WO2020172956A1 - 触控传感器和显示装置 - Google Patents

触控传感器和显示装置 Download PDF

Info

Publication number
WO2020172956A1
WO2020172956A1 PCT/CN2019/082122 CN2019082122W WO2020172956A1 WO 2020172956 A1 WO2020172956 A1 WO 2020172956A1 CN 2019082122 W CN2019082122 W CN 2019082122W WO 2020172956 A1 WO2020172956 A1 WO 2020172956A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
floating
electrodes
connecting bridge
Prior art date
Application number
PCT/CN2019/082122
Other languages
English (en)
French (fr)
Inventor
叶剑
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/475,690 priority Critical patent/US10860155B2/en
Publication of WO2020172956A1 publication Critical patent/WO2020172956A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a touch sensor and a display device.
  • touch technology has been widely used in electronic display devices such as mobile phones and computers.
  • Common touch technologies currently include resistive, capacitive, and optical.
  • Capacitive touch screens have the advantages of low cost, simple structure, and durability, and are widely used by smart terminals and display devices.
  • most of the electrode patterns of the existing capacitive touch screen can only perceive the touch position on the plane, that is, the position in the two-dimensional space of the X/Y axis, but cannot sense the touch force of the finger, and therefore cannot recognize the finger.
  • the degree of intensity when touching the screen There are also some touch display modules that can sense the Z-axis direction, but the pressure sensing function of this part of the touch screen is usually controlled by a pressure sensor independent of the traditional touch screen, so it needs to be added to the display separately The pressure sensor, in this way, complicates the production process and increases the production cost.
  • the present disclosure provides a touch sensor and a display device.
  • the technical solutions provided by the present disclosure are as follows:
  • a touch sensor including:
  • a plurality of second touch electrodes which are insulated from the first touch electrodes
  • the touch sensor further includes at least one first floating electrode, which is arranged at the edge area of the first touch electrode, and the first floating electrode is coupled with the first touch electrode to form a capacitor for pressure induction;
  • At least one second floating electrode disposed at an edge area of the second touch electrode, the second floating electrode is adjacent to the first floating electrode, and the second floating electrode is connected to the second touch electrode Coupling to form a capacitor for pressure sensing;
  • a connecting bridge, the adjacent first floating electrodes are electrically connected through the connecting bridge, and the adjacent second floating electrodes are electrically connected through the connecting bridge;
  • the touch sensor further includes a first connecting bridge and a second connecting bridge, and the first floating electrode on the first touch electrode communicates with the adjacent first touch through the first connecting bridge.
  • the first floating electrode on the control electrode is connected, and the second floating electrode on the first touch electrode is connected to the first floating electrode on the adjacent first touch electrode through the second connecting bridge. Two floating electrodes are connected.
  • the first touch electrodes are arranged along a first direction
  • the second touch electrodes are arranged along a second direction, and the first direction and the second direction are different.
  • it further includes a first conductive bridge and a second conductive bridge.
  • the adjacent first touch electrodes are connected through the first conductive bridge, and the adjacent second touch electrodes are connected through the second conductive bridge.
  • Bridge connection, the first conductive bridge and the second conductive bridge overlap each other to form an overlapping area.
  • the connecting bridge is made of metal.
  • the shapes of the ends of the first connecting bridge and the second connecting bridge are T-shaped or Y-shaped.
  • the first floating electrode includes a plurality of first split electrodes
  • the second floating electrode includes a plurality of second split electrodes
  • a touch sensor including:
  • a plurality of second touch electrodes which are insulated from the first touch electrodes
  • the touch sensor further includes at least one first floating electrode, which is arranged at the edge area of the first touch electrode, and the first floating electrode is coupled with the first touch electrode to form a capacitor for pressure induction;
  • At least one second floating electrode disposed at an edge area of the second touch electrode, the second floating electrode is adjacent to the first floating electrode, and the second floating electrode is connected to the second touch electrode Coupling to form a capacitor for pressure sensing;
  • a connecting bridge, the adjacent first floating electrodes are electrically connected through the connecting bridge, and the adjacent second floating electrodes are electrically connected through the connecting bridge.
  • the first touch electrodes are arranged along a first direction
  • the second touch electrodes are arranged along a second direction, and the first direction and the second direction are different.
  • it further includes a first conductive bridge and a second conductive bridge, the adjacent first touch electrodes are connected through the first conductive bridge, and the adjacent second touch electrodes pass through all the The second conductive bridge is connected, and the first conductive bridge and the second conductive bridge overlap each other to form an overlapping area.
  • it further includes a first connecting bridge and a second connecting bridge, and the first floating electrode on the first touch electrode communicates with the adjacent first touch through the first connecting bridge.
  • the first floating electrode on the control electrode is connected, and the second floating electrode on the first touch electrode is connected to the first floating electrode on the adjacent first touch electrode through the second connecting bridge. Two floating electrodes are connected.
  • the shapes of the ends of the first connecting bridge and the second connecting bridge are T-shaped or Y-shaped.
  • the first floating electrode includes a plurality of first split electrodes
  • the second floating electrode includes a plurality of second split electrodes
  • the first split electrode is arranged in an edge area of the first touch electrode
  • the second split electrode is arranged in an edge area of the second touch electrode
  • the first split electrode is overlapped with the first floating electrode in a top view
  • the second split electrode is overlapped with the second floating electrode in a top view
  • a connecting bridge is further included, and each of the first divided electrodes in the edge area of the first touch electrode is connected by the connecting bridge.
  • a split electrode is further included, and the split electrode is provided in an area between the first touch electrode and the second touch electrode.
  • the overlapping area has an insulating medium, and the first conductive bridge and the second conductive bridge are insulated.
  • the connecting bridge is made of metal.
  • a display device including:
  • a plurality of second touch electrodes which are insulated from the first touch electrodes
  • the touch sensor further includes at least one first floating electrode, which is arranged at the edge area of the first touch electrode, and the first floating electrode is coupled with the first touch electrode to form a capacitor for pressure induction;
  • At least one second floating electrode disposed at an edge area of the second touch electrode, the second floating electrode is adjacent to the first floating electrode, and the second floating electrode is connected to the second touch electrode Coupling to form a capacitor for pressure sensing;
  • a connecting bridge, the adjacent first floating electrodes are electrically connected through the connecting bridge, and the adjacent second floating electrodes are electrically connected through the connecting bridge.
  • the embodiments of the present disclosure provide a touch sensor and a display device, which improve the existing capacitive touch screen, and provide floating electrodes and split electrodes on the touch screen to solve the problem of the touch screen in the prior art. It can only perceive the touch situation of the plane, and cannot perceive the problem of the touch strength, so as to realize the pressure sensing function of the touch screen, simplify the production process, and save the production cost of the product.
  • FIG. 1 is a schematic diagram of electrode pattern design of a touch screen according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of touch electrodes according to an embodiment of the disclosure.
  • Figure 3A is a schematic diagram of the first screen touch
  • Figure 3B is a schematic diagram of the second screen touch
  • FIG. 4 is a schematic diagram of the touch electrode of the first embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the touch electrode of the second embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the touch electrode of the third embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the touch electrode of the fourth embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the touch electrode of the fifth embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the touch electrode of the sixth embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a display device according to an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of the touch electrode pattern design of the disclosure.
  • the edge metal wiring 105, the sensing channel 100 and the driving channel 102 are arranged in the visible area 103 of the touch screen, the overlap area 104 is arranged at the outer edge of the visible area 103, and the edge metal wiring 105 is also arranged in the visible area 103.
  • the visible area 103 of the touch screen is the main working area.
  • the conductive bridge 101 is connected to achieve conduction.
  • RX and TX are relative terms. The relative positions can be interchanged and attached to the upper surface of the visible area 103.
  • the material of the two can be indium tin oxide (Indium tin oxide). Tin Oxide, ITO) electrodes, or both of them are Ti, Al and other metals. This electrode is made into a mesh structure.
  • the wiring of the metal mesh avoids the pixel light-emitting unit below, and the metal bridge is also a mesh wiring. It will not block the lower light-emitting pixel unit.
  • the touch electrode provided by the present disclosure can not only realize a planar touch function, but also can sense the magnitude of force in the vertical direction without adding a separate pressure sensing device.
  • FIG. 2 is a simple schematic diagram of the touch electrode according to the embodiment of the disclosure.
  • the touch electrode 20 is provided with a plurality of the second touch electrodes 21 in the direction D2 in the figure.
  • the direction D1 is different from the direction D2.
  • the direction D1 and the direction D2 are perpendicular to each other, and every two adjacent first The touch electrodes 20 are connected through a first conductive bridge 20a, every two adjacent second touch electrodes 21 are connected through a second conductive bridge 21a, and there is a gap between the first conductive bridge 20a and the second conductive bridge 21a.
  • An overlapping area is formed, and the overlapping area also has an insulating layer. Therefore, the first conductive bridge 20a and the second conductive bridge 21a are insulated, which ensures the independence between RX and TX during normal operation.
  • FIG. 3A is a schematic diagram of the first screen touch
  • FIG. 3B is a schematic diagram of the second screen touch.
  • the first touch electrode 300, the second touch electrode 301, the touch finger 302, the plurality of floating electrodes 303, and the plurality of divided electrodes 304, the plurality of floating electrodes 303 are arranged on the first touch electrode 300 or the second touch electrode
  • a plurality of floating electrodes 303 are coupled with the first touch electrode 300 to form a capacitor for pressure sensing to detect the magnitude of different touch forces.
  • Fig. 3A shows the situation when the finger 302 just touches, and the force is lighter, and the contact area with the screen is small;
  • 3B is the situation when the finger 302 is touched hard, and the finger 302 is touched with strong force at this time.
  • the area in contact with the touch screen is larger, and the greater the force the touch screen bears, the deeper the depression of the screen.
  • This force change and changes in the area and position of the finger touch will be transmitted to the floating electrode 303 and the split electrode 304 arranged on the touch electrode, and then converted into signal input or output, thereby realizing the touch function of the screen.
  • FIG. 4 is a schematic diagram of a touch electrode provided by an embodiment of the disclosure.
  • each first touch electrode 401 and each second touch electrode 402 are provided with a first floating electrode 403 and a second floating electrode 404, and the first floating electrode 403 is closer to the first touch electrode 401
  • the first floating electrode and the second floating electrode on each touch electrode are connected by a corresponding connecting bridge, that is, the first floating electrode 403 on the two adjacent first touch electrodes 401 passes through the first floating electrode 403.
  • the connecting bridge 403a is connected to form a complete electrode function.
  • the second floating electrode 404 is arranged adjacent to the first floating electrode 403, and the second floating electrode 404 can be coupled with the second touch electrode 402 to form a capacitor for pressure sensing.
  • the connection bridge is made of metal and insulated from the outside, so as to avoid short circuit with the touch electrode.
  • This electrode pattern constitutes a structure in which multiple groups of first floating electrodes are connected and multiple groups of second floating electrodes are connected. The floating electrodes can sense the magnitude of the force and convert them into electrical signals for transmission.
  • connection point between the connecting bridge and the floating electrode can be set to a T-shaped or Y-shaped structure, which can increase the touch area, thereby improving the reliability of sensing, and also increase the amount of capacitance signal sensing, thereby improving the sensing Sensitivity.
  • FIG. 5 is a schematic diagram of another touch electrode provided by an embodiment of the disclosure.
  • the touch electrode is provided with a plurality of divided electrodes, and a plurality of first divided electrodes 504 are provided outside the edge area of the first touch electrode 501, and the plurality of first divided electrodes 504 Arranged side by side; a plurality of second divided electrodes 503 are arranged outside the edge area of the second touch electrode 502, and the plurality of second divided electrodes 503 are also arranged side by side, and at least one row.
  • the divided electrodes on the adjacent first touch electrodes 501 and the second touch electrodes 502 are connected by corresponding connecting bridges, that is, the first divided electrodes 504 on the first touch electrodes 501 pass through the first A connecting bridge 504a is connected to the first split electrode 504 on the adjacent first touch electrode 501, and the second split electrode 503 on the second touch electrode 502 is respectively connected through the second connecting bridge 503a.
  • the multiple side-by-side divided electrodes are all arranged outside the edge area of the touch electrode.
  • FIG. 6 is a schematic diagram of another touch electrode provided by an embodiment of the disclosure.
  • each touch electrode is provided with a plurality of divided electrodes, the divided electrodes are arranged side by side, and the plurality of divided electrodes are all arranged within the edge area of the touch electrode, that is, the plurality of divided electrodes are arranged on each
  • the inner side of each TX or RX is in the edge area of each first touch electrode 601 and second touch electrode 602 as shown in FIG. 6.
  • multiple split electrodes distributed on the touch electrodes will sense the magnitude of the touch force, and convert information such as touch force and position into electrical signals for transmission.
  • FIG. 7 is a schematic diagram of another touch electrode provided by an embodiment of the disclosure.
  • a plurality of first divided electrodes 704 are arranged in the edge area of the first touch electrode 701, and a plurality of second divided electrodes 703 are arranged side by side in the edge area of the second touch electrode 702.
  • a plurality of floating electrodes 705 are arranged outside the edge area of each of the first touch electrode 701 and the second touch electrode 702, that is, the interval between TX and RX, and the plurality of floating electrodes 705 are arranged in a row .
  • the first split electrodes 704 on two adjacent first touch electrodes 701 are correspondingly connected through the first connecting bridge 703a, and the first connecting bridge 703a connects the corresponding floating electrode 705 through each node 706.
  • the set floating electrode 705 and the split electrode work together to sense the force and the force area on the touch screen, and then transmit the signal. It can effectively improve the accuracy and sensitivity of touch.
  • FIG. 8 is a schematic diagram of another touch electrode provided by an embodiment of the disclosure.
  • the first split electrode 804 can be overlapped with the first floating electrode 806 in a top view;
  • the second split electrode 803 can be overlapped with the second floating electrode 805 in a top view.
  • at least one row of floating electrodes, namely, the first floating electrode 806 and the second floating electrode 805, are arranged outside the edge area.
  • the first connecting bridge 803a connects the adjacent touch electrodes
  • the first divided electrode 804 is connected, and the corresponding first floating electrode 806 is connected through a node 807. In this way, the touch perception of the screen will be further improved, and the touch accuracy and touch sensitivity will be further improved.
  • FIG. 9 is a schematic diagram of another touch electrode provided by an embodiment of the disclosure.
  • the first floating electrode 906 and the second floating electrode 905 arranged outside the edge area are both a single floating electrode. In this way, the entire floating electrode will have a larger contact area relative to the divided electrode, and the sensing accuracy and sensitivity will be different.
  • the present disclosure also provides a display device, as shown in FIG. 10, which is a schematic diagram of the display device provided by an embodiment of the disclosure.
  • the display device 1 includes the touch sensor 2 provided in the above embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触控传感器和显示装置,包括第一触控电极、第二触控电极,第一触控电极边缘区域设置有至少一个悬浮电极,第二触控电极的边缘区域设置有至少一个悬浮电极,相邻的第一触控电极及第二触控电极上的悬浮电极均通过连接桥连接,本揭示的触控传感器可实现对触控力度大小的感知,并且简化生产工艺流程,节约产品的生产成本。

Description

触控传感器和显示装置 技术领域
本揭示涉及显示技术领域,尤其涉及一种触控传感器和显示装置。
背景技术
近年来,随着触控及感应技术的提升和迅速发展,触控技术在手机、电脑等电子显示设备中有了广泛的应用。目前常见的触控技术包括电阻式、电容式和光学式等。
目前,电容式的触控屏已成为主流的触控屏,电容式的触控屏的具有成本低、结构简单以及耐用的优势,被智能终端及显示设备广泛使用。然而,现有的电容式触控屏的电极图案大部分只能对平面的触控位置有感知,即X/Y轴二维空间的位置,却无法感知手指的触控力度,因此无法辨识手指在触控屏幕时力度的轻、重程度。还有部分能感知Z轴方向的触控显示模组,但是这部分触控屏的压力感应功能通常是由独立于传统触摸屏幕之外的压力感应器来控制,因此需要在显示屏上单独增加压力感应器,这样,就使得生产工艺变得复杂,并且增加了生产的成本。
因此需要对现有技术中的问题提出解决方法。
技术问题
现有的触控传感器及显示装置存在着只能感知平面的触控情况,无法感知触控力度大小的问题,并且,还存在着需要在触控屏机构上单独增加压力感应器以感知触控力度,生产工艺复杂并且成本高的问题。
技术解决方案
为解决上述问题,本揭示提供一种触控传感器和显示装置,本揭示提供的技术方案如下:
根据本揭示实施例的第一方面,提供了一种触控传感器,所述触控传感器包括:
多个第一触控电极;
多个第二触控电极,与所述第一触控电极绝缘设置;
其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接;
其中,所述触控传感器还包括第一连接桥和第二连接桥,所述第一触控电极上的所述第一悬浮电极通过所述第一连接桥与相邻的所述第一触控电极上的所述第一悬浮电极连接,所述第一触控电极上的所述第二悬浮电极通过所述第二连接桥与相邻的所述第一触控电极上的所述第二悬浮电极连接。
根据本揭示一实施例,所述第一触控电极沿第一方向设置,所述第二触控电极沿第二方向设置,所述第一方向和所述第二方向不同。
根据本揭示一实施例,还包括第一导电桥和第二导电桥,相邻的所述第一触控电极通过第一导电桥连接,相邻的所述第二触控电极通过第二导电桥连接,所述第一导电桥和所述第二导电桥相互交叠形成交叠区域。
根据本揭示一实施例,所述连接桥材质为金属。
根据本揭示一实施例,所述第一连接桥和所述第二连接桥末端的形状为T形或Y形。
根据本揭示一实施例,所述第一悬浮电极包括多个第一分割电极,所述第二悬浮电极包括多个第二分割电极。
根据本揭示的第二方面,提供一种触控传感器,包括:
多个第一触控电极;
多个第二触控电极,与所述第一触控电极绝缘设置;
其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接。
根据本揭示一实施例,所述第一触控电极沿第一方向设置,所述第二触控电极沿第二方向设置,所述第一方向和所述第二方向不同。
根据本揭示一实施例,还包括第一导电桥和第二导电桥,相邻的所述第一触控电极通过所述第一导电桥连接,相邻的所述第二触控电极通过所述第二导电桥连接,所述第一导电桥和所述第二导电桥相互交叠形成交叠区域。
根据本揭示一实施例,还包括第一连接桥和第二连接桥,所述第一触控电极上的所述第一悬浮电极通过所述第一连接桥与相邻的所述第一触控电极上的所述第一悬浮电极连接,所述第一触控电极上的所述第二悬浮电极通过所述第二连接桥与相邻的所述第一触控电极上的所述第二悬浮电极连接。
根据本揭示一实施例,所述第一连接桥和所述第二连接桥末端的形状为T形或Y形。
根据本揭示一实施例,所述第一悬浮电极包括多个第一分割电极,所述第二悬浮电极包括多个第二分割电极。
根据本揭示一实施例,所述第一分割电极设置在所述第一触控电极边缘区域,所述第二分割电极设置在所述第二触控电极边缘区域。
根据本揭示一实施例,所述第一分割电极在俯视视图下,与所述第一悬浮电极重合,所述第二分割电极在俯视视图下,与所述第二悬浮电极重合。
根据本揭示一实施例,还包括连接桥,所述第一触控电极边缘区域的各个所述第一分割电极通过所述连接桥相连接。
根据本揭示一实施例,还包括分割电极,所述第一触控电极和所述第二触控电极之间的区域设置有所述分割电极。
根据本揭示一实施例,所述交叠区域具有绝缘介质,所述第一导电桥和所述第二导电桥绝缘。
根据本揭示一实施例,所述连接桥材质为金属。
根据本揭示实施例的第三方面,提供一种显示装置,包括:
多个第一触控电极;
多个第二触控电极,与所述第一触控电极绝缘设置;
其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接。
有益效果
本揭示实施例提供了一种触控传感器和显示装置,对现有的电容式的触控屏进行改进,通过在触控屏上设置悬浮电极以及分割电极,以解决现有技术中触控屏只能感知平面的触控情况,无法感知触控力度大小的问题,从而实现触控屏幕的压力感应功能,并且简化生产工艺流程,节约产品的生产成本。
附图说明
图1为本揭示实施例触控屏电极图案设计示意图;
图2为本揭示实施例触控电极示意图;
图3A为第一种屏幕触控示意图;
图3B为第二种屏幕触控示意图;
图4为本揭示第一实施例触控电极示意图;
图5为本揭示第二实施例触控电极示意图;
图6为本揭示第三实施例触控电极示意图;
图7为本揭示第四实施例触控电极示意图;
图8为本揭示第五实施例触控电极示意图;
图9为本揭示第六实施例触控电极示意图;
图10为本揭示实施例的显示装置示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
本揭示提供一种触控传感器,如图1所示,图1为本揭示的触控电极图案设计示意图。横向连续导通的感应通道(Receive,RX)100、导电桥101、纵向连续导通的驱动通道(Transmit,TX)102、触控屏可视区(Visual Area,VA)103、搭接区104、边缘金属走线105,感应通道100和驱动通道102设置在触控屏的可视区103内,搭接区104设置在可视区103的外边缘,边缘金属走线105同样设置在可视区103的外边缘处。在显示屏幕工作时,触控屏可视区103为主要的工作区域,通过手指在可视区103内滑动、按压等操作,从而触控屏的不同功能,纵向连续导通的驱动通道102通过导电桥101的连接而实现导通。其中RX、TX是相对而言的,相对位置可以互换,并贴合在可视区103上表面上,两者的材质可以为铟锡氧化物(Indium Tin Oxide,ITO)电极,或两者为Ti、Al等金属,这种电极做成网状结构,金属网的布线均避开下方的像素发光单元,金属的架桥也为网状布线,这样也不会遮挡住下方发光像素单元。本揭示提供的触控电极在不另外单独添加压力感应器件的情况下,不仅能够实现平面的触控功能,还能够感知垂直方向上的力的大小程度的功能。
如图2所示,图2为本揭示实施例的触控电极简单示意图。其中,第一触控电极20、第一导电桥20a、第二触控电极21、第二导电桥21a、方向D1、方向D2,在如图中D1方向上,设置有多个所述第一触控电极20,在如图中D2方向上,设置有多个所述第二触控电极21,方向D1与方向D2不同,例如方向D1与方向D2相互垂直,每两个相邻的第一触控电极20通过第一导电桥20a连通,每两个相邻的第二触控电极21通过第二导电桥21a连通,并且所述第一导电桥20a和所述第二导电桥21a之间形成交叠区域,所述交叠区域还有绝缘层,因此第一导电桥20a和第二导电桥21a之间是绝缘的,保证了在正常工作时RX和TX之间的独立性。
如图3A所示,图3A为第一种屏幕触控示意图,图3B为第二种屏幕触控示意图。第一触控电极300、第二触控电极301、触控手指302、多个悬浮电极303以及多个分割电极304,多个悬浮电极303设置在第一触控电极300或第二触控电极301边缘区域,多个悬浮电极303与所述第一触控电极300耦合形成电容,以进行压力感应,检测不同触控力度的大小。图3A为手指302刚接触时的情况,此时力度较轻,并且与屏幕之间的接触面积较小;图3B为手指302用力触控时的情况,此时手指力度大,触控手指302与触控屏幕接触的面积较多,当触控屏幕承受的力越大,屏幕凹陷下去的深度就会越深。这种力的变化以及手指触控的面积和位置的变化会传递给设置在触控电极上的悬浮电极303以及分割电极304,然后在转变成信号输入或输出,从而实现屏幕的触控功能。
具体的如图4所示,图4为本揭示实施例提供的一种触控电极示意图。第一触控电极401、第二触控电极402、第一悬浮电极403、第二悬浮电极404、第一连接桥403a、第二连接桥404a。其中,在每一个第一触控电极401以及每一个第二触控电极402上都设置有第一悬浮电极403、第二悬浮电极404,第一悬浮电极403更靠近第一触控电极401的边缘位置,每一个触控电极上的第一悬浮电极和第二悬浮电极通过相对应的连接桥相连接,即相邻的两个第一触控电极401上的第一悬浮电极403通过第一连接桥403a相连接,这样形成一个完整的电极功能。第二悬浮电极404与所述第一悬浮电极403相邻设置,第二悬浮电极404能与所述第二触控电极402耦合形成电容,以进行压力感应。连接桥为金属并且外部绝缘,这样就避免与触控电极短路的情况。这种电极图案构成了多组第一悬浮电极相连通以及多组第二悬浮电极相连通的结构,悬浮电极可以感知到受力的大小,并转换为电信号进行传输。在连接桥与悬浮电极的连接点上,可以设置成T形或者Y形的结构,这样可以增加触控的面积,从而提高感应的可靠性,还能提高电容信号的感应量,进而提高感应的灵敏度。
如图5所示,图5为本揭示实施例提供的另一种触控电极示意图。第一触控电极501、第二触控电极502、第二分割电极503、第一分割电极504、第二连接桥503a、第一连接桥504a、第一导电桥5c以及第二导电桥5b。相对于一整块的悬浮电极,此时,触控电极上设置为多个分割电极,在第一触控电极501的边缘区域外设置多个第一分割电极504,多个第一分割电极504并排设置;在第二触控电极502的边缘区域外设置多个第二分割电极503,多个第二分割电极503也呈并排设置,且至少一排。其中,相邻的第一触控电极501以及第二触控电极502上的分割电极均通过对应的连接桥相连接,即第一触控电极501上的第一分割电极504分别通过所述第一连接桥504a与相邻的第一触控电极501上的第一分割电极504相连接,第二触控电极502上的第二分割电极503分别通过所述第二连接桥503a相连接。此时,多个并排的分割电极均设置在触控电极边缘区域外。
如图6所示,图6为本揭示实施例提供的又一种触控电极示意图。第一触控电极601、第二触控电极602、第二分割电极603、第一分割电极604、第一连接桥603a、第二连接桥604a。此时,每个触控电极上设置多个分割电极,所述分割电极并排设置,且所述多个分割电极均设置在触控电极边缘区域之内,即所述多个分割电极设置在每个TX或RX的内侧,如图6中在各个第一触控电极601与第二触控电极602边缘区域内。当手指对屏幕进行触控时,分布在触控电极上的多个分割电极会感知触控力度的大小,并将触控力和位置等信息转换成电信号进行传输。
如图7所述,图7为本揭示实施例提供的另一种触控电极示意图。第一触控电极701、第二触控电极702、第一分割电极704、第二分割电极703、悬浮电极705、节点706、第一连接桥703a以及第二连接桥704a。此时,在所述第一触控电极701的边缘区域内设置多个第一分割电极704,在所述第二触控电极702的边缘区域内并排设置多个第二分割电极703,同时,在各个所述第一触控电极701和所述第二触控电极702的边缘区域外,即TX与RX的间隔区间上设置多个悬浮电极705,所述多个悬浮电极705为一排设置。相邻的两个第一触控电极701上的第一分割电极704通过第一连接桥703a相对应连接,并且第一连接桥703a通过各个节点706将对应的悬浮电极705连接。设置的悬浮电极705与分割电极共同作用来感知触控屏幕上的受力大小以及受力区域,再进行信号的传递。能够有效的提高触控的精度和灵敏度。
如图8所示,图8为本揭示实施例提供的又一种触控电极示意图。第一触控电极801、第二触控电极802、第一分割电极804、第二分割电极803、第二悬浮电极805、第一悬浮电极806、第一连接桥803a、第二连接桥804a以及节点807。在进行设置时,第一分割电极804在俯视视图下,可与第一悬浮电极806重合;第二分割电极803在俯视视图下,可与第二悬浮电极805重合。此时,相对于图7中的实施例,在边缘区域外设置至少一排悬浮电极,即第一悬浮电极806、第二悬浮电极805,第一连接桥803a将相邻的触控电极上的第一分割电极804相连接,并且通过节点807将对应的第一悬浮电极806连接。这样,屏幕的触控感知会进一步得到提高,触控精度和触控灵敏度也会进一步提高。
如图9所示,图9为本揭示实施例提供的另一种触控电极示意图。第一触控电极901、第二触控电极902、第一分割电极904、第二分割电极903、第二悬浮电极905、第一悬浮电极906、第一连接桥903a、第二连接桥904a以及节点907。相对于图8中的实施例,此时,在边缘区域外设置的第一悬浮电极906和第二悬浮电极905均为一整块悬浮电极。这样,整块的悬浮电极相对于分割电极会有更大的接触面积,感知的精度和灵敏度也会不同。
本揭示还提供了一种显示装置,如图10所示,图10为本揭示实施例提供的显示装置示意图。显示装置1中包括上述本揭示实施例提供的触控传感器2。
以上对本揭示实施例所提供的一种触控传感器和显示装置进行了详细介绍,以上实施例的说明只是用于帮助理解本揭示的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,而这些修改或者替换,并不使相应技术方案的本质脱离本揭示各实施例的技术方案的范围。

Claims (20)

  1. 一种触控传感器,包括:
    多个第一触控电极;
    多个第二触控电极,与所述第一触控电极绝缘设置;
    其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
    至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
    连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接;
    其中,所述触控传感器还包括第一连接桥和第二连接桥,所述第一触控电极上的所述第一悬浮电极通过所述第一连接桥与相邻的所述第一触控电极上的所述第一悬浮电极连接。
  2. 根据权利要求1所述的触控传感器,其中所述第一触控电极沿第一方向设置,所述第二触控电极沿第二方向设置,所述第一方向和所述第二方向不同,所述第一触控电极上的所述第二悬浮电极通过所述第二连接桥与相邻的所述第一触控电极上的所述第二悬浮电极连接。
  3. 根据权利要求1所述的触控传感器,还包括第一导电桥和第二导电桥,相邻的所述第一触控电极通过所述第一导电桥连接,相邻的所述第二触控电极通过所述第二导电桥连接,所述第一导电桥和所述第二导电桥相互交叠形成交叠区域。
  4. 根据权利要求1所述的触控传感器,其中所述连接桥材质为金属。
  5. 根据权利要求1所述的触控传感器,其中所述第一连接桥和所述第二连接桥末端的形状为T形或Y形。
  6. 根据权利要求1所述的触控传感器,其中所述第一悬浮电极包括多个第一分割电极,所述第二悬浮电极包括多个第二分割电极。
  7. 一种触控传感器,包括:
    多个第一触控电极;
    多个第二触控电极,与所述第一触控电极绝缘设置;
    其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
    至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
    连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接。
  8. 根据权利要求7所述的触控传感器,其中所述第一触控电极沿第一方向设置,所述第二触控电极沿第二方向设置,所述第一方向和所述第二方向不同。
  9. 根据权利要求7所述的触控传感器,还包括第一导电桥和第二导电桥,相邻的所述第一触控电极通过所述第一导电桥连接,相邻的所述第二触控电极通过所述第二导电桥连接,所述第一导电桥和所述第二导电桥相互交叠形成交叠区域。
  10. 根据权利要求7所述的触控传感器,还包括第一连接桥和第二连接桥,所述第一触控电极上的所述第一悬浮电极通过所述第一连接桥与相邻的所述第一触控电极上的所述第一悬浮电极连接,所述第一触控电极上的所述第二悬浮电极通过所述第二连接桥与相邻的所述第一触控电极上的所述第二悬浮电极连接。
  11. 根据权利要求10所述的触控传感器,其中所述第一连接桥和所述第二连接桥末端的形状为T形或Y形。
  12. 根据权利要求7所述的触控传感器,其中所述第一悬浮电极包括多个第一分割电极,所述第二悬浮电极包括多个第二分割电极。
  13. 根据权利要求12所述的触控传感器,其中所述第一分割电极设置在所述第一触控电极边缘区域,所述第二分割电极设置在所述第二触控电极边缘区域。
  14. 根据权利要求13所述的触控传感器,其中所述第一分割电极在俯视视图下,与所述第一悬浮电极重合,所述第二分割电极在俯视视图下,与所述第二悬浮电极重合。
  15. 根据权利要求13所述的触控传感器,还包括连接桥,所述第一触控电极边缘区域的各个所述第一分割电极通过所述连接桥相连接。
  16. 根据权利要求13所述的触控传感器,还包括连接桥,所述第二触控电极边缘区域的各个所述第二分割电极通过所述连接桥相连接。
  17. 根据权利要求7所述的触控传感器,还包括分割电极,所述第一触控电极和所述第二触控电极之间的区域设置有所述分割电极。
  18. 根据权利要求9所述的触控传感器,其中所述交叠区域具有绝缘介质,所述第一导电桥和所述第二导电桥绝缘。
  19. 根据权利要求7所述的触控传感器,其中所述连接桥材质为金属。
  20. 一种显示装置,包括:
    多个第一触控电极;
    多个第二触控电极,与所述第一触控电极绝缘设置;
    其中,所述触控传感器还包括至少一个第一悬浮电极,设置于所述第一触控电极的边缘区域,所述第一悬浮电极与所述第一触控电极耦合形成电容,以进行压力感应;
    至少一个第二悬浮电极,设置于所述第二触控电极的边缘区域,所述第二悬浮电极与所述第一悬浮电极相邻,所述第二悬浮电极与所述第二触控电极耦合形成电容,以进行压力感应;以及
    连接桥,相邻的所述第一悬浮电极通过所述连接桥电性连接,相邻的所述第二悬浮电极通过所述连接桥电性连接。
PCT/CN2019/082122 2019-02-28 2019-04-10 触控传感器和显示装置 WO2020172956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,690 US10860155B2 (en) 2019-02-28 2019-04-10 Touch sensor and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910148204.2 2019-02-28
CN201910148204.2A CN109885203B (zh) 2019-02-28 2019-02-28 触控传感器、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2020172956A1 true WO2020172956A1 (zh) 2020-09-03

Family

ID=66929768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082122 WO2020172956A1 (zh) 2019-02-28 2019-04-10 触控传感器和显示装置

Country Status (3)

Country Link
US (1) US10860155B2 (zh)
CN (1) CN109885203B (zh)
WO (1) WO2020172956A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737360B (zh) * 2019-09-26 2022-05-17 武汉华星光电半导体显示技术有限公司 触控电极层以及触控显示装置
CN111158516B (zh) * 2019-12-04 2021-06-25 武汉华星光电半导体显示技术有限公司 触控基板以及触控屏
US11226709B2 (en) 2020-03-13 2022-01-18 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch substrate and touch screen
CN111665993B (zh) * 2020-06-17 2021-09-03 武汉华星光电半导体显示技术有限公司 显示模组及显示装置
KR20230098448A (ko) * 2021-12-24 2023-07-04 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048989A1 (en) * 2006-08-25 2008-02-28 Soo-Wan Yoon Touch screen display device and method of manufacturing the same
CN106249960A (zh) * 2016-08-18 2016-12-21 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN106325574A (zh) * 2015-06-26 2017-01-11 小米科技有限责任公司 在触摸屏上监测触摸的方法及装置
CN106325622A (zh) * 2015-06-26 2017-01-11 小米科技有限责任公司 自电容式压力触摸装置及终端设备
CN109144330A (zh) * 2018-10-31 2019-01-04 武汉华星光电半导体显示技术有限公司 触控显示面板以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360972B1 (en) * 2013-01-14 2016-06-07 Cypress Semiconductor Corporation Touch sensor conductor routing
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널
KR102520639B1 (ko) * 2018-05-02 2023-04-11 삼성디스플레이 주식회사 입력 감지 장치 및 이를 포함하는 표시 장치
CN109491550B (zh) * 2019-01-03 2022-05-10 京东方科技集团股份有限公司 一种触控基板及其检测方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048989A1 (en) * 2006-08-25 2008-02-28 Soo-Wan Yoon Touch screen display device and method of manufacturing the same
CN106325574A (zh) * 2015-06-26 2017-01-11 小米科技有限责任公司 在触摸屏上监测触摸的方法及装置
CN106325622A (zh) * 2015-06-26 2017-01-11 小米科技有限责任公司 自电容式压力触摸装置及终端设备
CN106249960A (zh) * 2016-08-18 2016-12-21 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN109144330A (zh) * 2018-10-31 2019-01-04 武汉华星光电半导体显示技术有限公司 触控显示面板以及显示装置

Also Published As

Publication number Publication date
CN109885203B (zh) 2020-12-04
CN109885203A (zh) 2019-06-14
US10860155B2 (en) 2020-12-08
US20200301546A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2020172956A1 (zh) 触控传感器和显示装置
JP7023904B2 (ja) タッチセンサを含む表示装置
KR101428568B1 (ko) 터치스크린을 포함하는 표시장치 및 그 구동 방법
US9823789B2 (en) Touch display panel and display device
JP5439565B2 (ja) タッチパネル及びその製造方法
TWI426427B (zh) 觸控面板
US9423918B2 (en) Electrostatic capacitive touch screen panel
JP2012208460A (ja) タッチセンサ内蔵型液晶表示装置及びその製造方法
TWI630537B (zh) 具有壓力感測的觸控顯示系統
CN103294319A (zh) 电容式触摸屏
CN101458410B (zh) 触控液晶显示装置
TWI626579B (zh) 顯示面板
TW201933075A (zh) 互容式觸控面板
CN105549791A (zh) 一种具有压力感应和触控功能的显示面板
CN108874218B (zh) 一种触控基板、其触控定位方法及电容式触摸屏
TWM342558U (en) Capacitive type touch panel
CN102236482B (zh) 电容式触控结构及其制造方法以及触控设备
TWM481449U (zh) 高準確度之內嵌式平面顯示觸控結構
TW201403431A (zh) 互容式觸控面板及觸控系統
CN105260050A (zh) 一种嵌入式触控显示装置
CN113176837B (zh) 三维触控传感器及显示装置
CN201725317U (zh) 电容式触控结构以及触控设备
TWM482114U (zh) 高準確度之窄邊框內嵌式平面顯示觸控結構
TWM480722U (zh) 高準確度之窄邊框內嵌式平面顯示觸控結構
CN102662516A (zh) 一种触摸屏的电极布局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916926

Country of ref document: EP

Kind code of ref document: A1