WO2020173300A1 - 一种网络切片处理方法、***、设备以及存储介质 - Google Patents

一种网络切片处理方法、***、设备以及存储介质 Download PDF

Info

Publication number
WO2020173300A1
WO2020173300A1 PCT/CN2020/074787 CN2020074787W WO2020173300A1 WO 2020173300 A1 WO2020173300 A1 WO 2020173300A1 CN 2020074787 W CN2020074787 W CN 2020074787W WO 2020173300 A1 WO2020173300 A1 WO 2020173300A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
level
network
location information
access
Prior art date
Application number
PCT/CN2020/074787
Other languages
English (en)
French (fr)
Inventor
王涛
张云飞
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP20762495.8A priority Critical patent/EP3934173A4/en
Priority to JP2021540280A priority patent/JP7351914B2/ja
Publication of WO2020173300A1 publication Critical patent/WO2020173300A1/zh
Priority to US17/325,297 priority patent/US11979297B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5006Creating or negotiating SLA contracts, guarantees or penalties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5051Service on demand, e.g. definition and deployment of services in real time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • a network slicing processing method, system, equipment and storage medium This application is required to be submitted to the Chinese Patent Office on February 28, 2019.
  • the application number is 201910152800.
  • the application name is "A network slicing processing method, equipment and system" Priority of Chinese patent applications.
  • Technical Field This application relates to the field of computer technology, and in particular, to a network slicing processing method, system, device, and storage medium.
  • BACKGROUND Network slicing technology is an important basic technology of the fifth-generation mobile communication technology (fth-generate, 5G) network.
  • Network slicing can provide industry customers with mutually isolated, customized functions and performance, and quality assurance. , End-to-end logical private network service.
  • the quality of slices in a 5G network can be guaranteed, which is mainly achieved through a quality of service (QoS) mechanism.
  • QoS quality of service
  • the current QoS mechanism is only aimed at the user equipment (User Equ i pment) level, or at the data flow (f l ow) level, or at the session level.
  • Embodiments of the present application provide a network slicing processing method, system, device, and storage medium, which are used to implement resource control processing at the slice level, so that the network slice can provide slice-level service functions.
  • an embodiment of the present application provides a network slicing processing method, which is applied to a network management system, and includes:
  • an embodiment of the present application also provides a network slicing processing method, which is applied to a slicing processing device, and includes:
  • the first resource corresponding to the network slice is controlled.
  • an embodiment of the present application provides a network management system.
  • the network management system includes: a processor and a memory; the memory is used to store instructions; the processor is used to execute instructions in the memory, so that the network management system executes the above-mentioned Any one of the methods.
  • an embodiment of the present application provides a slicing processing device, which includes: a processor and a memory; the memory is used to store instructions; the processor is used to execute instructions in the memory, so that the slicing processing device executes the aforementioned aspect Any one of the methods.
  • an embodiment of the present application provides a network slicing processing system.
  • the network slicing processing system includes:
  • the network management system according to any one of the foregoing aspects, and the slice processing device according to any one of the foregoing aspects.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer executes the methods described in the foregoing aspects.
  • Fig. 1 is a schematic diagram of the composition structure of a network slicing processing system provided by an embodiment of this application
  • Fig. 2 is a schematic diagram of an interaction process between a network management system and a slicing processing device provided by an embodiment of this application;
  • FIG. 3a is a schematic block diagram of the flow of a network slicing method executed by the network management system according to an embodiment of the application;
  • Fig. 3b is a schematic block diagram of a process for generating slice-level QoS parameters executed by the network management system provided by an embodiment of the application;
  • FIG. 3c is a schematic block diagram of another process of generating slice-level QoS parameters executed by the network management system according to an embodiment of the application;
  • Figure 4 is another network slicing processing method executed by the network management system provided by an embodiment of the application Block diagram of the process of the law;
  • FIG. 5 is a schematic block diagram of a flow of a network slicing method executed by an access network device according to an embodiment of this application;
  • FIG. 6 is a schematic flowchart of another network slicing method executed by a core network device according to an embodiment of the application
  • FIG. 7 is a schematic diagram of a system architecture in an actual scenario of a network management system provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of an interaction process under the system architecture shown in FIG. 7 provided by an embodiment of the application
  • FIG. 9 is a schematic diagram of a session establishment process provided by an embodiment of the application
  • Fig. 10 is a schematic diagram of the module composition of a network management system provided by an embodiment of the application
  • Fig. 11 is a schematic diagram of the module composition of a slice processing device provided by an embodiment of the application
  • Fig. 12 is a schematic diagram of the module composition of a slice processing device provided by an embodiment of the application Another schematic diagram of the module composition of a network management system
  • FIG. 13 is a schematic diagram of the module composition of another slice processing device provided in an embodiment of this application.
  • DETAILED DESCRIPTION Embodiments of the present application provide a network slicing processing method, device, and system, which are used to implement resource control processing at the slice level, so that the network slicing can provide slice-level service functions.
  • the embodiment of the application first provides a network slicing processing system.
  • the network slicing processing system 10 provided by the embodiment of the application includes a network management system 11 and a slicing processing device 12.
  • the network management system 11 and the slice processing device 12 can communicate.
  • a wired network can be established between the network management system 11 and the slice processing device 12, so that the network management system 11 can communicate with the slice processing device 1 2 Send data or information.
  • a wireless network can be established between the network management system 11 and the slice processing device 12, so that the network management system 11 can send data or information to the slice processing device 12.
  • the network management system 1 1 is referred to as the network management system for short, and the network management system 1 1 is the parameter configuration terminal of network slicing.
  • the network management system 1 1 can set various policies and requirements related to network slicing, for example,
  • the network management system may include an end-to-end slice management function subsystem 111, an access network management subsystem 112, and a core network management subsystem 111.
  • Access network management subsystem 1 1 2 specific It may include an access network slice management subsystem, and the core network management subsystem 113 may specifically include a core network slice management subsystem.
  • the slicing processing device 12 is the processing end of the network slicing, and the slicing processing device 12 needs to execute various policies and requirements based on network slicing in accordance with the configuration instructions of the network management system.
  • the slice processing device 12 may specifically include at least one of the following devices: an access network device 121 and a core network device 122.
  • the end-to-end slice management function subsystem 111 may generate slice-level QoS parameters, and the slice-level QoS parameters may include a first QoS parameter and a second QoS parameter. If the first QoS parameter is used to manage the access network equipment, the end-to-end slice management function subsystem 111 sends the first QoS parameter to the access network management subsystem 112, for example, to the access network slice management subsystem . The access network management subsystem configures the first QoS parameter to the access network device 121.
  • the end-to-end slice management function subsystem 111 sends the second QoS parameter to the core network management subsystem 113, for example, to the core network slice management subsystem.
  • the core network management subsystem configures the second QoS parameter to the core network device 123.
  • the access network equipment may include: a base station in a 5G network (referred to as gNB), an enhanced base station (referred to as an eNB) in a 4G network, a centralized unit (CU) or a distributed unit (distributed unit) of a 5G base station, DU) etc.
  • the core network equipment may include: Access and Mobility Management Function (AMF), Session Management Function (SMF), and User Plane Function (UPF).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • An embodiment of the network slicing processing method of the present application can be specifically applied to the configuration and execution scenarios of network slicing. Please refer to FIG. 2, which is applied to a network management system, such as the network management system 11 shown in FIG. 1. It can include the following steps:
  • the network slice refers to multiple logical subnets that are isolated from each other virtualized based on a mobile communication network.
  • Each end-to-end network slice is composed of wireless network, transmission network, and core network sub-slices, and is managed uniformly through an end-to-end network management system.
  • the network management system generates slice-level quality of service (QoS, QoS) parameters for each network slice.
  • QoS quality of service
  • the slice-level QoS parameters are used by the network management system to instruct the slice processing device to correspond to the network slice.
  • One resource performs control processing.
  • the network management system first generates slice-level QoS parameters for the network slice, where the network slice may be a network slice to be created, or the network slice refers to a network slice that has already been created.
  • the network management system can generate a slice-level QoS parameter for the created network slice.
  • the slice level refers to that the QoS parameters generated by the network management system are set for the network slice level, and the slice level QoS parameters are used by the network management system to instruct the slice processing device to control the first resource corresponding to the network slice.
  • the first resource in the embodiment of the present application refers to a resource corresponding to a network slice, and in different implementation scenarios, the first resource has multiple implementation manners.
  • the first resource may include: wireless resources, and/or network forwarding resources.
  • the wireless resources include, but are not limited to, frequency resources and time slot resources.
  • the first resource is specifically a wireless resource, and the wireless resource may also be referred to as an access network resource.
  • the first resource is specifically a network forwarding resource.
  • the embodiments of this application define more specific slice-level QoS parameters.
  • the network management system generates slice-level QoS parameters for network slicing, so that network slicing can be Provide slice-level service functions.
  • slice-level QoS parameters are adopted for network slicing, which will enable the slicing industry to more accurately define requirements, and enable operators to have slice-level quality assurance capabilities and commercial capabilities.
  • the slice-level QoS parameter may include at least one of the following parameters: a slice-level priority parameter, a slice-level total uplink bandwidth, and a slice-level total downlink bandwidth.
  • the slice-level priority parameter refers to setting different priorities for different network slices
  • the total uplink bandwidth of the slice-level refers to the sum of the uplink rate bandwidth of all users accessing the network slice in a geographic location
  • the slice-level The total downlink bandwidth refers to the sum of the downlink rate bandwidth of all users accessing the network slice in a geographic location.
  • the total upstream bandwidth of the slice level and the total downstream bandwidth of the slice level can also be collectively referred to as the total upstream and downstream bandwidth of the slice level.
  • the network management system generates the priority parameter for the slice level when generating the priority parameter, and generates the total uplink and downlink bandwidth for the slice level when generating the priority parameter.
  • the slice-level QoS parameters in the embodiment of the present application include slice-level priority and slice-level total uplink and downlink bandwidth, and the slice-level total uplink and downlink bandwidth can be divided into slice-level uplink total bandwidth and slice-level total bandwidth.
  • the total downlink bandwidth is not limited, but the slice-level QoS parameters in the embodiment of this application are not limited to the slice-level priority and the slice-level total uplink and downlink bandwidth in the above examples.
  • the slice-level QoS parameters may also It includes other parameters set for network slicing, for example, it may include transmission control parameters at the slice level.
  • the network management system sends slice-level QoS parameters to the slice processing device.
  • the network management system may also send the slice-level QoS parameters to the slice processing device.
  • the network management system and the slice processing device can communicate with each other, so that the network management system sends slice-level QoS parameters to the slice processing device.
  • the slice processing device may also send a feedback message to the network management system, so that the network management system can determine whether the slice processing device successfully receives the slice-level QoS parameters according to the feedback message.
  • the embodiments of this application define more specific slice-level QoS parameters.
  • the network management system delivers slice-level QoS parameters to the slice processing device, so that the slice The processing device corresponds to the network slice according to the slice-level QoS parameters Control processing is performed on the first resource of the network slice, so slice-level resource scheduling can be implemented, and slice-level resource control processing can be implemented, so that network slices can provide slice-level service functions.
  • the slice processing device receives the slice-level QoS parameters sent by the network management system.
  • the network management system may also send the slice-level QoS parameters to the slice processing device.
  • the network management system and the slice processing device can communicate with each other, so that the network management system sends slice-level QoS parameters to the slice processing device.
  • the slice processing device may also send a feedback message to the network management system, so that the network management system can determine whether the slice processing device successfully receives the slice-level QoS parameters according to the feedback message.
  • the slice processing device performs control processing on the first resource corresponding to the network slice according to the slice-level QoS parameters.
  • the network management system is the parameter configuration end of network slicing, and the network management system can set various policies and requirements related to network slicing.
  • the slicing processing device is the processing end of network slicing, and the slicing processing device needs to follow the network
  • the configuration instructions of the management system implement various strategies and requirements based on network slicing.
  • the specific processing flow of the slice processing device can be described in detail according to the device type of the slice processing device and the parameter content included in the QoS parameters of the slice level. For details, refer to the examples in the subsequent embodiments.
  • the embodiments of this application define more specific slice-level QoS parameters.
  • the network management system delivers slice-level QoS parameters to the slice processing device, so that the slice The processing device controls and processes the first resource corresponding to the network slice according to the slice-level QoS parameters. Therefore, compared with the prior art, the QoS can only be at the session level or the user equipment level.
  • the network slice corresponds to The slice-level QoS parameters perform control processing, so slice-level resource scheduling can be implemented, and slice-level resource control processing can be implemented, so that network slices can provide slice-level service functions.
  • the network management system first generates slice-level QoS parameters for the network slice, and the slice-level QoS parameters are used by the network management system to instruct the slice processing device to control the first resource corresponding to the network slice.
  • the network management system then sends slice-level QoS parameters to the slice processing device.
  • the slicing processing device first receives the slicing-level quality of service QoS parameters sent by the network management system, and the slicing processing device then controls and processes the first resource corresponding to the network slicing according to the slicing-level QoS parameters.
  • a network slicing processing method performed by the network management system may specifically include the following steps:
  • the network management system obtains slice-level service level agreement (SLA) information corresponding to the network slice.
  • SLA slice-level service level agreement
  • the network management system first obtains slice-level SLA information, and the slice Level SLA information may include various configurations and demand information required for network slicing, and the slice level SLA information may include configuration parameters of multiple network slicing, which are not limited here.
  • the slice-level SLA information in the embodiment of the present application may be sent by the slice trigger server to the network management system.
  • the slice trigger server may be a server on the side of a slice purchaser or an internal slice order server of the operator.
  • the slice trigger server first collects the SLA information formed for the network slice, and then sends the slice-level SLA information to the network management system.
  • the network management system generates slice-level QoS parameters according to the slice-level SLA information.
  • the network management system can generate the aforementioned slice-level QoS parameters according to the slice-level SLA information, that is, the network management system analyzes the slice-level SLA information and analyzes the network Various performance requirements of the slice, thereby generating slice-level QoS parameters.
  • the network management system when it obtains the slice-level SLA information, it extracts the following information from the slice-level SLA information: the priority parameter of the slice level, the number of users allowed to access the slice in the geographic area, and the access of a single user Incoming uplink rate, access downlink rate of a single user, etc.
  • step 302 when the slice-level SLA information includes the number of users allowed to access the network slice in the geographic area and the access uplink rate of a single user, step 302:
  • the management system generates slice-level QoS parameters according to the slice-level SLA information.
  • the management system is applied to the network management system and specifically includes:
  • Step 3021 According to the number of users allowed to access the network slice in the geographical area and the access uplink rate of a single user, calculate the slice-level total uplink bandwidth corresponding to the geographical area;
  • Step 3022 Map the geographic area to user location information in the mobile network.
  • the user location information in the mobile network includes: tracking area (tracking area, TA) information where the user is located, or information about the cell accessed by the user;
  • tracking area tracking area, TA
  • Step 3023 According to the user location information in the mobile network, generate a slice-level total uplink bandwidth corresponding to the user location information in the mobile network as a slice-level QoS parameter.
  • the total uplink bandwidth of the slice level corresponding to the geographic area refers to the sum of the uplink rate bandwidth of all users accessing the network slice in the geographic area.
  • the network management system indirectly obtains the total uplink bandwidth at the slice level corresponding to the geographic area by multiplying the number of access users allowed to access the network slice in the geographic area by the single user's access uplink rate.
  • the network management system After obtaining the slice-level total uplink bandwidth corresponding to the geographic area, the network management system generates the slice-level total uplink bandwidth corresponding to the user location information in the mobile network according to the user location information in the mobile network.
  • the geographic area refers to general geographic location information, such as a certain business district in a certain area.
  • the network management system may map the geographic area to user location information in the mobile network.
  • the user location information in the mobile network includes: tracking area (TA) information where the user is located or information about a cell accessed by the user.
  • TA tracking area
  • the network management system maps the first geographic area to the first TA information or the first cell information.
  • the TA information may include one or more TA identities
  • the cell information may include one or more cell identities.
  • the generating, according to the user location information, a slice-level total uplink bandwidth corresponding to the user location information includes:
  • the total uplink bandwidth of the slice level corresponding to the geographic area is divided into the multiple access network devices to obtain the slice level corresponding to each access network device. Total upstream bandwidth.
  • the network management system can determine one or more access network equipment.
  • the network management system may determine one or more access network devices.
  • the network management system can identify one access network device, and when the geographic area maps multiple cells, the network management system can identify one or more access network devices.
  • the total uplink bandwidth of the slice level corresponding to the geographic area is divided to the multiple access network devices. For example, the larger the area covered by a certain access network device, the larger the total uplink bandwidth of the slice level allocated by the network management system to the access network device; the smaller the area covered by a certain access network device, the larger the network
  • the slice-level total uplink bandwidth allocated by the management system to the access network device is smaller.
  • the sum of the total uplink bandwidth of the slice level allocated to all access network devices is equal to the total uplink bandwidth of the slice level corresponding to the geographic area.
  • the slice processing device as the access network device
  • the network management system determines an access network device according to the user location information in the mobile network
  • the total uplink bandwidth of the slice level corresponding to the user location information in the network is equal to The total uplink bandwidth of the slice level corresponding to the geographic area.
  • the network management system determines multiple access network devices based on the user location information in the mobile network
  • the sum of the slice-level uplink bandwidth allocated to all access network devices is equal to the slice-level total uplink bandwidth corresponding to the geographic area.
  • the slice-level SLA information when the slice-level SLA information includes the number of users allowed to access the network slice in the geographic area and the access downlink rate of a single user, in step 302, the basis The slice-level SLA information is used to generate the slice-level QoS parameters, as shown in FIG. 3c, which is applied to a network management system and specifically includes:
  • Step 3024 According to the number of users allowed to access the network slice in the geographical area and the access downlink rate of a single user, calculate the total downlink bandwidth of the slice level corresponding to the geographical area;
  • Step 3025 Map the geographic area to user location information in the mobile network
  • Step 3026 According to the user location information, generate a slice-level total downlink bandwidth corresponding to the user location information as a slice-level QoS parameter.
  • the total downlink bandwidth of the slice level corresponding to the geographic area refers to the sum of the downlink rate bandwidth of all users accessing the network slice in the geographic area.
  • the network management system indirectly obtains the total downlink bandwidth of the slice level corresponding to the geographical area by multiplying the number of access users allowed to access the network slice in the geographical area by the access downlink rate of a single user. After obtaining the total downlink bandwidth at the slice level corresponding to the geographic area, the network management system generates the total downlink bandwidth at the slice level corresponding to the user location information in the mobile network according to the user location information in the mobile network.
  • the generating, according to the user location information, the total downlink bandwidth at the slice level corresponding to the user location information includes:
  • the total downlink bandwidth at the slice level corresponding to the geographic area is divided into the multiple core network devices to obtain the total downlink bandwidth at the slice level corresponding to each core network device .
  • the network management system can determine one or more core network equipment.
  • the network management system may determine one or more core network equipment.
  • the network management system can identify one core network device, and when the geographic area maps multiple cells, the network management system can identify one or more core network devices.
  • the total downlink bandwidth of the slice level corresponding to the geographic area is divided into multiple core network devices according to the size of the area served by the multiple core network devices. For example, the larger the area served by a certain core network device, the larger the total downlink bandwidth of the slice level allocated by the network management system to the core network device; the smaller the area served by a certain core network device, the smaller the network management system
  • the total downlink bandwidth of the slice level allocated to the core network device is smaller.
  • the sum of the total downlink bandwidth at the slice level allocated to all core network devices is equal to the total downlink bandwidth at the slice level corresponding to the geographic area.
  • the priority of the slice level means that different network slices have different priorities.
  • the slice-level SLA information further includes: the slice-level priority parameter corresponding to the network slice
  • the slice-level QoS parameter in the foregoing embodiment further includes the slice-level QoS parameter Priority parameter.
  • the network slice corresponding to the priority of the slice level is identified using the single network slice selection auxiliary information (Single Network Slice Selective on Assistance Information, S-NSSA I).
  • the network slice corresponding to the slice-level total uplink bandwidth corresponding to the user location information in the mobile network is identified by S-NSSA I.
  • the network slice corresponding to the total downstream bandwidth of the slice level corresponding to the user location information in the mobile network is identified by S-NSSA I.
  • the network management system sends slice-level QoS parameters to the slice processing device.
  • the network management system may also send the slice-level QoS parameters to the slice processing device.
  • the network management system and the slice processing device can communicate with each other, so that the network management system sends slice-level QoS parameters to the slice processing device.
  • the slice processing device may also send a feedback message to the network management system, so that the network management system can respond according to the response. The feed message determines whether the slice processing device successfully receives the slice-level QoS parameters.
  • the network management system delivers to the slice processing device Slice-level QoS parameters, so that the slice processing device controls the first resource corresponding to the network slice according to the slice-level QoS parameters. Therefore, slice-level resource scheduling can be implemented, and resource control processing at the slice-level can be realized, so that the network slice Able to provide slice-level service functions.
  • a network slicing processing method executed by the network management system can specifically include the following steps:
  • the network management system receives a slice creation request sent by a slice trigger server, where the slice creation request includes: a slice-level priority parameter, a slice-level total uplink bandwidth corresponding to a geographic area, and a slice-level total downlink bandwidth corresponding to the geographic area.
  • the slice creation request may be sent by the slice trigger server to the network management system.
  • the slice trigger server may be a server on the side of a slice purchaser, or an internal slice order server of an operator.
  • the slice trigger server first collects the slice creation request formed for the network slice, and then sends the slice creation request to the network management system.
  • the slice creation request contains slice-level priority parameters, total uplink bandwidth at the slice level in the geographic area, and total downlink bandwidth at the slice level in the geographic area.
  • the geographic area refers to general geographic location information, such as a certain business district in a certain district.
  • the network management system can map the geographic area to the access network equipment information in the mobile network or one or more TAs managed by the access network equipment or one or more cell information managed by the access network equipment.
  • the network management system maps the geographic area to user location information in the mobile network.
  • the user location information in the mobile network includes: information about the TA where the user is located or information about the cell accessed by the user.
  • the network management system generates slice-level QoS parameters according to user location information in the mobile network, where the slice-level QoS parameters include at least one of the following parameters: a slice-level priority parameter, and a slice-level uplink corresponding to the user location information The total bandwidth, or the total downlink bandwidth of the slice level corresponding to the user location information.
  • the network management system After obtaining the slice-level total uplink bandwidth corresponding to the geographic area, the network management system generates the slice-level total uplink bandwidth corresponding to the user location information in the mobile network according to the user location information in the mobile network. For the specific generation method, refer to the description of step 3023 above.
  • the network slice corresponding to the slice-level total uplink bandwidth corresponding to the user location information in the mobile network is identified by S-NSSA I.
  • S-NSSA I For example, when the current slice-level QoS parameter is 100 Mbps/S-NSSA I, it means S-NSSA I.
  • the total uplink bandwidth corresponding to the network slice identified by NSSA I is 100 Mbps.
  • the network management system After obtaining the total downlink bandwidth of the slice level corresponding to the geographic area, the network management system generates the cut corresponding to the user location information in the mobile network according to the user location information in the mobile network.
  • the total downstream bandwidth at the chip level For the specific generation method, refer to the description of step 3026 above.
  • the network slice corresponding to the total downlink bandwidth of the slice level corresponding to the user location information in the mobile network is identified by S-NSSA I.
  • the network management system obtains the slice-level priority parameters, the slice-level total uplink bandwidth, and the slice-level total downlink bandwidth from the slice creation request, and then generates the slice-level parameters based on the obtained parameters.
  • the specific parameter content and message format of the slice-level QoS parameters are not limited here.
  • the network management system sends slice-level QoS parameters to the slice processing device.
  • the network management system may also send the slice-level QoS parameters to the slice processing device.
  • the network management system and the slice processing device can communicate with each other, so that the network management system sends slice-level QoS parameters to the slice processing device.
  • the slice processing device may also send a feedback message to the network management system, so that the network management system can determine whether the slice processing device successfully receives the slice-level QoS parameters according to the feedback message.
  • the network management system delivers to the slice processing device Slice-level QoS parameters, so that the slice processing device controls the first resource corresponding to the network slice according to the slice-level QoS parameters. Therefore, slice-level resource scheduling can be implemented, and resource control processing at the slice-level can be realized, so that the network slice Able to provide slice-level service functions.
  • the foregoing step 303 or step 404 that the network management system sends slice-level QoS parameters to the slice processing device includes:
  • the network management system sends to the access network device the total uplink bandwidth at the slice level corresponding to the user location information; or, when the slice processing device is specifically the core
  • the network management system sends to the core network device the total downlink bandwidth at the slice level corresponding to the user location information.
  • the network management system can issue the slice-level priority and the slice-level total uplink bandwidth corresponding to the user location information to the access network device, thereby accessing the network
  • the device may perform resource control processing according to the slice-level priority and the slice-level uplink total bandwidth corresponding to the user location information in the mobile network.
  • the network management system may also issue the slice-level priority and the total downlink bandwidth of the slice-level corresponding to the user location information to the core network device, so that the core network device
  • the resource control processing may be performed according to the priority of the slice level and the total downlink bandwidth of the slice level corresponding to the user location information in the mobile network.
  • the specific content of the slice-level QoS parameters sent by the network management system may be different, and the sent slice-level QoS parameters are determined according to application scenarios.
  • the above step 303 or step 404 network management system The slice-level QoS parameters sent by the slice processing device include:
  • the network management system selects the first slice processing device from the preset set of slice processing devices according to the user location information in the mobile network carried in the slice-level QoS parameters;
  • the network management system sends the slice-level QoS parameters to the selected first slice processing device.
  • the set of slice processing devices may include: existing slice processing devices that support network slicing, and newly created slice processing devices that support network slicing.
  • the slice processing device set may include a newly created slice processing device, or may include an existing slice processing device, and it is specifically combined with a scene to determine which slice processing device is determined to be the above-mentioned first slice processing device.
  • the first slice processing device may be a core network device supporting S-NSSA I.
  • the slice-level QoS parameters generated by the network management system carry a geographic location
  • the first slice network device is determined from the mobile network according to the geographic location.
  • the network management system selects the first access network device from the set of access network devices according to the user location information in the mobile network carried in the slice-level QoS parameters.
  • the set of access network equipment includes: existing access network equipment that supports network slicing, and newly created access network equipment that supports network slicing.
  • the network management system selects the first core network device from the core network device set according to the user location information in the mobile network carried in the slice-level QoS parameters, and the core network device set includes : Existing core network equipment that supports network slicing, and newly created core network equipment that supports network slicing.
  • the slicing processing device may specifically include an access network device and a core network device. Please refer to FIG. 5.
  • a network slicing processing method executed by a network device will be described in detail.
  • the access network device 121 shown in FIG. 1 may specifically include the following steps:
  • the access network device receives slice-level QoS parameters sent by the network management system.
  • the network management system may also send the slice-level QoS parameters to the access network device.
  • the network management system and the access network device can communicate with each other, so that the network management system sends the slice level to the access network device.
  • QoS parameters After receiving the slice-level QoS parameters, the access network device can also send a feedback message to the network management system, so that the network management system can determine whether the access network device successfully receives the slice-level QoS parameters.
  • the access network device obtains the slice-level priority parameter and the slice-level total uplink bandwidth corresponding to the user location information in the mobile network from the slice-level QoS parameters.
  • the network management system may issue the slice-level priority and the slice-level uplink total bandwidth to the access network device, and the access network device obtains the slice-level priority from the slice-level QoS parameters And the total upstream bandwidth of the slice level.
  • the access network device according to the priority parameter of the slice level, and/or the user position in the mobile network
  • the total uplink bandwidth of the slice level corresponding to the configuration information is used to control the radio resources.
  • the access network device may perform resource control processing according to the slice-level priority and the slice-level total uplink bandwidth
  • the access network device may perform resource control processing according to the priority of the slice level, or the access network device may perform resource control processing according to the total uplink bandwidth of the slice level.
  • an application scenario can be combined to determine how the access network device controls resources.
  • the access network device controls the radio resources according to the slice-level priority parameters and/or the slice-level uplink total bandwidth corresponding to the user location information in the mobile network, including the following At least one of the steps:
  • the access network device configures the maximum wireless resource corresponding to the network slice according to the total uplink bandwidth at the slice level; or,
  • the access network device divides all wireless resources of the access network device into multiple wireless sub-resources according to the total uplink bandwidth at the slice level, and allocates the same wireless sub-resources to the network slice each time the resource is allocated; or,
  • the access network device divides all the wireless resources of the access network device into multiple wireless sub-resources according to the total uplink bandwidth at the slice level, and dynamically allocates the corresponding wireless sub-resources from the multiple wireless sub-resources for each resource allocation.
  • Wireless sub-resources or,
  • the access network equipment restricts the upstream traffic of all users served by the access network equipment from exceeding the total upstream bandwidth of the slice level; or,
  • the access network device schedules the wireless resources corresponding to the low priority network slice to the high priority network slice according to the slice priority parameter.
  • the access network device can configure the maximum access network resource corresponding to the slice according to the total uplink bandwidth of the slice level.
  • the access network resources of all slices served by the access network equipment can be greater than or equal to the maximum allocable resources of the access network, that is, some access network resources can be multiplexed by multiple slices, and the reusable ratio is determined by the slice-level SLA Information and the operator’s operating strategy are determined.
  • the access network device when the access network resources are surplus, the access network device will limit the uplink traffic of all users accessed from the access network device to not exceed the slice-level total uplink bandwidth corresponding to the user location information in the mobile network.
  • the access network resources are scarce or congested, some or all of the radio resources with low slice priority can be released, and the released radio resources can be allocated to network slices with high slice priority.
  • the released ratio Can be agreed in the slice-level SLA information.
  • the access network device may divide the wireless resource into different parts, and each part is an independent wireless sub-resource.
  • the wireless sub-resource is the smallest schedulable resource block divided according to frequency and time.
  • Each wireless sub-resource is allocated to a network slice for use.
  • These different wireless sub-resources may overlap in different network slices, or there may be no overlap, or they may be separately reserved out of non-overlapping wireless sub-resources.
  • Wireless sub-resources are shared and used among different slices. Therefore, the access network device can implement wireless resource control processing with the granularity of network slicing, and can implement slicing-level resource scheduling, so that the network slicing can provide slice-level service functions.
  • the slicing processing device may specifically include an access network device and a core network device. Please refer to FIG. 6.
  • a network slicing method executed by a network device will be described in detail.
  • the core network device 122 shown in FIG. 1 may specifically include the following steps:
  • the core network device receives slice-level QoS parameters sent by the network management system.
  • the network management system may also send the slice-level QoS parameters to the core network device.
  • the network management system and the core network equipment can communicate with each other, so that the network management system sends slice-level QoS parameters to the core network equipment.
  • the core network device may further send a feedback message to the network management system, so that the network management system can determine whether the core network device successfully receives the slice-level QoS parameters according to the feedback message.
  • the core network device obtains the slice-level priority parameter and the slice-level total downlink bandwidth corresponding to the user location information in the mobile network from the slice-level QoS parameters.
  • the network management system may issue the slice-level priority and the slice-level total downlink bandwidth to the core network device, and the core network device obtains the slice-level priority and slice from the slice-level QoS parameters The total downstream bandwidth of one level.
  • the core network device controls the network forwarding resource according to the slice-level priority parameter and/or the total downlink bandwidth of the slice level corresponding to the user location information in the mobile network.
  • the core network device may perform resource control processing according to the slice-level priority and the slice-level total downlink bandwidth, or The core network device may perform resource control processing according to the priority of the slice level, or the core network device may perform resource control processing according to the total downlink bandwidth of the slice level. Specifically, it can be combined with application scenarios to determine how the core network device controls resources.
  • the core network device controls the network forwarding resources according to the slice-level priority parameters and/or the total downlink bandwidth of the slice level corresponding to the user location information in the mobile network, including the following At least one of the steps:
  • the core network device restricts the downlink traffic of all users served by the core network device to not exceed the total downlink bandwidth of the slice level corresponding to the user location information; or,
  • the core network device uses network forwarding resources to preferentially forward the downlink data corresponding to the network slice with high priority according to the priority parameter of the slice level.
  • the core network device (such as the UPF in the 5G network) obtains the slice-level priority and the slice-level total downlink bandwidth, it can limit the slice-level total downlink bandwidth to the total downlink bandwidth of the slice users in the specified area.
  • the core network device may also preferentially forward the downlink data of users of high-priority slices based on the configuration. Therefore, the core network device can implement resource control processing with the granularity of network slicing, and can implement slicing-level resource scheduling, so that the network slicing can provide slice-level service functions.
  • the core network device when the core network device includes an access mobility management function device, a session management function device, and a user plane function device, the core network device is based on the priority parameter of the slice level, and/or the mobile network
  • the total downlink bandwidth at the slice level corresponding to the user location information controls network forwarding resources, including:
  • the access mobility management function device receives the session management request sent by the user equipment, and the session management request includes: location information of the user equipment;
  • Access to the mobile management function device selects the location information of the user equipment and the user location information in the mobile network for the same session management function device at the same location, and the session management function device selects the location information of the user equipment and the user location information in the mobile network It is the same user plane function device at the same location.
  • the access mobility management function device may receive a session establishment request sent by the user equipment, and the session establishment request may carry location information of the user equipment.
  • the location information of the user equipment may be the TA or cell of the user equipment in the mobile network.
  • the session establishment request may also carry slice selection auxiliary information.
  • the access mobility management function device may be based on the location information of the user equipment and the node of the requester's wireless access network (RAN node) information, the same session management function device is selected, that is, the user who accesses from the user location information in the mobile network corresponding to the total downlink bandwidth at the slice level selects the same session management function device.
  • RAN node wireless access network
  • the session management function device After the session management function device receives the session management request sent by the access mobility management function device, it will select the same user plane function device based on the location information of the user equipment and the node information of the requester's wireless access network, that is, from the slice.
  • the users connected in the user location information in the mobile network specified in the total downlink bandwidth of the first level select the same user plane function device.
  • the session management request in the embodiment of the present application includes: the location information of the user equipment, and the total downlink bandwidth at the slice level in the slice-level QoS parameters corresponds to the user location information in the mobile network, so the user location information in the mobile network
  • the matching can select the same user plane function device for the user equipment, so the user plane function device can execute the slice-level QoS parameter requirements, and perform slice-level management of user data.
  • the network management system can send the slice-level priority and the total uplink and downlink bandwidth of the slice to the slice processing device.
  • the embodiment of the application proposes a method for distributing slice-level QoS parameters in the slice creation process, and The method of scheduling and guaranteeing slice-level QoS parameters during slice operation.
  • the slicing industry will more accurately define the requirements, so that the operators have the slicing-level quality assurance capabilities and commercial capabilities.
  • the access network equipment, core network equipment, and network management system involved in the embodiments of this application belong to mobile network systems that support network slicing features.
  • the core network equipment provided in the embodiments of this application includes but is not limited to 5G access network equipment, which is implemented in this application.
  • the core network equipment provided in the example includes but is not limited to 5G core network equipment, and the network management system provided in the embodiment of the present application includes but is not limited to a 5G network management system.
  • the slice-level QoS parameters may include: slice-level priority and slice-level uplink and downlink total bandwidth (or rate). Next, the slice-level QoS parameters will be described in detail :
  • the priority parameter of the slice level defines the priority between different network slices, and the mobile network can prioritize the scheduling of resources for high-priority network slices according to the level of this priority.
  • the total upstream bandwidth (or rate) at the slice level refers to the total upstream bandwidth (or rate) that a network slice can serve within a certain geographic area, that is, the maximum upstream bandwidth.
  • This geographic area can be a certain access network device, one or more cells of a certain access network device, or one or more tracking area levels of a certain access network device.
  • the total downlink bandwidth (or rate) at the slice level refers to the total downlink bandwidth (or rate) that a network slice can serve within a certain geographic area, that is, the maximum downlink bandwidth.
  • This geographic area can be the area serviced by a certain core network device.
  • the embodiment of the application proposes a method for distributing slice-level QoS parameters during the slice creation process.
  • the method for distributing slice-level QoS parameters during the slice creation process may be based on the network management system 70 described in FIG. 7. It may include an end-to-end slice management module 71, an access network slice management module 72, an access network device management module 73, a core network slice management module 74, and a core network device management module 75.
  • the end-to-end slice management module 71 is respectively connected with the access network slice management module 72 and the core network slice management module 74
  • the access network slice management module 72 is connected with the access network device management module 73
  • the core network slice management The module 74 is connected to the core network equipment management module 75.
  • the network management system 70 can obtain slice-level SLA information of industry customers, and convert it into slice-level QoS parameters, or slice-level SLA information may directly include slice-level QoS parameters.
  • slice-level SLA information defines that the upstream bandwidth of a slice in a certain area is 1 gigabit per second (Gbps), and the upstream bandwidth of one or more slices within TA is 1 Gbps.
  • the network management system 70 issues or configures slice-level QoS parameters to the access network equipment or core network equipment respectively, and the access network equipment management module 73 delivers them to the access network equipment.
  • the network equipment management module 75 delivers to the core network equipment.
  • the access network equipment includes: 5G base station (gNB for short), 4G enhanced base station (for eNB for short), CU of 5G base station, DU of 5G base station, etc.
  • Core network equipment includes UPF, PCF, AMF, etc.
  • the end-to-end slice management module 71 receives the slice-level priority parameter, and the end-to-end slice management module 71 delivers it to the access network slice management module 72, and then delivers it to the access network
  • the equipment management module 73 then issues to the access network equipment.
  • the end-to-end slice management module 71 delivers to the core network slice management module 74, then delivers to the core network device management module 75, and then delivers to the core network equipment, including user-plane functional equipment.
  • the end-to-end slice management module 71 receives the total uplink bandwidth at the slice level or converts the received SLA information at the slice level into QoS parameters at the slice level.
  • the total uplink bandwidth at the slice level is one of the QoS parameters at the slice level.
  • the end-to-end slice management module 71 issues the slice-level total uplink bandwidth to the access network slice management module 72, and then issues it to the management of the access network equipment. Issued to the access network equipment.
  • the end-to-end slice management module 71 receives the total downlink bandwidth at the slice level or converts the received SLA information at the slice level into slice-level QoS parameters, and the end-to-end slice management module 71
  • the total downlink bandwidth at the slice level is issued to the core network slice management module 74, then issued to the management of the core network device, and then issued to the core network device, including UPF and the like.
  • the embodiment of the application also proposes a quality assurance method for slice-level QoS parameters during slice operation, which specifically includes the quality assurance mechanism on the access network side and the quality assurance mechanism on the core network side, which may specifically include the following solutions:
  • the access network device After obtaining the slice-level priority parameters and the slice-level uplink total bandwidth, the access network device can perform slice-level access network resource scheduling based on these parameters, including the following process:
  • the access network device can configure the maximum access network resource corresponding to this slice according to the total uplink bandwidth of the slice level; the access network resources of all slices served by the access network device can be greater than or equal to the maximum allocable resource of the access network, that is Some access network resources can be multiplexed by multiple slices, and the reusable ratio is determined by the slice-level SLA information and the operator's operating strategy.
  • the slicing industry customers purchase network slicing from the operator and need to inform the maximum uplink bandwidth.
  • the access network device will limit the uplink traffic of all users connected from this access network device to not exceed the total uplink bandwidth of the slice level corresponding to the user location information in the mobile network.
  • a part or all of the slice resources with a low slice-level priority parameter can be released and allocated to the slices with a high slice-level priority parameter for use.
  • the release ratio can be carried in the slice-level SLA information.
  • the core network device After obtaining the slice-level priority parameters and the slice-level downlink total bandwidth, the core network device can perform slice downlink flow control based on these parameters, including:
  • the user plane function device (such as 5G UPF) obtains the slice-level priority parameters and the slice-level total downlink bandwidth, it can limit the total downlink bandwidth of the slice users in the specified area of the slice-level total downlink bandwidth.
  • the downlink data of users of high-priority slices may also be forwarded preferentially.
  • FIG. 8 it is a schematic diagram of the interaction flow under the system architecture shown in FIG. 7 provided by an embodiment of this application. According to the description of the foregoing mechanism, the interaction process will be described in detail below.
  • Figure 8 describes the distribution process of slice-level QoS parameters in the slice creation process.
  • the network management system performs the following pre-processing.
  • the slice creation request can also be called a slice instance allocation operation request.
  • the slice creation request carries slice-level SLA information or slice-level QoS parameters.
  • the request contains one or more of the following information: slice-level priority parameters, slice-level uplink bandwidth in a certain geographic area, or The number of users allowed to access the slice in a geographic area and the access uplink rate of a single user, the total downlink bandwidth of the slice level in a certain geographic area, or the number of users allowed to access the slice in a certain geographic area The number of households and the access downlink rate of a single user.
  • the request includes slice-level QoS parameters
  • the request includes slice-level priority parameters, total uplink bandwidth at the slice level in a certain geographic area, and total downlink bandwidth at the slice level in a certain geographic area.
  • the geographic area in the above request refers to general geographic location information, such as a certain business district in a certain district.
  • the end-to-end slice management module obtains the priority parameters of the slice level, maps the geographic area to user location information in the mobile network, and then maps the user location information in the mobile network to access network device information or access network equipment information.
  • One or more TAs managed by the access network equipment or one or more cell information managed by the access network equipment and directly obtain the total uplink bandwidth and the total downlink bandwidth at the slice level corresponding to the geographic area, or through the access of a certain area
  • the number of incoming users is multiplied by the single-user uplink and downlink rate to indirectly obtain the slice-level priority parameter, the slice-level total uplink bandwidth and the total downlink bandwidth corresponding to the user location information in the mobile network.
  • Step 1a-1 The end-to-end slice management module carries slice-level priority parameters and slice-level uplink total bandwidth and other information in the slice creation request (or slice allocation request) and sends it to the access network slice management module.
  • Step 1 a-2 The access network slice management module selects the existing access network equipment to support the newly created slice.
  • This slice can be identified by S-NSSA I, and S-NSSA I information can be in the end-to-end slice management module Generate or create a new access network device through virtualization technology, for example, a new access network device can be created by invoking a management and orchestration (Management and Orchestration, MANO) capability.
  • MANO Management and Orchestration
  • the access network slice management module sends a slice provision request to the access network equipment management module, and delivers slice-level priority parameters and slice-level uplink total bandwidth to the access network equipment management module.
  • Step 1a-3 The access network equipment management module delivers the slice-level priority parameters and the slice-level uplink total bandwidth to the access network equipment that supports S-NSSA I.
  • Step 1 b-1 The end-to-end slice management module carries slice-level priority parameters and slice-level downlink total bandwidth and other information in the slice creation (or allocation) request and sends it to the core network slice management module.
  • Step 1 b-2 The core network slice management module selects an existing core network slice instance to support the newly created slice.
  • This slice can be identified by S-NSSA I, and this S-NSSA I information can be in the end-to-end slice management module Generate or create a new core network device through virtualization technology, for example, a new core network device can be built with the capability of MAN0.
  • the core network slice management module sends a slice provision request to the core network device management module, and delivers slice-level priority parameters and slice-level downlink total bandwidth to the core network device management module.
  • Step 1 b-3 The core network device management module issues the slice-level priority parameters and the slice-level downlink total bandwidth to the core network equipment that supports the newly created S-NSSA I, such as the core network equipment in the slice.
  • steps 1 b-1 and 1 a-1 in the foregoing process can be initiated by the end-to-end slice management module at the same time, or after the completion of step 1 a-3, step 1 b-1 is sent, or step 1 b-3 step After the procedure is over, send 1 a-1 request again.
  • the response message sent by the access network slice management module to the end-to-end slice management module can also wait for the completion of steps 1a-2 and 1a-3 before responding.
  • the response request in step 1 b-1 can be answered as soon as it is received, or you can wait for the completion of steps 1 b-2 and 1 b-3 before responding.
  • FIG. 9 is a schematic diagram of a session establishment process provided in an embodiment of this application, which mainly includes the following processes:
  • the UE sends a session establishment request to the access mobility management function device.
  • the session establishment request includes: slice selection auxiliary information and location information of the user equipment.
  • the UE initiates a session establishment request, which carries slice selection auxiliary information S-NSSA I and the location information of the user equipment.
  • the location information of the user equipment may be a cell identity or a tracking area identity.
  • the session context request includes: slice selection auxiliary information and location information of the user equipment.
  • the access mobility management function device selects the same session management function device based on the location information of the user equipment and the requester's radio access network node (RAN node) information, that is, from the mobile network
  • RAN node radio access network node
  • the session management function device is based on the geographic area corresponding to the slice-level QoS parameters, and users in the same area select the same user plane function device.
  • the session management function device When the session management function device receives the request, in addition to communicating with the policy management function device or the user data management function device, it selects the same user plane function device based on the location information of the user equipment and the requester's RAN node information, that is, from The users connected in the user location information in the mobile network specified in the total downlink bandwidth of the slice level select the same user plane function device.
  • the access network device after receiving the slice-level priority parameter and the slice-level uplink total bandwidth, the access network device combines the slice-level QoS parameters with the currently accessed user or flow-level QoS parameters.
  • Joint scheduling specifically includes but not limited to the following steps:
  • the access network device can divide the radio resources (including but not limited to frequency resources and time slot resources) into different parts, each of which is allocated to a slice for use. These different parts of radio resources may overlap in different slices. There may be no overlap, or a part of the wireless resources may be reserved separately in addition to the wireless resources that do not overlap, and shared and used among different slices.
  • radio resources including but not limited to frequency resources and time slot resources
  • the access network device may not assign certain radio resources (including but not limited to frequency resources and time slot resources) to a certain slice in a fixed manner, and dynamically schedule radio resources for a certain slice.
  • certain radio resources including but not limited to frequency resources and time slot resources
  • the access network device can prioritize the data of the high-priority slices based on the slice-level priority parameters.
  • the radio resources can give priority to the data of the high-priority slices, and can also schedule some resources of the low-priority slices to the high-priority based on configuration Use slices.
  • the access network equipment should be based on the total uplink bandwidth of the slice level, and limit the intra-network location area corresponding to this parameter
  • the total uplink rate of users of the domain access slice does not exceed the total uplink bandwidth of the slice level corresponding to the user location information in the mobile network.
  • allocating wireless resources to a slice for use here refers to transmitting stream data of slice users on the wireless data bearer corresponding to these wireless resources.
  • the user plane function device processes data packets based on the slice-level priority parameters and the slice-level total downlink bandwidth, which specifically includes the following processes:
  • the user plane function device (such as 5G UPF) obtains the slice-level priority parameters and the slice-level total downlink bandwidth, it can limit the total downlink bandwidth of the slice users in the specified area of the slice-level total downlink bandwidth.
  • the downlink data of users of high-priority slices may also be forwarded preferentially based on the configuration.
  • network slicing technology is an important technology for serving industry customers in the 5G era.
  • industry customers have broad requirements for mobile networks.
  • more specific definitions are needed.
  • the slice-level network requires parameters.
  • the embodiment of this application defines slice-level QoS parameters, and provides a distribution method and a quality assurance method. This will help the mobile network better schedule network resources, meet the needs of industry customers, and promote the network Commercial application of slicing technology.
  • the slice-level total uplink and downlink total bandwidth proposed by this technical solution the largest geographic range is the coverage of a single access network device, and the local area exceeds the coverage of a single access network device.
  • scope a new solution needs to be added. But this new scenario can be resolved by decomposing it into a scenario covered by a single access network device.
  • a network management system 1000 provided by an embodiment of the present application may include: a slice generation module 1001, a parameter generation module 1002, and a sending module 1003, where:
  • the slice generation module 1001 is used to virtualize the functions of the mobile communication network to obtain multiple isolated logical subnets, and use each logical subnet as a network slice;
  • the parameter generation module 1002 is configured to generate slice-level quality of service QoS parameters for each network slice, where the slice-level QoS parameters are used by the network management system to instruct the slice processing device to control the first resource corresponding to the network slice deal with;
  • the sending module 1003 is configured to send the slice-level QoS parameters to the slice processing device.
  • the parameter generation module 1002 is specifically configured to obtain the slice-level service level agreement SLA information corresponding to the network slice; and generate the slice-level QoS according to the slice-level SLA information parameter.
  • the parameter generation module 1002 when the slice-level SLA information includes the number of users allowed to access the network slice in the geographic area and the access uplink rate of a single user, the parameter generation module 1002 , Specifically configured to calculate the total uplink bandwidth of the slice level corresponding to the geographical area according to the number of users allowed to access the network slice in the geographical area and the access uplink rate of the single user; The geographic area is mapped to user location information in the mobile network; and according to the user location information, a slice-level total uplink bandwidth corresponding to the user location information is generated as the slice-level QoS parameter.
  • the parameter generation module 1002 is specifically configured to determine multiple access network devices according to the correspondence between the user location information and the access network devices; The size of the area covered by the device is to divide the slice-level total uplink bandwidth corresponding to the geographic area to the multiple access network devices to obtain the slice-level total uplink bandwidth corresponding to each access network device.
  • the parameter generation module 1002 when the slice-level SLA information includes the number of users allowed to access the network slice in the geographic area and the access downlink rate of a single user, the parameter generation module 1002 , Specifically configured to calculate the total downlink bandwidth of the slice level corresponding to the geographic area according to the number of users allowed to access the network slice in the geographic area and the access downlink rate of the single user; The geographic area is mapped to user location information in the mobile network; and according to the user location information, a slice-level total downlink bandwidth corresponding to the user location information is generated as the slice-level QoS parameter.
  • the parameter generation module 1002 is specifically configured to determine multiple core network devices according to the correspondence between the user location information and core network devices; The total downlink bandwidth of the slice level corresponding to the geographic area is divided into the multiple core network devices to obtain the total downlink bandwidth of the slice level corresponding to each core network device.
  • the parameter generation module 1002 is specifically configured to receive a slice creation request sent by a slice trigger server, and the slice creation request includes: a slice level priority parameter, a slice level corresponding to a geographic area The total uplink bandwidth of and the total downlink bandwidth of the slice level corresponding to the geographical area; map the geographical area to user location information in the mobile network; generate the slice level according to the user location information in the mobile network
  • the slice-level QoS parameters include at least one of the following parameters: the slice-level priority parameter, the slice-level total uplink bandwidth corresponding to the user location information, or the user location information Total downlink bandwidth at the slice level.
  • the user location information in the mobile network includes: the tracking area information where the user is located or the cell information accessed by the user.
  • the sending module 1 003 is specifically configured to send to the access network device when the slice processing device is an access network device and the first resource is a wireless resource The total uplink bandwidth of the slice level corresponding to the user location information.
  • the sending module 1 003 is specifically used when the slice is When the processing device is a core network device, and the first resource is a network forwarding resource, send the slice-level total downlink bandwidth corresponding to the user location information to the core network device.
  • the sending module 1 003 is specifically configured to select the first slice processing device set from a preset set of slice processing devices according to the user location information in the mobile network carried in the slice-level QoS parameters A slice processing device; sending the slice-level QoS parameters to the selected first slice processing device.
  • the set of slice processing devices includes: an existing slice processing device that supports the network slice, and a newly created slice processing device that supports the network slice.
  • a slice processing device 1 100 provided by an embodiment of the present application may include: a receiving module 1 101 and a control processing module 1 1 02, where
  • the receiving module 1 101 is configured to receive the slice-level quality of service QoS parameters sent by the network management system, where the network management system virtualizes the functions of the mobile communication network to obtain multiple isolated logical subnets, and Each logical subnet serves as a network slice, and the slice-level QoS parameters are generated for each network slice;
  • the control processing module 1102 is configured to perform control processing on the first resource corresponding to the network slice according to the QoS parameters of the slice level.
  • the control processing module 1 102 is specifically configured to be used for the access network device slave Acquiring the slice-level priority parameter and the slice-level uplink total bandwidth corresponding to the user location information in the mobile network from the slice-level QoS parameters; the access network device according to the slice-level priority parameter, and And/or the total uplink bandwidth of the slice level corresponding to the user location information, performing control processing on the radio resource.
  • control processing module 1102 is specifically configured to configure the access network device according to the total uplink bandwidth of the slice level corresponding to the user location information to configure the maximum bandwidth corresponding to the network slice. Wireless resources.
  • control processing module 1102 is specifically used for the access network device to restrict the uplink traffic of all users served by the access network device not to exceed the value corresponding to the user location information. Total uplink bandwidth at the slice level.
  • control processing module 1102 is specifically configured to, according to the priority parameter of the slice level, the access network device schedules the radio resources corresponding to the low priority network slice to High priority network slicing.
  • the control processing module 1102 is specifically used for the core network device to follow all Acquiring the slice-level priority parameters and the total downlink bandwidth of the slice-level corresponding to the user location information in the mobile network from the slice-level QoS parameters; the core network device according to the slice-level priority parameters, and/or The total downlink bandwidth of the slice level corresponding to the user location information performs control processing on the network forwarding resource.
  • control processing module 1102 is specifically used to limit the The downlink traffic of all users served by the core network equipment does not exceed the total downlink bandwidth of the slice level corresponding to the user location information.
  • control processing module 1102 is specifically configured to: when the core network device is shared by multiple network slices with different priorities, use the The network forwarding resource preferentially forwards the downlink data corresponding to the high-priority network slice.
  • the control processing module 1102 is specifically configured to receive the session sent by the user equipment A management request, where the session management request includes: location information of the user equipment; selecting the location information of the user equipment and the location information of the user in the mobile network to be the same session management function device in the same location.
  • the session management function device selects the same user plane function device whose location information of the user equipment and the user location information in the mobile network are the same location.
  • the network management system first generates slice-level QoS parameters for the network slice, and the slice-level QoS parameters are used by the network management system to instruct the slice processing device to control the first resource corresponding to the network slice.
  • the network management system then sends slice-level QoS parameters to the slice processing device.
  • the slicing processing device first receives the slicing-level quality of service QoS parameters sent by the network management system, and the slicing processing device then controls and processes the first resource corresponding to the network slicing according to the slicing-level QoS parameters.
  • the embodiments of this application define more specific slice-level QoS parameters.
  • the network management system delivers slice-level QoS parameters to the slice processing device, so that the slice The processing device performs control processing on the first resource corresponding to the network slice according to the slice-level QoS parameters, so that slice-level resource scheduling can be implemented, and the slice-level resource control processing can be implemented, so that the network slice can provide slice-level service functions.
  • FIG. 12 is a schematic structural diagram of a network management system provided by an embodiment of the present application.
  • the network management system 1200 may have relatively large differences due to different configurations or performance, and may include one or more central processing units (CPUs). ) 1222 (for example, one or more processors) and memory 1232, and one or more storage media 1230 for storing application programs 1242 or data 1244 (for example, one or one storage device with a large amount of storage).
  • the memory 1232 and the storage medium 1230 may be short-term storage or persistent storage.
  • the program stored in the storage medium 1230 may include one or more modules (not shown in the figure), and each module may include a series of command operations on the network management system.
  • the central processing unit 1222 may be configured to communicate with the storage medium 1230, and execute a series of instruction operations in the storage medium 1230 on the network management system 1200.
  • the network management system 1200 may also include one or more power supplies 1226, one or more wired or wireless network interfaces 1250, one or more input and output interfaces 1258, and/or, one or more operating systems 1241, such as Windows Serverä, Mac OS Xä, Unixä, Linuxä, FreeBSDä, etc.
  • the steps of the method executed by the network management system in the foregoing embodiment may be based on the Network management system structure.
  • FIG. 13 is a schematic structural diagram of a slice processing device provided by an embodiment of the present application.
  • the slice processing device 1300 may have relatively large differences due to different configurations or performance, and may include one or more central processing units (CPUs). ) 1322 (for example, one or more processors) and memory 1332, and one or more storage media 1330 for storing application programs 1342 or data 1344 (for example, one or one storage device with a large amount of storage).
  • the memory 1332 and the storage medium 1330 may be short-term storage or persistent storage.
  • the program stored in the storage medium 1330 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the slice processing device.
  • the central processing unit 1322 may be configured to communicate with the storage medium 1330, and execute a series of instruction operations in the storage medium 1330 on the slice processing device 1300.
  • the slicing device 1300 may also include one or more power supplies 1326, one or more wired or wireless network interfaces 1350, one or more input and output interfaces 1358, and/or one or more operating systems 1341, such as Windows Serverä, Mac OS Xä, Unixä, Linuxä, FreeBSDä, etc.
  • the method steps performed by the slice processing device in the foregoing embodiment may be based on the structure of the slice processing device shown in FIG. 13.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not The physical unit may be located in one place, or may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • the technical solution of this application essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk.
  • a readable storage medium such as a computer floppy disk.
  • U disk mobile hard disk, read-only memory (R0M, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be A personal computer, server, or network device, etc.) execute the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种网络切片处理方法、***、设备以及存储介质。所述方法,应用于网络管理***,包括:将移动通信网络的功能进行虚拟化,得到多个互相隔离的逻辑子网,将每个逻辑子网作为一个网络切片;为每个网络切片生成切片级的服务质量QoS参数,所述切片级的QoS参数用于所述网络管理***指示切片处理设备对该网络切片对应的第一资源进行控制处理;向所述切片处理设备发送所述切片级的QoS参数。

Description

一种网络切片处理方法、 ***、 设备以及存储介质 本申请要求于 2019 年 2 月 28 日提交中国专利局、 申请号为 201910152800. 8、 申请名称为 “一种网络切片处理方法和设备以及***” 的 中国专利申请的优先权。 技术领域 本申请涉及计算机技术领域, 尤其涉及一种网络切片处理方法、 ***、 设备以及存储介质。 背景技术 网络切片技术是第五代移动通信技术 ( f i fth-generat i on , 5G) 网络的 重要基础技术, 网络切片可以面向行业客户提供相互隔离的、 功能和性能定 制化的、 质量可保障的、 端到端的逻辑专网服务。
目前, 5G 网络中的切片的质量可保障, 主要通过服务质量 (qua l i ty of serv i ce, QoS)机制来实现。 但是目前的 QoS机制仅仅是针对用户设备 (User Equ i pment) 级别, 或者是针对数据流 (f l ow) 级别, 或者是针对会话级别的。
由于无线空口的资源有限性, 将导致运营商难以满足行业客户对切片的 要求, 行业客户难以订购和使用运营商提供的切片服务, 导致切片无法为行 业客户提供服务功能。 发明内容 本申请实施例提供了一种网络切片处理方法、 ***、 设备以及存储介质, 用于实现针对切片级的资源控制处理, 使得网络切片能够提供切片级的服务 功能。
本申请实施例提供以下技术方案:
一方面, 本申请实施例提供一种网络切片处理方法, 应用于网络管理系 统, 包括:
将移动通信网络的功能进行虚拟化, 得到多个互相隔离的逻辑子网, 将 每个逻辑子网作为一个网络切片;
为每个网络切片生成切片级的服务质量 QoS参数, 所述切片级的 QoS参 数用于所述网络管理***指示切片处理设备对该网络切片对应的第一资源进 行控制处理;
向所述切片处理设备发送所述切片级的 QoS参数。 另一方面, 本申请实施例还提供一种网络切片处理方法, 应用于切片处 理设备, 包括:
接收网络管理***发送的切片级的服务质量 QoS 参数, 其中, 所述网络 管理***将移动通信网络的功能进行虚拟化, 得到多个互相隔离的逻辑子网, 将每个逻辑子网作为一个网络切片, 为每个网络切片生成所述切片级的 QoS 参数;
根据所述切片级的 QoS 参数, 对该网络切片对应的第一资源进行控制处 理。
另一方面, 本申请实施例提供一种网络管理***, 所述网络管理***包 括: 处理器、 存储器; 存储器用于存储指令; 处理器用于执行存储器中的指 令, 使得网络管理***执行如前述一方面中任一项的方法。
另一方面, 本申请实施例提供一种切片处理设备, 该切片处理设备包括: 处理器、 存储器; 存储器用于存储指令; 处理器用于执行存储器中的指令, 使得切片处理设备执行如前述一方面中任一项的方法。
另一方面, 本申请实施例提供一种网络切片处理***, 述网络切片处理 ***, 包括:
如前述一方面中任一项所述的网络管理***, 和如前述一方面任一项所 述的切片处理设备。
另一方面, 本申请实施例提供了一种计算机可读存储介质, 所述计算机 可读存储介质中存储有指令, 当其在计算机上运行时, 使得计算机执行上述 各方面所述的方法。 附图说明 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 申请的一些实施例, 对于本领域的技术人员来讲, 还可以根据这些附图获得 其他的附图。
图 1为本申请实施例提供的一种网络切片处理***的组成结构示意图; 图 2为本申请实施例提供的网络管理***和切片处理设备之间的一种交 互流程示意图;
图 3a为本申请实施例提供的网络管理***执行的一种网络切片处理方法 的流程方框示意图;
图 3b为本申请实施例提供的网络管理***执行的一种生成切片级 QoS参 数的流程方框示意图;
图 3c为本申请实施例提供的网络管理***执行的另一种生成切片级 QoS 参数的流程方框示意图;
图 4为本申请实施例提供的网络管理***执行的另一种网络切片处理方 法的流程方框示意图;
图 5为本申请实施例提供的接入网设备执行的一种网络切片处理方法的 流程方框示意图;
图 6为本申请实施例提供的核心网设备执行的另一种网络切片处理方法 的流程方框示意图;
图 7为本申请实施例提供的一种网络管理***在实际场景中的***架构 示意图;
图 8为本申请实施例提供的在图 7所示的***架构下的交互流程示意图; 图 9为本申请实施例提供的会话建立流程的示意图;
图 1 0为本申请实施例提供的一种网络管理***的模块组成示意图; 图 1 1为本申请实施例提供的一种切片处理设备的模块组成示意图; 图 1 2为本申请实施例提供的另一种网络管理***的模块组成示意图; 图 1 3为本申请实施例提供的另一种切片处理设备的模块组成示意图。 具体实施方式 本申请实施例提供了一种网络切片处理方法和设备以及***, 用于实现 针对切片级的资源控制处理, 使得网络切片能够提供切片级的服务功能。
为使得本申请的发明目的、 特征、 优点能够更加的明显和易懂, 下面将 结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整 地描述, 显然, 下面所描述的实施例仅仅是本申请一部分实施例, 而非全部 实施例。 基于本申请中的实施例, 本领域的技术人员所获得的所有其他实施 例, 都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语 “包括” 和 “具有” 以及他们的任何变形, 意图在于覆盖不排他的包含, 以便包含一系列单元的 过程、 方法、 ***、 产品或设备不必限于那些单元, 而是可包括没有清楚地 列出的或对于这些过程、 方法、 产品或设备固有的其它单元。
本申请实施例首先提供一种网络切片处理***, 请参阅图 1 所示, 本申 请实施例提供的网络切片处理*** 1 0 中包括网络管理*** 1 1 和切片处理设 备 1 2。 其中, 网络管理*** 1 1 和切片处理设备 1 2之间可以进行通信, 例如 网络管理*** 1 1 和切片处理设备 1 2之间可以建立有线网络, 从而网络管理 *** 1 1 可以向切片处理设备 1 2发送数据或者信息。 又如, 网络管理*** 1 1 和切片处理设备 1 2之间可以建立无线网络, 从而网络管理*** 1 1 可以向切 片处理设备 1 2发送数据或者信息。
在本申请实施例中, 网络管理*** 1 1 简称为网管***, 网络管理*** 1 1 是网络切片的参数配置端, 网络管理*** 1 1 可以设置与网络切片有关的各项 策略和要求, 例如该网络管理***可以包括端到端切片管理功能子*** 1 1 1、 接入网管理子*** 1 1 2和核心网管理子*** 1 1 3。接入网管理子*** 1 1 2具体 可以包括接入网切片管理子***, 核心网管理子*** 113 具体可以包括核心 网切片管理子***。
切片处理设备 12是网络切片的处理端, 切片处理设备 12需要按照网络 管理***的配置指示来执行基于网络切片的各项策略和要求。 切片处理设备 12具体可以包括如下设备中的至少一种: 接入网设备 121和核心网设备 122。
举例说明如下, 端到端切片管理功能子*** 111 可以生成切片级的 QoS 参数, 该切片级的 QoS参数可以包括第一 QoS参数和第二 QoS参数。 若第一 QoS参数用于对接入网设备的管理,则端到端切片管理功能子*** 111将第一 QoS参数发送给接入网管理子*** 112, 例如发送给接入网切片管理子***。 由接入网管理子***将第一 QoS参数配置给接入网设备 121。若第二 QoS参数 用于对核心网设备的管理, 则端到端切片管理功能子*** 111 将第二 QoS参 数发送给核心网管理子*** 113, 例如发送给核心网切片管理子***。 由核心 网管理子***将第二 QoS参数配置给核心网设备 123。
例如接入网设备可以包括: 5G网络中的基站 (简称为 gNB), 4G网络中的 增强基站 (简称为 eNB), 5G基站的集中单元 (central ized unit, CU) 或者 分布单元 (distributed unit, DU) 等。 核心网设备可以包括: 接入移动管 理功能设备 (Access and Mobi l ity Management Function, AMF)、 会话管理 功能设备 (Session Management Function, SMF)、用户面功能设备 (User plane function, UPF)。
本申请网络切片处理方法的一个实施例, 具体可以应用于对网络切片的 配置和执行场景中, 请参阅图 2所示, 应用于网络管理***, 如图 1中所示的 网络管理*** 11, 可以包括如下步骤:
200、将移动通信网络的功能进行虚拟化,得到多个互相隔离的逻辑子网, 将每个逻辑子网作为一个网络切片。
在本申请实施例中, 所述网络切片是指基于移动通信网络虚拟出的互相 隔离的多个逻辑子网。 每个端到端的网络切片均由无线网、 传输网、 核心网 子切片组合而成, 并通过端到端的网络管理***进行统一的管理。
201、 网络管理***为每个网络切片生成切片级的服务质量 (qual ity of service, QoS, QoS) 参数, 该切片级的 QoS参数用于网络管理***指示切片 处理设备对该网络切片对应的第一资源进行控制处理。
在本申请实施例中, 网络管理***首先针对网络切片生成切片级的 QoS 参数, 其中, 该网络切片可以是一个待创建的网络切片, 或者该网络切片是 指已经创建的网络切片。
举例说明如下, 切片的购买者需要修改之前已经购买的网络切片, 此时 网络管理***可以为该已经创建的网络切片生成一个切片级的 QoS 参数。 切 片级指的是网络管理***生成的 QoS 参数是针对网络切片级别来设置的, 该 切片级的 QoS 参数用于网络管理***指示切片处理设备对网络切片对应的第 一资源进行控制处理。 其中, 本申请实施例中第一资源指的是与网络切片对应的资源, 在不同 的实现场景下, 该第一资源具有多种实现方式。 例如该第一资源可以包括: 无线资源, 和 /或网络转发资源, 该无线资源包括但是不限于频率资源和时隙 资源等。
举例说明如下, 当切片处理设备具体为接入网设备时, 该第一资源具体 为无线资源, 该无线资源也可以称为接入网资源。 当切片处理设备具体为核 心网设备时, 该第一资源具体为网络转发资源。
本申请实施例中考虑到资源的动态性和复杂性, 定义了更加具体的切片 级的 QoS 参数, 本申请实施例中网络管理***针对网络切片生成了切片级的 QoS参数, 从而使得网络切片能够提供切片级的服务功能。 例如本申请实施例 中, 针对网络切片采用的是切片级的 QoS 参数, 将使得切片的行业更加精准 地定义需求, 使得运营商具备切片级的质量保障能力及商用能力。
在本申请实施例中, 切片级的 QoS 参数可以包括如下参数的至少一种: 切片级的优先级参数、 切片级的上行总带宽, 和切片级的下行总带宽。 其中, 切片级的优先级参数指的是为不同的网络切片设置不同的优先级, 切片级的 上行总带宽指的是在地理位置接入网络切片的所有用户的上行速率带宽之 和, 切片级的下行总带宽指的是在地理位置接入网络切片的所有用户的下行 速率带宽之和。 切片级的上行总带宽和切片级的下行总带宽也可以合称为切 片级的上下行总带宽。
本申请实施例中网络管理***在生成优先级参数时是针对切片级来生成 的, 并且在生成上下行总带宽时也是针对切片级来生成的。
需要说明的是, 本申请实施例中切片级的 QoS 参数包括切片级的优先级 和切片级的上下行总带宽, 该切片级上下行总带宽又可以分为切片级的上行 总带宽和切片级的下行总带宽, 但不限定的是, 本申请实施例中切片级的 QoS 参数并不局限于上述举例的切片级的优先级和切片级的上下行总带宽, 该切 片级的 QoS 参数还可以包括针对网络切片设置的其它参数, 例如可以包括切 片级的传输控制参数等。
202、 网络管理***向切片处理设备发送切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向切片处理设备发送该切片级的 QoS 参数。 通过前述对网 络管理***和切片处理设备之间的连接关系说明可知, 网络管理***和切片 处理设备之间是可以进行相互通信的, 从而使得网络管理***向切片处理设 备发送切片级的 QoS参数, 切片处理设备在接收到该切片级的 QoS参数之后, 还可以发送一个反馈消息给网络管理***, 使得网络管理***可以根据该反 馈消息确定切片处理设备是否成功接收该切片级的 QoS参数。
本申请实施例中考虑到资源的动态性和复杂性, 定义了更加具体的切片 级的 QoS 参数, 本申请实施例中网络管理***向切片处理设备下发了切片级 的 QoS参数, 从而使得切片处理设备根据切片级的 QoS参数对网络切片对应 的第一资源进行控制处理, 因此可以实现切片级的资源调度, 实现针对切片 级的资源控制处理, 使得网络切片能够提供切片级的服务功能。
203、 切片处理设备接收网络管理***发送的切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向切片处理设备发送该切片级的 QoS 参数。 通过前述对网 络管理***和切片处理设备之间的连接关系说明可知, 网络管理***和切片 处理设备之间是可以进行相互通信的, 从而使得网络管理***向切片处理设 备发送切片级的 QoS参数, 切片处理设备在接收到该切片级的 QoS参数之后, 还可以发送一个反馈消息给网络管理***, 使得网络管理***可以根据该反 馈消息确定切片处理设备是否成功接收该切片级的 QoS参数。
204、 切片处理设备根据切片级的 QoS参数, 对该网络切片对应的第一资 源进行控制处理。
在本申请实施例中, 网络管理***是网络切片的参数配置端, 网络管理 ***可以设置与网络切片有关的各项策略和要求, 切片处理设备是网络切片 的处理端, 切片处理设备需要按照网络管理***的配置指示来执行基于网络 切片的各项策略和要求。 在实际应用中, 可以根据切片处理设备的设备类型 以及该切片级的 QoS 参数所包括的参数内容来详细说明切片处理设备的具体 处理流程, 详见后续实施例中的举例说明。
本申请实施例中考虑到资源的动态性和复杂性, 定义了更加具体的切片 级的 QoS 参数, 本申请实施例中网络管理***向切片处理设备下发了切片级 的 QoS参数, 从而使得切片处理设备根据切片级的 QoS参数对网络切片对应 的第一资源进行控制处理, 因此相比于现有技术中 QoS 只能是会话级别或者 用户设备级别, 本申请实施例中是针对网络切片对应的切片级的 QoS 参数执 行控制处理, 因此可以实现切片级的资源调度, 实现针对切片级的资源控制 处理, 使得网络切片能够提供切片级的服务功能。
通过前述实施例的举例说明可知, 网络管理***首先为网络切片生成切 片级的 QoS参数, 该切片级的 QoS参数用于网络管理***指示切片处理设备 对网络切片对应的第一资源进行控制处理。 网络管理***然后向切片处理设 备发送切片级的 QoS 参数。 切片处理设备首先接收网络管理***发送的切片 级的服务质量 QoS参数, 切片处理设备然后根据切片级的 QoS参数对网络切 片对应的第一资源进行控制处理。
接下来分别从网络管理***和切片处理设备的角度对本申请实施例提供 的网络切片处理方法进行详细的说明。 首先从网络管理***侧进行说明, 请 参阅图 3a所示, 网络管理***执行的一种网络切片处理方法, 例如, 图 1所 示的网络管理*** 1 1, 具体可以包括如下步骤:
301、 网络管理***获取该网络切片对应的切片级的服务等级协议 ( serv i ce- l eve l agreement , SLA) 信息。
在本申请实施例中, 网络管理***首先获取切片级的 SLA 信息, 该切片 级的 SLA信息可以包括针对网络切片所要求的各项配置和需求信息, 该切片 级的 SLA信息可以包括多种网络切片的配置参数, 此处不做限定。
本申请实施例中切片级的 SLA 信息可以由切片触发服务器发送给网络管 理***, 例如该切片触发服务器可以是切片购买者侧的服务器, 或运营商内 部的切片订购服务器。该切片触发服务器首先收集针对网络切片所形成的 SLA 信息, 然后将切片级的 SLA信息发送给网络管理***。
302、 网络管理***根据切片级的 SLA信息,生成切片级的 QoS参数。 在本申请实施例中, 网络管理***获取到切片级的 SLA 信息之后, 可以 根据该切片级的 SLA信息生成前述的切片级的 QoS参数, 即网络管理***解 析该切片级的 SLA 信息, 分析网络切片的各项性能需求, 从而生成切片级的 QoS参数。
其中, 网络管理***获取到切片级的 SLA信息时, 从切片级的 SLA信息 中分别提取出如下信息: 切片级的优先级参数、 在地理区域内允许接入切片 的用户数及单个用户的接入上行速率、 单个用户的接入下行速率等信息。
举例说明如下, 在本申请的一些实施例中, 当所述切片级的 SLA 信息中 包括在地理区域内允许接入该网络切片的用户个数、 单个用户的接入上行速 率时, 步骤 302 网络管理***根据切片级的 SLA信息, 生成切片级的 QoS参 数, 参见图 3b所示,应用于网络管理***, 具体包括:
步骤 3021, 根据在地理区域内允许接入网络切片的用户个数及单个用户 的接入上行速率, 计算得到所述地理区域对应的切片级的上行总带宽;
步骤 3022, 将地理区域映射为移动网络内的用户位置信息。
其中, 移动网络内的用户位置信息包括: 用户所在的跟踪区域 (track i ng area, TA) 信息, 或者用户接入的小区信息;
步骤 3023, 根据移动网络内的用户位置信息, 生成移动网络内的用户位 置信息对应的切片级的上行总带宽, 作为切片级的 QoS参数。
其中, 地理区域对应的切片级的上行总带宽指的是在该地理区域接入网 络切片的所有用户的上行速率带宽之和。 网络管理***通过在地理区域内允 许接入网络切片的接入用户数乘以单用户的接入上行速率, 间接获取地理区 域对应的切片级的上行总带宽。
网络管理***获取到地理区域对应的切片级的上行总带宽之后, 根据移 动网络内的用户位置信息, 生成移动网络内的用户位置信息对应的切片级的 上行总带宽。
其中, 地理区域指的是通常的地理位置信息, 例如某个区的某个商圈等。 网络管理***可以将地理区域映射成移动网络内的用户位置信息, 该移动网 络内的用户位置信息包括: 用户所在的跟踪区域 (track i ng area, TA) 信息 或者用户接入的小区信息。 例如网络管理***将第一地理区域映射为第一 TA 信息, 或者第一小区信息。 其中 TA信息可以包括一个或多个的 TA标识, 小 区信息可以包括一个或多个小区标识。 在本申请一实施例中, 上述步骤 3023中, 所述根据所述用户位置信息, 生成所述用户位置信息对应的切片级的上行总带宽, 包括:
根据所述用户位置信息与接入网设备的对应关系, 确定出多个接入网设 备;
根据每个接入网设备所覆盖的区域范围大小, 将所述地理区域对应的切 片级的上行总带宽划分给所述多个接入网设备, 得到每个接入网设备对应的 切片级的上行总带宽。
例如, 根据 TA信息与接入网设备的对应关系, 网络管理***可以确定出 一个或多个的接入网设备。 或者, 根据映射出的小区信息与接入网设备的对 应关系, 网络管理***可以确定出一个或多个的接入网设备。 当地理区域映 射出一个小区时, 网络管理***可以确定出一个接入网设备, 当地理区域映 射出多个小区时, 网络管理***可以确定出一个或者多个的接入网设备。
当网络管理***确定出多个接入网设备时, 根据多个接入网设备所覆盖 的区域范围大小, 将地理区域对应的切片级的上行总带宽划分给多个接入网 设备。 例如某个接入网设备所覆盖的区域范围越大, 网络管理***分配给该 接入网设备的切片级的上行总带宽越大; 某个接入网设备所覆盖的区域范围 越小, 网络管理***分配给该接入网设备的切片级的上行总带宽越小。 分配 给所有接入网设备的切片级的上行总带宽之和等于地理区域对应的切片级的 上行总带宽。
可见, 以切片处理设备为接入网设备为例, 当网络管理***根据移动网 络内的用户位置信息确定出一个接入网设备时, 网络内的用户位置信息对应 的切片级的上行总带宽等于地理区域对应的切片级的上行总带宽。 当网络管 理***根据移动网络内的用户位置信息确定出多个接入网设备时, 分配给所 有接入网设备的切片级的上行总带宽之和等于地理区域对应的切片级的上行 总带宽。
在本申请另些实施例中, 当所述切片级的 SLA信息中包括在地理区域内 允许接入该网络切片的用户个数、 单个用户的接入下行速率时, 步骤 302中, 所述根据所述切片级的 SLA信息, 生成所述切片级的 QoS参数, 参见图 3c所 示,应用于网络管理***, 具体包括:
步骤 3024, 根据在地理区域内允许接入该网络切片的用户个数及单个用 户的接入下行速率, 计算得到地理区域对应的切片级的下行总带宽;
步骤 3025, 将地理区域映射为移动网络内的用户位置信息;
步骤 3026, 根据用户位置信息, 生成用户位置信息对应的切片级的下行 总带宽, 作为切片级的 QoS参数。
其中, 地理区域对应切片级的下行总带宽指的是在该地理区域接入网络 切片的所有用户的下行速率带宽之和。 网络管理***通过在地理区域内允许 接入网络切片的接入用户数乘以单用户的接入下行速率, 间接获取所述地理 区域对应的切片级的下行总带宽。 网络管理***获取到地理区域对应的切片级的下行总带宽之后, 根据移 动网络内的用户位置信息, 生成移动网络内的用户位置信息对应的切片级的 下行总带宽。
在本申请一实施例中, 所述根据所述用户位置信息, 生成所述用户位置 信息对应的切片级的下行总带宽, 包括:
根据所述用户位置信息与核心网设备的对应关系, 确定出多个核心网设 备;
根据每个核心网设备所服务的区域范围大小, 将所述地理区域对应的切 片级的下行总带宽划分给所述多个核心网设备, 得到每个核心网设备对应的 切片级的下行总带宽。
例如, 根据 TA信息与核心网设备的对应关系, 网络管理***可以确定出 一个或多个的核心网设备。 或者, 根据映射出的小区信息与核心网设备的对 应关系, 网络管理***可以确定出一个或多个的核心网设备。 当地理区域映 射出一个小区时, 网络管理***可以确定出一个核心网设备, 当地理区域映 射出多个小区时, 网络管理***可以确定出一个或者多个的核心网设备。
当网络管理***确定出多个核心网设备时, 根据多个核心网设备所服务 的区域范围大小, 将地理区域对应的切片级的下行总带宽划分给多个核心网 设备。 例如, 某个核心网设备所服务的区域范围越大, 网络管理***分配给 该核心网设备的切片级的下行总带宽越大; 某个核心网设备所服务的区域范 围越小, 网络管理***分配给该核心网设备的切片级的下行总带宽越小。 分 配给所有核心网设备的切片级的下行总带宽之和等于地理区域对应的切片级 的下行总带宽。
此外, 切片级的优先级指的是不同的网络切片具有不同的优先级。 在本 申请又一实施例中, 当所述切片级的 SLA 信息中进一步包括: 该网络切片对 应的切片级的优先级参数时, 上述实施例中切片级的 QoS 参数进一步包括所 述切片级的优先级参数。
其中, 切片级的优先级对应的网络切片使用单网络切片选择辅助信息 ( S i ng l e Network S l i ce Se l ect i on Ass i stance I nformat i on, S-NSSA I ) 进行标识。 移动网络内的用户位置信息对应的切片级的上行总带宽对应的网 络切片以 S-NSSA I 进行标识。 移动网络内的用户位置信息对应的切片级的下 行总带宽对应的网络切片以 S-NSSA I进行标识。
303、 网络管理***向切片处理设备发送切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向切片处理设备发送该切片级的 QoS 参数。 通过前述对网 络管理***和切片处理设备之间的连接关系说明可知, 网络管理***和切片 处理设备之间是可以进行相互通信的, 从而使得网络管理***向切片处理设 备发送切片级的 QoS参数, 切片处理设备在接收到该切片级的 QoS参数之后, 还可以发送一个反馈消息给网络管理***, 使得网络管理***可以根据该反 馈消息确定切片处理设备是否成功接收该切片级的 QoS参数。
通过前述实施例的举例说明可知, 本申请实施例中考虑到资源的动态性 和复杂性, 定义了更加具体的切片级的 QoS 参数, 本申请实施例中网络管理 ***向切片处理设备下发了切片级的 QoS 参数, 从而使得切片处理设备根据 切片级的 QoS 参数对网络切片对应的第一资源进行控制处理, 因此可以实现 切片级的资源调度, 实现针对切片级的资源控制处理, 使得网络切片能够提 供切片级的服务功能。
接下来从网络管理***侧介绍本申请实施例提供的另一种网络切片处理 方法, 请参阅图 4所示, 网络管理***执行的一种网络切片处理方法, 如图 1 中所示的网络管理*** 1 1, 具体可以包括如下步骤:
401、 网络管理***接收切片触发服务器发送的切片创建请求, 切片创建 请求包括: 切片级的优先级参数、 地理区域对应的切片级的上行总带宽, 和 地理区域对应的切片级的下行总带宽。
本申请实施例中切片创建请求可以由切片触发服务器发送给网络管理系 统, 例如该切片触发服务器可以是切片购买者侧的服务器, 或运营商内部的 切片订购服务器。 该切片触发服务器首先收集针对网络切片所形成的切片创 建请求, 然后将切片创建请求发送给网络管理***。
其中, 网络管理***获取到切片创建请求时, 该切片创建请求中带有切 片级的优先级参数、 在地理区域的切片级的上行总带宽、 在地理区域的切片 级的下行总带宽等信息。 其中地理区域指的是通常的地理位置信息, 例如某 个区的某个商圈等。 网络管理***可以将地理区域映射成移动网内的接入网 设备信息或接入网设备管理的一个或者多个 TA或者接入网设备管理的一个或 者多个小区信息。
402、 网络管理***将地理区域映射为移动网络内的用户位置信息。
其中, 移动网络内的用户位置信息包括: 用户所在的 TA信息或者用户接 入的小区信息。
403、 网络管理***根据移动网络内的用户位置信息, 生成切片级的 QoS 参数, 切片级的 QoS 参数包括如下参数的至少一种: 切片级的优先级参数、 用户位置信息对应的切片级的上行总带宽, 或用户位置信息对应的切片级的 下行总带宽。
网络管理***获取到地理区域对应的切片级的上行总带宽之后, 根据移 动网络内的用户位置信息, 生成移动网络内的用户位置信息对应的切片级的 上行总带宽。 具体生成方式, 可参见上述步骤 3023的描述。
移动网络内的用户位置信息对应的切片级的上行总带宽对应的网络切片 以 S-NSSA I进行标识, 举例说明, 当前切片级的 QoS参数为 1 00Mbps/S-NSSA I 时, 表示以 S-NSSA I标识的网络切片对应的上行总带宽为 100Mbps。
或者, 网络管理***获取到地理区域对应的切片级的下行总带宽之后, 根据移动网络内的用户位置信息, 生成移动网络内的用户位置信息对应的切 片级的下行总带宽。 具体生成方式, 可参见上述步骤 3026的描述。 其中, 移动网络内的用户位置信息对应的切片级的下行总带宽对应的网 络切片以 S-NSSA I进行标识。
在本申请实施例中, 网络管理***从切片创建请求中获取到切片级的优 先级参数、 切片级的上行总带宽, 和切片级的下行总带宽之后, 基于获取到 的上述参数生成切片级的 QoS参数, 对于切片级的 QoS参数的具体参数内容 和消息格式, 此处不做限定。
404、 网络管理***向切片处理设备发送切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向切片处理设备发送该切片级的 QoS 参数。 通过前述对网 络管理***和切片处理设备之间的连接关系说明可知, 网络管理***和切片 处理设备之间是可以进行相互通信的, 从而使得网络管理***向切片处理设 备发送切片级的 QoS参数, 切片处理设备在接收到该切片级的 QoS参数之后, 还可以发送一个反馈消息给网络管理***, 使得网络管理***可以根据该反 馈消息确定切片处理设备是否成功接收该切片级的 QoS参数。
通过前述实施例的举例说明可知, 本申请实施例中考虑到资源的动态性 和复杂性, 定义了更加具体的切片级的 QoS 参数, 本申请实施例中网络管理 ***向切片处理设备下发了切片级的 QoS 参数, 从而使得切片处理设备根据 切片级的 QoS 参数对网络切片对应的第一资源进行控制处理, 因此可以实现 切片级的资源调度, 实现针对切片级的资源控制处理, 使得网络切片能够提 供切片级的服务功能。
在本申请的一些实施例中, 上述步骤 303或者步骤 404 网络管理***向 切片处理设备发送切片级的 QoS参数, 包括:
当切片处理设备具体为接入网设备、 且第一资源为无线资源时, 网络管 理***向接入网设备发送用户位置信息对应的切片级的上行总带宽; 或者, 当切片处理设备具体为核心网设备、 且第一资源为网络转发资源时, 网 络管理***向核心网设备发送用户位置信息对应的切片级的下行总带宽。
当切片级的 QoS 参数还包括切片级的优先级参数时, 网络管理***可以 将切片级的优先级和用户位置信息对应的切片级的上行总带宽下发给接入网 设备, 从而接入网设备可以根据该切片级的优先级和移动网络内的用户位置 信息对应的切片级的上行总带宽, 进行资源控制处理。
当切片级的 QoS 参数还包括切片级的优先级参数时, 网络管理***还可 以将切片级的优先级和用户位置信息对应的切片级的下行总带宽下发给核心 网设备, 从而核心网设备可以根据该切片级的优先级和移动网络内的用户位 置信息对应的切片级的下行总带宽, 进行资源控制处理。
针对切片处理设备的不同, 网络管理***所发送的切片级的 QoS 参数的 具体内容可以不同, 具体根据应用场景来确定所发送的切片级的 QoS参数。
在本申请的一些实施例中, 上述步骤 303或者步骤 404 网络管理***向 切片处理设备发送切片级的 QoS参数, 包括:
网络管理***根据切片级的 QoS 参数中携带的移动网络内的用户位置信 息, 从预置的切片处理设备集合中选择出第一切片处理设备;
网络管理***向选择出的第一切片处理设备, 发送切片级的 QoS参数。 其中, 切片处理设备集合中可以包括: 支持网络切片的已有切片处理设 备, 和支持网络切片的新创建切片处理设备。
该切片处理设备集合中可以包括新创建的切片处理设备, 也可以包括已 有的切片处理设备, 具体结合场景来确定哪个切片处理设备被确定为上述的 第一切片处理设备。 例如该第一切片处理设备可以是支持 S-NSSA I 的核心网 设备。
举例说明如下, 网络管理***生成的切片级的 QoS 参数中携带有地理位 置, 根据该地理位置从移动网络内确定出该第一切片网络设备。 以切片处理 设备为接入网设备为例, 网络管理***根据切片级的 QoS 参数中携带的移动 网络内的用户位置信息, 从接入网设备集合中选择出第一接入网设备。 接入 网设备集合包括: 支持网络切片的已有接入网设备, 和支持网络切片的新创 建接入网设备。
以切片处理设备为核心网设备为例, 网络管理***根据切片级的 QoS 参 数中携带的移动网络内的用户位置信息, 从核心网设备集合中选择出第一核 心网设备, 核心网设备集合包括: 支持网络切片的已有核心网设备, 和支持 网络切片的新创建核心网设备。
接下来分别从切片处理设备的角度对本申请实施例提供的网络切片处理 方法进行详细的说明, 切片处理设备具体可以包括接入网设备和核心网设备, 请参阅图 5 所示, 首先从接入网设备执行的一种网络切片处理方法进行详细 说明, 例如, 图 1 中所示的接入网设备 1 21, 具体可以包括如下步骤:
501、 接入网设备接收网络管理***发送的切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向接入网设备发送该切片级的 QoS 参数。 通过前述对网络 管理***和接入网设备之间的连接关系说明可知, 网络管理***和接入网设 备之间是可以进行相互通信的, 从而使得网络管理***向接入网设备发送切 片级的 QoS参数, 接入网设备在接收到该切片级的 QoS参数之后, 还可以发 送一个反馈消息给网络管理***, 使得网络管理***可以根据该反馈消息确 定接入网设备是否成功接收该切片级的 QoS参数。
502、 接入网设备从切片级的 QoS参数中获取到切片级的优先级参数和移 动网络内的用户位置信息对应的切片级的上行总带宽。
在本申请实施例中, 网络管理***可以将切片级的优先级和切片级的上 行总带宽下发给接入网设备, 接入网设备从切片级的 QoS 参数中获取到切片 级的优先级和切片级的上行总带宽。
503、 接入网设备根据切片级的优先级参数, 和 /或移动网络内的用户位 置信息对应的切片级的上行总带宽, 对无线资源进行控制处理。
在本申请实施例中, 接入网设备获取到切片级的优先级和切片级的上行 总带宽之后, 接入网设备可以根据该切片级的优先级和切片级的上行总带宽 进行资源控制处理, 或者接入网设备可以根据该切片级的优先级进行资源控 制处理, 或者接入网设备可以根据切片级的上行总带宽进行资源控制处理。 具体可以结合应用场景来确定接入网设备对资源控制处理方式。
在本申请的一些实施例中, 步骤 503 接入网设备根据切片级的优先级参 数, 和 /或移动网络内的用户位置信息对应的切片级的上行总带宽对无线资源 进行控制处理, 包括如下步骤中的至少一个:
接入网设备根据切片级的上行总带宽配置与网络切片相应的最大无线资 源; 或者,
接入网设备根据切片级的上行总带宽将接入网设备的所有无线资源分割 为多份的无线子资源, 在每次进行资源分配时为网络切片分配相同的无线子 资源; 或者,
接入网设备根据切片级的上行总带宽将接入网设备的所有无线资源分割 为多份的无线子资源, 在每次进行资源分配时从多份的无线子资源中为网络 切片动态分配相应的无线子资源; 或者,
接入网设备限制接入网设备服务的所有用户的上行流量不超过切片级的 上行总带宽; 或者,
接入网设备根据切片级的优先级参数, 将低优先级的网络切片对应的无 线资源调度给高优先级的网络切片。
举例说明如下, 接入网设备可以根据切片级的总上行带宽配置与此切片 相应的最大接入网资源。 接入网设备服务的所有切片的接入网资源可大于等 于接入网的最大可分配资源, 即某些接入网资源可被多个切片复用, 可复用 的比例由切片级的 SLA信息和运营商的运营策略决定。
又如, 当接入网资源有富余的时候, 接入网设备将限制从此接入网设备 接入的所有用户的上行流量不超过移动网络内的用户位置信息对应的切片级 的总上行带宽。
又如, 当接入网资源紧缺或者拥塞的时候, 可以释放一部分或者全部的 切片优先级低的无线资源, 被释放的无线资源可以分配给切片优先级高的网 络切片使用, 其中, 释放的比例, 可以在切片级的 SLA信息中约定。
又如, 接入网设备可以将无线资源固定分割成不同份, 每一份为独立的 无线子资源。 其中, 无线子资源是按照频率和时间切分的可以调度的最小资 源块。 每份的无线子资源分配给一个网络切片来使用, 这些不同份的无线子 资源在不同网络切片中可以有重叠, 也可以没有重叠, 也可以单独在没有重 叠的无线子资源之外预留一部分无线子资源, 在不同切片之间共享使用。 从 而接入网设备可以实现以网络切片为粒度的无线资源控制处理, 可以实现切 片级的资源调度, 使得网络切片能够提供切片级的服务功能。 接下来分别从切片处理设备的角度对本申请实施例提供的网络切片处理 方法进行详细的说明, 切片处理设备具体可以包括接入网设备和核心网设备, 请参阅图 6 所示, 接下来从核心网设备执行的一种网络切片处理方法进行详 细说明, 例如, 图 1 中所示的核心网设备 1 22, 具体可以包括如下步骤:
601、 核心网设备接收网络管理***发送的切片级的 QoS参数。
在本申请实施例中, 网络管理***在生成切片级的 QoS 参数之后, 该网 络管理***还可以向核心网设备发送该切片级的 QoS 参数。 通过前述对网络 管理***和核心网设备之间的连接关系说明可知, 网络管理***和核心网设 备之间是可以进行相互通信的, 从而使得网络管理***向核心网设备发送切 片级的 QoS参数, 核心网设备在接收到该切片级的 QoS参数之后, 还可以发 送一个反馈消息给网络管理***, 使得网络管理***可以根据该反馈消息确 定核心网设备是否成功接收该切片级的 QoS参数。
602、 核心网设备从切片级的 QoS参数中获取到切片级的优先级参数和移 动网络内的用户位置信息对应的切片级的下行总带宽。
在本申请实施例中, 网络管理***可以将切片级的优先级和切片级的下 行总带宽下发给核心网设备, 核心网设备从切片级的 QoS 参数中获取到切片 级的优先级和切片级的下行总带宽。
603、 核心网设备根据切片级的优先级参数, 和 /或移动网络内的用户位 置信息对应的切片级的下行总带宽, 对网络转发资源进行控制处理。
在本申请实施例中, 核心网设备获取到切片级的优先级和切片级的下行 总带宽之后, 核心网设备可以根据该切片级的优先级和切片级的下行总带宽 进行资源控制处理, 或者核心网设备可以根据该切片级的优先级进行资源控 制处理, 或者核心网设备可以根据切片级的下行总带宽进行资源控制处理。 具体可以结合应用场景来确定核心网设备对资源控制处理方式。
在本申请的一些实施例中, 步骤 603 核心网设备根据切片级的优先级参 数, 和 /或移动网络内的用户位置信息对应的切片级的下行总带宽对网络转发 资源进行控制处理, 包括如下步骤中的至少一个:
核心网设备限制核心网设备服务的所有用户的下行流量不超过用户位置 信息对应的切片级的下行总带宽; 或者,
当核心网设备被多个不同优先级的网络切片共享时, 核心网设备根据切 片级的优先级参数, 使用网络转发资源优先转发高优先级的网络切片对应的 下行数据。
举例说明如下: 核心网设备 (例如 5G 网络中的 UPF) 获取到切片级的优 先级及切片级的总下行带宽后, 可限制切片级的总下行带宽规定区域的切片 用户的下行总带宽, 当核心网设备被多个网络切片共享的时候, 也可以基于 配置优先转发高优先级切片的用户的下行数据。 从而核心网设备可以实现以 网络切片为粒度的资源控制处理, 可以实现切片级的资源调度, 使得网络切 片能够提供切片级的服务功能。 在本申请的一些实施例中, 当核心网设备包括接入移动管理功能设备、 会话管理功能设备和用户面功能设备时, 核心网设备根据切片级的优先级参 数, 和 /或移动网络内的用户位置信息对应的切片级的下行总带宽对网络转发 资源进行控制处理, 包括:
接入移动管理功能设备接收用户设备发送的会话管理请求, 会话管理请 求包括: 用户设备的位置信息;
接入移动管理功能设备选择用户设备的位置信息与移动网络内的用户位 置信息为相同位置的同一个会话管理功能设备, 由会话管理功能设备选择用 户设备的位置信息与移动网络内的用户位置信息为相同位置的同一个用户面 功能设备。
其中, 接入移动管理功能设备可以接收到用户设备发送的会话建立请求, 该会话建立请求可以携带用户设备的位置信息, 例如该用户设备的位置信息 可以是用户设备在移动网络内的 TA或者小区。 另外该会话建立请求还可以携 带切片选择辅助信息, 接入移动管理功能设备收到请求后, 例如, 接入移动 管理功能设备可以基于用户设备的位置信息和请求者的无线接入网的节点 ( RAN node ) 信息, 选择相同的会话管理功能设备, 即从切片级下行总带宽 对应的移动网络内的用户位置信息中接入的用户选择相同会话管理功能设 备。
会话管理功能设备接收到接入移动管理功能设备发送的会话管理请求之 后, 将基于上述用户设备的位置信息和请求者的无线接入网的节点信息, 选 择相同的用户面功能设备, 即从切片级下行总带宽中规定的移动网络内的用 户位置信息中接入的用户选择相同的用户面功能设备。
本申请实施例中会话管理请求包括: 用户设备的位置信息, 而切片级的 QoS参数中的切片级的下行总带宽对应有移动网络内的用户位置信息, 因此通 过移动网络内的用户位置信息的匹配可以为用户设备选择出同一个用户面功 能设备, 因此该用户面功能设备可以执行该切片级的 QoS 参数的要求, 对用 户数据进行切片级的管理。
为便于更好的理解和实施本申请实施例的上述方案, 下面举例相应的应 用场景来进行具体说明。
本申请实施例中网络管理***可以向切片处理设备发送切片级的优先级 和切片级的上下行总带宽, 本申请实施例提出了切片级的 QoS 参数在切片创 建过程中的分发方法, 以及在切片运行过程中切片级的 QoS 参数的调度和保 障方法。 本申请实施例中, 将使得切片的行业更加精准地定义需求, 使得运 营商具备切片级的质量保障能力及商用能力。
本申请实施例涉及的接入网设备、 核心网设备、 网络管理***属于支持 网络切片特性的移动网络***, 本申请实施例提供的核心网设备包括但不限 于 5G接入网设备, 本申请实施例提供的核心网设备包括但不限于 5G核心网 设备, 本申请实施例提供的网络管理***包括但不限于 5G网络管理***。 本申请实施例提供的切片级的 QoS参数, 该切片级的 QoS参数可以包括: 切片级的优先级和切片级的上下行总带宽 (或速率), 接下来对切片级的 QoS 参数进行详细说明:
切片级的优先级参数中定义了不同网络切片之间的优先级, 移动网络可 根据此优先级的高低, 优先调度资源给高优先级网络切片使用。
切片级的上行总带宽 (或者速率) 是指一个网络切片在某个地理区域范 围内可以服务的上行总带宽 (或者速率), 即最大上行带宽。 此地理区域可以 是某个接入网设备、 某个接入网设备的一个或者多个小区、 某个接入网设备 的一个或者多个跟踪区级别。
切片级的下行总带宽 (或者速率) 是指一个网络切片在某个地理区域范 围内可以服务的下行总带宽 (或者速率), 即最大下行带宽。 此地理区域可以 是某个核心网设备服务的区域范围。
本申请实施例提出了切片级的 QoS 参数在切片创建过程中的分发方法, 该切片级的 QoS参数在切片创建过程中的分发方法可以基于图 7所述的网络 管理*** 70, 网络管理*** 70可以包括端到端切片管理模块 71、 接入网切 片管理模块 72、 接入网设备管理模块 73、 核心网切片管理模块 74、 核心网设 备管理模块 75。 其中, 端到端切片管理模块 71 分别和接入网切片管理模块 72、 核心网切片管理模块 74相连接, 接入网切片管理模块 72和接入网设备 管理模块 73相连接, 核心网切片管理模块 74和核心网设备管理模块 75相连 接。
网络管理*** 70能获取行业客户的切片级的 SLA信息, 并将其转换成切 片级的 QoS参数, 或者切片级的 SLA信息还可以直接包含了切片级的 QoS参 数。 比如: 切片级的 SLA信息定义了某一区域的切片的上行带宽是 1 每秒千 兆 (Gbps), 把该参数转换成一个或者多个 TA内切片的上行带宽是 1 Gbps。
在切片的创建过程中, 网络管理*** 70将切片级的 QoS参数分别下发或 者配置给接入网设备或者核心网设备, 并由接入网设备管理模块 73下发给接 入网设备, 核心网设备管理模块 75下发给核心网设备。 接入网设备包括: 5G 基站 (简称 gNB), 4G增强基站 (简称为 eNB), 5G基站的 CU, 5G基站的 DU 等。 核心网设备包括 UPF、 PCF、 AMF等。
对于切片级的优先级而言, 端到端切片管理模块 71 收到切片级的优先级 参数, 端到端切片管理模块 71 下发给接入网切片管理模块 72, 再下发给接入 网设备管理模块 73, 再下发给接入网设备。 端到端切片管理模块 71 下发给核 心网切片管理模块 74, 再下发给核心网设备管理模块 75, 再下发给核心网设 备, 包括用户面功能设备等。
对于切片级的上行总带宽而言, 端到端切片管理模块 71 收到切片级的上 行总带宽, 或者收到切片级的 SLA信息转换成切片级的 QoS参数。 切片级的 上行总带宽是切片级的 QoS参数的一种。 端到端切片管理模块 71将切片级的 上行总带宽下发给接入网切片管理模块 72, 再下发给接入网设备的管理, 再 下发给接入网设备。
对于切片级的下行总带宽而言, 端到端切片管理模块 71 收到切片级的下 行总带宽或者将收到的切片级的 SLA信息转换成切片级的 QoS参数, 端到端 切片管理模块 71将切片级的下行总带宽下发给核心网切片管理模块 74,再下 发给核心网设备的管理, 再下发给核心网设备, 包括 UPF等。
本申请实施例还提出了切片级的 QoS 参数在切片运行期间的质量保障方 法, 具体包括接入网侧的质量保障和核心网侧的质量保障机制, 具体可以包 括如下方案:
对于接入网设备而言, 获取到切片级的优先级参数及切片级的上行总带 宽后, 接入网设备可基于这些参数进行切片级的接入网资源调度, 包括如下 过程:
接入网设备可以根据切片级的上行总带宽配置与此切片相应的最大接入 网资源; 接入网设备服务的所有切片的接入网资源可大于等于接入网的最大 可分配资源, 即某些接入网资源可被多个切片复用, 可复用的比例由切片级 的 SLA信息和运营商的运营策略决定。
切片的行业客户向运营商购买网络切片, 需要告知最大上行带宽。 当接 入网资源有富余的时候, 接入网设备将限制从此接入网设备接入的所有用户 的上行流量不超过移动网络内的用户位置信息对应的切片级的上行总带宽。
当接入网资源紧缺或者拥塞的时候, 切片级的优先级参数低的切片资源 可以释放一部分, 或者全部, 分配给切片级的优先级参数高的切片使用。 释 放的比例可以在切片级的 SLA信息中携带。
对于核心网设备而言, 获取到切片级的优先级参数及切片级的下行总带 宽后, 核心网设备可基于这些参数进行切片的下行流量控制, 包括:
用户面功能设备 (例如 5G UPF) 获取到切片级的优先级参数及切片级的 下行总带宽后, 可限制切片级的下行总带宽规定区域的切片用户的下行总带 宽, 当用户面功能设备被多个切片共享的时候, 也可以优先转发高优先级切 片的用户的下行数据。
如图 8所示, 为本申请实施例提供的在图 7所示的***架构下的交互流 程示意图。 按照上述机制的描述, 下面将对交互流程进行详细描述。 图 8 中 描述了切片创建过程中切片级的 QoS参数的分发流程。
首先网络管理***进行如下的前序处理。
当端到端切片管理模块收到切片创建请求, 该切片创建请求也可叫切片 实例分配操作请求。切片创建请求中带有切片级的 SLA信息或者切片级的 QoS 参数。
当请求中带有切片级的 SLA信息时, 请求中带有如下信息中的一种或多 种: 切片级的优先级参数、 在某个地理区域的切片级的上行总带宽、 或者在 某个地理区域内允许接入切片的用户数及单个用户的接入上行速率、 在某个 地理区域的切片级的下行总带宽、 或者在某个地理区域内允许接入切片的用 户数及单个用户的接入下行速率。
当请求中带有切片级的 QoS 参数时, 请求中带有切片级的优先级参数、 在某个地理区域的切片级的上行总带宽、 在某个地理区域的切片级的下行总 带宽等信息。
其中, 上述请求中的地理区域, 指的是通常的地理位置信息, 例如某个 区的某个商圈等。
端到端切片管理模块基于上述信息, 获取切片级的优先级参数, 将地理 区域映射成移动网络内的用户位置信息, 再将该移动网络内的用户位置信息 映射为接入网设备信息或接入网设备管理的一个或者多个 TA或者接入网设备 管理的一个或者多个小区信息, 并直接获取所述地理区域对应的切片级的上 行总带宽和下行总带宽, 或者通过某区域的接入用户数乘以单用户上下行速 率间接获取切片级的优先级参数、 移动网络内的用户位置信息对应的切片级 的上行总带宽和下行总带宽。
步骤 1 a-1 : 端到端切片管理模块将切片级的优先级参数和切片级的上行 总带宽等信息携带于切片创建请求 (或者切片分配请求) 中发送给接入网切 片管理模块。
步骤 1 a-2 : 接入网切片管理模块选择已有的接入网设备支持新创建的切 片, 此切片可用 S-NSSA I进行标识, S-NSSA I信息可在端到端切片管理模块中 生成, 或者通过虚拟化技术新建接入网设备, 例如可以通过调用管理与编排 (Management and Orchestrat i on , MANO) 的能力新建接入网设备。
接入网切片管理模块, 通过发送切片提供请求给接入网设备管理模块, 将切片级的优先级参数和切片级的上行总带宽下发给接入网设备管理模块。
步骤 1 a-3 : 接入网设备管理模块将切片级的优先级参数和切片级的上行 总带宽下发给支持 S-NSSA I 的接入网设备。
步骤 1 b-1 : 端到端切片管理模块将切片级的优先级参数和切片级的下行 总带宽等信息携带于切片创建 (或者分配) 请求中发送给核心网切片管理模 块。
步骤 1 b-2 : 核心网切片管理模块选择已有的核心网切片实例支持新创建 的切片, 此切片可用 S-NSSA I 进行标识, 此 S-NSSA I 信息可在端到端切片管 理模块中生成, 或者通过虚拟化技术新建核心网设备, 例如可以通 MAN0的能 力新建核心网设备。
核心网切片管理模块通过发送切片提供请求给核心网设备管理模块, 将 切片级的优先级参数和切片级的下行总带宽下发给核心网设备管理模块。
步骤 1 b-3 : 核心网设备管理模块将切片级的优先级参数和切片级的下行 总带宽下发给支持新创建 S-NSSA I 的核心网设备, 核心网设备例如切片内的
AMF、 SMF、 UPFo
需要说明的是, 前述流程中步骤 1 b-1 和 1 a-1 可由端到端切片管理模块 同时发起, 也可以等 1 a-3步骤完毕后, 再发送 1 b-1 步骤, 或者等 1 b-3的步 骤结束后, 再发送 1 a-1 请求。 步骤 1 a-1 的应答请求, 接入网切片管理模块 发送给端到端切片管理模块的应答消息, 也可以等 1 a-2和 1 a-3步骤完毕后, 再做响应。步骤 1 b-1 的应答请求, 可以收到后就应答,也可以等 1 b-2和 1 b-3 步骤完毕后, 再做响应。
为了支持切片的核心网设备 (例如用户面功能设备) 进行下行总带宽和 优先级的控制, 对于切片级的下行总带宽规定的网内位置, 从此位置接入的 用户, 要选择相同的用户面功能设备 (例如 5G UPF), 如图 9所示, 为本申请 实施例提供的会话建立流程的示意图, 主要包括如下流程:
1 . UE向接入移动管理功能设备发送会话建立请求,该会话建立请求包括: 切片选择辅助信息、 用户设备的位置信息。
其中, UE发起会话建立请求, 携带切片选择辅助信息 S-NSSA I 及用户设 备的位置信息, 用户设备的位置信息可以是小区标识, 或者跟踪区的标识。
2.接入移动管理功能设备创建会话上下文请求, 并发送给会话管理功能 设备, 该会话上下文请求包括: 切片选择辅助信息、 用户设备的位置信息。
其中, 接入移动管理功能设备收到请求后, 基于上述用户设备的位置信 息和请求者的无线接入网的节点 (RAN node) 信息, 选择相同的会话管理功 能设备, 即从移动网络内的用户位置信息中接入的用户选择相同会话管理功 能设备。
3.会话管理功能设备基于切片级的 QoS 参数对应的地理区域, 相同区域 的用户选择相同的用户面功能设备。
会话管理功能设备收到请求, 除了与策略管理功能设备或者用户数据管 理功能设备通信之外,根据基于上述用户设备的位置信息和请求者的 RAN node 信息, 选择相同的用户面功能设备, 即从切片级的下行总带宽中规定的移动 网络内的用户位置信息中接入的用户选择相同的用户面功能设备。
其中, 在执行上述 3个步骤之后, 继续执行会话建立流程。
在本申请的一些实施例中, 接入网设备接收到切片级的优先级参数、 切 片级的上行总带宽后, 将切片级的 QoS 参数, 联合当前接入的用户或者流级 别的 QoS参数进行联合调度, 具体包括但不限于如下步骤:
接入网设备可以将无线资源 (包括但是不限于频率资源、 时隙资源) 固 定分割成不同份, 每份分配给一个切片来使用, 这些不同份的无线资源在不 同切片中可以有重叠, 也可以没有重叠, 也可以单独在没有重叠的无线资源 之外预留一部分无线资源, 在不同切片之间共享使用。
接入网设备可以不将某些无线资源 (包括但是不限于频率资源、 时隙资 源) 固定分配给某个切片使用, 动态调度无线资源给某个切片使用。
接入网设备可基于切片级的优先级参数优先调度高优先级切片的数据, 无线资源可以优先保证高优先级切片的数据, 也可以基于配置将部分低优先 级切片的资源调度给高优先级切片使用。
接入网设备要基于切片级的上行总带宽, 限制此参数对应的网内位置区 域接入切片的用户的总上行速率, 不超过移动网络内的用户位置信息对应的 切片级的上行总带宽。
需要说明的是, 此处的将无线资源分配给某个切片使用, 是指在这些无 线资源对应的无线数据承载传送切片用户的流数据。
在本申请的一些实施例中, 用户面功能设备基于切片级的优先级参数和 切片级的下行总带宽进行数据包的处理, 具体包括如下流程:
用户面功能设备 (例如 5G UPF) 获取到切片级的优先级参数及切片级的 下行总带宽后, 可限制切片级的下行总带宽规定区域的切片用户的下行总带 宽, 当用户面功能设备被多个切片共享的时候, 也可以基于配置优先转发高 优先级切片的用户的下行数据。
通过上述实施例的举例说明可知, 网络切片技术是 5G时代服务行业客户 的重要技术, 当前行业客户提给移动网络的要求都较宽泛, 同时考虑到资源 的动态性和复杂性, 需要定义更加具体的切片级网络要求参数, 本申请实施 例定义了切片级的 QoS 参数, 同时提供了分发方法和质量保障方法, 将有助 于移动网络更好地调度网络资源, 满足行业客户的需求, 推动网络切片技术 的商业化应用。
需要说明的是, 在本申请的上述实施例中, 本技术方案提出的切片级总 上下行总带宽, 最大地理范围是单个接入网设备覆盖的范围, 当地域区域超 过单接入网设备覆盖范围时, 需要增加新方案解决。 但是此新场景可以分解 为单个接入网设备覆盖的场景来解决。
需要说明的是, 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本申请并不受所描 述的动作顺序的限制, 因为依据本申请, 某些步骤可以采用其他顺序或者 同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例 均属于优选实施例, 所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案, 下面还提供用于实施上 述方案的相关装置。
请参阅图 10所示, 本申请实施例提供的一种网络管理*** 1000, 可以包 括: 切片生成模块 1001、 参数生成模块 1002、 发送模块 1003, 其中,
切片生成模块 1001, 用于将移动通信网络的功能进行虚拟化, 得到多个 互相隔离的逻辑子网, 将每个逻辑子网作为一个网络切片;
参数生成模块 1002, 用于为每个网络切片生成切片级的服务质量 QoS参 数, 所述切片级的 QoS 参数用于所述网络管理***指示切片处理设备对该网 络切片对应的第一资源进行控制处理;
发送模块 1003, 用于向所述切片处理设备发送所述切片级的 QoS参数。 在本申请的一些实施例中, 所述参数生成模块 1002, 具体用于获取该网 络切片对应的切片级的服务等级协议 SLA信息; 根据所述切片级的 SLA信息, 生成所述切片级的 QoS参数。 在本申请的一些实施例中, 当所述切片级的 SLA 信息中包括在地理区域 内允许接入该网络切片的用户个数、 单个用户的接入上行速率时, 所述参数 生成模块 1 002, 具体用于根据在所述地理区域内允许接入该网络切片的用户 个数及所述单个用户的接入上行速率, 计算得到所述地理区域对应的切片级 的上行总带宽; 将所述地理区域映射为移动网络内的用户位置信息; 根据所 述用户位置信息, 生成所述用户位置信息对应的切片级的上行总带宽, 作为 所述切片级的 QoS参数。
在本申请的一些实施例中, 所述参数生成模块 1 002, 具体用于根据所述 用户位置信息与接入网设备的对应关系, 确定出多个接入网设备; 根据每个 接入网设备所覆盖的区域范围大小, 将所述地理区域对应的切片级的上行总 带宽划分给所述多个接入网设备, 得到每个接入网设备对应的切片级的上行 总带宽。
在本申请的一些实施例中, 当所述切片级的 SLA 信息中包括在地理区域 内允许接入该网络切片的用户个数、 单个用户的接入下行速率时, 所述参数 生成模块 1 002, 具体用于根据在所述地理区域内允许接入该网络切片的用户 个数及所述单个用户的接入下行速率, 计算得到所述地理区域对应的切片级 的下行总带宽; 将所述地理区域映射为移动网络内的用户位置信息; 根据所 述用户位置信息, 生成所述用户位置信息对应的切片级的下行总带宽, 作为 所述切片级的 QoS参数。
在本申请的一些实施例中, 所述参数生成模块 1 002, 具体用于根据所述 用户位置信息与核心网设备的对应关系, 确定出多个核心网设备; 根据每个 核心网设备所服务的区域范围大小, 将所述地理区域对应的切片级的下行总 带宽划分给所述多个核心网设备, 得到每个核心网设备对应的切片级的下行 总带宽。
在本申请的一些实施例中, 所述参数生成模块 1 002, 具体用于接收切片 触发服务器发送的切片创建请求, 所述切片创建请求包括: 切片级的优先级 参数、 地理区域对应的切片级的上行总带宽, 和所述地理区域对应的切片级 的下行总带宽; 将所述地理区域映射为移动网络内的用户位置信息; 根据所 述移动网络内的用户位置信息, 生成所述切片级的 QoS 参数, 所述切片级的 QoS参数包括如下参数的至少一种: 所述切片级的优先级参数、 所述用户位置 信息对应的切片级的上行总带宽, 或所述用户位置信息对应的切片级的下行 总带宽。
在本申请的一些实施例中, 所述移动网络内的用户位置信息包括: 用户 所在的跟踪区域信息或者用户接入的小区信息。
在本申请的一些实施例中, 所述发送模块 1 003, 具体用于当所述切片处 理设备为接入网设备、 且所述第一资源为无线资源时, 向所述接入网设备发 送所述用户位置信息对应的切片级的上行总带宽。
在本申请的一些实施例中, 所述发送模块 1 003, 具体用于当所述切片处 理设备为核心网设备、 且所述第一资源为网络转发资源时, 向所述核心网设 备发送所述用户位置信息对应的切片级的下行总带宽。
在本申请的一些实施例中, 所述发送模块 1 003, 具体用于根据所述切片 级的 QoS 参数中携带的移动网络内的用户位置信息, 从预置的切片处理设备 集合中选择出第一切片处理设备; 向选择出的所述第一切片处理设备, 发送 所述切片级的 QoS参数。
在本申请的一些实施例中, 所述切片处理设备集合包括: 支持该网络切 片的已有切片处理设备, 和支持该网络切片的新创建切片处理设备。
请参阅图 1 1 所示, 本申请实施例提供的一种切片处理设备 1 1 00, 可以包 括: 接收模块 1 1 01、 控制处理模块 1 1 02, 其中,
接收模块 1 1 01, 用于接收网络管理***发送的切片级的服务质量 QoS参 数, 其中, 所述网络管理***将移动通信网络的功能进行虚拟化, 得到多个 互相隔离的逻辑子网, 将每个逻辑子网作为一个网络切片, 为每个网络切片 生成所述切片级的 QoS参数;
控制处理模块 1 1 02, 用于根据所述切片级的 QoS参数, 对该网络切片对 应的第一资源进行控制处理。
在本申请的一些实施例中, 当所述切片处理设备为接入网设备、 且所述 第一资源为无线资源时, 所述控制处理模块 1 102, 具体用于所述接入网设备 从所述切片级的 QoS 参数中获取到切片级的优先级参数和移动网络内的用户 位置信息对应的切片级的上行总带宽; 所述接入网设备根据所述切片级的优 先级参数, 和 /或所述用户位置信息对应的切片级的上行总带宽, 对所述无线 资源进行控制处理。
在本申请的一些实施例中, 所述控制处理模块 1 1 02, 具体用于所述接入 网设备根据所述用户位置信息对应的切片级的上行总带宽, 配置与该网络切 片相应的最大无线资源。
在本申请的一些实施例中, 所述控制处理模块 1 1 02, 具体用于所述接入 网设备限制所述接入网设备服务的所有用户的上行流量不超过所述用户位置 信息对应的切片级的上行总带宽。
在本申请的一些实施例中, 所述控制处理模块 1 1 02, 具体用于所述接入 网设备根据所述切片级的优先级参数, 将低优先级的网络切片对应的无线资 源调度给高优先级的网络切片。
在本申请的一些实施例中, 当所述切片处理设备为核心网设备、 所述第 一资源为网络转发资源时, 所述控制处理模块 1 1 02, 具体用于所述核心网设 备从所述切片级的 QoS 参数中获取到切片级的优先级参数和移动网络内的用 户位置信息对应的切片级的下行总带宽; 所述核心网设备根据所述切片级的 优先级参数, 和 /或所述用户位置信息对应的切片级的下行总带宽, 对所述网 络转发资源进行控制处理。
在本申请的一些实施例中, 所述控制处理模块 1 1 02, 具体用于限制所述 核心网设备服务的所有用户的下行流量不超过所述用户位置信息对应的切片 级的下行总带宽。
在本申请的一些实施例中, 所述控制处理模块 1102, 具体用于当所述核 心网设备被多个不同优先级的网络切片共享时, 根据所述切片级的优先级参 数, 使用所述网络转发资源优先转发高优先级的网络切片对应的下行数据。
在本申请的一些实施例中, 当所述核心网设备包括接入移动管理功能设 备、 会话管理功能设备和用户面功能设备时, 所述控制处理模块 1102, 具体 用于接收用户设备发送的会话管理请求, 所述会话管理请求包括: 所述用户 设备的位置信息; 选择所述用户设备的位置信息与所述移动网络内的用户位 置信息为相同位置的同一个会话管理功能设备, 由所述会话管理功能设备选 择所述用户设备的位置信息与所述移动网络内的用户位置信息为相同位置的 同一个用户面功能设备。
通过前述实施例的举例说明可知, 网络管理***首先为网络切片生成切 片级的 QoS参数, 该切片级的 QoS参数用于网络管理***指示切片处理设备 对网络切片对应的第一资源进行控制处理。 网络管理***然后向切片处理设 备发送切片级的 QoS 参数。 切片处理设备首先接收网络管理***发送的切片 级的服务质量 QoS参数, 切片处理设备然后根据切片级的 QoS参数对网络切 片对应的第一资源进行控制处理。 本申请实施例中考虑到资源的动态性和复 杂性, 定义了更加具体的切片级的 QoS 参数, 本申请实施例中网络管理*** 向切片处理设备下发了切片级的 QoS 参数, 从而使得切片处理设备根据切片 级的 QoS 参数对网络切片对应的第一资源进行控制处理, 因此可以实现切片 级的资源调度, 实现针对切片级的资源控制处理, 使得网络切片能够提供切 片级的服务功能。
图 12是本申请实施例提供的一种网络管理***结构示意图, 该网络管理 *** 1200可因配置或性能不同而产生比较大的差异, 可以包括一个或一个以 ***处理器 (central processing units, CPU) 1222 (例如, 一个或一个 以上处理器)和存储器 1232,一个或一个以上存储应用程序 1242或数据 1244 的存储介质 1230 (例如一个或一个以上海量存储设备)。 其中, 存储器 1232 和存储介质 1230可以是短暂存储或持久存储。 存储在存储介质 1230的程序 可以包括一个或一个以上模块 (图示没标出), 每个模块可以包括对网络管理 ***中的一系列指令操作。 更进一步地, 中央处理器 1222可以设置为与存储 介质 1230通信, 在网络管理*** 1200上执行存储介质 1230中的一系列指令 操作。
网络管理*** 1200还可以包括一个或一个以上电源 1226,一个或一个以 上有线或无线网络接口 1250, 一个或一个以上输入输出接口 1258, 和 /或, 一个或一个以上操作*** 1241, 例如 Windows Serverä, Mac OS Xä, Unixä, Linuxä, FreeBSDä等等。
上述实施例中由网络管理***所执行的方法步骤可以基于该图 12所示的 网络管理***结构。
图 13是本申请实施例提供的一种切片处理设备结构示意图, 该切片处理 设备 1300可因配置或性能不同而产生比较大的差异, 可以包括一个或一个以 ***处理器 (central processing units, CPU) 1322 (例如, 一个或一个 以上处理器)和存储器 1332,一个或一个以上存储应用程序 1342或数据 1344 的存储介质 1330 (例如一个或一个以上海量存储设备)。 其中, 存储器 1332 和存储介质 1330可以是短暂存储或持久存储。 存储在存储介质 1330的程序 可以包括一个或一个以上模块 (图示没标出), 每个模块可以包括对切片处理 设备中的一系列指令操作。 更进一步地, 中央处理器 1322可以设置为与存储 介质 1330通信, 在切片处理设备 1300上执行存储介质 1330中的一系列指令 操作。
切片处理设备 1300还可以包括一个或一个以上电源 1326,一个或一个以 上有线或无线网络接口 1350, 一个或一个以上输入输出接口 1358, 和 /或, 一个或一个以上操作*** 1341, 例如 Windows Serverä, Mac OS Xä, Unixä, Linuxä, FreeBSDä等等。
上述实施例中由切片处理设备所执行的方法步骤可以基于该图 13所示的 切片处理设备结构。
另外需说明的是, 以上所描述的装置实施例仅仅是示意性的, 其中所述 作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显 示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部模 块来实现本实施例方案的目的。 另外, 本申请提供的装置实施例附图中, 模 块之间的连接关系表示它们之间具有通信连接, 具体可以实现为一条或多条 通信总线或信号线。 本领域普通技术人员在不付出创造性劳动的情况下, 即 可以理解并实施。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 申请可借助软件加必需的通用硬件的方式来实现, 当然也可以通过专用硬件 包括专用集成电路、 专用 CPU、 专用存储器、 专用元器件等来实现。 一般情况 下, 凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现, 而且, 用来实现同一功能的具体硬件结构也可以是多种多样的, 例如模拟电路、 数 字电路或专用电路等。 但是, 对本申请而言更多情况下软件程序实现是更佳 的实施方式。 基于这样的理解, 本申请的技术方案本质上或者说对现有技术 做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 可读取的存储介质中, 如计算机的软盘、 U盘、 移动硬盘、 只读存储器 (R0M, Read-Only Memory)、 随机存取存储器 (RAM, Random Access Memory)、 磁碟 或者光盘等, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本申请各个实施例所述的方法。
综上所述, 以上实施例仅用以说明本申请的技术方案, 而非对其限制; 尽管参照上述实施例对本申请进行了详细的说明, 本领域的普通技术人员应 当理解: 其依然可以对上述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案 的本质脱离本申请各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种网络切片处理方法, 其特征在于, 应用于网络管理***, 所述方 法包括:
将移动通信网络的功能进行虚拟化, 得到多个互相隔离的逻辑子网, 将 每个逻辑子网作为一个网络切片;
为每个网络切片生成切片级的服务质量 QoS参数, 所述切片级的 QoS参 数用于所述网络管理***指示切片处理设备对该网络切片对应的第一资源进 行控制处理;
向所述切片处理设备发送所述切片级的 QoS参数。
2、 根据权利要求 1所述的方法, 其中, 所述为每个网络切片生成切片级 的服务质量 QoS参数, 包括:
获取该网络切片对应的切片级的服务等级协议 SLA信息;
根据所述切片级的 SLA信息, 生成所述切片级的 QoS参数。
3、 根据权利要求 2所述的方法, 其中, 当所述切片级的 SLA信息中包括 在地理区域内允许接入该网络切片的用户个数、 单个用户的接入上行速率时, 所述根据所述切片级的 SLA信息, 生成所述切片级的 QoS参数, 包括:
根据在所述地理区域内允许接入该网络切片的用户个数及所述单个用户 的接入上行速率, 计算得到所述地理区域对应的切片级的上行总带宽;
将所述地理区域映射为移动网络内的用户位置信息;
根据所述用户位置信息, 生成所述用户位置信息对应的切片级的上行总 带宽, 作为所述切片级的 QoS参数。
4、 根据权利要求 3所述的方法, 其中, 所述根据所述用户位置信息, 生 成所述用户位置信息对应的切片级的上行总带宽, 包括:
根据所述用户位置信息与接入网设备的对应关系, 确定出多个接入网设 备;
根据每个接入网设备所覆盖的区域范围大小, 将所述地理区域对应的切 片级的上行总带宽划分给所述多个接入网设备, 得到每个接入网设备对应的 切片级的上行总带宽。
5、 根据权利要求 2所述的方法, 其中, 当所述切片级的 SLA信息中包括 在地理区域内允许接入该网络切片的用户个数、 单个用户的接入下行速率时, 所述根据所述切片级的 SLA信息, 生成所述切片级的 QoS参数, 包括:
根据在所述地理区域内允许接入该网络切片的用户个数及所述单个用户 的接入下行速率, 计算得到所述地理区域对应的切片级的下行总带宽; 将所述地理区域映射为移动网络内的用户位置信息;
根据所述用户位置信息, 生成所述用户位置信息对应的切片级的下行总 带宽, 作为所述切片级的 QoS参数。
6、 根据权利要求 5所述的方法, 其中, 所述根据所述用户位置信息, 生 成所述用户位置信息对应的切片级的下行总带宽, 包括:
根据所述用户位置信息与核心网设备的对应关系, 确定出多个核心网设 备;
根据每个核心网设备所服务的区域范围大小, 将所述地理区域对应的切 片级的下行总带宽划分给所述多个核心网设备, 得到每个核心网设备对应的 切片级的下行总带宽。
7、 根据权利要求 1所述的方法, 其中, 所述为每个网络切片生成切片级 的服务质量 QoS参数, 包括:
接收切片触发服务器发送的切片创建请求, 所述切片创建请求包括: 切 片级的优先级参数、 地理区域对应的切片级的上行总带宽, 和所述地理区域 对应的切片级的下行总带宽;
将所述地理区域映射为移动网络内的用户位置信息;
根据所述移动网络内的用户位置信息, 生成所述切片级的 QoS 参数, 所 述切片级的 QoS 参数包括如下参数的至少一种: 所述切片级的优先级参数、 所述用户位置信息对应的切片级的上行总带宽, 或所述用户位置信息对应的 切片级的下行总带宽。
8、 根据权利要求 3至 7中任一项所述的方法, 其中, 所述移动网络内的 用户位置信息包括: 用户所在的跟踪区域信息或者用户接入的小区信息。
9、 根据权利要求 3或 4所述的方法, 其中, 所述向所述切片处理设备发 送所述切片级的 QoS参数, 包括:
当所述切片处理设备为接入网设备、 且所述第一资源为无线资源时, 向 所述接入网设备发送所述用户位置信息对应的切片级的上行总带宽。
10、 根据权利要求 5或 6所述的方法, 其中, 所述向所述切片处理设备 发送所述切片级的 QoS参数, 包括:
当所述切片处理设备为核心网设备、 且所述第一资源为网络转发资源时, 向所述核心网设备发送所述用户位置信息对应的切片级的下行总带宽。
1 1、 根据权利要求 1 所述的方法, 其中, 所述向所述切片处理设备发送 所述切片级的 QoS参数, 包括:
根据所述切片级的 QoS 参数中携带的移动网络内的用户位置信息, 从预 置的切片处理设备集合中选择出第一切片处理设备;
向选择出的所述第一切片处理设备, 发送所述切片级的 QoS参数。
1 2、 根据权利要求 1 1 所述的方法, 其中, 所述切片处理设备集合包括: 支持该网络切片的已有切片处理设备, 和支持该网络切片的新创建切片处理 设备。
1 3、 一种网络切片处理方法, 其特征在于, 应用于切片处理设备, 所述 方法包括:
接收网络管理***发送的切片级的服务质量 QoS 参数, 其中, 所述网络 管理***将移动通信网络的功能进行虚拟化, 得到多个互相隔离的逻辑子网, 将每个逻辑子网作为一个网络切片, 为每个网络切片生成所述切片级的 QoS 参数;
根据所述切片级的 QoS 参数, 对该网络切片对应的第一资源进行控制处 理。
14、 根据权利要求 13所述的方法, 其中, 当所述切片处理设备为接入网 设备、 且所述第一资源为无线资源时, 所述根据所述切片级的 QoS 参数, 对 该网络切片对应的第一资源进行控制处理, 包括:
所述接入网设备从所述切片级的 QoS 参数中获取到切片级的优先级参数 和移动网络内的用户位置信息对应的切片级的上行总带宽;
所述接入网设备根据所述切片级的优先级参数, 和 /或所述用户位置信息 对应的切片级的上行总带宽, 对所述无线资源进行控制处理。
15、 根据权利要求 14所述的方法, 其中, 所述接入网设备根据所述用户 位置信息对应的切片级的上行总带宽, 对所述无线资源进行控制处理, 包括: 所述接入网设备根据所述用户位置信息对应的切片级的上行总带宽, 配 置与该网络切片相应的最大无线资源。
1 6、 根据权利要求 14所述的方法, 其中, 所述接入网设备根据所述用户 位置信息对应的切片级的上行总带宽, 对所述无线资源进行控制处理, 包括: 所述接入网设备限制所述接入网设备服务的所有用户的上行流量不超过 所述用户位置信息对应的切片级的上行总带宽。
1 7、 根据权利要求 14所述的方法, 其中, 所述接入网设备根据所述切片 级的优先级参数, 对所述无线资源进行控制处理, 包括: 所述接入网设备根据所述切片级的优先级参数, 将低优先级的网络切片 对应的无线资源调度给高优先级的网络切片。
1 8、 根据权利要求 13所述的方法, 其中, 当所述切片处理设备为核心网 设备、 所述第一资源为网络转发资源时, 所述根据所述切片级的 QoS 参数, 对该网络切片对应的第一资源进行控制处理, 包括:
所述核心网设备从所述切片级的 QoS 参数中获取到切片级的优先级参数 和移动网络内的用户位置信息对应的切片级的下行总带宽;
所述核心网设备根据所述切片级的优先级参数, 和 /或所述用户位置信息 对应的切片级的下行总带宽, 对所述网络转发资源进行控制处理。
19、 根据权利要求 18所述的方法, 其中, 所述核心网设备根据所述用户 位置信息对应的切片级的下行总带宽, 对所述网络转发资源进行控制处理, 包括:
所述核心网设备限制所述核心网设备服务的所有用户的下行流量不超过 所述用户位置信息对应的切片级的下行总带宽。
20、 根据权利要求 18所述的方法, 其中, 所述核心网设备根据所述切片 级的优先级参数, 对所述网络转发资源进行控制处理, 包括:
当所述核心网设备被多个不同优先级的网络切片共享时, 所述核心网设 备根据所述切片级的优先级参数, 使用所述网络转发资源优先转发高优先级 的网络切片对应的下行数据。
21、 根据权利要求 18所述的方法, 其中, 当所述核心网设备包括接入移 动管理功能设备、 会话管理功能设备和用户面功能设备时, 所述核心网设备 根据所述切片级的优先级参数, 和 /或所述用户位置信息对应的切片级的下行 总带宽, 对所述网络转发资源进行控制处理, 包括:
所述接入移动管理功能设备接收用户设备发送的会话管理请求, 所述会 话管理请求包括: 所述用户设备的位置信息;
所述接入移动管理功能设备选择所述用户设备的位置信息与所述移动网 络内的用户位置信息为相同位置的同一个会话管理功能设备, 由所述会话管 理功能设备选择所述用户设备的位置信息与所述移动网络内的用户位置信息 为相同位置的同一个用户面功能设备。
22、 一种网络管理***, 其特征在于, 所述网络管理***包括: 处理器 和存储器;
所述存储器, 用于存储指令;
所述处理器, 用于执行所述存储器中的所述指令, 执行如权利要求 1 至 1 2中任一项所述的方法。
23、 一种切片处理设备, 其特征在于, 所述切片处理设备包括: 处理器 和存储器;
所述存储器, 用于存储指令;
所述处理器, 用于执行所述存储器中的所述指令, 执行如权利要求 1 3至 21 中任一项所述的方法。
24、 一种网络切片处理***, 其特征在于, 所述网络切片处理***, 包 括:
如执行权利要求 1 至 1 2中任一项方法的网络管理***, 和如执行权利要 求 1 3至 21 中任一项方法的切片处理设备。
25、 一种计算机可读存储介质, 所述计算机可读存储介质上存储有计 算机程序, 该程序被处理器执行时实现权利要求 1 -21任一项所述的方法。
PCT/CN2020/074787 2019-02-28 2020-02-12 一种网络切片处理方法、***、设备以及存储介质 WO2020173300A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20762495.8A EP3934173A4 (en) 2019-02-28 2020-02-12 METHOD, SYSTEM, NETWORK SLOT PROCESSING DEVICE, AND MEDIA
JP2021540280A JP7351914B2 (ja) 2019-02-28 2020-02-12 ネットワークスライス処理方法、システム、デバイスおよびコンピュータプログラム
US17/325,297 US11979297B2 (en) 2019-02-28 2021-05-20 Network slice processing method, system and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910152800.8A CN109743213B (zh) 2019-02-28 2019-02-28 一种网络切片处理方法和设备以及***
CN201910152800.8 2019-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/325,297 Continuation US11979297B2 (en) 2019-02-28 2021-05-20 Network slice processing method, system and device, and storage medium

Publications (1)

Publication Number Publication Date
WO2020173300A1 true WO2020173300A1 (zh) 2020-09-03

Family

ID=66368934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074787 WO2020173300A1 (zh) 2019-02-28 2020-02-12 一种网络切片处理方法、***、设备以及存储介质

Country Status (5)

Country Link
US (1) US11979297B2 (zh)
EP (1) EP3934173A4 (zh)
JP (1) JP7351914B2 (zh)
CN (1) CN109743213B (zh)
WO (1) WO2020173300A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258154A (zh) * 2021-12-30 2022-03-29 中国联合网络通信集团有限公司 会话方法、终端及会话功能实体
WO2022177325A1 (en) * 2021-02-17 2022-08-25 Samsung Electronics Co., Ltd. Improvements in and relating to localisation in a telecommunication network

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743213B (zh) 2019-02-28 2021-08-13 腾讯科技(深圳)有限公司 一种网络切片处理方法和设备以及***
CN112087779B (zh) * 2019-06-13 2023-05-02 中国电信股份有限公司 网络切片优先级管理方法、装置和***、存储介质
WO2021000283A1 (en) * 2019-07-03 2021-01-07 Zte Corporation Method of authorization for network slicing
CN110708188B (zh) * 2019-09-19 2023-02-17 中国联合网络通信集团有限公司 一种基于sla的网络切片的创建方法和装置
CN114867083A (zh) * 2019-11-06 2022-08-05 华为技术有限公司 网络切片的使用控制方法、装置及***
EP4038833A1 (en) * 2019-11-07 2022-08-10 Huawei Technologies Co., Ltd. Network entities for managing distribution of slice service level agreement information in a communication network
CN111278052B (zh) * 2020-01-20 2021-09-14 重庆大学 一种基于5g切片的工业现场数据多优先级调度方法
CN113285876B (zh) * 2020-02-19 2024-04-23 中兴通讯股份有限公司 路由方法、路由装置及计算机可读存储介质
CN113645666A (zh) * 2020-04-27 2021-11-12 华为技术有限公司 流量控制方法、网络设备与通信***
CN113573368A (zh) * 2020-04-29 2021-10-29 大唐移动通信设备有限公司 一种信息处理方法、装置、设备及计算机可读存储介质
CN111669792B (zh) * 2020-05-22 2022-02-18 中国联合网络通信集团有限公司 一种小区切换方法及装置
CN114071576A (zh) * 2020-07-28 2022-02-18 中国联合网络通信集团有限公司 网络切片选择方法、***、计算机设备及存储介质
KR20230061339A (ko) * 2020-08-03 2023-05-08 지티이 코포레이션 무선 통신에서의 셀 구성 방식
CN112671571B (zh) * 2020-12-16 2024-04-16 腾讯科技(深圳)有限公司 网络切片的选择方法、装置、设备及存储介质
US11722928B1 (en) * 2021-07-12 2023-08-08 T-Mobile Innovations Llc Network slicing in a wireless communication network
CN114584468A (zh) * 2022-02-12 2022-06-03 国网宁夏电力有限公司电力科学研究院 面向多维资源的网络动态切片方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922002A (zh) * 2017-04-26 2017-07-04 重庆邮电大学 一种基于内部拍卖机制的网络切片虚拟资源分配方法
CN107770794A (zh) * 2016-08-15 2018-03-06 华为技术有限公司 一种网络切片配置方法及装置
WO2018059689A1 (en) * 2016-09-29 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service differentiation between network slices
CN109743213A (zh) * 2019-02-28 2019-05-10 腾讯科技(深圳)有限公司 一种网络切片处理方法和设备以及***

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550567B1 (ko) * 2004-03-22 2006-02-10 엘지전자 주식회사 무선 네트워크망을 통해 통신하는 서버 시스템 및 그동작방법
US8089970B2 (en) * 2006-12-14 2012-01-03 Ntt Docomo, Inc. Method and apparatus for managing admission and routing in multi-hop 802.11 networks taking into consideration traffic shaping at intermediate hops
US7969886B1 (en) * 2008-12-15 2011-06-28 Tejas Israel Ltd Bandwidth allocation for hierarchical telecommunications networks
US9049652B2 (en) * 2009-02-27 2015-06-02 Broadcom Corporation Method and system for controlling access and utilization of femtocells via a network based service
US8959189B2 (en) * 2012-02-07 2015-02-17 Comtech Ef Data Corp. Method and system for modeling a network using historical weather information and operation with adaptive coding and modulation (ACM)
WO2017034352A1 (ko) * 2015-08-25 2017-03-02 엘지전자 주식회사 기지국 접속 방법 및 이를 수행하는 사용자 장치
WO2017055887A1 (en) * 2015-09-28 2017-04-06 Intel Corporation Multipath traffic management
EP3437354B1 (en) * 2016-03-31 2022-03-23 NEC Corporation Sdn-based methods and apparatuses for providing tdd radio access network services
US10142994B2 (en) * 2016-04-18 2018-11-27 Electronics And Telecommunications Research Institute Communication method and apparatus using network slicing
JP2019515581A (ja) * 2016-05-12 2019-06-06 コンヴィーダ ワイヤレス, エルエルシー 仮想化されたモバイルコアネットワークへの接続
CN107889155A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种网络切片的管理方法及装置
KR102549946B1 (ko) * 2017-01-09 2023-06-30 삼성전자주식회사 이동통신 환경에서 단말의 초기 접속 요청 메시지를 라우팅하는 방법 및 관련 파라미터
US20180317134A1 (en) * 2017-04-28 2018-11-01 Huawei Technologies Co., Ltd. Nssmf nsmf interaction connecting virtual 5g networks and subnets
JP6754734B2 (ja) * 2017-07-11 2020-09-16 株式会社Nttドコモ Ranスライスにおけるリソース管理装置及びranスライスにおけるリソース管理方法
CN109309939B (zh) * 2017-07-28 2020-11-27 展讯通信(上海)有限公司 用户终端及其移动性管理方法、基站及可读存储介质
CN109391490B (zh) * 2017-08-08 2021-12-03 华为技术有限公司 网络切片的管理方法和装置
US10956849B2 (en) * 2017-09-29 2021-03-23 At&T Intellectual Property I, L.P. Microservice auto-scaling for achieving service level agreements
US10433177B2 (en) * 2017-12-01 2019-10-01 At&T Intellectual Property I, L.P. Adaptive pairing of a radio access network slice to a core network slice based on device information or service information
CN110149665B (zh) * 2018-02-14 2021-02-23 华为技术有限公司 一种网元的选择方法及装置
US11419046B2 (en) * 2018-04-13 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for performing multi-domain network slice selection and approval
US10728954B2 (en) * 2018-08-07 2020-07-28 At&T Intellectual Property I, L.P. Automated network design and traffic steering
JP2020025210A (ja) * 2018-08-08 2020-02-13 株式会社Nttドコモ リソース割当装置およびリソース割当方法
CN111586772B (zh) * 2019-02-18 2021-06-22 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770794A (zh) * 2016-08-15 2018-03-06 华为技术有限公司 一种网络切片配置方法及装置
WO2018059689A1 (en) * 2016-09-29 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service differentiation between network slices
CN106922002A (zh) * 2017-04-26 2017-07-04 重庆邮电大学 一种基于内部拍卖机制的网络切片虚拟资源分配方法
CN109743213A (zh) * 2019-02-28 2019-05-10 腾讯科技(深圳)有限公司 一种网络切片处理方法和设备以及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA MOBILE ET AL.: "Use Case NWDA-Assisted Slice SLA Guarantee and Related Key Issue Update", SA WG2 MEETING #128BIS S2-188476, 24 August 2018 (2018-08-24), XP051502978, DOI: 20200422103909A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177325A1 (en) * 2021-02-17 2022-08-25 Samsung Electronics Co., Ltd. Improvements in and relating to localisation in a telecommunication network
CN114258154A (zh) * 2021-12-30 2022-03-29 中国联合网络通信集团有限公司 会话方法、终端及会话功能实体
CN114258154B (zh) * 2021-12-30 2023-05-12 中国联合网络通信集团有限公司 会话方法、终端及会话功能实体设备

Also Published As

Publication number Publication date
CN109743213A (zh) 2019-05-10
EP3934173A4 (en) 2022-04-27
JP2022521883A (ja) 2022-04-13
US11979297B2 (en) 2024-05-07
US20210273861A1 (en) 2021-09-02
JP7351914B2 (ja) 2023-09-27
CN109743213B (zh) 2021-08-13
EP3934173A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2020173300A1 (zh) 一种网络切片处理方法、***、设备以及存储介质
US10595233B2 (en) Communication control method, controller, user equipment, and function instance
US10917831B2 (en) Radio access network slice generation method, radio access network, and slice manager
KR102328388B1 (ko) 서비스 품질의 제어 방법 및 관련 장치
US11039363B2 (en) Method for controlling radio access resources in a communication network
WO2020187052A1 (zh) 一种网络切片选择方法及装置
US11184796B2 (en) Traffic priority for long term evolution networks
WO2020200033A1 (zh) 一种基于意图的网络配置方法、装置及***
JP7427082B2 (ja) サービスオフロード方法、装置、システム、電子機器、及びコンピュータプログラム
US11831509B2 (en) Network service management method, device, and system
KR20190120345A (ko) 서비스 품질 제어 방법 및 그 장치, smf, upf, ue, pcf 및 an
WO2015196562A1 (zh) 调度信息的配置、配置参数的处理方法及装置
US11330605B2 (en) Systems and methods for radio access network-level allocation and retention priority based on network slicing
CN109150808B (zh) 通信方法、装置和***
CN110278118B (zh) 端到端服务质量保障***
US9622090B2 (en) Method for generating wireless virtual network and wireless network control device
US20230108693A1 (en) Quality of service management method and apparatus
JP7300064B2 (ja) データ伝送方法及び装置、ゲートウェイ、チップ、並びに記憶媒体
EP3522463A1 (en) Method and software-defined networking (sdn) controller for providing multicast service
CN106792923A (zh) 一种配置QoS策略的方法及装置
JPWO2021160105A5 (zh)
US11265931B2 (en) Method and device for establishing connection
JP5335712B2 (ja) QoS制御装置、及びQoS制御方法
WO2024103315A1 (zh) 无线通信方法、网元和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762495

Country of ref document: EP

Effective date: 20210928