WO2020179681A1 - Damper - Google Patents

Damper Download PDF

Info

Publication number
WO2020179681A1
WO2020179681A1 PCT/JP2020/008377 JP2020008377W WO2020179681A1 WO 2020179681 A1 WO2020179681 A1 WO 2020179681A1 JP 2020008377 W JP2020008377 W JP 2020008377W WO 2020179681 A1 WO2020179681 A1 WO 2020179681A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock absorber
cylinder
piston rod
piston
tube
Prior art date
Application number
PCT/JP2020/008377
Other languages
French (fr)
Japanese (ja)
Inventor
隆久 望月
壮大 島内
宏一郎 粟野
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020179681A1 publication Critical patent/WO2020179681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/06Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms
    • B62K25/08Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms for front wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to an improvement of a shock absorber.
  • the shock absorber is interposed between the outer tube and the inner tube, and a telescopic tube member having the outer tube and the inner tube slidably inserted into the outer tube.
  • a stroke sensor may be provided to detect the position of the piston rod with respect to the cylinder.
  • the stroke sensor includes an annular magnet, a probe for detecting the position of the magnet, and a sensor body that holds the probe, and is incorporated into the shock absorber as follows.
  • the magnet is attached to the inner circumference of the rod guide that closes the open end of the cylinder and guides the movement of the piston rod
  • the probe is housed in the piston rod
  • the sensor body is the upper end of the outer tube. It is housed in a cap that closes the open end.
  • the stroke displacement of the shock absorber can be detected by the stroke sensor ( For example, see Patent Document 1).
  • the shock absorber When the shock absorber is applied to a saddle-mounted vehicle, the shock absorber tends to have a very long overall length, and the piston rod also becomes very long.
  • the piston rod is connected to the outer tube via the cap and plays a role of connecting the shock absorber body to the outer tube, and thus is much longer than the stroke length of the shock absorber body.
  • the sensor body is fixed to the cap and the probe is housed in the piston rod. Therefore, when the total length of the piston rod becomes long, the probe length becomes insufficient and the stroke displacement of the shock absorber can be detected. It may disappear.
  • an object of the present invention is to provide a shock absorber capable of detecting stroke displacement even if the total length is long.
  • the shock absorber in the problem solving means is provided on one of a telescopic type tube member having an outer tube and an inner tube slidably inserted into the outer tube, and one of the outer tube and the inner tube.
  • a shock absorber body housed in the tube member having a piston rod connected to the other end and an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod, and a shock absorber body.
  • the stroke sensor includes a stroke sensor that detects the stroke displacement of the above, and the stroke sensor includes a detector connected to a cylinder, a rod-shaped probe housed in a piston rod to detect the position of the detector, and the probe. It has a sensor body to hold, and the detector is arranged on the outer periphery of the piston rod, and one end thereof is attached to the other end of a pipe member mounted on the anti-cylinder side of the rod guide.
  • the detected element is arranged on the outer circumference of the piston rod, and one end thereof is attached to the other end of the pipe member mounted on the side opposite to the cylinder of the rod guide.
  • the axial position of the child can be positioned at any position by the pipe member.
  • the shock absorber in another problem-solving means is connected to one of the outer tube and the inner tube by a telescopic type tube member having an outer tube and an inner tube slidably inserted into the outer tube.
  • a cylinder a piston that is movably inserted into the cylinder to partition the inside of the cylinder into an extension chamber and a compression side chamber, and one end connected to the piston and the other end connected to the other of the outer tube and inner tube.
  • a shock absorber body accommodated in the tube member having an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod, and stroke displacement of the shock absorber body is detected.
  • the stroke sensor includes a detection target connected to the cylinder, a rod-shaped probe that is housed in the piston rod to detect the position of the detection target, and a sensor main body that holds the probe.
  • the detector is mounted on the inner circumference of the rod guide, and the sensor body is inside the connecting pipe that connects the cap and the piston rod that close the other opening of the outer tube and the inner tube. It is characterized by being contained.
  • the sensor main body is housed in the connecting pipe that connects the piston rod to the cap, and the axial position of the sensor main body can be positioned at any position by the connecting pipe. There is no need to make the length longer.
  • the shock absorber may be attached to the outer circumference of the piston rod and may also include a cushion rubber, and the cushion rubber and the pipe member may collide with each other when the shock absorber main body is contracted most to regulate the contraction of the shock absorber main body.
  • the shock absorber thus configured, by providing the pipe member, not only the axial position of the detected element is positioned, but also the cushion function is provided in cooperation with the cushion rubber to reduce the impact at the time of the most contraction. Can be demonstrated.
  • the shock absorber may be provided with a coil spring which is arranged on the outer circumference of the connecting pipe and is interposed between the rod guide and the cap.
  • the connecting pipe that accommodates the sensor body can be arranged on the inner circumference of the coil spring, the sensor body can be installed at an arbitrary position within the coil spring and is less likely to be restricted by the probe length. At the same time, there is less restriction on the total length of the coil spring, and the degree of freedom in design is improved.
  • the shock absorber also includes a solenoid valve in the piston rod that adjusts the damping force generated by the shock absorber body, and the solenoid lead wire and probe of the solenoid valve may be housed in the piston rod.
  • the shock absorber since the probe of the stroke sensor and the lead wire are housed in the piston rod, it is possible to adjust the damping force using the solenoid valve and also detect the stroke of the shock absorber. It will be possible.
  • the stroke displacement can be detected even if the total length is long.
  • FIG. 1 is a vertical sectional view of a shock absorber which is a shock absorber according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 3 is a damping force characteristic diagram showing characteristics of the compression side damping force with respect to the piston speed of the shock absorber which is the shock absorber according to the embodiment of the present invention.
  • FIG. 4 is a vertical cross-sectional view of a shock absorber which is a shock absorber according to a second embodiment of the present invention.
  • the buffers D1 and D2 according to the embodiment of the present invention will be described below with reference to the drawings.
  • the same reference numerals allotted throughout the several figures refer to the same or corresponding parts.
  • the shock absorbers D1 and D2 according to the embodiment of the present invention are used for a front fork that suspends the front wheels of a saddle-mounted vehicle.
  • the upper and lower sides with the front fork including the shock absorber D attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
  • the shock absorber D1 of the first embodiment is connected to the inner tube 11 and a telescopic type tube member T having an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10.
  • the cylinder 1 and the piston 2 which is movably inserted into the cylinder 1 to divide the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb, one end is connected to the piston 2 and the other end is an outer tube.
  • a shock absorber main body S having a piston rod 3 connected to 10 and an annular rod guide 14 provided at the end of the cylinder 1 to guide the movement of the piston rod 3 and housed in the tube member T.
  • a stroke sensor 42 for detecting the stroke displacement of the shock absorber main body S is provided.
  • the shock absorber D1 is a one-sided shock absorber that exerts a damping force only when contracted, and the solenoid valve V is used to reduce the pressure side damping force of the shock absorber D1. It can be adjusted.
  • the shock absorber D1 is connected to a one-sided shock absorber that exerts a damping force only when extended by a bracket connected to the steering shaft of the saddle type vehicle. Therefore, the shock absorber D and the shock absorber that exerts a damping force only when extended form a pair to form a front fork that supports the front wheels of the saddle-ride type vehicle, and cooperate to vibrate the vehicle body of the saddle-ride type vehicle. Suppress.
  • the shock absorber D1 includes a telescopic tube member T including an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10.
  • the tube member T may be an upright type
  • the outer tube 10 may be an axle side tube
  • the inner tube 11 may be a vehicle body side tube.
  • the upper end of the outer tube 10 which is the upper end of the tube member T is closed by the cap 12.
  • the lower end of the inner tube 11 which is the lower end of the tube member T is closed by the bracket B on the axle side.
  • the cylindrical gap formed between the overlapping portion of the outer tube 10 and the inner tube 11 is closed by an annular seal member 13 that is attached to the lower end of the outer tube 10 and is in sliding contact with the outer circumference of the inner tube 11. .
  • the shock absorber body S has a cylinder 1 provided in an inner tube 11, a piston 2 slidably inserted in the cylinder 1, a lower end connected to the piston 2, and an upper end outside the cylinder 1. It has a piston rod 3 that protrudes and is connected to the cap 12.
  • the piston rod 3 in the shock absorber body S is connected to the outer tube 10 via a cap 12 that closes the upper end of the outer tube 10 in FIG. 1, and the cylinder 1 is connected to the inner tube 11.
  • the piston rod 3 is connected to the outer tube 10 and the cylinder 1 is connected to the inner tube 11, the tube member T is turned upside down from the state shown in FIG. 1 and the piston rod 3 is connected to the inner tube 11.
  • the cylinder 1 may be connected to the outer tube 10 and the shock absorber body S may be housed in the tube member T.
  • the cap 12 Since the cap 12 is connected to the outer tube 10, the piston rod 3 is connected to the outer tube 10 and the cylinder 1 is connected to the inner tube 11. In this way, the shock absorber body S is interposed between the outer tube 10 and the inner tube 11.
  • the cap 12 has a tubular shape and includes a sensor housing portion 12a screwed to the inner circumference of the outer tube 10 and a small-diameter piston rod connecting portion 12b extending from the lower end of the sensor housing portion 12a.
  • the sensor body 42a of the stroke sensor 42 is housed in the sensor housing portion 12a.
  • the piston rod 3 is inserted into the piston rod connecting portion 12b of the cap 12, screwed, and connected to the cap 12.
  • annular rod guide 14 is mounted on the upper end of the cylinder 1, and a piston rod 3 is slidably inserted inside the rod guide 14 in the axial direction.
  • the rod guide 14 includes an annular main body 14a screwed to the inner circumference of the cylinder 1, and a socket 14b protruding from the main body 14a to the side opposite to the cylinder and having an outer diameter smaller than the outer diameter of the main body 14a. It closes the upper end opening of the cylinder 1 in FIG. 1 and guides the movement of the piston rod 3 in the axial direction.
  • a pipe member 17 through which the piston rod 3 is inserted is provided on the outer periphery of the socket 14b of the rod guide 14.
  • the pipe member 17 includes a pipe 18 that is screwed onto the outer circumference of the socket 14b, and a cylindrical holder 19 that is mounted on the opposite cylinder side of the pipe 18.
  • the holder 19 has a cylindrical shape and the outer circumference.
  • a mounting cylinder portion 19a provided with a screw screwed to the inner circumference of the end of the pipe 18 on the side opposite to the cylinder, and a magnet 42b provided on the side opposite to the cylinder of the mounting cylinder portion 19a and serving as a detected element of the stroke sensor 42 are provided.
  • the pipe 18 includes a holding cylinder portion 19b for holding and an annular cushion sheet member 19c attached to the opposite end of the holding cylinder portion 19b on the opposite side of the cylinder.
  • the axial length of the pipe 18 is set so that the position of the magnet 42b can be positioned at an appropriate position.
  • the magnet 42b is annular and has an inner circumference facing the outer circumference of the piston rod 3.
  • a suspension spring 15 made of a coil spring is interposed between the rod guide 14 and the cap 12. Specifically, the upper end of the suspension spring 15 is supported by a spring receiver 23 fitted on the outer circumference of the piston rod connecting portion 12b of the cap 12.
  • a cylindrical stopper 24 is mounted between the inner circumference of the spring receiver 23 and the outer circumference of the upper end of the piston rod 3, and an annular cushion rubber 25 mounted on the outer circumference of the piston rod 3 is used as the stopper 24. Is in contact with. The stopper 24 is in contact with the upper end of the cushion rubber 25 in FIG. 1, and restricts the movement of the cushion rubber 25 with respect to the piston rod 3 in FIG. 1 upward.
  • a spring receiver 26 which is annular and has an inner diameter larger than that of the pipe 18 and supports the lower end of FIG. 1 of the suspension spring 15 is superposed on the outer periphery of the upper end of the main body portion 14a of FIG. There is. Therefore, the suspension spring 15 exerts an urging force that separates the outer tube 10 and the inner tube 11 to urge the shock absorber D1 in the extension direction.
  • the shock absorber main body S of the present embodiment is a single rod type, and the piston rod 3 extends from one side of the piston 2 to the outside of the cylinder 1.
  • the shock absorber main body S may be of the double rod type, and the piston rods may extend from both sides of the piston to the outside of the cylinder.
  • the piston rod 3 may project downward from the cylinder 1 and be connected to the axle side, and the cylinder 1 may be connected to the vehicle body side.
  • the suspension spring 15 may be a spring other than a coil spring such as an air spring.
  • a liquid chamber L filled with a liquid such as hydraulic oil is formed in the cylinder 1, and this liquid chamber L is divided into an extension side chamber La and a compression side chamber Lb by a piston 2.
  • the expansion side chamber here is the one of the two chambers partitioned by the piston that is compressed by the piston when the shock absorber extends.
  • the pressure side chamber is one of the two chambers partitioned by the piston, which is compressed by the piston when the shock absorber contracts.
  • the space between the shock absorber main body S and the tube member T is a liquid reservoir R.
  • the liquid storage chamber R the same liquid as the liquid in the cylinder 1 is stored, and a gas chamber G in which a gas such as air is sealed is formed above the liquid surface.
  • the tube member T functions as an outer shell of the tank 16 for storing the liquid separately from the liquid in the cylinder 1.
  • the liquid reservoir chamber R inside the tank 16 is communicated with the expansion side chamber La, and the pressure of the expansion side chamber La is always substantially the same pressure (tank pressure) as the pressure in the tank 16 (liquid reservoir chamber R). Further, the liquid storage chamber R is separated from the compression side chamber Lb by a valve case 4 fixed to the lower end of the cylinder 1.
  • the valve case 4 is provided with a suction passage 4a that communicates the pressure side chamber Lb and the liquid storage chamber R with a suction valve 40 that opens and closes the suction passage 4a.
  • the suction valve 40 is an extension-side check valve, which opens the suction passage 4a when the shock absorber D extends, and allows the liquid to flow from the liquid reservoir chamber R to the pressure-side chamber Lb through the suction passage 4a. When the shock absorber D contracts, the suction passage 4a is kept closed.
  • the suction valve 40 of the present embodiment is a leaf valve, it may be a poppet valve or the like.
  • the piston 2 is formed with an expansion side passage 2a and a compression side passage 2b that communicate the expansion side chamber La and the compression side chamber Lb, and also includes an expansion side check valve 20 that opens and closes the expansion side passage 2a and a compression side passage 2b.
  • a hard-side damping element 21 that provides resistance to the flow of liquid from the pressure-side chamber Lb toward the extension-side chamber La is mounted.
  • the hard-side damping element 21 is configured to have a leaf valve 21a stacked on the upper side of the piston 2 and an orifice 21b provided in parallel with the leaf valve 21a.
  • the leaf valve 21a is a thin annular plate formed of metal or the like, or a laminated body formed by stacking the annular plates, has elasticity, and is attached to the piston 2 in a state in which the outer peripheral side is allowed to bend.
  • the pressure of the pressure side chamber Lb acts in a direction to bend the outer peripheral portion of the leaf valve 21a upward.
  • the orifice 21b is formed by a notch provided on the outer peripheral portion of the leaf valve 21a that is detached and seated on the valve seat (not indicated) of the piston 2R, but is formed by a stamp or the like provided on the valve seat. It may be formed.
  • the pressure side chamber Lb is compressed by the piston 2 when the shock absorber D contracts, and its internal pressure rises, and becomes higher than the pressure in the extension side chamber La.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the compression side chamber Lb and the extension side chamber La is less than the valve opening pressure of the leaf valve 21a, the liquid passes through the orifice 21b. Resistance is given to the flow of the liquid while moving from the pressure side chamber Lb to the expansion side chamber La.
  • the differential pressure becomes large and becomes equal to or higher than the valve opening pressure of the leaf valve 21a, the outer peripheral portion of the leaf valve 21a bends, and the liquid passes through the gap formed between the outer peripheral portion and the piston 2 to the pressure side chamber Lb.
  • resistance is imparted to the liquid flow.
  • the hard side damping element 21 having the orifice 21b and the leaf valve 21a parallel to the orifice 21b is a liquid that goes from the compression side chamber Lb to the extension side chamber La when the shock absorber D contracts. Is the first damping element on the pressure side that provides resistance to the flow of. The resistance of the compression-side hard damping element 21 results from the orifice 21b when the piston speed is in the low speed range, and from the leaf valve 21a when the piston speed is in the medium to high speed range.
  • the extension-side check valve 20 opens the extension-side passage 2a when the shock absorber D extends, and allows the liquid to flow through the extension-side passage 2a from the expansion-side chamber La to the compression-side chamber Lb. When D contracts, the extension side passage 2a is maintained in a closed state.
  • the extension side check valve 20 of the present embodiment is a leaf valve, but may be a poppet valve or the like. Furthermore, the extension-side passage 2a and the extension-side check valve 20 may be omitted as long as the liquid is not sufficiently sucked into the cylinder 1.
  • the piston rod 3 is provided with a damping force adjusting unit for changing the flow rate of the liquid passing through the hard side damping element 21.
  • the damping force adjusting unit includes a solenoid valve V that can change the flow path area provided in the middle of the bypass path 3a that bypasses the hard side damping element 21 and communicates the extension side chamber La and the compression side chamber Lb, and the bypass path.
  • the soft side damping element 50 provided in series with the solenoid valve V is provided in the middle of 3a.
  • the piston rod 3 is connected to the piston holding member 30 located at the tip thereof, the solenoid case member 31 connected to the terminal side thereof, and further connected to the terminal side thereof to the outside of the cylinder 1. It has a tubular rod body 32 that extends and is connected to the cap 12.
  • the piston holding member 30 includes a bottomed cylindrical housing portion 30a and a shaft portion 30b protruding downward from a bottom portion of the housing portion 30a.
  • the annular piston 2 is provided on the outer periphery of the shaft portion 30b and has a hard side damping element. It is fixed with a nut N together with 21.
  • a valve case 5 is fixed to the inner circumference of the cylindrical portion of the housing portion 30a to partition the inside into an upper chamber 30c and a lower chamber 30d.
  • the valve case 5 is formed with a passage 5a that communicates the upper chamber 30c and the lower chamber 30d, and the soft side damping element 50 is provided in the passage 5a.
  • the shaft portion 30b of the piston holding member 30 is formed with a vertical hole 30e that opens downward and communicates with the inside of the housing portion 30a. The vertical hole 30e connects the lower chamber 30d and the pressure side chamber Lb. ..
  • the solenoid case member 31 includes a tubular portion 31a screwed onto the outer circumference of the upper end of the housing portion 30a.
  • a lateral hole 31b that opens laterally is formed in the tubular portion 31a, and the extension side chamber La and the inside of the solenoid case member 31 are communicated with each other by the lateral hole 31b.
  • a solenoid valve V is provided in the middle of the passage connecting the lateral hole 31b and the upper chamber 30c.
  • a bypass path having a lateral hole 31b, an upper chamber 30c, a lower chamber 30d, and a vertical hole 30e formed in the solenoid case member 31 or the piston holding member 30 and bypassing the hard side damping element 21. 3a is formed.
  • the solenoid valve V and the soft side damping element 50 are provided in series in the middle of the bypass 3a.
  • the outer diameters of the solenoid case member 31 and the piston holding member 30 accommodating the solenoid valve V and the hard side damping element 50 are smaller than the inner diameter of the cylinder 1, and consideration is given so that they do not partition the extension side chamber La. ..
  • the hard side damping element 50 is configured to have a leaf valve 50a laminated on the upper side of the valve case 5 and an orifice 50b provided in parallel with the leaf valve 50a.
  • the leaf valve 50a is a thin annular plate formed of metal or the like, or a laminated body in which the annular plates are stacked, has elasticity, and is attached to the valve case 5 in a state in which the outer peripheral side is allowed to bend. Then, the pressure of the lower chamber 30d acts in the direction of bending the outer peripheral portion of the leaf valve 50a upward. Further, the orifice 50b is formed by a notch provided on the outer peripheral portion of the leaf valve 50a which is seated on and off the valve seat of the valve case 5R, but may be formed by stamping or the like provided on the valve seat. Good.
  • the pressure in the lower chamber 30d becomes higher than the pressure in the upper chamber 30c when the shock absorber D is contracted and the solenoid valve V opens the bypass passage 3a.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the upper chamber 30c and the lower chamber 30d is less than the opening pressure of the leaf valve 50a, the liquid passes through the orifice 50b. From the lower chamber 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is imparted to the flow of the liquid.
  • the soft side damping element 50 having the orifice 50b and the leaf valve 50a parallel to the orifice 50b makes the compression side bypass path 3a from the compression side chamber Lb to the extension side chamber when the shock absorber D contracts.
  • a second damping element on the pressure side that provides resistance to the flow of liquid towards La. The resistance of the soft-side damping element 50 results from the orifice 50b when the piston speed is in the low speed range, and from the leaf valve 50a when the piston speed is in the medium to high speed range.
  • the leaf valve 50a of the soft side damping element 50 is a valve having a lower valve rigidity (easy to bend) as compared with the leaf valve 21a of the hard side damping element 21, and when the flow rate is the same, it gives to the flow of liquid. Resistance (pressure loss) is small. In other words, the liquid is more likely to pass through the leaf valve 50a than the leaf valve 21a under the same conditions.
  • the orifice 50b of the soft-side damping element 50 is a large-diameter orifice having a larger opening area than the orifice 21b of the hard-side damping element 21, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
  • the solenoid valve V includes a cylindrical holder 6 fixed in the piston rod 3, a cylindrical spool 7 reciprocatingly inserted in the holder 6, and a cylindrical spool 7. It includes an urging spring 8 that urges the spool 7 upward in FIG. 2, which is one of the moving directions, and a solenoid 9 that can apply thrust to the spool 7 in the other in the moving direction. Then, the solenoid valve V adjusts the position of the spool 7 in the holder 6 to adjust the opening degree.
  • the holder 6 is located above the valve case 5 in the piston rod 3, one end in the axial direction to the upper side (the solenoid case member 31 side), and the other end to the lower side (the valve case 5 side).
  • the piston rod 3 is arranged along the central axis of the piston rod 3 in the facing state.
  • the holder 6 is formed with one or more ports 6a penetrating in the radial direction.
  • the port 6a communicates with the extension side chamber La through the lateral hole 31b of the solenoid case member 31, and is opened and closed by the spool 7.
  • the spool 7 is cylindrical and is slidably inserted into the holder 6 so that it can be reciprocated in the vertical direction in FIG. More specifically, the spool 7 includes a port 7a that can face the port 6a in correspondence with the port 6a, and moves in the vertical direction to open and close the port 6a provided in the holder 6. Specifically, in a state where the port 7a of the spool 7 faces the port 6a of the holder 6, the spool 7 communicates the port 6a into the spool 7. The port 6a communicates with the extension side chamber La through a lateral hole 31b provided in the solenoid case member 31.
  • the inside of the spool 7 is communicated with the pressure side chamber Lb through the upper chamber 30c, the passage 5a provided in the valve case 5, the lower chamber 30d and the vertical hole 30e. Therefore, the solenoid valve V is provided in the middle of the bypass passage 3a, and when the port 6a communicates with the inside of the spool 7, the solenoid valve V is opened to open the bypass passage 3a, and the expansion side chamber La and the pressure side are opened through the bypass passage 3a. It communicates with the chamber Lb.
  • a plate 70 is laminated on the upper end of the spool 7, and a plunger 9a of the solenoid 9 which will be described later is in contact with the plate 70.
  • the biasing spring 8 contacts the lower end of the spool 7 and biases the spool 7 upward in FIG. 2, which is one of the moving directions.
  • the biasing spring 8 is a spiral spring that exerts a biasing force that returns the inner periphery to its original position when the inner periphery is displaced in the vertical direction in FIG. 2 relative to the outer periphery.
  • the urging spring 8 is sandwiched between a cylindrical collar 22 fitted to the inner periphery of the housing portion 30a of the piston holding member 30 and the lower end of the holder 6, and the piston rod has an outer periphery below the urging spring 8. It is fixed at 3.
  • the inner circumference of the biasing spring 8 is fitted into an annular recess 7b provided on the outer circumference of the lower end of the spool 7 in FIG. 2, and the biasing spring 8 moves the spool 7 upward relative to the holder 6 in FIG.
  • the spool 7 is urged toward one of the moving directions, and when the spool 7 is displaced downward in FIG. 2 with respect to the holder 6, the spool 7 exerts an urging force to return the spool 7 to the original position.
  • the solenoid 9 of the solenoid valve V is housed in the solenoid case member 31, and although not shown in detail, a cylindrical stator including a coil and a cylindrical movable member movably inserted in the stator. It has an iron core and a plunger 9a which is attached to the inner circumference of the movable iron core and whose tip abuts on the plate 70.
  • the lead wire 90 that supplies electric power to the solenoid 9 is made into a wire harness, passes through the inside of the rod body 32, projects outward, and is connected to a power source.
  • the solenoid valve V is opened. Further, the relationship between the opening degree of the solenoid valve V and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree increases as the energization amount increases. Further, when the solenoid 9 is de-energized, the solenoid valve V is closed.
  • the solenoid valve V of the present embodiment is of a normally closed type, and the biasing spring 8 urges the spool 7, which is its valve element, in the closing direction, and the solenoid 9 applies thrust in the opening direction to the spool 7.
  • the opening degree increases in proportion to the energization amount of the solenoid valve V, and as the opening degree increases, the flow passage area of the bypass passage 3a increases. Therefore, it can be said that the flow passage area of the bypass passage 3a increases in proportion to the amount of electricity supplied to the solenoid valve V.
  • a gap is provided between the outer circumference of the sensor main body 42a and the inner circumference of the sensor accommodating portion 12a for passing the lead wire 90, and the lead wire 90 passes by the side of the sensor main body 42a. It is pulled out of the shock absorber D1.
  • the stroke sensor 42 includes a magnet 42b as a detected element connected to the cylinder 1 via the pipe member 17, a rod-shaped probe 42c housed in the piston rod 3 for detecting the position of the magnet 42b, and a probe 42c. It has a sensor body 42a that holds the above.
  • the stroke sensor 42 is a magnetostrictive sensor including a sensor main body 42a having an electronic circuit that applies a pulse signal to the magnetostrictive wire in the probe 42c to detect the position of the magnet 42b. If the stroke sensor 42 has a detection target held by the pipe member 17, a probe housed in the piston rod 3 to detect the position of the detection target, and a sensor main body holding the probe, It may be a slot talk sensor using a detection principle other than the above.
  • the probe 42c is always inserted into the magnet 42b as a detector together with the piston rod 3.
  • the length of the pipe member 17 that determines the axial position of the magnet 42b is always the probe even if the shock absorber body S makes a full stroke and the piston rod 3 moves up and down with respect to the cylinder 1 in FIG. 42c is set to be located on the inner circumference of the magnet 42b which is the detected element.
  • a telescopic tube member T having the outer tube 10 and the inner tube 11 slidably inserted into the outer tube 10, the outer tube 10, and the inner tube. 11, a cylinder 1 connected to one side, a piston 2 movably inserted into the cylinder 1 in the axial direction to divide the cylinder 1 into an expansion side chamber La and a compression side chamber Lb, and one end thereof is connected to the piston 2.
  • a piston rod 3 having the other end connected to the other of the outer tube 10 and the inner tube 11, and an annular rod guide 14 provided at the end of the cylinder 1 for guiding the movement of the piston rod 3.
  • a shock absorber main body S housed in the tube member T and a stroke sensor 42 for detecting stroke displacement of the shock absorber main body S are provided, and the stroke sensor 42 includes a magnet (detection target) 42b connected to the cylinder 1.
  • the stroke sensor 42 includes a magnet (detection target) 42b connected to the cylinder 1.
  • a rod-shaped probe 42c that is housed in the piston rod 3 to detect the position of the magnet (detection target) 42b, and a sensor main body 42a that holds the probe 42c, and the magnet (detection target) 42b is It is arranged on the outer periphery of the piston rod 3 and one end is attached to the other end of the pipe member 17 mounted on the anti-cylinder side of the rod guide 14.
  • the magnet 42b as the detected element is arranged on the outer circumference of the piston rod 3 and one end thereof is attached to the other end of the pipe member 17 mounted on the side opposite to the cylinder of the rod guide 14.
  • the axial position of the magnet 42b can be positioned at any position by the pipe member 17. Therefore, even if the total length of the probe 42c of the stroke sensor 42 is shorter than that of the rod main body 32 of the piston rod, the probe 42c can always be installed at a position facing the magnet (detected object) 42b, so that the total length of the piston rod 3 becomes extremely long.
  • the dual-purpose shock absorber D1 the problem that the probe length is insufficient and the stroke displacement cannot be detected is solved.
  • the stroke displacement can be detected even if the total length is long.
  • the pipe member 17 faces the cushion rubber 25 mounted on the outer circumference of the piston rod 3, and when the shock absorber D1 contracts the most, it collides with the cushion rubber 25 and collides with the cushion rubber 25. Regulate further contraction.
  • the shock absorber D1 of the present embodiment by providing the pipe member 17, not only the axial position of the magnet 42b as the detected element is positioned, but also the cushion rubber 25 cooperates with the shock absorber D1. A cushioning function that alleviates the shock at the time of the most contraction of the container D1 can be exhibited.
  • the shock absorber D1 of the present embodiment adjusts the flow rate of the hard side damping element 21 in addition to the damping force adjusting unit for automatically adjusting the flow rate of the hard side damping element 21 including the solenoid valve V. It is equipped with a second damping force adjustment unit for manual adjustment. As shown in FIG. 1, the second damping force adjusting portion is provided in the bottom portion of the shock absorber D, and the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the liquid reservoir R is manually set. It is configured to have a manual valve 41 that can be changed by operation.
  • the manual valve 41 includes a needle-shaped valve body 41a which is seated on and detached from an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • the shock absorber D includes a cylinder 1 and a piston 2 that is slidably inserted into the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb.
  • the piston rod 3 has a tip connected to the piston 2 and a distal end protruding outside the cylinder 1, and a tank 16 connected to the expansion side chamber La in the cylinder 1, and the pressure in the expansion side chamber La is the tank pressure. It has become.
  • the shock absorber D is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage 3a as passages for communicating the extension side chamber La and the compression side chamber Lb.
  • the expansion side passage 2a is provided with an expansion side check valve 20 that allows only one-way flow of liquid from the expansion side chamber La to the compression side chamber Lb, and the liquid from the compression side chamber Lb to the expansion side chamber La is 2b or the bypass 3a.
  • the pressure side passage 2b is provided with an orifice 21b and a leaf valve 21a arranged in parallel with the orifice 21b, and a hard side damping element 21 that gives resistance to the flow of liquid.
  • the bypass passage 3a is configured to have an orifice 50b having a larger opening area than the orifice 21b and a leaf valve 50a arranged in parallel with the leaf valve 21a and having a valve rigidity lower than that of the leaf valve 21a.
  • a soft side damping element 50 having a reduced resistance is provided.
  • bypass path 3a is provided with a solenoid valve V in series with the soft side damping element 50, and the flow path area of the bypass path 3a can be changed by adjusting the amount of electricity supplied to the solenoid valve V. ing.
  • the solenoid valve V is a normally closed type and is set so as to increase the flow passage area of the bypass passage 3a in proportion to the energization amount.
  • the shock absorber D is provided with a suction passage 4a and a discharge passage 4b as passages that connect the pressure side chamber Lb and the tank 16 to each other.
  • the suction passage 4a is provided with a suction valve 40 that allows only one-way flow of the liquid from the tank 16 to the pressure side chamber Lb.
  • the discharge passage 4b is provided with a normally closed manual valve 41 that is opened and closed by manual operation.
  • the shock absorber D is configured as described above, and when the shock absorber D contracts, the piston rod 3 invades into the cylinder 1 and the piston 2 compresses the compression side chamber Lb. Normally, the manual valve 41 closes the discharge passage 4b. Therefore, when the shock absorber D contracts, the liquid in the pressure side chamber Lb moves to the extension side chamber La through the pressure side passage 2b or the bypass passage 3a. A resistance is given to the flow of the liquid by the hard side damping element 21 or the soft side damping element 50, and a compression side damping force due to the resistance is generated.
  • the shock absorber D contracts in a normal state
  • the distribution ratio of the liquid passing through the hard damping element 21 and the soft damping element 50 changes depending on the flow passage area of the bypass passage 3a, whereby the damping coefficient is large or small.
  • the compression-side damping force generated as a result is adjusted in magnitude.
  • the hard-side damping element 21 and the soft-side damping element 50 are configured to have the orifices 21b and 50b and the leaf valves 21a and 50a arranged in parallel with the orifices 21b and 50b, respectively. Therefore, the damping force characteristic becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and becomes the piston speed peculiar to the leaf valve when the piston speed is in the medium to high speed range.
  • the valve characteristics are proportional.
  • the damping coefficient is increased in the soft mode in which the proportion of the liquid toward the soft side damping element 50 increases. Becomes smaller in both the low speed range and the medium and high speed range, and the compression side damping force generated with respect to the piston speed becomes small.
  • the damping coefficient becomes large and small, as shown in FIG.
  • the slope of the characteristic line showing the damping force characteristic on the compression side changes.
  • the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
  • the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and in the middle/high speed region
  • the slope of the characteristic line showing the damping force property becomes smaller in the low speed region and the middle/high speed region. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
  • the soft side damping element 50 has a leaf valve 50a having low valve rigidity in parallel with the orifice 50b. Therefore, even if a valve with high valve rigidity and high valve opening pressure is adopted as the leaf valve 21a of the hard side damping element 21 and the adjustment range in the direction of increasing the compression side damping force is increased, the damping force in the soft mode is increased. Does not become too large.
  • the energization of the solenoid valve V is cut off and the mode is switched to the hard mode.
  • the manual valve 41 is opened, the liquid in the compression side chamber Lb passes through not only the compression side passage 2b but also the discharge passage 4b, so that the flow rate of the liquid passing through the hard side damping element 21 is reduced. The compression side damping force is reduced.
  • the liquid for 3 volumes of the piston rod that has entered the cylinder 1 when the shock absorber D1 is contracted is discharged from the extension side chamber La to the tank 16.
  • the extension side check valve 20 opens, and the liquid in the extension side chamber La moves to the compression side chamber Lb through the extension side passage 2a. At this time, the liquid can pass through the extension check valve 20 without any resistance. Further, the extension side chamber La is communicated with the tank 16 and is maintained at the tank pressure. Therefore, the shock absorber D1 does not exert a damping force on the extension side. As described above, the shock absorber D1 forms a front fork by forming a pair with a shock absorber that generates a damping force only during extension, so when the front wheel is separated from the vehicle body, the shock absorber D1 is attenuated only during extension. A shock absorber that exerts power suppresses the vibration of the vehicle body.
  • the shock absorber D1 includes a cylinder 1, a piston 2 that is movably inserted in the cylinder 1 in the axial direction, and divides the inside of the cylinder 1 into an expansion side chamber La and a compression side chamber Lb, and this piston. 2 and a piston rod 3 having one end protruding outside the cylinder 1.
  • the shock absorber D1 separates the hard side damping element 21 that provides resistance to the flow of the liquid from the compression side chamber Lb toward the expansion side chamber La, and the pressure side chamber Lb and the expansion side chamber La by bypassing the hard side damping element 21.
  • An electromagnetic valve V capable of changing the flow path area of the bypass path 3a communicating with the bypass path 3a and a soft side damping element 50 provided in series with the electromagnetic valve V on the bypass path 3a are provided.
  • the hard damping element 21 has an orifice 21b and a leaf valve 21a provided in parallel with the orifice 21b.
  • the soft side damping element 50 has an orifice (large diameter orifice) 50b having an opening area larger than that of the orifice 21b.
  • the characteristic of the damping force generated when the shock absorber D1 contracts becomes the orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium and high speed range, it becomes the orifice characteristic.
  • the valve characteristics are peculiar to leaf valves. Then, if the opening area of the bypass passage 3a is changed by the solenoid valve V, of the liquid that moves from the compression side chamber Lb to the expansion side chamber La when the shock absorber D1 contracts, the hard side damping element 21 and the soft side damping element 50 of the liquid.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be freely set, and the piston speed can be set to the medium and high speed range.
  • the adjustment range of the compression side damping force in a certain case can be increased.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range become small.
  • both the damping coefficient when the piston speed is in the low speed region and the damping coefficient when the piston speed is in the medium and high speed region are large. Therefore, when the characteristic of the compression side damping force changes from the orifice characteristic in the low speed region to the valve characteristic in the medium and high speed region, the change in the slope of the characteristic line becomes gentle in any mode.
  • the shock absorber D according to the present embodiment is mounted on a vehicle, it is possible to reduce the discomfort caused by the change in the inclination and improve the ride comfort of the vehicle.
  • the piston 2 is connected to the other end of the piston rod 3 to form a single rod type.
  • the shock absorber D includes a tank 16 connected to the extension side chamber La, and a suction valve 40 that allows only the flow of liquid from the tank 16 to the compression side chamber Lb. With this configuration, the tank 16 can compensate for the volume of the piston rod 3 that moves in and out of the cylinder 1.
  • the shock absorber D1 can be a one-sided shock absorber that exerts a damping force only in the compression stroke.
  • the solenoid valve V is set so that the opening degree changes in proportion to the energization amount. With this configuration, the opening area of the bypass 3a can be changed steplessly.
  • the shock absorber D1 of the present embodiment includes a manual valve 41 in which the flow path area of the discharge passage 4b communicating the compression side chamber Lb and the tank 16 can be changed by manual operation. According to this configuration, even if the solenoid valve V is closed at the time of failure, the compression side damping force generated by manually opening the manual valve 41 is reduced. For this reason, it is possible to prevent the compression side damping force in the fail mode from becoming excessive, and it is possible to improve the ride comfort of the vehicle.
  • a tubular holder 6 in which a port 6a in which the solenoid valve V is connected to the bypass path 3a is formed and a port 6a that is reciprocally inserted into the holder 6 are inserted.
  • a tubular spool 7 that can be opened and closed, an urging spring 8 that urges the spool 7 in one direction of movement of the spool 7, and a thrust force in the direction opposite to the urging force of the urging spring 8 is applied to the spool 7.
  • a solenoid 9 for giving it.
  • a needle valve that can reciprocate as a valve body is provided, and the opening degree is increased or decreased by increasing or decreasing the gap formed between the tip of the needle valve and the valve seat.
  • the stroke amount of the valve element must be increased in order to increase the adjustment range of the opening, but this may not be possible.
  • the stroke amount of the needle valve is increased, the movable space of the needle valve increases and it becomes difficult to secure the accommodation space.
  • the stroke amount of the solenoid plunger is increased in order to increase the stroke amount of the needle valve, the solenoid design must be changed, which is complicated.
  • parts are needed to increase the travel of the needle valve relative to the travel of the plunger, increasing the number of parts and accommodating space. It becomes difficult to secure.
  • the port 6a formed in the holder 6 is opened and closed by the spool 7 that is reciprocally inserted in the cylindrical holder 6, whereby the solenoid valve V Is designed to open and close. Therefore, if a plurality of ports 6a are formed in the circumferential direction of the holder 6 or have a shape that is long in the circumferential direction, the stroke of the spool 7 that is the valve body of the solenoid valve V can be increased without increasing the stroke amount of the solenoid valve V. The opening can be increased. Therefore, the adjustment range of the opening degree of the solenoid valve V can be increased, and the adjustment range of the compression side damping force can be easily increased.
  • the relationship between the opening degree of the solenoid valve V and the energization amount can be easily changed.
  • the port 6a is positioned so that the port 6a opens to the maximum when the energized amount is not energized.
  • a port 7a for opening this port 6a may be arranged.
  • the relationship between the opening degree of the solenoid valve V and the energization amount can be freely changed, and the presence or absence of the manual valve 41 can be selected according to the change.
  • the shock absorber D2 of the second embodiment is slidably inserted into the outer tube 10 and the outer tube 10 in the same manner as the shock absorber D1 of the first embodiment.
  • a telescopic type tube member T having an inner tube 11, a cylinder 1 connected to the inner tube 11, and an extension side chamber La and a compression side chamber Lb which are inserted into the cylinder 1 so as to be movable in the axial direction.
  • a piston rod 3 having one end connected to the piston 2 and the other end connected to the outer tube 10, and an annular member provided at the end of the cylinder 1 for guiding the movement of the piston rod 3.
  • a shock absorber main body S having the rod guide 14 and housed in the tube member T, and a stroke sensor 42 for detecting a stroke displacement of the shock absorber main body S are provided.
  • the pipe member 17 is provided in the rod guide 14 and the magnet 42b as the detected element of the stroke sensor 42 is positioned by the pipe member 17, but the second embodiment is used.
  • the shock absorber D2 of this embodiment as shown in FIG. 4, the pipe member 17 is eliminated, the magnet 42b is attached to the rod guide 14, and the sensor body 42a is connected to the cap 12' and the piston rod 3. It differs in that it is held at 43.
  • the magnet 42b as a detector is attached to the rod guide 14.
  • the rod guide 14 has an annular main body portion 14a that fits into the cylinder 1 and a tubular oil lock case 14c that protrudes from the main body portion 14a toward the opposite cylinder side in FIG. It has and.
  • a magnet 42b is mounted on the inner circumference of the main body portion 14a of the rod guide 14, and the piston rod 3 is slidably inserted, and the rod guide 14 guides the movement of the piston rod 3.
  • a tubular cap 12' is screwed to the upper end of the outer tube 10, and the outer circumference of the upper end of the connecting pipe 43 in FIG. 4 is screwed to the inner circumference of the cap 12'. Is screwed on.
  • the inner circumference of the lower end of FIG. 4 of the connecting pipe 43 is screwed to the outer circumference of the upper end of the rod body 32 of FIG. 4 of the piston rod 3, and the cap 12'and the piston rod 3 are connected via the connecting pipe 43. Has been done.
  • the cap 12 ′ has a cylindrical shape, and the outer peripheral threaded cylindrical portion 12 a ′ screwed to the inner circumference of the outer tube 10 and the outer peripheral threaded cylindrical portion 12 a ′ are connected to the lower side in FIG. It is provided with an inner peripheral screw cylinder portion 12b'screwed to.
  • the connecting pipe 43 is tubular and includes a large-diameter housing cylinder 43a for housing the sensor body 42a, and a connecting cylinder 43b having a smaller diameter than the housing cylinder 43a connected to the cylinder side of the housing cylinder 43a. There is.
  • the upper end of the accommodating cylinder portion 43a of the connecting pipe 43 is connected to the inner peripheral screw cylinder portion 12b'of the cap 12'by screw fastening, and the connecting cylinder portion 43b of the connecting pipe 43 is connected to the upper end of the piston rod 3.
  • a suspension spring 15 made of a coil spring is interposed between the rod guide 14 and the cap 12'.
  • the suspension spring 15 is arranged on the outer periphery of the connecting pipe 43 and is interposed between the rod guide 14 and the cap 12'to urge the shock absorber D2 in the extension direction.
  • the upper end of the suspension spring 15 is supported by the spring receiver 23 fitted to the outer periphery of the piston rod connecting portion 12b'of the cap 12', and the lower end of the suspension spring 15 in FIG. 4 is the rod guide 14. It is supported by a spring receiver 27 that is stacked on the end of the oil lock case 14c.
  • An annular oil lock piece 44 is mounted on the outer periphery of the piston rod 3, and when the shock absorber D2 contracts to the vicinity of the stroke end, the oil lock piece 44 enters the oil lock case 14c provided in the rod guide 14. The pressure inside the oil lock case 14c increases to prevent the shock absorber D2 from contracting. As described above, in the shock absorber D2 of the present embodiment, since the pipe member 17 is abolished, the oil lock case 14c can be installed on the rod guide 14, and the oil lock function for alleviating the impact at the time of maximum contraction of the shock absorber D1 is exhibited. it can.
  • the sensor body 42a of the stroke sensor 42 is housed and fixed in the housing tube 43a of the connecting pipe 43, and the probe 42c extending from the sensor body 42a is inserted into the connecting tube 43b and the rod body 32. Has been done. Also in the shock absorber D2 of the present embodiment, the lead wire 90 of the solenoid 9 is housed in the rod body 32 together with the probe 42c, and is outside the shock absorber D2 via the connecting pipe 43 and the cap 12'. Have been pulled out to.
  • the probe 42c is always inserted into the magnet 42b as a detector together with the piston rod 3.
  • the length of the connecting pipe 43 that determines the axial position of the sensor body 42a is always the same even when the shock absorber body S makes a full stroke and the piston rod 3 moves up and down with respect to the cylinder 1 in FIG.
  • the probe 42c is set so as to be located on the inner circumference of the magnet 42b which is the detected element.
  • the stroke sensor 42 is housed in the rod guide 14, the probe housed in the piston rod 3 to detect the position of the body to be detected, and the stroke sensor 42 is housed in the connecting pipe 43 while holding the probe. If it has a sensor body, it may be a Slotalk sensor using a detection principle other than the above.
  • the tube member T is turned upside down from the state shown in FIG. 4, and the piston rod 3 is connected to the inner tube 11 via the connecting pipe 43 and the cap 12'. Then, the cylinder 1 may be connected to the outer tube 10 to accommodate the shock absorber body S in the tube member T.
  • the telescopic type tube member T having the outer tube 10 and the inner tube 11 slidably inserted into the outer tube 10, the outer tube 10 and the inner tube
  • a cylinder 1 connected to one of the elevens, a piston 2 movably inserted into the cylinder 1 in the axial direction to partition the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb, and one end connected to the piston 2.
  • It also has a piston rod 3 whose other end is connected to the other of the outer tube 10 and the inner tube 11, and an annular rod guide 14 provided at the end of the cylinder 1 to guide the movement of the piston rod 3.
  • a shock absorber body S housed in the tube member T and a stroke sensor 42 for detecting the stroke displacement of the shock absorber body S are provided, and the stroke sensor 42 includes a magnet (detected element) 42b connected to the cylinder 1.
  • the piston (detector) 42b has a rod-shaped probe 42c that is housed in the piston rod 3 and detects the position of the magnet (detector) 42b, and a sensor body 42a that holds the probe 42c. It is mounted on the inner circumference of the rod guide 14, and the sensor body 42a is housed inside a connecting pipe 43 that connects the cap 12'that closes the opening of the outer tube 10 and the piston rod 3.
  • the sensor body 42a of the stroke sensor 42 is housed in the connecting pipe 43 that connects the piston rod 3 to the cap 12', and the axial position of the sensor body 42a is connected to the connecting pipe 43. Can be positioned at any position. Further, in the shock absorber D2, since the cap 12'and the piston rod 3 are connected by the connecting pipe 43, the total length of the piston rod 3 is not adjusted to the total length of the shock absorber D2, but is suitable for the stroke length of the shock absorber body S. It is sufficient to make the length longer, and it is not necessary to make the piston rod length longer.
  • the shock absorber D2 of the present invention it is not necessary to lengthen the total length of the piston rod 3 even if the total length of the shock absorber D2 is long, and the probe 42c of the stroke sensor 42 is always magnetized (detected element) 42b. It can be installed at a position facing. Therefore, even if the shock absorber D2 for a saddle vehicle has a very long overall length, the problem that the stroke displacement cannot be detected due to the insufficient probe length is solved. From the above, according to the shock absorber D2 of the present invention, the stroke displacement can be detected even if the total length is long.
  • the shock absorber D2 of the present embodiment includes a suspension spring (coil spring) 15 arranged on the outer periphery of the connecting pipe 43 and interposed between the rod guide 14 and the cap 12'.
  • a suspension spring (coil spring) 15 arranged on the outer periphery of the connecting pipe 43 and interposed between the rod guide 14 and the cap 12'.
  • the connecting pipe 43 accommodating the sensor body 42a can be arranged on the inner circumference of the suspension spring (coil spring) 15, the sensor body 42a can be arbitrarily placed in the suspension spring (coil spring) 15.
  • the probe can be installed at the position (1), and the length of the suspension spring (coil spring) 15 is less likely to be restricted by the probe length. Therefore, the degree of freedom in designing the shock absorber D2 is improved.
  • the shock absorbers D1 and D2 are single-acting shock absorbers that exert a damping force only during contraction, but instead of the hard side damping element 21 in the compression side passage 2b, the compression side chamber Lb to the expansion side chamber La are replaced.
  • a check valve that allows only the flow of the liquid toward the expansion side passage 2a is provided as a damping passage, and a hard side damping element that provides resistance to the flow of the liquid toward the compression side chamber Lb from the expansion side chamber La is provided.
  • a soft side damping element that provides resistance to the flow of liquid from the expansion side chamber La to the compression side chamber Lb is provided, and the suction valve 40 in the suction passage 4a is eliminated, and the discharge passage 4b and the manual valve 41 are provided.
  • the shock absorbers D1 and D2 may be used as shock absorbers that exert a damping force only when extended.
  • the shock absorber D is configured in this way, the damping coefficient increases or decreases when the distribution ratio of the liquid passing through the hard side damping element and the soft side damping element is changed by the electromagnetic valve V, so that the characteristic line showing the damping force characteristic on the extension side.
  • the inclination of is changed in the same manner as the shock absorbers D1 and D2 that exert damping force only on the compression side.
  • the solenoid valve V when it is not necessary to make the damping force characteristics when the piston speed is in the normal speed range to be the valve characteristics, only the solenoid valve V is provided in the bypass passage 3a and the soft side damping element 50 is provided. May be omitted, or the hard-side damping element 21 may be omitted and the damping force on both sides of contraction, extension or expansion and contraction may be adjusted only by the solenoid valve V.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)

Abstract

This damper (D1, D2) is provided with: a telescopic tube member (T); a cylinder (1) that is coupled to an outer tube (10) or an inner tube (11); a piston that is inserted into the cylinder (1); a piston rod (3) that is coupled to the piston (2) and coupled to the outer tube (10) or the inner tube (11); a damper main body (S) that has a ring-shaped rod guide (14) that guides the movement of the piston rod; and a stroke sensor (42) that senses stroke displacement of the damper main body (S). The damper is provided with: a pipe member (17) that is mounted on the rod guide (14) and to which a sensed piece (42b) is attached; or a coupling pipe that accommodates the sensor main body and couples a cap (12, 12') and the piston rod (3).

Description

緩衝器Buffer
 本発明は、緩衝器の改良に関する。 The present invention relates to an improvement of a shock absorber.
 緩衝器には、アウターチューブと、アウターチューブ内に摺動自在に挿入されるインナーチューブとを有して構成されるテレスコピック型のチューブ部材と、アウターチューブとインナーチューブとの間に介装されて伸縮時に減衰力を発生する緩衝器本体とを備えて構成されて、鞍乗型車両の車体と前輪との間に介装されるものがある。 The shock absorber is interposed between the outer tube and the inner tube, and a telescopic tube member having the outer tube and the inner tube slidably inserted into the outer tube. 2. Description of the Related Art There is a structure including a shock absorber body that generates a damping force when expanding and contracting, and is interposed between a vehicle body and a front wheel of a saddle type vehicle.
 このような緩衝器では、シリンダに対するピストンロッドの位置を検知するために、ストロークセンサを備える場合がある。ストロークセンサは、環状の磁石と、磁石の位置を検知するためのプローブと、プローブを保持するセンサ本体を備えており、緩衝器に対しては以下のようにして組み込まれる。具体的には、磁石は、シリンダの開口端を閉塞するとともにピストンロッドの移動を案内するロッドガイドの内周に装着され、プローブは、ピストンロッド内に収容され、センサ本体は、アウターチューブの上端開口端を閉塞するキャップ内に収容される。このようにして構成された緩衝器では、シリンダに対してピストンロッドが軸方向に相対変位すると、磁石に対してプローブも同様に相対移動するので、ストロークセンサによって緩衝器のストローク変位を検知できる(たとえば、特許文献1参照)。 In such a shock absorber, a stroke sensor may be provided to detect the position of the piston rod with respect to the cylinder. The stroke sensor includes an annular magnet, a probe for detecting the position of the magnet, and a sensor body that holds the probe, and is incorporated into the shock absorber as follows. Specifically, the magnet is attached to the inner circumference of the rod guide that closes the open end of the cylinder and guides the movement of the piston rod, the probe is housed in the piston rod, and the sensor body is the upper end of the outer tube. It is housed in a cap that closes the open end. In the shock absorber thus configured, when the piston rod is relatively displaced in the axial direction with respect to the cylinder, the probe is also relatively moved with respect to the magnet. Therefore, the stroke displacement of the shock absorber can be detected by the stroke sensor ( For example, see Patent Document 1).
JP2016-161048AJP2016-161048A
 緩衝器が鞍乗型車両に適用される場合、緩衝器は、全長が非常に長くなる傾向にあって、ピストンロッドも非常に長くなる。ピストンロッドは、キャップを介してアウターチューブに連結されており、緩衝器本体をアウターチューブに連結する役割を果たすため、緩衝器本体のストローク長よりもはるかに長くなる。 When the shock absorber is applied to a saddle-mounted vehicle, the shock absorber tends to have a very long overall length, and the piston rod also becomes very long. The piston rod is connected to the outer tube via the cap and plays a role of connecting the shock absorber body to the outer tube, and thus is much longer than the stroke length of the shock absorber body.
 他方、ストロークセンサは、センサ本体がキャップに固定されるとともに、プローブをピストンロッド内に収容しているので、ピストンロッドの全長が長くなるとプローブ長さが足りなくなって緩衝器のストローク変位を検知できなくなる場合がある。 On the other hand, in the stroke sensor, the sensor body is fixed to the cap and the probe is housed in the piston rod. Therefore, when the total length of the piston rod becomes long, the probe length becomes insufficient and the stroke displacement of the shock absorber can be detected. It may disappear.
 そこで、本発明は、全長が長尺となってもストローク変位を検知可能な緩衝器の提供を目的としている。 Therefore, an object of the present invention is to provide a shock absorber capable of detecting stroke displacement even if the total length is long.
 前記課題を解決するため、課題解決手段における緩衝器は、アウターチューブと、アウターチューブ内に摺動自在に挿入されるインナーチューブとを有するテレスコピック型のチューブ部材と、アウターチューブとインナーチューブの一方に連結されるシリンダと、シリンダ内に軸方向へ移動可能に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、一端がピストンに連結されるとともに他端がアウターチューブとインナーチューブの他方に連結されるピストンロッドと、シリンダの端部に設けられて前記ピストンロッドの移動を案内する環状のロッドガイドとを有して前記チューブ部材内に収容される緩衝器本体と、緩衝器本体のストローク変位を検知するストロークセンサとを備え、ストロークセンサは、シリンダに連結される被検出子と、ピストンロッド内に収容されて被検出子の位置を検知するロッド状のプローブと、前記プローブを保持するセンサ本体とを有し、被検出子は、ピストンロッドの外周に配置されて一端がロッドガイドの反シリンダ側に装着されるパイプ部材の他端に取り付けられている。 In order to solve the above problems, the shock absorber in the problem solving means is provided on one of a telescopic type tube member having an outer tube and an inner tube slidably inserted into the outer tube, and one of the outer tube and the inner tube. A cylinder to be connected, a piston that is movably inserted into the cylinder and divides the inside of the cylinder into an extension side chamber and a compression side chamber, and one end is connected to the piston and the other end is an outer tube and an inner tube. A shock absorber body housed in the tube member having a piston rod connected to the other end and an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod, and a shock absorber body. The stroke sensor includes a stroke sensor that detects the stroke displacement of the above, and the stroke sensor includes a detector connected to a cylinder, a rod-shaped probe housed in a piston rod to detect the position of the detector, and the probe. It has a sensor body to hold, and the detector is arranged on the outer periphery of the piston rod, and one end thereof is attached to the other end of a pipe member mounted on the anti-cylinder side of the rod guide.
 このように構成された緩衝器によれば、被検出子がピストンロッドの外周に配置されて一端がロッドガイドの反シリンダ側に装着されるパイプ部材の他端に取り付けられているので、被検出子の軸方向位置をパイプ部材によって任意の位置に位置決めできる。 According to the shock absorber thus configured, the detected element is arranged on the outer circumference of the piston rod, and one end thereof is attached to the other end of the pipe member mounted on the side opposite to the cylinder of the rod guide. The axial position of the child can be positioned at any position by the pipe member.
 また、他の課題解決手段における緩衝器は、アウターチューブと、アウターチューブ内に摺動自在に挿入されるインナーチューブとを有するテレスコピック型のチューブ部材と、アウターチューブとインナーチューブの一方に連結されるシリンダと、シリンダ内に軸方向へ移動可能に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、一端がピストンに連結されるとともに他端がアウターチューブとインナーチューブの他方に連結されるピストンロッドと、シリンダの端部に設けられてピストンロッドの移動を案内する環状のロッドガイドとを有してチューブ部材内に収容される緩衝器本体と、緩衝器本体のストローク変位を検知するストロークセンサとを備え、ストロークセンサは、シリンダに連結される被検出子と、ピストンロッド内に収容されて被検出子の位置を検知するロッド状のプローブと、プローブを保持するセンサ本体とを有し、被検出子は、ロッドガイドの内周に装着されており、センサ本体は、アウターチューブとインナーチューブの他方の開口部を閉塞するキャップとピストンロッドとを連結する連結パイプの内方に収容されることを特徴とする。 Further, the shock absorber in another problem-solving means is connected to one of the outer tube and the inner tube by a telescopic type tube member having an outer tube and an inner tube slidably inserted into the outer tube. A cylinder, a piston that is movably inserted into the cylinder to partition the inside of the cylinder into an extension chamber and a compression side chamber, and one end connected to the piston and the other end connected to the other of the outer tube and inner tube. And a shock absorber body accommodated in the tube member having an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod, and stroke displacement of the shock absorber body is detected. The stroke sensor includes a detection target connected to the cylinder, a rod-shaped probe that is housed in the piston rod to detect the position of the detection target, and a sensor main body that holds the probe. The detector is mounted on the inner circumference of the rod guide, and the sensor body is inside the connecting pipe that connects the cap and the piston rod that close the other opening of the outer tube and the inner tube. It is characterized by being contained.
 このように構成された緩衝器では、センサ本体がピストンロッドをキャップに連結する連結パイプ内に収容されており、センサ本体の軸方向位置を連結パイプによって任意の位置に位置決めできるとともに、ピストンロッド長を長尺にする必要が無くなる。 In the shock absorber thus configured, the sensor main body is housed in the connecting pipe that connects the piston rod to the cap, and the axial position of the sensor main body can be positioned at any position by the connecting pipe. There is no need to make the length longer.
 また、緩衝器は、ピストンロッドの外周に装着されるともにクッションラバーを備え、緩衝器本体の最収縮時にクッションラバーとパイプ部材とが衝合して緩衝器本体の収縮を規制してもよい。このように構成された緩衝器によれば、パイプ部材を設けることで、被検出子の軸方向位置を位置決めするだけでなく、クッションラバーと協働して最収縮時の衝撃を緩和するクッション機能を発揮できる。 Also, the shock absorber may be attached to the outer circumference of the piston rod and may also include a cushion rubber, and the cushion rubber and the pipe member may collide with each other when the shock absorber main body is contracted most to regulate the contraction of the shock absorber main body. According to the shock absorber thus configured, by providing the pipe member, not only the axial position of the detected element is positioned, but also the cushion function is provided in cooperation with the cushion rubber to reduce the impact at the time of the most contraction. Can be demonstrated.
 さらに、緩衝器は、連結パイプの外周に配置されてロッドガイドとキャップとの間に介装されるコイルばねを備えてもよい。このように構成された緩衝器では、センサ本体を収容する連結パイプをコイルばねの内周に配置できるから、センサ本体をコイルばね内で任意の位置に設置でき、プローブ長の制約を受けにくくなるとともに、コイルばねの全長における制約も受けにくくなり、設計自由度が向上する。 Further, the shock absorber may be provided with a coil spring which is arranged on the outer circumference of the connecting pipe and is interposed between the rod guide and the cap. In the shock absorber thus configured, since the connecting pipe that accommodates the sensor body can be arranged on the inner circumference of the coil spring, the sensor body can be installed at an arbitrary position within the coil spring and is less likely to be restricted by the probe length. At the same time, there is less restriction on the total length of the coil spring, and the degree of freedom in design is improved.
 また、緩衝器は、ピストンロッド内に緩衝器本体が発生する減衰力を調整する電磁弁を備えており、電磁弁におけるソレノイドのリード線とプローブとをピストンロッド内に収容してもよい。このように構成された緩衝器によれば、ストロークセンサのプローブとリード線とがピストンロッド内に収容されるので、電磁弁を利用した減衰力調整を可能とするとともに緩衝器のストロークの検知も可能となる。 The shock absorber also includes a solenoid valve in the piston rod that adjusts the damping force generated by the shock absorber body, and the solenoid lead wire and probe of the solenoid valve may be housed in the piston rod. According to the shock absorber thus configured, since the probe of the stroke sensor and the lead wire are housed in the piston rod, it is possible to adjust the damping force using the solenoid valve and also detect the stroke of the shock absorber. It will be possible.
 本発明に係る緩衝器によれば、全長が長尺となってもストローク変位を検知可能となる。 According to the shock absorber according to the present invention, the stroke displacement can be detected even if the total length is long.
図1は、本発明の第一の実施の形態に係る緩衝器である緩衝器の縦断面図である。FIG. 1 is a vertical sectional view of a shock absorber which is a shock absorber according to a first embodiment of the present invention. 図2は、図1の一部を拡大して示した縦断面図である。FIG. 2 is a longitudinal sectional view showing a part of FIG. 1 in an enlarged manner. 図3は、本発明の一実施の形態に係る緩衝器である緩衝器のピストン速度に対する圧側減衰力の特性を示した減衰力特性図である。FIG. 3 is a damping force characteristic diagram showing characteristics of the compression side damping force with respect to the piston speed of the shock absorber which is the shock absorber according to the embodiment of the present invention. 図4は、本発明の第二の実施の形態に係る緩衝器である緩衝器の縦断面図である。FIG. 4 is a vertical cross-sectional view of a shock absorber which is a shock absorber according to a second embodiment of the present invention.
 以下に本発明の実施の形態の緩衝器D1,D2について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品或いは対応する部品を示す。また、本発明の実施の形態に係る緩衝器D1,D2は、鞍乗型車両の前輪を懸架するフロントフォークに利用されている。以下の説明では、その緩衝器Dを含むフロントフォークが車両に取り付けられた状態での上下を、特別な説明がない限り、単に「上」「下」という。 The buffers D1 and D2 according to the embodiment of the present invention will be described below with reference to the drawings. The same reference numerals allotted throughout the several figures refer to the same or corresponding parts. Further, the shock absorbers D1 and D2 according to the embodiment of the present invention are used for a front fork that suspends the front wheels of a saddle-mounted vehicle. In the following description, the upper and lower sides with the front fork including the shock absorber D attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
 <第一の実施の形態>
 第一の実施の形態の緩衝器D1は、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有するテレスコピック型のチューブ部材Tと、インナーチューブ11に連結されるシリンダ1と、シリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、一端がピストン2に連結されるとともに他端がアウターチューブ10に連結されるピストンロッド3と、シリンダ1の端部に設けられてピストンロッド3の移動を案内する環状のロッドガイド14とを有してチューブ部材T内に収容される緩衝器本体Sと、緩衝器本体Sのストローク変位を検知するストロークセンサ42とを備えている。
<First embodiment>
The shock absorber D1 of the first embodiment is connected to the inner tube 11 and a telescopic type tube member T having an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10. The cylinder 1 and the piston 2 which is movably inserted into the cylinder 1 to divide the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb, one end is connected to the piston 2 and the other end is an outer tube. A shock absorber main body S having a piston rod 3 connected to 10 and an annular rod guide 14 provided at the end of the cylinder 1 to guide the movement of the piston rod 3 and housed in the tube member T. A stroke sensor 42 for detecting the stroke displacement of the shock absorber main body S is provided.
 そして、図1に示すように、本実施の形態では、緩衝器D1は、収縮時にのみ減衰力を発揮する片効きの緩衝器とされており、電磁弁Vによって緩衝器D1の圧側減衰力の調節が可能となっている。なお、図示はしないが、緩衝器D1は、鞍乗型車両のステアリングシャフトに連結されるブラケットによって伸長時にのみ減衰力を発揮する片効きの緩衝器と連結されている。よって、緩衝器Dと伸長時にのみ減衰力を発揮する緩衝器は、対を成して鞍乗型車両の前輪を支持するフロントフォークを形成し、協働して鞍乗型車両の車体の振動を抑制する。 Then, as shown in FIG. 1, in the present embodiment, the shock absorber D1 is a one-sided shock absorber that exerts a damping force only when contracted, and the solenoid valve V is used to reduce the pressure side damping force of the shock absorber D1. It can be adjusted. Although not shown, the shock absorber D1 is connected to a one-sided shock absorber that exerts a damping force only when extended by a bracket connected to the steering shaft of the saddle type vehicle. Therefore, the shock absorber D and the shock absorber that exerts a damping force only when extended form a pair to form a front fork that supports the front wheels of the saddle-ride type vehicle, and cooperate to vibrate the vehicle body of the saddle-ride type vehicle. Suppress.
 まず、本発明の第一の実施の形態の緩衝器D1について具体的に説明する。図2に示すように、緩衝器D1は、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有して構成されるテレスコピック型のチューブ部材Tを備える。 First, the shock absorber D1 according to the first embodiment of the present invention will be specifically described. As shown in FIG. 2, the shock absorber D1 includes a telescopic tube member T including an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10.
 そして、鞍乗型車両が凹凸のある路面を走行するなどして前輪が上下に振動すると、インナーチューブ11がアウターチューブ10に出入りしてチューブ部材Tが伸縮する。このように、チューブ部材Tが伸縮することを、緩衝器D1が伸縮するともいう。なお、チューブ部材Tは、正立型になっていて、アウターチューブ10が車軸側チューブ、インナーチューブ11が車体側チューブとなっていてもよい。 Then, when the front wheels vibrate up and down, such as when the saddle riding type vehicle travels on an uneven road surface, the inner tube 11 moves in and out of the outer tube 10, and the tube member T expands and contracts. Expansion and contraction of the tube member T is also referred to as expansion and contraction of the shock absorber D1. The tube member T may be an upright type, the outer tube 10 may be an axle side tube, and the inner tube 11 may be a vehicle body side tube.
 つづいて、チューブ部材Tの上端となるアウターチューブ10の上端は、キャップ12で塞がれている。その一方、チューブ部材Tの下端となるインナーチューブ11の下端は、車軸側のブラケットBで塞がれている。さらに、アウターチューブ10とインナーチューブ11の重複部の間にできる筒状の隙間は、アウターチューブ10の下端に装着されてインナーチューブ11の外周に摺接する環状のシール部材13で塞がれている。 Subsequently, the upper end of the outer tube 10 which is the upper end of the tube member T is closed by the cap 12. On the other hand, the lower end of the inner tube 11 which is the lower end of the tube member T is closed by the bracket B on the axle side. Further, the cylindrical gap formed between the overlapping portion of the outer tube 10 and the inner tube 11 is closed by an annular seal member 13 that is attached to the lower end of the outer tube 10 and is in sliding contact with the outer circumference of the inner tube 11. ..
 このようにしてチューブ部材T内は密閉空間とされており、そのチューブ部材T内に緩衝器本体Sが収容されている。この緩衝器本体Sは、インナーチューブ11内に設けられるシリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン2と、下端がピストン2に連結されるとともに上端がシリンダ1外へと突出してキャップ12に連結されるピストンロッド3とを有している。そして、緩衝器本体Sにおけるピストンロッド3は、アウターチューブ10の図1中上端を閉塞するキャップ12を介してアウターチューブ10に連結され、シリンダ1は、インナーチューブ11に連結されている。なお、ピストンロッド3をアウターチューブ10に連結し、シリンダ1をインナーチューブ11に連結しているが、チューブ部材Tを図1に示す状態から天地逆さまにし、ピストンロッド3をインナーチューブ11に連結し、シリンダ1がアウターチューブ10に連結して、緩衝器本体Sをチューブ部材Tに収容してもよい。 In this way, the inside of the tube member T is a closed space, and the shock absorber main body S is accommodated in the tube member T. The shock absorber body S has a cylinder 1 provided in an inner tube 11, a piston 2 slidably inserted in the cylinder 1, a lower end connected to the piston 2, and an upper end outside the cylinder 1. It has a piston rod 3 that protrudes and is connected to the cap 12. The piston rod 3 in the shock absorber body S is connected to the outer tube 10 via a cap 12 that closes the upper end of the outer tube 10 in FIG. 1, and the cylinder 1 is connected to the inner tube 11. Although the piston rod 3 is connected to the outer tube 10 and the cylinder 1 is connected to the inner tube 11, the tube member T is turned upside down from the state shown in FIG. 1 and the piston rod 3 is connected to the inner tube 11. The cylinder 1 may be connected to the outer tube 10 and the shock absorber body S may be housed in the tube member T.
 キャップ12は、アウターチューブ10に連結されているので、ピストンロッド3はアウターチューブ10に連結されており、シリンダ1は、インナーチューブ11に連結されている。このように、緩衝器本体Sは、アウターチューブ10とインナーチューブ11との間に介装されている。また、キャップ12は、筒状とされており、アウターチューブ10の内周に螺着されるセンサ収容部12aと、センサ収容部12aの下端から延びる小径のピストンロッド連結部12bとを備えており、センサ収容部12a内にストロークセンサ42のセンサ本体42aを収容している。ピストンロッド3は、キャップ12のピストンロッド連結部12b内に挿入されて螺合され、キャップ12に連結される。 Since the cap 12 is connected to the outer tube 10, the piston rod 3 is connected to the outer tube 10 and the cylinder 1 is connected to the inner tube 11. In this way, the shock absorber body S is interposed between the outer tube 10 and the inner tube 11. The cap 12 has a tubular shape and includes a sensor housing portion 12a screwed to the inner circumference of the outer tube 10 and a small-diameter piston rod connecting portion 12b extending from the lower end of the sensor housing portion 12a. The sensor body 42a of the stroke sensor 42 is housed in the sensor housing portion 12a. The piston rod 3 is inserted into the piston rod connecting portion 12b of the cap 12, screwed, and connected to the cap 12.
 また、シリンダ1の上端には、環状のロッドガイド14が装着されており、このロッドガイド14の内側にピストンロッド3が軸方向へ摺動自在に挿入されている。ロッドガイド14は、シリンダ1の内周に螺着される環状の本体部14aと、本体部14aから反シリンダ側へ突出して外径が本体部14aの外径よりも小径なソケット14bと備えており、シリンダ1の図1中上端開口部を閉塞するとともにピストンロッド3の軸方向への移動を案内する。 Further, an annular rod guide 14 is mounted on the upper end of the cylinder 1, and a piston rod 3 is slidably inserted inside the rod guide 14 in the axial direction. The rod guide 14 includes an annular main body 14a screwed to the inner circumference of the cylinder 1, and a socket 14b protruding from the main body 14a to the side opposite to the cylinder and having an outer diameter smaller than the outer diameter of the main body 14a. It closes the upper end opening of the cylinder 1 in FIG. 1 and guides the movement of the piston rod 3 in the axial direction.
 ロッドガイド14のソケット14bの外周には、内方にピストンロッド3が挿通されるパイプ部材17が設けられている。パイプ部材17は、ソケット14bの外周に螺着されるパイプ18と、パイプ18の反シリンダ側に装着される筒状のホルダ19とを備えている、ホルダ19は、筒状であって、外周にパイプ18の反シリンダ側端の内周に螺着される螺子を備えた装着筒部19aと、装着筒部19aの反シリンダ側に設けられてストロークセンサ42の被検出子としての磁石42bを保持する保持筒部19bと、保持筒部19bの反シリンダ側端に装着される環状のクッションシート部材19cとを備えている。パイプ18の軸方向長さは、磁石42bの位置を適切な位置に位置決めできるように設定されている。また、磁石42bは、環状であって内周をピストンロッド3の外周に対向させている。 A pipe member 17 through which the piston rod 3 is inserted is provided on the outer periphery of the socket 14b of the rod guide 14. The pipe member 17 includes a pipe 18 that is screwed onto the outer circumference of the socket 14b, and a cylindrical holder 19 that is mounted on the opposite cylinder side of the pipe 18. The holder 19 has a cylindrical shape and the outer circumference. In addition, a mounting cylinder portion 19a provided with a screw screwed to the inner circumference of the end of the pipe 18 on the side opposite to the cylinder, and a magnet 42b provided on the side opposite to the cylinder of the mounting cylinder portion 19a and serving as a detected element of the stroke sensor 42 are provided. It includes a holding cylinder portion 19b for holding and an annular cushion sheet member 19c attached to the opposite end of the holding cylinder portion 19b on the opposite side of the cylinder. The axial length of the pipe 18 is set so that the position of the magnet 42b can be positioned at an appropriate position. The magnet 42b is annular and has an inner circumference facing the outer circumference of the piston rod 3.
 また、ロッドガイド14とキャップ12との間には、コイルばねでなる懸架ばね15が介装されている。具体的には、懸架ばね15の上端は、キャップ12のピストンロッド連結部12bの外周に嵌合されるばね受23によって支持されている。また、ばね受23の内周とピストンロッド3の上端の外周との間には、筒状のストッパ24が装着されており、ピストンロッド3の外周に装着される環状のクッションラバー25がストッパ24に当接している。ストッパ24は、クッションラバー25の図1中上端に当接していて、クッションラバー25のピストンロッド3に対する図1中上方へ移動を規制している。他方、ロッドガイド14の本体部14aの図1中上端外周には、環状で内径がパイプ18よりも大径であって、懸架ばね15の図1中下端を支持するばね受26が重ねられている。よって、懸架ばね15は、アウターチューブ10とインナーチューブ11とを離間させる付勢力を発揮して、緩衝器D1を伸長方向へ付勢している。 Further, a suspension spring 15 made of a coil spring is interposed between the rod guide 14 and the cap 12. Specifically, the upper end of the suspension spring 15 is supported by a spring receiver 23 fitted on the outer circumference of the piston rod connecting portion 12b of the cap 12. A cylindrical stopper 24 is mounted between the inner circumference of the spring receiver 23 and the outer circumference of the upper end of the piston rod 3, and an annular cushion rubber 25 mounted on the outer circumference of the piston rod 3 is used as the stopper 24. Is in contact with. The stopper 24 is in contact with the upper end of the cushion rubber 25 in FIG. 1, and restricts the movement of the cushion rubber 25 with respect to the piston rod 3 in FIG. 1 upward. On the other hand, a spring receiver 26 which is annular and has an inner diameter larger than that of the pipe 18 and supports the lower end of FIG. 1 of the suspension spring 15 is superposed on the outer periphery of the upper end of the main body portion 14a of FIG. There is. Therefore, the suspension spring 15 exerts an urging force that separates the outer tube 10 and the inner tube 11 to urge the shock absorber D1 in the extension direction.
 そして、緩衝器D1が伸縮してインナーチューブ11がアウターチューブ10に出入りすると、ピストンロッド3がシリンダ1に出入りしてピストン2がシリンダ1内を上下(軸方向)に移動する。緩衝器D1が収縮してピストンロッド3がシリンダ1内へと侵入すると、懸架ばね15が圧縮されて弾性力を発揮して緩衝器Dを伸長方向へ付勢する。このように、懸架ばね15は圧縮量に応じた弾性力を発揮して、車体を弾性支持する。 When the shock absorber D1 expands and contracts and the inner tube 11 moves in and out of the outer tube 10, the piston rod 3 moves in and out of the cylinder 1 and the piston 2 moves up and down (axial direction) in the cylinder 1. When the shock absorber D1 contracts and the piston rod 3 enters the cylinder 1, the suspension spring 15 is compressed and exerts an elastic force to urge the shock absorber D in the extension direction. In this way, the suspension spring 15 exerts an elastic force according to the amount of compression to elastically support the vehicle body.
 なお、本実施の形態の緩衝器本体Sは片ロッド型で、ピストンロッド3がピストン2の片側からシリンダ1外へ延びている。しかし、緩衝器本体Sが両ロッド型になっていて、ピストンロッドがピストンの両側からシリンダ外へ延びていてもよい。さらには、ピストンロッド3がシリンダ1から下方へ突出して車軸側に連結されるとともに、シリンダ1が車体側に連結されていてもよい。また、懸架ばね15は、エアばね等のコイルばね以外のばねであってもよい。 The shock absorber main body S of the present embodiment is a single rod type, and the piston rod 3 extends from one side of the piston 2 to the outside of the cylinder 1. However, the shock absorber main body S may be of the double rod type, and the piston rods may extend from both sides of the piston to the outside of the cylinder. Further, the piston rod 3 may project downward from the cylinder 1 and be connected to the axle side, and the cylinder 1 may be connected to the vehicle body side. The suspension spring 15 may be a spring other than a coil spring such as an air spring.
 つづいて、シリンダ1内には、作動油等の液体が充填された液室Lが形成されており、この液室Lがピストン2で伸側室Laと圧側室Lbとに区画されている。ここでいう伸側室とは、ピストンで区画された二室のうち、緩衝器の伸長時にピストンで圧縮される方の部屋のことである。その一方、圧側室とは、ピストンで区画された二室のうち、緩衝器の
収縮時にピストンで圧縮される方の部屋のことである。
Subsequently, a liquid chamber L filled with a liquid such as hydraulic oil is formed in the cylinder 1, and this liquid chamber L is divided into an extension side chamber La and a compression side chamber Lb by a piston 2. The expansion side chamber here is the one of the two chambers partitioned by the piston that is compressed by the piston when the shock absorber extends. On the other hand, the pressure side chamber is one of the two chambers partitioned by the piston, which is compressed by the piston when the shock absorber contracts.
 また、シリンダ1外、より詳しくは、緩衝器本体Sとチューブ部材Tとの間の空間は液溜室Rとされている。この液溜室Rには、シリンダ1内の液体と同じ液体が貯留されるとともに、その液面上側にエア等の気体の封入されたガス室Gが形成されている。このように、チューブ部材Tは、シリンダ1内の液体とは別に、液体を貯留するタンク16の外殻として機能する。 Further, outside the cylinder 1, more specifically, the space between the shock absorber main body S and the tube member T is a liquid reservoir R. In the liquid storage chamber R, the same liquid as the liquid in the cylinder 1 is stored, and a gas chamber G in which a gas such as air is sealed is formed above the liquid surface. As described above, the tube member T functions as an outer shell of the tank 16 for storing the liquid separately from the liquid in the cylinder 1.
 そのタンク16内となる液溜室Rは、伸側室Laと連通されており、伸側室Laの圧力がタンク16内(液溜室R)の圧力と常に略同圧(タンク圧)となる。さらに、液溜室Rは、シリンダ1の下端に固定されたバルブケース4で圧側室Lbと仕切られている。このバルブケース4には、圧側室Lbと液溜室Rとを連通する吸込通路4aが形成されるとともに、この吸込通路4aを開閉する吸込バルブ40が装着されている。 The liquid reservoir chamber R inside the tank 16 is communicated with the expansion side chamber La, and the pressure of the expansion side chamber La is always substantially the same pressure (tank pressure) as the pressure in the tank 16 (liquid reservoir chamber R). Further, the liquid storage chamber R is separated from the compression side chamber Lb by a valve case 4 fixed to the lower end of the cylinder 1. The valve case 4 is provided with a suction passage 4a that communicates the pressure side chamber Lb and the liquid storage chamber R with a suction valve 40 that opens and closes the suction passage 4a.
 その吸込バルブ40は、伸側チェックバルブであり、緩衝器Dの伸長時に吸込通路4aを開いて、その吸込通路4aを液溜室Rから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には吸込通路4aを閉塞した状態に維持する。なお、本実施の形態の吸込バルブ40は、リーフバルブであるが、ポペットバルブ等であってもよい。 The suction valve 40 is an extension-side check valve, which opens the suction passage 4a when the shock absorber D extends, and allows the liquid to flow from the liquid reservoir chamber R to the pressure-side chamber Lb through the suction passage 4a. When the shock absorber D contracts, the suction passage 4a is kept closed. Although the suction valve 40 of the present embodiment is a leaf valve, it may be a poppet valve or the like.
 また、ピストン2には、伸側室Laと圧側室Lbとを連通する伸側通路2aと圧側通路2bが形成されるとともに、伸側通路2aを開閉する伸側チェックバルブ20と、圧側通路2bを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与えるハード側減衰要素21が装着されている。 In addition, the piston 2 is formed with an expansion side passage 2a and a compression side passage 2b that communicate the expansion side chamber La and the compression side chamber Lb, and also includes an expansion side check valve 20 that opens and closes the expansion side passage 2a and a compression side passage 2b. A hard-side damping element 21 that provides resistance to the flow of liquid from the pressure-side chamber Lb toward the extension-side chamber La is mounted.
 ハード側減衰要素21は、ピストン2の上側に積層されるリーフバルブ21aと、このリーフバルブ21aと並列に設けられるオリフィス21bとを有して構成されている。 The hard-side damping element 21 is configured to have a leaf valve 21a stacked on the upper side of the piston 2 and an orifice 21b provided in parallel with the leaf valve 21a.
 リーフバルブ21aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でピストン2に装着されている。そして、圧側室Lbの圧力が、リーフバルブ21aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス21bは、ピストン2Rの弁座(符示せず)に離着座するリーフバルブ21aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。 The leaf valve 21a is a thin annular plate formed of metal or the like, or a laminated body formed by stacking the annular plates, has elasticity, and is attached to the piston 2 in a state in which the outer peripheral side is allowed to bend. The pressure of the pressure side chamber Lb acts in a direction to bend the outer peripheral portion of the leaf valve 21a upward. Further, the orifice 21b is formed by a notch provided on the outer peripheral portion of the leaf valve 21a that is detached and seated on the valve seat (not indicated) of the piston 2R, but is formed by a stamp or the like provided on the valve seat. It may be formed.
 圧側室Lbは、緩衝器Dの収縮時にピストン2で圧縮されてその内圧が上昇し、伸側室Laの圧力よりも高くなる。このような緩衝器Dの収縮時にピストン速度が低速域にあり、圧側室Lbと伸側室Laとの差圧がリーフバルブ21aの開弁圧に満たない場合には、液体がオリフィス21bを通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ21aの開弁圧以上になると、リーフバルブ21aの外周部が撓んで、液体がその外周部とピストン2との間にできる隙間を通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。 The pressure side chamber Lb is compressed by the piston 2 when the shock absorber D contracts, and its internal pressure rises, and becomes higher than the pressure in the extension side chamber La. When the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the compression side chamber Lb and the extension side chamber La is less than the valve opening pressure of the leaf valve 21a, the liquid passes through the orifice 21b. Resistance is given to the flow of the liquid while moving from the pressure side chamber Lb to the expansion side chamber La. Further, when the differential pressure becomes large and becomes equal to or higher than the valve opening pressure of the leaf valve 21a, the outer peripheral portion of the leaf valve 21a bends, and the liquid passes through the gap formed between the outer peripheral portion and the piston 2 to the pressure side chamber Lb. To the extension side chamber La, resistance is imparted to the liquid flow.
 このように、オリフィス21bと、このオリフィス21bと並列されるリーフバルブ21aとを有して構成されるハード側減衰要素21は、緩衝器Dの収縮時に圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第一の減衰要素である。そして、この圧側のハード側減衰要素21による抵抗は、ピストン速度が低速域にある場合にはオリフィス21bに起因し、中高速域にある場合にはリーフバルブ21aに起因する。 As described above, the hard side damping element 21 having the orifice 21b and the leaf valve 21a parallel to the orifice 21b is a liquid that goes from the compression side chamber Lb to the extension side chamber La when the shock absorber D contracts. Is the first damping element on the pressure side that provides resistance to the flow of. The resistance of the compression-side hard damping element 21 results from the orifice 21b when the piston speed is in the low speed range, and from the leaf valve 21a when the piston speed is in the medium to high speed range.
 その一方、伸側チェックバルブ20は、緩衝器Dの伸長時に伸側通路2aを開いて、その伸側通路2aを伸側室Laから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には伸側通路2aを閉塞した状態に維持する。なお、本実施の形態の伸側チェックバルブ20は、リーフバルブであるが、ポペットバルブ等であってもよい。さらには、シリンダ1内での液体の吸込不足が生じなければ、伸側通路2aと伸側チェックバルブ20を省略してもよい。 On the other hand, the extension-side check valve 20 opens the extension-side passage 2a when the shock absorber D extends, and allows the liquid to flow through the extension-side passage 2a from the expansion-side chamber La to the compression-side chamber Lb. When D contracts, the extension side passage 2a is maintained in a closed state. The extension side check valve 20 of the present embodiment is a leaf valve, but may be a poppet valve or the like. Furthermore, the extension-side passage 2a and the extension-side check valve 20 may be omitted as long as the liquid is not sufficiently sucked into the cylinder 1.
 つづいて、ピストンロッド3には、ハード側減衰要素21を通過する液体の流量を変更するための減衰力調整部が設けられている。この減衰力調整部は、ハード側減衰要素21を迂回して伸側室Laと圧側室Lbとを連通するバイパス路3aの途中に設けられた流路面積を変更可能な電磁弁Vと、バイパス路3aの途中に電磁弁Vと直列に設けられるソフト側減衰要素50とを有している。 Next, the piston rod 3 is provided with a damping force adjusting unit for changing the flow rate of the liquid passing through the hard side damping element 21. The damping force adjusting unit includes a solenoid valve V that can change the flow path area provided in the middle of the bypass path 3a that bypasses the hard side damping element 21 and communicates the extension side chamber La and the compression side chamber Lb, and the bypass path. The soft side damping element 50 provided in series with the solenoid valve V is provided in the middle of 3a.
 より詳しくは、図2に示すように、ピストンロッド3は、その先端に位置するピストン保持部材30と、その末端側に連なるソレノイドケース部材31と、さらにその末端側に連なり、シリンダ1外へと延びてキャップ12に連結される筒状のロッド本体32とを有する。ピストン保持部材30は、有底筒状のハウジング部30aと、このハウジング部30aの底部分から下方へ突出する軸部30bとを含み、この軸部30bの外周に環状のピストン2がハード側減衰要素21とともにナットNで固定されている。 More specifically, as shown in FIG. 2, the piston rod 3 is connected to the piston holding member 30 located at the tip thereof, the solenoid case member 31 connected to the terminal side thereof, and further connected to the terminal side thereof to the outside of the cylinder 1. It has a tubular rod body 32 that extends and is connected to the cap 12. The piston holding member 30 includes a bottomed cylindrical housing portion 30a and a shaft portion 30b protruding downward from a bottom portion of the housing portion 30a. The annular piston 2 is provided on the outer periphery of the shaft portion 30b and has a hard side damping element. It is fixed with a nut N together with 21.
 また、ハウジング部30aの筒部分の内周には、その内側を上室30cと下室30dとに仕切るバルブケース5が固定されている。そのバルブケース5には、上室30cと下室30dを連通する通路5aが形成されており、その通路5aにソフト側減衰要素50が設けられている。さらに、ピストン保持部材30の軸部30bには、下方へ開口してハウジング部30a内に通じる縦孔30eが形成されており、この縦孔30eによって下室30dと圧側室Lbとが連通される。 Also, a valve case 5 is fixed to the inner circumference of the cylindrical portion of the housing portion 30a to partition the inside into an upper chamber 30c and a lower chamber 30d. The valve case 5 is formed with a passage 5a that communicates the upper chamber 30c and the lower chamber 30d, and the soft side damping element 50 is provided in the passage 5a. Further, the shaft portion 30b of the piston holding member 30 is formed with a vertical hole 30e that opens downward and communicates with the inside of the housing portion 30a. The vertical hole 30e connects the lower chamber 30d and the pressure side chamber Lb. ..
 つづいて、ソレノイドケース部材31は、ハウジング部30aの上端外周に螺合する筒部31aを含む。その筒部31aには、側方へ開口する横孔31bが形成されており、この横孔31bによって伸側室Laとソレノイドケース部材31の内側が連通されている。そして、その横孔31bと上室30cとをつなぐ通路の途中に電磁弁Vが設けられている。 Subsequently, the solenoid case member 31 includes a tubular portion 31a screwed onto the outer circumference of the upper end of the housing portion 30a. A lateral hole 31b that opens laterally is formed in the tubular portion 31a, and the extension side chamber La and the inside of the solenoid case member 31 are communicated with each other by the lateral hole 31b. A solenoid valve V is provided in the middle of the passage connecting the lateral hole 31b and the upper chamber 30c.
 本実施の形態では、前述のソレノイドケース部材31またはピストン保持部材30に形成された横孔31b、上室30c、下室30dおよび縦孔30eを有してハード側減衰要素21を迂回するバイパス路3aが形成されている。そして、このバイパス路3aの途中に電磁弁Vとソフト側減衰要素50が直列に設けられている。 In the present embodiment, a bypass path having a lateral hole 31b, an upper chamber 30c, a lower chamber 30d, and a vertical hole 30e formed in the solenoid case member 31 or the piston holding member 30 and bypassing the hard side damping element 21. 3a is formed. The solenoid valve V and the soft side damping element 50 are provided in series in the middle of the bypass 3a.
 また、電磁弁Vとハード側減衰要素50を収容するソレノイドケース部材31およびピストン保持部材30の外径は、シリンダ1の内径よりも小さく、これらで伸側室Laを仕切らないように配慮されている。 Further, the outer diameters of the solenoid case member 31 and the piston holding member 30 accommodating the solenoid valve V and the hard side damping element 50 are smaller than the inner diameter of the cylinder 1, and consideration is given so that they do not partition the extension side chamber La. ..
 ハード側減衰要素50は、バルブケース5の上側に積層されるリーフバルブ50aと、このリーフバルブ50aと並列に設けられるオリフィス50bとを有して構成されている。 The hard side damping element 50 is configured to have a leaf valve 50a laminated on the upper side of the valve case 5 and an orifice 50b provided in parallel with the leaf valve 50a.
 リーフバルブ50aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でバルブケース5に装着される。そして、下室30dの圧力が、リーフバルブ50aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス50bは、バルブケース5Rの弁座に離着座するリーフバルブ50aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。 The leaf valve 50a is a thin annular plate formed of metal or the like, or a laminated body in which the annular plates are stacked, has elasticity, and is attached to the valve case 5 in a state in which the outer peripheral side is allowed to bend. Then, the pressure of the lower chamber 30d acts in the direction of bending the outer peripheral portion of the leaf valve 50a upward. Further, the orifice 50b is formed by a notch provided on the outer peripheral portion of the leaf valve 50a which is seated on and off the valve seat of the valve case 5R, but may be formed by stamping or the like provided on the valve seat. Good.
 下室30dの圧力は、緩衝器Dの収縮時であって電磁弁Vがバイパス路3aを開いているときに上室30cの圧力よりも高くなる。そして、このような緩衝器Dの収縮時にピストン速度が低速域にあり、上室30cと下室30dの差圧がリーフバルブ50aの開弁圧に満たない場合には、液体がオリフィス50bを通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへ向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ50aの開弁圧以上になると、リーフバルブ50aの外周部が撓んで、液体がその外周部とバルブケース5との間にできる隙間を通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。 The pressure in the lower chamber 30d becomes higher than the pressure in the upper chamber 30c when the shock absorber D is contracted and the solenoid valve V opens the bypass passage 3a. When the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the upper chamber 30c and the lower chamber 30d is less than the opening pressure of the leaf valve 50a, the liquid passes through the orifice 50b. From the lower chamber 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is imparted to the flow of the liquid. When the differential pressure becomes larger than the valve opening pressure of the leaf valve 50a, the outer peripheral portion of the leaf valve 50a bends, and the liquid passes through the gap formed between the outer peripheral portion and the valve case 5 to form a lower chamber. From 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is given to the flow of the liquid.
 このように、オリフィス50bと、このオリフィス50bと並列されるリーフバルブ50aとを有して構成されるソフト側減衰要素50は、緩衝器Dの収縮時に圧側バイパス路3aを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第二の減衰要素である。そして、このソフト側減衰要素50による抵抗は、ピストン速度が低速域にある場合にはオリフィス50bに起因し、中高速域にある場合にはリーフバルブ50aに起因する。 As described above, the soft side damping element 50 having the orifice 50b and the leaf valve 50a parallel to the orifice 50b makes the compression side bypass path 3a from the compression side chamber Lb to the extension side chamber when the shock absorber D contracts. A second damping element on the pressure side that provides resistance to the flow of liquid towards La. The resistance of the soft-side damping element 50 results from the orifice 50b when the piston speed is in the low speed range, and from the leaf valve 50a when the piston speed is in the medium to high speed range.
 また、ソフト側減衰要素50のリーフバルブ50aは、ハード側減衰要素21のリーフバルブ21aと比較してバルブ剛性の低い(撓みやすい)バルブであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。換言すると、液体は、同一条件下において、リーフバルブ21aよりもリーフバルブ50aの方を通過しやすい。また、ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積が大きい大径オリフィスであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。 Further, the leaf valve 50a of the soft side damping element 50 is a valve having a lower valve rigidity (easy to bend) as compared with the leaf valve 21a of the hard side damping element 21, and when the flow rate is the same, it gives to the flow of liquid. Resistance (pressure loss) is small. In other words, the liquid is more likely to pass through the leaf valve 50a than the leaf valve 21a under the same conditions. Further, the orifice 50b of the soft-side damping element 50 is a large-diameter orifice having a larger opening area than the orifice 21b of the hard-side damping element 21, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
 つづいて、電磁弁Vは、図2に示すように、ピストンロッド3内に固定される筒状のホルダ6と、このホルダ6内に往復動可能に挿入される筒状のスプール7と、このスプール7を移動方向の一方である図2中上方へ付勢する付勢ばね8と、このスプール7に対して移動方向の他方へ推力を与え得るソレノイド9とを備えている。そして、電磁弁Vは、ホルダ6内におけるスプール7の位置を調節して開度を大小調節する。 Next, as shown in FIG. 2, the solenoid valve V includes a cylindrical holder 6 fixed in the piston rod 3, a cylindrical spool 7 reciprocatingly inserted in the holder 6, and a cylindrical spool 7. It includes an urging spring 8 that urges the spool 7 upward in FIG. 2, which is one of the moving directions, and a solenoid 9 that can apply thrust to the spool 7 in the other in the moving direction. Then, the solenoid valve V adjusts the position of the spool 7 in the holder 6 to adjust the opening degree.
 より具体的には、ホルダ6は、ピストンロッド3内のバルブケース5よりも上側に、軸方向の一端を上側(ソレノイドケース部材31側)へ、他端を下側(バルブケース5側)へ向けた状態で、ピストンロッド3の中心軸に沿って配置されている。さらに、ホルダ6には、径方向に貫通する一以上のポート6aが形成されている。そのポート6aは、ソレノイドケース部材31の横孔31bを介して伸側室Laに連通されており、スプール7で開閉される。 More specifically, the holder 6 is located above the valve case 5 in the piston rod 3, one end in the axial direction to the upper side (the solenoid case member 31 side), and the other end to the lower side (the valve case 5 side). The piston rod 3 is arranged along the central axis of the piston rod 3 in the facing state. Further, the holder 6 is formed with one or more ports 6a penetrating in the radial direction. The port 6a communicates with the extension side chamber La through the lateral hole 31b of the solenoid case member 31, and is opened and closed by the spool 7.
 スプール7は、筒状で、ホルダ6内に摺動自在に挿入されており、図2中上下方向に往復動可能とされている。より詳細には、スプール7は、ポート6aに対応してポート6aに対向可能なポート7aを備えており、上下方向へ移動してホルダ6に設けられたポート6aを開閉する。具体的には、スプール7のポート7aがホルダ6のポート6aに対向する状態では、スプール7は、ポート6aをスプール7内に連通させる。ポート6aは、ソレノイドケース部材31に設けた横孔31bを通じて伸側室Laに連通されている。他方、スプール7内は、上室30c、バルブケース5に設けた通路5a、下室30dおよび縦孔30eを介して圧側室Lbに連通されている。よって、バイパス路3aの途中に電磁弁Vが設けられており、ポート6aがスプール7内に連通すると電磁弁Vが開弁してバイパス路3aが開放され、バイパス路3aを通じて伸側室Laと圧側室Lbとが連通される。 The spool 7 is cylindrical and is slidably inserted into the holder 6 so that it can be reciprocated in the vertical direction in FIG. More specifically, the spool 7 includes a port 7a that can face the port 6a in correspondence with the port 6a, and moves in the vertical direction to open and close the port 6a provided in the holder 6. Specifically, in a state where the port 7a of the spool 7 faces the port 6a of the holder 6, the spool 7 communicates the port 6a into the spool 7. The port 6a communicates with the extension side chamber La through a lateral hole 31b provided in the solenoid case member 31. On the other hand, the inside of the spool 7 is communicated with the pressure side chamber Lb through the upper chamber 30c, the passage 5a provided in the valve case 5, the lower chamber 30d and the vertical hole 30e. Therefore, the solenoid valve V is provided in the middle of the bypass passage 3a, and when the port 6a communicates with the inside of the spool 7, the solenoid valve V is opened to open the bypass passage 3a, and the expansion side chamber La and the pressure side are opened through the bypass passage 3a. It communicates with the chamber Lb.
 そして、ホルダ6に対してスプール7が移動すると、ポート6aがポート7aに対向する面積が変化するので、スプール7のホルダ6に対する軸方向位置に応じて流路面積を変更できる。スプール7がホルダ6に対して図2中下方に移動してポート6aがポート7aに完全に対向しなくなってスプール7の外周で閉塞されると、ポート6aとスプール7内との連通が絶たれてバイパス路3aが遮断される。 When the spool 7 moves with respect to the holder 6, the area where the port 6a faces the port 7a changes, so that the flow passage area can be changed according to the axial position of the spool 7 with respect to the holder 6. When the spool 7 moves downward in FIG. 2 with respect to the holder 6 and the port 6a does not completely face the port 7a and is blocked at the outer circumference of the spool 7, the communication between the port 6a and the inside of the spool 7 is cut off. The bypass path 3a is blocked.
 また、スプール7の上端にはプレート70が積層されており、そのプレート70にソレノイド9の後述するプランジャ9aが当接している。その一方、スプール7の下端には、付勢ばね8が当接し、スプール7を移動方向の一方である図2中上方へ向けて付勢している。付勢ばね8は、外周に対して内周が図2中上下方向に変位すると内周を元の位置へ戻す付勢力を発揮する螺旋形状をしたばねとされている。付勢ばね8は、外周が付勢ばね8の下方であってピストン保持部材30のハウジング部30aの内周に嵌合される筒状のカラー22とホルダ6の下端とにより挟持されてピストンロッド3に固定されている。そして、付勢ばね8の内周はスプール7の図2中下端外周に設けた環状凹部7bに嵌合しており、付勢ばね8は、ホルダ6に対してスプール7を図2中上方となる移動方向の一方へ向けて付勢しており、スプール7がホルダ6に対して図2中下方へ変位するとスプール7を元の位置へ戻す付勢力を発揮する。スプール7は、付勢ばね8の付勢力によって附勢される一方、ソレノイド9から付勢ばね8の付勢力に対向する推力を受けない状態では、図2に示すように、最も上方に位置決めされてポート7aをポート6aに対向させない。よって、電磁弁Vは、非通電時には、バイパス路3aを遮断する。 A plate 70 is laminated on the upper end of the spool 7, and a plunger 9a of the solenoid 9 which will be described later is in contact with the plate 70. On the other hand, the biasing spring 8 contacts the lower end of the spool 7 and biases the spool 7 upward in FIG. 2, which is one of the moving directions. The biasing spring 8 is a spiral spring that exerts a biasing force that returns the inner periphery to its original position when the inner periphery is displaced in the vertical direction in FIG. 2 relative to the outer periphery. The urging spring 8 is sandwiched between a cylindrical collar 22 fitted to the inner periphery of the housing portion 30a of the piston holding member 30 and the lower end of the holder 6, and the piston rod has an outer periphery below the urging spring 8. It is fixed at 3. The inner circumference of the biasing spring 8 is fitted into an annular recess 7b provided on the outer circumference of the lower end of the spool 7 in FIG. 2, and the biasing spring 8 moves the spool 7 upward relative to the holder 6 in FIG. The spool 7 is urged toward one of the moving directions, and when the spool 7 is displaced downward in FIG. 2 with respect to the holder 6, the spool 7 exerts an urging force to return the spool 7 to the original position. While the spool 7 is urged by the urging force of the urging spring 8, the spool 7 is positioned at the uppermost position as shown in FIG. 2 in a state where the solenoid 9 does not receive a thrust opposed to the urging force of the urging spring 8. The port 7a is not opposed to the port 6a. Therefore, the solenoid valve V shuts off the bypass passage 3a when not energized.
 また、電磁弁Vのソレノイド9は、ソレノイドケース部材31内に収容されており、詳しくは図示しないが、コイルを含む筒状のステータと、このステータ内に移動自在に挿入される筒状の可動鉄心と、可動鉄心の内周に装着されて先端がプレート70に当接するプランジャ9aとを有している。このソレノイド9に電力供給するリード線90は、ワイヤハーネス化されてロッド本体32の内側を通って外方へ突出し、電源に接続されている。 The solenoid 9 of the solenoid valve V is housed in the solenoid case member 31, and although not shown in detail, a cylindrical stator including a coil and a cylindrical movable member movably inserted in the stator. It has an iron core and a plunger 9a which is attached to the inner circumference of the movable iron core and whose tip abuts on the plate 70. The lead wire 90 that supplies electric power to the solenoid 9 is made into a wire harness, passes through the inside of the rod body 32, projects outward, and is connected to a power source.
 そして、そのリード線90を通じてソレノイド9へ通電すると、可動鉄心が下側へ引き寄せられてプランジャ9aが下向きに移動し、スプール7が付勢ばね8の付勢力に抗して押し下げられる。すると、ポート7aとポート6aが対向するようになって電磁弁Vが開く。また、その電磁弁Vの開度とソレノイド9への通電量との関係は正の比例定数をもつ比例関係となり、通電量を増やすほど開度が大きくなる。さらに、ソレノイド9への通電を断つと電磁弁Vが閉じる。 Then, when the solenoid 9 is energized through the lead wire 90, the movable iron core is pulled downward, the plunger 9a moves downward, and the spool 7 is pushed down against the urging force of the urging spring 8. Then, the port 7a and the port 6a are opposed to each other and the solenoid valve V is opened. Further, the relationship between the opening degree of the solenoid valve V and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree increases as the energization amount increases. Further, when the solenoid 9 is de-energized, the solenoid valve V is closed.
 このように、本実施の形態の電磁弁Vは、常閉型で、その弁体となるスプール7を付勢ばね8で閉方向へ付勢するとともに、ソレノイド9で開方向の推力をスプール7に与えるようになっている。また、電磁弁Vの通電量に比例して開度が大きくなり、その開度の増加に伴いバイパス路3aの流路面積が大きくなる。よって、電磁弁Vへの通電量に比例してバイパス路3aの流路面積が大きくなるともいえる。 As described above, the solenoid valve V of the present embodiment is of a normally closed type, and the biasing spring 8 urges the spool 7, which is its valve element, in the closing direction, and the solenoid 9 applies thrust in the opening direction to the spool 7. To give to. Further, the opening degree increases in proportion to the energization amount of the solenoid valve V, and as the opening degree increases, the flow passage area of the bypass passage 3a increases. Therefore, it can be said that the flow passage area of the bypass passage 3a increases in proportion to the amount of electricity supplied to the solenoid valve V.
 また、ピストンロッド3におけるロッド本体32内には、キャップ12のセンサ収容部12a内に収容されたセンサ本体42aに保持されてセンサ本体42aから図1中下方へ延びるロッド状のプローブ42cがリード線90とともに挿入されている。そして、ソレノイド9のリード線90は、ロッド本体32内およびキャップ12内を介して緩衝器D1外へ引き出されている。なお、この実施の形態では、センサ本体42aの外周とセンサ収容部12aの内周との間にはリード線90を通す隙間が設けられており、リード線90がセンサ本体42aの側方を通って緩衝器D1外へ引き出されている。 Further, in the rod body 32 of the piston rod 3, a rod-shaped probe 42c held by the sensor body 42a housed in the sensor housing portion 12a of the cap 12 and extending downward from the sensor body 42a in FIG. It is inserted with 90. Then, the lead wire 90 of the solenoid 9 is pulled out of the shock absorber D1 via the inside of the rod body 32 and the inside of the cap 12. In this embodiment, a gap is provided between the outer circumference of the sensor main body 42a and the inner circumference of the sensor accommodating portion 12a for passing the lead wire 90, and the lead wire 90 passes by the side of the sensor main body 42a. It is pulled out of the shock absorber D1.
 このように、ストロークセンサ42のプローブ42cとリード線90とがピストンロッド3内に収容されるので、電磁弁Vを利用した減衰力調整を可能とするとともに緩衝器D1のストロークの検知も可能となる。 In this way, since the probe 42c of the stroke sensor 42 and the lead wire 90 are housed in the piston rod 3, it is possible to adjust the damping force using the solenoid valve V and to detect the stroke of the shock absorber D1. Become.
 ストロークセンサ42は、シリンダ1にパイプ部材17を介して連結される被検出子としての磁石42bと、ピストンロッド3内に収容されて磁石42bの位置を検知するロッド状のプローブ42cと、プローブ42cを保持するセンサ本体42aとを有している。ストロークセンサ42は、本実施の形態では、プローブ42c内の磁歪線にパルス信号を与えて磁石42bの位置を検知する電子回路を有するセンサ本体42aを備えた磁歪式センサとされている。ストロークセンサ42は、パイプ部材17に保持される被検出子と、ピストンロッド3内に収容されて被検出子の位置を検知するプローブと、プローブを保持するセンサ本体とを有していれば、前述以外の検出原理を利用したスロトークセンサとされてもよい。 The stroke sensor 42 includes a magnet 42b as a detected element connected to the cylinder 1 via the pipe member 17, a rod-shaped probe 42c housed in the piston rod 3 for detecting the position of the magnet 42b, and a probe 42c. It has a sensor body 42a that holds the above. In the present embodiment, the stroke sensor 42 is a magnetostrictive sensor including a sensor main body 42a having an electronic circuit that applies a pulse signal to the magnetostrictive wire in the probe 42c to detect the position of the magnet 42b. If the stroke sensor 42 has a detection target held by the pipe member 17, a probe housed in the piston rod 3 to detect the position of the detection target, and a sensor main body holding the probe, It may be a slot talk sensor using a detection principle other than the above.
 そして、プローブ42cは、ピストンロッド3とともに被検出子としての磁石42b内に常に挿通された状態とされる。具体的には、磁石42bの軸方向の位置を決するパイプ部材17の長さは、緩衝器本体Sがフルストロークしてピストンロッド3がシリンダ1に対して図1中上下動しても常にプローブ42cが被検出子である磁石42bの内周に位置するように設定されている。 Then, the probe 42c is always inserted into the magnet 42b as a detector together with the piston rod 3. Specifically, the length of the pipe member 17 that determines the axial position of the magnet 42b is always the probe even if the shock absorber body S makes a full stroke and the piston rod 3 moves up and down with respect to the cylinder 1 in FIG. 42c is set to be located on the inner circumference of the magnet 42b which is the detected element.
 このように本実施の形態の緩衝器D1では、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有するテレスコピック型のチューブ部材Tと、アウターチューブ10とインナーチューブ11の一方に連結されるシリンダ1と、シリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、一端がピストン2に連結されるとともに他端がアウターチューブ10とインナーチューブ11の他方に連結されるピストンロッド3と、シリンダ1の端部に設けられてピストンロッド3の移動を案内する環状のロッドガイド14とを有してチューブ部材T内に収容される緩衝器本体Sと、緩衝器本体Sのストローク変位を検知するストロークセンサ42とを備え、ストロークセンサ42は、シリンダ1に連結される磁石(被検出子)42bと、ピストンロッド3内に収容されて磁石(被検出子)42bの位置を検知するロッド状のプローブ42cと、プローブ42cを保持するセンサ本体42aとを有し、磁石(被検出子)42bは、ピストンロッド3の外周に配置されて一端がロッドガイド14の反シリンダ側に装着されるパイプ部材17の他端に取り付けられて構成されている。 As described above, in the shock absorber D1 of the present embodiment, a telescopic tube member T having the outer tube 10 and the inner tube 11 slidably inserted into the outer tube 10, the outer tube 10, and the inner tube. 11, a cylinder 1 connected to one side, a piston 2 movably inserted into the cylinder 1 in the axial direction to divide the cylinder 1 into an expansion side chamber La and a compression side chamber Lb, and one end thereof is connected to the piston 2. And a piston rod 3 having the other end connected to the other of the outer tube 10 and the inner tube 11, and an annular rod guide 14 provided at the end of the cylinder 1 for guiding the movement of the piston rod 3. A shock absorber main body S housed in the tube member T and a stroke sensor 42 for detecting stroke displacement of the shock absorber main body S are provided, and the stroke sensor 42 includes a magnet (detection target) 42b connected to the cylinder 1. , A rod-shaped probe 42c that is housed in the piston rod 3 to detect the position of the magnet (detection target) 42b, and a sensor main body 42a that holds the probe 42c, and the magnet (detection target) 42b is It is arranged on the outer periphery of the piston rod 3 and one end is attached to the other end of the pipe member 17 mounted on the anti-cylinder side of the rod guide 14.
 このように構成された緩衝器D1では、被検出子としての磁石42bがピストンロッド3の外周に配置されて一端がロッドガイド14の反シリンダ側に装着されるパイプ部材17の他端に取り付けられていて、磁石42bの軸方向位置をパイプ部材17によって任意の位置に位置決めできる。よって、ストロークセンサ42のプローブ42cの全長がピストンロッドのロッド本体32よりも短くとも常に磁石(被検出子)42bに対向する位置に設置できるので、ピストンロッド3の全長が非常に長くなる鞍乗車両用の緩衝器D1であっても、プローブ長さが足りなくなってストローク変位を検知できなくなる問題が解消される。以上より、本発明の緩衝器D1によれば、全長が長尺となってもストローク変位を検知可能である。 In the shock absorber D1 configured as described above, the magnet 42b as the detected element is arranged on the outer circumference of the piston rod 3 and one end thereof is attached to the other end of the pipe member 17 mounted on the side opposite to the cylinder of the rod guide 14. However, the axial position of the magnet 42b can be positioned at any position by the pipe member 17. Therefore, even if the total length of the probe 42c of the stroke sensor 42 is shorter than that of the rod main body 32 of the piston rod, the probe 42c can always be installed at a position facing the magnet (detected object) 42b, so that the total length of the piston rod 3 becomes extremely long. Even with the dual-purpose shock absorber D1, the problem that the probe length is insufficient and the stroke displacement cannot be detected is solved. As described above, according to the shock absorber D1 of the present invention, the stroke displacement can be detected even if the total length is long.
 また、本実施の形態では、パイプ部材17は、ピストンロッド3の外周に装着されるクッションラバー25に対向しており、緩衝器D1が最収縮するとクッションラバー25に衝合して緩衝器D1のそれ以上の収縮を規制する。このように本実施の形態の緩衝器D1によれば、パイプ部材17を設けることで、被検出子としての磁石42bの軸方向位置を位置決めするだけでなく、クッションラバー25と協働して緩衝器D1の最収縮時の衝撃を緩和するクッション機能を発揮できる。 Further, in the present embodiment, the pipe member 17 faces the cushion rubber 25 mounted on the outer circumference of the piston rod 3, and when the shock absorber D1 contracts the most, it collides with the cushion rubber 25 and collides with the cushion rubber 25. Regulate further contraction. As described above, according to the shock absorber D1 of the present embodiment, by providing the pipe member 17, not only the axial position of the magnet 42b as the detected element is positioned, but also the cushion rubber 25 cooperates with the shock absorber D1. A cushioning function that alleviates the shock at the time of the most contraction of the container D1 can be exhibited.
 つづいて、本実施の形態の緩衝器D1は、上記電磁弁Vを含んでハード側減衰要素21の流量を自動で調節するための減衰力調整部の他に、ハード側減衰要素21の流量を手動で調節するための第二の減衰力調整部を備えている。その第二の減衰力調整部は、図1に示すように、緩衝器Dのボトム部分に設けられており、圧側室Lbと液溜室Rとを連通する排出通路4bの流路面積を手動操作によって変更可能な手動バルブ41を有して構成されている。 Subsequently, the shock absorber D1 of the present embodiment adjusts the flow rate of the hard side damping element 21 in addition to the damping force adjusting unit for automatically adjusting the flow rate of the hard side damping element 21 including the solenoid valve V. It is equipped with a second damping force adjustment unit for manual adjustment. As shown in FIG. 1, the second damping force adjusting portion is provided in the bottom portion of the shock absorber D, and the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the liquid reservoir R is manually set. It is configured to have a manual valve 41 that can be changed by operation.
 この手動バルブ41は、排出通路4bの途中に設けられた環状の弁座(符示せず)に離着座するニードル状の弁体41aを含む。そして、手動バルブ41を回転操作すると、その回転方向により弁体41aが弁座に遠近して排出通路4bの流路面積が大小調節される。本実施の形態では、電磁弁Vへの通電が正常になされる正常時には、弁体41aを弁座に着座させ、手動バルブ41で排出通路4bの連通を遮断した状態とする。 The manual valve 41 includes a needle-shaped valve body 41a which is seated on and detached from an annular valve seat (not shown) provided in the middle of the discharge passage 4b. When the manual valve 41 is rotationally operated, the valve body 41a moves closer to the valve seat depending on the rotation direction, and the flow passage area of the discharge passage 4b is adjusted to be small or large. In the present embodiment, when the solenoid valve V is normally energized normally, the valve body 41a is seated on the valve seat and the manual valve 41 blocks the communication of the discharge passage 4b.
 以上をまとめると、緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、先端がピストン2に連結されるとともに末端がシリンダ1外へと突出するピストンロッド3と、シリンダ1内の伸側室Laに接続されるタンク16とを備え、伸側室Laの圧力がタンク圧となっている。 Summarizing the above, as shown in FIG. 1, the shock absorber D includes a cylinder 1 and a piston 2 that is slidably inserted into the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb. The piston rod 3 has a tip connected to the piston 2 and a distal end protruding outside the cylinder 1, and a tank 16 connected to the expansion side chamber La in the cylinder 1, and the pressure in the expansion side chamber La is the tank pressure. It has become.
 さらに、緩衝器Dには、伸側室Laと圧側室Lbとを連通する通路として、伸側通路2a、圧側通路2b、およびバイパス路3aが設けられている。伸側通路2aには、伸側室Laから圧側室Lbへ向かう液体の一方向流れのみを許容する伸側チェックバルブ20が設けられており、圧側室Lbから伸側室Laへ向かう液体は、圧側通路2bまたはバイパス路3aを通るようになっている。 Further, the shock absorber D is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage 3a as passages for communicating the extension side chamber La and the compression side chamber Lb. The expansion side passage 2a is provided with an expansion side check valve 20 that allows only one-way flow of liquid from the expansion side chamber La to the compression side chamber Lb, and the liquid from the compression side chamber Lb to the expansion side chamber La is 2b or the bypass 3a.
 そして、圧側通路2bには、オリフィス21bと、これに並列されるリーフバルブ21aを有して構成されていて、液体の流れに抵抗を与えるハード側減衰要素21が設けられている。その一方、バイパス路3aには、オリフィス21bより開口面積の大きいオリフィス50bと、これに並列されるリーフバルブ21aよりもバルブ剛性の低いリーフバルブ50aを有して構成されていて、液体の流れに与える抵抗を小さくしたソフト側減衰要素50が設けられている。 The pressure side passage 2b is provided with an orifice 21b and a leaf valve 21a arranged in parallel with the orifice 21b, and a hard side damping element 21 that gives resistance to the flow of liquid. On the other hand, the bypass passage 3a is configured to have an orifice 50b having a larger opening area than the orifice 21b and a leaf valve 50a arranged in parallel with the leaf valve 21a and having a valve rigidity lower than that of the leaf valve 21a. A soft side damping element 50 having a reduced resistance is provided.
 さらに、そのバイパス路3aには、ソフト側減衰要素50と直列に電磁弁Vが設けられており、その電磁弁Vへの通電量の調節によりバイパス路3aの流路面積を変更できるようになっている。そして、電磁弁Vは、常閉型で、通電量に比例してバイパス路3aの流路面積を大きくするように設定されている。 Further, the bypass path 3a is provided with a solenoid valve V in series with the soft side damping element 50, and the flow path area of the bypass path 3a can be changed by adjusting the amount of electricity supplied to the solenoid valve V. ing. The solenoid valve V is a normally closed type and is set so as to increase the flow passage area of the bypass passage 3a in proportion to the energization amount.
 また、緩衝器Dには、圧側室Lbとタンク16とを連通する通路として、吸込通路4aと排出通路4bが設けられている。吸込通路4aには、タンク16から圧側室Lbへ向かう液体の一方向流れのみを許容する吸込バルブ40が設けられている。その一方、排出通路4bには、手動操作により開閉される常閉型の手動バルブ41が設けられている。 Further, the shock absorber D is provided with a suction passage 4a and a discharge passage 4b as passages that connect the pressure side chamber Lb and the tank 16 to each other. The suction passage 4a is provided with a suction valve 40 that allows only one-way flow of the liquid from the tank 16 to the pressure side chamber Lb. On the other hand, the discharge passage 4b is provided with a normally closed manual valve 41 that is opened and closed by manual operation.
 緩衝器Dは、以上のように構成されており、緩衝器Dの収縮時には、ピストンロッド3がシリンダ1内へ侵入してピストン2が圧側室Lbを圧縮する。正常時には手動バルブ41が排出通路4bを閉じている。このため、緩衝器Dの収縮時には、圧側室Lbの液体が圧側通路2bまたはバイパス路3aを通って伸側室Laへと移動する。当該液体の流れに対しては、ハード側減衰要素21またはソフト側減衰要素50によって抵抗が付与されて、その抵抗に起因する圧側減衰力が発生する。 The shock absorber D is configured as described above, and when the shock absorber D contracts, the piston rod 3 invades into the cylinder 1 and the piston 2 compresses the compression side chamber Lb. Normally, the manual valve 41 closes the discharge passage 4b. Therefore, when the shock absorber D contracts, the liquid in the pressure side chamber Lb moves to the extension side chamber La through the pressure side passage 2b or the bypass passage 3a. A resistance is given to the flow of the liquid by the hard side damping element 21 or the soft side damping element 50, and a compression side damping force due to the resistance is generated.
 また、正常時における緩衝器Dの収縮時に、ハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比は、バイパス路3aの流路面積に応じて変わり、これにより減衰係数が大小して発生する圧側減衰力が大小調節される。 In addition, when the shock absorber D contracts in a normal state, the distribution ratio of the liquid passing through the hard damping element 21 and the soft damping element 50 changes depending on the flow passage area of the bypass passage 3a, whereby the damping coefficient is large or small. The compression-side damping force generated as a result is adjusted in magnitude.
 具体的には、前述のように、ハード側減衰要素21およびソフト側減衰要素50は、それぞれオリフィス21b,50bと、これに並列されるリーフバルブ21a,50aとを有して構成されている。このため、減衰力特性は、ピストン速度が低速域にある場合、オリフィス特有のピストン速度の二乗に比例するオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のピストン速度に比例するバルブ特性となる。 Specifically, as described above, the hard-side damping element 21 and the soft-side damping element 50 are configured to have the orifices 21b and 50b and the leaf valves 21a and 50a arranged in parallel with the orifices 21b and 50b, respectively. Therefore, the damping force characteristic becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and becomes the piston speed peculiar to the leaf valve when the piston speed is in the medium to high speed range. The valve characteristics are proportional.
 そして、電磁弁Vへの通電量を増やして開度を大きくすると、バイパス路3aの流量が増えてハード側減衰要素21を通過する液体の割合が減るとともに、ソフト側減衰要素50を通過する液体の割合が増える。ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積の大きい大径オリフィスであるので、ソフト側減衰要素50側へ向かう液体の割合が増えるソフトモードでは、減衰係数が低速域と中高速域の両方で小さくなってピストン速度に対して発生する圧側減衰力が小さくなる。そして、電磁弁Vへ供給する電流量を最大にしたときに、減衰係数が最小になってピストン速度に対して発生する圧側減衰力が最小となる。 When the amount of electricity to the solenoid valve V is increased to increase the opening degree, the flow rate of the bypass passage 3a increases, the proportion of the liquid passing through the hard damping element 21 decreases, and the liquid passing through the soft damping element 50 decreases. Increases the proportion of. Since the orifice 50b of the soft side damping element 50 is a large-diameter orifice having a larger opening area than the orifice 21b of the hard side damping element 21, the damping coefficient is increased in the soft mode in which the proportion of the liquid toward the soft side damping element 50 increases. Becomes smaller in both the low speed range and the medium and high speed range, and the compression side damping force generated with respect to the piston speed becomes small. When the amount of current supplied to the solenoid valve V is maximized, the damping coefficient is minimized and the compression side damping force generated with respect to the piston speed is minimized.
 これとは逆に、電磁弁Vへの通電量を減らして開度を小さくすると、バイパス路3aの流量が減ってハード側減衰要素21を通過する液体の割合が増えるとともに、ソフト側減衰要素50を通過する液体の割合が減る。すると、減衰係数が大きくなってピストン速度に対する圧側減衰力が大きくなる。そして、電磁弁Vへの通電を断って電磁弁Vを閉じるとバイパス路3aの連通が遮断されるので、全流量がハード側減衰要素21を通過するようになる。すると、減衰係数が最大になって、ピストン速度に対して発生する圧側減衰力が最大となる。 On the contrary, when the amount of electricity supplied to the solenoid valve V is reduced to reduce the opening degree, the flow rate of the bypass path 3a is reduced, the proportion of the liquid passing through the hard side damping element 21 is increased, and the soft side damping element 50 is used. The proportion of liquid passing through is reduced. Then, the damping coefficient becomes large and the compression side damping force with respect to the piston speed becomes large. Then, when the energization of the solenoid valve V is cut off and the solenoid valve V is closed, the communication of the bypass path 3a is cut off, so that the total flow rate passes through the hard side damping element 21. Then, the damping coefficient becomes maximum, and the compression side damping force generated with respect to the piston speed becomes maximum.
 このように、第一、第二の減衰要素であるハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比を電磁弁Vで変えると減衰係数が大小し、図3に示すように、圧側の減衰力特性を示す特性線の傾きが変わる。そして、その特性線の傾きを最大にして発生する減衰力を大きくするハードモードと、傾きを最小にして発生する減衰力を小さくするソフトモードとの間で圧側減衰力が調節される。 Thus, when the distribution ratio of the liquid passing through the hard damping element 21 and the soft damping element 50, which are the first and second damping elements, is changed by the solenoid valve V, the damping coefficient becomes large and small, as shown in FIG. Then, the slope of the characteristic line showing the damping force characteristic on the compression side changes. Then, the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
 そして、ソフトモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で小さくなるとともに、ハードモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で大きくなる。このため、減衰力特性がオリフィス特性からバルブ特性へと移行する際の変化がどのモードでも緩やかである。 Then, in the soft mode, the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and in the middle/high speed region, and in the hard mode, the slope of the characteristic line showing the damping force property becomes smaller in the low speed region and the middle/high speed region. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
 さらに、ソフト側減衰要素50は、オリフィス50bと並列に、バルブ剛性の低いリーフバルブ50aを有している。このため、ハード側減衰要素21のリーフバルブ21aとしてバルブ剛性が高く、開弁圧の高いバルブを採用し、圧側減衰力を大きくする方向の調整幅を大きくしても、ソフトモードでの減衰力が過大にならない。 Further, the soft side damping element 50 has a leaf valve 50a having low valve rigidity in parallel with the orifice 50b. Therefore, even if a valve with high valve rigidity and high valve opening pressure is adopted as the leaf valve 21a of the hard side damping element 21 and the adjustment range in the direction of increasing the compression side damping force is increased, the damping force in the soft mode is increased. Does not become too large.
 また、フェール時(非正常時)には、電磁弁Vへの通電が断たれてハードモードに切り替わる。このとき、手動バルブ41を開けば、圧側室Lbの液体が圧側通路2bのみならず排出通路4bをも通過するようになるので、ハード側減衰要素21を通過する液体の流量が減って発生する圧側減衰力が低減される。 Also, at the time of failure (normal time), the energization of the solenoid valve V is cut off and the mode is switched to the hard mode. At this time, if the manual valve 41 is opened, the liquid in the compression side chamber Lb passes through not only the compression side passage 2b but also the discharge passage 4b, so that the flow rate of the liquid passing through the hard side damping element 21 is reduced. The compression side damping force is reduced.
 また、緩衝器D1の収縮時にシリンダ1内に侵入したピストンロッド3体積分の液体は、伸側室Laからタンク16へと排出される。 Further, the liquid for 3 volumes of the piston rod that has entered the cylinder 1 when the shock absorber D1 is contracted is discharged from the extension side chamber La to the tank 16.
 反対に、緩衝器Dの伸長時には、伸側チェックバルブ20が開き、伸側室Laの液体が伸側通路2aを通って圧側室Lbへと移動する。このとき、液体は伸側チェックバルブ20を比較的抵抗なく通過できる。さらに、伸側室Laは、タンク16と連通されていてタンク圧に維持される。よって、緩衝器D1は、伸長側の減衰力を発揮しない。なお、前述したように、緩衝器D1は、伸長時にのみ減衰力を発生する緩衝器と対を成してフロントフォークを構成しているので、前輪と車体が離間する場合には伸長時にのみ減衰力を発揮する緩衝器が車体の振動を抑制する。 On the contrary, when the shock absorber D is extended, the extension side check valve 20 opens, and the liquid in the extension side chamber La moves to the compression side chamber Lb through the extension side passage 2a. At this time, the liquid can pass through the extension check valve 20 without any resistance. Further, the extension side chamber La is communicated with the tank 16 and is maintained at the tank pressure. Therefore, the shock absorber D1 does not exert a damping force on the extension side. As described above, the shock absorber D1 forms a front fork by forming a pair with a shock absorber that generates a damping force only during extension, so when the front wheel is separated from the vehicle body, the shock absorber D1 is attenuated only during extension. A shock absorber that exerts power suppresses the vibration of the vehicle body.
 本実施の形態に係る緩衝器D1は、シリンダ1と、このシリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、このピストン2に連結されるとともに一端がシリンダ1外へと突出するピストンロッド3とを備えている。 The shock absorber D1 according to the present embodiment includes a cylinder 1, a piston 2 that is movably inserted in the cylinder 1 in the axial direction, and divides the inside of the cylinder 1 into an expansion side chamber La and a compression side chamber Lb, and this piston. 2 and a piston rod 3 having one end protruding outside the cylinder 1.
 さらに、前記緩衝器D1は、圧側室Lbから伸側室Laへ向かう液体の流れに抵抗を与えるハード側減衰要素21と、このハード側減衰要素21を迂回して圧側室Lbと伸側室Laとを連通するバイパス路3aの流路面積を変更可能な電磁弁Vと、バイパス路3aに電磁弁Vと直列に設けられるソフト側減衰要素50とを備えている。そして、ハード側減衰要素21がオリフィス21bと、このオリフィス21bと並列に設けられるリーフバルブ21aとを有して構成されている。その一方、ソフト側減衰要素50は、オリフィス21bよりも開口面積の大きいオリフィス(大径オリフィス)50bを有して構成されている。 Further, the shock absorber D1 separates the hard side damping element 21 that provides resistance to the flow of the liquid from the compression side chamber Lb toward the expansion side chamber La, and the pressure side chamber Lb and the expansion side chamber La by bypassing the hard side damping element 21. An electromagnetic valve V capable of changing the flow path area of the bypass path 3a communicating with the bypass path 3a and a soft side damping element 50 provided in series with the electromagnetic valve V on the bypass path 3a are provided. The hard damping element 21 has an orifice 21b and a leaf valve 21a provided in parallel with the orifice 21b. On the other hand, the soft side damping element 50 has an orifice (large diameter orifice) 50b having an opening area larger than that of the orifice 21b.
 前記構成によれば、緩衝器D1の収縮時に発生する減衰力の特性は、ピストン速度が低速域にある場合には、オリフィス特有のオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のバルブ特性となる。そして、電磁弁Vでバイパス路3aの開口面積を変更すれば、緩衝器D1の収縮時に圧側室Lbから伸側室Laへと移動する液体のうち、ハード側減衰要素21とソフト側減衰要素50のそれぞれを通過する流量の分配比が変わるので、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を自由に設定できて、ピストン速度が中高速域にある場合の圧側減衰力の調整幅を大きくできる。 According to the above configuration, the characteristic of the damping force generated when the shock absorber D1 contracts becomes the orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium and high speed range, it becomes the orifice characteristic. The valve characteristics are peculiar to leaf valves. Then, if the opening area of the bypass passage 3a is changed by the solenoid valve V, of the liquid that moves from the compression side chamber Lb to the expansion side chamber La when the shock absorber D1 contracts, the hard side damping element 21 and the soft side damping element 50 of the liquid. Since the distribution ratio of the flow rate passing through each changes, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be freely set, and the piston speed can be set to the medium and high speed range. The adjustment range of the compression side damping force in a certain case can be increased.
 さらに、バイパス路3aの開口面積を大きくするソフトモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が小さくなる。その一方、バイパス路3aの開口面積を小さくするハードモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が大きくなる。このため、圧側減衰力の特性が低速域でのオリフィス特性から中高速域でのバルブ特性に変化する際に、その特性線の傾きの変化は、どのモードにおいても緩やかになる。これにより、本実施の形態に係る緩衝器Dを車両に搭載した場合には、上記傾きの変化に起因する違和感を軽減し、車両の乗り心地を良好にできる。 Further, in the soft mode in which the opening area of the bypass path 3a is increased, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range become small. On the other hand, in the hard mode in which the opening area of the bypass path 3a is reduced, both the damping coefficient when the piston speed is in the low speed region and the damping coefficient when the piston speed is in the medium and high speed region are large. Therefore, when the characteristic of the compression side damping force changes from the orifice characteristic in the low speed region to the valve characteristic in the medium and high speed region, the change in the slope of the characteristic line becomes gentle in any mode. As a result, when the shock absorber D according to the present embodiment is mounted on a vehicle, it is possible to reduce the discomfort caused by the change in the inclination and improve the ride comfort of the vehicle.
 また、本実施の形態の緩衝器D1では、ピストン2がピストンロッド3の他端に連結されて片ロッド型になっている。さらに、緩衝器Dは、伸側室Laに接続されるタンク16と、このタンク16から圧側室Lbへ向かう液体の流れのみを許容する吸込バルブ40とを備えている。当該構成によれば、シリンダ1に出入りするピストンロッド3の体積分をタンク16で補償できる。さらには、緩衝器D1を圧縮行程でのみ減衰力を発揮する片効きの緩衝器にできる。 Also, in the shock absorber D1 of the present embodiment, the piston 2 is connected to the other end of the piston rod 3 to form a single rod type. Further, the shock absorber D includes a tank 16 connected to the extension side chamber La, and a suction valve 40 that allows only the flow of liquid from the tank 16 to the compression side chamber Lb. With this configuration, the tank 16 can compensate for the volume of the piston rod 3 that moves in and out of the cylinder 1. Furthermore, the shock absorber D1 can be a one-sided shock absorber that exerts a damping force only in the compression stroke.
 また、本実施の形態の緩衝器D1では、電磁弁Vは、通電量に比例して開度が変化するように設定されている。当該構成によれば、バイパス路3aの開口面積を無段階で変更できる。 Further, in the shock absorber D1 of the present embodiment, the solenoid valve V is set so that the opening degree changes in proportion to the energization amount. With this configuration, the opening area of the bypass 3a can be changed steplessly.
 また、本実施の形態の緩衝器D1は、圧側室Lbとタンク16とを連通する排出通路4bの流路面積を手動操作によって変更可能な手動バルブ41を備えている。当該構成によれば、フェール時に電磁弁Vを閉じるようにしても、手動バルブ41を手動で開けば発生する圧側減衰力が低減される。このため、フェールモードでの圧側減衰力が過大になるのを防止でき、車両の乗り心地を良好にできる。 Further, the shock absorber D1 of the present embodiment includes a manual valve 41 in which the flow path area of the discharge passage 4b communicating the compression side chamber Lb and the tank 16 can be changed by manual operation. According to this configuration, even if the solenoid valve V is closed at the time of failure, the compression side damping force generated by manually opening the manual valve 41 is reduced. For this reason, it is possible to prevent the compression side damping force in the fail mode from becoming excessive, and it is possible to improve the ride comfort of the vehicle.
 また、本実施の形態の緩衝器D1では、電磁弁Vがバイパス路3aに接続されるポート6aが形成される筒状のホルダ6と、このホルダ6内に往復動可能に挿入されてポート6aを開閉可能な筒状のスプール7と、このスプール7の移動方向の一方へスプール7を付勢する付勢ばね8と、この付勢ばね8の付勢力とは反対方向の推力をスプール7に与えるソレノイド9とを有する。 Further, in the shock absorber D1 of the present embodiment, a tubular holder 6 in which a port 6a in which the solenoid valve V is connected to the bypass path 3a is formed and a port 6a that is reciprocally inserted into the holder 6 are inserted. A tubular spool 7 that can be opened and closed, an urging spring 8 that urges the spool 7 in one direction of movement of the spool 7, and a thrust force in the direction opposite to the urging force of the urging spring 8 is applied to the spool 7. And a solenoid 9 for giving it.
 ここで、例えば、JP2010-7758Aに記載の電磁弁のように、弁体として往復動可能なニードルバルブを有し、そのニードルバルブの尖端と弁座との間にできる隙間を大小させて開度を変更する場合、開度の調整幅を大きくするには弁体のストローク量を大きくする必要があるが、そのようにはできない場合がある。 Here, for example, like the solenoid valve described in JP2010-7758A, a needle valve that can reciprocate as a valve body is provided, and the opening degree is increased or decreased by increasing or decreasing the gap formed between the tip of the needle valve and the valve seat. When changing, the stroke amount of the valve element must be increased in order to increase the adjustment range of the opening, but this may not be possible.
 具体的には、ニードルバルブのストローク量を大きくすると、そのニードルバルブの可動スペースが大きくなって収容スペースの確保が難しくなる。また、ニードルバルブのストローク量を大きくするため、ソレノイドのプランジャのストローク量を大きくしようとすると、ソレノイドの設計変更が必要になって煩雑である。さらには、ソレノイドの設計変更をせずにニードルバルブのストローク量を大きくしようとすると、プランジャの移動量に対するニードルバルブの移動量を大きくするための部品が必要になって部品数が増えるとともに収容スペースを確保するのが難しくなる。 Specifically, if the stroke amount of the needle valve is increased, the movable space of the needle valve increases and it becomes difficult to secure the accommodation space. Further, if the stroke amount of the solenoid plunger is increased in order to increase the stroke amount of the needle valve, the solenoid design must be changed, which is complicated. Furthermore, if it is attempted to increase the stroke of the needle valve without changing the design of the solenoid, parts are needed to increase the travel of the needle valve relative to the travel of the plunger, increasing the number of parts and accommodating space. It becomes difficult to secure.
 これに対して、本実施の形態の電磁弁Vでは、筒状のホルダ6内に往復動可能に挿入されるスプール7で、ホルダ6に形成されたポート6aを開閉し、これにより電磁弁Vが開閉するようになっている。このため、ポート6aをホルダ6の周方向に複数形成したり、周方向に長い形状にしたりすれば、電磁弁Vの弁体であるスプール7のストローク量を大きくしなくても電磁弁Vの開度を大きくできる。よって、電磁弁Vの開度の調整幅を大きくして、圧側減衰力の調整幅を容易に大きくできる。 On the other hand, in the solenoid valve V of the present embodiment, the port 6a formed in the holder 6 is opened and closed by the spool 7 that is reciprocally inserted in the cylindrical holder 6, whereby the solenoid valve V Is designed to open and close. Therefore, if a plurality of ports 6a are formed in the circumferential direction of the holder 6 or have a shape that is long in the circumferential direction, the stroke of the spool 7 that is the valve body of the solenoid valve V can be increased without increasing the stroke amount of the solenoid valve V. The opening can be increased. Therefore, the adjustment range of the opening degree of the solenoid valve V can be increased, and the adjustment range of the compression side damping force can be easily increased.
 さらに、上記構成によれば、電磁弁Vの開度と通電量との関係を容易に変更できる。例えば、電磁弁Vの開度と通電量との関係を負の比例関係にして、通電量が大きくなるほど開度を小さくしたい場合には、非通電時にポート6aが最大限に開く位置にポート6a、またはこのポート6aを開くためのポート7aを配置すればよい。このように、電磁弁Vの開度と通電量との関係は、自由に変更できるとともに、これに合わせて手動バルブ41の設置の有無の選択できる。 Further, according to the above configuration, the relationship between the opening degree of the solenoid valve V and the energization amount can be easily changed. For example, if the relationship between the opening degree of the solenoid valve V and the energized amount is made negatively proportional and the opening degree is to be reduced as the energized amount increases, the port 6a is positioned so that the port 6a opens to the maximum when the energized amount is not energized. , Or a port 7a for opening this port 6a may be arranged. As described above, the relationship between the opening degree of the solenoid valve V and the energization amount can be freely changed, and the presence or absence of the manual valve 41 can be selected according to the change.
 <第二の実施の形態>
 第二の実施の形態の緩衝器D2は、図4に示すように、第一の実施の形態の緩衝器D1と同様に、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有するテレスコピック型のチューブ部材Tと、インナーチューブ11に連結されるシリンダ1と、シリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、一端がピストン2に連結されるとともに他端がアウターチューブ10に連結されるピストンロッド3と、シリンダ1の端部に設けられてピストンロッド3の移動を案内する環状のロッドガイド14とを有してチューブ部材T内に収容される緩衝器本体Sと、緩衝器本体Sのストローク変位を検知するストロークセンサ42とを備えている。
<Second embodiment>
As shown in FIG. 4, the shock absorber D2 of the second embodiment is slidably inserted into the outer tube 10 and the outer tube 10 in the same manner as the shock absorber D1 of the first embodiment. A telescopic type tube member T having an inner tube 11, a cylinder 1 connected to the inner tube 11, and an extension side chamber La and a compression side chamber Lb which are inserted into the cylinder 1 so as to be movable in the axial direction. 2, a piston rod 3 having one end connected to the piston 2 and the other end connected to the outer tube 10, and an annular member provided at the end of the cylinder 1 for guiding the movement of the piston rod 3. A shock absorber main body S having the rod guide 14 and housed in the tube member T, and a stroke sensor 42 for detecting a stroke displacement of the shock absorber main body S are provided.
 第一の実施の形態の緩衝器D1では、ロッドガイド14にパイプ部材17を設けてストロークセンサ42の被検出子としての磁石42bを位置をパイプ部材17によって位置決めしていたが、第二の実施の形態の緩衝器D2では、図4に示すように、パイプ部材17を廃止して、ロッドガイド14に磁石42bを装着するとともにセンサ本体42aをキャップ12’とピストンロッド3とを連結する連結パイプ43に保持させている点で異なる。 In the shock absorber D1 of the first embodiment, the pipe member 17 is provided in the rod guide 14 and the magnet 42b as the detected element of the stroke sensor 42 is positioned by the pipe member 17, but the second embodiment is used. In the shock absorber D2 of this embodiment, as shown in FIG. 4, the pipe member 17 is eliminated, the magnet 42b is attached to the rod guide 14, and the sensor body 42a is connected to the cap 12' and the piston rod 3. It differs in that it is held at 43.
 以下、第一の実施の形態の緩衝器D1に対し、第二の実施の形態の緩衝器D2が異なる点について詳細に説明し、緩衝器D1,D2で共通する構造については説明が重複するので詳しい説明を省略する。 Hereinafter, the difference between the buffer D1 of the first embodiment and the buffer D2 of the second embodiment will be described in detail, and the structures common to the shock absorbers D1 and D2 will be duplicated. Detailed description is omitted.
 第二の実施の形態の緩衝器D2では、被検出子としての磁石42bは、ロッドガイド14に装着される。図4に示すように、ロッドガイド14は、環状であってシリンダ1に嵌合する本体部14aと、本体部14aから図4中上方である反シリンダ側に突出する筒状のオイルロックケース14cとを備えている。また、ロッドガイド14の本体部14aの内周には、磁石42bが装着されるとともにピストンロッド3が摺動自在に挿入されており、ロッドガイド14は、ピストンロッド3の移動を案内する。このようにロッドガイド14の内周に環状の磁石42bが装着され、ロッドガイド14の本体部14aの内周に、ピストンロッド3が挿入されると、磁石42bの内周はピストンロッド3の外周に対向する。 In the shock absorber D2 of the second embodiment, the magnet 42b as a detector is attached to the rod guide 14. As shown in FIG. 4, the rod guide 14 has an annular main body portion 14a that fits into the cylinder 1 and a tubular oil lock case 14c that protrudes from the main body portion 14a toward the opposite cylinder side in FIG. It has and. Further, a magnet 42b is mounted on the inner circumference of the main body portion 14a of the rod guide 14, and the piston rod 3 is slidably inserted, and the rod guide 14 guides the movement of the piston rod 3. When the annular magnet 42b is attached to the inner circumference of the rod guide 14 and the piston rod 3 is inserted into the inner circumference of the main body 14a of the rod guide 14, the inner circumference of the magnet 42b becomes the outer circumference of the piston rod 3. To face.
 また、第二の実施の形態の緩衝器D2では、アウターチューブ10の上端に筒状のキャップ12’が螺着されており、このキャップ12’の内周に連結パイプ43の図4中上端外周が螺着される。そして、連結パイプ43の図4中下端内周は、ピストンロッド3のロッド本体32の図4中上端外周に螺合しており、キャップ12’とピストンロッド3は、連結パイプ43を介して連結されている。 Further, in the shock absorber D2 of the second embodiment, a tubular cap 12'is screwed to the upper end of the outer tube 10, and the outer circumference of the upper end of the connecting pipe 43 in FIG. 4 is screwed to the inner circumference of the cap 12'. Is screwed on. The inner circumference of the lower end of FIG. 4 of the connecting pipe 43 is screwed to the outer circumference of the upper end of the rod body 32 of FIG. 4 of the piston rod 3, and the cap 12'and the piston rod 3 are connected via the connecting pipe 43. Has been done.
 キャップ12’は、筒状とされており、アウターチューブ10の内周に螺着される外周螺子筒部12a’と、外周螺子筒部12a’の図4中下方に連なって連結パイプ43の外周に螺着される内周螺子筒部12b’とを備えている。 The cap 12 ′ has a cylindrical shape, and the outer peripheral threaded cylindrical portion 12 a ′ screwed to the inner circumference of the outer tube 10 and the outer peripheral threaded cylindrical portion 12 a ′ are connected to the lower side in FIG. It is provided with an inner peripheral screw cylinder portion 12b'screwed to.
 連結パイプ43は、管状であって、センサ本体42aを収容する大径な収容筒部43aと、収容筒部43aのシリンダ側に連なる収容筒部43aよりも小径な連結筒部43bとを備えている。連結パイプ43の収容筒部43aの上端は、キャップ12’の内周螺子筒部12b’に螺子締結で連結され、連結パイプ43の連結筒部43bは、ピストンロッド3の上端に連結される。 The connecting pipe 43 is tubular and includes a large-diameter housing cylinder 43a for housing the sensor body 42a, and a connecting cylinder 43b having a smaller diameter than the housing cylinder 43a connected to the cylinder side of the housing cylinder 43a. There is. The upper end of the accommodating cylinder portion 43a of the connecting pipe 43 is connected to the inner peripheral screw cylinder portion 12b'of the cap 12'by screw fastening, and the connecting cylinder portion 43b of the connecting pipe 43 is connected to the upper end of the piston rod 3.
 また、ロッドガイド14とキャップ12’との間には、コイルばねでなる懸架ばね15が介装されている。懸架ばね15は、連結パイプ43の外周に配置されており、ロッドガイド14とキャップ12’との間に介装されて、緩衝器D2を伸長方向へ付勢している。具体的には、懸架ばね15の上端は、キャップ12’のピストンロッド連結部12b’の外周に嵌合されるばね受23によって支持され、懸架ばね15の図4中下端は、ロッドガイド14のオイルロックケース14cの端部に重ねられるばね受27によって支持されている。 Further, a suspension spring 15 made of a coil spring is interposed between the rod guide 14 and the cap 12'. The suspension spring 15 is arranged on the outer periphery of the connecting pipe 43 and is interposed between the rod guide 14 and the cap 12'to urge the shock absorber D2 in the extension direction. Specifically, the upper end of the suspension spring 15 is supported by the spring receiver 23 fitted to the outer periphery of the piston rod connecting portion 12b'of the cap 12', and the lower end of the suspension spring 15 in FIG. 4 is the rod guide 14. It is supported by a spring receiver 27 that is stacked on the end of the oil lock case 14c.
 ピストンロッド3の外周には、環状のオイルロックピース44が装着されており、緩衝器D2がストロークエンド近傍まで収縮するとオイルロックピース44がロッドガイド14に設けたオイルロックケース14c内に進入し、オイルロックケース14c内の圧力が高まって緩衝器D2の収縮を妨げる。このように本実施の形態の緩衝器D2では、パイプ部材17を廃止したので、ロッドガイド14にオイルロックケース14cを設置でき、緩衝器D1の最収縮時の衝撃を緩和するオイルロック機能を発揮できる。 An annular oil lock piece 44 is mounted on the outer periphery of the piston rod 3, and when the shock absorber D2 contracts to the vicinity of the stroke end, the oil lock piece 44 enters the oil lock case 14c provided in the rod guide 14. The pressure inside the oil lock case 14c increases to prevent the shock absorber D2 from contracting. As described above, in the shock absorber D2 of the present embodiment, since the pipe member 17 is abolished, the oil lock case 14c can be installed on the rod guide 14, and the oil lock function for alleviating the impact at the time of maximum contraction of the shock absorber D1 is exhibited. it can.
 そして、ストロークセンサ42のセンサ本体42aは、連結パイプ43の収容筒部43a内に収容されるとともに固定されており、センサ本体42aから延びるプローブ42cは、連結筒部43bおよびロッド本体32内に挿通されている。なお、本実施の形態の緩衝器D2においても、ソレノイド9のリード線90は、プローブ42cとともにロッド本体32内に収容されており、連結パイプ43内およびキャップ12’内を介して緩衝器D2外へ引き出されている。 The sensor body 42a of the stroke sensor 42 is housed and fixed in the housing tube 43a of the connecting pipe 43, and the probe 42c extending from the sensor body 42a is inserted into the connecting tube 43b and the rod body 32. Has been done. Also in the shock absorber D2 of the present embodiment, the lead wire 90 of the solenoid 9 is housed in the rod body 32 together with the probe 42c, and is outside the shock absorber D2 via the connecting pipe 43 and the cap 12'. Have been pulled out to.
 そして、プローブ42cは、ピストンロッド3とともに被検出子としての磁石42b内に常に挿通された状態とされる。具体的には、センサ本体42aの軸方向の位置を決する連結パイプ43の長さは、緩衝器本体Sがフルストロークしてピストンロッド3がシリンダ1に対して図1中上下動しても常にプローブ42cが被検出子である磁石42bの内周に位置するように設定されている。 Then, the probe 42c is always inserted into the magnet 42b as a detector together with the piston rod 3. Specifically, the length of the connecting pipe 43 that determines the axial position of the sensor body 42a is always the same even when the shock absorber body S makes a full stroke and the piston rod 3 moves up and down with respect to the cylinder 1 in FIG. The probe 42c is set so as to be located on the inner circumference of the magnet 42b which is the detected element.
 なお、ストロークセンサ42は、ロッドガイド14に保持される被検出子と、ピストンロッド3内に収容されて被検出子の位置を検知するプローブと、プローブを保持するとともに連結パイプ43に収容されるセンサ本体とを有していれば、前述以外の検出原理を利用したスロトークセンサとされてもよい。 The stroke sensor 42 is housed in the rod guide 14, the probe housed in the piston rod 3 to detect the position of the body to be detected, and the stroke sensor 42 is housed in the connecting pipe 43 while holding the probe. If it has a sensor body, it may be a Slotalk sensor using a detection principle other than the above.
 なお、第二の実施の形態の緩衝器D2にあっても、チューブ部材Tを図4に示す状態から天地逆さまにし、ピストンロッド3を連結パイプ43およびキャップ12’を介してインナーチューブ11に連結し、シリンダ1がアウターチューブ10に連結して、緩衝器本体Sをチューブ部材Tに収容してもよい。 Even in the shock absorber D2 of the second embodiment, the tube member T is turned upside down from the state shown in FIG. 4, and the piston rod 3 is connected to the inner tube 11 via the connecting pipe 43 and the cap 12'. Then, the cylinder 1 may be connected to the outer tube 10 to accommodate the shock absorber body S in the tube member T.
 このように本実施の形態の緩衝器D2では、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有するテレスコピック型のチューブ部材Tと、アウターチューブ10とインナーチューブ11の一方に連結されるシリンダ1と、シリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、一端がピストン2に連結されるとともに他端がアウターチューブ10とインナーチューブ11の他方に連結されるピストンロッド3と、シリンダ1の端部に設けられてピストンロッド3の移動を案内する環状のロッドガイド14とを有してチューブ部材T内に収容される緩衝器本体Sと、緩衝器本体Sのストローク変位を検知するストロークセンサ42とを備え、ストロークセンサ42は、シリンダ1に連結される磁石(被検出子)42bと、ピストンロッド3内に収容されて磁石(被検出子)42bの位置を検知するロッド状のプローブ42cと、プローブ42cを保持するセンサ本体42aとを有し、磁石(被検出子)42bは、ロッドガイド14の内周に装着されており、センサ本体42aは、アウターチューブ10の開口部を閉塞するキャップ12’とピストンロッド3とを連結する連結パイプ43の内方に収容されている。 As described above, in the shock absorber D2 of the present embodiment, the telescopic type tube member T having the outer tube 10 and the inner tube 11 slidably inserted into the outer tube 10, the outer tube 10 and the inner tube A cylinder 1 connected to one of the elevens, a piston 2 movably inserted into the cylinder 1 in the axial direction to partition the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb, and one end connected to the piston 2. It also has a piston rod 3 whose other end is connected to the other of the outer tube 10 and the inner tube 11, and an annular rod guide 14 provided at the end of the cylinder 1 to guide the movement of the piston rod 3. A shock absorber body S housed in the tube member T and a stroke sensor 42 for detecting the stroke displacement of the shock absorber body S are provided, and the stroke sensor 42 includes a magnet (detected element) 42b connected to the cylinder 1. The piston (detector) 42b has a rod-shaped probe 42c that is housed in the piston rod 3 and detects the position of the magnet (detector) 42b, and a sensor body 42a that holds the probe 42c. It is mounted on the inner circumference of the rod guide 14, and the sensor body 42a is housed inside a connecting pipe 43 that connects the cap 12'that closes the opening of the outer tube 10 and the piston rod 3.
 このように構成された緩衝器D2では、ストロークセンサ42のセンサ本体42aがピストンロッド3をキャップ12’に連結する連結パイプ43内に収容されており、センサ本体42aの軸方向位置を連結パイプ43によって任意の位置に位置決めできる。また、緩衝器D2では、キャップ12’とピストンロッド3とを連結パイプ43によって接続するので、ピストンロッド3の全長を緩衝器D2の全長に合わせるのではなく、緩衝器本体Sのストローク長に適した長さにすればよく、ピストンロッド長を長尺にする必要が無くなる。以上より、本発明の緩衝器D2によれば、緩衝器D2の全長が長くなってもピストンロッド3の全長を長くする必要が無くなり、ストロークセンサ42のプローブ42cを常に磁石(被検出子)42bに対向する位置に設置できる。したがって、全長が非常に長くなる鞍乗車両用の緩衝器D2であっても、プローブ長さが足りなくなってストローク変位を検知できなくなる問題が解消される。以上より、本発明の緩衝器D2によれば、全長が長尺となってもストローク変位を検知可能である。 In the shock absorber D2 configured in this way, the sensor body 42a of the stroke sensor 42 is housed in the connecting pipe 43 that connects the piston rod 3 to the cap 12', and the axial position of the sensor body 42a is connected to the connecting pipe 43. Can be positioned at any position. Further, in the shock absorber D2, since the cap 12'and the piston rod 3 are connected by the connecting pipe 43, the total length of the piston rod 3 is not adjusted to the total length of the shock absorber D2, but is suitable for the stroke length of the shock absorber body S. It is sufficient to make the length longer, and it is not necessary to make the piston rod length longer. From the above, according to the shock absorber D2 of the present invention, it is not necessary to lengthen the total length of the piston rod 3 even if the total length of the shock absorber D2 is long, and the probe 42c of the stroke sensor 42 is always magnetized (detected element) 42b. It can be installed at a position facing. Therefore, even if the shock absorber D2 for a saddle vehicle has a very long overall length, the problem that the stroke displacement cannot be detected due to the insufficient probe length is solved. From the above, according to the shock absorber D2 of the present invention, the stroke displacement can be detected even if the total length is long.
 また、本実施の形態の緩衝器D2では、連結パイプ43の外周に配置されてロッドガイド14とキャップ12’との間に介装される懸架ばね(コイルばね)15を備えている。このように構成された緩衝器D2では、センサ本体42aを収容する連結パイプ43を懸架ばね(コイルばね)15の内周に配置できるから、センサ本体42aを懸架ばね(コイルばね)15内で任意の位置に設置でき、プローブ長の制約を受けにくくなるとともに、懸架ばね(コイルばね)15の全長における制約も受けにくくなる。よって、緩衝器D2の設計自由度が向上する。 Further, the shock absorber D2 of the present embodiment includes a suspension spring (coil spring) 15 arranged on the outer periphery of the connecting pipe 43 and interposed between the rod guide 14 and the cap 12'. In the shock absorber D2 configured in this way, since the connecting pipe 43 accommodating the sensor body 42a can be arranged on the inner circumference of the suspension spring (coil spring) 15, the sensor body 42a can be arbitrarily placed in the suspension spring (coil spring) 15. The probe can be installed at the position (1), and the length of the suspension spring (coil spring) 15 is less likely to be restricted by the probe length. Therefore, the degree of freedom in designing the shock absorber D2 is improved.
 なお、本実施の形態では、緩衝器D1,D2を収縮時にのみ減衰力を発揮する片効きの緩衝器としているが、圧側通路2bにハード側減衰要素21の代わりに圧側室Lbから伸側室Laへ向かう液体の流れのみを許容するチェックバルブを設け、伸側通路2aを減衰通路として伸側室Laから圧側室Lbへ向かう液体の流れに抵抗を与えるハード側減衰要素を設け、バイパス路3aにソフト側減衰要素50の代わりに伸側室Laから圧側室Lbへと向かう液体の流れに抵抗を与えるソフト側減衰要素を設け、吸込通路4aにおける吸込バルブ40を廃止するとともに、排出通路4bおよび手動バルブ41を廃止して、緩衝器D1,D2を伸長時にのみ減衰力を発揮する緩衝器としてもよい。このように緩衝器Dを構成すると、ハード側減衰要素とソフト側減衰要素を通過する液体の分配比を電磁弁Vで変えると減衰係数が大小するので、伸側の減衰力特性を示す特性線の傾きを圧側のみで減衰力を発揮する緩衝器D1,D2と同様に変えられる。 In the present embodiment, the shock absorbers D1 and D2 are single-acting shock absorbers that exert a damping force only during contraction, but instead of the hard side damping element 21 in the compression side passage 2b, the compression side chamber Lb to the expansion side chamber La are replaced. A check valve that allows only the flow of the liquid toward the expansion side passage 2a is provided as a damping passage, and a hard side damping element that provides resistance to the flow of the liquid toward the compression side chamber Lb from the expansion side chamber La is provided. Instead of the side damping element 50, a soft side damping element that provides resistance to the flow of liquid from the expansion side chamber La to the compression side chamber Lb is provided, and the suction valve 40 in the suction passage 4a is eliminated, and the discharge passage 4b and the manual valve 41 are provided. May be abolished and the shock absorbers D1 and D2 may be used as shock absorbers that exert a damping force only when extended. When the shock absorber D is configured in this way, the damping coefficient increases or decreases when the distribution ratio of the liquid passing through the hard side damping element and the soft side damping element is changed by the electromagnetic valve V, so that the characteristic line showing the damping force characteristic on the extension side. The inclination of is changed in the same manner as the shock absorbers D1 and D2 that exert damping force only on the compression side.
 また、各実施の形態において、ピストン速度が通常の速度域にある場合の減衰力特性をバルブ特性にする必要が無ければ、バイパス路3aに電磁弁Vのみを設けて、ソフト側減衰要素50については省略してもよいし、ハード側減衰要素21についても廃止して電磁弁Vのみで収縮、伸長或いは伸縮両側の減衰力を調整してもよい。 Further, in each of the embodiments, when it is not necessary to make the damping force characteristics when the piston speed is in the normal speed range to be the valve characteristics, only the solenoid valve V is provided in the bypass passage 3a and the soft side damping element 50 is provided. May be omitted, or the hard-side damping element 21 may be omitted and the damping force on both sides of contraction, extension or expansion and contraction may be adjusted only by the solenoid valve V.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。本願は、2019年3月4日に日本国特許庁に出願された特願2019-038127に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The preferred embodiments of the present invention have been described above in detail, but modifications, variations, and changes can be made without departing from the scope of the claims. This application claims priority based on Japanese Patent Application No. 2019-038127 filed with the Japan Patent Office on March 4, 2019, and the entire contents of this application are incorporated herein by reference.
1・・・シリンダ、2・・・ピストン、3・・・ピストンロッド、10・・・アウターチューブ、11・・・インナーチューブ、12,12’・・・キャップ、14・・・ロッドガイド、15・・・懸架ばね(コイルばね)、17・・・パイプ部材、25・・・クッションラバー、42・・・ストロークセンサ、42a・・・センサ本体、42b・・・磁石(被検出子)、42c・・・プローブ、43・・・連結パイプ、90・・・リード線、D1,D2・・・緩衝器、La・・・伸側室、Lb・・・圧側室、S・・・緩衝器本体、T・・・チューブ部材、V・・・電磁弁 1... Cylinder, 2... Piston, 3... Piston rod, 10... Outer tube, 11... Inner tube, 12, 12'... Cap, 14... Rod guide, 15 ... Suspension spring (coil spring), 17... Pipe member, 25... Cushion rubber, 42... Stroke sensor, 42a... Sensor body, 42b... Magnet (detector), 42c ... Probe, 43... Connection pipe, 90... Lead wire, D1, D2... Buffer, La... Extension side chamber, Lb... Pressure side chamber, S... Buffer body, T ... tube member, V ... solenoid valve

Claims (5)

  1.  緩衝器であって、
     アウターチューブと、アウターチューブ内に摺動自在に挿入されるインナーチューブとを有するテレスコピック型のチューブ部材と、
     前記アウターチューブと前記インナーチューブの一方に連結されるシリンダと、前記シリンダ内に軸方向へ移動可能に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、一端が前記ピストンに連結されるとともに他端が前記アウターチューブと前記インナーチューブの他方に連結されるピストンロッドと、前記シリンダの端部に設けられて前記ピストンロッドの移動を案内する環状のロッドガイドとを有して前記チューブ部材内に収容される緩衝器本体と、
     前記緩衝器本体のストローク変位を検知するストロークセンサとを備え、
     前記ストロークセンサは、前記シリンダに連結される被検出子と、前記ピストンロッド内に収容されて前記被検出子の位置を検知するロッド状のプローブと、前記プローブを保持するセンサ本体とを有し、
     前記被検出子は、前記ピストンロッドの外周に配置されて一端が前記ロッドガイドの反シリンダ側に装着されるパイプ部材の他端に取り付けられている
     緩衝器。
    It ’s a shock absorber,
    A telescopic tube member having an outer tube and an inner tube slidably inserted into the outer tube;
    A cylinder connected to one of the outer tube and the inner tube, a piston movably inserted into the cylinder to partition the inside of the cylinder into an extension side chamber and a compression side chamber, and one end to the piston. A piston rod connected to the other end of the outer tube and the inner tube, and an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod. A shock absorber body housed in the tube member,
    It is equipped with a stroke sensor that detects the stroke displacement of the shock absorber body.
    The stroke sensor includes a detection target connected to the cylinder, a rod-shaped probe that is housed in the piston rod to detect the position of the detection target, and a sensor main body that holds the probe. ,
    The shock absorber is arranged on the outer periphery of the piston rod and has one end attached to the other end of a pipe member mounted on the side opposite to the cylinder of the rod guide.
  2.  請求項1に記載の緩衝器であって、
     前記ピストンロッドの外周に装着されるともにクッションラバーを備え、
     前記緩衝器本体の最収縮時に前記クッションラバーと前記パイプ部材とが衝合して前記緩衝器本体の収縮を規制する
     緩衝器。
    The shock absorber according to claim 1.
    It is mounted on the outer circumference of the piston rod and has a cushion rubber.
    A shock absorber that restricts the shrinkage of the shock absorber body by the abutment of the cushion rubber and the pipe member when the shock absorber body is contracted most.
  3.  緩衝器であって、
     アウターチューブと、アウターチューブ内に摺動自在に挿入されるインナーチューブとを有するテレスコピック型のチューブ部材と、
     前記アウターチューブと前記インナーチューブの一方に連結されるシリンダと、前記シリンダ内に軸方向へ移動可能に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、一端が前記ピストンに連結されるとともに他端が前記アウターチューブと前記インナーチューブの他方に連結されるピストンロッドと、前記シリンダの端部に設けられて前記ピストンロッドの移動を案内する環状のロッドガイドとを有して前記チューブ部材内に収容される緩衝器本体と、
     前記緩衝器本体のストローク変位を検知するストロークセンサとを備え、
     前記ストロークセンサは、前記シリンダに連結される被検出子と、前記ピストンロッド内に収容されて前記被検出子の位置を検知するロッド状のプローブと、前記プローブを保持するセンサ本体とを有し、
     前記被検出子は、前記ロッドガイドの内周に装着されており、
     前記センサ本体は、前記アウターチューブと前記インナーチューブの他方の開口部を閉塞するキャップと前記ピストンロッドとを連結する連結パイプの内方に収容される
     緩衝器。
    It ’s a shock absorber,
    A telescopic tube member having an outer tube and an inner tube slidably inserted into the outer tube;
    A cylinder connected to one of the outer tube and the inner tube, a piston movably inserted into the cylinder to partition the inside of the cylinder into an extension side chamber and a compression side chamber, and one end to the piston. A piston rod connected to the other end of the outer tube and the inner tube, and an annular rod guide provided at the end of the cylinder for guiding the movement of the piston rod. A shock absorber body housed in the tube member,
    It is equipped with a stroke sensor that detects the stroke displacement of the shock absorber body.
    The stroke sensor includes a detection target connected to the cylinder, a rod-shaped probe that is housed in the piston rod to detect the position of the detection target, and a sensor main body that holds the probe. ,
    The detector is mounted on the inner circumference of the rod guide.
    A shock absorber, wherein the sensor body is housed inside a connecting pipe that connects the piston rod and a cap that closes the other opening of the outer tube and the inner tube.
  4.  請求項3に記載の緩衝器であって、
     前記連結パイプの外周に配置されて前記ロッドガイドと前記キャップとの間に介装されるコイルばねを備えた
     緩衝器。
    The shock absorber according to claim 3, wherein
    A shock absorber comprising a coil spring which is disposed on the outer circumference of the connecting pipe and is interposed between the rod guide and the cap.
  5.  請求項1から4のいずれか一項に記載の緩衝器であって、
     前記ピストンロッド内に前記緩衝器本体が発生する減衰力を調整する電磁弁を備え、
     前記電磁弁におけるソレノイドのリード線と前記プローブとを前記ピストンロッド内に収容している
     緩衝器。
     
    The shock absorber according to any one of claims 1 to 4.
    An electromagnetic valve for adjusting the damping force generated by the shock absorber body is provided in the piston rod.
    A shock absorber that houses a lead wire of a solenoid of the solenoid valve and the probe in the piston rod.
PCT/JP2020/008377 2019-03-04 2020-02-28 Damper WO2020179681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038127A JP7051738B2 (en) 2019-03-04 2019-03-04 Shock absorber
JP2019-038127 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179681A1 true WO2020179681A1 (en) 2020-09-10

Family

ID=72337077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008377 WO2020179681A1 (en) 2019-03-04 2020-02-28 Damper

Country Status (2)

Country Link
JP (1) JP7051738B2 (en)
WO (1) WO2020179681A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510368A (en) * 1991-07-05 1993-01-19 Yamaha Motor Co Ltd Stroke detecting device for tubular attenuator
JPH074944A (en) * 1992-12-24 1995-01-10 Robert Bosch Gmbh Stroke measuring device to measure stroke of buffer
JP2016161048A (en) * 2015-03-02 2016-09-05 Kyb株式会社 Buffer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510368A (en) * 1991-07-05 1993-01-19 Yamaha Motor Co Ltd Stroke detecting device for tubular attenuator
JPH074944A (en) * 1992-12-24 1995-01-10 Robert Bosch Gmbh Stroke measuring device to measure stroke of buffer
JP2016161048A (en) * 2015-03-02 2016-09-05 Kyb株式会社 Buffer

Also Published As

Publication number Publication date
JP7051738B2 (en) 2022-04-11
JP2020143681A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP4840557B2 (en) Damping force adjustable hydraulic shock absorber
JP7212552B2 (en) buffer
JP2006083912A (en) Hydraulic damping force control device, hydraulic damping device, front fork for vehicle and hydraulic rotary damper
JP2016169777A (en) Vehicle suspension system
JP5559713B2 (en) Shock absorber for saddle riding vehicle
WO2020179678A1 (en) Shock absorber
WO2020179682A1 (en) Shock absorber
WO2020179684A1 (en) Shock absorber
WO2020179681A1 (en) Damper
JP5671355B2 (en) Solenoid valve and shock absorber
WO2020179680A1 (en) Damper
JP2018004026A (en) Damping valve and buffer
WO2020179683A1 (en) Shock absorber
WO2020179675A1 (en) Solenoid valve and buffer
WO2020179677A1 (en) Spool valve and shock damper
JP6357067B2 (en) Front fork
WO2020179679A1 (en) Shock damper
JP2012082850A (en) Suspension device
JP5771067B2 (en) Solenoid valve and front fork
JP5517337B2 (en) Buffer valve structure
JP6916757B2 (en) Front fork

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766736

Country of ref document: EP

Kind code of ref document: A1