WO2020181963A1 - 空调/热泵拓展功能箱及空调/热泵蓄热制冷*** - Google Patents

空调/热泵拓展功能箱及空调/热泵蓄热制冷*** Download PDF

Info

Publication number
WO2020181963A1
WO2020181963A1 PCT/CN2020/075710 CN2020075710W WO2020181963A1 WO 2020181963 A1 WO2020181963 A1 WO 2020181963A1 CN 2020075710 W CN2020075710 W CN 2020075710W WO 2020181963 A1 WO2020181963 A1 WO 2020181963A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch pipe
level
stage
heat pump
pipeline
Prior art date
Application number
PCT/CN2020/075710
Other languages
English (en)
French (fr)
Inventor
晏飞
Original Assignee
晏飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晏飞 filed Critical 晏飞
Priority to DE112020000585.2T priority Critical patent/DE112020000585T5/de
Publication of WO2020181963A1 publication Critical patent/WO2020181963A1/zh
Priority to US17/394,385 priority patent/US20210364195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems

Definitions

  • This application relates to the technical field of air conditioning/heat pump systems, and in particular to an air conditioning/heat pump expansion function box and an air conditioning/heat pump heat storage refrigeration system.
  • the disadvantages are: First, the on-site welding inevitably brings unremovable impurities in the pipeline system of the new unit (the copper oxide skin is separated); second, the cleanliness of the environment cannot be guaranteed at the construction site, and the quality of natural welding (within 30 years) No leakage) is also difficult to guarantee; third, the quality of on-site welding must be guaranteed, and the requirements for installation workers are higher, which is inconvenient for promotion and popularization; fourth, the process of suppressing and leaking after on-site welding is complicated, which will bring many hidden dangers , Waste of working hours and uncomfortable senses.
  • This application provides an air conditioner/heat pump expansion function box and an air conditioner/heat pump heat storage refrigeration system, through which the different receiving heads of the air conditioner/heat pump expansion function box and the preset outdoor unit, indoor unit and radiation assembly can be quickly installed to realize the pipeline
  • the reasonable distribution of the unit improves the energy efficiency of the whole machine, and realizes that the pipeline connection of the unit system is completed under non-oxidation conditions.
  • There is no impurities in the pipeline system the unit has a long life, no welding process on site, simple operation and beautiful appearance, which make the above problems Improved.
  • the air conditioner/heat pump expansion function box according to the embodiment of the first aspect of the present application is applied to an air conditioner/heat pump heat storage refrigeration system.
  • the air conditioner/heat pump expansion function box includes an expansion function box body and two installed in the expansion function box body.
  • Distribution pipeline; each of the two distribution pipelines includes a main circuit and at least one branch connected to the main circuit. Both ends of each main circuit are equipped with an outdoor unit receiving head and an indoor unit receiving head. Subhead, the end of each branch away from the main road is equipped with a radiation component receiving head.
  • All radiation component receiving heads of each distribution pipeline form a radiation component receiving head group, two outdoor units receiving The subheads are respectively configured to be connected to the inlet and outlet of the outdoor unit, the two indoor unit receiving heads are respectively configured to be connected to the inlet and outlet of the indoor unit, and the two sets of radiating component receiving head groups are respectively configured to be connected to the inlet and outlet of the radiating component.
  • Export connection All radiation component receiving heads of each distribution pipeline form a radiation component receiving head group, two outdoor units receiving The subheads are respectively configured to be connected to the inlet and outlet of the outdoor unit, the two indoor unit receiving heads are respectively configured to be connected to the inlet and outlet of the indoor unit, and the two sets of radiating component receiving head groups are respectively configured to be connected to the inlet and outlet of the radiating component.
  • the pipeline is detachably connected with the outdoor unit, the indoor unit or the radiating component through the outdoor unit receiving head, the indoor unit receiving head or the radiating component receiving head, respectively Reasonable distribution improves the energy efficiency of the whole machine, facilitates the improvement of assembly efficiency, realizes that the pipeline connection of the unit system is completed under non-oxidizing conditions, there is no impurities in the pipeline system, the unit has a long life, no welding process on site, simple operation and beautiful appearance .
  • the air conditioner/heat pump heat storage refrigeration system includes an outdoor unit, an indoor unit, a radiation component, and the air conditioner/heat pump expansion function box of the embodiment of the first aspect.
  • the inlet and outlet of the outdoor unit are respectively the same as the air conditioner/
  • the two outdoor units of the two distribution pipelines of the heat pump expansion function box are connected with the two outdoor unit clawi heads, and the inlet and outlet of the indoor unit are respectively connected with the two indoor units of the two distribution pipelines of the air conditioning/heat pump expansion function box.
  • the inlet and outlet of the radiant component are respectively connected to the two sets of radiant component heads of the two distribution pipelines of the air conditioning/heat pump expansion function box.
  • the outdoor unit and the indoor unit are connected through the air conditioning/heat pump expansion function box to form a loop, and the outdoor unit is connected to the radiation
  • the components are connected through the air conditioning/heat pump expansion function box to form a loop, and the indoor unit and the radiant components are connected through the air conditioning/heat pump expansion function box to form a loop.
  • FIG. 1 is a schematic diagram of the first structure of an air conditioning/heat pump heat storage refrigeration system according to an embodiment of the application;
  • Fig. 2 is a schematic diagram of the first structure of the air conditioner/heat pump expansion function box of Fig. 1;
  • Fig. 3 is a schematic diagram of the second structure of the air conditioner/heat pump expansion function box of Fig. 1;
  • Figure 4 is a schematic diagram of the third structure of the air conditioner/heat pump expansion function box of Figure 1;
  • Fig. 5 is a schematic diagram of the fourth structure of the air conditioner/heat pump expansion function box of Fig. 1;
  • Figure 6 is a schematic diagram of the structure of the air conditioner/heat pump expansion function box with sub-function boxes
  • Figure 7 is another structural schematic diagram of the air conditioner/heat pump expansion function box with sub-function boxes
  • FIG. 8 is a schematic diagram of the structure of the radiation unit of the radiation component of FIG. 1;
  • Fig. 9 is a fifth structural schematic diagram of the air conditioner/heat pump expansion function box of Fig. 1;
  • Figure 10 is a schematic diagram of the connection structure of the radiation components of the air conditioning/heat pump heat storage refrigeration system
  • FIG. 11 is a schematic diagram of the sixth structure of the air conditioner/heat pump expansion function box of FIG. 1;
  • Figure 12 is a schematic diagram of the auxiliary function box of the air conditioning/heat pump heat storage refrigeration system
  • FIG. 13 is a schematic diagram of the second structure of the air conditioning/heat pump heat storage refrigeration system according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of a third structure of the air conditioning/heat pump heat storage refrigeration system according to an embodiment of the application.
  • 15 is a schematic diagram of the fourth structure of the air conditioning/heat pump heat storage refrigeration system according to an embodiment of the application.
  • Figure 16 is a refrigerant flow chart of the first refrigeration/dehumidification state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 17 is a refrigerant flow chart of the second refrigeration/dehumidification state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 18 is the third/fourth refrigerant flow chart of the air conditioning/heat pump heat storage refrigeration system
  • Figure 19 is the refrigerant flow chart of the third dehumidification state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 20 is a refrigerant flow chart of the first heating state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 21 is a refrigerant flow chart of the second heating state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 22 is the refrigerant flow chart of the third heating state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 23 is the refrigerant flow chart of the first hot water production state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 24 is a refrigerant flow chart of the second hot water production state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 25 is a refrigerant flow chart of the third hot water state of the air conditioning/heat pump heat storage refrigeration system
  • Figure 26 is a refrigerant flow chart in the "secondary evaporation" state of the air conditioning/heat pump heat storage refrigeration system.
  • the air conditioner/heat pump heat storage refrigeration system 1 of an embodiment of the present application includes an air conditioner/heat pump expansion function box, an outdoor unit 10, an indoor unit 20, and a radiation component 30.
  • the air conditioner/heat pump extended function box includes an extended function box box X1 and two distribution pipelines installed in the extended function box box X1.
  • Expanded Function Box Box X1 is a load-bearing container with a containing space. It can be a metal box (such as iron, aluminum or other alloys), a plastic box (such as PC (Polycarbonate), ABS (Acrylonitrile Butadiene Styrene), Acrylonitrile-butadiene-styrene), PP (Polypropylene, polypropylene) and PET (polyethylene glycol terephthalate, polyethylene terephthalate)) or a box made of a combination of metal and plastic.
  • each of the two distribution pipelines includes a main circuit G1 and at least one branch G2 connected to the main circuit G1.
  • An outdoor unit receiving head L1 and an indoor unit receiving head L2 are respectively provided at both ends of each main road G1.
  • the end of each branch G2 far away from the main road G1 is provided with a radiation component receiving head L3, All radiating component receiving heads L3 of each distribution pipeline form a radiation component receiving head group.
  • Two outdoor unit receiving heads L1 are respectively configured to be connected to the inlet and outlet of outdoor unit 10, and two indoor units receiving
  • the head L2 is respectively configured to be connected to the inlet and the outlet of the indoor unit 20, and the two sets of radiating component receiving head groups are respectively configured to be connected to the inlet and the outlet of the radiating component 30.
  • Each radiant component receiving head group is configured to be connected to the connection port at one end of the radiating component 30.
  • each radiation component receiving head group can be equipped with multiple radiating component receivers.
  • the head L3 corresponds to the multiple connection ports of the radiating component 30.
  • the number of the radiating component receiving sub-heads L3 is an even number, which is convenient for the even and reasonable distribution of the distribution pipelines and the indoor pipeline arrangement.
  • the inlet and outlet of the outdoor unit 10 are respectively connected to the two outdoor unit receiving heads L1 of the two distribution pipelines, and the inlet and the outlet of the indoor unit 20 are respectively connected to the two indoor unit receiving heads L2 of the two distribution pipelines,
  • the inlet and outlet of the radiant component 30 are respectively connected to the two sets of radiant component head groups of two distribution pipelines.
  • the outdoor unit 10 and the indoor unit 20 are connected to form a loop through the air conditioning/heat pump expansion function box, and the outdoor unit 10 and the radiant component 30
  • the air conditioner/heat pump expansion function box is connected to form a loop, and the indoor unit 20 and the radiation component 30 are connected through the air conditioner/heat pump expansion function box to form a loop.
  • the indoor unit receiving head L2 and the inlet or outlet of the indoor unit 20 are quickly connected, and the radiating component receiving head L3 and the radiating component 30 are imported or The outlet is quickly connected, and the air conditioner/heat pump expansion function box forms a loop with the outdoor unit 10, the indoor unit 20 (and/or the radiant component 30) to realize the flowing medium (the flowing medium in this application refers to the refrigerant, such as freon, carbon dioxide and ammonia Etc.) to facilitate the reasonable distribution of pipelines, no welding at the installation site, simple operation and beautiful appearance.
  • the flowing medium in this application refers to the refrigerant, such as freon, carbon dioxide and ammonia Etc.
  • each of the two separate pipelines is provided with at least one expansion valve K1 and at least one sensor group corresponding to the at least one expansion valve K1, and two distribution pipes At least one distribution pipeline in the circuit is connected to a liquid storage tank 404, and each expansion valve K1 and each sensor group are respectively configured to be electrically connected to the control circuit board of the outdoor unit 10.
  • the control circuit board can be controlled according to the signal detected by the sensor group The working state of the expansion valve K1 to change the flow of the flowing medium in the corresponding distribution pipeline.
  • the expansion valve K1 can be an electronic expansion valve or a pressure expansion valve (or a mixed application of the two), and different types of expansion valves K1 can be selected according to different actual working conditions.
  • the control circuit board can also be installed in the expansion function box X1, which is convenient for the overhaul and maintenance of the circuit.
  • a liquid storage tank 404 is arranged in the distribution pipeline.
  • the air conditioning/heat pump expansion function box is connected with the outdoor unit 10, the indoor unit 20, and the radiant assembly 30 to form the air conditioning/heat pump heat storage refrigeration system 1
  • the shape of the liquid storage tank 404 is The size, location and control should be set according to the needs of the system.
  • the sensor group includes a pressure sensor C1 and/or a temperature sensor C2, and the sensor group is installed in one of the distribution pipelines.
  • the control circuit board can control the working state of the expansion valve K1 according to the pressure signal detected by the pressure sensor C1, thereby changing the flow of the flowing medium in the distribution pipeline; when there is only a temperature sensor in the distribution pipeline At C2, the control circuit board can control the working state of the expansion valve K1 according to the temperature signal detected by the temperature sensor C2, thereby changing the flow of the flowing medium in the distribution pipeline; when the distribution pipeline has a pressure sensor C1 and a temperature sensor C2, The control circuit board can control the working state of the expansion valve K1 according to the pressure signal or temperature signal detected by the pressure sensor C1 or the temperature sensor C2 to change the flow rate of the flowing medium in the distribution pipeline.
  • each distribution pipeline includes at least one branch pipe, one of the at least one branch pipe is a first-stage branch pipe F1, and the first-stage branch pipe F1 includes a first-stage main pipe and a first-stage branch pipe.
  • Two first-level branch pipes connected by the first-level main pipe, the first-level main pipe and one of the two first-level branch pipes are constructed as the main road G1, and the other first-level branch pipe of the two first-level branch pipes is constructed Into a shunt G2.
  • the first-level main pipe of the first-level branch pipe F1 and one of the first-level branch pipes constitute the main path G1 of the distribution pipeline, and the other first-level branch pipe constitutes the branch G2, which connects the outdoor unit 10 and the indoor through the main path G1
  • the unit 20 is connected to the outdoor unit 10 and the radiation assembly 30 through a branch G2.
  • the number of branch pipes for each distribution pipeline is one
  • the branch pipe is the first-level branch pipe F1
  • the first-level main pipe of the first-level branch pipe F1 One of the first-level branch pipes forms the main circuit G1
  • the other first-level branch pipe of the first-level branch pipe F1 forms the first-level branch.
  • the distribution pipeline has only one branch G2, that is, the first-level branch, and the first-level branch has only one radiating component receiving head L3.
  • the number of branch pipes in each distribution pipeline is two, and the two branch pipes are the first-stage branch pipe F1 and the second-stage branch pipe F2.
  • the first-level main pipe of the first-level branch pipe F1 and the other first-level branch pipe are constructed as the main circuit G1
  • the other first-level branch pipe of the first-level branch pipe F1 is constructed as the first-level branch
  • the second-level branch pipe The main pipe is in communication with the first-level branch pipe constituting the first-level branch
  • the two second-level branch pipes are configured as two second-level branches
  • the radiation component receiving head L3 is located at the end of the second-level branch.
  • the main path G1 of the distribution pipeline is composed of the first-level main pipe and one of the first-level branch pipes.
  • the two second-level branches connected by the first-level branch form the two branches G2 of the distribution pipeline.
  • the road has two radiating components to receive subhead L3.
  • the number of branch pipes in each distribution pipeline is 2 n-1 , where n ⁇ 3, the branch pipe includes a first-stage branch pipe F1, and a second-stage branch pipe.
  • -Level branch pipe F2 two third-level branch pipes F3,..., 2 n-2 n-th-level branch pipes
  • n-th-level branch pipes include n-th-level main pipes and two n-th-level branch pipes, n-th level branch pipes are Constructed as n-th level branch.
  • the first-level main pipe of the first-level branch pipe F1 and one of the first-level branch pipes are constructed as the main circuit G1, and the other first-level branch pipe of the first-level branch pipe F1 is constructed as the first-level branch;
  • the branch pipe F2 is located in the first-level branch, the second-level main pipe of the second-level branch pipe F2 is connected to the first-level branch pipe that constitutes the first-level branch, and the two second-level branch pipes of the second-level branch pipe F2 are constructed Two second-level branches; each third-level branch pipe F3 is located in the second-level branch, the third-level main pipe of each third-level branch pipe F3 and a second-level branch pipe that form the second-level branch Connected, each third-level branch pipe is constructed as a third-level branch, and so on, the branch pipe connected to the n-1th-level branch pipe of the n-1th-level branch pipe is the nth-level branch pipe, and the nth-level branch pipe
  • each distribution pipeline is located in an extended function box X1, which is convenient for realizing the reasonable distribution of the pipeline and the actual indoor application area. And the location can be flexibly set.
  • the two extended function boxes X1 one is the flow medium input box and the other is the flow medium output box.
  • the shape, size, internal components and location of each extended function box X1 can be selected according to the unit It depends on the size and function.
  • the location settings of the outdoor unit receiving head L1 and the indoor unit receiving head L2 are also flexible.
  • the location setting of the indoor unit receiving head L2 can be selected according to the actual situation, and the indoor unit receiving head L2 position can be compared with the radiation
  • the location of the component receiving head L3 is on the same side of the extended function box X1 (as shown in Figure 3), the indoor unit receiving head L2 and the outdoor unit receiving head L1 are located on the extended function box X1 On both sides; the location of the indoor unit receiving head L2 can also be located on the same side of the extended function box X1 as the outdoor unit receiving head L1 (as shown in Figure 5), the location and radiation of the indoor unit receiving head L2
  • the position of the component receiving head L3 is located on both sides of the expansion function box X1.
  • the sub-heads in different positions can realize the reasonable connection of different positions of the pipeline.
  • the air conditioner/heat pump expansion function box further includes a sub-function box, each distribution pipeline is provided with at least one sub-function box, and each distribution pipeline includes a main distribution pipeline and a sub-distribution pipeline.
  • the distribution pipeline is located in the sub-function box.
  • the sub-distribution pipeline includes an n-th level branch pipe that cooperates with the main distribution pipeline, and one of the n-th level branch pipes and an n-1 level branch pipe of the main distribution pipeline
  • the n-1th stage branch pipe is connected, the end of the n-1th stage branch pipe of the main distribution pipeline that is matched with the sub-distribution pipeline is provided with an outlet receiving head L41, and the n-th stage branch pipe of the sub-distribution pipeline
  • the end of the n-level main pipe is connected with an inlet receiving head L42, and the ends of the two n-th branch pipes of the n-th branch pipe are respectively connected with a radiation component receiving head L3, which connects the inlet receiving head L42 and the connection outlet Vietnamese head L41 connection.
  • the last-level branch pipe (the nth-level branch pipe) of the distribution pipeline is located in the sub-function box.
  • the sub-function box is flexible and configured to distribute the distribution pipeline and the actual indoor laying area more reasonably, which is convenient Laying of pipelines between different rooms.
  • the distribution pipeline can be equipped with at least one sub-function box, and the distribution pipeline and the actual indoor laying area can be realized through the setting of the sub-function box. More reasonable distribution.
  • the sub-function box includes the sub-function box box X2.
  • the structure of the sub-distribution pipeline can be multiple. As an option, two different structure forms are selected for introduction: one is the sub-function corresponding to each distribution pipeline The number of boxes is two.
  • the distribution pipeline is also provided with a transitional function box.
  • the transitional function box includes a transitional function box box X2' and an n-th coordinated sub-function box.
  • the distribution pipeline has a four-level branch pipe, and the transition function box contains a third-level branch pipe F3 ,
  • the two sub-function boxes each contain a fourth-level branch pipe F4; the other is to place an n-1 level branch pipe and two n-th level branch pipes in the same sub-function box, so that the sub-function box Two sub-distribution pipelines are arranged in the function box.
  • the distribution pipeline has a four-stage branch pipe.
  • the third-stage branch pipe F3 and two fourth-stage branch pipes F4 are located in the sub-function box body X2.
  • the main distribution pipeline in the extended function box box X1 is configured to distribute pipelines to the main room (the master bedroom or a larger space), and the two sub-function boxes are configured into two sub-rooms (or areas). Smaller space) for pipeline distribution.
  • the transition function box contains the third-level branch pipe F3, the two sub-function boxes include the fourth-level branch pipe F4, the end of the second-level branch pipe F2 of the second-level branch pipe F2 of the main distribution pipeline and the transition function box
  • the end of the third-level main pipe of the third-level branch pipe F3 of the transition function box is connected with the connecting inlet receiving head L42 (can be understood as the first-level connecting outlet receiving head).
  • the first level is connected to the inlet socket head
  • the connection outlet socket head L41 is connected to the inlet socket head L42
  • the end of the third level branch pipe of the third level branch pipe F3 is connected with the second stage connection outlet socket Head L43
  • the end of the fourth-level main pipe of the fourth-level branch pipe F4 of the sub-function box is connected with a second-level connection inlet receiving head L44
  • the second-level connection outlet receiving head L43 is connected to the corresponding second-level connection inlet
  • the receiving head L44 is connected
  • the end of the fourth-stage branch pipe of the fourth-stage branch pipe F4 is connected with the radiation component receiving head L3.
  • an expansion valve K1 is respectively provided on the two third-level branch pipes of the third-level branch pipe F3 of the transition function box, and is configured to control the fourth-level branch of the corresponding sub-function box. Flow rate of the flowing medium in pipe F4.
  • each sub-function box includes a sub-function box X2, a third-level branch pipe F3 and the third-level branch pipe F3.
  • the two fourth-level branch pipes F4 matched by the third-level branch pipe F3 are located in the sub-function box.
  • the end of the third-level main pipe of the third-level branch pipe F3 is connected to the inlet receiving head L42, the main distribution pipe
  • the end of the second-stage branch pipe of the second-stage branch pipe F2, which is matched with the third-stage branch pipe F3, is connected with a connecting outlet socket head L41, and the connecting outlet socket head L41 is connected with the connecting inlet socket head L42.
  • the ends of the two fourth-level branch pipes of the fourth-level branch pipe F4 in the box are respectively connected with radiation component receiving heads L3.
  • the sub-function box has four radiation component receiving heads L3, which can be applied to larger areas.
  • two third-stage branch pipes of the third-stage branch pipe F3 in the sub-function box are respectively provided with expansion valves K1, which are configured to control the flow of the flowing medium in the corresponding fourth-stage branch pipe F4
  • the sub-function box can be placed in the required position according to the location requirements of different radiation components 30, so as to facilitate the reasonable distribution of the distribution pipeline and the actual indoor laying area.
  • All branch pipes include a main pipe and two branch pipes.
  • the diameters of the main pipe and branch pipes of the branch pipe can be different or equal; the two branch pipes form a U or Y-shaped structure, which is convenient for installation and arrangement.
  • the material of the branch pipe can be in various forms, such as metal pipes, plastic pipes, and synthetic pipes.
  • the radiation component 30 includes a distributor 302 corresponding to the radiation component receiving head L3, each distributor 302 is connected to a radiation component receiving head L3, and each distribution pipeline includes multiple branches.
  • G2 each branch G2 is provided with a radiation component receiving head L3
  • the radiation component 30 includes a plurality of radiation units 301, and the inlet end (or the outlet end) of each radiation unit 301 corresponds to two distribution pipelines
  • One radiation component receiving head L3 of a distribution pipeline, the outlet end (or the inlet end) of each radiation unit 301 corresponds to a radiation component receiving head L3' ( In order to easily distinguish the components in the two distribution pipes, this radiation component receiving head L3' is the radiation component receiving head in the other distribution pipe).
  • each radiating unit 301 includes two distributors (a distributor 302 and a distributor 302') and a radiating element 303.
  • the radiating element 303 includes a plurality of heat exchange tubes 304 arranged side by side, and two distributors (Distributor 302 and distributor 302') are located at both ends of the radiating member 303, and each distributor (distributor 302 or distributor 302') includes a distributor connection inlet (distributor connection inlet 305 or distributor connection inlet 305) ') and multiple distributor connection outlets (distributor connection outlet 306 or distributor connection outlet 306'), multiple distributor connection outlets (distributor connection outlet 306 or distributor connection outlet 306') and multiple heat exchange tubes 304 one-to-one connection.
  • Each distributor connection inlet 305 (or distributor connection inlet 305') is provided with a distributor connection inlet receiving head L31 (or a distributor connection inlet receiving head L31').
  • the distributor connects the inlet receiving head L31 to a radiation component receiving head L3 of one of the distribution pipelines, and the other distributor connects the inlet receiving head L31' to a radiation component receiving head L3' of the other distribution pipeline. connection.
  • the heat exchange tube 304 can be a metal tube (such as a copper tube) or a non-metal tube (such as a pressure-resistant and heat-conducting plastic tube).
  • the outer finned and plastic coated tube can be selected according to the actual situation. Different types (different materials or different structures) of heat exchange tubes 304 with a toothed pattern on the layer or inner wall.
  • the radiation component 30 can be a radiation floor, a radiation wall or a radiation ceiling, and different combinations of radiation components 30 can also be selected according to actual conditions.
  • a solenoid valve 420 is further provided in the air conditioner/heat pump expansion function box, the radiation component includes a first radiation component group and a second radiation component group, and both the first radiation component group and the second radiation component group include At least one radiation unit, one of the second-level branch pipes of the second-level branch pipe of each distribution pipeline can be connected to the first radiation assembly group, and the other second-level branch pipe of the second-level branch pipe can be connected to the second radiation assembly Component group connection.
  • the two distribution pipelines are respectively the first distribution pipeline and the second distribution pipeline.
  • the first distribution pipeline is configured such that the second-stage branch pipe connected to the first radiation component group is connected to the output end of the solenoid valve
  • the second distribution pipeline is configured such that the second-stage branch pipe connected to the second radiation assembly group is connected to the input end of the solenoid valve.
  • a series pipeline is set inside the air conditioning/heat pump expansion function box, and one end of the series pipeline is connected to a second-stage branch pipe of the second-stage branch pipe F2 of the first distribution pipeline (
  • a branch pipe 510 is provided on the second-stage branch pipe of the second-stage branch pipe F2, one branch pipe of the branch pipe 510 is configured to connect the series pipeline), and the other end of the series pipeline is connected to the second stage of the second distribution pipeline
  • a second-level branch pipe of the branch pipe F2' (the other branch pipe of the second-level branch pipe F2' is configured to connect to the first radiation assembly group) is connected (a branch pipe 520 is provided on the second-level branch pipe, and the branch pipe 520
  • One branch pipe is configured to connect the series pipeline), when the first distribution pipeline and the second distribution pipeline are both connected to the first radiation component group and the second radiation component group, the series pipeline passes through The opening of the solenoid valve 420 can realize the series connection of the first radiation component group and the second radiation component group.
  • the inside of the first radiation assembly group may include multiple radiation units (in this case, it is equivalent to, each distribution pipeline includes a third-level branch pipe or a fourth-level branch pipe, etc.
  • Multi-level branch pipe (not limited to the third-level branch pipe and the fourth-level branch pipe), the first auxiliary component group and the second-level branch pipe of the second-level branch pipe on the lower branch pipe (referring to the second
  • the branch pipes below the first stage, such as the third-stage branch pipe are connected, and the multiple radiation units of the first radiation component group are connected in series and parallel (refer to the connection method of the series pipeline described above).
  • the multiple radiation units of the first radiation component group are connected in parallel.
  • the second radiation component group may also include multiple radiation units (which may be different from the number of radiation units in the first radiation assembly group, for example, some lower-level branch pipes are not connected to the radiation units).
  • the connection mode of the multiple radiation units in the second radiation assembly group refers to the first The connection method of the radiant component group.
  • a branch pipe (branch pipe 510, branch pipe 520) is added to the front and rear ends of the two different radiation components, and the two branch pipes (branch pipe 510 and branch pipe 520) are formed.
  • One of the four branches is connected (connecting one of the radiation component groups), and a solenoid valve (solenoid valve 420) is connected between them, and an expansion valve 430 is added to one end of the other radiation component group.
  • the temperature (and pressure) of the radiating component changes to a certain value, that is, it can no longer meet the requirements of the system working conditions.
  • the radiating component group must be added in series or parallel (or the radiating component group is reduced), then the electromagnetic on the connecting pipeline
  • the opening of the valve 420 can connect the two sets of radiation components in series.
  • the refrigerant (the flow process before the refrigerant enters the radiant component is omitted) flows into the second-stage branch pipe F2 through the expansion valve 408 into a radiation component group, and then flows through the branch pipe 520, solenoid valve 420 to branch pipe 510 (this When the expansion valve 406 and 407 are closed), it flows into another radiation component group, then flows through the expansion valve 430, and then flows through the second-stage branch pipe F2' and the first-stage branch pipe F1' to the liquid storage tank 404 (after the refrigerant flows out of the radiation component The flow process is omitted); during refrigeration, the refrigerant flows from the storage tank 404 into the first-stage branch pipe F1', the second-stage branch pipe F2', and the expansion valve 430 into another radiation assembly group, and then flows through the branch pipe 510 and then the electromagnetic
  • the valve 420 to the branch pipe 520 (the expansion valves 406 and 407 are closed at this time) flows into a radiation component group and then flows through
  • the solenoid valve 420 can be closed, and then the expansion valve at the front (rear) end of each radiation component group can be opened (or closed).
  • the tube diameter, tube length, tube spacing and tube position (ground, wall and roof) of the heat exchange tubes should be made in different structures. The corresponding tooling.
  • a first regulating pipeline is also provided in the air conditioning/heat pump expansion function box ,
  • a branch pipe 501 is connected to one of the first-level branch pipes of the first-level branch pipe F1 of the main road G1 in one of the distribution pipelines.
  • the main pipe of the branch pipe 501 is connected to the above-mentioned first-level branch pipe, and a branch pipe of the branch pipe 501
  • the end of the indoor unit is provided with the sub-head L2
  • the other branch pipe of the branch pipe 501 is connected to one end of the first regulating pipe
  • the branch pipe 502 is connected to the first-stage branch pipe of the other distribution pipe that forms the first-stage branch.
  • the main pipe of the branch pipe 502 is connected to the aforementioned first-stage branch pipe, and the two branch pipes of the branch pipe 502 are respectively connected to the main pipe of the second-stage branch pipe F2' and the other end of the first regulating pipeline.
  • the first regulating pipeline connects the main circuit in one distribution pipeline with the first-stage branch in the other distribution pipeline, and a first regulating cut-off valve 410 is provided on the first regulating pipeline.
  • the opening or closing of the valve 410 realizes the series connection or parallel connection of the radiation component 30 and the indoor unit 20. It is also possible to close the first regulating stop valve 410, use the controllable opening of the expansion valve 409, equipped with the frequency conversion of the internal heat exchanger 201, to control the return air temperature of the compressor 102, and further improve the energy efficiency of the whole machine.
  • a dryer 401 and a throttling component 402 are provided in one of the distribution pipelines.
  • the throttling component 402 can be an electronic expansion valve (pressure expansion valve) or a capillary tube, configured as (in manufacturing When it is hot) adjust the flow rate of the refrigerant in the system pipeline, and the dryer 401 is configured to dehumidify the pipeline and filter impurities.
  • a check valve 403 is connected in parallel beside it. When heating (check valve 403 is in the reverse closed state), the refrigerant in the system pipeline can only flow through the throttling component 402. The throttle component 402 is closed) The refrigerant in the system pipeline can only flow through the one-way valve 403.
  • the outdoor unit 10 includes an external heat exchanger 101, a compressor 102, and a four-way valve 106 connected to the compressor 102.
  • the outlet end of the external heat exchanger 101 is connected to the four-way valve.
  • the first port Q1 of the valve 106 is connected, the inlet end of the external heat exchanger 101 is connected with one of the outdoor unit heads L1, the second port Q2 of the four-way valve 106 is connected with the outlet end of the compressor 102, The inlet end is connected to the third port Q3 of the four-way valve 106, and the fourth port Q4 of the four-way valve 106 is connected to another outdoor unit Vietnamese head L1'; when the air conditioning/heat pump heat storage refrigeration system 1 is in the cooling mode, the four The first port Q1 of the port valve 106 communicates with the second port Q2, and the third port Q3 communicates with the fourth port Q4; when the air conditioner/heat pump heat storage refrigeration system 1 is in the heating mode, the first port Q1 of the four-way valve 106 It is connected to the third port Q3, and the second port Q2 is connected to the fourth port Q4; the indoor unit 20 includes an internal heat exchanger 201, the inlet end of the internal heat exchanger 201 is connected to one of the indoor unit receiving head L
  • a gas-liquid separator 105 is provided at the inlet end of the compressor 102.
  • the outlet end and the inlet end of the external heat exchanger 101 are the two ports of the external heat exchanger 101, which are respectively configured to be connected to other components.
  • the outlet end does not refer to the outlet of the flowing medium, but also the flow
  • the principle of the inlet and the inlet end of the medium is similar to that of the outlet end.
  • the four-way valve 106, the compressor 102, and the external heat exchanger 101 are located in a box, and the box is connected with two ports, which are respectively configured to accommodate the two outdoor units of the air conditioning/heat pump expansion box.
  • the subhead L1 is connected, and the structure is compact.
  • the compressor 102 can adopt a supplemental gas enthalpy-increasing compressor, which adopts a two-stage throttling intermediate jet technology and a flash evaporator for gas-liquid separation. Enthalpy increase effect. It can increase the compressor displacement and achieve the purpose of improving the heating capacity under low temperature environmental conditions.
  • the compressor 102 can also be an integrated multi-cylinder compressor, or the number of compressors 102 is at least two. According to different working conditions, different types or combinations of compressors 102 can be selected. .
  • the number of internal heat exchangers 201 can be two, and the two internal heat exchangers 201 are connected in parallel to the refrigerant circuit of the system, which is equivalent to the expansion function box X1 in a distribution pipeline to form the main
  • a branch pipe is connected to the first-level branch pipe of the road.
  • the main pipe of this branch pipe is connected to the first-level branch pipe.
  • the ends of the two branch pipes of the branch pipe are respectively connected to an indoor unit receiving head L2, so that the two internal heat exchanges
  • the device 201 is respectively connected with the air conditioner/heat pump expansion function box.
  • the number of internal heat exchangers 201 can also be multiple, as long as multiple distributors are connected in parallel with the refrigerant circuit on the first-stage branch pipe, and multiple internal heat exchangers 201 are connected in parallel.
  • the indoor unit 20 also includes a humidity sensor (not shown in the figure).
  • the humidity sensor is electrically connected to the control circuit board.
  • the humidity sensor is configured to detect indoor humidity and generate a humidity signal, which is sent to the control circuit board.
  • the control circuit board analyzes the humidity signal and controls the internal heat exchanger 201 to participate in dehumidification or humidification.
  • the internal heat exchanger 201 of the indoor unit 20 can be an air-conditioning indoor unit, a fresh air unit (not shown in the figure), or a combination of a fresh air unit and an air-conditioning indoor unit, and the air-conditioning indoor unit is the indoor space for temperature control.
  • the fresh air unit performs functions such as humidity exchange and air purification of indoor air, which improves the diversity of functions of the air conditioning/heat pump heat storage and refrigeration system, while providing a more energy-saving and comfortable environment experience.
  • purifiers, humidifiers, negative (oxygen) ion generators and photocatalyst coating generation chambers can also be added to the fresh air unit.
  • the air conditioning/heat pump heat storage refrigeration system 1 further includes a water heater 103, a lighting component 104, and an auxiliary function box.
  • the auxiliary function box includes an auxiliary function box X5 and a The two auxiliary pipelines in the auxiliary function box box X5, each auxiliary pipeline includes the first-level auxiliary branch pipe (branch pipe 701 and branch pipe 701') and the second-level auxiliary branch pipe (branch pipe 702 and branch pipe 702').
  • the first auxiliary branch pipe and the second-level auxiliary branch pipe both include a main pipe and two branch pipes.
  • the main pipe of the second-level auxiliary branch pipe is connected to one branch pipe of the first-level auxiliary branch pipe.
  • the end is connected with an auxiliary inlet end, and the end of the other branch pipe of the first-level auxiliary branch pipe and the ends of the two branch pipes of the second-level auxiliary branch pipe are respectively provided with auxiliary outlet ends.
  • the two auxiliary pipelines of the auxiliary function box are the first auxiliary pipeline (the pipeline formed by the branch pipe 701 and the branch pipe 702) and the second auxiliary pipeline (the pipeline formed by the branch pipe 701' and the branch pipe 702') ,
  • the auxiliary inlet end of the first auxiliary pipeline (the end of the main pipe of the branch pipe 701) is connected to the first port Q1 of the four-way valve 106, and the three auxiliary outlet ends of the first auxiliary pipeline (one branch of the branch pipe 703)
  • the two branch pipes of the branch pipe 702) are respectively connected to the outlet end of the external heat exchanger 101, the outlet end of the water heater 103 and the outlet end of the illumination assembly 104, and the auxiliary inlet end of the second auxiliary pipe (the main pipe of the branch pipe 701
  • the auxiliary function box is also provided with a second regulating pipeline.
  • One end of the second regulating pipeline and the branch pipe with the auxiliary outlet end of the first auxiliary branch pipe of the first auxiliary pipeline (the branch pipe provided with the branch pipe 703, namely One branch of the branch pipe 703) is connected, and the other end of the second adjusting pipe is connected with one of the branch pipes (the other branch of the branch pipe 704) of the second auxiliary branch pipe (the branch pipe 702') of the second auxiliary pipe
  • a second regulating cut-off valve 606 is provided on the second regulating pipeline, and the second regulating cut-off valve 606 is configured to control the disconnection or communication of the second regulating pipeline to change the connection between the external heat exchanger 101 and the water heater 103 and the lighting assembly 104 Series and parallel mode.
  • FIG. 13 it is a schematic diagram of the structure of the auxiliary function box.
  • the outlet end and the inlet end of the water heater 103 are two ports of the water heater 103, which are respectively configured to connect with other components.
  • the outlet end does not refer to the outlet of the flowing medium, but can also be the inlet of the flowing medium.
  • the principle of the inlet end is similar to that of the outlet end. .
  • the principle of the outlet end and the inlet end of the lighting assembly 104 is the same as the principle of the outlet end and the inlet end of the water heater 103.
  • the auxiliary function box is arranged so that the compressor 102 and the external heat exchanger 101 are separated and not in the same box.
  • the compressor 102 is located in the compressor box X4, and the external heat exchanger 101 is located outside.
  • the inside of the heat exchanger box X3 facilitates the heat exchange of the external heat exchanger 101 (the same as the internal heat exchanger 201, the external heat exchanger 101 can also be two or more, but they are not shown in the figure).
  • the four-way valve 106 is located in the compressor box X4.
  • the system When the system is assembled, it only needs to be connected to the ports of the outdoor unit receiving head L1, the outdoor unit receiving head L1', the external heat exchanger 101, the compressor 102, the water heater 103, and the light component 104 respectively.
  • the position of the compressor 102 can also be set separately.
  • the four-way valve 106 is located in the auxiliary function box X5, and the compressor box X4 is provided with two ports respectively connected with the four ports in the auxiliary function box X5.
  • the second port Q2 and the third port Q3 of the valve 106 are connected; the auxiliary function box box X5 is provided with eight ports, and the first auxiliary pipeline is provided with five ports.
  • the compressor 102 Compared with the three ports of the second auxiliary pipeline, It is configured as two ports connected to the compressor 102; the compressor 102 is separately arranged in a box (compressor box X4), which is convenient to realize the fixation and noise reduction, replacement and maintenance of the compressor 102, and the compressor 102
  • the placement position is more flexible. It can be placed indoors (a non-freezing location) or a corner outside (no need to consider ventilation).
  • the water heater 103 is an air-energy water heater with electric auxiliary, which is convenient for "two-way" automatic heating.
  • the shape of the light component 104 can be flat and long, which has a large width and size, and takes up a large installation space, and is configured to be installed on the roof or balcony; it can also be long and flat, which has a small width and occupies installation space It is small and configured to be installed on the roof or between two windows; no matter what form of the lighting component 104 is adopted, the lighting component 104 must have a certain inclination angle during installation, but it should not be too large to absorb solar energy in winter , It is better not to affect the beauty of the building.
  • the external heat exchanger 101 Since the external heat exchanger 101 is separately located in the external heat exchanger box X3, it can have "sufficient" heat exchange space, and the different shapes of the external heat exchanger 101 have a certain influence on the heat exchange function.
  • the shape of the external heat exchanger 101 is cone, circle, ellipse, etc., and its large and uniform heat exchange area increases the heat exchange capacity of the external heat exchanger 101.
  • the shape of the external heat exchanger 101 may also be L-shaped, rectangular, irregular, or the like.
  • components of the auxiliary function box and the air conditioning/heat pump expansion function box are combined in the same box to form a composite function box, as shown in FIG. 15.
  • the components are assembled in the composite function box body X6, and multiple joints are respectively provided, which are arranged to be connected to the compressor 102, the external heat exchanger 101, the internal heat exchanger 201, the radiation component 30, the water heater 103 and
  • the connection of the light component 104 improves the assembly efficiency and reduces the influence of welding and other processes on the installation quality during system assembly.
  • the composite function box adds a three-way valve and a branch pipe, which is convenient to realize a variety of different working conditions.
  • the compressor 102 is arranged outside the composite function box, located in a separate box (compressor box X4), and both the output end (high pressure end) and the input end (low pressure end) of the compressor 102 are provided
  • the pressure sensor C1, the temperature sensor C2 and the maintenance valve K2 can not only monitor the pressure or temperature of the refrigerant entering the pipeline of the compressor 102, but also facilitate the maintenance or replacement of the compressor 102.
  • the pressure sensor C1, temperature sensor C2, and maintenance valve K2 of the low-pressure side of the compressor 102 are located in the compressor box X4, and the pressure sensor C1, temperature sensor C2 and the maintenance valve K2 of the high-pressure side of the compressor 102 are located in the composite function box X6.
  • the positions of the pressure sensor C1, the temperature sensor C2, and the maintenance valve K2 at the low-pressure and high-pressure ends may be multiple, for example, the pressure sensor C1, the temperature sensor C2, and the maintenance valve K2 at the low-pressure and high-pressure ends All are located in the compressor box X4, or the pressure sensor C1, temperature sensor C2 and overhaul valve K2 at the low and high pressure ends are all located in the composite function box X6. Different installation positions can be selected according to the actual situation.
  • the pipes carrying the refrigerant "pass through” the water heater 103 and the lighting assembly 104.
  • the water heater 103 can heat water through electricity, and the lighting assembly 104 can heat the box through solar energy.
  • the temperature of the refrigerant entering the water heater 103 is high, the water in the water heater 103 can also be heated; in the same way, when the solar energy heats the tank of the lighting assembly 104, the refrigerant in the tank will be heated accordingly.
  • control circuit board is electrically connected to the electrical components in the entire system, and is configured to control the working state of the electrical components.
  • the first refrigeration state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 16, in the first refrigeration state, the indoor unit 20 participates in refrigeration, and the radiant component 30, the water heater 103, and the lighting component 104 are not working. In this state, the first port Q1 of the four-way valve 106 communicates with the second port Q2, and the third port Q3 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn
  • the valve 106 inflow from the second port Q2 and outflow from the first port Q1), branch pipe 701, branch pipe 705, expansion valve 602, and branch pipe 703 flow into the external heat exchanger 101, and output from the external heat exchanger 101 to the branch pipe 701 ', branch pipe 707, dryer 401, one-way valve 403, storage tank 404, first-stage branch pipe F1', three-way valve 804 (first position, connected with the first-stage branch pipe F1'), expansion valve 405, internal heat exchanger 201, branch pipe 501, expansion valve 409, three-way valve 803 (first position, connected to the first-stage branch pipe F1), first-stage branch pipe F1, branch pipe 706, four-way valve 106 ( It flows in from the fourth port Q4 and flows out from the third port Q3) and the gas-liquid separator 105 returns to the input end of the compressor 102.
  • the internal heat exchanger 201 is an evaporator, and the external heat exchanger 101 is a condenser. It should be pointed out that in this state, the valves not mentioned are all closed, the three-way valve 801 is in the first position (communicating with the branch pipe 701), and the three-way valve 802 is in the first position (with the branch pipe 701' Connectivity).
  • the second refrigeration state of the air conditioning/heat pump thermal storage refrigeration system 1 As shown in FIG. 17, in the second refrigeration state, the indoor unit 20 and the radiant assembly 30 are connected in series for cooling, and the water heater 103 and the lighting assembly 104 are not working. In this state, the first port Q1 of the four-way valve 106 communicates with the second port Q2, and the third port Q3 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn
  • the valve 106 (inflow from the second port Q2 and outflow from the first port Q1), branch pipe 701, branch pipe 705, expansion valve 602, and branch pipe 703 flow into the external heat exchanger 101, and output from the external heat exchanger 101 to the branch pipe 701 ', branch pipe 707, dryer 401, one-way valve 403, liquid storage tank 404, first-stage branch pipe F1', three-way valve 804 (first position), expansion valve 405, internal heat exchanger 201, branch pipe 501 ,
  • the pipe F1, the branch pipe 706, the four-way valve 106 (inflow from the fourth port Q4 and out of the third
  • the external heat exchanger 101 is a condenser
  • the internal heat exchanger 201 and the radiant component 30 constitute an evaporator
  • the internal heat exchanger 201 is the front part of the evaporator
  • the radiant component 30 is the rear part of the evaporator, but the temperature in the front part of the evaporator is low (General temperature ⁇ 15°C, easy to condense, and dehumidification can be taken into account), the rear temperature is slightly higher (general temperature>18°C, can avoid the dew point, refrigerating in the "medium temperature” section), realize cooling and dehumidification at the same time, and can also be used
  • the closing of the first regulating shut-off valve 410 and the controllable opening of the expansion valve 409 are equipped with the frequency conversion of the internal heat exchanger 201 to control the return air temperature of the compressor 102 and further improve the energy efficiency of the whole machine. It should be pointed out that in this state, the valves not mentioned are all in the closed state, the three-way valve 80
  • the third refrigeration state of the air conditioning/heat pump thermal storage refrigeration system 1 As shown in FIG. 18, in the third refrigeration state, the indoor unit 20 is connected in parallel with the radiant assembly 30 for cooling at the same time, and neither the water heater 103 nor the lighting assembly 104 work. In this state, the first port Q1 of the four-way valve 106 communicates with the second port Q2, and the third port Q3 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn
  • the valve 106 inflow from the second port Q2 and outflow from the first port Q1
  • branch pipe 701, branch pipe 705, expansion valve 602, and branch pipe 703 flow into the external heat exchanger 101, and output from the external heat exchanger 101 to the branch pipe 701 ', the branch pipe 707, the dryer 401, the one-way valve 403 and the liquid storage tank 404 flow into the first-stage branch pipe F1'.
  • the refrigerant is divided into two branches at the first-stage branch pipe F1', one of which passes through three Through valve 804 (first position), expansion valve 405, internal heat exchanger 201, branch pipe 501, expansion valve 409 and three-way valve 803 (first position) flow to the first-stage branch pipe F1, and the other branch passes through the branch Pipe 503, expansion valve 406, branch pipe 502, second-stage branch pipe F2', radiation assembly 30 (radiation unit 301, expansion valve 407 (or expansion valve 408)), second-stage branch pipe F2 flows to the first-stage branch Pipe F1, the two branches flow through the branch pipe 706 after the first-stage branch pipe F1 merges, the four-way valve 106 (inflow from the fourth port Q4, and outflow from the third port Q3) and the gas-liquid separator 105 to return to the compressor 102's input.
  • the external heat exchanger 101 is a condenser
  • the internal heat exchanger 201 and the radiant component 30 form an evaporator.
  • the internal heat exchanger 201 is convective cooling of indoor air
  • the radiant component 30 is radiant cooling of the indoor space.
  • 30 has the function of energy storage.
  • the radiant component 30 stores low-temperature energy, which reduces the temperature of the indoor floor with the exchange of cold and heat of the air to play a cooling (auxiliary) role.
  • the valves not mentioned are all in the closed state, the three-way valve 801 is in the first position, and the three-way valve 802 is in the first position.
  • the fourth refrigeration state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in Fig. 18, the refrigerant flow of the fourth refrigeration state is the same as the third refrigeration state.
  • the indoor unit 20 is connected in parallel with the radiant assembly 30,
  • the indoor unit 20 can also have a dehumidification function.
  • the fan speed of the internal heat exchanger 201 is slower (much slower than in the cooling state).
  • the internal heat exchanger 201 is mainly configured for dehumidification
  • the radiation component 30 is mainly configured as Refrigeration is suitable for spring, autumn and summer. Because the indoor temperature is high in summer, the radiant component 30 can be used for cooling, thereby dehumidifying and accompanied by "conditional" ground cooling, achieving indoor "no wind” cooling and making the environment more comfortable.
  • the indoor unit 20 and the radiation assembly 30 are both an evaporator, and the external heat exchanger 101 is a condenser.
  • the indoor unit 20 and the radiant component 30 are the same evaporators, they have different "division of labor".
  • the indoor unit 20 is responsible for dehumidification
  • the radiant component 30 is responsible for cooperating with "conditional” refrigeration, achieving dehumidification and cooling at the same time, and further improving the energy efficiency of the whole machine.
  • the first dehumidification state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in Figure 16, the refrigerant flow of the first dehumidification state is the same as the first refrigeration state, and the first dehumidification state is suitable for the southern spring and autumn season.
  • the indoor unit 20 It is configured to dehumidify. In this state, the radiation component 30 does not participate in the work. In this state, the indoor unit 20 is an evaporator, and the external heat exchanger 101 is a condenser.
  • the second dehumidification state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in Figure 17, the refrigerant flow of the second dehumidification state is the same as the second refrigeration state, and the second dehumidification state is suitable for summer.
  • the indoor unit 20 and the radiation The components 30 are connected in series to dehumidify. In this state, the system is dehumidified and accompanied by a radiant component 30 (here, radiant ground or roof) for cooling.
  • a radiant component 30 here, radiant ground or roof
  • the indoor unit 20 and the radiation component 30 are both evaporators, and the external heat exchanger 101 is a condenser.
  • the indoor unit 20 and the radiant component 30 are both evaporators, their "division of labor" is different.
  • the indoor unit 20 is responsible for the dehumidification of the front part of the evaporator, and the radiant component 30 is responsible for the “conditional” cooling of the back part of the evaporator to achieve dehumidification at the same time. Refrigeration improves the energy efficiency of the whole machine.
  • the third dehumidification state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in Figure 19, in the third dehumidification state, the radiant component 30 and the indoor unit 20 are "division of labor" and combined dehumidification, suitable for the southern winter (spring and autumn) seasons , The outdoor unit 10 does not work. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2, outflow from the fourth port Q4), branch pipe 706, first-stage branch pipe F1, second-stage branch pipe F2, expansion valve 407 (expansion valve 408), radiation unit 301, second Stage branch pipe F2', branch pipe 502, expansion valve 406, branch pipe 503, first-stage branch pipe F1', storage tank 404, throttling part 402, dryer 401, branch pipe 707, three-way valve 804 (No.
  • the through valve 106 (inflow from the first port Q1 and outflow from the third port Q3) and the gas-liquid separator 105 return to the input end of the compressor 102.
  • the internal heat exchanger 201 is an evaporator
  • the radiation component 30 is equivalent to a condenser
  • the radiation component 30 has the function of energy storage.
  • the radiation component 30 stores high-temperature energy.
  • the exchange of cold and heat in the air raises the temperature of the indoor floor, removes the humid air in the indoor space while heating, realizes a mechanism of heat and dehumidification, and greatly improves the energy efficiency of the whole machine. It should be pointed out that in this state, the valves not mentioned are all in a closed state.
  • the three-way valve 801 is in the first position, and the three-way valve 802 is in the first position.
  • the first heating state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 20, in the first heating state, the radiant assembly 30 is heating, the outdoor unit 10 works, and the indoor unit 20 does not work. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2, outflow from the fourth port Q4), branch pipe 706, first-stage branch pipe F1, second-stage branch pipe F2, expansion valve 407 (expansion valve 408), radiation unit 301, second Stage branch pipe F2', branch pipe 502, expansion valve 406, branch pipe 503, first-stage branch pipe F1', reservoir 404, throttling part 402, dryer 401, branch pipe 707, branch pipe 701', external
  • the heat exchanger 101, the branch pipe 703, the expansion valve 602, the branch pipe 705, the branch pipe 701, the four-way valve 106 (inflow from the first port Q1, and outflow from the third port Q3) and the gas-liquid separator 105 return to the compressor 102 ⁇ input terminal.
  • the external heat exchanger 101 is an evaporator
  • the radiant component 30 is equivalent to a condenser
  • the refrigerant output from the compressor 102 is high-temperature gas
  • the high-temperature gas flows through the radiant component 30, because the radiant component 30 has the function of energy storage
  • the radiant component 30 stores high-temperature energy, and increases the temperature of the indoor floor with the exchange of cold and heat of the air, which plays a role of heating.
  • the valves not mentioned are all closed, the three-way valve 801 is in the first position, the three-way valve 802 is in the first position, and the three-way valve 803 is in the first position. 804 is in the first position.
  • the second heating state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 21, in the second heating state, the indoor unit 20 and the radiant assembly 30 are connected in series for heating. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2, outflow from the fourth port Q4), branch pipe 706, first-stage branch pipe F1, second-stage branch pipe F2, expansion valve 407 (expansion valve 408), radiation unit 301, second Stage branch pipe F2', branch pipe 502, first regulating stop valve 410, branch pipe 501, internal heat exchanger 201, expansion valve 405, three-way valve 804 (first position), first stage branch pipe F1', liquid storage Tank 404, throttling part 402, dryer 401, branch pipe 707, branch pipe 701', external heat exchanger 101, branch pipe 703, expansion valve 602, branch pipe 705, branch pipe 701, four-way valve 106
  • One port Q1 flows in, the third port Q3 flows out) and the gas-liquid separator 105 returns to the input end of the compressor 102.
  • the external heat exchanger 101 is an evaporator
  • the radiant component 30 and the indoor unit 20 are condensers
  • the refrigerant output by the compressor 102 is high-temperature gas
  • the high-temperature gas flows through the radiant component 30 and the indoor unit 20.
  • 30 is the front section of the condenser
  • the indoor unit 20 is the rear section of the condenser.
  • the temperature of the front section of the condenser is high, and the temperature of the rear section of the condenser is slightly lower than that of the front section of the condenser.
  • the heat effect can also realize the use of the internal heat exchanger 201 frequency conversion control to improve the energy efficiency of the whole machine.
  • the third heating state of the air-conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 22, in the third heating state, the indoor unit 20 and the radiant assembly 30 are connected in parallel for heating. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn
  • the valve 106 inflow from the second port Q2 and outflow from the fourth port Q4
  • the branch pipe 706 flow to the first-stage branch pipe F1, and are divided into two branches at the first-stage branch pipe F1, one of which passes through the first branch
  • the branch flows through the three-way valve 803 (first position), expansion valve 409, branch pipe 501, internal heat exchanger 201, expansion valve 405, three-way valve 804 (first position) to the first-stage branch pipe F1', two After the branches merge in the first-stage branch pipe F1', they flow to the liquid storage tank 404, throttling
  • the external heat exchanger 101 is an evaporator
  • the indoor unit 20 and the radiant component 30 are condensers
  • the refrigerant output by the compressor 102 is a high-temperature gas.
  • the high-temperature gas flows through the radiant component 30 while also passing through the indoor unit. 20.
  • the ground radiant component 30 is the main heating element
  • the air convection indoor unit 20 is auxiliary. With the exchange of cold and heat of the air, the temperature of the indoor ground and the surrounding air is raised to play a heating role.
  • the valves not mentioned are all closed, the three-way valve 801 is in the first position, the three-way valve 802 is in the first position, and the three-way valve 803 is in the first position. 804 is in the first position.
  • the first hot water production state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 23, in the first hot water production state, the indoor unit 20 and the water heater 103 participate in the work, and the external heat exchanger 101 does not participate in the work. In this state, the first port Q1 of the four-way valve 106 communicates with the second port Q2, and the third port Q3 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2, outflow from the first port Q1), branch pipe 701, three-way valve 801 (first position), expansion valve 603, water heater 103, branch pipe 704, branch pipe 702', expansion valve 605 , Three-way valve 802 (first position), branch pipe 701', branch pipe 707, dryer 401, one-way valve 403, liquid storage tank 404, first-stage branch pipe F1', three-way valve 804 (first position ), the expansion valve 405 enters the internal heat exchanger 201, and is output from the internal heat exchanger 201 to the branch pipe 501, expansion valve 409, three-way valve 803 (first position), first-stage branch pipe F1, branch pipe 706, four-way valve 106 (inflow from the fourth port Q4 and outflow from the third port Q3) and the gas-liquid separator 105 return to the input end of the compressor
  • the internal heat exchanger 201 is an evaporator
  • the water heater 103 is a condenser
  • the compressor 102 outputs high temperature and high pressure refrigerant.
  • the refrigerant flows through the water heater 103
  • the water in the water heater 103 is heated, and the internal heat exchanger 201 is replaced ( Evaporation) the heat in the room (cooling the room).
  • indoor cooling is "free”. It should be pointed out that in this state, the valves not mentioned are all closed.
  • the radiant component 30 can optionally participate in cooling.
  • the radiant component 30 is an evaporator.
  • the expansion valve 406 and the expansion valve 407 (expansion valve 408) are opened, the refrigerant flows through the first-stage branch pipe After F1', it flows to branch pipe 503, expansion valve 406, branch pipe 502, second-stage branch pipe F2', radiation unit 301, expansion valve 407 (expansion valve 408), and second-stage branch pipe F2 to the first-stage branch In the pipe F1, the refrigerant flowing out of the first-stage branch pipe F1 and the internal heat exchanger 201 merges and flows to the branch pipe 706.
  • the radiation component 30 participates in the work, the radiation component 30 is used to cool the ground while reducing the temperature of the indoor air.
  • the second hot water production state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 24, in the second hot water production state, the indoor unit 20 produces hot water, and the radiant component 30 does not participate in the work. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2 and outflow from the fourth port Q4), branch pipe 706, three-way valve 801 (second position, communicating with branch pipe 706), branch pipe 702, expansion valve 603, water heater 103, branch pipe 704, branch pipe 702', expansion valve 605, three-way valve 802 (first position), branch pipe 701', branch pipe 707, dryer 401, one-way valve 403, liquid storage tank 404, first-stage branch pipe F1 ', three-way valve 804 (first position), expansion valve 405, internal heat exchanger 201, branch pipe 501, expansion valve 409, three-way valve 803 (second position), branch pipe 705, branch pipe 701, four-way valve 106 (inflow from the first port Q1 and outflow from the third port Q3) and the gas-liquid separator 105 return to the input end of the compressor 102.
  • Valve 106 in
  • the internal heat exchanger 201 is an evaporator
  • the water heater 103 is a condenser
  • the compressor 102 has high temperature and high pressure refrigerant.
  • the refrigerant flows through the water heater 103
  • the water in the water heater 103 is heated, and the internal heat exchanger 201 is replaced (evaporated) )
  • the heat in the room (cooling the room). It should be pointed out that in this state, the valves not mentioned are all closed.
  • the third hot water production state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in FIG. 25, in the third hot water production state, the outdoor unit 10 produces hot water, and the indoor unit 20 and the radiant component 30 do not work. In this state, the first port Q1 of the four-way valve 106 communicates with the third port Q3, and the second port Q2 communicates with the fourth port Q4.
  • the refrigerant flow is as follows: the refrigerant flows out from the output end of the compressor 102 and passes through the four-way valve in turn Valve 106 (inflow from the second port Q2 and outflow from the fourth port Q4), branch pipe 706, three-way valve 801 (second position), branch pipe 702, expansion valve 603, water heater 103, branch pipe 704, branch pipe 702' , Expansion valve 605, three-way valve 802 (second position), branch pipe 503, first-stage branch pipe F1', liquid storage tank 404, throttling component 402, dryer 401, branch pipe 707, branch pipe 701', External heat exchanger 101, branch pipe 703, expansion valve 602, branch pipe 705, branch pipe 701, four-way valve 106 (inflow from the first port Q1, and outflow from the third port Q3) and the gas-liquid separator 105 return to the compressor 102's input.
  • the external heat exchanger 101 is an evaporator
  • the water heater 103 is a condenser
  • the compressor 102 has a high-temperature and high-pressure refrigerant.
  • the refrigerant flows through the water heater 103
  • the water in the water heater 103 is heated.
  • the valves not mentioned are all closed, the three-way valve 801 is in the second position, the three-way valve 802 is in the second position, and the three-way valve 803 is in the first position. 804 is in the first position.
  • an "automatic" hot water state that is, a mode is set to pump the refrigerant into the external heat exchanger 101 before the shutdown, and close all the passages connecting the internal heat exchanger 201 and the external heat exchanger 101 after the shutdown (Including the radiant component 30), most of the medium is stored in the water heater 103 and the lighting component 104 (external heat exchanger 101).
  • the lighting component 104 is heated by solar energy, the originally free flowing medium is (heated) in the lighting component 104
  • the water heater 103 (unheated) cavity forms a cold and heat cycle flow. As the temperature difference changes, it finally reaches a calorific value balance. But at this time, the low temperature water in the water heater 103 tank will also interact with the water heater's medium cavity. Perform cold and heat exchange to achieve a thermal balance, thereby forming an "automatic" heating of the water in the water heater 103.
  • the "secondary evaporation" state of the air conditioning/heat pump heat storage refrigeration system 1 As shown in Figure 26, in this state, the first port Q1 of the four-way valve 106 is connected to the third port Q3, and the second port Q2 is connected to the fourth port Q2.
  • the port Q4 is connected, and the refrigerant flow is as follows: the refrigerant flows out of the output end of the compressor 102, passes through the four-way valve 106 (inflow from the second port Q2, and outflow from the fourth port Q4), branch pipe 706, first-stage branch pipe F1, Second-stage branch pipe F2, expansion valve 407 (expansion valve 408), radiation unit 301, second-stage branch pipe F2', branch pipe 502, expansion valve 406, branch pipe 503, first-stage branch pipe F1', liquid storage Tank 404, throttling component 402, dryer 401, branch pipe 707, branch pipe 701', external heat exchanger 101, branch pipe 703, second regulating stop valve 606, branch pipe 704, water heater 103, expansion valve 603 (or Branch pipe 702', illumination assembly 104, expansion valve 604), branch pipe 702, three-way valve 801 (first position), branch pipe 701, four-way valve 106 (inflow from the first port Q1, and outflow from the third port Q3) And the gas-liquid separator
  • the external heat exchanger 101 is an evaporator; because the outdoor environment temperature is relatively low, the external heat exchanger 101 has "no" ability to change from the outside world. If there is more heat energy, the intake air temperature at the inlet of the compressor 102 will also be very low.
  • a device that can increase the temperature of the refrigerant (“heating" the water heater 103 or the light component 104) is connected in series at the end of the external heat exchanger 101 , It enhances (and extends) the working ability of the unit in low temperature environment.
  • the water heater 103 here is equipped with a pipe carrying the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调/热泵拓展功能箱及空调/热泵蓄热制冷***,该空调/热泵拓展功能箱包括扩展功能箱箱体(X1)以及安装于拓展功能箱(X1)箱体内的两个分配管路;每个分配管路包括主路(G1)和至少一个分路(G2),每个主路(G1)的两端分别设有一个室外机组纳子头(L1)和一个室内机组纳子头(L2),每个分路(G2)的远离主路(G1)的端部设有一个辐射组件纳子头(L3),通过室外机组纳子头(L1)与室外机组(10)连接、室内机组纳子头(L2)与室内机组(20)连接、辐射组件纳子头(L3)与辐射组件(30)连接,从而组成空调/热泵蓄热制冷***。

Description

空调/热泵拓展功能箱及空调/热泵蓄热制冷***
相关申请的交叉引用
本申请要求于2019年03月08日提交中国专利局的申请号为201920300316.0、名称为“空调/热泵拓展功能箱及空调/热泵蓄热制冷***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调/热泵***技术领域,具体而言,涉及一种空调/热泵拓展功能箱及空调/热泵蓄热制冷***。
背景技术
近几年,空气源热泵供暖市场上有一种新型产品,俗称为“无水地暖”,其进一步发展又出现了“无水干式地暖”,但是这些新厂家在机组功能扩展和管路连接方面,没有找到一个更合理的方式,所以产品发展受到许多局限,尤其管路的连接大都还停留在现场焊接的水平。其缺点为:一是现场焊接不可避免的是给新机组管路***内带来无法清除的(氧化铜皮脱离)杂质;二是施工现场无法保证环境的清洁度,自然焊接的质量(30年内无泄漏)也很难保证;三是现场焊接要保证质量,对安装工人的要求就较高,推广和普及就存在不便;四是现场焊接后打压,检漏等工序复杂,会带来很多隐患,浪费工时、感官也不舒适。
发明内容
本申请提供一种空调/热泵拓展功能箱及空调/热泵蓄热制冷***,通过空调/热泵拓展功能箱的不同纳子头与预设的室外机组、室内机组及辐射组件快速安装,实现管路的合理分配,提升了整机能效,实现机组***的管路连接是在无氧化条件下完成,管路***内无杂质、机组寿命长、现场无焊接工艺、操作简单并且外形美观,使上述问题得到改善。
根据本申请第一方面实施例的空调/热泵拓展功能箱,应用于空调/热泵蓄热制冷***,空调/热泵拓展功能箱包括拓展功能箱箱体、以及安装于拓展功能箱箱体内的两个分配管路;两个分配管路中每个分配管路包括主路和与主路连通的至少一个分路,每个主路的两端分别设有一个室外机组纳子头和一个室内机组纳子头,每个分路的远离主路的端部设有一个辐射组件纳子头,每个分配管路的所有辐射组件纳子头组成一组辐射组件纳子头组,两个室外机组纳子头分别配置成与室外机组的进口和出口连接,两个室内机组纳子头分别配置成与室内机组的进口和出口连接,两组辐射组件纳子头组分别配置成与辐射组件的进口和出口连接。
根据本申请实施例的空调/热泵拓展功能箱,通过室外机组纳子头、室内机组纳子头或辐射组件纳子头分别与室外机组、室内机组或辐射组件可拆卸的连接,实现管路的合理分配,提升了整机能效,便于提高装配效率,实现机组***的管路连接是在无氧化条件下完成,管路***内无杂质、机组寿命长、现场无焊接工艺、操作简单并且外形美观。
根据本申请第二方面实施例的空调/热泵蓄热制冷***,包括室外机组、室内机组、辐射组件及第一方面实施例的空调/热泵拓展功能箱,室外机组的进口和出口分别与空调/热泵拓展功能箱的两个分配管路的两个室外机组纳子头连接,室内机组的进口和出口分别与空调/热泵拓展功能箱的两个分配管路的两个室内机组纳子头连接,辐射组件的进口和出口分别与空调/热泵拓展功能箱的两个分配管路的两组辐射组件纳子头连接,室外机组与室内机组通过空调/热泵拓展功能箱连接形成回路,室外机组与辐射组件通过空调/热泵拓展功能箱连接形成回路,室内机组与辐射组件通过空调/热泵拓展功能箱连接形成回路。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例的空调/热泵蓄热制冷***的第一种结构示意图;
图2为图1的空调/热泵拓展功能箱的第一种结构示意图;
图3为图1的空调/热泵拓展功能箱的第二种结构示意图;
图4为图1的空调/热泵拓展功能箱的第三种结构示意图;
图5为图1的空调/热泵拓展功能箱的第四种结构示意图;
图6为空调/热泵拓展功能箱带有子功能箱的一种结构示意图;
图7为空调/热泵拓展功能箱带有子功能箱的另一种结构示意图;
图8为图1的辐射组件的辐射单元的结构示意图;
图9为图1的空调/热泵拓展功能箱的第五种结构示意图;
图10为空调/热泵蓄热制冷***的辐射组件的连接结构示意图;
图11为图1的空调/热泵拓展功能箱的第六种结构示意图;
图12为空调/热泵蓄热制冷***的辅助功能箱的结构示意图;
图13为本申请实施例的空调/热泵蓄热制冷***的第二种结构示意图;
图14为本申请实施例的空调/热泵蓄热制冷***的第三种结构示意图;
图15为本申请实施例的空调/热泵蓄热制冷***的第四种结构示意图;
图16为空调/热泵蓄热制冷***的第一种制冷/除湿状态的冷媒流程图;
图17为空调/热泵蓄热制冷***的第二种制冷/除湿状态的冷媒流程图;
图18为空调/热泵蓄热制冷***的第三/四种制冷状态的冷媒流程图;
图19为空调/热泵蓄热制冷***的第三种除湿状态的冷媒流程图;
图20为空调/热泵蓄热制冷***的第一种制热状态的冷媒流程图;
图21为空调/热泵蓄热制冷***的第二种制热状态的冷媒流程图;
图22为空调/热泵蓄热制冷***的第三种制热状态的冷媒流程图;
图23为空调/热泵蓄热制冷***的第一种制热水状态的冷媒流程图;
图24为空调/热泵蓄热制冷***的第二种制热水状态的冷媒流程图;
图25为空调/热泵蓄热制冷***的第三种制热水状态的冷媒流程图;
图26为空调/热泵蓄热制冷***的“二次蒸发”状态的冷媒流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面参考图描述本申请一方面实施例的空调/热泵蓄热制冷***1。
如图1至图25所示,本申请一方面实施例的空调/热泵蓄热制冷***1,包括空调/热泵拓展功能箱、室外机组10、室内机组20及辐射组件30。
具体而言,空调/热泵拓展功能箱包括拓展功能箱箱体X1、以及安装于拓展功能箱箱体X1内的两个分配管路。
拓展功能箱箱体X1为承载容器,具有容纳空间,可以为金属箱体(例如铁、铝或者其他合金)、塑料箱体(例如,PC(Polycarbonate,聚碳酸酯)、ABS(Acrylonitrile Butadiene Styrene,丙烯腈-丁二烯-苯乙烯)、PP(Polypropylene,聚丙烯)和PET(polyethylene glycol terephthalate,聚对苯二甲酸乙二醇酯))或金属与塑料结合制成的箱体等。如图2所示,两个分配管路中每个分配管路包括主路G1和与主路G1连通的至少一个分路G2。每个主路G1的两端分别设置有一个室外机组纳子头L1和一个室内机组纳子头L2,每个分路G2的远离主路G1的端部设置有一个辐射组件纳子头L3,每个分配管路的所有辐射组件纳子头L3组成一组辐射组件纳子头组,两个室外机组纳子头L1分别配置成与室外机组10的进口和出口连接,两个室内机组纳子头L2分别配置成与室内机组20的进口和出口连接,两组辐射组件纳子头组分别配置成与辐射组件30的进口和出口连接。每组辐射组件纳子头组配置成与辐射组件30其 中一端的连接端口连接,根据空调/热泵蓄热制冷***1的工艺需求,每组辐射组件纳子头组可以设置多个辐射组件纳子头L3,以对应辐射组件30的多个连接端口,一般情况下辐射组件纳子头L3的个数为偶数个,便于分配管路的均匀合理分配和在室内的管路排布。
室外机组10的进口和出口分别与两个分配管路的两个室外机组纳子头L1连接,室内机组20的进口和出口分别与两个分配管路的两个室内机组纳子头L2连接,辐射组件30的进口和出口分别与两个分配管路的两组辐射组件纳子头组连接,室外机组10与室内机组20通过空调/热泵拓展功能箱连接形成回路,室外机组10与辐射组件30通过空调/热泵拓展功能箱连接形成回路,室内机组20与辐射组件30通过空调/热泵拓展功能箱连接形成回路。
通过室外机组纳子头L1与室外机组10的进口或出口实现快速连接、室内机组纳子头L2与室内机组20的进口或出口实现快速连接、辐射组件纳子头L3与辐射组件30的进口或出口实现快速连接,同时空调/热泵拓展功能箱与室外机组10、室内机组20(和/或辐射组件30)构成回路,实现流动介质(本申请中流动介质指代冷媒,例如氟利昂、二氧化碳和氨等)的循环,便于实现管路的合理分配、安装现场无焊接、操作简单并且外形美观。
根据本申请的一些实施例,如图3所示,两个分别管路中每个分配管路上设置有至少一个膨胀阀K1和与至少一个膨胀阀K1对应的至少一个传感器组,两个分配管路中至少一个分配管路连接有储液罐404,每个膨胀阀K1和每个传感器组分别配置成与室外机组10的控制电路板电连接,控制电路板能够根据传感器组检测到的信号控制膨胀阀K1的工作状态,以改变对应的分配管路的流动介质的流量。需要说明的是,膨胀阀K1既可以为电子膨胀阀,也可以为压力膨胀阀(亦可两者混合应用),可以根据不同的实际工况选取不同类型的膨胀阀K1。在本申请的其他实施例中,控制电路板还可以安装于拓展功能箱箱体X1内,便于电路的检修与维护。
在分配管路中设置储液罐404,当该空调/热泵拓展功能箱与室外机组10、室内机组20、辐射组件30连接组成空调/热泵蓄热制冷***1后,储液罐404的形状、大小、位置及控制应根据***的需要而设置。
在本申请的一些具体实施例中,传感器组包括压力传感器C1和/或温度传感器C2,传感器组安装于其中一个分配管路中。当分配管路中只有压力传感器C1时,控制电路板能够根据压力传感器C1检测到的压力信号控制膨胀阀K1的工作状态,从而改变分配管路中的流动介质的流量;当分配管路中只有温度传感器C2时,控制电路板能够根据温度传感器C2检测到的温度信号控制膨胀阀K1的工作状态,从而改变分配管路中的流动介质的流量;当分配管路中具有压力传感器C1和温度传感器C2时,控制电路板能够根据压力传感器C1或温度传感器C2检测到的压力信号或温度信号控制膨胀阀K1的工作状态,以改变分配管路中的流动介质的流量。
根据本申请的一些实施例,每个分配管路包括至少一个分歧管,至少一个分歧管中一个分歧管为第一级分歧管F1,第一级分歧管F1包括第一级主管和与第一级主管连通的两个第一级支管,第一级主管与两个第一级支管中一个第一级支管被构造成主路G1,两个第一级支管中另一个第一级支管被构造成一个分路G2。第一级分歧管F1的第一级主管与其中一个第一级支管构成了分配管路的主路G1,另一个第一级支管构成了分路G2,通过主路G1连接室外机组10和室内机组20,通过分路G2连接室外机组10和辐射组件30。
在本申请的一些具体实施例中,如图2所示,每个分配管路的分歧管的数量为一个,分歧管为第一级分歧管F1,第一级分歧管F1的第一级主管和其中一个第一级支管构成主路G1,第一级分歧管F1的另一个第一级支管构成第一级分路。在分歧管为一个时,分配管路只有一个分路G2即第一级分路,第一级分路只有一个辐射组件纳子头L3。
在本申请的一些具体实施例中,如图4所示,每个分配管路的分歧管的数量为两个,两个分歧管分别为第一级分歧管F1和第二级分歧管F2,第一级分歧管F1的第一级主管和另一个第一级支管被构造成主路G1,第一级分歧管F1的另一个第一级支管被构造成第一级分路,第二级主管与构成第一级分路的第一级支管连通,两个第二级支管被构造成两个第二级分路,辐射组件纳子头L3位于第二级分路的端部。分配管路的主路G1由第一级主管和其中一个第一级支管构成,第一级分路连接的两个第二级分路构成分配管路的两个分路G2,第二级分路有两个辐射组件纳子头L3。
在本申请的一些具体实施例中,为了方便理解,每个分配管路的分歧管的数量为2 n-1个,其中n≥3,分歧管包括一个第一级分歧管F1、一个第二级分歧管F2、两个第三级分歧管F3、…、2 n-2个第n级分歧管,第n级分歧管包括第n级主管和两个第n级支管,第n级支管被构造成第n级分路。第一级分歧管F1的第一级主管与其中一个第一级支管被构造成主路G1,第一级分歧管F1的另一个第一级支管被构造成第一级分路;第二级分歧管F2位于第一级分路,第二级分歧管F2的第二级主管与构成第一级分路的第一级支管连通,第二级分歧管F2的两个第二级支管被构造成两个第二级分路;每个第三级分歧管F3位于第二级分路,每个第三级分歧管F3的第三级主管与构成第二级分路的一个第二级支管连通,每个第三级支管被构造成第三级分路,以此类推,与第n-1级分歧管的第n-1级支管连接的分歧管为第n级分歧管,第n级分歧管的第n级支管被构造成第n级分路,2 n-2个第n级分歧管被构造成2 n-1个第n级分路。相当于,分配管路的2 n-1个分歧管中,具有2 n-1个分路G2。如图3所示,n=4,每个分配管路包括八个分歧管。
进一步地,拓展功能箱箱体X1可以设置有两个(如图5所示),每个分配管路位于一个拓展功能箱箱体X1内,便于实现管路与室内实际应用面积的合理分配,且位置可以灵活设置。两个拓展功能箱箱体X1中,其中一个为流动介质输入箱体,另一个为流动介质输出箱体,每个拓展功能箱箱体X1的形状、大小、内部器件及位置的选择可以因机组大小、功能的不同而定。
同时,室外机组纳子头L1、室内机组纳子头L2的位置设置也是灵活的,例如:室内机组纳子头L2的位置设置可以根据实际情况选取,室内机组纳子头L2的位置可以与辐射组件纳子头L3的位置位于拓展功能箱箱体X1的同一侧(如图3所示),室内机组纳子头L2的位置与室外机组纳子头L1的位置位于拓展功能箱箱体X1的两侧;室内机组纳子头L2的位置也可以与室外机组纳子头L1的位置位于拓展功能箱箱体X1的同一侧(如图5所示),室内机组纳子头L2的位置与辐射组件纳子头L3的位置位于拓展功能箱箱体X1的两侧。不同位置的纳子头,可以实现管路不同位置的合理连接。
根据本申请的一些实施例,空调/热泵拓展功能箱还包括子功能箱,每个分配管路设置有至少一个子功能箱,每个分配管路包括主分配管路和子分配管路,子分配管路位于子功能箱内,子分配管路包括与主分配管路配合的一个第n级分歧管,该第n级分歧管与主分配管路的一个第n-1级分歧管的其中一个第n-1级支管连通,主分配管路的与子分配管路配合的第n-1级支管的端部设置有连接出口纳子头L41,子分配管路的第n级分歧管的第n级主管的端部连接有连接进口纳子头L42,该第n级分歧管的两个第n级支管的端部分别连接有辐射组件纳子头L3,连接进口纳子头L42与连接出口纳子头L41连接。相当于,在分配管路的最后一级分歧管(第n级分歧管)位于子功能箱内,该子功能箱设置灵活,配置成将分配管路与室内实际铺设面积更合理的分配,便于不同房间之间的管路铺设。
需要指出的是,不论拓展功能箱箱体X1的个数为一个还是两个,分配管路均可以设置有至少一个子功能箱,通过子功能箱的设置来实现分配管路与室内实际铺设面积更合理的分配。
子功能箱包括子功能箱箱体X2,子分配管路的结构可以为多种,作为可选地,选取两种不同的结构形式进行介绍:一种为,每个分配管路对应的子功能箱的个数为两个,为了便于两个子功能箱的装配,该分配管路还设置有一个过渡功能箱,该过渡功能箱包括过渡功能箱箱体X2’和与子功能箱配合的第n-1级分歧管,该第n-1级分歧管位于过渡功能箱箱体X2’内,如图6所示,分配管路具有四级分歧管,过渡功能箱内包含第三级分歧管F3,两个子功能箱中各自包含一个第四级分歧管F4;另一种为,将一个第n-1级分歧管和两个第n级分歧管放置于同一个子功能箱内,从而使得该子功能箱内设置有两个子分配管路,如图7所示,分配管路具有四级分歧管,第三级分歧管F3和两个第四级分歧管F4位于子功能箱箱体X2内。
如图6所示,拓展功能箱箱体X1内的主分配管路配置成对主房间(主卧或者面积较大的空间)进行管路分配,两个子功能箱配置成两个子房间(或者面积较小的空间)进行管路分配。过渡功能箱内包含第三级分歧管F3,两个子功能箱内包括第四级分歧管F4,主分配管路的与过渡功能箱配合的第二级分歧管F2的第二级支管的端部连接有连接出口纳子头L41(可以理解为第一级连接出口纳子头),过渡功能箱的第三级分歧管F3的第三级主管的端部连接有连接进口纳子头L42(可以理解为第一级连接进口纳子头),连接出口纳子头L41与连接进口纳子头L42连接,第三级分歧管F3的第三级支管的端部连接有第二级连接出口纳子头L43,子功能箱的第四级分歧管F4的第四级主管的端部连接有第二级连接 进口纳子头L44,第二级连接出口纳子头L43与对应的第二级连接进口纳子头L44连接,第四级分歧管F4的第四级分管的端部连接有辐射组件纳子头L3。为了便于实现每个子功能箱的单独控制,在过渡功能箱的第三级分歧管F3的两个第三级支管上分别设置一个膨胀阀K1,配置成控制对应的子功能箱的第四级分歧管F4内的流动介质的流量。
如图7所示,该种结构方式的子功能箱适用于面积较大的房间的管路分配,每个子功能箱包括子功能箱箱体X2,一个第三级分歧管F3和与该第三级分歧管F3配合的两个第四级分歧管F4位于子功能箱内,在该第三级分歧管F3的第三级主管的端部连接有连接进口纳子头L42,主分配管路的与该第三级分歧管F3配合的第二级分歧管F2的第二级支管的端部连接有连接出口纳子头L41,连接出口纳子头L41与连接进口纳子头L42连接,子功能箱内的第四级分歧管F4的两个第四级支管的端部分别连接有辐射组件纳子头L3,子功能箱具有四个辐射组件纳子头L3,从而能够适用于面积较大的房间的管路分配,在子功能箱内的第三级分歧管F3的两个第三级支管上分别设置有膨胀阀K1,配置成控制对应的第四级分歧管F4内的流动介质的流量,在使用时,可以根据不同的辐射组件30的位置需求,将子功能箱放置于所需位置,便于分配管路与室内实际铺设面积的合理分配。
需要指出的是,本申请的所有分配管路和分歧管的粗细(即截面积)均因其所处位置不同而不同,依***管路内介质流量的合理性与否而定。所有分歧管均包括一个主管和两个支管,分歧管的主管与支管的管径既可以不等,也可以相等;两个支管构成U或Y字形结构,便于安装排布。分歧管的材质可以为多种形式,例如金属管、塑料管和合成管等。
根据本申请的一些实施例,辐射组件30包括与辐射组件纳子头L3对应的分配器302,每个分配器302与一个辐射组件纳子头L3连接,每个分配管路包括多个分路G2(每个分路G2设置有一个辐射组件纳子头L3),辐射组件30包括多个辐射单元301,每个辐射单元301的进口端(也可以是出口端)对应两个分配管路中一个分配管路的一个辐射组件纳子头L3,每个辐射单元301的出口端(也可以是进口端)对应两个分配管路中另一个分配管路的一个辐射组件纳子头L3’(为了便于区分两个分配管路中的部件,此辐射组件纳子头L3’为另一个分配管路中的辐射组件纳子头)。如图8所示,每个辐射单元301包括两个分配器(分配器302和分配器302’)和一个辐射件303,辐射件303包括并排设置的多根换热管304,两个分配器(分配器302和分配器302’)位于辐射件303的两端,每个分配器(分配器302或分配器302’)包括一个分配器连接入口(分配器连接入口305或分配器连接入口305’)和多个分配器连接出口(分配器连接出口306或分配器连接出口306’),多个分配器连接出口(分配器连接出口306或分配器连接出口306’)与多根换热管304一一对应连接。每个分配器连接入口305(或分配器连接入口305’)均设有分配器连接入口纳子头L31(或分配器连接入口纳子头L31’),在同一个辐射单元301中,其中一个分配器连接入口纳子头L31与其中一个分配管路的一个辐射组件纳子头L3连接,另一个分配器连接入口纳子头L31’与另一个分配管路的一个辐射组件纳子头L3’连接。
需要指出的是,换热管304可以为金属管(例如铜管)、也可以为非金属管(例如耐压导热的塑料管),可以根据实际情况选取外层带翅片的、带塑料涂层的或内壁带齿纹的不同类型(不同材质或不同结构)的换热管304。辐射组件30可以为辐射地面、辐射墙面或者辐射顶棚,还可以根据实际情况选取不同组合的辐射组件30。
需要指出的是,为了区分不同管路中的各部件,在相应的部件的基础上进行了区分(在对应的编号数字后面增加标识符号’区分),例如但不限于:上述的分配器连接出口306和分配器连接出口306’。
根据本申请的一些实施例,空调/热泵拓展功能箱内还设置有电磁阀420,辐射组件包括第一辐射组件组和第二辐射组件组,第一辐射组件组和第二辐射组件组均包括至少一个辐射单元,每个分配管路的第二级分歧管的其中一个第二级支管能够与第一辐射组件组连接,该第二级分歧管的另一个第二级支管能够与第二辐射组件组连接。为了便于区分,两个分配管路分别为第一分配管路和第二分配管路,第一分配管路的配置成与第一辐射组件组连接的第二级支管与电磁阀的输出端连接,第二分配管路的配置成与第二辐射组件组连接的第二级支管与电磁阀的输入端连接。相当于,如图9所示,在空调/热泵拓展功能箱内部设置一条串联管路,该串联管路的一端与第一分配管路的第二级分歧管F2的一个第二级支管连接(在第二级分歧管F2的第二级支管上设置分歧管510,分歧管510的一个支管配置成连接该串联管路),该串联管路的另一端与第二分配管路的第二级分歧管F2’的一个第二级支管(该第二级分歧管F2’ 的另一个支管配置成连接第一辐射组件组)连接(在此第二级支管上设置分歧管520,分歧管520的一个支管配置成连接该串联管路),当第一分配管路和第二分配管路均与第一辐射组件组和第二辐射组件组连接后,该串联管路在预设条件下,通过电磁阀420的开启能够实现第一辐射组件组和第二辐射组件组的串联。
在本申请的一些其他实施方式中,第一辐射组件组的内部可以包括多个辐射单元(此种情况下相当于,每个分配管路中包括第三级分歧管或第四级分歧管等多级分歧管(并不局限于第三级分歧管和第四级分歧管),第一辅助组件组与第二级分歧管的一个第二级支管的管路上的下级分歧管(指第二级以下的分歧管,例如第三级分歧管)连通,第一辐射组件组的多个辐射单元采用串并联的方式(参照上面所述的串联管路的连接方式),当需要第一辐射组件组的多个辐射单元之间串联时,关闭相应的阀即可,在正常状态下,第一辐射组件组的多个辐射单元之间是并联连接方式。需要指出的是,第二辐射组件组也可以包括多个辐射单元(可以与第一辐射组件组的辐射单元的数量不同,例如有的下级分歧管不连接辐射单元),第二辐射组件组的多个辐射单元的连接方式参照第一辐射组件组的连接方式。辐射组件串并联的实现,解决了“无水地暖”管路长短自身不可变无法作为空调/热泵蓄热制冷***内的热交换器随环境温度变化的难题,进一步推动了“辐射换热体”与建筑结合的合理性,使之“干式无水地暖”的应用成为可能。
如图10所示,在两组不同的辐射组件的前端和后端各增加一个分歧管(分歧管510、分歧管520)并将这两个分歧管(分歧管510和分歧管520)形成的四个支路的其中一路连通(将其中一组辐射组件组连接),在它们之间再连接一个电磁阀(电磁阀420),在另一辐射组件组的一端增加一个膨胀阀430,就可以根据***工况的需要,解决辐射组件组(换热管)的长度(辐射面积)及内容积可以配合机组实现变量的问题。当辐射组件温度(和压力)变化到一定值时,即已经不能满足***工况的需求,必须用串联或者并联的方式增加辐射组件组(或者减少辐射组件组),那么这个连通管路上的电磁阀420的开启就可以将两组辐射组件组串联在一起。如:制热时冷媒(冷媒进入辐射组件前的流经过程省略)流入第二级分歧管F2经膨胀阀408流入一辐射组件组后流经分歧管520、电磁阀420到分歧管510(此时膨胀阀406和407关闭)再流入另一辐射组件组后流经膨胀阀430再流经第二级分歧管F2'和第一级分歧管F1'到储液罐404(冷媒流出辐射组件后的流经过程省略);制冷时冷媒从储液罐404流入第一级分歧管F1'、第二级分歧管F2'和膨胀阀430流入另一辐射组件组后流经分歧管510然后是电磁阀420到分歧管520(此时膨胀阀406和407关闭)再流入一辐射组件组后流经分歧管F2和分歧管F1到四通阀(略)。无论是制冷还是制热,若辐射组件组并联可以利用关闭电磁阀420,然后将每组辐射组件组前(后)端的膨胀阀开启(或者关闭)即可实现。另外配合完成“变量”的一组辐射组件组,应根据实际设计的需要,将换热管的管径、管长、管间距和管的位置(地面、墙面和棚顶)做不同结构的相应配合的工装。
在本申请的一些具体实施例中,如图1和图9所示,为了实现辐射组件30与室内机组20的串、并联,在空调/热泵拓展功能箱中,还设置有第一调节管路,其中一个分配管路的构成主路G1的第一级分歧管F1的一个第一级支管上连接有分歧管501,分歧管501的主管与上述第一级支管连通,分歧管501的一个支管的端部设置室内机组纳子头L2,分歧管501的另一个支管连通第一调节管路的一端;另一个分配管路的构成第一级分路的第一级支管上连接分歧管502,分歧管502的主管与上述的第一级支管连通,分歧管502的两个支管分别连接第二级分歧管F2’的主管和第一调节管路的另一端。相当于,第一调节管路连通一个分配管路中的主路和另一个分配管路中的第一级分路,第一调节管路上设置有第一调节截止阀410,通过第一调节截止阀410的开启或关闭来实现辐射组件30与室内机组20的串联或并联。还可以关闭第一调节截止阀410,利用膨胀阀409的可控开启,配有内热交换器201的变频,对压缩机102的回气温度实现控制,进一步提高整机能效。
可选地,如图11所示,在其中一个分配管路中设置有干燥器401和节流部件402,节流部件402可以为电子膨胀阀(压力膨胀阀)或者毛细管,配置成(在制热时)调整***管路中的冷媒的流量,干燥器401配置成对管路进行除湿和过滤杂质。为了合理使用节流部件402,在其旁边并联有单向阀403,制热时(单向阀403处于反向关闭状态)***管路中的冷媒只能流经节流部件402,制冷时(节流部件402关闭)***管路中的冷媒只能流经单向阀403。
根据本申请的一些实施例,如图1所示,室外机组10包括外热交换器101、压缩机102及与压缩机 102连接的四通阀106,外热交换器101的出口端与四通阀106的第一端口Q1连接,外热交换器101的进口端与其中一个室外机组纳子头L1连接,四通阀106的第二端口Q2与压缩机102的出口端连通,压缩机102的进口端与四通阀106的第三端口Q3连接,四通阀106的第四端口Q4与另一个室外机组纳子头L1’连接;当空调/热泵蓄热制冷***1处于制冷模式时,四通阀106的第一端口Q1与第二端口Q2连通,第三端口Q3与第四端口Q4连通;当空调/热泵蓄热制冷***1处于制热模式时,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通;室内机组20包括内热交换器201,内热交换器201的进口端与其中一个室内机组纳子头L2连接,内热交换器201的出口端与另一个室内机组纳子头L2’连接。为了去除进入压缩机102的气体中的液体,在压缩机102的进口端设置有气液分离器105。需要指出的是,这里的外热交换器101的出口端和进口端为外热交换器101的两个端口,分别配置成与其他部件连接,出口端并非指流动介质的出口,也可以为流动介质的入口,进口端的原理与出口端相似。
在上述实施方式中,四通阀106、压缩机102及外热交换器101位于一个箱体内,该箱体连接有两个端口,分别配置成与空调/热泵拓展功能箱的两个室外机组纳子头L1连接,结构紧凑。需要指出的是,本申请的一些实施例中,压缩机102可以采用补气增焓压缩机,补气增焓压缩机是采用两级节流中间喷气技术,采用闪蒸器进行气液分离,实现增焓效果。它能够提高压缩机排气量,达到低温环境条件下提升制热能力的目的。在本申请的其他实施例中,压缩机102还可以采用一体多缸式压缩机,或者压缩机102的数量为至少两台,根据不同的工况需求,可以选取不同形式或组合的压缩机102。
可选地,内热交换器201的个数可以为两个,两个内热交换器201并联于***的冷媒回路上,相当于在拓展功能箱箱体X1内,在一个分配管路中,构成主路的第一级支管上连接一个分歧管,此分歧管的主管与第一级支管连通,此分歧管的两个支管的端部分别连接一个室内机组纳子头L2,从而使得两个内热交换器201分别与空调/热泵拓展功能箱连接。在本申请的其他实施方式中,内热交换器201的个数还可以为多个,只要在第一级支管上将多个分配器与冷媒回路并联,再并接多个内热交换器201即可。需要指出的是,室内机组20还包括湿度传感器(图中未标出),湿度传感器与控制电路板电连接,湿度传感器配置成检测室内的湿度并生成湿度信号,湿度信号发送至控制电路板,控制电路板根据湿度信号进行分析并控制内热交换器201参与除湿或加湿。
可选地,室内机组20的内热交换器201可以是空调室内机也可以是新风机组(图中未标出),还可以是新风机组与空调室内机组合,在空调室内机为室内空间进行温度热交换时,新风机组对室内空气进行湿度交换和空气净化等功能,提升了空调/热泵蓄热制冷***功能的多样性,同时提供更加节能和舒适的环境体验。为了更好地改善和提升室内空气质量,新风机组里还可以添加净化器、加湿器、负(氧)离子发生器和光触媒涂层发生腔等。
根据本申请的一些实施例,空调/热泵蓄热制冷***1还包括热水器103、光照组件104和辅助功能箱,如图12和图13所示,辅助功能箱包括辅助功能箱箱体X5和位于辅助功能箱箱体X5内的两个辅助管路,每个辅助管路包括第一级辅助分歧管(分歧管701和分歧管701’)和第二级辅助分歧管(分歧管702和分歧管702’)。第一辅助分歧管和第二级辅助分歧管均包括一个主管和两个支管,第二级辅助分歧管的主管与第一级辅助分歧管的一个支管连接,第一级辅助分歧管的主管的端部连接有辅助进口端,第一级辅助分歧管的另一个支管的端部和第二级辅助分歧管的两个支管的端部分别设置有辅助出口端。辅助功能箱的两个辅助管路分别为第一辅助管路(分歧管701和分歧管702构成的管路)和第二辅助管路(分歧管701’和分歧管702’构成的管路),第一辅助管路的辅助进口端(分歧管701的主管的端部)与四通阀106的第一端口Q1连接,第一辅助管路的三个辅助出口端(分歧管703的一个支管以及分歧管702的两个支管)分别与外热交换器101的出口端、热水器103的出口端和光照组件104的出口端连接,第二辅助管路的辅助进口端(分歧管701’的主管的端部)与外热交换器101的进口端对应的室外机组纳子头L1’连接,第二辅助管路的三个辅助出口端(分歧管701’的一个分管、分歧管702’的一个分管及分歧管704的一个分管)分别与外热交换器101的进口端、热水器103的进口端和光照组件104的进口端连接。辅助功能箱内还设置有第二调节管路,第二调节管路的一端与第一辅助管路的第一级辅助分歧管的设置有辅助出口端的支管(设置有分歧管703的支管,即分歧管703的一个支管)连通,第二调节管路的另一端与第二辅助管路的第二级辅助分歧管(分歧管702’)的其中一个支管(分歧管704 的另一个支管)连通,第二调节管路上设置有第二调节截止阀606,第二调节截止阀606配置成控制第二调节管路的断开或连通,以改变外热交换器101与热水器103和光照组件104的串、并联方式。如图13所示,为辅助功能箱的结构示意图。这里的热水器103的出口端和进口端为热水器103的两个端口,分别配置成与其他部件连接,出口端并非指流动介质的出口,也可以为流动介质的入口,进口端的原理与出口端相似。光照组件104的出口端和进口端的原理与热水器103的出口端和进口端的原理相同。
需要指出的是,上述方式中,辅助功能箱的设置,使得压缩机102与外热交换器101分离,不处于同一箱体内,压缩机102位于压缩机箱体X4内,外热交换器101位于外热交换器箱体X3内,便于外热交换器101的换热(与内热交换器201相同,外热交换器101也可以是两个以上,只是图中没有标出)。如图13所示,为了便于外热交换器101的换热,四通阀106位于压缩机箱体X4内。在***组装时,只需分别与室外机组纳子头L1、室外机组纳子头L1’、外热交换器101、压缩机102、热水器103及光照组件104的端口连接即可。如图14所示,压缩机102的位置还可以单独设置,此时四通阀106位于辅助功能箱箱体X5内,压缩机箱体X4设置两个端口分别与辅助功能箱箱体X5内的四通阀106的第二端口Q2和第三端口Q3连通;辅助功能箱箱体X5设置八个端口,第一辅助管路设置五个端口,相对于第二辅助管路的三个端口,增加了配置成与压缩机102连接的两个端口;将压缩机102单独设置在一个箱体(压缩机箱体X4)内,便于实现压缩机102的固定与减噪和更换与维修,同时压缩机102的放置位置更灵活,既可以放置于室内(不冻的位置),也可以放置于室外的某个角落(不必再考虑通风与否)。
可选地,本申请的一些实施例中,热水器103为带电辅的空气能热水器,便于“双向”自动加热。光照组件104的形状可以扁长形,此种形式宽度尺寸较大,占用安装空间较大,配置成安装于房顶或者阳台;还可以为长扁形,此种形状宽度尺寸较小,占用安装空间较小,配置成安装于房顶或者两窗户之间;不论采取何种形式的光照组件104,在安装时,光照组件104必须具有一定的倾斜角度,但也不能太大,既便于冬季吸收太阳能,又不影响建筑的美观为佳。
由于外热交换器101单独处于外热交换器箱体X3内,可以使其具有“足够”的换热空间,外热交换器101的不同形状对于换热功能具有一定的影响。可选地,外热交换器101的形状为锥形、圆形和椭圆形等,其较大的均匀的换热面积,增加了外热交换器101的换热能力。在本申请的其他实施例中,外热交换器101的形状还可以为L形、矩形和异形等。
根据本申请的一些实施例,为了合理利用安装空间,辅助功能箱与空调/热泵拓展功能箱的部件合并于同一箱体内,形成复合功能箱,如图15所示。复合功能箱的设置,将各部件集装于复合功能箱箱体X6,分别设置多个接头,配置成与压缩机102、外热交换器101、内热交换器201、辐射组件30、热水器103及光照组件104的连接,提高了装配效率,在***装配时,减少了焊接等工艺对安装质量的影响。复合功能箱,相对于在辅助功能箱和空调/热泵拓展功能箱结合的基础上,增加了三通阀及分歧管,便于实现多种不同的工况。
在上述实施方式中,压缩机102设置于复合功能箱的外部,位于独立的箱体(压缩机箱体X4)内,在压缩机102的输出端(高压端)和输入端(低压端)均设置压力传感器C1、温度传感器C2及检修阀K2,既可以监测进入压缩机102管路中冷媒的压力或温度,还便于对压缩机102进行检修或更换。压缩机102的低压端的压力传感器C1、温度传感器C2及检修阀K2位于压缩机箱体X4内,压缩机102高压端的压力传感器C1、温度传感器C2及检修阀K2位于复合功能箱箱体X6内。在本申请的其他实施例中,低压端和高压端的压力传感器C1、温度传感器C2及检修阀K2的位置可以为多种,例如,低压端和高压端的压力传感器C1、温度传感器C2及检修阀K2均位于压缩机箱体X4内,或者低压端和高压端的压力传感器C1、温度传感器C2及检修阀K2均位于复合功能箱箱体X6内,可以根据实际情况选取不同的安装位置。
需要指出的是,承载冷媒的管道均“穿过”热水器103和光照组件104,热水器103可以通过电对水进行加热,光照组件104能够通过太阳能将箱体加热。当进入热水器103内的冷媒温度高时,同样可以对热水器103内的水进行加热;同理,当太阳能将光照组件104箱体加热后该箱体内的冷媒也会被相应加热。
在本申请中,控制电路板与整个***中各电气元件电连接,配置成控制各电气元件的工作状态。
下面结合附图描述根据实施例的空调/热泵蓄热制冷***1的工作原理。
空调/热泵蓄热制冷***1的第一种制冷状态:如图16所示,第一种制冷状态中,室内机组20参与制冷,辐射组件30、热水器103及光照组件104均不工作。此种状态中,四通阀106的第一端口Q1与第二端口Q2连通,第三端口Q3与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第一端口Q1流出)、分歧管701、分歧管705、膨胀阀602及分歧管703流入外热交换器101,由外热交换器101输出到分歧管701’、分歧管707、干燥器401、单向阀403、储液罐404、第一级分歧管F1’、三通阀804(第一位置,与第一级分歧管F1’连通)、膨胀阀405、内热交换器201、分歧管501、膨胀阀409、三通阀803(第一位置,与第一级分歧管F1连通)、第一级分歧管F1、分歧管706、四通阀106(由第四端口Q4流入、第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,内热交换器201为蒸发器,外热交换器101为冷凝器。需要指出的是,此种状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置(与分歧管701连通),三通阀802处于第一位置(与分歧管701’连通)。
空调/热泵蓄热制冷***1的第二种制冷状态:如图17所示,第二种制冷状态中,室内机组20与辐射组件30串联制冷,热水器103及光照组件104均不工作。此种状态中,四通阀106的第一端口Q1与第二端口Q2连通,第三端口Q3与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第一端口Q1流出)、分歧管701、分歧管705、膨胀阀602及分歧管703流入外热交换器101,由外热交换器101输出到分歧管701’、分歧管707、干燥器401、单向阀403、储液罐404、第一级分歧管F1’、三通阀804(第一位置)、膨胀阀405、内热交换器201、分歧管501、第一调节截止阀410、分歧管502、第二级分歧管F2’、辐射组件30(辐射单元301、膨胀阀407(或膨胀阀408))、第二级分歧管F2、第一级分歧管F1、分歧管706、四通阀106(由第四端口Q4流入、第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,外热交换器101为冷凝器,内热交换器201和辐射组件30组成蒸发器,内热交换器201为蒸发器前段,辐射组件30为蒸发器后段,只是蒸发器前段温度低(一般温度<15℃,易于结露,可以兼顾除湿)、后段温度略高(一般温度>18℃,可以避开露点,在“中温”段制冷),实现制冷的同时除湿,还可以利用第一调节截止阀410的关闭和膨胀阀409的可控开启,再配有内热交换器201的变频,对压缩机102的回气温度实现控制,进一步提高整机能效。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置,三通阀803处于第一位置。
空调/热泵蓄热制冷***1的第三种制冷状态:如图18所示,第三种制冷状态中,室内机组20与辐射组件30并联同时制冷,热水器103及光照组件104均不工作。此种状态中,四通阀106的第一端口Q1与第二端口Q2连通,第三端口Q3与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第一端口Q1流出)、分歧管701、分歧管705、膨胀阀602及分歧管703流入外热交换器101,由外热交换器101输出到分歧管701’、分歧管707、干燥器401、单向阀403及储液罐404流入第一级分歧管F1’,冷媒在第一级分歧管F1’处分为两条支路,其中一条支路经三通阀804(第一位置)、膨胀阀405、内热交换器201、分歧管501、膨胀阀409及三通阀803(第一位置)流至第一级分歧管F1,另一条支路经分歧管503、膨胀阀406、分歧管502、第二级分歧管F2’、辐射组件30(辐射单元301、膨胀阀407(或膨胀阀408))、第二级分歧管F2流至第一级分歧管F1,两条支路在第一级分歧管F1汇合后流经分歧管706、四通阀106(由第四端口Q4流入、第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,外热交换器101为冷凝器,内热交换器201和辐射组件30组成蒸发器,此时内热交换器201为室内空气对流制冷,辐射组件30为室内空间辐射制冷,因辐射组件30具有能量储存的功能,***中的冷媒在流经辐射组件30时,辐射组件30储存低温能量,随着空气冷热的交换降低室内地面的温度,起到制冷(辅助)的作用。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置。
空调/热泵蓄热制冷***1的第四种制冷状态:如图18所示,第四种制冷状态的冷媒流程与第三制冷状态相同,此种状态下,室内机组20与辐射组件30并联,室内机组20除了制冷同时还可以有除湿功能,除湿时,内热交换器201的风机转速较慢(比制冷状态时的转速慢很多),内热交换器201主要配置成除湿,辐射组件30主要配置成制冷,适合春秋夏季,由于夏季时,室内温度较高,可以由辐射 组件30配合制冷,从而除湿的同时附带“有条件的”地面制冷,实现室内“无风”吹感制冷,环境更加舒适。
此种状态,室内机组20与辐射组件30同为蒸发器,外热交换器101为冷凝器。虽然室内机组20与辐射组件30同为蒸发器,但是它们“分工”不同,室内机组20负责除湿,辐射组件30负责配合“有条件的”制冷,实现除湿的同时制冷,进一步提高整机能效。
空调/热泵蓄热制冷***1的第一种除湿状态:如图16所示,第一种除湿状态的冷媒流程与第一制冷状态相同,第一种除湿状态适合于南方春秋季节,室内机组20配置成除湿,此种状态下,辐射组件30不参与工作。此种状态,室内机组20为蒸发器,外热交换器101为冷凝器。
空调/热泵蓄热制冷***1的第二种除湿状态:如图17所示,第二种除湿状态的冷媒流程与第二制冷状态相同,第二种除湿状态适合于夏季,室内机组20与辐射组件30串联除湿,此种状态下,***在除湿的同时,附带辐射组件30(这里为辐射地面或棚顶)制冷。此种状态,室内机组20与辐射组件30均为蒸发器,外热交换器101为冷凝器。虽然室内机组20与辐射组件30均为蒸发器,但是它们“分工”不同,室内机组20为蒸发器前段负责除湿,辐射组件30为蒸发器后段负责“有条件”配合制冷,实现除湿的同时制冷,整机能效提高。
空调/热泵蓄热制冷***1的第三种除湿状态:如图19所示,第三种除湿状态下,辐射组件30与室内机组20“分工”组合除湿,适合南方冬(春、秋)季,室外机组10不工作。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、第一级分歧管F1、第二级分歧管F2、膨胀阀407(膨胀阀408)、辐射单元301、第二级分歧管F2’、分歧管502、膨胀阀406、分歧管503、第一级分歧管F1’、储液罐404、节流部件402、干燥器401、分歧管707、三通阀804(第二位置)、膨胀阀405、内热交换器201、分歧管501、膨胀阀409、三通阀803(第二位置,与第一级分歧管F1断开)、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,内热交换器201为蒸发器,辐射组件30相当于冷凝器,辐射组件30具有能量储存的功能,***中的冷媒在流经辐射组件30时,辐射组件30储存高温能量,随着空气冷热的交换提升室内地面的温度,制热的同时去除室内空间的湿空气,实现一机制热兼带除湿,大幅提高整机能效。需要指出的是,在此状态下,没有提及的阀均处于关闭状态三通阀801处于第一位置,三通阀802处于第一位置。
空调/热泵蓄热制冷***1的第一种制热状态:如图20所示,第一种制热状态下,辐射组件30制热,室外机组10工作,室内机组20不工作。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、第一级分歧管F1、第二级分歧管F2、膨胀阀407(膨胀阀408)、辐射单元301、第二级分歧管F2’、分歧管502、膨胀阀406、分歧管503、第一级分歧管F1’、储液罐404、节流部件402、干燥器401、分歧管707、分歧管701’、外热交换器101、分歧管703、膨胀阀602、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此种状态下,外热交换器101为蒸发器,辐射组件30相当于冷凝器,压缩机102输出的冷媒为高温气体,高温气体流经辐射组件30,由于辐射组件30具有能量储存的功能,***中的冷媒在流经辐射组件30时,辐射组件30储存高温能量,随着空气冷热的交换提升室内地面的温度,起到制热的作用。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置,三通阀803处于第一位置,三通阀804处于第一位置。
空调/热泵蓄热制冷***1的第二种制热状态:如图21所示,第二种制热状态下,室内机组20与辐射组件30串联制热。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、第一级分歧管F1、第二级分歧管F2、膨胀阀407(膨胀阀408)、辐射单元301、第二级分歧管F2’、分歧管502、第一调节截止阀410、分歧管501、内热交换器201、膨胀阀405、三通阀804(第一位置)、第一级分歧管F1’、储液罐404、节流部件402、干燥器401、 分歧管707、分歧管701’、外热交换器101、分歧管703、膨胀阀602、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此种状态下,外热交换器101为蒸发器,辐射组件30和室内机组20为冷凝器,压缩机102输出的冷媒为高温气体,高温气体流经辐射组件30和室内机组20,辐射组件30为冷凝器前段,室内机组20为冷凝器后段,冷凝器前段温度高,冷凝器后段温度比冷凝器前段温度略低,随着空气冷热的交换提升室内地面的温度,起到制热作用的同时还可以实现利用内热交换器201变频控制来提高整机能效。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置,三通阀803处于第一位置,三通阀804处于第一位置。
空调/热泵蓄热制冷***1的第三种制热状态:如图22所示,第三种制热状态下,室内机组20与辐射组件30并联制热。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)及分歧管706流至第一级分歧管F1,并在第一级分歧管F1处分为两条支路,其中一条支路经第二级分歧管F2、膨胀阀407(膨胀阀408)、辐射单元301、第二级分歧管F2’、分歧管502、膨胀阀406、分歧管503流至第一级分歧管F1’,另一条支路经三通阀803(第一位置)、膨胀阀409、分歧管501、内热交换器201、膨胀阀405、三通阀804(第一位置)流至第一级分歧管F1’,两条支路汇合于第一级分歧管F1’后,流至储液罐404、节流部件402、干燥器401、分歧管707、分歧管701’、外热交换器101、分歧管703、膨胀阀602、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此种状态下,外热交换器101为蒸发器,室内机组20和辐射组件30为冷凝器,压缩机102输出的冷媒为高温气体,高温气体流经辐射组件30的同时也流经室内机组20,此种状态制热是地面辐射组件30为主,空气对流室内机组20为辅,随着空气冷热的交换提升室内地面和周围空气的温度,起到制热的作用。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置,三通阀803处于第一位置,三通阀804处于第一位置。
空调/热泵蓄热制冷***1的第一种制热水状态:如图23所示,第一种制热水状态下,室内机组20和热水器103参与工作,外热交换器101不参与工作。此种状态中,四通阀106的第一端口Q1与第二端口Q2连通,第三端口Q3与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第一端口Q1流出)、分歧管701、三通阀801(第一位置)、膨胀阀603、热水器103、分歧管704、分歧管702’、膨胀阀605、三通阀802(第一位置)、分歧管701’、分歧管707、干燥器401、单向阀403、储液罐404、第一级分歧管F1’、三通阀804(第一位置)、膨胀阀405进入内热交换器201,由内热交换器201输出到分歧管501、膨胀阀409、三通阀803(第一位置)、第一级分歧管F1、分歧管706、四通阀106(由第四端口Q4流入、第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,内热交换器201为蒸发器,热水器103为冷凝器,压缩机102输出高温高压冷媒,冷媒流经热水器103时对热水器103内的水进行加热,同时内热交换器201换走(蒸发)室内的热量(对室内进行制冷),此时室内制冷是“免费”的。需要指出的是,此种状态下,没有提及的阀均处于关闭状态。
在第一种制热水状态中,辐射组件30可选择的参与制冷,辐射组件30为蒸发器,当膨胀阀406、膨胀阀407(膨胀阀408)开启时,冷媒流经第一级分歧管F1’后再流向分歧管503、膨胀阀406、分歧管502、第二级分歧管F2’、辐射单元301、膨胀阀407(膨胀阀408)及第二级分歧管F2流至第一级分歧管F1,在第一级分歧管F1与内热交换器201流出的冷媒汇合并流向分歧管706。当辐射组件30参与工作时,利用辐射组件30来给地面进行制冷,同时降低室内空气的温度。
空调/热泵蓄热制冷***1的第二种制热水状态:如图24所示,第二种制热水状态下,室内机组20制热水,辐射组件30不参与工作。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、三通阀801(第二位置,与分歧管706连通)、分歧管702、膨胀阀603、热水器103、分歧管704、分歧管702’、膨胀阀605、三通阀802(第一位置)、分歧管701’、分歧管707、干燥器401、单向阀403、储液罐404、第一级分歧管F1’、三通阀804(第 一位置)、膨胀阀405、内热交换器201、分歧管501、膨胀阀409、三通阀803(第二位置)、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,内热交换器201为蒸发器,热水器103为冷凝器,压缩机102高温高压冷媒,冷媒流经热水器103时对热水器103内的水进行加热,同时内热交换器201换走(蒸发)室内的热量(对室内进行制冷)。需要指出的是,在此状态下,没有提及的阀均处于关闭状态。
空调/热泵蓄热制冷***1的第三种制热水状态:如图25所示,第三种制热水状态下,室外机组10制热水,室内机组20、辐射组件30不工作。此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、三通阀801(第二位置)、分歧管702、膨胀阀603、热水器103、分歧管704、分歧管702’、膨胀阀605、三通阀802(第二位置)、分歧管503、第一级分歧管F1’、储液罐404、节流部件402、干燥器401、分歧管707、分歧管701’、外热交换器101、分歧管703、膨胀阀602、分歧管705、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,外热交换器101为蒸发器,热水器103为冷凝器,压缩机102高温高压冷媒,冷媒流经热水器103时对热水器103内的水进行加热。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第二位置,三通阀802处于第二位置,三通阀803处于第一位置,三通阀804处于第一位置。
还有一种“自动”制热水状态,即设定一种模式,在停机前先把冷媒抽到外热交换器101内,停机后关闭内热交换器201与外热交换器101连接的所有通路(包括辐射组件30),让大部分介质储存在热水器103和光照组件104(外热交换器101)中,当太阳能把光照组件104加热后,原本自由流动的介质在光照组件104(被加热)和热水器103(没被加热)腔体内形成一个冷热循环的流动,随着温差的变化,最后达到一个热值平衡,但此时热水器103箱体内低温的水,也会与热水器的介质腔体进行冷热交换,达到一个热平衡,从而形成“自动”把热水器103里的水加热。
空调/热泵蓄热制冷***1的“二次蒸发”状态:如图26所示,此种状态中,四通阀106的第一端口Q1与第三端口Q3连通,第二端口Q2与第四端口Q4连通,冷媒流程如下:冷媒从压缩机102的输出端流出,依次经过四通阀106(由第二端口Q2流入,第四端口Q4流出)、分歧管706、第一级分歧管F1、第二级分歧管F2、膨胀阀407(膨胀阀408)、辐射单元301、第二级分歧管F2’、分歧管502、膨胀阀406、分歧管503、第一级分歧管F1’、储液罐404、节流部件402、干燥器401、分歧管707、分歧管701’、外热交换器101、分歧管703、第二调节截止阀606、分歧管704、热水器103、膨胀阀603(或者分歧管702’、光照组件104、膨胀阀604)、分歧管702、三通阀801(第一位置)、分歧管701、四通阀106(由第一端口Q1流入,第三端口Q3流出)及气液分离器105回到压缩机102的输入端。在此状态时,主要应用于冬季,室外环境温度较低的情况下,外热交换器101为蒸发器;由于室外环境温度比较低,外热交换器101已经“没有”能力从外界换来更多的热能了,此时压缩机102入口的进气温度也会很低,这时,在外热交换器101的末端串联一个能够使冷媒增加温度的器件(“加热”热水器103或光照组件104),就提升(并延伸)了机组在低温环境条件下的工作能力。这里的热水器103内装有承载冷媒的管道,当与外热交换器101串联后,冷媒流经热水器103时,热水器103内有一定高温的热水“间接”对冷媒进行加热,使得进入压缩机102的冷媒的温度升高,从而提升了整个机组在低温环境下的工作能力。需要指出的是,在此状态下,没有提及的阀均处于关闭状态,三通阀801处于第一位置,三通阀802处于第一位置,三通阀803处于第一位置,三通阀804处于第一位置。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种空调/热泵拓展功能箱,应用于空调/热泵蓄热制冷***,其特征在于,所述空调/热泵拓展功能箱包括拓展功能箱箱体、以及安装于所述拓展功能箱箱体内的两个分配管路;
    所述两个分配管路中每个分配管路包括主路和与所述主路连通的至少一个分路,每个主路的两端分别设有一个室外机组纳子头和一个室内机组纳子头,每个分路的远离所述主路的端部设有一个辐射组件纳子头,每个分配管路的所有辐射组件纳子头组成一组辐射组件纳子头组,两个所述室外机组纳子头分别配置成与室外机组的进口和出口连接,两个所述室内机组纳子头分别配置成与室内机组的进口和出口连接,两组辐射组件纳子头组分别配置成与辐射组件的进口和出口连接。
  2. 根据权利要求1所述的空调/热泵拓展功能箱,其特征在于,所述两个分配管路中每个分配管路上设置有至少一个膨胀阀和与所述至少一个膨胀阀对应的至少一个压力传感器,所述两个分配管路中至少一个分配管路连接有储液罐,每个所述膨胀阀和每个所述压力传感器分别配置成与控制电路板电连接,所述控制电路板能够根据所述压力传感器检测到的压力信号控制所述膨胀阀的工作状态,以改变对应的分配管路的流动介质的流量;
    或,所述两个分配管路中每个分配管路上设置有至少一个膨胀阀和与所述至少一个膨胀阀对应的至少一个温度传感器,所述两个分配管路中至少一个分配管路连接有储液罐,每个所述膨胀阀和每个所述温度传感器分别配置成与控制电路板电连接,所述控制电路板能够根据所述温度传感器检测到的温度信号控制所述膨胀阀的工作状态,以改变对应的分配管路的流动介质的流量;
    或,所述两个分配管路中每个分配管路上设置有至少一个膨胀阀、与所述至少一个膨胀阀对应的至少一个压力传感器和与所述至少一个膨胀阀对应的至少一个温度传感器,所述两个分配管路中至少一个分配管路连接有储液罐,每个所述膨胀阀、每个所述压力传感器及每个所述温度传感器分别配置成与控制电路板电连接,所述控制电路板能够根据所述压力传感器或所述温度传感器检测到的压力信号或温度信号控制所述膨胀阀的工作状态,以改变对应的分配管路的流动介质的流量。
  3. 根据权利要求1中任意一项所述的空调/热泵拓展功能箱,其特征在于,每个所述分配管路包括至少一个分歧管,所述至少一个分歧管中一个分歧管为第一级分歧管,所述第一级分歧管包括第一级主管和与所述第一级主管连通的两个第一级支管,所述第一级主管与所述两个第一级支管中一个第一级支管被构造成所述主路,所述两个第一级支管中另一个第一级支管被构造成一个所述分路。
  4. 根据权利要求3所述的空调/热泵拓展功能箱,其特征在于,每个所述分配管路的分歧管的数量为两个,两个所述分歧管分别为第一级分歧管和第二级分歧管,所述第一级分歧管的第一级主管和其中一个第一级支管被构造成主路,所述第一级分歧管的另一个第一级支管被构造成第一级分路,所述第二级分歧管包括第二级主管和与所述第二级主管连通的两个第二级支管,所述第二级主管与构成所述第一级分路的第一级支管连通,所述两个第二级支管被构造成两个第二级分路。
  5. 根据权利要求3所述的空调/热泵拓展功能箱,其特征在于,每个所述分配管路的分歧管的数量为2 n-1个,其中n≥3,所述分歧管包括一个第一级分歧管、一个第二级分歧管、两个第三级分歧管、…、2 n-2个第n级分歧管,所述第n级分歧管包括第n级主管和两个第n级支管,所述第n级支管被构造成第n级分路,所述第一级分歧管的第一级主管与其中一个第一级支管被构造成主路,所述第一级分歧管的另一个第一级支管被构造成第一级分路,所述第二级分歧管位于所述第一级分路,所述第二级分歧管的第二级主管与构成所述第一级分路的第一级支管连通,所述第二级分歧管的两个第二级支管被构造成两个第二级分路,每个所述第三级分歧管位于所述第二级分路,每个所述第三级分歧管的第三级主管与构成所述第二级分路的一个第二级支管连通,每个第三级支管被构造成第三级分路,以此类推,与第n-1级分歧管的第n-1级支管连接的分歧管为第n级分歧管,所述第n级分歧管的第n级支管被构造成第n级分路,所述2 n-2个第n级分歧管被构造成2 n-1个第n级分路。
  6. 根据权利要求5所述的空调/热泵拓展功能箱,其特征在于,所述拓展功能箱箱体的数量设置有两个,每个分配管路位于一个拓展功能箱箱体内。
  7. 根据权利要求5所述的空调/热泵拓展功能箱,其特征在于,每个所述分配管路设置有至少一个子功能箱,每个所述分配管路包括主分配管路和子分配管路,所述子分配管路位于所述子功能箱内,所述子分配管路包括与所述主分配管路配合的一个第n级分歧管,所述第n级分歧管与所述主分配管路的一个第n-1级分歧管的其中一个第n-1级支管连通,所述主分配管路的与所述子分配管路配合的第n-1级支管的端部设置有连接出口纳子头,所述子分配管路的第n级分歧管的第n级主管的端部连接有连接进口纳子头,所述第n级分歧管的两个第n级支管的端部分别连接有辐射组件纳子头,所述连接进口纳子头与所述连接出口纳子头连接。
  8. 一种空调/热泵蓄热制冷***,其特征在于,包括室外机组、室内机组、辐射组件及权利要求1-7任意一项所述的空调/热泵拓展功能箱,所述室外机组的进口和出口分别与所述空调/热泵拓展功能箱的两个分配管路的两个室外机组纳子头连接,所述室内机组的进口和出口分别与所述空调/热泵拓展功能箱的两个分配管路的两个室内机组纳子头连接,所述辐射组件的进口和出口分别与所述空调/热泵拓展功能箱的两个分配管路的两组辐射组件纳子头组连接,所述室外机组与所述室内机组通过所述空调/热泵拓展功能箱连接形成回路,所述室外机组与所述辐射组件通过所述空调/热泵拓展功能箱连接形成回路,所述室内机组与所述辐射组件通过所述空调/热泵拓展功能箱连接形成回路。
  9. 根据权利要求8所述的空调/热泵蓄热制冷***,其特征在于,所述室外机组包括外热交换器、压缩机及与所述压缩机连接的四通阀,所述外热交换器的出口端与所述四通阀的第一端口连接,所述外热交换器的进口端与所述空调/热泵拓展功能箱的其中一个所述室外机组纳子头连接,所述四通阀的第二端口与所述压缩机的出口端连通,所述压缩机的进口端与所述四通阀的第三端口连接,所述四通阀的第四端口与所述空调/热泵拓展功能箱的另一个所述室外机组纳子头连接;
    当所述空调/热泵蓄热制冷***处于制冷模式时,所述四通阀的所述第一端口与所述第二端口连通,所述第三端口与所述第四端口连通;当空调/热泵蓄热制冷***处于制热模式时,所述四通阀的所述第一端口与所述第三端口连通,所述第二端口与所述第四端口连通;
    所述室内机组包括内热交换器,所述内热交换器的进口端与其中一个所述室内机组纳子头连接,所述内热交换器的出口端与另一个所述室内机组纳子头连接;
    所述空调/热泵拓展功能箱的每个分配管路包括一个第一级分歧管和一个第二级分歧管,所述第一级分歧管包括第一级主管和两个第一级支管,所述第二级分歧管包括第二级主管和两个第二级支管,所述第二级主管与所述两个第一级主管中一个第一级支管连通,所述两个第一级主管中另一个第一级支管能够与所述室内机组连接,所述两个第二级支管分别能够与所述辐射组件连接;
    所述空调/热泵拓展功能箱内还设置有第一调节管路,所述第一调节管路的一端与其中一个所述分配管路的设置有所述室内机组纳子头的第一级分歧管的第一级支管连通,所述第一调节管路的另一端与另一个所述分配管路的第二级分歧管的其中一个第二级支管连通,所述第一调节管路设置有第一调节截止阀,所述第一调节截止阀配置成控制所述第一调节管路的连通或断开,以改变所述辐射组件和所述内热交换器的串、并联方式;
  10. 根据权利要求9所述的空调/热泵蓄热制冷***,其特征在于,所述空调/热泵拓展功能箱内还设置有电磁阀,所述辐射组件包括第一辐射组件组和第二辐射组件组,每个所述分配管路的第二级分歧管的其中一个第二级支管能够与所述第一辐射组件组连接,所述第二级分歧管的另一个第二级支管能够与所述第二辐射组件组连接,所述两个分配管路分别为第一分配管路和第二分配管路,所述第一分配管路的配置成与所述第一辐射组件组连接的第二级支管与所述电磁阀的输出端连接,所述第二分配管路的配置成与所述第二辐射组件组连接的第二级支管与所述电磁阀的输入端连接。
  11. 根据权利要求9所述的空调/热泵蓄热制冷***,其特征在于,所述空调/热泵蓄热制冷***还包括热水器、光照组件和辅助功能箱,所述辅助功能箱内设置有两个辅助管路,每个辅助管路包括第一级辅助分歧管和第二级辅助分歧管,所述第二级辅助分歧管的主管与所述第一级辅助分歧管的一个支管连接,所述第一级辅助分歧管的主管的端部连接有辅助进口端,所述第一级辅助分歧管的另一个支管的端部和所述第二级辅助分歧管的两个支管的端部分别设置有辅助出口端;
    所述两个辅助管路分别为第一辅助管路和第二辅助管路,所述第一辅助管路的辅助进口端与所述四通阀的第一端口连接,所述第一辅助管路的三个辅助出口端分别与所述外热交换器的出口端、热水器的出口端和光照组件的出口端连接,所述第二辅助管路的辅助进口端与所述外热交换器的进口端对应的所述室外机组纳子头连接,所述第二辅助管路的三个辅助出口端分别与所述外热交换器的进口端、热水器的进口端和光照组件的进口端连接;
    所述辅助功能箱内还设置有第二调节管路,所述第二调节管路的一端与所述第一辅助管路的第一级辅助分歧管的设置有辅助出口端的支管连通,所述第二调节管路的另一端与所述第二辅助管路的第二级辅助分歧管的其中一个支管连通,所述第二调节管路上设置有第二调节截止阀,所述第二调节截止阀配置成控制所述第二调节管路的断开或连通,以改变所述外热交换器与热水器和光照组件的串、并联方式。
PCT/CN2020/075710 2019-03-08 2020-02-18 空调/热泵拓展功能箱及空调/热泵蓄热制冷*** WO2020181963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020000585.2T DE112020000585T5 (de) 2019-03-08 2020-02-18 Funktionserweiterungsbox für Klimaanlagen/Wärmepumpen und ein Wärmespeicher- und Kühlsystem für Klimaanlagen/Wärmepumpen
US17/394,385 US20210364195A1 (en) 2019-03-08 2021-08-04 Air conditioner/heat pump expansion function box and air conditioner/heat pump heat storage refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920300316.0U CN209605441U (zh) 2019-03-08 2019-03-08 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
CN201920300316.0 2019-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/394,385 Continuation US20210364195A1 (en) 2019-03-08 2021-08-04 Air conditioner/heat pump expansion function box and air conditioner/heat pump heat storage refrigeration system

Publications (1)

Publication Number Publication Date
WO2020181963A1 true WO2020181963A1 (zh) 2020-09-17

Family

ID=68404351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075710 WO2020181963A1 (zh) 2019-03-08 2020-02-18 空调/热泵拓展功能箱及空调/热泵蓄热制冷***

Country Status (3)

Country Link
CN (1) CN209605441U (zh)
DE (1) DE112020000585T5 (zh)
WO (1) WO2020181963A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798691B (zh) * 2019-03-08 2023-12-26 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
CN209605441U (zh) * 2019-03-08 2019-11-08 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448140A (ja) * 1990-06-18 1992-02-18 Toshiba Corp 空気調和機
JPH04369327A (ja) * 1991-06-17 1992-12-22 Sharp Corp 空気調和機
CN103168205A (zh) * 2010-10-20 2013-06-19 大金工业株式会社 空调机
CN108562032A (zh) * 2017-12-21 2018-09-21 合肥通用机械研究院 一种辐射与对流耦合换热统一末端
CN109210727A (zh) * 2018-10-23 2019-01-15 四川长虹空调有限公司 毛细管网与空调并联的室内温控***
CN109798691A (zh) * 2019-03-08 2019-05-24 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
CN209605441U (zh) * 2019-03-08 2019-11-08 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448140A (ja) * 1990-06-18 1992-02-18 Toshiba Corp 空気調和機
JPH04369327A (ja) * 1991-06-17 1992-12-22 Sharp Corp 空気調和機
CN103168205A (zh) * 2010-10-20 2013-06-19 大金工业株式会社 空调机
CN108562032A (zh) * 2017-12-21 2018-09-21 合肥通用机械研究院 一种辐射与对流耦合换热统一末端
CN109210727A (zh) * 2018-10-23 2019-01-15 四川长虹空调有限公司 毛细管网与空调并联的室内温控***
CN109798691A (zh) * 2019-03-08 2019-05-24 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
CN209605441U (zh) * 2019-03-08 2019-11-08 晏飞 空调/热泵拓展功能箱及空调/热泵蓄热制冷***

Also Published As

Publication number Publication date
DE112020000585T5 (de) 2021-12-23
CN209605441U (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN109798691B (zh) 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
CN100523651C (zh) 可以同时制冷和制热的空调机组
CN105352042A (zh) 空调室内机和空调器
CN107642925B (zh) 一种带旁通管路的多级热泵干燥除湿***
WO2020181963A1 (zh) 空调/热泵拓展功能箱及空调/热泵蓄热制冷***
WO2023000862A1 (zh) 一种用于等温除湿和冷风机的制冷***切换结构
CN104633771A (zh) 多联式空调机组及其控制方法
CN109827304B (zh) 一种新风-毛细管网空气联合调节***及其冬、夏季新风温度调节方法
CN108679740A (zh) 一种温湿分控空调外机
US20210364195A1 (en) Air conditioner/heat pump expansion function box and air conditioner/heat pump heat storage refrigeration system
CN210832379U (zh) 空调***
CN204254925U (zh) 换热***及具有其的空调器
CN201007582Y (zh) 可以同时制冷和制热的空调机组
CN110410902A (zh) 一种可全热回收并精确调节热回收量的空调***
CN205332357U (zh) 一种双温空调室内机
CN212319849U (zh) 空调器***
CN210832381U (zh) 空调***
CN209801659U (zh) 空调装置
CN105605818A (zh) 一种双工况空调
CN205332583U (zh) 一种双工况空调
CN204214097U (zh) 一种水源热泵空调***及其水阀组件
CN218480677U (zh) 一种具有除湿再热功能的空调内机***
CN205048804U (zh) 空调和热水***
CN210832380U (zh) 空调***
CN217330025U (zh) 一种具有恒温除湿功能的三管式热泵空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769318

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20769318

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20769318

Country of ref document: EP

Kind code of ref document: A1