WO2020177557A1 - 释放孔位于封装空间内的mems器件的封装 - Google Patents

释放孔位于封装空间内的mems器件的封装 Download PDF

Info

Publication number
WO2020177557A1
WO2020177557A1 PCT/CN2020/076207 CN2020076207W WO2020177557A1 WO 2020177557 A1 WO2020177557 A1 WO 2020177557A1 CN 2020076207 W CN2020076207 W CN 2020076207W WO 2020177557 A1 WO2020177557 A1 WO 2020177557A1
Authority
WO
WIPO (PCT)
Prior art keywords
release hole
packaging
mems device
film
resonator
Prior art date
Application number
PCT/CN2020/076207
Other languages
English (en)
French (fr)
Inventor
张孟伦
庞慰
杨清瑞
Original Assignee
天津大学
诺思(天津)微***有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微***有限责任公司 filed Critical 天津大学
Publication of WO2020177557A1 publication Critical patent/WO2020177557A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Definitions

  • the embodiments of the present invention relate to the field of semiconductors, in particular to a MEMS device assembly, an electronic device having the MEMS device assembly, an electronic device having the MEMS device assembly or the electronic device, and a MEMS device package method.
  • FBAR film bulk acoustic resonator
  • the thin-film bulk acoustic wave bandpass filter is based on a high-Q resonator.
  • the thin-film bulk acoustic wave resonator uses the thickness extension mode of a piezoelectric aluminum nitride (AlN) film.
  • AlN piezoelectric aluminum nitride
  • Silicon reverse etching type This bulk silicon micro-manufacturing process is used to etch and remove most of the silicon material from the reverse side of the silicon wafer to form an air interface on the lower surface of the piezoelectric oscillatory stack, thereby confining sound waves within the piezoelectric oscillatory stack. Because the large area of silicon substrate is removed, it will inevitably affect the mechanical fastness of the device and greatly reduce the yield.
  • Air gap type The surface micro-manufacturing process used forms an air gap on the upper surface of the silicon wafer to limit the sound waves in the piezoelectric oscillator stack.
  • the air gap may be a sinking type formed by removing part of the surface of the silicon wafer, or it may be an upward convex shape formed directly on the silicon surface without removing the silicon.
  • This type of FBAR can not only confine the sound wave within the piezoelectric oscillator stack, and obtain a high Q value.
  • the surface micro-manufacturing process it is not necessary to remove most of the silicon substrate, so it is compatible with the silicon wafer.
  • the mechanical fastness is much better; in addition, there is no need to process the reverse side of the silicon substrate so that this method can be compatible with the traditional silicon integrated circuit process and has the possibility of integration.
  • SMR Solidly mounted resonator
  • the Bragg reflector generally uses W and SiO 2 as the high and low impedance acoustic layer, because the acoustic impedance between W and SiO 2 is relatively different.
  • W and SiO 2 are materials in the standard CMOS process. Its biggest advantage is that it has strong mechanical fastness, good integration, and does not need to use technology, which makes it easy for many semiconductor factories that do not have technology to join in.
  • Figures 1 and 2 are respectively a top view of a typical air gap type FBAR and a cross-sectional view taken along A-A in the top view.
  • 10 is the air gap structure of the resonator
  • 11 is the release hole of the air gap
  • 12 is the bottom electrode of the resonator
  • 13 is the piezoelectric layer of the resonator
  • 14 is the top electrode of the resonator.
  • film bulk acoustic resonators have specific packaging requirements under different application environments.
  • certain BAW resonators can work optimally in specific environmental conditions, such as a specific range of humidity or pressure or in an inert gas.
  • certain bulk acoustic wave resonators may be sensitive to certain pollution.
  • 3A-3E show the thin film packaging process of the resonator in the prior art. as the picture shows:
  • the known thin film packaging process is as follows:
  • a packaging film 31 is formed above the sacrificial layer, as shown in FIG. 3C;
  • a sealing layer 35 is formed on the packaging film 31 to seal the opening 32 in the packaging film 31, thereby sealing the packaging cavity 33, as shown in FIG. 3E.
  • the position of the opening 32 is located in the middle of the film 31, so that the liquid medicine enters the packaging.
  • the distance into the air gap 10 through the release hole 11 becomes longer, as shown by the arrow in FIG. 3D. Therefore, chemical residues and the like generated during the release of the sacrificial layer 30 are likely to stay in the air gap 10, resulting in deterioration of the performance of the resonator.
  • the air gap type FBAR there will be a step 34 in the packaging film 34 formed on the release hole 11 of the air gap.
  • the stability of the packaging structure will deteriorate. Moreover, when the final sealing is performed, the sealant will easily fall from the opening 32 to the top of the device, which will cause the performance of the resonator to deteriorate.
  • a cover substrate is installed above the device.
  • An example cover substrate is a dome or cap-shaped "cap”, which can be positioned above each device and then fixed to a supporting substrate. After being unitized, the devices can be packaged one by one at the chip level, for example, packaged in a housing.
  • this packaging method will increase the overall size of the device and increase the packaging cost due to a large number of packaging steps. At the same time, it is easy to introduce particle contamination in the chip-scale packaging.
  • Another packaging method such as thin-film packaging, first deposits a sacrificial layer on the device during processing, then spin-coats a thin film as the packaging layer, and etches the holes to reach the sacrificial layer, and releases the sacrificial layer to form a cavity. Spin on a thin film to seal it.
  • This packaging method has simple process, good sealing, low cost, and is compatible with IC process.
  • a thin film bulk acoustic wave resonator assembly including:
  • MEMS devices including air gap structures
  • the packaging film forms a packaging space that closes the MEMS device
  • the MEMS device is provided with a first release hole communicating with the air gap structure, and the first release hole is located in the packaging space;
  • the packaging film is provided with a second release hole, and the second release hole is filled with a sealing material;
  • the horizontal distance between at least one of the second release holes and the corresponding first release hole is less than 20um.
  • the second release hole overlaps or partially overlaps the corresponding first release hole.
  • the horizontal distance between each of the second release holes and the corresponding first release hole is within a range of less than 20 um.
  • the MEMS device assembly includes a sealing layer at least partially covering the packaging film, and a material constituting the sealing layer constitutes a sealing material filling the second release hole.
  • the MEMS device includes a bulk acoustic wave resonator. Further, the MEMS device includes a thin-film bulk acoustic resonator.
  • the bulk acoustic wave resonator includes a bottom electrode, a piezoelectric layer and a top electrode
  • the packaging film covers the bulk acoustic wave resonator
  • the component includes a sealing layer at least partially covering the packaging film
  • the material constituting the sealing layer constitutes the sealing material filling the second release hole; and the material of the sealing layer is the same as the material of the top electrode, and the material of the packaging film is the same as the material of the piezoelectric layer.
  • the material of the sealing layer is selected from one of the following materials: silicon dioxide, polymer, spin-on glass, plastic, resin, dielectric material, metal, silicon nitride, aluminum nitride and other materials;
  • the material of the film is selected from one of the following materials: silicon, silicon dioxide, silicon nitride, aluminum nitride, aluminum oxide, metal, photoresist, polymer, graphene, nanotube, TOK DFR material, etc.
  • an electronic device which includes a plurality of the aforementioned MEMS device components.
  • At least two MEMS device components have a common first release hole.
  • at least two MEMS devices are packaged in one package space formed by a piece of package film.
  • the electronic device includes at least two packaging spaces, each packaging space is formed by a layer of packaging film, and at least two MEMS devices are encapsulated in at least one packaging space.
  • the electronic device includes a filter.
  • an electronic device which includes the above-mentioned electronic device or the above-mentioned MEMS device assembly.
  • a method for packaging a MEMS device includes an air gap structure and is provided with a first release hole communicating with the air gap structure.
  • the method includes step:
  • a second release hole communicating with the packaging space is opened on the packaging film, and the position of at least one second release hole is set in a vertical projection, at least one of the second release holes and the corresponding first release hole The horizontal distance between them is less than 20um;
  • Figure 1 is a schematic top view of a thin film bulk acoustic resonator in the prior art
  • Fig. 2 is a cross-sectional view taken along the line A-B of the resonator in Fig. 1;
  • 3A-3E are the processes of film packaging of the film bulk acoustic resonator in the prior art
  • FIG. 4A is a schematic top view of a thin film bulk acoustic resonator according to an exemplary embodiment of the present invention.
  • Fig. 4B is a schematic cross-sectional view along A-A in Fig. 4A;
  • FIG. 4C is a schematic diagram after a sealing layer is provided on the resonator shown in FIG. 4A;
  • FIG. 5A is a schematic top view of a thin film bulk acoustic resonator according to an exemplary embodiment of the present invention.
  • Figure 5B is a schematic cross-sectional view taken along A-A in Figure 5A;
  • FIG. 5C is a schematic diagram after a sealing layer is provided on the resonator shown in FIG. 5A;
  • Fig. 6A is a schematic top view of a filter according to an exemplary embodiment of the present invention.
  • Fig. 6B is a schematic cross-sectional view taken along line A-A in Fig. 6A;
  • FIG. 6C is a schematic diagram after a sealing layer is provided on the filter shown in FIG. 6A;
  • Fig. 6D is a schematic diagram exemplarily showing grouping and packaging of resonators in a filter
  • FIG. 7 is a schematic cross-sectional view showing a thin film package of a thin film bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • a thin-film bulk acoustic wave resonator is taken as an example to exemplarily describe the MEMS device assembly according to the embodiment of the present invention.
  • FIG. 4A is a schematic top view of a thin film bulk acoustic resonator according to an exemplary embodiment of the present invention
  • FIG. 4B is a schematic cross-sectional view along AA in FIG. 4A
  • FIG. 4C is a sealing layer provided on the resonator shown in FIG. 4A Schematic diagram after.
  • FIG. 4A it is a top view of an air gap type film bulk acoustic resonator film package.
  • 10 is the air gap structure at the bottom of the FBAR
  • 11 is the release hole of the air gap 10 (corresponding to the first release hole, and a typical value of its size can be: 10um)
  • 12 is the bottom electrode of the resonator
  • 14 is the resonance
  • 31 is a packaging film
  • 32 is a release opening of the packaging film 31 (corresponding to the second release hole).
  • the release opening 32 of the packaging film 31 overlaps the release opening 11 of the air gap at the bottom of the resonator in vertical projection (more specifically, see FIG. 4B).
  • 10 is the air gap at the bottom of the resonator
  • 11 is the release hole of the air gap at the bottom of the resonator
  • 12 is the bottom electrode of the resonator
  • 13 is the piezoelectric layer of the resonator
  • 14 is the top electrode of the resonator
  • 32 is the release opening on the packaging film
  • 33 is the cavity under the packaging film.
  • the thickness of the packaging film 31 may be 1-10um, typically 3um, and the height of the cavity above the resonator may be 0.1-10um.
  • the liquid medicine enters the resonance through the release hole 11 during the formation of the packaging space 33 After being in the air gap at the bottom of the device, it can quickly circulate and flow out to take away chemical residues, etc., thus reducing the possibility of chemical residues remaining in the air gap, as shown by the arrow in Figure 4B, so it is beneficial to improve the resonator
  • the openings 32 of the packaging film 31 are on both sides of the effective area of the resonator, when the openings of the packaging film are finally sealed, even if the sealing agent falls, it will not affect the resonator The performance is affected.
  • the opening position of the packaging film 31 is located directly above the release hole 11 of the air gap 10, when the packaging film is formed, steps are not generated here, and there is no stress accumulation phenomenon, so that the packaging structure of the resonator is more improved. For stability.
  • a sealing layer is finally formed on the encapsulation film 31, as shown in 41 in Figure 4C.
  • the opening 32 on the encapsulation film 31 is sealed, and finally a hermetic seal is formed above the resonator.
  • the space 33 is sealed to seal the film bulk acoustic resonator.
  • the thickness of the sealing layer can be 10-50um.
  • FIG. 5A is a schematic top view of a thin film bulk acoustic resonator according to an exemplary embodiment of the present invention
  • FIG. 5B is a schematic cross-sectional view along AA in FIG. 5A
  • FIG. 5C is a sealing layer provided on the resonator shown in FIG. 5A Schematic diagram after.
  • FIG. 5A it is a top view of another air gap type film bulk acoustic wave resonator film package.
  • 10 is the air gap structure at the bottom of the resonator
  • 11 is the release hole of the air gap at the bottom of the resonator
  • 12 is the bottom electrode of the resonator
  • 14 is the top electrode of the resonator
  • 31 is the packaging film
  • 32 is the packaging film 31 Of the opening.
  • the opening 32 on the packaging film 31 and the air gap release hole 11 at the bottom of the resonator do not overlap in the vertical direction, but they are very close horizontally, within a range of less than 40um, preferably less than 20um.
  • the opening 32 on the packaging film 31 and the release hole 11 of the air gap 10 at the bottom of the resonator do not overlap in the vertical direction, but they are relatively close horizontally, such as in the above-mentioned distance range.
  • the liquid medicine flowing in through the opening 32 can quickly circulate out after passing through the air gap 10 at the bottom of the resonator, which is beneficial to take away the liquid medicine residues, such as As shown by the arrow in FIG. 5B, the influence of the chemical residue on the performance of the resonator is therefore reduced.
  • a sealing layer is finally formed on the encapsulation film 31, as shown in 41 in FIG. 5C.
  • the opening 32 on the encapsulation film 31 is sealed, and finally an airtight is formed above the resonator.
  • the space 33 is sealed to seal the film bulk acoustic resonator.
  • FIG. 7 is a schematic cross-sectional view showing a thin film package of a thin film bulk acoustic resonator according to an exemplary embodiment of the present invention, wherein 10 is the bottom air gap structure of the resonator, and 11 is the release hole of the bottom air gap of the resonator 12 is the bottom electrode of the resonator, 13 is the piezoelectric layer of the resonator, 14 is the top electrode of the resonator; 31 is the packaging film, 32 is the opening on the packaging film, 33 is the packaging space on the top of the resonator, 34 For the sealing layer.
  • the opening positions on the packaging film are located on both sides of the packaging film, and overlap with the release holes of the air gap at the bottom of the resonator in the vertical direction, or the horizontal distance is less than 20um.
  • thin-film packaging can also be applied to other MEMS devices containing air gap structures.
  • a MEMS device assembly including:
  • MEMS device including air gap structure 10;
  • the packaging film 31 forms a packaging space 33 enclosing the resonator
  • the resonator is provided with a first release hole (corresponding to the release hole 11) communicating with the air gap structure 10, and the first release hole is located in the packaging space;
  • the packaging film is provided with a second release hole (corresponding to the opening 32), and the second release hole is filled with a sealing material;
  • the horizontal distance between at least one of the second release holes and the corresponding first release hole is less than 20um.
  • the present invention also provides a packaging method for a MEMS device, the MEMS device includes an air gap structure and is provided with a first release hole communicating with the air gap structure, and the method includes the steps:
  • a second release hole communicating with the packaging space is opened on the packaging film, and the position of at least one second release hole is set in a vertical projection, at least one of the second release holes and the corresponding first release hole
  • the horizontal spacing between is less than 20um
  • FIG. 6A is a schematic top view of a filter (for example, a ladder filter) according to an exemplary embodiment of the present invention
  • FIG. 6B is a schematic cross-sectional view along AA in FIG. 6A
  • FIG. 6C is a filter shown in FIG. 6A
  • FIG. 6D is a schematic diagram exemplarily showing the grouping and packaging of resonators in the filter.
  • the filter is an air gap type FBAR according to a ladder structure, that is, each stage is composed of a series resonator and a parallel resonator, where 61 and 62 are series resonators, and 63 is a parallel resonator.
  • 11 is the release hole of the air gap at the bottom of the resonator
  • 31 is the packaging film
  • 32 is the opening structure of the packaging film.
  • the openings on the packaging film 32 and the release holes 11 of the air gap at the bottom of the resonator overlap in the vertical direction, so that when the film packaging cavity is released, the generated liquid medicine will be minimized.
  • the impact of residue on the air gap at the bottom of the resonator reduces the impact on the performance of the resonator.
  • 10 is the air gap structure at the bottom of the resonator
  • 11 is the release hole of the air gap at the bottom of the resonator
  • 12 is the bottom electrode of the resonator
  • 13 is the piezoelectric layer of the resonator
  • 14 is the top electrode of the resonator
  • 31 is the packaging film structure
  • 32 is the opening on the packaging film
  • 33 is the cavity structure under the packaging film.
  • a sealing layer is finally formed on the encapsulation film 31, as shown in 41 in Figure 6C.
  • the opening 32 on the encapsulation film 31 is sealed, and finally a hermetic seal is formed above the resonator. Space 33, so that the film bulk acoustic resonator is hermetically packaged.
  • the opening 32 of the packaging film 31 overlaps the release hole 11 of the air gap at the bottom of the resonator in the thickness direction, which can effectively reduce the amount of liquid medicine generated during the formation of the cavity above the resonator.
  • the residue is left in the cavity at the bottom of the resonator, which is beneficial to improve the performance of the resonator.
  • FIGS. 6A-6C of the present invention are described by using a filter film package as an example. However, those skilled in the art can understand that the above film package is not limited to being applied to filters. Based on this, the embodiment of the present invention also proposes an electronic device including a plurality of the above-mentioned MEMS device components. Optionally, at least two MEMS device components have a common first release hole. Further, at least two MEMS devices are packaged in one package space formed by a layer of package film.
  • the electronic device includes at least two packaging spaces, each packaging space is formed by a layer of packaging film, and at least two MEMS devices are encapsulated in at least one packaging space.
  • the electrode constituent materials can be gold (Au), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), titanium tungsten (TiW), aluminum (Al) , Titanium (Ti) and other similar metals.
  • the piezoelectric layer material can be aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO 3 ), quartz (Quartz), potassium niobate (KNbO 3 ) or tantalic acid Materials such as lithium (LiTaO 3 ).
  • the material of the sacrificial layer can be organic material, polymer, silicon, amorphous silicon, silicon dioxide, PSG, metal (such as Ge, Ti, Cu), metal oxide (such as MgO, ZnO), photoresist (such as SU- 8) and other easily soluble materials.
  • Packaging film materials can be silicon, silicon dioxide, silicon nitride, aluminum nitride, aluminum oxide, metal, photoresist, polymer, graphene, nanotubes, TOK DFR materials, etc.;
  • the sealing layer material can be dense materials such as silicon dioxide, polymers, spin-on glass, plastics, resins, dielectric materials, metals, silicon nitride, aluminum nitride, and other materials.
  • the material of the sealing layer is the same as the material of the top electrode, and the material of the packaging film is the same as the material of the piezoelectric layer. More specifically, the material of the sealing layer is selected from one of the following materials: silicon dioxide, polymer, spin-on glass, plastic, resin, dielectric material, metal, silicon nitride, aluminum nitride and other materials; The material of the packaging film is selected from one of the following materials: silicon, silicon dioxide, silicon nitride, aluminum nitride, aluminum oxide, metal, photoresist, polymer, graphene, nanotubes, TOK DFR materials, etc.
  • the sacrificial layer forming the air gap structure and the sacrificial layer forming the packaging space can use the same material, which is selected from one of the following materials: organic materials, polymers, silicon, amorphous silicon, silicon dioxide, PSG, metal (such as Ge, Ti, Cu), metal oxides (such as MgO, ZnO), photoresist (such as SU-8) and other easily soluble materials.
  • the expression “vertical projection” is used, as shown in FIG. 4B, which should be understood as projection in the thickness direction of the resonator.
  • the “coincidence” in the present invention is on the same vertical projection line, or basically on the same vertical projection line.
  • the embodiment of the present invention also relates to an electronic device, including the above-mentioned MEMS device assembly or the above-mentioned electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种MEMS器件组件,包括:MEMS器件,包括空气隙结构(10);和封装薄膜(31),形成封闭MEMS器件的封装空间(33),其中: MEMS器件设置有与空气隙结构(10)相通的第一释放孔(11),第一释放孔(11)位于封装空间(33)内;封装薄膜(31)设置有第二释放孔(32),第二释放孔(32)中填充有密封材料;且在垂直投影中,至少一个第二释放孔(32)与对应的第一释放孔(11)之间的水平间距小于20um。还提供了一种具有MEMS器件组件的电子器件,一种具有MEMS器件组件或者电子器件的电子设备,以及一种MEMS器件的封装方法。

Description

释放孔位于封装空间内的MEMS器件的封装 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种MEMS器件组件、一种具有该MEMS器件组件的电子器件,一种具有该MEMS器件组件或者该电子器件的电子设备,以及一种MEMS器件的封装方法。
背景技术
小型化、高性能的薄膜体声波(FBAR,film bulk acoustic resonator)带通滤波器在移动无线通讯***中广泛应用。薄膜体声波带通滤波器是基于高Q值的谐振器,该薄膜体声波谐振器是利用压电氮化铝(AlN)薄膜的厚度延伸模式。薄膜体声波谐振器主要有以下三种结构:
(1)硅反面刻蚀型。此种采用的体硅微制造工艺,从硅片反面刻蚀去除大部分的硅材料,以在压电振荡堆的下表面形成空气交界面,从而将声波限制于压电振荡堆之内。由于大面积的硅衬底被去除,势必影响了器件的机械牢度,并大幅降低成品率。
(2)空气隙型。此种采用的表面微制造工艺,在硅片的上表面形成一个空气隙以限制声波在压电振荡堆之内。空气隙可以采用去除部分硅片表面形成的下沉型,也可以是不去除硅直接在硅表面之上形成的上凸形。这一类FBAR不但能很好地将声波限制于压电振荡堆之内,获得很高的Q值,同时因为采用了表面微制造工艺,不需去除大部分硅衬底,故其与硅片反面刻蚀型相比机械牢度要好很多;此外,不需要对硅衬底的反面进行加工使得这一方法可以与传统的硅集成电路工艺相兼容,有集成的可能性。
(3)固态装配型(SMR,solidly mounted resonator)。与前两者不同,SMR采用布拉格反射层将声波限制在压电振荡堆之内,布拉格反射层一般采用W和SiO 2作高低阻抗的声学层,因为W和SiO 2之间的声学阻抗相差较大,且这两种材料都是标准CMOS工艺之中的材料。它的最大优点是机械牢度强、集成性好,且不需要借助工艺,这使得许多不具备工艺的半导体厂商业也可以方便地加入进来。但其缺点是需要制备多层薄膜,工艺成本比空气隙型的要高,且布拉格反射层的声波反射效果终不及空气来得好, 故SMR的Q值一般比空气隙型的FBAR要低一些。
图1、图2分别为典型的空气隙型FBAR的俯视图和沿俯视图中A-A相切的截面图。其中10为谐振器的空气隙结构,11为空气隙的释放孔,12为谐振器的底电极,13为谐振器的压电层,14为谐振器的顶电极。
通常,薄膜体声波谐振器在不同的应用环境下,具有特定的封装要求。例如,某些体声波谐振器可以在特定环境状态中最优地工作,如特定范围的湿度或压力或在惰性气体中。此外,特定的体声波谐振器可能对特定污染敏感。
图3A-3E示出了现有技术中谐振器的薄膜封装流程。如图所示:
已知的薄膜封装流程如下:
1):如图3A所示为性能良好的空气隙型薄膜体声波谐振器;
2):在谐振器上方沉积牺牲层30,如图3B所示;
3):在牺牲层上方形成封装薄膜31,如图3C所示;
4):在封装薄膜上31形成开孔32并将牺牲层30释放掉,形成封装空腔33,如图3D所示;
5):在封装薄膜31上形成密封层35,将封装薄膜31中的开孔32密封,从而将封装空腔33密封住,如图3E所示。
但是对于空气隙型薄膜体声波谐振器,其在封装的过程中,当释放牺牲层30形成封装空腔33的过程中,由于开孔32的位置位于薄膜31的中间部位,使得药液进入封装空腔33之后,在通过释放孔11进入空气隙10的距离变长,如图3D中的箭头所示。因而牺牲层30在释放过程中产生的药液残渣等很容易滞留在空气隙10中,导致谐振器的性能变差。同时对于空气隙型FBAR,在空气隙的释放孔11之上形成的封装薄膜34中会存在台阶34,由于台阶处的应力集中较大,会导致封装结构的稳定性变差。而且,在最终进行密封时,密封剂会很容易从开孔32处掉落到器件上方,进而导致谐振器的性能变差。
已有的封装方法中,如键合封装,即在器件上方安装覆盖衬底。一个范例覆盖衬底是圆顶或帽盖形“帽盖”,可以将其定位于每一个器件上方,然后固定到支撑衬底。在被单元化之后,可以在芯片级,将器件逐个封装,例如封装于壳体中。不过此种封装方法会增加器件的总尺寸,而且由于有 大量的封装步骤增加了封装成本,同时在芯片级封装中容易引入颗粒污染。另一种封装方法,如薄膜封装,加工时首先在器件上方沉积一层牺牲层,然后旋涂一层薄膜作为封装层,并刻蚀形成孔道直达牺牲层,将牺牲层释放形成空腔后再旋涂一层薄膜将其密封。此种封装方法,工艺简单,密封良好,成本较低,且与IC工艺兼容。
但是,当使用薄膜封装的方法封装空气隙FBAR时,在释放封装空腔时,容易将药液残渣等引入到器件底部的空气隙中,对器件的性能造成影响,使其Q值降低等。
对于其他的MEMS器件的封装,也存在上述问题。
发明内容
为缓解或解决现有技术中的上述问题,提出本发明。
根据本发明的实施例的一个方面,提出了一种薄膜体声波谐振器组件,包括:
MEMS器件,包括空气隙结构;和
封装薄膜,形成封闭所述MEMS器件的封装空间,
其中:
所述MEMS器件设置有与所述空气隙结构相通的第一释放孔,所述第一释放孔位于所述封装空间内;
所述封装薄膜设置有第二释放孔,第二释放孔中填充有密封材料;且
在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um。
可选的,在垂直投影中,所述第二释放孔与对应的第一释放孔重合或者部分重合。
可选的,在垂直投影中,每一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um的范围内的范围内。
可选的,所述MEMS器件组件包括密封层,所述密封层至少部分覆盖所述封装薄膜,组成所述密封层的材料构成填充所述第二释放孔的密封材料。
可选的,所述MEMS器件包括体声波谐振器。进一步的,所述MEMS 器件包括薄膜体声波谐振器。
在可选的实施例中,所述体声波谐振器包括底电极、压电层和顶电极,所述封装薄膜覆盖体声波谐振器,所述组件包括至少部分覆盖所述封装薄膜的密封层,组成所述密封层的材料构成填充所述第二释放孔的密封材料;且密封层的材料与顶电极的材料相同,且封装薄膜的材料与压电层的材料相同。进一步的,所述密封层的材料选自如下材料之一:二氧化硅、聚合物、旋涂玻璃、塑料、树脂、介电材料、金属、氮化硅、氮化铝等材料;所述封装薄膜的材料选自如下材料之一:硅、二氧化硅、氮化硅、氮化铝、氧化铝、金属、光刻胶、高分子聚合物、石墨烯、纳米管、TOK DFR材料等。
根据本发明的实施例的另一方面,提出了一种电子器件,包括多个上述的MEMS器件组件。
可选的,至少两个MEMS器件组件具有共用的第一释放孔。进一步的,由一片封装薄膜形成的一个封装空间内封装有至少两个MEMS器件。
可选的,所述电子器件包括至少两个封装空间,每一个封装空间由一层封装薄膜形成,且至少一个封装空间内封装有至少两个MEMS器件。
可选的,所述电子器件包括滤波器。
根据本发明的实施例的再一方面,提出了一种电子设备,包括上述的电子器件或者上述的MEMS器件组件。
根据本发明的实施例的还一方面,提出了一种MEMS器件的封装方法,所述谐振器包括空气隙结构,且设置有与所述空气隙结构相通的第一释放孔,所述方法包括步骤:
利用封装薄膜形成封闭所述MEMS器件的封装空间,所述第一释放孔位于所述封装空间内;
在所述封装薄膜上开设与所述封装空间相通的第二释放孔,且至少一个第二释放孔的位置设置成在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um的范围内;和
密封所述第二释放孔。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为现有技术的薄膜体声波谐振器的俯视示意图;
图2为图1中的谐振器的A-B向剖视图;
图3A-3E为现有技术中薄膜体声波谐振器的薄膜封装的流程;
图4A为根据本发明的一个示例性实施例的薄膜体声波谐振器的俯视示意图;
图4B为沿图4A中的A-A的剖面示意图;
图4C为在图4A所示的谐振器上设置密封层后的示意图;
图5A为根据本发明的一个示例性实施例的薄膜体声波谐振器的俯视示意图;
图5B为沿图5A中的A-A的剖面示意图;
图5C为在图5A所示的谐振器上设置密封层后的示意图;
图6A为根据本发明的一个示例性实施例的滤波器的示意性俯视图;
图6B为沿图6A中的A-A的剖面示意图;
图6C为在图6A所示的滤波器上设置密封层后的示意图;
图6D为示例性示出滤波器中谐振器分组封装的示意图;
图7为根据本发明的一个示例性实施例的示出薄膜体声波谐振器的薄膜封装的剖视示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
下面参照附图,以薄膜体声波谐振器的薄膜封装为例,示例性描述根 据本发明的实施例的MEMS器件组件。
图4A为根据本发明的一个示例性实施例的薄膜体声波谐振器的俯视示意图;图4B为沿图4A中的A-A的剖面示意图;图4C为在图4A所示的谐振器上设置密封层后的示意图。
图4A所示的实施例中,为空气隙型薄膜体声波谐振器薄膜封装的俯视图。其中,10为FBAR底部的空气隙结构,11为空气隙10的释放孔(对应于第一释放孔,其尺寸大小典型的数值可以为:10um),12为谐振器的底电极,14为谐振器的顶电极,31为封装薄膜,32为封装薄膜31的释放开孔(对应于第二释放孔)。封装薄膜31的释放开孔32与谐振器底部空气隙的释放孔11在垂直投影中相重叠(更具体的,参见图4B)。
图4B中,10为谐振器底部的空气隙,11为谐振器底部空气隙的释放孔;12为谐振器的底电极,13为谐振器的压电层,14为谐振器的顶电极;31为封装薄膜,32为封装薄膜上的释放开孔,33为封装薄膜下的空腔。其中封装薄膜31的厚度可以为1-10um,典型的可以为3um,谐振器上方空腔的高度可以为0.1-10um。
在本发明实施例中,由于封装薄膜31上的释放孔与谐振器底部空气隙的释放孔11在垂直方向上相重合,因此在封装空间33形成的过程中,药液通过释放孔11进入谐振器底部空气隙中后,能够快速循环流动出来,将药液残渣等带走,因此降低了药液残渣在空气隙中遗留的可能性,如图4B中箭头所示,所以有利于提高谐振器的性能;同时,由于封装薄膜31的开孔32在谐振器有效区域的两侧,因此在最后对封装薄膜的开孔进行密封的时候,即便有密封试剂掉落下来,也不会对谐振器的性能造成影响。而且,由于封装薄膜31开孔的位置位于空气隙10释放孔11的正上方,因此在形成封装薄膜时,不会在此处产生台阶,没有应力的聚集现象,从而使得谐振器的封装结构更为稳定。
当谐振器上方封装空间33形成之后,最后在封装薄膜31上形成一层密封层,如图4C中的41,将封装薄膜31上的开孔32进行密封,最终在谐振器的上方形成密闭的封装空间33,从而将薄膜体声波谐振器进行密闭封装。其中密封层的厚度可以为10-50um。
图5A为根据本发明的一个示例性实施例的薄膜体声波谐振器的俯视 示意图;图5B为沿图5A中的A-A的剖面示意图;图5C为在图5A所示的谐振器上设置密封层后的示意图。
图5A所示的实施例中,为另一空气隙型薄膜体声波谐振器薄膜封装的俯视图。其中,10为谐振器底部的空气隙结构,11为谐振器底部空气隙的释放孔;12为谐振器的底部电极,14为谐振器的顶部电极;31为封装薄膜,32为封装薄膜31上的开孔。其中,封装薄膜31上的开孔32与谐振器底部空气隙释放孔11在垂直方向上不重叠,但其在水平上相离很近,在小于40um的范围内,优选小于20um的范围内。
图5B中,封装薄膜31上的开孔32与谐振器底部空气隙10的释放孔11,在垂直方向上不重叠,但其在水平上相距较近,例如在上文提到的距离范围。这样使得薄膜封装的空腔33在释放的过程中,通过开孔32流入的药液,在通过谐振器底部空气隙10后,能够快速循环流动出来,有利于将药液残渣等带走,如图5B中箭头所示,因此降低了药液残渣对谐振器的性能造成的影响。
而且由于封装薄膜31上开孔32的位置,位于谐振器的有效区域外,因此在最后对封装薄膜进行密封的时候,即便有密封试剂掉落下来,也不会对谐振器的性能造成影响。
当谐振器上方封装空间33形成之后,最后在封装薄膜31上形成一层密封层,如图5C中的41,将封装薄膜31上的开孔32进行密封,最终在谐振器的上方形成密闭的封装空间33,从而将薄膜体声波谐振器进行密闭封装。
图7为根据本发明的一个示例性实施例的示出薄膜体声波谐振器的薄膜封装的剖视示意图,其中,10为谐振器的底部空气隙结构,11为谐振器底部空气隙的释放孔;12为谐振器的底电极,13为谐振器的压电层,14为谐振器的顶电极;31为封装薄膜,32为封装薄膜上的开孔,33为谐振器顶部的封装空间,34为密封层。在本实施例中,封装薄膜上的开孔位置位于封装薄膜的两侧,并在垂直方向上与谐振器底部空气隙的释放孔相重叠,或者在水平距离上小于20um。
如本领域技术人员能够理解的,虽然上述实施例以薄膜体声波谐振器为例说明了薄膜封装,但是,薄膜封装也可以适用于其他的含有空气隙结 构的MEMS器件。
基于以上,本发明提出了一种MEMS器件组件,包括:
MEMS器件,包括空气隙结构10;和
封装薄膜31,形成封闭所述谐振器的封装空间33,
其中:
所述谐振器设置有与所述空气隙结构10相通的第一释放孔(对应于释放孔11),所述第一释放孔位于所述封装空间内;
所述封装薄膜设置有第二释放孔(对应于开孔32),第二释放孔中填充有密封材料;且
在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um。
基于以上,本发明还提出了一种MEMS器件的封装方法,所述MEMS器件包括空气隙结构,且设置有与所述空气隙结构相通的第一释放孔,所述方法包括步骤:
利用封装薄膜形成封闭所述MEMS器件的封装空间,所述第一释放孔位于所述封装空间内;
在所述封装薄膜上开设与所述封装空间相通的第二释放孔,且至少一个第二释放孔的位置设置成在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um;和
密封所述第二释放孔。
图6A为根据本发明的一个示例性实施例的滤波器(例如为梯形滤波器)的示意性俯视图;图6B为沿图6A中的A-A的剖面示意图;图6C为在图6A所示的滤波器上设置密封层后的示意图;图6D为示例性示出滤波器中谐振器分组封装的示意图。
图6A所示的实施例中,滤波器是由空气隙型FBAR按照梯形结构即每一级由一个串联谐振器和一个并联谐振器组成,其中,61和62为串联谐振器,63为并联谐振器;11为谐振器底部空气隙的释放孔,31为封装薄膜,32为封装薄膜的开孔结构。在此实施例中,封装薄膜32上的开孔与谐振器底部空气隙的释放孔11在垂直方向为重合的,这样在对薄膜封装空腔进行释放的时候,会尽量减少所产生的药液残渣对谐振器底部空气隙 产生的影响,使得对谐振器的性能的影响降低。
在图6B中,10为谐振器底部的空气隙结构,11为谐振器底部空气隙的释放孔;12为谐振器的底部电极,13为谐振器的压电层,14为谐振器的顶部电极;31为封装薄膜结构,32为封装薄膜上的开孔,33为封装薄膜下的空腔结构。
当谐振器上方封装空间33形成之后,最后在封装薄膜31上形成一层密封层,如图6C中的41,将封装薄膜31上的开孔32进行密封,最终在谐振器的上方形成密闭的空间33,从而将薄膜体声波谐振器进行密闭封装。
当组成滤波器的谐振器数量增多时,如果对每个谐振器进行单独封装,会导致谐振器之间的电学连接变长,从而会使滤波器的电学损耗增加;如果对滤波器进行整体封装,由于面积过大,封装薄膜形成的空腔容易塌陷,使得滤波器的性能变差。因此,当对滤波器进行多个封装时,可以为单个封装、也可以为两个一起或者三个进行封装,这样能够有效避免上述问题的存在,如图6D所示。同时在图6C中,封装薄膜31的开孔32与谐振器底部空气隙的释放孔11在厚度方向上相重叠,能够有效较少谐振器上方空腔在形成的过程中,所产生的药液残渣遗留在谐振器底部空腔中,从而有利于提高谐振器的性能。
需要指出的是,本发明的图6A-6C的实施例以滤波器的薄膜封装为例进行了说明,不过,本领域技术人员能够理解的是,上述的薄膜封装不限于应用于滤波器。基于此,本发明的实施例也提出了一种电子器件,包括多个上述的MEMS器件组件。可选的,至少两个MEMS器件组件具有共用的第一释放孔。进一步的,由一层封装薄膜形成的一个封装空间内封装有至少两个MEMS器件。
可选的,所述电子器件包括至少两个封装空间,每一个封装空间由一层封装薄膜形成,且至少一个封装空间内封装有至少两个MEMS器件。
在本发明中,电极组成材料可以是金(Au)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)等类似金属形成。
压电层材料可以为氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料。
牺牲层材料可以为有机材料、聚合物、硅、非晶硅、二氧化硅、PSG、金属(如Ge、Ti、Cu)、金属氧化物(如MgO、ZnO)、光刻胶(如SU-8)等易溶性的材料。
封装薄膜材料可以为硅、二氧化硅、氮化硅、氮化铝、氧化铝、金属、光刻胶、高分子聚合物、石墨烯、纳米管、TOK DFR材料等;
密封层材料可以为二氧化硅等致密性的材料、聚合物、旋涂玻璃、塑料、树脂、介电材料、金属、氮化硅、氮化铝等材料。
在可选的实施例中,密封层的材料与顶电极的材料相同,且封装薄膜的材料与压电层的材料相同。更具体的,所述密封层的材料选自如下材料之一:二氧化硅、聚合物、旋涂玻璃、塑料、树脂、介电材料、金属、氮化硅、氮化铝等材料;所述封装薄膜的材料选自如下材料之一:硅、二氧化硅、氮化硅、氮化铝、氧化铝、金属、光刻胶、高分子聚合物、石墨烯、纳米管、TOK DFR材料等。此外,形成空气隙结构的牺牲层与形成封装空间的牺牲层可以采用相同材料,该材料选自如下材料之一:有机材料、聚合物、硅、非晶硅、二氧化硅、PSG、金属(如Ge、Ti、Cu)、金属氧化物(如MgO、ZnO)、光刻胶(如SU-8)等易溶性的材料。
在本发明中,使用了“垂直投影”的表述,如附图4B所示,应理解为在与谐振器的厚度方向上进行投影。而本发明中的“重合”则是处于同一垂直投影线上,或者基本处于同一垂直投影线上。
虽然没有示出,本发明的实施例也涉及一种电子设备,包括上述的MEMS器件组件或者上述的电子器件。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (19)

  1. 一种MEMS器件组件,包括:
    MEMS器件,包括空气隙结构;和
    封装薄膜,形成封闭所述MEMS器件的封装空间,
    其中:
    所述MEMS器件设置有与所述空气隙结构相通的第一释放孔,所述第一释放孔位于所述封装空间内;
    所述封装薄膜设置有第二释放孔,第二释放孔中填充有密封材料;且
    在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距小于20um。
  2. 根据权利要求1所述的组件,其中:
    在垂直投影中,所述第二释放孔与对应的第一释放孔重合。
  3. 根据权利要求1所述的组件,其中:
    在垂直投影中,所述第二释放孔与对应的第一释放孔部分重合。
  4. 根据权利要求1所述的组件,其中:
    在垂直投影中,每一个所述第二释放孔与对应的第一释放孔之间的水平间距在小于20um的范围内。
  5. 根据权利要求1所述的组件,其中:
    所述MEMS器件组件包括密封层,所述密封层至少部分覆盖所述封装薄膜,组成所述密封层的材料构成填充所述第二释放孔的密封材料。
  6. 根据权利要求1-5中任一项所述的组件,其中:
    所述MEMS器件包括体声波谐振器。
  7. 根据权利要求6所述的组件,其中:
    所述MEMS器件包括薄膜体声波谐振器。
  8. 根据权利要求6或7所述的组件,其中:
    所述体声波谐振器包括底电极、压电层和顶电极,所述封装薄膜覆盖体声波谐振器,所述组件包括至少部分覆盖所述封装薄膜的密封层,组成所述密封层的材料构成填充所述第二释放孔的密封材料;且
    密封层的材料与顶电极的材料相同,且封装薄膜的材料与压电层的材料相同。
  9. 根据权利要求8所述的组件,其中:
    所述密封层的材料选自如下材料之一:二氧化硅、聚合物、旋涂玻璃、塑料、树脂、介电材料、金属、氮化硅、氮化铝;
    所述封装薄膜的材料选自如下材料之一:硅、二氧化硅、氮化硅、氮化铝、氧化铝、金属、光刻胶、高分子聚合物、石墨烯、纳米管、TOK DFR材料。
  10. 一种电子器件,包括多个根据权利要求1-9中任一项所述的MEMS器件组件。
  11. 根据权利要求10所述的电子器件,其中:
    至少两个MEMS器件组件具有共用的第一释放孔。
  12. 根据权利要求11所述的电子器件,其中:
    由一层封装薄膜形成的一个封装空间内封装有至少两个MEMS器件。
  13. 根据权利要求10所述的电子器件,其中:
    所述电子器件包括至少两个封装空间,每一个封装空间由一层封装薄膜形成,且至少一个封装空间内封装有至少两个MEMS器件。
  14. 根据权利要求10-13中任一项所述的电子器件,其中:
    所述电子器件包括滤波器。
  15. 一种电子设备,包括根据权利要求10-14中任一项所述的电子器件或者根据权利要求1-8中任一项所述的MEMS器件组件。
  16. 一种MEMS器件的封装方法,所述MEMS器件包括空气隙结构,且设置有与所述空气隙结构相通的第一释放孔,所述方法包括步骤:
    利用封装薄膜形成封闭所述MEMS器件的封装空间,所述第一释放孔位于所述封装空间内;
    在所述封装薄膜上开设与所述封装空间相通的第二释放孔,使得至少一个第二释放孔的位置设置成在垂直投影中,至少一个所述第二释放孔与对应的第一释放孔之间的水平间距在小于20um的范围内;和
    密封所述第二释放孔。
  17. 根据权利要求16所述的方法,其中:
    在垂直投影中,所述第二释放孔与对应的第一释放孔重合或者部分重合。
  18. 根据权利要求16所述的方法,其中:
    所述空气隙结构通过释放第一牺牲层形成,所述封装空间通过释放第二牺牲层形成;且
    第一牺牲层与第二牺牲层的材料相同,且选自如下材料之一:有机材料、聚合物、硅、非晶硅、二氧化硅、PSG、金属、金属氧化物、光刻胶。
  19. 根据权利要求18所述的方法,其中:
    所述MEMS器件为体声波谐振器,所述体声波谐振器包括底电极、压电层和顶电极,所述封装薄膜覆盖体声波谐振器,所述组件包括至少部分覆盖所述封装薄膜的密封层,组成所述密封层的材料构成填充所述第二释放孔的密封材料;且
    密封层的材料与顶电极的材料相同,且选自如下材料之一:二氧化硅、聚合物、旋涂玻璃、塑料、树脂、介电材料、金属、氮化硅、氮化铝;且封装薄膜的材料与压电层的材料相同,且选自如下材料之一:硅、二氧化硅、氮化硅、氮化铝、氧化铝、金属、光刻胶、高分子聚合物、石墨烯、纳米管、TOK DFR材料。
PCT/CN2020/076207 2019-03-02 2020-02-21 释放孔位于封装空间内的mems器件的封装 WO2020177557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910157928.3 2019-03-02
CN201910157928.3A CN111003684B (zh) 2019-03-02 2019-03-02 释放孔位于封装空间内的mems器件的封装

Publications (1)

Publication Number Publication Date
WO2020177557A1 true WO2020177557A1 (zh) 2020-09-10

Family

ID=70110707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076207 WO2020177557A1 (zh) 2019-03-02 2020-02-21 释放孔位于封装空间内的mems器件的封装

Country Status (2)

Country Link
CN (1) CN111003684B (zh)
WO (1) WO2020177557A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022088015A1 (zh) * 2020-10-30 2022-05-05 京东方科技集团股份有限公司 超声换能单元及其制备方法
CN115106274A (zh) * 2022-06-14 2022-09-27 北京海创微芯科技有限公司 一种mems换能器及制作方法
CN117040478B (zh) * 2023-10-08 2024-01-30 深圳新声半导体有限公司 Baw滤波器及其制备方法、集成电路及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267109A1 (en) * 2005-05-30 2006-11-30 Kabushiki Kaisha Toshiba Semiconductor device using MEMS technology
CN101465628A (zh) * 2009-01-15 2009-06-24 电子科技大学 一种薄膜体声波谐振器及其制备方法
CN103930979A (zh) * 2011-11-11 2014-07-16 国际商业机器公司 带有非晶硅梁的集成半导体器件、制造方法和设计结构
US8910355B2 (en) * 2011-12-12 2014-12-16 International Business Machines Corporation Method of manufacturing a film bulk acoustic resonator with a loading element
CN109088614A (zh) * 2018-06-28 2018-12-25 深圳华远微电科技有限公司 声表面波滤波器及其封装方法和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742872B2 (en) * 2010-03-18 2014-06-03 Panasonic Corporation MEMS element, and manufacturing method of MEMS element
US20130119489A1 (en) * 2011-11-11 2013-05-16 Qualcomm Incorporated Method and apparatus for wafer-level solder hermetic seal encapsulation of mems devices
JP6331552B2 (ja) * 2014-03-25 2018-05-30 セイコーエプソン株式会社 Memsデバイス及びその製造方法
CN104507014B (zh) * 2014-12-26 2018-08-28 上海集成电路研发中心有限公司 一种具有褶皱型振动膜的mems麦克风及其制造方法
CN105185802B (zh) * 2015-08-31 2018-05-01 上海集成电路研发中心有限公司 单芯片可见光红外混合成像探测器像元结构及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267109A1 (en) * 2005-05-30 2006-11-30 Kabushiki Kaisha Toshiba Semiconductor device using MEMS technology
CN101465628A (zh) * 2009-01-15 2009-06-24 电子科技大学 一种薄膜体声波谐振器及其制备方法
CN103930979A (zh) * 2011-11-11 2014-07-16 国际商业机器公司 带有非晶硅梁的集成半导体器件、制造方法和设计结构
US8910355B2 (en) * 2011-12-12 2014-12-16 International Business Machines Corporation Method of manufacturing a film bulk acoustic resonator with a loading element
CN109088614A (zh) * 2018-06-28 2018-12-25 深圳华远微电科技有限公司 声表面波滤波器及其封装方法和电子设备

Also Published As

Publication number Publication date
CN111003684B (zh) 2023-06-23
CN111003684A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2020177558A1 (zh) 释放孔位于封装空间外的mems器件的封装
WO2020177557A1 (zh) 释放孔位于封装空间内的mems器件的封装
US8766512B2 (en) Integration of piezoelectric materials with substrates
KR101973423B1 (ko) 음향 공진기 및 그 제조 방법
JP5865944B2 (ja) 弾性波装置の製造方法
US9793877B2 (en) Encapsulated bulk acoustic wave (BAW) resonator device
JP4714214B2 (ja) 弾性表面波デバイス
US9735338B2 (en) Protected resonator
US11251772B2 (en) Acoustic resonator package and method of fabricating the same
JPWO2004105237A1 (ja) 圧電電子部品、およびその製造方法、通信機
JPH10270979A (ja) 保護音響ミラーを含む頂部を有するバルク型音波(baw)フィルタ
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
JP6200001B2 (ja) マイクロアコースティック部品および製造方法
TW202005270A (zh) 具有封裝定義之邊界條件的濾聲器及其製造方法
WO2004088840A1 (ja) 圧電薄膜デバイス及びその製造方法
JP4404450B2 (ja) 弾性表面波装置及びその製造方法
CN113285685A (zh) 石英薄膜体声波谐振器及其加工方法、电子设备
CN111010110A (zh) 考虑距离的薄膜封装的mems器件组件及电子设备
US20240162875A1 (en) Bulk acoustic wave resonator and fabrication method thereof
US20220393663A1 (en) Fbar strurcture and manufacturing method of same
WO2020181976A1 (zh) 带弧形结构的薄膜封装的mems器件组件及电子设备
CN111010102A (zh) 考虑形状的薄膜封装的mems器件组件及电子设备
WO2022183491A1 (zh) 石英薄膜体声波谐振器及其加工方法、电子设备
CN115001434A (zh) 具有分叉电极的膜体声学谐振器
JP2022507557A (ja) 薄膜バルク音響波共振器の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766719

Country of ref document: EP

Kind code of ref document: A1