットを、120℃で5~7時間、熱風循環式乾燥機により乾燥した後、射出成形機(ソディック社製「HSP100A」)により、樹脂温度340℃、金型温度80℃、サイクル40秒で長光路成形品(300mm×7mm×4mm)を成形した。
 この長光路成形品について、300mmの光路長でYI(黄変度、ASTM D1925に基づく)の測定を行った。測定には長光路分光透過色計(日本電色工業社製「ASA 1」、C光源、2°視野)を使用した。
[耐熱変色性(△YI)の評価]
 上記で得られた長光路成形品を95℃で500時間オーブン内で保持した後のYI値を上述の方法と同様に測定し、温度処理前のYI値との変化量(△YI)を求めることで、耐熱変色性の評価を行った。△YIが小さいほど耐熱変色性に優れる。
 以上の評価結果を、以下の表2~5に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明のポリカーボネート樹脂組成物は、熱安定性、耐熱変色性及び帯電特性(帯電防止性)に優れるに優れるので、各種光学部材に極めて好適に利用でき、産業上の利用性は非常に高い。

Claims (12)

  1.  芳香族ポリカーボネート樹脂(A)100質量部に対し、ポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部含有する樹脂組成物であって、
     ポリオキシテトラメチレングリコール系多元重合体(B)が、ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)及び(B3)を、アルキレンジオール(B2)を介して結合した構造を有する多元重合体であって、数平均分子量(Mn)が1000~3000であることを特徴とする光学部材用ポリカーボネート樹脂組成物。
  2.  アルキレンジオール(B2)は、ポリオキシテトラメチレングリコール系多元重合体(B)を構成する全ジオール成分中、最も含有率の少ないジオール成分である請求項1に記載の光学部材用ポリカーボネート樹脂組成物。
  3.  ポリオキシテトラメチレングリコール系多元重合体(B)は、多元重合体(B)を構成する全ジオール成分中、アルキレンジオール(B2)に由来する単位の含有率が10モル%以下であり、オキシテトラメチレングリコールに由来する単位の含有量の質量比率が55~80質量%である請求項1または2に記載の光学部材用ポリカーボネート樹脂組成物。
  4.  アルキレンジオール(B2)が、主鎖の炭素数が2~6で分岐していてもよいアルキレンジオール単量体、またはそれらの二量体である請求項1~3のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  5.  アルキレンジオール(B2)が、エチレングリコール、2-(メチル)エチレングリコール、(2-エチル)エチレングリコール、トリメチレングリコール、ネオペンチルグリコール、またはそれらの二量体である請求項1~4のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  6.  ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)が、オキシテトラメチレングリコール単位と、オキシテトラメチレングリコール単位以外の他のオキシアルキレングリコール単位を含有するランダム共重合体である請求項1~5のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  7.  ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)中のオキシテトラメチレングリコール単位以外のオキシアルキレングリコール単位が、エチレングリコール、(2-メチル)エチレングリコール、トリメチレングリコール、および(2-エチル)エチレングリコールに由来する単位から選ばれる請求項1~6のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  8.  ポリオキシテトラメチレングリコール系ランダム重合体成分(B1)、(B3)が、オキシテトラメチレングリコール単位とオキシ(2-メチル)エチレングリコール単位を含む共重合体であって、アルキレンジオール(B2)がエチレングリコールまたはジエチレングリコールである請求項1~7のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  9.  さらに、エポキシ化合物及び/又はオキセタン化合物(D)を、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.005~0.2質量部含有する請求項1~8のいずれかに記載の光学部材用ポリカーボネート樹脂組成物。
  10.  請求項1~9のいずれかに記載のポリカーボネート樹脂組成物からなる光学部材用成形品。
  11.  成形品が、光学部品の光路長が50mm以上の、自動車灯火用のライトガイド、照明用ライトガイド、または、バックライト用導光板である請求項10に記載の成形品。
  12.  芳香族ポリカーボネート樹脂(A)100質量部に対し、アルキレンジオール(B2)を開始剤として、テトラヒドロフラン及び他のアルキレンオキシドを付加重合して得られたポリオキシテトラメチレングリコール系多元重合体(B)を0.1~3質量部、リン系安定剤(C)を0.005~0.4質量部配合することを特徴とする光学部材用ポリカーボネート樹脂組成物の製造方法。
PCT/JP2019/048962 2019-03-12 2019-12-13 光学部材用ポリカーボネート樹脂組成物 WO2020183834A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019044788 2019-03-12
JP2019-044788 2019-03-12
JP2019-064082 2019-03-28
JP2019064082A JP2020152883A (ja) 2019-03-12 2019-03-28 光学部材用ポリカーボネート樹脂組成物

Publications (1)

Publication Number Publication Date
WO2020183834A1 true WO2020183834A1 (ja) 2020-09-17

Family

ID=72426383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048962 WO2020183834A1 (ja) 2019-03-12 2019-12-13 光学部材用ポリカーボネート樹脂組成物

Country Status (1)

Country Link
WO (1) WO2020183834A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123628A (ja) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd ポリアルキレンエ−テルポリオ−ルの合成方法
JP2018028025A (ja) * 2016-08-18 2018-02-22 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
JP2018030946A (ja) * 2016-08-24 2018-03-01 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
WO2018173616A1 (ja) * 2017-03-23 2018-09-27 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂成形品の製造方法
JP2018184557A (ja) * 2017-04-27 2018-11-22 日油株式会社 ポリカーボネート樹脂用着色防止剤
WO2018225340A1 (ja) * 2017-06-05 2018-12-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品
JP2019090043A (ja) * 2019-01-24 2019-06-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品
JP2019090044A (ja) * 2019-01-24 2019-06-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品
WO2019187876A1 (ja) * 2018-03-27 2019-10-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123628A (ja) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd ポリアルキレンエ−テルポリオ−ルの合成方法
JP2018028025A (ja) * 2016-08-18 2018-02-22 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
JP2018030946A (ja) * 2016-08-24 2018-03-01 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
WO2018173616A1 (ja) * 2017-03-23 2018-09-27 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂成形品の製造方法
JP2018184557A (ja) * 2017-04-27 2018-11-22 日油株式会社 ポリカーボネート樹脂用着色防止剤
WO2018225340A1 (ja) * 2017-06-05 2018-12-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品
WO2019187876A1 (ja) * 2018-03-27 2019-10-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2019090043A (ja) * 2019-01-24 2019-06-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品
JP2019090044A (ja) * 2019-01-24 2019-06-13 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物および光学部品

Similar Documents

Publication Publication Date Title
KR101996157B1 (ko) 얇은 광학 부품용 폴리카보네이트 수지 조성물 및 얇은 광학 부품
CN105408408B (zh) 颜色稳定的热塑性组合物
JPWO2017099233A1 (ja) 熱可塑性樹脂用流動改質剤及びそれを含む熱可塑性樹脂組成物
KR20120117756A (ko) 폴리카보네이트 수지 조성물 그리고 이것을 성형하여 얻어지는 성형체, 필름, 플레이트 및 사출 성형품
JP6630872B1 (ja) ポリカーボネート樹脂組成物
CN110719936B (zh) 光学部件用聚碳酸酯树脂组合物和光学部件
JP5716274B2 (ja) 樹脂組成物並びにこれを成形してなるフィルム、プレート及び射出成形品
WO2021059902A1 (ja) ポリカーボネート樹脂組成物
JP6912639B2 (ja) 光学部品用ポリカーボネート樹脂組成物
JP6719857B1 (ja) 光学部材用ポリカーボネート樹脂組成物
JP2020152883A (ja) 光学部材用ポリカーボネート樹脂組成物
US20130237649A1 (en) Resin composition, and film, plate and injection-molded article obtained by molding the same
WO2020183834A1 (ja) 光学部材用ポリカーボネート樹脂組成物
JP6831231B2 (ja) 光学部品用ポリカーボネート樹脂組成物
JP6522493B2 (ja) 光学部品用ポリカーボネート樹脂組成物および光学部品
JP6490490B2 (ja) ポリカーボネート樹脂組成物および薄肉光学部品
JP7347962B2 (ja) ポリカーボネート樹脂組成物
JP7309452B2 (ja) ポリカーボネート樹脂組成物
JP6840599B2 (ja) 薄肉光学用部材の成形方法
JP6822126B2 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2022144176A (ja) ポリカーボネート樹脂組成物および成形品
JP2022144172A (ja) ポリカーボネート樹脂組成物および成形品
JP6102248B2 (ja) 透明・難燃性芳香族ポリカーボネート樹脂組成物及びその成形品
JP2020090648A (ja) ポリカーボネート樹脂組成物ペレットの製造方法及び成形品の製造方法
JP2020090647A (ja) ポリカーボネート樹脂組成物ペレット及びその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919519

Country of ref document: EP

Kind code of ref document: A1