WO2020182612A1 - Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren - Google Patents

Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren Download PDF

Info

Publication number
WO2020182612A1
WO2020182612A1 PCT/EP2020/055851 EP2020055851W WO2020182612A1 WO 2020182612 A1 WO2020182612 A1 WO 2020182612A1 EP 2020055851 W EP2020055851 W EP 2020055851W WO 2020182612 A1 WO2020182612 A1 WO 2020182612A1
Authority
WO
WIPO (PCT)
Prior art keywords
round cells
storage device
energy storage
cells
housing
Prior art date
Application number
PCT/EP2020/055851
Other languages
English (en)
French (fr)
Inventor
Azad Darbandi
Julien Marie
Juergen Hildinger
Frank Eckstein
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN202080017771.5A priority Critical patent/CN113519085A/zh
Priority to US17/435,938 priority patent/US11872876B2/en
Publication of WO2020182612A1 publication Critical patent/WO2020182612A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0422Arrangement under the front seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0433Arrangement under the rear seats
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the technology disclosed here relates to an energy storage device for a motor vehicle and a motor vehicle with such a device
  • Energy storage device Such an energy storage device is used, for example, in battery-operated motor vehicles.
  • high-voltage storage devices are known from the prior art, which have a large number of round cells, prismatic cells or pouch cells. Round cells can be manufactured inexpensively. The integration of the
  • Round cells in the energy storage device is expensive due to the form factor and the large number of round cells.
  • the manufacture of prismatic cells or pouch cells is also comparatively complex.
  • the electrical energy storage device is a device for
  • Energy storage device comprises at least one electrochemical storage cell for storing electrical energy.
  • the energy storage device can be a high-voltage storage device or a high-voltage battery.
  • the energy storage device comprises at least one storage housing.
  • the storage housing is expediently an enclosure that surrounds at least the high-voltage components of the energy storage device.
  • the storage housing is expediently designed to be gas-tight, so that any gases that may escape from the storage cells can be captured.
  • the housing can advantageously be used for fire protection, contact protection, intrusion protection and / or for protection against moisture and dust.
  • the storage housing can be made at least partially from a metal, in particular from aluminum, an aluminum alloy, steel or a steel alloy. At least one or more of the following components can be accommodated in the at least one storage housing of the energy storage device: storage cells, components of the power electronics, contactor (s) for interrupting the power supply to the motor vehicle, cooling elements, electrical conductors, control unit (s).
  • Energy storage device can in particular have elements to be cooled, in particular storage cells and / or components of the
  • the components are expediently preassembled in the motor vehicle before the assembly is installed
  • the electrical energy storage device includes a plurality of
  • Round cells for the electrochemical storage of energy.
  • a round cell is usually housed in a cylindrical cell housing ("cell can"). If there is an operational expansion of the
  • the cell housing is preferably made of steel or a
  • the round cells can each have at least one vent opening at each of the two ends.
  • the degassing openings are used to allow the gases produced to escape from the cell housing. However, only one degassing opening can be provided per round cell.
  • At least one degassing opening per round cell is advantageously arranged so as to degas towards the outer sill in the installation position.
  • the length-to-diameter ratio of the round cells preferably has a value between 5 and 30, preferably between 7 and 15, and particularly preferably between 9 and 11.
  • the length-to-diameter ratio is the quotient of the length of the cell housing of the round cell in the numerator and the diameter of the cell housing of the round cell in the denominator.
  • the round cells can, for example, have an (outer) diameter of approximately 45 mm to 55 mm.
  • the round cells can advantageously have a length of 360 mm to 1100 mm, preferably from approx. 450 mm to 600 mm, and particularly preferably from approx. 520 mm to 570 mm.
  • the round cells are made from coated semi-finished electrode products.
  • the cathode material or the anode material is expediently in each case on carrier layers or carrier layer webs of the respective
  • Electrode semi-finished applied For example, this can
  • Cathode material on a cathode support layer e.g. aluminum
  • anode material on an anode support layer e.g. copper
  • the carrier layer webs are coated with cathode material or anode material, with the
  • the carrier layer web After being coated with the anode material or cathode material, the carrier layer web is passed through several
  • the carrier layer web is in each case severed in the uncoated areas provided between the coating areas in the longitudinal direction of the carrier layer web.
  • the impurities that arise during separation could get into the coatings and become the separation process steps
  • the round cells comprise at least one coated electrode semifinished product that has no mechanical separating edge perpendicular and / or parallel to the longitudinal axis of the round cells, which after the coating of the
  • the round cells each comprise at least one coated electrode semifinished product with a rectangular cross section, the length of the longer side of the electrode semifinished product being essentially a total width of one
  • Carrier layer web corresponds to or exceeds that required for the formation of the
  • Electrode semifinished product was coated with anode material or cathode material, so that the electrode semifinished product after the coating can or was wound in the longitudinal direction of the carrier layer web without any further separation process step.
  • the technology disclosed here also includes a method for producing an electrochemical storage cell, in particular a round cell, comprising the step, after which, after the coating of at least one carrier layer web forming the electrode semifinished product with cathode material or anode material, the electrode semifinished product is wound into a memory cell without the carrier layer web is subjected to a further separation process step in the longitudinal direction of the carrier layer web after the coating.
  • the at least one electrode semifinished product is thus after coating without a further separation process step in
  • the semifinished products forming the cathode, the anode or the separator are preferably wound after coating without a separation process. Furthermore, the technology disclosed here comprises a method for producing the one disclosed here
  • the installation position of the round cells runs essentially parallel (i.e. parallel, possibly with deviations that are irrelevant for the function) to the vehicle transverse axis Y.
  • the vehicle transverse axis is the axis which, in the normal position of the motor vehicle, runs perpendicular to the vehicle longitudinal axis X and horizontally.
  • the round cells are arranged in several layers within the storage housing in the direction of the vertical axis Z of the vehicle.
  • the vertical axis of the vehicle is the axis that is in the normal position of the
  • a layer of round cells is a large number of round cells that are installed in the same plane in the storage housing and have essentially the same distance from the bottom of the storage housing.
  • the number of layers advantageously varies in the direction of the vehicle longitudinal axis X.
  • the storage housing can have a top side whose outer housing contour is adapted to the lower inner contour of a passenger compartment of the motor vehicle, the total height of the multiple layers being varied in the installation position for adaptation to the housing contour in the direction of the longitudinal axis of the vehicle. that in a first area of a layer immediately adjacent round cells of the layer in the installation position are further spaced apart in the direction of the vehicle longitudinal axis than immediately adjacent round cells in a second area of the same layer, so that advantageously in the first area a further round cell of another layer further in one of the first intermediate area formed in the first area directly adjacent round cells penetrates as an identically formed further round cell of the other layer, which in one of the second area directly adjacent round cells formed second intermediate area penetrates.
  • the total height of the several layers is measured from the bottom of the
  • the inner contour of the passenger compartment is the contour that delimits the interior of the passenger compartment accessible to a vehicle user.
  • the housing contour can be adapted to the inner contour in such a way that an expediently constant gap is provided between the top of the storage housing and the inner contour of the passenger compartment, which is preferably less than 15 cm or less than 10 cm or less than 5 cm.
  • At least one of the multiple layers which is the lowest in the installation position of the energy storage device, can extend in the direction of the vehicle longitudinal axis from a front foot area of the storage housing that is adjacent in the installation position to the front footwell of the motor vehicle to a seat area of the storage housing, the seat area at the rear seat of the motor vehicle is adjacent.
  • fewer layers can be arranged than in a seat area of the storage housing, the seat area being adjacent to the front seats and / or the rear seats (e.g. individual seats or rear bench) of the motor vehicle. It can therefore advantageously be provided that, for example, only a lowermost layer of round cells is provided in the storage housing in the front and / or rear foot area,
  • At least the round cells of the lowermost layer are arranged in such a way that all ends of the round cells provided on one side of the lowermost layer have the same polarity.
  • the round cells of two layers arranged directly one above the other are oriented such that all ends of the round cells provided on a first side within the two layers each have the same polarity, with the polarity of the ends of a first layer of the two layers being opposite on the first side the polarity of the ends of a second layer of the two layers.
  • Such a configuration advantageously has a low internal resistance.
  • the electrical cell terminals of a round cell are particularly preferably designed to be electrically isolated from the cell housing.
  • the individual cell housings are potential-free ("floating potential").
  • a plurality of round cells of one layer are connected to one another by an adhesive applied over the plurality of round cells of the same layer.
  • the adhesive can expediently only be applied after the individual round cells of a layer have been positioned with respect to one another, for example after the round cells have been arranged in the storage housing.
  • the individual round cells of a layer can thus advantageously be inexpensive and fixed relative to each other to save space.
  • Polyurethanes, polyamides or polyethylene, for example, can be used as the adhesive.
  • At least one at least partially wave-shaped position element is provided on the housing base, in which a plurality of round cells for forming a layer, in particular the lowermost layer, are received. It works appropriately
  • Position element perpendicular to the longitudinal axis of the round cells. Furthermore, the position element can advantageously be designed in the form of a strip.
  • cooling elements can be provided between at least two layers for cooling the round cells, which are preferably at least partially wave-shaped in cross section perpendicular to the vehicle transverse axis Y.
  • the cooling elements can be connected to a cooling circuit of the motor vehicle.
  • the technology disclosed also relates to a motor vehicle that includes the energy storage device disclosed here.
  • Cell format which advantageously shortens the cell production cycle time by up to a factor of 5 and reduces the energetically inactive parts in the cell structure.
  • the concept can reduce cell costs and be advantageous in terms of cell integration, whereby the available installation space in the memory or in the motor vehicle can be better utilized.
  • the memory can advantageously adapt to the topography of the passenger cell and also effectively fill unfavorable installation spaces with energy units (cells).
  • Round cells are comparatively inexpensive to manufacture. Also opposite known round cells with other shapes can be further
  • the round cells disclosed here manage with a comparatively light cell housing, which can be produced with comparatively little use of material.
  • aluminum can advantageously be dispensed with in the manufacture of the cell housing, which is related to
  • the cell housings can be manufactured with comparatively short weld seams.
  • the round cells disclosed here are less susceptible to operational swelling and any manufacturing tolerances are less significant, which can simplify module integration.
  • the technology disclosed here is based i.a. also based on the basic idea of a cylindrical cell format with a height / length ratio
  • the number of inactive parts can advantageously be reduced.
  • the electrode can also advantageously be coated with a higher material density (“coating weight”) and thus higher
  • Energy densities can be achieved. Overall, the already good energy density of the round cells at cell level can also be further increased at energy storage level through better use of space.
  • FIG. 1 is a schematic detail of a longitudinal section through a
  • FIG. 2 shows a schematic detail of a longitudinal section through a
  • FIG. 3 shows a schematic detail of a longitudinal section through a
  • FIG. 4 shows a schematic cross-sectional view along the line IV-IV according to FIG. 5;
  • Figure 5 is a schematic cross-sectional view along line V-V of Figure 4.
  • FIG. 6 shows a schematic cross-sectional view along the line VI-VI in FIG. 4;
  • FIG. 7 shows a schematic cross-sectional view along the line VII-VII in FIG. 4;
  • FIG. 1 shows a schematic detail of a longitudinal section through a motor vehicle according to the prior art. The one shown here
  • High-voltage battery 1 comprises a multiplicity of prismatic cells 3.
  • the cells 3 are arranged upright. No cells can be arranged here in the rear foot area because there is not enough space for the cells. Furthermore, no two layers of cells can be arranged one above the other under the front seats or below the rear seats.
  • the contour of the housing 3 of the high-voltage battery 1 depends on the design of the prismatic cells 3.
  • FIG. 2 shows a schematic detail of a longitudinal section through a motor vehicle according to the technology disclosed here.
  • Storage cells of the energy storage device 100 are configured here as round cells 120 which are accommodated in the storage housing 110 in an organized manner in layers.
  • the round cells 120 are arranged here essentially parallel to the vehicle transverse axis Y.
  • the lowermost layer of round cells extends here against the direction of the vehicle longitudinal axis X from the front foot area FV of the storage housing 110 to the rear seat area SH of the storage housing 100.
  • the rear seat area SH is arranged here below the rear seat bench.
  • Vehicle longitudinal axis X varies the number of layers in order to make optimal use of the installation space.
  • the height of the individual round cells 120 or the layers in the direction of the vehicle vertical axis Z results here from the maximum outside diameter of the round cells 120
  • the outer diameter of the round cells 120 is comparatively small in comparison to known prismatic cells, the existing installation space in the direction of the vertical axis Z of the vehicle can be used much better here.
  • the housing contour KG is furthermore advantageously adapted to the inner contour Kl of the passenger cell 150 (cf. also FIG. 5).
  • the immediately adjacent round cells 120 in the rear seat area SH or first area B1 are spaced further apart in a direction parallel to the vehicle longitudinal axis X than directly adjacent to the round cells 120 in the front seat area SV or second area B2.
  • the round cells 120 of the immediately adjacent second layer can penetrate deeper into the intermediate areas of the first or lower layer in the first area B1, whereby a total of three layers are present in this first area can be integrated. Without this measure, only two layers would be able to be arranged in this installation space.
  • FIG. 3 shows a schematic detail of a longitudinal section through a motor vehicle according to a further exemplary embodiment of the technology disclosed here.
  • Inner contour Kl and the housing contour KG of the energy storage device 100 in the area of the rear seat bench was changed. Overall, the energy storage device 100 has more installation space in the rear seat area in the direction of the vertical axis Z of the vehicle. Consequently, in comparison to the configuration according to FIG. 2, there are additional layers, of which the top three layers have round cells 120 spaced further apart in the direction of the vehicle longitudinal axis X for better adaptation to the overall height.
  • FIG. 5 shows a schematic cross-sectional view along the line V-V of FIG. 4.
  • the figure shows the energy storage device 100 of FIG. 2 as well as the inner contour Kl of the motor vehicle.
  • the first intermediate area ZB is shown in FIG. 5, which is formed by immediately adjacent round cells 120 of the lowermost layer L1.
  • FIG. 4 shows a schematic cross-sectional view along the line IV-IV according to FIG. 5.
  • the plurality of round cells 120 is parallel to the
  • the round cells 120 have a length-to-diameter ratio of approximately 10.
  • the cooling elements 140 are arranged here perpendicular to the round cells 120 and parallel to the vehicle longitudinal direction X.
  • the cooling elements 140 are designed in the form of strips.
  • the width of the cooling elements 140 is many times smaller than the length of the
  • the cooling elements 140 can be essentially undulating in a cross section perpendicular to the vehicle transverse axis Y
  • the cooling elements 140 have been omitted in the other views and cross-sections for the sake of simplicity.
  • the adhesive that can be applied between the two cooling elements 140 is not shown here or in the other figures.
  • the adhesive is expediently set up to connect the round cells 120 of a layer L1, L2, L3, L4 to one another.
  • the undulating ones are also not shown here
  • Positioning elements which, in one embodiment, position the lowermost layer on the bottom of the housing relative to one another. In the one shown here
  • the electrical connections of the round cells 120 are provided on the outer edge of the lowermost layer L1.
  • the round cells 120 preferably each have the discharge opening only on the one facing the outer edge or the outer longitudinal member of the motor vehicle (not shown here).
  • two lowest layers L1 are arranged one behind the other in the direction of the vehicle transverse axis Y. The two lowest layers L1 are provided parallel to one another.
  • FIG. 6 shows a schematic cross-sectional view along the line VI-VI in FIG. 4.
  • Two round cell stacks are arranged in the storage housing 110.
  • each stack comprises several layers L1, L2, L3, L4, which add up to a total height HL2.
  • the total height HL2 here essentially corresponds to the height of the interior space of the storage housing 110, which is limited here by the bottom and by the housing contour KG of the top of the storage housing 110.
  • In the foreground are the layers L1 and L3, the full diameter of which can be seen here.
  • the layers L2 and L4 are shown here in the background and penetrate into the intermediate areas (cf. FIG. 5).
  • FIG. 7 shows a schematic cross-sectional view along the line VII-VII in FIG. 4.
  • the layers L1 and L3 are again provided in the foreground and the layers L2 and L4 are arranged in the background.
  • the layers L1 and L3 dip much deeper into the intermediate areas ZB, so that the resulting total height HL1 is significantly lower than the total height HL2 of FIG. 6.
  • this technology allows the integration of several layers with a low overall height, so that the overall electrical storage capacity increases.
  • Cell connections of the round cells 120 are provided at the outer ends.
  • the outboard ends are the ends that are proximal to the outer longitudinal members of the vehicle body are provided.
  • a vent opening is also advantageously provided at each of these ends.
  • FIG. 9 shows a schematic cross-sectional view of a further embodiment.
  • the electrical cell connections are provided here on both sides of the round cells 120.
  • Such a configuration can advantageously be smaller
  • the round cells 120 of a layer e.g. all
  • Round cells 120 of the lowermost layer L1 have on one side of the layer, e.g. the outside, the same polarity (symbolized here by a + sign). On the other side of the same layer, here the inside, all point
  • the ends of one side in turn each have electrical connections of the same polarity. However, which differs from the polarity of the immediately adjacent layer, e.g. the lowest layer L1.
  • a layer structure designed in this way with round cells 120 oriented in this way enables the round cells 120 to be connected in a particularly cost-effective and energy-efficient manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Die hier offenbarte Technologie betrifft eine Energiespeichereinrichtung (100) für ein Kraftfahrzeug. Die Energiespeichereinrichtung (100) umfasst: eine Vielzahl an Rundzellen (120) zur elektrochemischen Speicherung von Energie; und ein Speichergehäuses (110), in dem die Vielzahl an Rundzellen (120) vorgesehen sind. Die Rundzellen (120) verlaufen in ihrer Einbaulage im Wesentlichen parallel zur Fahrzeugquerachse (Y). Die Rundzellen (120) sind innerhalb des Speichergehäuses (110) in Richtung der Fahrzeughochachse (Z) in mehreren Lagen (L1, L2, L3, L4) angeordnet, wobei die Anzahl an Lagen (L1, L2, L3, L4) in Richtung der Fahrzeuglängsachse (X) variiert. Ferner betrifft die hier offenbarte Technologie ein Kraftfahrzeug sowie ein Verfahren zur Herstellung der Energiespeichereinrichtung (100).

Description

Energiespeichereinrichtung für ein Kraftfahrzeug, Kraftfahrzeug sowie Herstellungsverfahren
Die hier offenbarte Technologie betrifft eine Energiespeichereinrichtung für ein Kraftfahrzeug sowie ein Kraftfahrzeug mit einer solchen
Energiespeichereinrichtung. Eine solche Energiespeichereinrichtung wird beispielsweise in batteriebetriebenen Kraftfahrzeugen eingesetzt. Aus dem Stand der Technik sind beispielsweise Hochvoltspeicher bekannt, die eine Vielzahl an Rundzellen, prismatischen Zellen oder Pouch-Zellen aufweisen. Rundzellen lassen sich kostengünstig fertigen. Die Integration der
Rundzellen in die Energiespeichereinrichtung ist aufgrund des Formfaktors und der großen Anzahl an Rundzellen aufwendig. Auch ist die Herstellung von prismatischen Zellen bzw. von Pouch-Zellen vergleichsweise aufwendig.
Es ist eine bevorzugte Aufgabe der hier offenbarten Technologie,
zumindest einen Nachteil von einer vorbekannten Lösung zu verringern oder zu beheben oder eine alternative Lösung vorzuschlagen. Es ist insbesondere eine bevorzugte Aufgabe der hier offenbarten Technologie, eine
Energiespeichereinrichtung bereitzustellen, die hinsichtlich mindestens eines der folgenden Faktoren verbessert ist: Herstellungszeit, Herstellungskosten, Komplexität der Herstellung, Bauraumausnutzung, Nachhaltigkeit und/oder Bauteilzuverlässigkeit. Weitere bevorzugte Aufgaben können sich aus den vorteilhaften Effekten der hier offenbarten Technologie ergeben. Die
Aufgabe(n) wird/werden gelöst durch den Gegenstand der unabhängigen Patentansprüche. Die abhängigen Ansprüche stellen bevorzugte
Ausgestaltungen dar.
Die elektrische Energiespeichereinrichtung ist eine Einrichtung zur
Speicherung von elektrischer Energie, insbesondere um mindestens eine elektrische (Traktions-)Antriebsmaschine anzutreiben. Die
Energiespeichereinrichtung umfasst mindestens eine elektrochemische Speicherzelle zur Speicherung elektrischer Energie. Beispielsweise kann die Energiespeichereinrichtung ein Hochvoltspeicher bzw. eine Hochvolt-Batterie sein.
Die Energiespeichereinrichtung umfasst mindestens ein Speichergehäuse. Das Speichergehäuse ist zweckmäßig eine Einhausung, die zumindest die Hochvoltkomponenten der Energiespeichereinrichtung umgibt. Zweckmäßig ist das Speichergehäuse gasdicht ausgebildet, so dass eventuell aus den Speicherzellen austretende Gase aufgefangen werden. Vorteilhaft kann das Gehäuse zum Brandschutz, Kontaktschutz, Intrusionsschutz und/oder zum Schutz gegen Feuchtigkeit und Staub dienen.
Das Speichergehäuse kann zumindest teilweise aus einem Metall hergestellt sein, insbesondere aus Aluminium, einer Aluminiumlegierung, Stahl oder einer Stahllegierung. In dem mindestens einen Speichergehäuse der Energiespeichereinrichtung kann mindestens eine oder mehrere der folgenden Bauteile aufgenommen sein: Speicherzellen, Bauelemente der Leistungselektronik, Schütz(e) zur Unterbrechung der Stromzufuhr zum Kraftfahrzeug, Kühlelemente, elektrische Leiter, Steuergerät(e). Die
Energiespeichereinrichtung kann insbesondere zu kühlende Elemente aufweisen, insbesondere Speicherzellen und/oder Bauelemente der
Leistungselektronik der Energiespeichereinrichtung. Zweckmäßig werden die Bauteile vor der Montage der Baugruppe in das Kraftfahrzeug vormontiert Die elektrische Energiespeichereinrichtung umfasst eine Vielzahl an
Rundzellen zur elektrochemischen Speicherung von Energie. Eine Rundzelle ist i.d.R. in einem zylinderförmigen Zellengehäuse (engl „cell can“) aufgenommen. Kommt es zur betriebsbedingten Ausdehnung der
Aktivmaterialien der Rundzelle, so wird das Gehäuse im Umfangsbereich auf Zug beansprucht. Vorteilhaft können somit vergleichsweise dünne
Gehäusequerschnitte die aus dem Aufschwellen resultierenden Kräfte kompensieren. Bevorzugt ist das Zellengehäuse aus Stahl bzw. einer
Stahllegierung hergestellt.
Die Rundzellen können an jedem der zwei Enden jeweils mindestens eine Entgasungsöffnung aufweisen. Die Entgasungsöffnungen dienen dazu, entstehende Gase aus dem Zellengehäuse entweichen zu lassen. Es kann aber auch nur eine Entgasungsöffnung pro Rundzelle vorgesehen sein.
Vorteilhaft ist jeweils mindestens eine Entgasungsöffnung pro Rundzelle in der Einbaulage zum äußeren Schweller hin entgasend angeordnet.
Bevorzugt weist das Länge-zu-Durchmesser-Verhältnis der Rundzellen einen Wert zwischen 5 und 30, bevorzugt zwischen 7 und 15, und besonders bevorzugt von 9 und 11 auf. Das Länge-zu-Durchmesser-Verhältnis ist der Quotient aus der Länge des Zellengehäuses der Rundzelle im Zähler und dem Durchmesser des Zellengehäuses der Rundzelle im Nenner. In einer bevorzugten Ausgestaltung können die Rundzellen beispielsweise ein (Außen)Durchmesser von ca. 45 mm bis 55 mm aufweisen. Ferner vorteilhaft können die Rundzellen eine Länge von 360 mm bis 1100 mm, bevorzugt von ca. 450 mm bis 600 mm, und besonders bevorzugt von ca. 520 mm bis 570 mm aufweisen.
Gemäß der hier offenbarten Technologie kann vorgesehen sein, dass die Rundzellen aus beschichteten Elektrodenhalbzeugen hergestellt sind. Zweckmäßig ist das Kathodenmaterial bzw. das Anodenmaterial jeweils auf Trägerschichten bzw. Trägerschichtbahnen des jeweiligen
Elektrodenhalbzeugs aufgebracht. Beispielsweise kann das
Kathodenmaterial auf eine Kathodenträgerschicht (z.B. Aluminium) und das Anodenmaterial auf eine Anodenträgerschicht (z.B. Kupfer) durch
Beschichten aufgebracht werden.
Gemäß dem Stand der Technik werden die Trägerschichtbahnen mit Kathodenmaterial bzw. Anodenmaterial beschichtet, wobei über die
Gesamtbreite (z.B. 1.000 mm und mehr) der Trägerschichtbahn verteilt mehrere Beschichtungsbereiche vorgesehen sind, in denen jeweils das Kathodenmaterial bzw. Anodenmaterial aufgebracht wird. Für gängige Rundzellen kann ein solcher Beschichtungsbereich beispielsweise ca.
65 mm breit sein. Die Trägerschichtbahn wird nach der Beschichtung mit dem Anodenmaterial bzw. Kathodenmaterial durch mehrere
Trennverfahrensschritte auf das gewünschte Format der Rundzelle (z.B.
65 mm) verkleinert. Flierzu wird die Trägerschichtbahn jeweils in den zwischen den Beschichtungsbereichen vorgesehenen nicht beschichteten Bereichen in Längsrichtung der Trägerschichtbahn durchtrennt. Die beim Trennen entstehenden Verunreinigungen (i.d.R. Metallpartikel) könnten in die Beschichtungen gelangen und die Trennverfahrensschritte sind
zeitaufwendig. Beides ist in der Praxis unerwünscht.
Gemäß der hier offenbarten Technologie kann vorgesehen sein, dass die Rundzellen mindestens ein beschichtetes Elektrodenhalbzeug umfasst, dass keine mechanische Trennkannte senkrecht und/oder parallel zur Längsachse der Rundzellen aufweist, die nach der Beschichtung der
Elektrodenhalbzeuge durch einen Trennverfahrensschritt erzeugt wurde. Gemäß der hier offenbarten Technologie kann vorgesehen sein, dass die Rundzellen jeweils mindestens ein beschichtetes Elektrodenhalbzeug mit rechteckförmigen Querschnitt umfassen, wobei die Länge der längeren Seite des Elektrodenhalbzeugs im Wesentlichen einer Gesamtbreite einer
Trägerschichtbahn entspricht oder übertrifft, die zur Ausbildung des
Elektrodenhalbzeugs mit Anodenmaterial oder Kathodenmaterial beschichtet wurde, so dass das Elektrodenhalbzeug nach der Beschichtung ohne weiteren Trennverfahrensschritt in Längsrichtung der Trägerschichtbahn wickelbar ist bzw. war.
Insbesondere umfasst die hier offenbarte Technologie auch ein Verfahren zur Herstellung einer elektrochemischen Speicherzelle, insbesondere einer Rundzelle, umfassend den Schritt, wonach nach dem Beschichten von mindestens einer das Elektrodenhalbzeug ausbildenden Trägerschichtbahn mit Kathodenmaterial oder Anodenmaterial das Elektrodenhalbzeug zu einer Speicherzelle gewickelt wird, ohne dass die Trägerschichtbahn nach der Beschichtung einen weiteren Trennverfahrensschritt in Längsrichtung der Trägerschichtbahn unterworfen wird.
Mit anderen Worten wird also das mindestens eine Elektrodenhalbzeug nach dem Beschichten ohne weiteren Trennverfahrensschritt in
Bahnenlängsrichtung gewickelt. Bevorzugt werden die die Kathode, die Anode oder den Separator ausbildenden Halbzeuge nach dem Beschichten trennverfahrensfrei gewickelt. Ferner umfasst die hier offenbarte Technologie ein Verfahren zur Herstellung der hier offenbarten
Energiespeichereinrichtung, umfassend die Schritte:
- Herstellen einer Vielzahl an Speicherzellen, insbesondere Rundzellen, wie es voranstehend beschrieben ist; und - Anordnen der Speicherzellen in der hier offenbarten
Energiespeichereinrichtung.
Gemäß der hier offenbarten Technologie verlaufen die Rundzellen in ihrer Einbaulage im Wesentlichen parallel (d.h. parallel, evtl mit Abweichungen, die für die Funktion unerheblich sind) zur Fahrzeugquerachse Y. Die
Fahrzeugquerachse ist die Achse, die in der Normallage des Kraftfahrzeugs senkrecht zur Fahrzeuglängsachse X und horizontal verläuft.
Die Rundzellen sind innerhalb des Speichergehäuses in Richtung der Fahrzeughochachse Z in mehreren Lagen angeordnet. Die
Fahrzeughochachse ist dabei die Achse, die in der Normallage des
Kraftfahrzeugs senkrecht zur Fahrzeuglängsachse X und vertikal verläuft. Eine Lage an Rundzellen ist dabei eine Vielzahl an Rundzellen, die in einer gleichen Ebene im Speichergehäuse verbaut sind und im Wesentlichen denselben Abstand zum Boden des Speichergehäuses aufweisen. Vorteilhaft variiert die Anzahl an Lagen in Richtung der Fahrzeuglängsachse X.
Gemäß der hier offenbarten Technologie kann das Speichergehäuse eine Oberseite aufweisen, die in ihrer äußeren Gehäusekontur an die untere Innenkontur einer Fahrgastzelle des Kraftfahrzeuges angepasst ist, wobei in der Einbaulage die Gesamthöhe der mehreren Lagen zur Anpassung an die Gehäusekontur in Richtung der Fahrzeuglängsachse dadurch variiert wird, das in einem ersten Bereich einer Lage unmittelbar benachbarte Rundzellen der Lage in der Einbaulage in Richtung der Fahrzeuglängsachse weiter voneinander beabstandet sind als unmittelbar benachbarte Rundzellen in einem zweiten Bereich derselben Lage, so dass vorteilhaft im ersten Bereich eine weitere Rundzelle einer anderen Lage weiter in einem von den im ersten Bereich unmittelbar benachbarten Rundzellen ausgebildeten ersten Zwischenbereich eindringt als eine identisch ausgebildete weitere Rundzelle der anderen Lage, die in einem von im zweiten Bereich unmittelbar benachbarten Rundzellen ausgebildeten zweiten Zwischenbereich eindringt. Die Gesamthöhe der mehreren Lagen bemisst sich vom Boden des
Speichergehäuses bis zum oberen Ende der obersten Lage an der jeweiligen Stelle im Speichergehäuse. Die Innenkontur der Fahrgastzelle ist die Kontur, die den einem Fahrzeugnutzer zugänglichen Innenraum der Fahrgastzelle begrenzt. Insbesondere kann die Gehäusekontur derart an die Innenkontur angepasst sein, dass zwischen der Oberseite des Speichergehäuses und der Innenkontur der Fahrgastzelle ein zweckmäßig gleichbleibender Spalt vorgesehen ist, der bevorzugt weniger als 15 cm oder weniger als 10 cm oder weniger als 5 cm beträgt.
Gemäß der hier offenbarten Technologie kann sich mindestens eine in der Einbaulage der Energiespeichereinrichtung unterste Lage der mehreren Lagen in Richtung der Fahrzeuglängsachse von einem in der Einbaulage am vorderen Fußraum des Kraftfahrzeugs angrenzenden vorderen Fußbereich des Speichergehäuses bis zu einem Sitzbereich des Speichergehäuses erstrecken, wobei der Sitzbereich an die Rücksitzbank des Kraftfahrzeugs angrenzt.
Gemäß der hier offenbarten Technologie kann in zumindest einem der am vorderen oder hinteren Fußraum des Kraftfahrzeugs angrenzenden
Fußbereiche des Speichergehäuses weniger Lagen angeordnet sein als in einem Sitzbereich des Speichergehäuses, wobei der Sitzbereich an den Vordersitzen und/oder den Rücksitzen (z.B. Einzelsitze oder Rücksitzbank) des Kraftfahrzeugs angrenzt. Vorteilhaft kann also vorgesehen sein, dass beispielsweise im vorderen und/oder hinteren Fußbereich lediglich eine unterste Lage an Rundzellen im Speichergehäuse vorgesehen ist,
wohingegen im vorderen und/oder hinteren Sitzbereich mehrere Lagen übereinandergestapelt vorgesehen sind. Dies hat den Vorteil, dass
insbesondere der Bauraum unterhalb der Vordersitze bzw. unterhalb der Rücksitze effizienter genutzt werden kann, um somit die elektrische
Speicherkapazität des Kraftfahrzeugs zu verbessern.
Ferner vorteilhaft kann vorgesehen sein, dass zumindest die Rundzellen der untersten Lage derart angeordnet sind, dass alle an einer Seite der untersten Lage vorgesehen Enden der Rundzellen dieselbe Polarität aufweisen.
Bevorzugt sind die Rundzellen von zwei direkt übereinander angeordneten Lagen so orientiert, dass alle an einer ersten Seite vorgesehenen Enden der Rundzellen innerhalb der zwei Lagen jeweils dieselbe Polarität aufweisen, wobei an der ersten Seite die Polarität der Enden einer ersten Lage der zwei Lagen entgegengesetzt ist von der Polarität der Enden einer zweiten Lage der zwei Lagen. Eine solche Ausgestaltung weist vorteilhaft einen geringen Innenwiderstand auf.
Alternativ kann vorgesehen sein, dass alle elektrischen Anschlüsse der Rundzellen aller Lagen auf einer Seite vorgesehen sind. Eine solche
Ausgestaltung ist besonders platzsparend.
Besonders bevorzugt sind die elektrischen Zellanschlüsse (engl.:„cell terminals“) einer Rundzelle gegenüber dem Zellgehäuse elektrisch isoliert ausgeführt. Somit sind die einzelnen Zellgehäuse potentialfrei (engl.:„floating potential“).
In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die
Mehrzahl an Rundzellen einer Lage durch einen über die Mehrzahl an Rundzellen derselben Lage aufgebrachten Klebstoff miteinander verbunden sind. Zweckmäßig kann der Klebstoff erst aufgebracht werden, nachdem die einzelnen Rundzellen einer Lage zueinander positioniert worden sind, beispielsweise nach dem Anordnen der Rundzellen in das Speichergehäuse. Vorteilhaft können somit die einzelnen Rundzellen einer Lage kostengünstig und platzsparend relativ zueinander fixiert werden. Als Klebstoff kann beispielsweise Polyurethanen, Polyamide oder Polyethylen eingesetzt werden.
In einer bevorzugten Ausgestaltung ist am Gehäuseboden mindestens ein zumindest teilweise wellenförmiges Positionselement vorgesehen, in welches eine Mehrzahl von Rundzellen zur Ausbildung einer Lage, insbesondere der untersten Lage, aufgenommen sind. Zweckmäßig verläuft das
Positionselement senkrecht zur Längsachse der Rundzellen. Ferner vorteilhaft kann das Positionselement streifenförmig ausgebildet sein.
Gemäß der hier offenbarten Technologie können zwischen zumindest zwei Lagen Kühlelemente zur Kühlung der Rundzellen vorgesehen sein, die bevorzugt zumindest teilweise wellenförmig im Querschnitt senkrecht zur Fahrzeugquerachse Y ausgebildet sind. In einer Ausgestaltung können die Kühlelemente an einem Kühlkreislauf des Kraftfahrzeugs angeschlossen sein.
Die offenbarte Technologie betrifft ferner ein Kraftfahrzeug, dass die hier offenbarte Energiespeichereinrichtung umfasst.
Mit anderen Worten betrifft die hier offenbarte Technologie ein neues
Zellformat, welche vorteilhaft die Zellproduktion-Taktzeit um bis zu einem Faktor 5 verkürzt und in dem Zellaufbau die energetisch inaktiven Teile reduziert. Das Konzept kann die Zellkosten reduzieren und vorteilhaft bzgl. der Zellintegration sein, wodurch der verfügbare Bauraum im Speicher bzw. im Kraftfahrzeug besser ausgenutzt werden kann. Ferner vorteilhaft kann sich der Speicher an die Topographie der Fahrgastzelle anpassen und auch ungünstige Bauräume mit Energieeinheiten (Zelle) effektiv füllen. Die
Rundzellen sind vergleichsweise günstig herstellbar. Auch gegenüber vorbekannten Rundzellen mit anderen Formen lassen sich weitere
Herstellungsschritte einsparen, insbesondere das Schneiden der Halbzeuge. Dies verringert zusätzlich die Wahrscheinlichkeit von Fehlfunktionen aufgrund von Verunreinigungen, die während der Herstellung der
Speicherzellen in die Speicherzellen gelangen könnten. Die hier offenbarten Rundzellen kommen mit einem vergleichsweise leichten Zellgehäuse aus, welches mit vergleichsweise geringem Materialeinsatz herstellbar ist. Durch den Einsatz eines Stahlgehäuses kann vorteilhaft auf Aluminium bei der Herstellung des Zellgehäuses verzichtet werden, was sich bezüglich
Herstellkosten und Nachhaltigkeit positiv auswirken kann. Die Zellgehäuse können mit vergleichsweise kurzen Schweißnähten gefertigt werden. Die hier offenbarten Rundzellen sind im Vergleich zu anderen Zellformaten weniger anfällig für betriebsbedingtes Anschwellen und etwaige Fertigungstoleranzen fallen weniger ins Gewicht, was die Modulintegration vereinfachen kann. Die hier offenbarte Technologie basiert u.a. ferner auf der Grundidee eines zylindrischen Zellformats mit einem Verhältnis von Höhe/Länge zu
Durchmesser von 6 bis 25. Vorteilhaft lässt sich die Anzahl an inaktiven Teilen reduzieren. Vorteilhaft kann ferner die Elektrode mit einer höheren Materialdichte (engl.:„coating weight“) beschichtet und somit höhere
Energiedichten erzielt werden. Insgesamt kann somit die ohnehin gute Energiedichte der Rundzellen auf Zellebene auch auf Energiespeicherebene durch eine bessere Raumausnutzung weiter gesteigert werden.
Insbesondere können lange Stromkollektoren weitgehend vermieden werden, so dass die Leitungsverluste geringer werden.
Die hier offenbarte Technologie wird nun anhand der Figuren erläutert. Es zeigen: Fig. 1 einen schematischen Ausschnitt eines Längsschnittes durch ein
Kraftfahrzeug gemäß dem Stand der Technik;
Fig. 2 einen schematischen Ausschnitt eines Längsschnittes durch ein
Kraftfahrzeug gemäß der hier offenbarten Technologie;
Fig. 3 einen schematischen Ausschnitt eines Längsschnittes durch ein
Kraftfahrzeug gemäß eines weiteren Ausführungsbeispiels der hier offenbarten Technologie;
Fig. 4 eine schematische Querschnittsansicht entlang der Linie IV - IV gemäß der Fig. 5;
Fig. 5 eine schematische Querschnittsansicht entlang der Linie V-V der Fig. 4;
Fig. 6 eine schematische Querschnittsansicht entlang der Linie Vl-Vl der Fig. 4;
Fig. 7 eine schematische Querschnittsansicht entlang der Linie Vll-Vll der Fig. 4;
Fig. 8 eine schematische Querschnittsansicht einer weiteren
Ausgestaltung; und
Fig. 9 eine schematische Querschnittsansicht einer weiteren
Ausgestaltung.
Die Fig. 1 zeigt einen schematischen Ausschnitt eines Längsschnittes durch ein Kraftfahrzeug gemäß dem Stand der Technik. Die hier gezeigte
Hochvoltbatterie 1 umfasst eine Vielzahl an prismatischen Zellen 3. Die Zellen 3 sind aufrecht angeordnet. Im hinteren Fußbereich können hier keine Zellen angeordnet werden, da nicht genügend Bauraumhöhe für die Zellen vorhanden ist. Ferner können auch unter den Vordersitzen bzw. unterhalb der Rücksitze keine zwei Lagen an Zellen übereinander angeordnet werden. Die Kontur des Gehäuses 3 der Hochvoltbatterie 1 richtet sich nach der Bauform der prismatischen Zellen 3. Die Fig. 2 zeigt einen schematischen Ausschnitt eines Längsschnittes durch ein Kraftfahrzeug gemäß der hier offenbarten Technologie. Die
Speicherzellen der Energiespeichereinrichtung 100 sind hier als Rundzellen 120 ausgestaltet, die in dem Speichergehäuse 110 in Lagen organisiert aufgenommen sind. Die Rundzellen 120 sind hier im Wesentlichen parallel zur Fahrzeugquerachse Y angeordnet. Die unterste Lage an Rundzellen erstreckt sich hier entgegen der Richtung der Fahrzeuglängsachse X vom vorderen Fußbereich FV des Speichergehäuses 110 bis in den hinteren Sitzbereich SH des Speichergehäuses 100. Der hintere Sitzbereich SH ist hier unterhalb der Rücksitzbank angeordnet. In Richtung der
Fahrzeuglängsachse X variiert die Anzahl an Lagen, um somit dem Bauraum optimal zu nutzen. Die Höhe der einzelnen Rundzellen 120 bzw. der Lagen in Richtung der Fahrzeughochachse Z ergibt sich hier aus dem maximalen Außendurchmesser der Rundzellen 120. Da der maximale
Außendurchmesser der Rundzellen 120 im Vergleich zu vorbekannten prismatischen Zellen vergleichsweise klein ist, kann hier der vorhandene Bauraum in Richtung der Fahrzeughochachse Z viel besser ausgenutzt werden. Ferner vorteilhaft ist hier die Gehäusekontur KG an die Innenkontur Kl der Fahrgastzelle 150 angepasst (vgl. auch Fig. 5). Zur besseren
Bauraumausnutzung sind hier im hinteren Sitzbereich SH bzw. ersten Bereich B1 die unmittelbar benachbarten Rundzellen 120 in einer Richtung parallel zur Fahrzeuglängsachse X weiter voneinander beabstandet angeordnet als unmittelbar benachbart der Rundzellen 120 im vorderen Sitzbereich SV bzw. zweiten Bereich B2. Durch diese Maßnahme können im ersten Bereich B1 die Rundzellen 120 der unmittelbar benachbarten zweiten Lage tiefer in die Zwischenbereiche der ersten bezugsweise unteren Lage eindringen, wodurch in diesem ersten Bereich insgesamt drei Lagen an integrierbar sind. Ohne diese Maßnahme wäre in diesem Bauraum lediglich zwei Lagen anordnenbar.
Die Fig. 3 zeigt einen schematischen Ausschnitt eines Längsschnittes durch ein Kraftfahrzeug gemäß eines weiteren Ausführungsbeispiels der hier offenbarten Technologie. Bei der nachfolgenden Beschreibung des in Fig. 3 dargestellten alternativen Ausführungsbeispiels werden für Merkmale, die im Vergleich zum in Fig. 2 dargestellten ersten Ausführungsbeispiel in ihrer Ausgestaltung und/oder Wirkweise identisch und/oder zumindest
vergleichbar sind, gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals detailliert erläutert werden, entspricht deren Ausgestaltung und/oder Wirkweise der Ausgestaltung und/oder Wirkweise der vorstehend bereits beschriebenen Merkmale. Die Ausgestaltung gemäß der Fig. 3 unterscheidet sich von der vorherigen Ausgestaltung darin, dass die
Innenkontur Kl und die Gehäusekontur KG der Energiespeichereinrichtung 100 im Bereich der Rücksitzbank verändert wurde. Insgesamt weist hier die Energiespeichereinrichtung 100 im hinteren Sitzbereich in Richtung der Fahrzeughochachse Z mehr Bauraum auf. Folglich sind hier im Vergleich zur Ausgestaltung gemäß der Fig. 2 weitere Lagen auf, von denen die obersten drei Lagen zu besseren Anpassung an die Gesamthöhe in Richtung der Fahrzeuglängsachse X weiter beabstandete Rundzellen 120 aufweisen.
Die Fig. 5 zeigt eine schematische Querschnittsansicht entlang der Linie V-V der Fig. 4. Die Fig. zeigt die Energiespeichereinrichtung 100 der Fig. 2 sowie Innenkontur Kl des Kraftfahrzeugs. Die restlichen Komponenten des
Kraftfahrzeugs sind vereinfachend weggelassen worden. In der Fig. 5 ist der erste Zwischenbereich ZB eingezeichnet, der von unmittelbar benachbarten Rundzellen 120 der untersten Lage L1 ausgebildet wird. Die Fig. 4 zeigt eine schematische Querschnittsansicht entlang der Linie IV - IV gemäß der Fig. 5. Die Vielzahl an Rundzellen 120 ist parallel zur
Fahrzeugquerachse Y angeordnet. Die Rundzellen 120 weisen ein Länge-zu- Durchmesser-Verhältnis von ca. 10 auf. Senkrecht zu den Rundzellen 120 und parallel zur Fahrzeuglängsrichtung X sind hier die Kühlelemente 140 angeordnet. Die Kühlelemente 140 sind streifenförmig ausgebildet. Die Breite der Kühlelemente 140 ist um ein Vielfaches kleiner als die Länge der
Rundzellen 120. Die Kühlelemente 140 können in einem Querschnitt senkrecht zur Fahrzeugquerachse Y im Wesentlichen wellenförmig
ausgebildet sein. Die Kühlelemente 140 wurden in den anderen Ansichten und Querschnitte vereinfachend weggelassen. Hier sowie in den anderen Figuren nicht dargestellt ist der Klebstoff, der hier zwischen den beiden Kühlelementen 140 aufgebracht werden kann. Der Klebstoff ist zweckmäßig eingerichtet, die Rundzellen 120 einer Lage L1 , L2, L3, L4 miteinander zu verbinden. Ebenfalls hier nicht gezeigt sind die wellenförmigen
Positionselemente, die in einer Ausgestaltung die unterste Lage am Boden des Gehäuses relativ zueinander positionieren. In der hier gezeigten
Ausgestaltung sind die elektrischen Anschlüsse der Rundzellen 120 am äußeren Rand der untersten Lage L1 vorgesehen. Bevorzugt weisen die Rundzellen 120 jeweils nur an dem zum äußeren Rand bzw. zum äußeren Längsträger des Kraftfahrzeugs hin die Entlassungsöffnung auf (hier nicht gezeigt). In der hier dargestellten Ausführungsform sind jeweils zwei unterste Lagen L1 in Richtung der Fahrzeugquerachse Y hintereinander angeordnet. Die beiden untersten Lagen L1 sind parallel zueinander vorgesehen.
Gleichsam ist vorstellbar, dass nur eine unterste Lage L1 oder drei unterste Lagen L1 im Speichergehäuse vorgesehen sind. Gleichsam ist vorstellbar dass anstatt zwei Rundzellen-Stapel nur ein Rundzellen-Stapel mit entsprechend längeren Rundzellen 120 oder drei Rundzellen-Stapel mit entsprechend kürzeren Rundzellen 120 vorgesehen ist.
Die Fig. 6 zeigt eine schematische Querschnittsansicht entlang der Linie VI- VI der Fig. 4. Im Speichergehäuse 110 sind zwei Rundzellen-Stapel angeordnet. Jeder Stapel umfasst in dieser Querschnittsansicht mehrere Lagen L1 , L2, L3, L4, die sich zu einer Gesamthöhe HL2 addieren. Die Gesamthöhe HL2 entspricht hier im Wesentlichen der Höhe des Innenraums vom Speichergehäuse 110, der hier vom Boden und von der Gehäusekontur KG der Oberseite des Speichergehäuses 110 begrenzt wird. Im Vordergrund angeordnet sind hier die Lagen L1 und L3, deren vollständiger Durchmesser hier zu sehen ist. Die Lagen L2 und L4 sind hier im Hintergrund gezeigt und dringen in die Zwischenbereiche ein (vgl. Fig. 5).
Die Fig. 7 zeigt eine schematische Querschnittsansicht entlang der Linie VII- VII der Fig. 4. Die Lagen L1 und L3 sind wieder im Vordergrund vorgesehen und die Lagen L2 und L4 sind im Hintergrund angeordnet. Anders als beim Querschnitt der Fig. 6 tauchen hier die Lagen L1 und L3 viel tiefer in die Zwischenbereiche ZB ein, so dass die resultierende Gesamthöhe HL1 deutlich geringer ist als die Gesamthöhe HL2 der Fig. 6. Auch wenn durch den vergrößerten Zwischenbereich die Anzahl an Rundzellen 120 pro Lage sich reduziert, erlaubt diese Technologie die Integration mehrerer Lagen bei geringer Gesamthöhe, so dass insgesamt die elektrische Speicherkapazität steigt.
Die Fig. 8 zeigt die Anordnung der Pole der Rundzellen in der Ausgestaltung gemäß der Fig. 5. Wie bereits erwähnt, sind die beiden elektrischen
Zellanschlüsse der Rundzellen 120 jeweils an den außenliegenden Enden vorgesehen. Die außenliegenden Enden sind die Enden, die proximal zu den äußeren Längsträgern der Fahrzeugkarosserie vorgesehen sind. Vorteilhaft ist an diesen Enden auch jeweils eine Entgasungsöffnung vorgesehen. Eine solche Ausgestaltung kann besonders kompakt aufgebaut sein, da der Spalt zwischen den beiden Rundzellen-Stapel kleiner ausfallen kann.
Die Fig. 9 zeigt eine schematische Querschnittsansicht einer weiteren Ausgestaltung. Abweichend von der Ausgestaltung gemäß der Fig. 8 sind hier die elektrischen Zellanschlüsse an beiden Seiten der Rundzellen 120 vorgesehen. Eine solche Ausgestaltung kann vorteilhaft geringere
Leitungsverluste aufweisen. Die Rundzellen 120 einer Lage, z.B. alle
Rundzellen 120 der untersten Lage L1 , weisen an einer Seite der Lage, z.B. der Außenseite, dieselbe Polarität auf (hier durch ein +Zeichen symbolisiert). An der anderen Seite derselben Lage, hier die Innenseite, weisen alle
Rundzellen 120 derselben Lage dieselbe und zur ersten Seite
entgegengesetzte Polarität auf. In der unmittelbar benachbarten Lage, z.B. der Lage L2, weisen wiederum die Enden einer Seite jeweils elektrische Anschlüsse gleicher Polarität auf. Die sich jedoch von der Polarität der unmittelbar benachbarten Lage, z.B. der untersten Lage L1 , unterscheidet. Ein so gestalteter Lagenaufbau mit so orientierten Rundzellen 120 ermöglicht eine besonders aufwandsarme und energieeffiziente Verschaltung der Rundzellen 120.
Die vorhergehende Beschreibung der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der
Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihrer
Äquivalente zu verlassen. Auch wenn die Energiespeichereinrichtung hier mit Rundzellen gezeigt ist, ist die hier offenbarte Technologie gleichsam auf andere Zellgeometrien anwendbar, die zweckmäßig die hier offenbarten Querschnitts-zu-Längenverhältnisse aufweisen.

Claims

Ansprüche
1. Energiespeichereinrichtung (100) für ein Kraftfahrzeug (100),
umfassend:
- eine Vielzahl an Rundzellen (120) zur elektrochemischen
Speicherung von Energie; und
- ein Speichergehäuses (110), in dem die Vielzahl an Rundzellen (120) vorgesehen sind;
wobei die Rundzellen (120) in ihrer Einbaulage im Wesentlichen parallel zur Fahrzeugquerachse (Y) verlaufen; wobei die Rundzellen (120) innerhalb des Speichergehäuses (110) in Richtung der
Fahrzeughochachse (Z) in mehreren Lagen (L1 , L2, L3, L4) angeordnet sind; wobei die Anzahl an Lagen (L1 , L2, L3, L4) in Richtung der Fahrzeuglängsachse (X) variiert.
2. Energiespeichereinrichtung (100) nach Anspruch 1 , wobei ein Länge- zu-Durchmesser-Verhältnis der Rundzellen (120) einen Wert zwischen 5 und 30, bevorzugt zwischen 7 und 15, und besonders bevorzugt von 9 und 11 , aufweist.
3. Energiespeichereinrichtung (100) nach Anspruch 1 oder 2, wobei die Rundzellen (120) jeweils mindestens ein beschichtetes
Elektrodenhalbzeug umfassen, dass keine mechanische Trennkannte senkrecht zur Längsachse der Rundzellen (120) aufweist, die nach der Beschichtung der Elektrodenhalbzeuge durch einen
Trennverfahrensschritt erzeugt wurde.
4. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei die Rundzellen (120) jeweils mindestens ein beschichtetes Elektrodenhalbzeug mit rechteckförmigen Querschnitt umfassen, wobei die Länge der längeren Seite des
Elektrodenhalbzeugs im Wesentlichen einer Gesamtbreite einer Trägerschichtbahn entspricht, die zur Ausbildung des
Elektrodenhalbzeugs mit Anodenmaterial oder Kathodenmaterial beschichtet wurde.
5. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei das Speichergehäuse (110) eine Oberseite aufweist, die in ihrer Gehäusekontur (KG) an die untere Innenkontur (Kl) einer Fahrgastzelle (150) des Kraftfahrzeuges (100) angepasst ist, wobei die Gesamthöhe (HL1 , HL2) der mehreren Lagen (L1 , L2, L3, L4) zur Anpassung an die Gehäusekontur (KG) dadurch variiert wird, das in einem ersten Bereich (B1 ) einer Lage (1 ) unmittelbar benachbarte Rundzellen (120, 120) der Lage (L1 ) in Richtung der Fahrzeuglängsachse (X) weiter voneinander beabstandet sind als unmittelbar benachbarte Rundzellen (120, 120) in einem zweiten Bereich (B2) derselben Lage (L1 ).
6. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei sich mindestens eine unterste Lage (L1 ) erstreckt von einem am vorderen Fußraum angrenzenden vorderen Fußbereich (FV) des Speichergehäuses (110) bis in einem hinteren Sitzbereich (SH) des Speichergehäuses (110), der an die Rücksitze angrenzt.
7. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei in zumindest einem der am vorderen oder hinteren Fußraum (FV, FH) angrenzenden Fußbereiche (FF, FB) des
Speichergehäuses (110) weniger Lagen (L1 , L2, L3) angeordnet sind als in einem Sitzbereich (SV, SH) des Speichergehäuses (110), der an den Vordersitzen und/oder den Rücksitzen angrenzt.
8. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei zumindest die Rundzellen (120) der untersten Lage (L1 ) derart orientiert sind, dass alle an einer Seite der untersten Lage (L1 ) vorgesehenen Enden der Rundzellen (120) dieselbe Polarität aufweisen.
9. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei eine Mehrzahl an Rundzellen (120) einer Lage durch einen über die Mehrzahl an Rundzellen (120) aufgebrachten Klebstoff miteinander verbunden sind.
10. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei am Gehäuseboden mindestens ein zumindest teilweise wellenförmiges Positionselement vorgesehen ist, in welches eine Mehrzahl von Rundzellen (120) zur Ausbildung einer Lage (L1 , L2, L3) aufgenommen sind.
11. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei zwischen zumindest zwei Lagen Kühlelemente (140) zur Kühlung der Rundzellen (120) vorgesehen sind, die bevorzugt zumindest teilweise wellenförmig ausgebildet sind.
12. Energiespeichereinrichtung (100) nach einem der vorherigen
Ansprüche, wobei die Rundzellen (122) an jedem der zwei Enden jeweils mindestens eine Entgasungsöffnung aufweisen.
13. Kraftfahrzeug, umfassend ein Energiespeichereinrichtung (100) nach einem der vorherigen Ansprüche.
14. Verfahren zur Herstellung einer elektrochemischen Speicherzelle, insbesondere einer Rundzelle (120), umfassend den Schritt, wonach nach einem Beschichten von mindestens einer ein
Elektrodenhalbzeug ausbildenden Trägerschichtbahn mit
Kathodenmaterial oder Anodenmaterial das Elektrodenhalbzeug zu einer Speicherzelle gewickelt wird, ohne dass die Trägerschichtbahn nach der Beschichtung einen weiteren Trennverfahrensschritt in Längsrichtung der Trägerschichtbahn unterworfen wird.
15. Verfahren zur Herstellung einer Energiespeichereinrichtung (100), umfassend die Schritte:
- Herstellen von einer Vielzahl an Speicherzellen gemäß dem
Verfahren nach Anspruch 14; und
- Anordnen der Speicherzellen in die Energiespeichereinrichtung (100) nach einem der Ansprüche 1 bis 12.
PCT/EP2020/055851 2019-03-13 2020-03-05 Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren WO2020182612A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080017771.5A CN113519085A (zh) 2019-03-13 2020-03-05 用于机动车的能量存储器装置、机动车及制造方法
US17/435,938 US11872876B2 (en) 2019-03-13 2020-03-05 Energy storage device for a motor vehicle, motor vehicle, and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019106424.4A DE102019106424A1 (de) 2019-03-13 2019-03-13 Energiespeichereinrichtung für ein Kraftfahrzeug, Kraftfahrzeug sowie Herstellungsverfahren
DE102019106424.4 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020182612A1 true WO2020182612A1 (de) 2020-09-17

Family

ID=69784428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/055851 WO2020182612A1 (de) 2019-03-13 2020-03-05 Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren

Country Status (4)

Country Link
US (1) US11872876B2 (de)
CN (1) CN113519085A (de)
DE (1) DE102019106424A1 (de)
WO (1) WO2020182612A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484792B2 (ja) 2021-03-30 2024-05-16 マツダ株式会社 車体構造

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603782B (en) * 2021-02-12 2023-09-13 Jaguar Land Rover Ltd Manufacture of components for batteries
DE102022130777A1 (de) 2022-11-22 2024-05-23 Bayerische Motoren Werke Aktiengesellschaft Energiespeicher für ein elektrisch angetriebenes Kraftfahrzeug und Kraftfahrzeug mit einem derartigen Energiespeicher

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070117334A (ko) * 2006-06-08 2007-12-12 삼성에스디아이 주식회사 전지 모듈
US20080311468A1 (en) * 2007-06-18 2008-12-18 Weston Arthur Hermann Optimized cooling tube geometry for intimate thermal contact with cells
US9033085B1 (en) * 2014-02-20 2015-05-19 Atieva, Inc. Segmented, undercarriage mounted EV battery pack
EP3073546A1 (de) * 2015-03-23 2016-09-28 Toyota Jidosha Kabushiki Kaisha Batteriepack
US20180170165A1 (en) * 2015-06-04 2018-06-21 Honda Motor Co., Ltd. Vehicle battery unit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007552A1 (en) * 1999-05-25 2002-01-24 Singleton Robert W. Apparatus and method of manufacturing a battery cell
DE10034134A1 (de) * 2000-07-13 2002-01-31 Daimler Chrysler Ag Wärmetauscherstruktur für mehrere elektrochemische Speicherzellen
CA2512087A1 (en) * 2003-01-04 2004-07-29 3M Innovative Properties Company A vehicle battery pack insulator
US7070015B2 (en) * 2003-05-12 2006-07-04 Ford Global Technologies Llc Battery mounting system for automotive vehicle
JP4783137B2 (ja) * 2005-12-15 2011-09-28 日立ビークルエナジー株式会社 電池モジュール
DE102011001370A1 (de) * 2011-03-17 2012-09-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeug mit einer Batterie
KR101275813B1 (ko) * 2011-07-12 2013-06-18 삼성에스디아이 주식회사 배터리 팩 조립체
US10468644B2 (en) * 2011-10-17 2019-11-05 Samsung Sdi Co., Ltd Battery cell with integrated mounting foot
JP6020959B2 (ja) * 2012-07-13 2016-11-02 三菱自動車工業株式会社 車両の電池パック
WO2014034377A1 (ja) * 2012-08-27 2014-03-06 日産自動車株式会社 電動車両の強電ハーネス接続構造
DE102014002165B3 (de) * 2014-02-19 2015-01-22 Lisa Dräxlmaier GmbH Verfahren zur Fixierung von Rundzellen mittels komprimierter Zellenfixierung und Zellenblock
US10347953B2 (en) * 2014-12-02 2019-07-09 Ford Global Technologies, Llc Battery module having side compression structure with heat exchanger
US20170288286A1 (en) * 2016-04-01 2017-10-05 Faraday&Future Inc. Liquid temperature regulated battery pack for electric vehicles
DE102016206463A1 (de) * 2016-04-18 2017-10-19 Bayerische Motoren Werke Aktiengesellschaft Halterung für batteriezellen, batteriemodul, speicherbatterie und fahrzeug
EP3276701A1 (de) * 2016-07-26 2018-01-31 VARTA Microbattery GmbH Elektrochemische zelle und vorrichtung mit der zelle
DE102017204724A1 (de) * 2017-03-21 2018-09-27 Volkswagen Aktiengesellschaft Batteriemodul, Batterie mit zumindest einem derartigen Batteriemodul sowie Verfahren zur Herstellung eines derartigen Batteriemoduls
JP7359527B2 (ja) * 2017-05-31 2023-10-11 トヨタ自動車株式会社 電池搭載構造
KR101916433B1 (ko) * 2017-06-30 2018-11-07 엘지전자 주식회사 배터리 모듈
DE102017211577A1 (de) * 2017-07-06 2019-01-10 Röchling Automotive SE & Co. KG Kfz-Kühlmittel-Wärmetauscher mit wickelbarer Abdeckung mit veränderlicher Wicklungsgeschwindigkeit und daran angepasstem Zugmittel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070117334A (ko) * 2006-06-08 2007-12-12 삼성에스디아이 주식회사 전지 모듈
US20080311468A1 (en) * 2007-06-18 2008-12-18 Weston Arthur Hermann Optimized cooling tube geometry for intimate thermal contact with cells
US9033085B1 (en) * 2014-02-20 2015-05-19 Atieva, Inc. Segmented, undercarriage mounted EV battery pack
EP3073546A1 (de) * 2015-03-23 2016-09-28 Toyota Jidosha Kabushiki Kaisha Batteriepack
US20180170165A1 (en) * 2015-06-04 2018-06-21 Honda Motor Co., Ltd. Vehicle battery unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484792B2 (ja) 2021-03-30 2024-05-16 マツダ株式会社 車体構造

Also Published As

Publication number Publication date
US20220144062A1 (en) 2022-05-12
US11872876B2 (en) 2024-01-16
CN113519085A (zh) 2021-10-19
DE102019106424A1 (de) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020259879A1 (de) Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren
WO2020182612A1 (de) Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren
EP2593982B1 (de) Batteriezellenmodul, batterie und kraftfahrzeug
DE102009035492A1 (de) Batterie mit einer Vielzahl von plattenförmigen Batteriezellen
DE102011109309A1 (de) Batterie für ein Fahrzeug
DE102006021585B3 (de) Batterie mit Elektrolytdurchmischungsvorrichtung
DE10146957A1 (de) Dicht verschlossener Akkumulator
DE112018002974T5 (de) Energiespeichervorrichtung
DE102014106204A1 (de) Batteriezelle sowie Batterie mit ein oder mehreren Batteriezellen
DE102018209661A1 (de) Elektrochemische energiespeichervorrichtung und verfahren zum herstellen einer solchen
DE102018207331A1 (de) Speicherzelle für eine Speichereinrichtung eines Kraftfahrzeugs, Speichereinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102019102032A1 (de) Energiespeicherzelle, Batteriemodul und Herstellungsverfahren
DE102006021576B3 (de) Batterie mit Elektrolytdurchmischungsvorrichtung
DE3039013C2 (de) Elektrochemischer Generator
WO2018065437A1 (de) Energiespeichermodul und verfahren zum herstellen hiervon
DE102021004470A1 (de) Batteriegehäuse und Verfahren zur Montage einer Batterie
DE102019111941B4 (de) Mischeinrichtung, Separator und Zellwand mit Mischeinrichtung, und Akkumulator
DE102021120656A1 (de) Batteriemodul, Batteriewanne und Verfahren zur Herstellung einer Batteriewanne
DE102018207332A1 (de) Speicherzelle für eine Speichereinrichtung eines Kraftfahrzeugs, Speichereinrichtung sowie Kraftfahrzeug
DE102018207330A1 (de) Speicherzelle für eine Speichereinrichtung eines Kraftfahrzeugs, Speichereinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102022115428B3 (de) Batteriezelle mit Seitenwänden aus Stahl oder einer Stahllegierung
DE102017207169A1 (de) Zellenstapel
DE102020210448A1 (de) Formstabiles Batteriezellengehäuse sowie Batteriemodul aus mindestens zwei solchen Batteriezellengehäusen
DE102010051012A1 (de) Modul zur Speicherung von elektrischer Energie
DE102022103339A1 (de) Batterie und Verfahren zur Herstellung einer Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20710468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20710468

Country of ref document: EP

Kind code of ref document: A1