WO2020164360A1 - 一种直立少层石墨烯-金属纳米粒子复合催化电极 - Google Patents

一种直立少层石墨烯-金属纳米粒子复合催化电极 Download PDF

Info

Publication number
WO2020164360A1
WO2020164360A1 PCT/CN2020/072288 CN2020072288W WO2020164360A1 WO 2020164360 A1 WO2020164360 A1 WO 2020164360A1 CN 2020072288 W CN2020072288 W CN 2020072288W WO 2020164360 A1 WO2020164360 A1 WO 2020164360A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
plasma
metal
layer
few
Prior art date
Application number
PCT/CN2020/072288
Other languages
English (en)
French (fr)
Inventor
郑伟
瓦尔德拉马恩瑞克
赵鑫
Original Assignee
深圳市溢鑫科技研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市溢鑫科技研发有限公司 filed Critical 深圳市溢鑫科技研发有限公司
Publication of WO2020164360A1 publication Critical patent/WO2020164360A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing

Definitions

  • the invention belongs to the field of electrochemistry, and in particular relates to a vertical few-layer graphene-metal nanoparticle composite catalytic electrode with catalytic activity.
  • One of the objectives of the present invention is to provide an upright small-layer graphene-metal nanoparticle composite catalytic electrode in view of the shortcomings of the prior art, which can compound a variety of metals according to requirements, has simple preparation steps, and can provide metal particle size and morphology. At the same time, it reduces the cost of raw materials and conforms to the concept of environmental protection, which is conducive to large-scale practical applications.
  • the invention provides an upright few-layer graphene-metal nanoparticle composite catalytic electrode, which includes a conductive substrate, an upright few-layer graphene layer, and metal nanoparticle.
  • the conductive substrate is carbon paper, carbon cloth, graphite paper, nickel foil, nickel mesh, titanium foil, titanium mesh, platinum foil, and gold foil , At least one of the gold net.
  • the vertical few-layer graphene layer is prepared by a plasma-assisted chemical vapor deposition method under low pressure, and its structure includes planar graphene close to the substrate There are two parts: an upright graphene layer that supports metal nanoparticles.
  • the thickness of the planar graphene layer is 2nm-30nm, the height of the vertical graphene layer is 10nm-20 ⁇ m, and 7-layer graphene [v1], the average thickness is less than 2.5nm, the edge thickness is less than 1nm, the specific surface area is between 1000-2600m 2 /g, and other morphological features such as density and curvature can be adjusted.
  • the metal nanoparticle is used as a catalyst and an active ingredient and is composed of at least one metal such as platinum, gold, palladium, nickel, and ruthenium.
  • the diameter is between 0.5 and 100 nanometers, and the size difference is less than 10%.
  • the metal nanoparticles are uniformly loaded on the surface and edge of the vertical few-layer graphene, and the surface coverage can be controlled at 0-100%.
  • Another object of the present invention is to provide a method for preparing the metal nanoparticle composite catalytic electrode [v2] of the present invention, which includes at least the following steps:
  • Step S1 putting the conductive substrate into the vacuum chamber of the plasma chemical vapor deposition device, and introducing reducing gas, and maintaining the low pressure state in the device through flow adjustment, and performing plasma etching reaction on the substrate;
  • Step S2 after the etching reaction is completed, pass in the protective gas, pass in the carbon source and buffer gas after the temperature rises, and maintain the low pressure state in the device through flow adjustment;
  • step S3 a plasma chemical vapor deposition reaction is performed on the etched substrate. After the reaction is completed, when the temperature of the device drops to room temperature, a conductive substrate on which a few layers of upright graphene are grown can be obtained;
  • Step S4 select a metal target, place the conductive substrate on which the upright few layers of graphene are grown in a physical vapor deposition device, pass inert gas into the device, and maintain the low pressure state in the device through flow adjustment, and perform magnetron sputtering Composite nanoparticles
  • Step S5 after the magnetron sputtering is finished, the inert gas is flushed to normal pressure, and the temperature is increased for a certain period of annealing treatment [v3]
  • step S6 after the annealing reaction is completed, the graphene-metal nano-particle composite catalytic electrode can be obtained after the temperature of the device is reduced to room temperature.
  • the reducing gas is at least one of hydrogen and argon, and the low pressure state is that the vacuum degree is stable at 5Pa-30Pa.
  • the protective gas is at least one of nitrogen and argon
  • the carbon source in question is methane, ethane, ethylene, propylene, acetylene, methanol, ethanol, acetone, benzene, toluene, At least one of xylene and benzoic acid
  • the buffer gas in question is at least one of hydrogen and argon.
  • the ion source of the plasma is at least one of radio frequency plasma, microwave plasma or DC high voltage plasma, and the power density provided by the plasma equipment is 1-50 watts per square centimeter .
  • the reaction temperature of the plasma chemical vapor deposition reaction is 400°C to 1500°C, preferably 690°C to 950°C, and the heating rate is 1°C/min to 100°C/min.
  • the etching reaction time is 1-30 min, and the plasma chemical vapor deposition reaction time is 15-120 min.
  • the metal target material is at least one of platinum, gold, palladium, rhodium, nickel, and ruthenium.
  • the vacuum degree during the magnetron sputtering is controlled at 5Pa-30Pa, the power is 0.5-5W/cm 2 , and the time is 1-500s.
  • the inert gas is at least one of hydrogen, nitrogen and argon.
  • the annealing temperature is 200-800° C., and the time is 0-1 h.
  • the present invention has at least the following beneficial effects:
  • the composite catalytic electrode provided by the present invention has the characteristics of high conductivity, high specific surface area, high structural strength, high chemical stability, etc., and has good and stable physical and chemical properties. A large number of graphene edges and active sites are conducive to the composite of metal nanoparticles.
  • the composite catalytic electrode provided by the invention exhibits high sensitivity and selectivity for the electrochemical detection of non-enzymatic hydrogen peroxide.
  • the composite catalytic electrode provided by the present invention has a high effective surface area and metal utilization rate, which greatly reduces the amount of precious metals and industrial costs.
  • the present invention composites nanoparticles by magnetron sputtering, with simple preparation steps, controllable metal particle size and morphology, high purity, no pollution, and at the same time avoiding pollution in the production process. It is conducive to high-efficiency, fast and cheap mass production, and can be widely used in electrochemistry, analytical chemistry, biochemical, medical, environmental and energy-related industries, and has broad commercialization prospects.
  • Figure 1 is a scanning electron microscope photo of upright few-layer graphene.
  • Figure 2A is a scanning electron microscopy (SEM) photo of upright few-layer graphene; B) is a high-resolution projection electron microscopy photo.
  • SEM scanning electron microscopy
  • Figure 3 is a transmission electron microscope photograph of a platinum nanoparticle modified upright few-layer graphene nanoelectrode.
  • the vertical few-layer graphene has a unique morphology: carbon nanosheets grow vertically and have a large surface area.
  • Figure 2 reveals that the edge thickness ranges from 0.34 to 0.37 nanometers, with one to two layers of graphene structure.
  • Figure 3 shows that the platinum particles are uniform in size and morphology, with an average diameter of about 2 nanometers.
  • a method for preparing an upright few-layer graphene-metal nanoparticle composite catalytic electrode includes at least the following steps:
  • the highly conductive carbon paper is put into the vacuum chamber of the plasma chemical vapor deposition device, and the reducing gas hydrogen and argon are introduced 1:1, and the low pressure state in the device is maintained through flow adjustment to stabilize the vacuum degree.
  • 15Pa plasma etching reaction on the substrate, the reaction time is 10min, the power density of the plasma equipment is 10 watts per square centimeter;
  • argon gas is introduced, and the temperature is heated to 700°C at a heating rate of 20°C/min. After the temperature rises, hydrogen and methane are introduced 1:1, and the low pressure in the device is maintained through flow adjustment and the vacuum is maintained. The degree is 15Pa;
  • the third step is to perform plasma chemical vapor deposition reaction on the substrate, the reaction time is 15 minutes, the power density provided by the plasma equipment is 10 watts per square centimeter, and the temperature of the equipment is reduced to room temperature after the reaction is completed;
  • the fourth step select the platinum target material and place the obtained material in a physical meteorological deposition device, evacuate to 2x10 -3 pa, fill in argon gas to stabilize the pressure at 5pa, and start magnetron sputtering with a power of 5W/cm 2 , Time 70s;
  • argon gas is blown in to 1x10 5 Pa, and the temperature is raised to 300°C for 30 minutes for annealing treatment;
  • the temperature of the equipment is lowered to room temperature to obtain the desired electrode.
  • the average thickness of the upright few graphene layers on the electrode surface prepared in this embodiment is 2 ⁇ m
  • the average thickness of planar graphene is 2 nm
  • the average specific surface area is 1300 m 2 /g.
  • This material is used as an upright small-layer graphene-metal nanoparticle composite catalytic electrode, and a pH 7.0 PBS buffer solution is selected as the supporting electrolyte.
  • the concentration of NO 2- is in the range of 3.0 ⁇ 10 -5 to 6.0 ⁇ 10 -4 mol ⁇ L -1 , the peak current and concentration show a good linear relationship.
  • the electrochemical oxidation reaction has good catalytic performance and can be used in the detection of NO 2- .
  • Example 1 The difference from Example 1 is the preparation method and application of gold nanoparticles on the vertical graphene surface.
  • the method at least includes the following steps:
  • the gold target is selected and the materials prepared in the first to third steps in Example 1 are placed in a physical meteorological deposition device, vacuumed to 3x10 -3 pa, and filled with argon to stabilize the pressure at 5 pa. Start magnetron sputtering with power of 5W/cm 2 and time of 300s;
  • argon gas is blown in to 1x10 5 Pa, and the temperature is increased to 450°C for 40 minutes for annealing treatment;
  • the temperature in the equipment is lowered to room temperature, and the sample is taken out;
  • the vertical graphene in this embodiment supports nano-gold particles with a particle size of about 13 nm.
  • Differential pulse voltammograms of different concentrations of catechol and different concentrations of hydroquinone with PBS as the base solution at pH 7.0.
  • concentration range of 4 ⁇ 10 -6 ⁇ 1 ⁇ 10 -4 mol/L for catechol and hydroquinone the reduction peak current and concentration of catechol and hydroquinone show a good linear relationship.
  • the detection limit is 4.0 ⁇ 10 -6 mol/L.
  • the 2.0 ⁇ 10 -4 mol/L catechol and hydroquinone solutions were tested in parallel for 5 times.
  • the redox peak current was basically stable with a relative standard deviation of 2.1%. After placing the electrode for 1, 3, and 15 days, In the determination of catechol and hydroquinone, the reduction peak current did not change significantly, indicating that the electrode stability and reproducibility are good.
  • the results show that 150 times the K + , Na + , Ca 2+ , Pb 2+ , Cu 2+ , Mg 2+ and 20 times the concentration of dopamine, citric acid, uric acid, ascorbic acid and glucose do not interfere with the measurement, indicating that this electrode The anti-interference ability is strong. .
  • the difference from Examples 1 and 2 is the preparation method and application of the silver nanoparticles on the vertical graphene surface.
  • the method at least includes the following steps:
  • the silver target is selected and the materials prepared in the first to third steps in Example 1 are placed in a physical meteorological deposition device, vacuumed to 2x10 -3 pa, and filled with argon gas to stabilize the pressure at 5.2 pa , Start magnetron sputtering, power 4W/cm 2 , time 240s;
  • argon gas is blown in to 1x10 5 Pa, and the temperature is raised to 250°C for 30 minutes for annealing treatment;
  • the temperature in the equipment is lowered to room temperature, and the sample is taken out.
  • the vertical graphene in this example carried nano silver particles with a particle size of about 5 nm.
  • the method has high sensitivity, accurate and reliable determination results, and can be used for the determination of hydrogen peroxide in serum.

Abstract

一种直立少层石墨烯金属纳米粒子复合催化电极,包括:导电基底、直立少层石墨烯层、金属纳米粒子。还涉及该复合催化电极的制备方法。该复合催化电极有效表面积和金属利用率高,极大地减少了贵金属用量和工业成本,制备方法通过磁控溅射法复合纳米粒子,制备步骤简便,金属粒子尺寸形貌可控,纯度高。

Description

一种直立少层石墨烯-金属纳米粒子复合催化电极 技术领域
本发明属于电化学领域,尤其涉及一种具有催化活性的直立少层石墨烯-金属纳米粒子复合催化电极。
背景技术
自2003年直立少层石墨烯被成功制备以来,这种明星材料因其特殊的结构,易于工业化生产和卓越的性能收到人们的关注。这种无需粘结剂直接生长于衬底表面的材料,具有巨大的比表面积和微观机械强度。根据需要,仅需经过等离子轰击或紫外照射等简单的处理,直立少层石墨烯便可在保有优良导电性的基础上克服亲水性不足的缺点。研究表明石墨烯-金属复合电极具有广阔的应用前景,如用于催化,生物传感器等领域。目前大多数报道采用还原氧化石墨烯-金属复合材料制备电极,但毫无疑问大量粘结剂牺牲了电极的导电性和后续应用范围,氧化石墨烯制备流程中浓酸的使用也带来了安全和环保方面的考验。在石墨烯与金属纳米粒子的连接过程中,常用的方法有原位还原法、有机物修饰法、电化学沉积法等,但这些方法均存在不足,原位还原法只能得到单组份纳米粒子,有机物修饰法制备步骤繁复,电化学沉积中纳米粒子的尺寸形貌难以控制等。
发明内容
本发明的目的之一在于:针对现有技术不足,提供一种直立少层石墨烯-金属纳米粒子复合催化电极,其能能够根据需求复合多种金属,制备步骤简便,金属粒子尺寸形貌可控,同时降低原料成本及符合环保理念,有利于大规模实际应用。
为了达到上述目的,本发明采用如下技术方案:
本发明提供一种直立少层石墨烯-金属纳米粒子复合催化电极,包括:导电基底、直立少层石墨烯层、金属纳米粒子。
作为本发明直立少层石墨烯-金属纳米粒子复合催化电极的一种改进,所述导电基底为碳纸、碳布、石墨纸、镍箔、镍网、钛箔、钛网、铂箔、金箔、金网中的至少一种。
作为本发明直立少层石墨烯-金属纳米粒子复合催化电极的一种改进,所述直立少层石墨烯层由低压下的等离子辅助的化学气相沉积法制备,其结构包括靠近基底的平面石墨烯层和承载金属纳米粒子的直立石墨烯层两部分。
作为本发明直立少层石墨烯-金属纳米粒子复合催化电极的一种改进,所述平面石墨烯层的厚度为2nm~30nm,所述直立石墨烯层的高度为10nm~20μm,7层石墨烯[v1],平均厚度少于2.5nm,边缘厚度少于1nm,比表面积介于1000~2600m 2/g,其他形貌特征如密度、弯曲度可调制。
作为本发明直立少层石墨烯-金属纳米粒子复合催化电极的一种改进,所述金属纳米颗粒作为催化剂和活性成分,由铂、金、钯、镍、钌等金属的至少一种构成,平均直径介于0.5到100纳米之间,尺寸差异小于10%,金属纳米颗粒均匀负载于直立型少层石墨烯表面和边缘,表面覆盖率可控制在0-100%。
本发明的另一个目的在于,提供一种本发明所述-金属纳米粒子复合催化电极[v2]的制备方法,至少包括如下步骤:
步骤S1,将导电衬底放入等离子体化学气相沉积装置的真空腔中,并通入还原性气体,通过流量调节维持装置内的低压状态,对衬底进行等离子体刻蚀反应;
步骤S2,刻蚀反应结束后通入保护气体,升温后通入碳源和缓冲气体,通过流量调节维持装置内的低压状态;
步骤S3,对刻蚀好的衬底进行等离子体化学气相沉积反应,反应结束后待设备温度降至室温,即可获得生长有直立少层石墨烯的导电基底;
步骤S4,选择金属靶材,将生长有直立少层石墨烯的导电基底置于物理气相沉积装置中,往装置中通入惰性气体,通过流量调节维持装置内的低压状态,进行磁控溅射复合纳米粒子;
步骤S5,磁控溅射结束后,冲入惰性气体至常压,升高温度进行一定时间的退火处理[v3]
步骤S6,退火反应结束后待设备温度降至室温,即可获得石墨烯-金属纳米粒子复合催化电极。
作为本发明方法的一种改进,所述还原性气体为氢气和氩气中的至少一种,所述低压状态为真空度稳定在5Pa~30Pa。
作为本发明方法的一种改进,所述保护气体为氮气和氩气中的至少一种,所诉碳源为甲烷、乙烷、乙烯、丙烯、乙炔、甲醇、乙醇、丙酮、苯、甲苯,二甲苯和苯甲酸中的至少一种,所诉缓冲气体为氢气、氩气中的至少一种。
作为本发明方法的一种改进,所述等离子体的离子源为射频等离子体、微波等离子体或直流高压等离子体中的至少一种,等离子体设备提供的功率密度为1-50瓦每平方厘米。
作为本发明方法的一种改进,所述等离子体化学气相沉积反应的反应温度为400℃~1500℃,优选690℃~950℃,升温速率为1℃/min~100℃/min。
作为本发明方法的一种改进,所述刻蚀反应的时间为1-30min,所诉等离子体化学气相沉积反应的时间为15-120min。
作为本发明方法的一种改进,所述金属靶材为铂、金、钯、铑、镍、钌中的至少一种。
作为本发明方法的一种改进,所述磁控溅射时真空度控制在5pa~30Pa,功率0.5-5W/cm 2,时间1-500s。
作为本发明方法的一种改进,所述惰性气体为氢气、氮气和氩气中至少一种。
作为本发明方法的一种改进,所述退火温度为200~800℃,时间0~1h。
相对于现有技术,本发明至少具有如下有益效果:
1、基于新型的直立型石墨烯纳米材料,本发明提供的复合催化电极具有高导电性,高比表面积,高结构强度,高化学稳定性等特点,具有良好和稳定的物理和化学性质,同时大量的石墨烯边缘和活性部位,有利于金属纳米粒子的复合。
2、在保持直立石墨烯原有的三维立体结构的基础上,在其表面均匀地复合金属纳米粒子,使得该纳米级复杂材料具有高比表面积和大孔容,此外,由于金属纳米粒子本身,以及其与碳成键活性位点的协同作用,本发明提供的复合催化电极对非酶过氧化氢的电化 学检测表现出高的灵敏度和选择性。
3、本发明提供的复合催化电极有效表面积和金属利用率高,极大地减少了贵金属用量和工业成本。
4、本发明通过磁控溅射法复合纳米粒子,制备步骤简便,金属粒子尺寸形貌可控,纯度高,无污染,同时避免了生产过程被污染。有利于高效快速廉价的大批量生产,可广泛应用于电化学,分析化学,生化,医疗,环境以及能源相关行业,具有广阔的商业化前景。
附图说明
下面就根据附图和具体实施方式对本发明及其有益的技术效果作进一步详细的描述,其中:
图1为直立型少层石墨烯扫描电镜照片。
图2A)为直立型少层石墨烯扫描电镜(SEM)照片;B)为高分辨率投射电镜照片。
图3为铂纳米颗粒修饰直立型少层石墨烯纳米电极透射电子显微镜照片。
具体实施方式
下面就根据附图和具体实施例对本发明作进一步描述,但本发明的实施方式不局限于此。
实施例1
如图1所示,直立型少层石墨烯具有独特的形貌:碳纳米片直立生长,具有很大的表面积。图2揭示了边缘厚度介于0.34到0.37纳米,为一到两层石墨烯结构。图3显示铂颗粒尺寸形貌均匀,平均直径为2纳米左右。
一种直立少层石墨烯-金属纳米粒子复合催化电极的制备方法,至少包括如下步骤:
第一步,将高导电碳纸放入等离子体化学气相沉积装置的真空腔中,1:1通入还原性气体氢气和氩气,通过流量调节维持装置内的低压状态,使真空度稳定在15Pa,对基底进行等离子体刻蚀反应,反应时间为10min,等离子设备功率密度为10瓦每平方厘米;
第二步,刻蚀反应结束后通入氩气,以20℃/min的升温速率加热至700℃,升温后1:1通入氢气和甲烷,通过流量调节维持装置内的低压状态,保持真空度为15Pa;
第三步,对基底进行等离子体化学气相沉积反应,反应时间为15min,等离子设备提供的功率密度为10瓦每平方厘米,反应结束后待设备温度降至室温;
第四步,选取铂金靶材将所得材料置于物理气象沉积装置中,抽真空至2x10 -3pa,充入氩气使气压稳定在5pa,开始磁控溅射,其中功率5W/cm 2,时间70s;
第五步,磁控溅射结束后,冲入氩气至1x10 5pa,升高温度至300℃保持30min进行退火处理;
第六步,退火反应结束后待设备温度降至室温,即可获得所需电极。
经过检测,本实施例制备的电极表面直立少层石墨烯层平均厚度为2μm,平面石墨烯平均厚度为2nm,平均比表面积为1300m 2/g。用此材料作为一种直立少层石墨烯-金属纳米粒子复合催化电极,选择pH7.0的PBS缓冲溶液作为支持电解液。用CV研究了扫描速率对NO 2-的电化学行为的影响,结果显示NO 2-的氧化峰电流与扫速在10~350mV·s -1的范围内 呈良好的线性关系,ip(μA)=3.607+55.73v(V·s -1),(r=0.9990),表明该电极反应是吸附控制过程。根据峰型的对称性,选择扫描速度为50mV·s -1,采用差分脉冲伏安法绘制标准曲线。结果表明:随着NO 2-的浓度增大,其氧化峰电流依次增大。NO 2-的浓度在3.0×10 -5~6.0×10 -4mol·L -1范围时,其峰电流与浓度呈现良好的线性关系。线性方程为i(μA)=11.99+0.038c(×10 -6mol·L -1),R=0.9980,检测限为1.0×10 -6mol·L -1,说明该电极对NO 2-的电化学氧化反应具有良好的催化性能,可以应用在NO 2-的检测中。
实施例2
与实施例1不同的是直立石墨烯表面金纳米粒子的制备方法与应用,该方法至少包括如下步骤:
第一步,选取金靶材将经过实施例1中第一步到第三步制备的材料置于物理气象沉积装置中,抽真空至3x10 -3pa,充入氩气使气压稳定在5pa,开始磁控溅射,其中功率5W/cm 2,时间300s;
第二步,磁控溅射结束后,冲入氩气至1x10 5pa,升高温度至450℃保持40min进行退火处理;
第三步,退火反应结束后待设备内温度降至室温,取出样品;
经过检测,本实施例中直立石墨烯上负载的粒径约为13nm的纳米金颗粒。在pH=7.0以PBS为底液的不同浓度邻苯二酚与不同浓度对苯二酚的示差脉冲伏安图。邻苯二酚和对苯二酚在4×10 -6~1×10 -4mol/L浓度范围内,邻苯二酚和对苯二酚的还原峰电流和浓度呈很好的线性关系,邻苯二酚对应的线形回归方程为I pc=-4.2653+0.01246c,相关系数0.9933,检测限为4×10 -7mol/L。对苯二酚线性回归方程为I pc=-5.8562+0.06271c,相关系数为0.9986,对苯二酚检出下限为1×10 -7mol/L。邻苯二酚和对苯二酚混合溶液在2.0×10 -5~1.0×10 -3mol/L范围内,峰电流和浓度呈很好的线性关系,邻苯二酚的线性方程I pc(μA)=-3.016+0.016c(μmol/L),相关系数R=0.9926,对苯二酚的线性方程I pc(μA)=-1.213+0.054c(μmol/L),相关系数R=0.9933,检测下限为4.0×10 -6mol/L。分别对2.0×10 -4mol/L邻苯二酚和对苯二酚溶液平行测定5次,氧化还原峰电流基本稳定,相对标准偏差为2.1%,将该电极放置1、3、15天后,分别对邻苯二酚和对苯二酚的测定,还原峰电流没有明显变化,说明电极稳定性和重现性良好。结果表明,150倍的K +、Na +、Ca 2+、Pb 2+、Cu 2+、Mg 2+和20倍浓度的多巴胺、柠檬酸、尿酸、抗坏血酸和葡萄糖均不干扰测定,表明此电极的抗干扰能力强。。
实施例3
与实施例1、2不同的是直立石墨烯表面银纳米粒子的制备方法与应用,该方法至少包括如下步骤:
第一步,选取银靶材将经过实施例1中第一步到第三步制备的材料置于物理气象沉积装置中,抽真空至2x10 -3pa,充入氩气使气压稳定在5.2pa,开始磁控溅射,其中功率4W/cm 2,时间240s;
第二步,磁控溅射结束后,冲入氩气至1x10 5pa,升高温度至250℃保持30min进行退火处理;
第三步,退火反应结束后待设备内温度降至室温,取出样品。
经过检测,本实施例中直立石墨烯上负载的粒径约为5nm的纳米银颗粒。称取 2.27g磷酸二氢钾、11.93g十二水合磷酸氢二钠,溶解于500mL超纯水中,配制成pH 7.0的磷酸缓冲溶液,于4℃冰箱中保存。取2.5mL过氧化氢溶液(30%)于250mL烧杯中,用97.5mL磷酸缓冲溶液稀释,搅拌均匀,得到0.25mol/L过氧化氢标准溶液。用移液枪移取100μL人血清至电解杯中,加入10mL pH 7.0的磷酸缓冲溶液,于冰水浴中超声5min,使其分散均匀。随后分别移取10mL磷酸缓冲溶液和10mL人血清溶液于不同的电解杯中,向溶液中通高纯氮气15min,除去溶液中的溶解氧。然后加入一定量的过氧化氢,通过磁力搅拌使加入的过氧化氢混合均匀,以铂电极作为对电极,饱和甘汞电极作为参比电极,纳米银-石墨烯电极作为工作电极,以50mV/s扫描速率进行循环伏安扫描,测试过氧化氢在纳米银-石墨烯电极上的响应。经过计算,过氧化氢的浓度在0.5~2.7mmol/L范围内与其还原峰峰电流呈良好的线性关系,线性相关系数r 2=0.9930,检出限为0.17mmol/L(信噪比S/N=3),测定结果的相对标准偏差小于5%(n=5),加标回收率为98%~103%。该方法灵敏度高,测定结果准确可靠,可用于血清中过氧化氢的测定。

Claims (14)

  1. 一种直立少层石墨烯金属纳米粒子复合催化电极,包括:导电基底、直立少层石墨烯层、金属纳米粒子。
  2. 根据权利要求1所述的一种直立少层石墨烯-金属纳米粒子复合催化电极,其特征在于,所述导电基底为碳纸、碳布、石墨纸、镍箔、镍网、钛箔、钛网、铂箔、金箔、金网中的至少一种。
  3. 根据权利要求1所述的一种直立少层石墨烯-金属纳米粒子复合催化电极,其特征在于,所述直立少层石墨烯层由低压下的等离子辅助的化学气相沉积法制备,其结构包括靠近基底的平面石墨烯层和承载金属纳米粒子的直立石墨烯层两部分,其中平面石墨烯层的厚度为2nm~30nm,所述直立石墨烯层的高度为10nm~20μm,直立型少层石墨烯包含少于7层石墨烯,平均厚度少于2.5nm,边缘厚度少于1nm,比表面积介于1000~2600m 2/g,其他形貌特征如密度、弯曲度可调制。
  4. 根据权利要求1所述的一种直立少层石墨烯-金属纳米粒子复合催化电极,其特征在于,所述金属纳米颗粒作为催化剂和活性成分,其由铂、金、钯、镍、钌等金属的至少一种构成,其平均直径介于0.5到100纳米之间,尺寸差异小于10%,金属纳米颗粒均匀负载于直立型少层石墨烯表面和边缘,表面覆盖率可控制在0-100%。
  5. 一种使用权利要求1-4任意一项所述的一种直立少层石墨烯-金属纳米粒子复合催化电极的制备方法,其特征在于,至少包括如下步骤:
    步骤S1,将导电衬底放入等离子体化学气相沉积装置的真空腔中,并通入还原性气体,通过流量调节维持装置内的低压状态,对衬底进行等离子体刻蚀反应;
    步骤S2,刻蚀反应结束后通入保护气体,升温后通入碳源和缓冲气体,通过流量调节维持装置内的低压状态;
    步骤S3,对刻蚀好的衬底进行等离子体化学气相沉积反应,反应结束后待设备温度降至室温,即可获得生长有直立少层石墨烯的导电基底;
    步骤S4,选择金属靶材,将生长有直立少层石墨烯的导电基底置于物理气相沉积装置中,往装置中通入惰性气体,通过流量调节维持装置内的低压状态,进行磁控溅射复合纳米粒子;
    步骤S5,磁控溅射结束后,冲入惰性气体至常压,升高温度进行一定时间的退火处理;
    步骤S6,退火反应结束后待设备温度降至室温,即可获得石墨烯-金属纳米粒子复合催化电极。
  6. 根据权利要求5所述的方法,其特征在于,所述还原性气体为氢气和氩气中的至少一种,所述低压状态为真空度稳定在5Pa~30Pa。
  7. 根据权利要求5所述的方法,其特征在于,所述保护气体为氮气和氩气中的至少一种,所诉碳源为甲烷、乙烷、乙烯、丙烯、乙炔、甲醇、乙醇、丙酮、苯、甲苯,二甲苯和苯甲酸中的至少一种,所诉缓冲气体为氢气、氩气中的至少一种。
  8. 根据权利要求5所述的方法,其特征在于,所述等离子体的离子源为射频等离子体、微波等离子体或直流高压等离子体中的至少一种,等离子体设备提供的功率密度为1-50瓦每平方厘米。
  9. 根据权利要求5所述的方法,其特征在于,所述等离子体化学气相沉积反应的反应温度为400℃~1500℃,优选690℃~950℃,升温速率为1℃/min~100℃/min。
  10. 根据权利要求5所述的方法,其特征在于,所述刻蚀反应的时间为1-30min,所诉等离子体化学气相沉积反应的时间为15-120min。
  11. 根据权利要求5所述的方法,其特征在于,所述金属靶材为铂、金、钯、铑、镍、钌中的至少一种。
  12. 根据权利要求5所述的方法,其特征在于,所述磁控溅射时真空度控制在5pa~30Pa,功率0.5-5W/cm2,时间1-500s。
  13. 根据权利要求5所述的方法,其特征在于,所述惰性气体为氢气、氮气和氩气中至少一种。
  14. 根据权利要求5所述的方法,其特征在于,所述退火温度为200~800℃,时间0~1h。
PCT/CN2020/072288 2019-02-12 2020-01-15 一种直立少层石墨烯-金属纳米粒子复合催化电极 WO2020164360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910110710.2A CN110550597B (zh) 2019-02-12 2019-02-12 一种直立少层石墨烯-金属纳米粒子复合催化电极
CN201910110710.2 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020164360A1 true WO2020164360A1 (zh) 2020-08-20

Family

ID=68736332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072288 WO2020164360A1 (zh) 2019-02-12 2020-01-15 一种直立少层石墨烯-金属纳米粒子复合催化电极

Country Status (2)

Country Link
CN (1) CN110550597B (zh)
WO (1) WO2020164360A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550597B (zh) * 2019-02-12 2020-09-08 深圳市溢鑫科技研发有限公司 一种直立少层石墨烯-金属纳米粒子复合催化电极
US20210300799A1 (en) * 2020-03-27 2021-09-30 Battelle Memorial Institute Electrocatalytic bio-oil and wastewater treatment
CN111707724A (zh) * 2020-07-03 2020-09-25 深圳市溢鑫科技研发有限公司 直立石墨烯葡萄糖酶工作电极、制备方法及生物传感器
CN112345606A (zh) * 2020-11-05 2021-02-09 哈尔滨工业大学(深圳) 一种柔性电极及其制备方法和应用
CN113929086A (zh) * 2021-10-22 2022-01-14 深圳市溢鑫科技研发有限公司 一种直立石墨烯材料及其制备方法和在外泌体捕获中的应用
CN114775008A (zh) * 2022-04-26 2022-07-22 深圳市溢鑫科技研发有限公司 一种直立石墨烯电子媒介体电极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936010A (zh) * 2012-10-12 2013-02-20 南昌绿扬光电科技有限公司 一种在基材上气相沉积生长直立式石墨烯的方法
US20140305805A1 (en) * 2013-04-12 2014-10-16 Uchicago Argonne, Llc Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
CN104577139A (zh) * 2015-01-21 2015-04-29 苏州大学 光响应的二氧化钛纳米管负载催化剂电极及其制备方法
CN106432777A (zh) * 2016-09-28 2017-02-22 常德鑫睿新材料有限公司 一种电磁屏蔽用复合导电薄膜及其制备方法
CN107059051A (zh) * 2017-02-13 2017-08-18 中国科学院物理研究所 包括金属相二硫化钼层的析氢催化电极及其制备方法
CN109346728A (zh) * 2018-09-25 2019-02-15 中新国际联合研究院 非贵金属催化电极、膜电极及其制备方法
CN110550597A (zh) * 2019-02-12 2019-12-10 深圳市溢鑫科技研发有限公司 一种直立少层石墨烯-金属纳米粒子复合催化电极

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551650B2 (en) * 2011-05-12 2013-10-08 Northwestern University Graphene materials having randomly distributed two-dimensional structural defects
CN102354610B (zh) * 2011-08-23 2013-01-09 吉林大学 制备石墨烯/氢氧化钴超级电容器复合电极材料的方法
CN103178243B (zh) * 2013-03-27 2014-12-03 北京大学 锂离子电池用石墨烯/金属复合负极材料及其制备方法
CN104616944A (zh) * 2015-01-28 2015-05-13 天津师范大学 一种表面富褶皱超薄直立石墨烯场发射阴极的制备方法
CN107527744A (zh) * 2016-06-22 2017-12-29 广州墨羲科技有限公司 石墨烯-纳米颗粒-纳米碳墙复合材料、其制造方法及应用
CN107037102B (zh) * 2017-04-12 2019-12-13 西南大学 一种纳米复合材料及其制备方法、应用
CN109103467B (zh) * 2018-08-17 2021-09-28 北京师范大学 一种电化学剥离石墨烯基金属催化剂的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936010A (zh) * 2012-10-12 2013-02-20 南昌绿扬光电科技有限公司 一种在基材上气相沉积生长直立式石墨烯的方法
US20140305805A1 (en) * 2013-04-12 2014-10-16 Uchicago Argonne, Llc Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
CN104577139A (zh) * 2015-01-21 2015-04-29 苏州大学 光响应的二氧化钛纳米管负载催化剂电极及其制备方法
CN106432777A (zh) * 2016-09-28 2017-02-22 常德鑫睿新材料有限公司 一种电磁屏蔽用复合导电薄膜及其制备方法
CN107059051A (zh) * 2017-02-13 2017-08-18 中国科学院物理研究所 包括金属相二硫化钼层的析氢催化电极及其制备方法
CN109346728A (zh) * 2018-09-25 2019-02-15 中新国际联合研究院 非贵金属催化电极、膜电极及其制备方法
CN110550597A (zh) * 2019-02-12 2019-12-10 深圳市溢鑫科技研发有限公司 一种直立少层石墨烯-金属纳米粒子复合催化电极

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUANGA, Z. Y. ET AL.: "Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high-ZT Thermoelectric devices", NANO ENERGY, vol. 38, 31 August 2017 (2017-08-31), pages 385 - 391, XP055726712, ISSN: 2211-2855, DOI: 20200330145006 *

Also Published As

Publication number Publication date
CN110550597A (zh) 2019-12-10
CN110550597B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2020164360A1 (zh) 一种直立少层石墨烯-金属纳米粒子复合催化电极
Xu et al. Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit
Liu et al. Three-dimensional porous NiO nanosheets vertically grown on graphite disks for enhanced performance non-enzymatic glucose sensor
Yuan et al. Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor
Wang et al. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing
Honarpazhouh et al. Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide
Guo et al. Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors
He et al. Non-enzymatic hydrogen peroxide electrochemical sensor based on a three-dimensional MnO 2 nanosheets/carbon foam composite
Zhao et al. Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode
Tajabadi et al. Nitrogen-doped graphene-silver nanodendrites for the non-enzymatic detection of hydrogen peroxide
Miao et al. A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning
US7250188B2 (en) Depositing metal particles on carbon nanotubes
Wang et al. Detection of hydrogen peroxide at a palladium nanoparticle-bilayer graphene hybrid-modified electrode
Yang et al. Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection
Tajabadi et al. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection
Urhan et al. Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection
Tang et al. A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite
Yang et al. A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode
Xie et al. Cu metal-organic framework-derived Cu Nanospheres@ Porous carbon/macroporous carbon for electrochemical sensing glucose
Guan et al. Uniformly dispersed PtNi alloy nanoparticles in porous N-doped carbon nanofibers with high selectivity and stability for hydrogen peroxide detection
Si et al. Facile synthesis of nitrogen-doped graphene derived from graphene oxide and vitamin B3 as high-performance sensor for imidacloprid determination
Wang et al. Facile preparation of a Pt/Prussian blue/graphene composite and its application as an enhanced catalyst for methanol oxidation
Xing et al. Porous Pd films as effective ethanol oxidation electrocatalysts in alkaline medium
Lu et al. A novel nonenzymatic hydrogen peroxide sensor based on three-dimensional porous Ni foam modified with a Pt electrocatalyst
Wang et al. A novel electrochemical sensor based on Cu3P@ NH2-MIL-125 (Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756637

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20756637

Country of ref document: EP

Kind code of ref document: A1