WO2020168519A1 - 拍摄参数的调整方法、拍摄设备以及可移动平台 - Google Patents

拍摄参数的调整方法、拍摄设备以及可移动平台 Download PDF

Info

Publication number
WO2020168519A1
WO2020168519A1 PCT/CN2019/075727 CN2019075727W WO2020168519A1 WO 2020168519 A1 WO2020168519 A1 WO 2020168519A1 CN 2019075727 W CN2019075727 W CN 2019075727W WO 2020168519 A1 WO2020168519 A1 WO 2020168519A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
shooting
shaking
photographing device
angular velocity
Prior art date
Application number
PCT/CN2019/075727
Other languages
English (en)
French (fr)
Inventor
蒋剑锋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005635.1A priority Critical patent/CN111357273A/zh
Priority to PCT/CN2019/075727 priority patent/WO2020168519A1/zh
Publication of WO2020168519A1 publication Critical patent/WO2020168519A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the embodiments of the present invention relate to the field of electronic technology, and in particular to a method for adjusting shooting parameters, a shooting device, and a movable platform.
  • Shutter speed, aperture, and sensitivity are three important parameters that affect the image quality of the shooting equipment.
  • the safety shutter refers to the slowest shutter speed that guarantees that the captured images are not blurred. When the exposure time exceeds the safety shutter, it is easy to blur the captured images due to the shaking of the shooting equipment.
  • the reciprocal of the focal length is usually determined as a safety shutter, and the combination of aperture, shutter speed and sensitivity is adjusted according to the exposure value.
  • the picture quality of the shot is still not high.
  • the embodiment of the present invention provides a method for adjusting shooting parameters, a shooting device, and a movable platform, so as to improve the quality of pictures shot by the shooting device.
  • an embodiment of the present invention provides a method for adjusting shooting parameters, including:
  • an embodiment of the present invention provides a photographing device, including:
  • the processor is used to obtain the degree of shaking of the photographing device, and adjust the photographing parameters of the photographing device according to the degree of shaking of the photographing device.
  • an embodiment of the present invention provides a movable platform, including: a platform body and a photographing device installed on the platform body;
  • the shooting device includes: a processor and a lens;
  • the processor is used to obtain the degree of shaking of the photographing device, and adjust the photographing parameters of the photographing device according to the degree of shaking of the photographing device.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes at least one piece of code, and the at least one piece of code can be executed by a computer to control all The computer executes the shooting parameter adjustment method described in the embodiment of the present invention in the first aspect.
  • an embodiment of the present invention provides a computer program, when the computer program is executed by a computer, it is used to implement the shooting parameter adjustment method described in the embodiment of the present invention in the first aspect.
  • the degree of shaking of the shooting device is obtained, and how to adjust the shooting parameters of the shooting device is determined according to the degree of shaking of the shooting device. More reasonable, thereby improving the quality of the picture captured by the shooting device.
  • Figure 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of an unmanned aerial system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for adjusting shooting parameters according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for adjusting shooting parameters according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another method for adjusting shooting parameters according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another method for adjusting shooting parameters according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a photographing device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • a component when a component is said to be “fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to another component or there may be a centered component at the same time.
  • the method for adjusting shooting parameters provided by the embodiments of the present invention can be applied to various shooting devices, such as digital cameras, mobile electronic products with shooting functions, handheld pan-tilts and movable platforms with shooting functions, etc.
  • mobile electronic products with shooting functions include, but are not limited to: mobile phones, tablet computers, and smart wearable devices.
  • Movable platforms with shooting functions include, but are not limited to: unmanned aerial vehicles, unmanned ships, unmanned vehicles, and robots.
  • the unmanned aerial vehicle may be a rotorcraft, for example, a plurality of propelling devices pass through the air. Propelled multi-rotor aircraft.
  • the embodiment of the present invention is not limited to this.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of an unmanned aerial system according to an embodiment of the present invention.
  • a rotary wing drone is taken as an example for description.
  • the unmanned flying system 100 may include a drone 110, a display device 130, and a control terminal 140.
  • the UAV 110 may include a power system 150, a flight control system 160, a frame, and a pan/tilt 120 carried on the frame.
  • the drone 110 can wirelessly communicate with the control terminal 140 and the display device 130.
  • the frame may include a fuselage and a tripod (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the UAV 110 when landing.
  • the power system 150 may include one or more electronic speed regulators (referred to as ESCs) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, wherein the motors 152 are connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the arm of the UAV 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal Current is supplied to the motor 152 to control the speed of the motor 152.
  • the motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 110, and the power enables the drone 110 to realize one or more degrees of freedom of movement.
  • the drone 110 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • the flight control system 160 may include a flight controller 171 and a sensing system 172.
  • the sensing system 172 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 172 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the flight controller 171 is used to control the flight of the drone 110, for example, it can control the flight of the drone 110 according to the attitude information measured by the sensor system 172. It should be understood that the flight controller 171 can control the drone 110 according to pre-programmed program instructions, and can also control the drone 110 by responding to one or more control instructions from the control terminal 140.
  • the pan/tilt 120 may include one or more power components 122, and the pan/tilt may also include a plurality of working components 123, and the power component 122 may provide working power for the working components.
  • the flight controller 171 can control the movement of the pan/tilt 120 through the power unit 122.
  • the pan-tilt 120 may further include a controller for controlling the movement of the pan-tilt 120 by controlling the power component 122. It should be understood that the pan-tilt 120 may be independent of the drone 110 or a part of the drone 110.
  • the display device 130 is located on the ground end of the movable platform 100, can communicate with the drone 110 in a wireless manner, and can be used to display the attitude information of the drone 110.
  • the image taken by the imaging device may also be displayed on the display device 130.
  • the display device 130 may be an independent device or integrated in the control terminal 140.
  • the control terminal 140 is located on the ground end of the movable platform 100, and can communicate with the drone 110 in a wireless manner for remote control of the drone 110.
  • the drone 110 may also be equipped with a speaker (not shown in the figure), which is used to play audio files.
  • the speaker can be directly fixed on the drone 110 or mounted on the pan-tilt 120.
  • Shutter speed, aperture, and sensitivity are three important parameters that affect the image quality of the shooting equipment.
  • the main function of the shutter speed is to control the length of time for the amount of light.
  • the main function of the aperture is to adjust the amount of light received by the image sensor.
  • the larger the aperture the more light entering the camera; conversely, the smaller the aperture, the less light entering the camera.
  • the main function of sensitivity is to adjust the sensitivity of the image sensor to light.
  • E v an exposure amount
  • a v a variable aperture
  • a v log 2 (A 2 )
  • A represents a numerical aperture
  • T represents the exposure time that is the shutter speed
  • S v represents the variable of sensitivity
  • S v log 2 (S*N)
  • S represents the value of sensitivity
  • N is a constant, approximately 0.3
  • B v represents the variable of the average brightness of ambient light
  • K is an arbitrary constant
  • L s represents the average brightness of ambient light.
  • the embodiment of the present invention adjusts the shooting parameters of the shooting device according to the degree of shaking of the shooting device, so that the adjustment of the shooting parameters is more reasonable, thereby improving the quality of the pictures shot by the shooting device.
  • FIG. 3 is a schematic flowchart of a method for adjusting shooting parameters according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment includes:
  • the shooting device can be a digital camera, a mobile electronic product with shooting function, a handheld PTZ with shooting function, or a movable platform with shooting function, etc.
  • the camera may shake during the shooting.
  • This kind of jitter may be caused by the shaking of the hand held by the hand that drives the shaking of the shooting device, such as hand-held pan-tilt, digital camera, mobile phone, tablet computer, and smart wearable device. It may also be caused by the effects of airflow, etc., causing the camera to shake, such as a rotorcraft. It may also be caused by the shaking of the shooting equipment due to the influence of water currents, such as unmanned ships. It may also be caused by the impact of mechanical structure or driving plane, which makes the shooting equipment shake, such as unmanned cars, robots, etc.
  • the embodiments of the present invention are applicable to any photographing equipment that may shake during the photographing process. For this, the embodiments of the present invention will not be repeated one by one.
  • the degree of shaking of the shooting device can be obtained according to the attitude angular velocity of the shooting device.
  • the degree of shaking of the shooting device can be obtained according to at least one of the three-axis attitude angular speed of the shooting device.
  • a possible implementation method get the jitter degree of the shooting device according to the attitude angular velocity of one axis of the three-axis attitude angular velocity of the shooting device, for example: it can be obtained according to the attitude angular velocity of the X axis, the attitude angular velocity of the Y axis or the attitude angular velocity of the Z axis
  • the degree of shaking of the photographing device which is specifically based on the attitude angular velocity of which axis, can be determined according to the product form of the photographing device and the user's usage habits, which is not limited in the embodiment of the present invention.
  • the shaking degree of the photographing device can be obtained according to the attitude angular velocity of the X axis.
  • the shaking of the photographing device can be obtained according to the attitude angular velocity of the X axis.
  • Degree; the Y-axis attitude angular velocity is the largest, and the camera shake degree can be obtained according to the Y-axis attitude angular velocity; the Z-axis attitude angular velocity is the largest, and the camera shake degree can be obtained according to the Z-axis attitude angular velocity.
  • Another possible implementation method obtain the jitter degree of the shooting device according to the attitude angular velocities of the two axes of the three-axis attitude angular velocity of the shooting device, for example: the degree of shaking of the shooting device can be obtained according to the attitude angular velocity of the X axis and the attitude angular velocity of the Y axis.
  • the degree of shaking; the shaking degree of the shooting device can be obtained according to the attitude angular velocity of the X axis and the attitude angular velocity of the Z axis; the shaking degree of the shooting device can be obtained according to the attitude angular velocity of the Y axis and the attitude angular velocity of the Z axis; which two axes are based on
  • the attitude angular velocity can be determined according to the product form of the photographing device and the user's usage habits, which is not limited in the embodiment of the present invention.
  • Another possible implementation manner obtain the shaking degree of the shooting device according to the three-axis attitude angular velocity of the shooting device.
  • the method further includes: obtaining at least one-axis attitude angular velocity, for example, through an attitude sensor provided in the photographing device Obtain at least one axis attitude angular velocity.
  • S302 Adjust the shooting parameters of the shooting device according to the shaking degree of the shooting device.
  • the shooting parameters include: shutter speed, aperture value and/or sensitivity.
  • the shooting equipment may have different product forms, and the adjustable shooting parameters may also be different.
  • the shutter speed and sensitivity can be adjusted.
  • the aperture of some shooting equipment can also be adjusted, you can adjust the shutter speed, aperture value and sensitivity.
  • This embodiment determines how to adjust the shooting parameters of the shooting device by acquiring the degree of shaking of the shooting device and determining how to adjust the shooting parameters of the shooting device, thereby making the adjustment of the shooting parameters more reasonable, thereby improving the quality of the pictures shot by the shooting device.
  • FIG. 4 is a schematic flowchart of another method for adjusting shooting parameters provided by an embodiment of the present invention.
  • FIG. 4 is based on the embodiment shown in FIG. 3 to obtain the jitter of the shooting device according to the three-axis attitude angular velocity of the shooting device Describe the degree as an example, as shown in Figure 4:
  • the degree of shaking of the photographing device can be obtained by calculation according to the three-axis attitude angular velocity.
  • the degree of shaking of the photographing device is obtained through a weighted summation method.
  • represents the degree of shaking of the photographing device
  • the ⁇ x represents the attitude angular velocity of the x-axis
  • ⁇ y represents the attitude angular velocity of the y-axis
  • ⁇ z represents the attitude angular velocity of the z-axis
  • the degree of jitter corresponding to the angular velocity can be obtained by looking up the table.
  • the corresponding relationship between the angular velocity and the degree of jitter can be established according to empirical values, and the corresponding relationship between the angular velocity and the degree of jitter can also be obtained by calculation, which is not limited in the embodiment of the present invention.
  • S403 Adjust the shooting parameters of the shooting device according to the shaking degree of the shooting device.
  • This step is similar to S302 and will not be repeated here.
  • the shaking degree of the photographing device is obtained according to the three-axis attitude angular velocity, and the photographing parameters of the photographing device are adjusted according to the shaking degree of the photographing device Therefore, the adjustment of the shooting parameters is more reasonable, thereby improving the quality of the pictures shot by the shooting device.
  • FIG. 5 is a schematic flowchart of another method for adjusting shooting parameters provided by an embodiment of the present invention.
  • FIG. 5 is based on the embodiment shown in FIG. 3 or FIG.
  • the description of a possible implementation of the shooting parameters of the shooting device, as shown in FIG. 5, the method in this embodiment includes:
  • S3021a Determine the exposure strategy according to the shaking degree of the shooting device.
  • the following exposure strategy is adjusted based on the shooting parameters of a certain quality of pictures taken by the shooting device in a static state or slightly shaken.
  • the shooting parameters adjusted by the exposure strategy can be used to shoot similar or the same quality as the above Picture.
  • the shooting parameters include: shutter speed and sensitivity.
  • the exposure strategy is: reducing the shutter speed and increasing the sensitivity according to the degree of jitter of the photographing device. The greater the degree of jitter, the lower the shutter speed and the greater the sensitivity.
  • the shooting parameters include: shutter speed and aperture value.
  • the exposure strategy is as follows: reduce the shutter speed and the aperture value according to the jitter degree of the photographing device. The greater the jitter degree, the lower the shutter speed and the smaller the aperture value.
  • the shooting parameters include: shutter speed, aperture value, and sensitivity.
  • the exposure strategy is: reduce the shutter speed, increase the sensitivity, and reduce the aperture value according to the degree of jitter of the photographing device.
  • the shutter speed, aperture value and sensitivity are all adjustable, the shutter speed and The aperture value, and finally adjust the sensitivity.
  • the specific value to be adjusted down or up is determined according to the degree of jitter.
  • the exposure strategy can also be adjusted based on the shooting parameters used in a picture of a certain quality taken when the camera shake degree is a preset threshold.
  • the shooting parameters adjusted by the exposure strategy can be used to capture the same quality Similar or identical pictures.
  • the shooting parameters include: shutter speed and sensitivity.
  • the exposure strategy is: when the shaking degree of the shooting device is greater than the preset threshold, according to the shaking degree of the shooting device, reduce the shutter speed and increase the sensitivity.
  • reduce the shutter speed and increase the sensitivity When the shaking degree is greater than the preset threshold, adjust the shooting parameters and the degree of shake The greater the shutter speed, the greater the sensitivity.
  • the shooting parameters include: shutter speed and aperture value.
  • the shaking degree of the photographing device is greater than the preset threshold, according to the shaking degree of the photographing device, the shutter speed and the aperture value are reduced.
  • the greater the shaking degree the lower the shutter speed and the smaller the aperture value.
  • the shooting parameters include: shutter speed, aperture value, and sensitivity.
  • the exposure strategy is: when the degree of camera shake is greater than the preset threshold, according to the degree of camera shake, adjust the shutter speed, increase the sensitivity and reduce the aperture value, when the degree of shake is greater than the preset threshold, the shooting parameters Make adjustments, the greater the degree of jitter, the smaller the shutter speed, the greater the sensitivity, and the smaller the aperture value.
  • the preset threshold may be determined according to an empirical value. For example, when it can be determined that the quality of the captured image is not significantly affected, the maximum degree of shaking is the preset threshold.
  • the shutter speed, aperture value and sensitivity are all adjustable, the shutter speed and The aperture value, and finally adjust the sensitivity.
  • S3022a Adjust the shooting parameters of the shooting device according to the exposure strategy.
  • the adjustment of the shooting parameters is made more reasonable, thereby improving the quality of the pictures shot by the shooting device.
  • FIG. 6 is a schematic flowchart of another method for adjusting shooting parameters provided by an embodiment of the present invention.
  • FIG. 6 is based on the embodiment shown in FIG. 3 or FIG.
  • the description of another possible implementation of the shooting parameters of the shooting device, as shown in FIG. 6, the method of this embodiment includes:
  • the exposure meter contains the target value of the shooting parameter corresponding to the degree of shake.
  • the shooting parameters include: shutter speed and sensitivity.
  • the exposure meter contains the shutter speed and sensitivity corresponding to the degree of shake; optionally, the interval value of the degree of shake corresponds to a combination of shutter speed and sensitivity; it may be the interval value of the degree of shake corresponds to multiple shutter speeds and sensitivity
  • each combination of shutter speed and sensitivity can have different priorities.
  • each jitter degree value corresponds to a combination of shutter speed and sensitivity; it can be that each jitter degree value corresponds to a combination of multiple shutter speeds and sensitivity.
  • each combination of shutter speed and sensitivity can have different priorities.
  • the embodiment of the present invention sets no limitation. The greater the degree of jitter, the lower the shutter speed and the greater the sensitivity.
  • the shooting parameters include: shutter speed and aperture value.
  • the exposure meter contains the shutter speed and aperture value corresponding to the degree of jitter; optionally, the interval value of the degree of jitter corresponds to a combination of shutter speed and aperture value; the interval value of the degree of jitter corresponds to multiple shutter speeds and aperture values
  • each combination of shutter speed and aperture value can have different priorities.
  • each jitter level value corresponds to a combination of shutter speed and aperture value; it can be that each jitter level value corresponds to a combination of multiple shutter speeds and aperture values.
  • each combination of shutter speed and aperture value can have different priorities.
  • the embodiment of the present invention sets no limitation. The greater the degree of jitter, the lower the shutter speed and the smaller the aperture value.
  • the shooting parameters include: shutter speed, aperture value, and sensitivity.
  • the exposure meter contains the shutter speed, aperture value, and sensitivity corresponding to the degree of jitter; optionally, the interval value of the degree of jitter corresponds to a combination of shutter speed, aperture value and sensitivity; the interval value of the degree of jitter corresponds to more A combination of shutter speed, aperture value and sensitivity.
  • the interval value of the degree of jitter corresponds to multiple combinations of shutter speed, aperture value and sensitivity, each combination of shutter speed, aperture value and sensitivity can have different priorities .
  • each jitter level value corresponds to a combination of shutter speed, aperture value and sensitivity; it can be that each jitter level value corresponds to multiple combinations of shutter speed, aperture value and sensitivity, when one jitter level value corresponds to multiple When the shutter speed, aperture value, and sensitivity are combined, each combination of shutter speed, aperture value, and sensitivity can have different priorities.
  • the embodiment of the present invention sets no limitation. The greater the degree of jitter, the smaller the shutter speed, the greater the sensitivity, and the smaller the aperture value.
  • S3022b Adjust the shooting parameter of the shooting device according to the target value of the shooting parameter.
  • the shooting parameter of the shooting device is adjusted to the target value of the shooting parameter corresponding to the degree of shaking.
  • the adjustment of the shooting parameters is made more reasonable. Improve the quality of the images captured by the camera.
  • the embodiment of the present invention also provides a computer storage medium.
  • the computer storage medium stores program instructions. When the program instructions are executed, they may include part or all of the shooting parameter adjustment methods in the foregoing method embodiments. step.
  • FIG. 7 is a schematic structural diagram of a shooting device provided by an embodiment of the present invention. As shown in FIG. 7, the shooting device in this embodiment includes a processor 71 and a lens 72.
  • the processor is used to obtain the shaking degree of the photographing device, and adjust the photographing parameters of the photographing device according to the shaking degree of the photographing device.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 3, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the processor 71 is specifically configured to obtain the three-axis attitude angular velocity of the photographing device; and obtain the shaking degree of the photographing device according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to obtain the degree of shaking of the photographing device by calculation according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to obtain the shaking degree of the photographing device in a weighted summation manner according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to
  • represents the degree of shaking of the photographing device
  • the ⁇ x represents the attitude angular velocity of the x-axis
  • ⁇ y represents the attitude angular velocity of the y-axis
  • ⁇ z represents the attitude angular velocity of the z-axis
  • the shooting parameters include: shutter speed, aperture value and/or sensitivity.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 4, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the present invention also provides an embodiment of a photographing device.
  • the processor 71 shown in FIG. 7 is specifically configured to determine an exposure strategy according to the shaking degree of the photographing device; and adjust the photographing device according to the exposure strategy. Shooting parameters.
  • the shooting parameters include: shutter speed.
  • the processor 71 is specifically configured to reduce the shutter speed according to the degree of shaking of the photographing device if the degree of shaking of the photographing device is greater than a preset threshold.
  • the shooting parameters further include: sensitivity;
  • the processor 71 is also used to increase the sensitivity.
  • the shooting parameters further include: aperture value and sensitivity;
  • the processor is also used to increase the sensitivity and decrease the aperture value.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 5, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the present invention also provides an embodiment of a photographing device.
  • the processor 71 shown in FIG. 7 is specifically configured to find an exposure meter corresponding to the degree of shake according to the degree of shake of the photographing device, and the exposure table contains The target value of the shooting parameter corresponding to the degree of shake; and the shooting parameter of the shooting device is adjusted according to the target value of the shooting parameter.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 6, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the photographing device of this embodiment may further include: a memory (not shown in the figure), the memory is used to store program code, when the program code is executed by the processor, the photographing device can implement the above-mentioned embodiments Technical solutions.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • the movable platform of this embodiment includes: a platform body 81 and a photographing device 82 installed on the platform body;
  • the shooting device 82 includes a processor 71 and a lens 72;
  • the processor 71 is configured to obtain the shaking degree of the photographing device, and adjust the photographing parameters of the photographing device according to the shaking degree of the photographing device.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 3, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the processor 71 is specifically configured to obtain the three-axis attitude angular velocity of the photographing device; and obtain the shaking degree of the photographing device according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to obtain the degree of shaking of the photographing device by calculation according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to obtain the shaking degree of the photographing device in a weighted summation manner according to the three-axis attitude angular velocity.
  • the processor 71 is specifically configured to
  • represents the degree of shaking of the photographing device
  • the ⁇ x represents the attitude angular velocity of the x-axis
  • ⁇ y represents the attitude angular velocity of the y-axis
  • ⁇ z represents the attitude angular velocity of the z-axis
  • the shooting parameters include: shutter speed, aperture value and/or sensitivity.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 4, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the present invention also provides an embodiment of a photographing device.
  • the processor 71 shown in FIG. 8 is specifically configured to determine an exposure strategy according to the degree of shaking of the photographing device; and adjust the photographing device according to the exposure strategy. Shooting parameters.
  • the shooting parameters include: shutter speed;
  • the processor 71 is specifically configured to reduce the shutter speed according to the degree of shaking of the photographing device if the degree of shaking of the photographing device is greater than a preset threshold.
  • the shooting parameters further include: sensitivity;
  • the processor 71 is also used to increase the sensitivity.
  • the shooting parameters further include: aperture value and sensitivity;
  • the processor is also used to increase the sensitivity and decrease the aperture value.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 5, and its implementation principle and technical effect are similar, and details are not described herein again.
  • the present invention also provides an embodiment of a photographing device.
  • the processor 71 shown in FIG. 8 is specifically configured to find an exposure meter corresponding to the degree of shake according to the degree of shake of the photographing device, and the exposure table contains The target value of the shooting parameter corresponding to the degree of shake; and the shooting parameter of the shooting device is adjusted according to the target value of the shooting parameter.
  • the device of this embodiment can correspondingly be used to implement the technical solution of the method embodiment shown in FIG. 6, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the movable platform of this embodiment may further include: a memory (not shown in the figure), the memory is used to store program code, and when the program code is executed by the processor, the movable platform can implement the foregoing implementations Examples of technical solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本发明实施例提供一种拍摄参数的调整方法、拍摄设备以及可移动平台,通过获取拍摄设备的抖动程度,根据拍摄设备的抖动程度,确定如何调整拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。

Description

拍摄参数的调整方法、拍摄设备以及可移动平台 技术领域
本发明实施例涉及电子技术领域,尤其涉及一种拍摄参数的调整方法、拍摄设备以及可移动平台。
背景技术
快门速度、光圈以及感光度是影响拍摄设备拍摄的画面质量比较重要的三个参数。安全快门是指保证拍摄的画面不模糊的最慢的快门速度,当曝光时间超过安全快门时,很容易因为拍摄设备的晃动使得拍摄出的画面变得模糊。
现有技术中,通常确定焦距的倒数为安全快门,根据曝光度值调节光圈、快门速度和感光度的组合。然而,采用现有技术的方式,拍摄的画面质量依然不高。
发明内容
本发明实施例提供一种拍摄参数的调整方法、拍摄设备以及可移动平台,以提高拍摄设备拍摄的画面的质量。
第一方面,本发明实施例提供一种拍摄参数的调整方法,包括:
获取拍摄设备的抖动程度;
根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
第二方面,本发明实施例提供一种拍摄设备,包括:
处理器和镜头;
所述处理器用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
第三方面,本发明实施例提供一种可移动平台,包括:平台本体以及装置于所述平台本体上的拍摄设备;
所述拍摄设备包括:处理器和镜头;
所述处理器用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程 度,调整所述拍摄设备的拍摄参数。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行第一方面本发明实施例所述的拍摄参数的调整方法。
第五方面,本发明实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现第一方面本发明实施例所述的拍摄参数的调整方法。
本发明实施例提供的拍摄参数的调整方法、拍摄设备以及可移动平台,通过获取拍摄设备的抖动程度,根据拍摄设备的抖动程度,确定如何调整拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明的实施例的无人飞行***的示意性架构图;
图2为根据本发明的实施例的无人飞行***的结构示意图;
图3为本发明实施例提供的一种拍摄参数的调整方法的流程示意图;
图4为本发明实施例提供的另一种拍摄参数的调整方法的流程示意图;
图5为本发明实施例提供的再一种拍摄参数的调整方法的流程示意图;
图6为本发明实施例提供的又一种拍摄参数的调整方法的流程示意图;
图7为本发明实施例提供的一种拍摄设备的结构示意图;
图8为本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明的实施例提供的拍摄参数的调整方法,可应用于各种拍摄设备,例如:数码相机、具有拍摄功能的移动电子产品以及具有拍摄功能的手持云台、可移动平台等。其中,具有拍摄功能的移动电子产品包括但不限于:手机、平板电脑以及者智能穿戴设备等。具有拍摄功能的可移动平台包括但不限于:无人机、无人船、无人汽车以及机器人等,其中,无人机例如可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器。对此,本发明的实施例并不限于此。
图1为根据本发明的实施例的无人飞行***的示意性架构图。图2为根据本发明的实施例的无人飞行***的结构示意图。本实施例以旋翼无人机为例进行说明。
无人飞行***100可以包括无人机110、显示设备130和控制终端140。其中,无人机110可以包括动力***150、飞行控制***160、机架和承载在机架上的云台120。无人机110可以与控制终端140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力***150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨 153设置在无人机110的机臂上;电子调速器151用于接收飞行控制***160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制***160可以包括飞行控制器171和传感***172。传感***172用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***172例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。飞行控制器171用于控制无人机110的飞行,例如,可以根据传感***172测量的姿态信息控制无人机110的飞行。应理解,飞行控制器171可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自控制终端140的一个或多个控制指令对无人机110进行控制。
云台120可以包括一个或者多个动力部件122,云台还可以包括多个作业部件123,动力部件122可以为作业部件提供作业动力。飞行控制器171可以通过动力部件122控制云台120的运动。可选地,云台120还可以包括控制器,用于通过控制动力部件122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。
显示设备130位于可移动平台100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制终端140中。
控制终端140位于可移动平台100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
另外,无人机110还可以机载有扬声器(图中未示出),该扬声器用于播放音频文件,扬声器可直接固定于无人机110上,也可搭载在云台120上。
应理解,上述对于可移动平台各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
本发明实施例涉及的概念介绍:
快门速度、光圈以及感光度是影响拍摄设备拍摄的画面质量比较重要的三个参数。
其中,快门速度主要作用是用来控制进光量的时间长短。快门速度越快,进入相机的光量越少;反之,快门速度越慢,进入相机的光量越多。
光圈的主要作用是调整图像感应器的受光量。光圈越大,进入相机的光量越多;反之,光圈越小,进入相机的光量越少。
感光度主要作用是调整图像感应器对光线的敏感程度。感光度越高,对光线的敏感度越强,拍摄出的照片越亮,噪点越多;反之,感光度越低,对光线的敏感度越低,拍摄出的照片越暗,噪点越少。
为了方便计算相机的曝光参数,现有技术中提出的一个经验曝光方程:
E v=A v+T v=S v+B v其中,E v表示曝光量,A v表示光圈的变量,并且A v=log 2(A 2),A表示光圈的数值,T v表示时间的变量,并且T v=log 2(1/T),T表示曝光时间即快门速度,S v表示感光度的变量,并且S v=log 2(S*N),S表示感光度的数值,N是一个常数,近似为0.3,B v表示环境光的平均亮度的变量,并且
Figure PCTCN2019075727-appb-000001
K是任意常数,L s表示环境光平均亮度。
本发明实施例是通过根据拍摄设备的抖动程度,调整拍摄设备的拍摄参数,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。
下面结合附图,对本发明的一些实施方式作描述。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图3为本发明实施例提供的一种拍摄参数的调整方法的流程示意图,如图3所示,本实施例的方法包括:
S301:获取拍摄设备的抖动程度。
拍摄设备可以是数码相机、具有拍摄功能的移动电子产品、具有拍摄功 能的手持云台或者具有拍摄功能的可移动平台等。
拍摄设备在进行拍摄的过程中,可能会发生抖动。这种抖动可能是由于手持者的手抖动带动拍摄设备抖动,例如:手持云台、数码相机、手机、平板电脑以及者智能穿戴设备等。也可能是由于气流等影响使得拍摄设备抖动,例如:旋翼飞行器等。也可能是由于水流等影响使得拍摄设备抖动,例如:无人船等。也可能是由于机械结构或者行驶平面等影响使得拍摄设备抖动,例如:无人汽车、机器人等。本发明实施例对于任何在拍摄过程中可能产生抖动的拍摄设备均适用,对此,本发明实施例不进行一一赘述。
可选地,可以根据拍摄设备的姿态角速度,得到所述拍摄设备的抖动程度。
例如:可以根据拍摄设备的三轴姿态角速度中的至少一轴姿态角速度,得到拍摄设备的抖动程度。
包括但不限于如下几种可能的实现方式:
一种可能的实现方式:根据拍摄设备的三轴姿态角速度中一个轴的姿态角速度得到拍摄设备的抖动程度,例如:可以根据X轴的姿态角速度、Y轴的姿态角速度或者Z轴的姿态角速度得到拍摄设备的抖动程度,具体依据哪个轴的姿态角速度,可以根据拍摄设备的产品形态以及用户的使用习惯确定,对此,本发明实施例不做限制。
另一种可能的实现方式:根据拍摄设备的三轴姿态角速度中最大的姿态角速度得到拍摄设备的抖动程度,例如:X轴的姿态角速度最大,则可以根据X轴的姿态角速度得到拍摄设备的抖动程度;Y轴的姿态角速度最大,则可以根据Y轴的姿态角速度得到拍摄设备的抖动程度;Z轴的姿态角速度最大,则可以根据Z轴的姿态角速度得到拍摄设备的抖动程度。
再一种可能的实现方式:根据拍摄设备的三轴姿态角速度中的两个轴的姿态角速度得到拍摄设备的抖动程度,例如:可以根据X轴的姿态角速度和Y轴的姿态角速度得到拍摄设备的抖动程度;可以根据X轴的姿态角速度和Z轴的姿态角速度得到拍摄设备的抖动程度;可以根据Y轴的姿态角速度和Z轴的姿态角速度得到拍摄设备的抖动程度;具体依据哪两个轴的姿态角速度,可以根据拍摄设备的产品形态以及用户的使用习惯确定,对此,本发明实施例不做限制。
又一种可能的实现方式:根据拍摄设备的三轴姿态角速度,得到拍摄设备的抖动程度。
可选地,根据拍摄设备的三轴姿态角速度中的至少一轴姿态角速度,得到拍摄设备的抖动程度之前,还包括:获取至少一轴姿态角速度,例如:可以通过设置于拍摄设备内的姿态传感器获得至少一轴姿态角速度。
S302:根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
其中,所述拍摄参数包括:快门速度、光圈值和/或感光度。
拍摄设备可能有不同的产品形态,可调整的拍摄参数也可能不同。
例如:有的拍摄设备的光圈是固定不可调节的,则可以调节快门速度与感光度。
有的拍摄设备的光圈也可以调节,则可以调节快门速度、光圈值和感光度。
本实施例通过获取拍摄设备的抖动程度,根据拍摄设备的抖动程度,确定如何调整拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。
图4为本发明实施例提供的另一种拍摄参数的调整方法的流程示意图,图4是在图3所示实施例的基础上,以根据拍摄设备的三轴姿态角速度,得到拍摄设备的抖动程度为例进行描述,如图4所示:
S401:获取拍摄设备的三轴姿态角速度。
S402:根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
其中,一种可能的实现方式:
可以根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
例如:根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
具体地,包括但不限于如下实现方式:
根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
另一种可能的实现方式:可以通过查表的方式得到角速度对应的抖动程度。
其中,可以根据经验值建立角速度与抖动程度的对应关系,也可以通过计算的方式得到角速度与抖动程度的对应关系,对此,本发明实施例不做限制。
S403:根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
本步骤与S302类似,此处不再赘述。
本实施例,通过获取所述拍摄设备的三轴姿态角速度,根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。
图5为本发明实施例提供的再一种拍摄参数的调整方法的流程示意图,图5是在图3或图4所示实施例的基础上,对根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数的一种可能的实现方式的描述,如图5所示,本实施例的方法包括:
S3021a:根据拍摄设备的抖动程度,确定曝光策略。
下述曝光策略是基于拍摄设备处于静止状态或者轻微抖动状态拍摄出的某种质量的画面所采用的拍摄参数进行的调整,采用曝光策略调整后的拍摄参数可以拍摄出与上述质量相近或者相同的画面。
在进行拍摄参数的调整过程中,需要满足前述的经验曝光方程。
一种可能的实现方式:所述拍摄参数包括:快门速度和感光度。
曝光策略为:根据所述拍摄设备的抖动程度,调小所述快门速度,调大感光度,抖动程度越大,快门速度越小,感光度越大。
另一种可能的实现方式:所述拍摄参数包括:快门速度和光圈值。
曝光策略为:根据所述拍摄设备的抖动程度,调小快门速度,调小光圈值,抖动程度越大,快门速度越小,光圈值越小。
再一种可能的实现方式:所述拍摄参数包括:快门速度、光圈值和感光度。
曝光策略为:根据所述拍摄设备的抖动程度,调小所述快门速度、调大所述感光度和调小所述光圈值,抖动程度越大,快门速度越小,感光度越大, 光圈值越小。
可选地,由于感光度会影响色噪,增大感光度会引入更多的噪声,影响画面质量,因此,在快门速度、光圈值和感光度都可调的情况下,优先调快门速度和光圈值,最后调感光度。
在上述各种可能的实现方式中,具体调小或者调大的数值根据抖动程度确定。
可选地,曝光策略也可以是基于拍摄设备抖动程度为预设阈值时摄出的某种质量的画面所采用的拍摄参数进行的调整,采用曝光策略调整后的拍摄参数可以拍摄出与上述质量相近或者相同的画面。
一种可能的实现方式:所述拍摄参数包括:快门速度和感光度。
曝光策略为:在拍摄设备的抖动程度大于预设阈值时,根据拍摄设备的抖动程度,调小快门速度,调大感光度,当抖动程度大于预设阈值时,对拍摄参数进行调整,抖动程度越大,快门速度越小,感光度越大。
另一种可能的实现方式:所述拍摄参数包括:快门速度和光圈值。
在拍摄设备的抖动程度大于预设阈值时,根据所述拍摄设备的抖动程度,调小快门速度,调小光圈值,抖动程度越大,快门速度越小,光圈值越小。
再一种可能的实现方式:所述拍摄参数包括:快门速度、光圈值和感光度。
曝光策略为:在拍摄设备的抖动程度大于预设阈值时,根据拍摄设备的抖动程度,调小快门速度、调大感光度和调小光圈值,当抖动程度大于预设阈值时,对拍摄参数进行调整,抖动程度越大,快门速度越小,感光度越大,光圈值越小。
可选地,预设阈值可以根据经验值确定,例如:可以确定对拍摄的画面的质量影响不大时,最大的抖动程度为预设阈值。
可选地,由于感光度会影响色噪,增大感光度会引入更多的噪声,影响画面质量,因此,在快门速度、光圈值和感光度都可调的情况下,优先调快门速度和光圈值,最后调感光度。
S3022a:根据曝光策略调整所述拍摄设备的拍摄参数。
本实施例,通过根据拍摄设备的抖动程度,确定曝光策略,根据曝光策略调整所述拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从 而,提高拍摄设备拍摄的画面的质量。
图6为本发明实施例提供的又一种拍摄参数的调整方法的流程示意图,图6是在图3或图4所示实施例的基础上,对根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数的另一种可能的实现方式的描述,如图6所示,本实施例的方法包括:
S3021b:根据拍摄设备的抖动程度,查找抖动程度对应的曝光表。
其中,曝光表中包含抖动程度对应的拍摄参数的目标值。
其中,一种可能的实现方式:所述拍摄参数包括:快门速度和感光度。
曝光表中包含抖动程度对应的快门速度和感光度;可选地,可以是抖动程度的区间值对应一个快门速度和感光度的组合;可以是抖动程度的区间值对应多个快门速度和感光度的组合,当抖动程度的区间值对应多个快门速度和感光度的组合时,各快门速度和感光度的组合可以具有不同的优先级。也可以是每个抖动程度值对应一个快门速度和感光度的组合;可以是每个抖动程度值对应多个快门速度和感光度的组合,当一个抖动程度值对应多个快门速度和感光度的组合时,各快门速度和感光度的组合可以具有不同的优先级。对此,本发明实施例不做限制。抖动程度越大,快门速度越小,感光度越大。
另一种可能的实现方式:所述拍摄参数包括:快门速度和光圈值。
曝光表中包含抖动程度对应的快门速度和光圈值;可选地,可以是抖动程度的区间值对应一个快门速度和光圈值的组合;可以是抖动程度的区间值对应多个快门速度和光圈值的组合,当抖动程度的区间值对应多个快门速度和光圈值的组合时,各快门速度和光圈值的组合可以具有不同的优先级。也可以是每个抖动程度值对应一个快门速度和光圈值的组合;可以是每个抖动程度值对应多个快门速度和光圈值的组合,当一个抖动程度值对应多个快门速度和光圈值的组合时,各快门速度和光圈值的组合可以具有不同的优先级。对此,本发明实施例不做限制。抖动程度越大,快门速度越小,光圈值越小。
再一种可能的实现方式:所述拍摄参数包括:快门速度、光圈值和感光度。
曝光表中包含抖动程度对应的快门速度、光圈值和感光度;可选地,可以是抖动程度的区间值对应一个快门速度、光圈值和感光度的组合;可以是抖动程度的区间值对应多个快门速度、光圈值和感光度的组合,当抖动程度 的区间值对应多个快门速度、光圈值和感光度的组合时,各快门速度、光圈值和感光度的组合可以具有不同的优先级。也可以是每个抖动程度值对应一个快门速度、光圈值和感光度的组合;可以是每个抖动程度值对应多个快门速度、光圈值和感光度的组合,当一个抖动程度值对应多个快门速度、光圈值和感光度的组合时,各快门速度、光圈值和感光度的组合可以具有不同的优先级。对此,本发明实施例不做限制。抖动程度越大,快门速度越小,感光度越大,光圈值越小。
S3022b:根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
根据上述曝光表,将拍摄设备的拍摄参数调整到抖动程度对应的拍摄参数的目标值。
本实施例,通过根据拍摄设备的抖动程度,查找抖动程度对应的曝光表,根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数,从而,使得拍摄参数的调整更加合理,从而,提高拍摄设备拍摄的画面的质量。
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序指令被执行时可包括如上述各方法实施例中的拍摄参数的调整方法的部分或全部步骤。
图7为本发明实施例提供的一种拍摄设备的结构示意图,如图7所示,本实施例的拍摄设备包括:处理器71和镜头72。
其中,处理器用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
本实施例的装置,对应地可用于执行图3所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
可选地,所述处理器71具体用于获取所述拍摄设备的三轴姿态角速度;根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于
根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
可选地,所述拍摄参数包括:快门速度、光圈值和/或感光度。
本实施例的装置,对应地可用于执行图4所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
本发明还提供一种拍摄设备的实施例,在图7中所示的所述处理器71具体用于根据所述拍摄设备的抖动程度,确定曝光策略;根据所述曝光策略调整所述拍摄设备的拍摄参数。
可选地,所述拍摄参数包括:快门速度。
所述处理器71具体用于若所述拍摄设备的抖动程度大于预设阈值,根据所述拍摄设备的抖动程度,调小所述快门速度。
可选地,所述拍摄参数还包括:感光度;
所述处理器71还用于调大所述感光度。
可选地,所述拍摄参数还包括:光圈值和感光度;
所述处理器还用于调大所述感光度和调小所述光圈值。
本实施例的装置,对应地可用于执行图5所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
本发明还提供一种拍摄设备的实施例,在图7中所示的处理器71具体用于根据所述拍摄设备的抖动程度,查找所述抖动程度对应的曝光表,所述曝光表中包含所述抖动程度对应的拍摄参数的目标值;根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
本实施例的装置,对应地可用于执行图6所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
可选地,本实施例的拍摄设备还可以包括:存储器(图中未示出),存储器用于存储程序代码,当程序代码被处理器执行时,所述拍摄设备可以实现上述各实施例的技术方案。
图8为本发明实施例提供的一种可移动平台的结构示意图,如图8所示,本实施例的可移动平台包括:平台本体81以及装置于所述平台本体上的拍摄设备82;
所述拍摄设备82包括:处理器71和镜头72;
所述处理器71用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
本实施例的装置,对应地可用于执行图3所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
可选地,所述处理器71具体用于获取所述拍摄设备的三轴姿态角速度;根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
可选地,所述处理器71具体用于
根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
可选地,所述拍摄参数包括:快门速度、光圈值和/或感光度。
本实施例的装置,对应地可用于执行图4所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
本发明还提供一种拍摄设备的实施例,在图8中所示的所述处理器71具体用于根据所述拍摄设备的抖动程度,确定曝光策略;根据所述曝光策略调整所述拍摄设备的拍摄参数。
可选地,所述拍摄参数包括:快门速度;
所述处理器71具体用于若所述拍摄设备的抖动程度大于预设阈值,根据所述拍摄设备的抖动程度,调小所述快门速度。
可选地,所述拍摄参数还包括:感光度;
所述处理器71还用于调大所述感光度。
可选地,所述拍摄参数还包括:光圈值和感光度;
所述处理器还用于调大所述感光度和调小所述光圈值。
本实施例的装置,对应地可用于执行图5所示方法实施例的技术方案, 其实现原理类似和技术效果类似,此处不再赘述。
本发明还提供一种拍摄设备的实施例,在图8中所示的处理器71具体用于根据所述拍摄设备的抖动程度,查找所述抖动程度对应的曝光表,所述曝光表中包含所述抖动程度对应的拍摄参数的目标值;根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
本实施例的装置,对应地可用于执行图6所示方法实施例的技术方案,其实现原理类似和技术效果类似,此处不再赘述。
可选地,本实施例的可移动平台还可以包括:存储器(图中未示出),存储器用于存储程序代码,当程序代码被处理器执行时,所述可移动平台可以实现上述各实施例的技术方案。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种拍摄参数的调整方法,其特征在于,包括:
    获取拍摄设备的抖动程度;
    根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取拍摄设备的抖动程度,包括:
    获取所述拍摄设备的三轴姿态角速度;
    根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度,包括:
    根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度,包括:
    根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度,包括:
    根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
    其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述拍摄参数包括:快门速度、光圈值和/或感光度。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数,包括:
    根据所述拍摄设备的抖动程度,确定曝光策略;
    根据所述曝光策略调整所述拍摄设备的拍摄参数。
  8. 根据权利要求7所述的方法,其特征在于,所述拍摄参数包括:快门速度;
    所述根据所述拍摄设备的抖动程度,确定曝光策略,包括:
    若所述拍摄设备的抖动程度大于预设阈值,根据所述拍摄设备的抖动程度,调小所述快门速度。
  9. 根据权利要求8所述的方法,其特征在于,所述拍摄参数还包括:感光度;
    所述方法还包括:
    调大所述感光度。
  10. 根据权利要求8所述的方法,其特征在于,所述拍摄参数还包括:光圈值和感光度;
    所述方法还包括:
    调小所述光圈值和调大所述感光度和。
  11. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数,包括:
    根据所述拍摄设备的抖动程度,查找所述抖动程度对应的曝光表,所述曝光表中包含所述抖动程度对应的拍摄参数的目标值;
    根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
  12. 一种拍摄设备,其特征在于,包括:
    处理器和镜头;
    所述处理器用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
  13. 根据权利要求12所述的装置,其特征在于,所述处理器具体用于获取所述拍摄设备的三轴姿态角速度;根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器具体用于根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器具体用于根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器具体用于
    根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
    其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示 各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述拍摄参数包括:快门速度、光圈值和/或感光度。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述处理器具体用于根据所述拍摄设备的抖动程度,确定曝光策略;根据所述曝光策略调整所述拍摄设备的拍摄参数。
  19. 根据权利要求18所述的装置,其特征在于,所述拍摄参数包括:快门速度;
    所述处理器具体用于若所述拍摄设备的抖动程度大于预设阈值,根据所述拍摄设备的抖动程度,调小所述快门速度。
  20. 根据权利要求19所述的装置,其特征在于,所述拍摄参数还包括:感光度;
    所述处理器还用于调大所述感光度。
  21. 根据权利要求19所述的装置,其特征在于,所述拍摄参数还包括:光圈值和感光度;
    所述处理器还用于调小所述光圈值和调大所述感光度和。
  22. 根据权利要求12-17任一项所述的方法,其特征在于,所述处理模块具体用于根据所述拍摄设备的抖动程度,查找所述抖动程度对应的曝光表,所述曝光表中包含所述抖动程度对应的拍摄参数的目标值;根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
  23. 一种可移动平台,其特征在于,包括:平台本体以及装置于所述平台本体上的拍摄设备;
    所述拍摄设备包括:处理器和镜头;
    所述处理器用于获取拍摄设备的抖动程度,根据所述拍摄设备的抖动程度,调整所述拍摄设备的拍摄参数。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述处理器具体用于获取所述拍摄设备的三轴姿态角速度;根据所述三轴姿态角速度,得到所述拍摄设备的抖动程度。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器具体用于根据所述三轴姿态角速度通过计算方式得到所述拍摄设备的抖动程度。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于根据所述三轴姿态角速度通过加权求和的方式得到所述拍摄设备的抖动程度。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器具体用于
    根据ω=aω x+bω y+cω z,得到所述拍摄设备的抖动程度;
    其中,所述ω表示所述拍摄设备的抖动程度,所述ω x表示x轴的姿态角速度,ω y表示y轴的姿态角速度,ω z表示z轴的姿态角速度,a、b、c表示各轴的权重值,所述a+b+c=1,所述a、c均小于所述b。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,所述拍摄参数包括:快门速度、光圈值和/或感光度。
  29. 根据权利要求23-28任一项所述的装置,其特征在于,所述处理器具体用于根据所述拍摄设备的抖动程度,确定曝光策略;根据所述曝光策略调整所述拍摄设备的拍摄参数。
  30. 根据权利要求29所述的装置,其特征在于,所述拍摄参数包括:快门速度;
    所述处理器具体用于若所述拍摄设备的抖动程度大于预设阈值,根据所述拍摄设备的抖动程度,调小所述快门速度。
  31. 根据权利要求30所述的装置,其特征在于,所述拍摄参数还包括:感光度;
    所述处理器还用于调大所述感光度。
  32. 根据权利要求31所述的装置,其特征在于,所述拍摄参数还包括:光圈值和感光度;
    所述处理器还用于调小所述光圈值和调大所述感光度。
  33. 根据权利要求23-28任一项所述的方法,其特征在于,所述处理模块具体用于根据所述拍摄设备的抖动程度,查找所述抖动程度对应的曝光表,所述曝光表中包含所述抖动程度对应的拍摄参数的目标值;根据所述拍摄参数的目标值,调整所述拍摄设备的拍摄参数。
PCT/CN2019/075727 2019-02-21 2019-02-21 拍摄参数的调整方法、拍摄设备以及可移动平台 WO2020168519A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005635.1A CN111357273A (zh) 2019-02-21 2019-02-21 拍摄参数的调整方法、拍摄设备以及可移动平台
PCT/CN2019/075727 WO2020168519A1 (zh) 2019-02-21 2019-02-21 拍摄参数的调整方法、拍摄设备以及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075727 WO2020168519A1 (zh) 2019-02-21 2019-02-21 拍摄参数的调整方法、拍摄设备以及可移动平台

Publications (1)

Publication Number Publication Date
WO2020168519A1 true WO2020168519A1 (zh) 2020-08-27

Family

ID=71195197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075727 WO2020168519A1 (zh) 2019-02-21 2019-02-21 拍摄参数的调整方法、拍摄设备以及可移动平台

Country Status (2)

Country Link
CN (1) CN111357273A (zh)
WO (1) WO2020168519A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347352B (zh) * 2021-05-21 2023-10-03 Oppo广东移动通信有限公司 拍摄参数调整方法及装置、电子设备、计算机存储介质
CN113596342A (zh) * 2021-06-29 2021-11-02 影石创新科技股份有限公司 自动曝光方法、曝光装置、相机及计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025901A1 (en) * 2009-07-29 2011-02-03 Canon Kabushiki Kaisha Movement detection apparatus and movement detection method
CN103543572A (zh) * 2012-07-16 2014-01-29 鸿富锦精密工业(深圳)有限公司 镜头抖动补偿***及方法
US8787747B1 (en) * 2013-03-22 2014-07-22 Panasonic Corporation Image stabilizer device, interchangeable lens, and camera system
CN104067166A (zh) * 2012-01-19 2014-09-24 奥林巴斯株式会社 抖动量检测装置、摄像装置、抖动量检测方法
CN104219448A (zh) * 2014-08-28 2014-12-17 小米科技有限责任公司 拍摄方法和装置
WO2016154873A1 (zh) * 2015-03-31 2016-10-06 华为技术有限公司 一种终端设备和拍照的方法
CN106257911A (zh) * 2016-05-20 2016-12-28 上海九鹰电子科技有限公司 用于视频图像的图像稳定方法和装置
CN106375676A (zh) * 2016-09-20 2017-02-01 广东欧珀移动通信有限公司 终端设备的拍照控制方法、装置和终端设备
CN107896281A (zh) * 2017-11-19 2018-04-10 佛山市百里洲科技有限公司 一种可拍照防抖的手机
CN109361853A (zh) * 2018-10-22 2019-02-19 Oppo广东移动通信有限公司 图像处理方法、装置、电子设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010061627A1 (ja) * 2008-11-28 2012-04-26 パナソニック株式会社 振れ量測定システム、振れ量測定方法および撮像装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025901A1 (en) * 2009-07-29 2011-02-03 Canon Kabushiki Kaisha Movement detection apparatus and movement detection method
CN104067166A (zh) * 2012-01-19 2014-09-24 奥林巴斯株式会社 抖动量检测装置、摄像装置、抖动量检测方法
CN103543572A (zh) * 2012-07-16 2014-01-29 鸿富锦精密工业(深圳)有限公司 镜头抖动补偿***及方法
US8787747B1 (en) * 2013-03-22 2014-07-22 Panasonic Corporation Image stabilizer device, interchangeable lens, and camera system
CN104219448A (zh) * 2014-08-28 2014-12-17 小米科技有限责任公司 拍摄方法和装置
CN104967788A (zh) * 2014-08-28 2015-10-07 小米科技有限责任公司 拍摄方法和装置
WO2016154873A1 (zh) * 2015-03-31 2016-10-06 华为技术有限公司 一种终端设备和拍照的方法
CN106257911A (zh) * 2016-05-20 2016-12-28 上海九鹰电子科技有限公司 用于视频图像的图像稳定方法和装置
CN106375676A (zh) * 2016-09-20 2017-02-01 广东欧珀移动通信有限公司 终端设备的拍照控制方法、装置和终端设备
CN107896281A (zh) * 2017-11-19 2018-04-10 佛山市百里洲科技有限公司 一种可拍照防抖的手机
CN109361853A (zh) * 2018-10-22 2019-02-19 Oppo广东移动通信有限公司 图像处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN111357273A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US11649052B2 (en) System and method for providing autonomous photography and videography
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
CN108235702B (zh) 一种云台、无人机及其控制方法
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
CN110347171B (zh) 一种飞行器控制方法及飞行器
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
WO2018053877A1 (zh) 控制方法、控制设备和运载***
US11076082B2 (en) Systems and methods for digital video stabilization
WO2019126958A1 (zh) 偏航姿态控制方法、无人机、计算机可读存储介质
CN108521864B (zh) 成像控制方法、成像装置和无人机
US11272105B2 (en) Image stabilization control method, photographing device and mobile platform
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制***
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
WO2020172800A1 (zh) 可移动平台的巡检控制方法和可移动平台
CN110568860A (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2020062089A1 (zh) 磁传感器校准方法以及可移动平台
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020168519A1 (zh) 拍摄参数的调整方法、拍摄设备以及可移动平台
JP6910785B2 (ja) 移動撮像装置およびその制御方法、ならびに撮像装置およびその制御方法、無人機、プログラム、記憶媒体
WO2021014752A1 (ja) 情報処理装置、情報処理方法、情報処理プログラム
CN106303240A (zh) 无人飞机光轴变动补偿装置、方法和全景拍摄***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916503

Country of ref document: EP

Kind code of ref document: A1