WO2020164206A1 - 一种旋转加速度计重力梯度仪标定方法 - Google Patents

一种旋转加速度计重力梯度仪标定方法 Download PDF

Info

Publication number
WO2020164206A1
WO2020164206A1 PCT/CN2019/089236 CN2019089236W WO2020164206A1 WO 2020164206 A1 WO2020164206 A1 WO 2020164206A1 CN 2019089236 W CN2019089236 W CN 2019089236W WO 2020164206 A1 WO2020164206 A1 WO 2020164206A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
gravity gradiometer
coordinate system
angular
acceleration
Prior art date
Application number
PCT/CN2019/089236
Other languages
English (en)
French (fr)
Inventor
蔡体菁
喻名彪
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/421,383 priority Critical patent/US11372130B2/en
Publication of WO2020164206A1 publication Critical patent/WO2020164206A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • the invention relates to a calibration method of a rotary accelerometer gravity gradiometer, which belongs to the technical field of precision measurement.
  • Moving base gravity gradient exploration is a low-cost, high-efficiency gravity field exploration technology.
  • Gravity gradient data is widely used in geological analysis, gravity field modeling, high-precision navigation, resource exploration, etc.
  • Gravity gradiometer has extremely important civil, national defense, and scientific research value.
  • the mainstream gravity gradiometers currently under development at home and abroad mainly include cold atom gravity gradiometer, superconducting gravity gradiometer, MEMS gravity gradiometer, and rotating accelerometer gravity gradiometer.
  • the technology of rotating accelerometer speedometer gravity gradiometer is the most mature. Commercial operation has been realized.
  • China's gravity gradiometer technology is in the stage of engineering prototype development.
  • the online motion error compensation system of the gravity gradiometer needs to set the initial value of linear motion error coefficient and angular motion error coefficient.
  • the components of the gravity gradiometer system such as stable platforms and carriers, will generate gravitational gradients and interfere with the gravity gradiometer's measurement of the gravitational gradient of the target object. This part of the gravitational gradient generated by its own components is called self-gradient.
  • self-gradient calibrate the parameters of the self-gradient model.
  • the motion error coefficient, scaling coefficient, and self-gradient model parameters of the gravity gradiometer are the parameters that the gravity gradiometer needs to be calibrated.
  • the purpose of the present invention is to solve the above problems and provide a method for calibrating the gravity gradiometer of a rotating accelerometer.
  • the method is based on the analytical model and self-gradient model of the gravity gradiometer of the rotating accelerometer. Movement, angular movement, self-gradient excitation, record the output of the gravity gradiometer, and quickly calibrate the movement error coefficient, scale coefficient, and self-gradient model parameters of the gravity gradiometer at one time.
  • the calibrated gravity gradiometer motion error coefficient is used to set the parameters in the online motion error compensation system of the rotary accelerometer gravity gradiometer, and the calibrated self-gradient model parameters are used for the gravity gradiometer self-gradient compensation.
  • the method adopted by the present invention is to provide a method for calibrating the gravity gradiometer of a rotating accelerometer, which includes the following steps:
  • a x represents the acceleration data in the x direction of the coordinate system measured by the gravity gradiometer
  • a x (t 1 ) represents the acceleration in the x direction of the coordinate system measured by the gravity gradiometer at time t 1
  • a x (t) represents the acceleration data measured by the gravity gradiometer at time t The acceleration in the x direction of the coordinate system
  • a x (t 2 ) represents the acceleration in the x direction of the coordinate system measured by the gravity gradiometer at t 2
  • a y represents the acceleration data in the y direction of the coordinate system measured by the gravity gradiometer
  • a y (t 1 ) represents At t 1 the gravity gradiometer measures the acceleration in the y direction of the coordinate system
  • a y (t) represents the acceleration in the y direction of the gravity gradiometer at time t
  • a y (t 2 ) represents the y in the gravity gradiometer at time t 2 Acceleration in the direction
  • ⁇ x represents the angular velocity data in the x direction of the coordinate system measured by the gravity gradiometer
  • ⁇ x (t 1 ) represents the initial time t 1
  • the angular velocity in the x direction of the gravity gradiometer measures the coordinate system
  • ⁇ x (t) represents the gravity at time t
  • the gradiometer measures the angular velocity in the x direction of the coordinate system
  • ⁇ x (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the x direction of the coordinate system
  • ⁇ y represents the angular velocity data in the y direction of the coordinate system measured by the gravity gradiometer
  • ⁇ y (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular velocity in the y direction of the coordinate system
  • ⁇ y (t) represents the gravity gradiometer at time t Measure the angular velocity in the y direction of the coordinate system
  • ⁇ y (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the y direction of the coordinate system
  • ⁇ z represents the angular velocity data in the z direction of the coordinate system measured by the gravity gradiometer
  • ⁇ z (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular velocity in the z direction of the coordinate system
  • ⁇ z (t) represents the gravity gradiometer at time t Measure the angular velocity in the z direction of the coordinate system
  • ⁇ z (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the z direction of the coordinate system
  • ⁇ ax represents the angular acceleration data in the x direction of the coordinate system measured by the gravity gradiometer
  • ⁇ ax (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ax (t) represents the gravity at time t
  • the gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ax (t p ) represents the end time t p
  • the gravity gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ay represents the angular acceleration data in the y direction of the coordinate system measured by the gravity gradiometer
  • ⁇ ay (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular acceleration in the y direction of the coordinate system
  • ⁇ ay (t) represents the angular acceleration in the y direction of the coordinate system measured by
  • ⁇ x represents the attitude angle data of rotation around the x axis
  • ⁇ x (t 1 ) represents the attitude angle of rotation around the x axis at the starting time t 1
  • ⁇ x (t) represents the attitude angle of rotation around the x axis at time t
  • ⁇ x (t p ) represents the end time t p
  • ⁇ y represents the attitude angle data of the rotation around the y axis
  • ⁇ y (t 1 ) represents the start time t 1
  • ⁇ y (t) represents the posture angle of rotation around the y axis at time t
  • ⁇ y (t p ) represents the posture angle of rotation around the y axis at the end time t p
  • ⁇ z represents the posture angle of rotation around the z axis Data
  • ⁇ z (t 1 ) represents the starting time t 1
  • the output data of the gravity gradiometer is:
  • G out [G out (t 1 ),...,G out (t),...,G out (t p )]
  • G out is the output data of the gravity gradiometer
  • G out (t 1 ) represents the initial time t 1
  • G out (t) represents the output of the gravity gradiometer at time t
  • G out (t p ) Represents the output of the gravity gradiometer at t p ;
  • L m (t) denotes the t-line motion vector time
  • L a (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the line time t
  • ⁇ z (t) represents the line time t
  • ⁇ az (t) represent the angular motion data at time t
  • represents the rotational acceleration Count the angular frequency of the rotating disc of the gravity gradiometer
  • L m (t 1) represents the starting time of the line motion vector t.
  • L m (t) represents the line motion vector at time t
  • L m (t p) t p represents the end time of the line motion vector
  • L a (t 1) represents the angular motion vector starting time t 1
  • L a (t) represents the time t angular motion vectors
  • L a (t p) represents the angular motion vector of the end time t p;
  • the calibration line motion error coefficient vector C m the angular motion error coefficient vector C A , C m is a 1 ⁇ 10 vector, and C A is a 1 ⁇ 8 vector:
  • C ref (t) represents the modulation vector at time t
  • c, c 2 represent cos(), cos 2 (), s, s 2 respectively represent sin(), sin 2 (); ⁇ x (t), ⁇ y (t), ⁇ z (t) Represents the posture at time t, a 1,1 (t),...,a 1,18 (t), a 21 (t),...,a 2,18 (t) are the posture feature parameters at time t;
  • a attu (t) represents the attitude feature matrix at time t, and A attu (t) is a 2 ⁇ 18 matrix;
  • C m is the linear motion error coefficient vector calibrated in step 2)
  • C A is the angular motion error coefficient vector calibrated in step 2)
  • C A (1) is the angular motion error
  • L m (t 1 ) is the line motion vector at the start time t 1
  • L m (t) is the line motion vector at the time t
  • L m (t p ) is the end time t p line motion vector
  • L a (t) is the angular motion vector at time t
  • L a (t 1) is the starting time t 1 of angular motion vectors
  • L a (t p) is the end time t p of the angular motion vector
  • C ref (t) is the modulation vector at time t
  • C ref (t 1 ) is the modulation vector at the start time t 1
  • C ref (t p ) is the modulation vector at the end time t p
  • a attu (t) is
  • the invention provides a method for calibrating the scale coefficient, motion error coefficient, and self-gradient model parameters of the gravity gradiometer at one time by changing the linear motion excitation, angular motion excitation, and self-gradient excitation of the gravity gradiometer.
  • the calibration method does not require external
  • the quality of detection can be self-calibrated by the gravity gradiometer system itself and with the aid of a computer program, which is not limited by the calibration place, and is very suitable for engineering applications.
  • Figure 1 Schematic diagram of the installation of the angular motion and linear motion sensors of the gravity gradiometer.
  • A1, A2, A3, and A4 are four accelerometers installed on the gravity gradiometer of the rotating accelerometer, which are gravitational gradient sensitive elements; the origin of the measurement coordinate system of the gravity gradiometer is at the center of the disc, x m is The x-axis of the gravity gradiometer measurement coordinate system, y m is the y-axis of the gravity gradiometer measurement coordinate system, and z m is the z-axis of the gravity gradiometer measurement coordinate system; a three-axis is installed at the center of the rotating disc of the gravity gradiometer An accelerometer is used to record the linear motion experienced by the gravity gradiometer; a gyroscope is installed on the three coordinate axes of the gravity gradiometer measurement coordinate system to record the angular motion (angular velocity, angular acceleration) experienced by the gravity gradiometer.
  • a calibration method for a rotating accelerometer gravity gradiometer includes the following steps:
  • a x represents the acceleration data in the x direction of the coordinate system measured by the gravity gradiometer
  • a x (t 1 ) represents the acceleration in the x direction of the coordinate system measured by the gravity gradiometer at time t 1
  • a x (t) represents the acceleration data measured by the gravity gradiometer at time t The acceleration in the x direction of the coordinate system
  • a x (t 2 ) represents the acceleration in the x direction of the coordinate system measured by the gravity gradiometer at t 2
  • a y represents the acceleration data in the y direction of the coordinate system measured by the gravity gradiometer
  • a y (t 1 ) represents At t 1 the gravity gradiometer measures the acceleration in the y direction of the coordinate system
  • a y (t) represents the acceleration in the y direction of the gravity gradiometer at time t
  • a y (t 2 ) represents the y in the gravity gradiometer at time t 2 Acceleration in the direction
  • ⁇ x represents the angular velocity data in the x direction of the coordinate system measured by the gravity gradiometer
  • ⁇ x (t 1 ) represents the initial time t 1
  • the angular velocity in the x direction of the gravity gradiometer measures the coordinate system
  • ⁇ x (t) represents the gravity at time t
  • the gradiometer measures the angular velocity in the x direction of the coordinate system
  • ⁇ x (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the x direction of the coordinate system
  • ⁇ y represents the angular velocity data in the y direction of the coordinate system measured by the gravity gradiometer
  • ⁇ y (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular velocity in the y direction of the coordinate system
  • ⁇ y (t) represents the gravity gradiometer at time t Measure the angular velocity in the y direction of the coordinate system
  • ⁇ y (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the y direction of the coordinate system
  • ⁇ z represents the angular velocity data in the z direction of the coordinate system measured by the gravity gradiometer
  • ⁇ z (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular velocity in the z direction of the coordinate system
  • ⁇ z (t) represents the gravity gradiometer at time t Measure the angular velocity in the z direction of the coordinate system
  • ⁇ z (t p ) represents the end time t p
  • the gravity gradiometer measures the angular velocity in the z direction of the coordinate system
  • ⁇ ax represents the angular acceleration data in the x direction of the coordinate system measured by the gravity gradiometer
  • ⁇ ax (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ax (t) represents the gravity at time t
  • the gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ax (t p ) represents the end time t p
  • the gravity gradiometer measures the angular acceleration in the x direction of the coordinate system
  • ⁇ ay represents the angular acceleration data in the y direction of the coordinate system measured by the gravity gradiometer
  • ⁇ ay (t 1 ) represents the starting time t 1
  • the gravity gradiometer measures the angular acceleration in the y direction of the coordinate system
  • ⁇ ay (t) represents the angular acceleration in the y direction of the coordinate system measured by
  • ⁇ x represents the attitude angle data of rotation around the x axis
  • ⁇ x (t 1 ) represents the attitude angle of rotation around the x axis at the starting time t 1
  • ⁇ x (t) represents the attitude angle of rotation around the x axis at time t
  • ⁇ x (t p ) represents the end time t p
  • ⁇ y represents the attitude angle data of the rotation around the y axis
  • ⁇ y (t 1 ) represents the start time t 1
  • ⁇ y (t) represents the posture angle of rotation around the y axis at time t
  • ⁇ y (t p ) represents the posture angle of rotation around the y axis at the end time t p
  • ⁇ z represents the posture angle of rotation around the z axis Data
  • ⁇ z (t 1 ) represents the starting time t 1
  • the output data of the gravity gradiometer is:
  • G out [G out (t 1 ),...,G out (t),...,G out (t p )]
  • G out is the output data of the gravity gradiometer
  • G out (t 1 ) represents the initial time t 1
  • G out (t) represents the output of the gravity gradiometer at time t
  • G out (t p ) Represents the output of the gravity gradiometer at t p ;
  • L m (t) denotes the t-line motion vector time
  • L a (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the angular motion vector at time t
  • a x (t) represents the line time t
  • ⁇ z (t) represents the line time t
  • ⁇ az (t) represent the angular motion data at time t
  • represents the rotational acceleration Count the angular frequency of the rotating disc of the gravity gradiometer
  • L m (t 1) represents the starting time of the line motion vector t.
  • L m (t) represents the line motion vector at time t
  • L m (t p) t p represents the end time of the line motion vector
  • L a (t 1) represents the angular motion vector starting time t 1
  • L a (t) represents the time t angular motion vectors
  • L a (t p) represents the angular motion vector of the end time t p;
  • the calibration line motion error coefficient vector C m the angular motion error coefficient vector C A , C m is a 1 ⁇ 10 vector, and C A is a 1 ⁇ 8 vector:
  • C ref (t) represents the modulation vector at time t
  • c, c 2 represent cos(), cos 2 (), s, s 2 respectively represent sin(), sin 2 (); ⁇ x (t), ⁇ y (t), ⁇ z (t) Represents the posture at time t, a 1,1 (t),...,a 1,18 (t), a 21 (t),...,a 2,18 (t) are the posture feature parameters at time t;
  • a attu (t) represents the attitude feature matrix at time t, and A attu (t) is a 2 ⁇ 18 matrix;
  • C m is the linear motion error coefficient vector calibrated in step 2)
  • C A is the angular motion error coefficient vector calibrated in step 2)
  • C A (1) is the angular motion error
  • L m (t 1 ) is the line motion vector at the start time t 1
  • L m (t) is the line motion vector at the time t
  • L m (t p ) is the end time t p line motion vector
  • L a (t) is the angular motion vector at time t
  • L a (t 1) is the starting time t 1 of angular motion vectors
  • L a (t p) is the end time t p of the angular motion vector
  • C ref (t) is the modulation vector at time t
  • C ref (t 1 ) is the modulation vector at the start time t 1
  • C ref (t p ) is the modulation vector at the end time t p
  • a attu (t) is

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Gyroscopes (AREA)

Abstract

一种旋转加速度计重力梯度仪标定方法,通过改变旋转加速度计重力梯度仪的线运动激励、角运动激励、自梯度激励,一次标定旋转加速度计重力梯度仪的线运动误差系数、角运动误差系数、自梯度模型参数、标度系数。标定的线运动误差系数、角运动误差系数用于重力梯度仪在线运动误差补偿,标定的自梯度模型参数用于自梯度补偿。该标定方法不受标定场所限制,操作简单,适合程序化自标定,具有重要的工程价值。

Description

一种旋转加速度计重力梯度仪标定方法 技术领域
本发明涉及一种旋转加速度计重力梯度仪标定方法,属于精密测量技术领域。
背景技术
动基座重力梯度勘探是一种低成本、高效率的重力场勘探技术。重力梯度数据广泛应用于地质分析、重力场建模、高精度导航、资源勘探等。重力梯度仪具有极其重要的民用、国防、科研价值。目前国内外在研的主流重力梯度仪主要有冷原子重力梯度仪、超导重力梯度仪、MEMS重力梯度仪、旋转加速度计重力梯度仪,其中旋转加速度计速度计重力梯度仪技术最为成熟,已经实现了商业运营,目前我国的重力梯度仪技术处于工程样机研制阶段。
动基座重力梯度勘探中,由于重力梯度仪内部的加速度计存在安装误差、加速度计一阶标度系数不匹配、电路增益不匹配、加速度计高阶非线性误差系数等,导致重力梯度仪的加速度、角速度、角加速度传递到重力梯度仪的输出,造成测量误差;重力梯度仪的加速度、角速度、角加速度激励的输出远大于万有引力梯度激励的输出,会使重力梯度仪电路饱和或损坏,因此旋转加速度计重力梯度仪需要在线补偿运动误差。重力梯度仪的在线运动误差补偿***,需要设置线运动误差系数、角运动误差系数初值。重力梯度仪***的组件,比如稳定平台、载体等会产生万有引力梯度,干扰重力梯度仪对目标物体万有引力梯度的测量,这部分由自身组件产生的万有引力梯度称为自梯度。在重力梯度勘探前,标定自梯度模型参数,在勘探中,记录重力梯度仪的姿态,利用自梯度模型,计算自梯度,并补偿自梯度。重力梯度仪的运动误差系数、标度系数、自梯度模型参数,是重力梯度仪需要标定的参数。
发明内容
本发明的目的是为了解决上述问题,提供一种旋转加速度计重力梯度仪标定方法,该方法基于旋转加速度计重力梯度仪解析模型、自梯度模型,在标定时,同时改变重力梯度仪经历的线运动、角运动、自梯度激励,记录重力梯度仪的输出,一次快速标定重力梯度仪运动误差系数、标度系数、自梯度模型参数。标定的重力梯度仪运动误差系数,用于设置旋转加速度计重力梯度仪在线运动误差补偿***中的参数,标定的自梯度模型参数,用于重力梯度仪自梯度补偿。
为达到上述目的,本发明采用的方式是,提供一种旋转加速度计重力梯度仪标定方法,包括以下步骤:
(1)对旋转加速度计重力梯度仪施加线运动、角运动,同时不断改变重力梯度仪的姿态,记录重力梯度仪经历的线运动(a x,a y,a z)、角运动(ω xyzaxayaz)、姿态(θ xyz)、重力梯度仪的输出(G out)作为标定的数据;用于标定的数据起始时间为t 1,结束时间为t p,重力梯度仪的线运动数据为:
Figure PCTCN2019089236-appb-000001
式中a x表示重力梯度仪测量坐标系x方向的加速度数据,a x(t 1)表示t 1时刻重力梯度仪测量坐标系x方向的加速度;a x(t)表示t时刻重力梯度仪测量坐标系x方向的加速度;a x(t 2)表示t 2时刻重力梯度仪测量坐标系x方向的加速度;a y表示重力梯度仪测量坐标系y方向的加速度数据,a y(t 1)表示t 1时刻重力梯度仪测量坐标系y方向的加速度;a y(t)表示t时刻重力梯度仪测量坐标系y方向的加速度;a y(t 2)表示t 2时刻重力梯度仪测量坐标系y方向的加速度;a z表示重力梯度仪测量坐标系z方向的加速度数据,a z(t 1)表示t 1时刻重力梯度仪测量坐标系z方向的加速度;a z(t)表示t时刻重力梯度仪测量坐标系z方向的加速度;a z(t 2)表示t 2时刻重力梯度仪测量坐标系z方向的加速度;式中[·] T表示转置运算;重力梯度仪角运动数据为:
Figure PCTCN2019089236-appb-000002
式中ω x表示重力梯度仪测量坐标系x方向的角速度数据,ω x(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角速度,ω x(t)表示t时刻重力梯度仪测量坐标系x方向的角速度,ω x(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角速度;
ω y表示重力梯度仪测量坐标系y方向的角速度数据,ω y(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角速度,ω y(t)表示t时刻重力梯度仪测量坐标系y方向的角速度,ω y(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角速度;
ω z表示重力梯度仪测量坐标系z方向的角速度数据,ω z(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角速度,ω z(t)表示t时刻重力梯度仪测量坐标系z方向的角速度,ω z(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角速度;
ω ax表示重力梯度仪测量坐标系x方向的角加速度数据,ω ax(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角加速度,ω ax(t)表示t时刻重力梯度仪测量坐标系x方向的角加速度,ω ax(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角加速度;ω ay表示重力梯度仪测量坐标系y方向的角加速度数据,ω ay(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角加速度,ω ay(t)表示t时刻重力梯度仪测量坐标系y方向的角加速度,ω ay(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角加速度;ω az表示重力梯度仪测量坐标系z方向的角加速度数据,ω az(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角加速度,ω az(t)表示t时刻重力梯度仪测量坐标系z方向的角加速度,ω az(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角加速度;重力梯度仪的姿态数据为:
Figure PCTCN2019089236-appb-000003
式中θ x表示绕x轴旋转的姿态角数据,θ x(t 1)表示起始时刻t 1,绕x轴旋转的姿态角,θ x(t)表示t时刻绕x轴旋转的姿态角,θ x(t p)表示结束时刻t p,绕x轴旋转的姿态角;θ y表示绕y轴旋转的姿态角数据,θ y(t 1)表示起始时刻t 1,绕y轴旋转的姿态角,θ y(t)表示t时刻绕y轴旋转的姿态角,θ y(t p)表示结束时刻t p,绕y轴旋转的姿态角;θ z表示绕z轴旋转的姿态 角数据,θ z(t 1)表示起始时刻t 1,绕z轴旋转的姿态角,θ z(t)表示t时刻绕z轴旋转的姿态角,θ z(t p)表示结束时刻t p,绕z轴旋转的姿态角;
重力梯度仪的输出数据为:
G out=[G out(t 1),…,G out(t),…,G out(t p)]
式中G out是重力梯度仪的输出数据,G out(t 1)表示起始时刻t 1,重力梯度仪的输出,G out(t)表示t时刻重力梯度仪的输出,G out(t p)表示t p时刻重力梯度仪的输出;
(2)根据下述方式,标定旋转加速度计重力梯度仪的线运动误差系数向量C m、角运动误差系数向量C A、标度系数k ggi
(2-1).根据下式,计算所有时刻的线运动向量、角运动向量:
Figure PCTCN2019089236-appb-000004
式中L m(t)表示t时刻的线运动向量,L a(t)表示t时刻的角运动向量,a x(t),a y(t),a z(t)表示t时刻的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻的角运动数据,Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
(2-2).将所有时刻的线运动向量、角运动向量,代入下式计算运动矩阵L:
Figure PCTCN2019089236-appb-000005
式中L m(t 1)表示起始时刻t 1的线运动向量,L m(t)表示t时刻的线运动向量,L m(t p)表示结束时刻t p的线运动向量;L a(t 1)表示起始时刻t 1的角运动向量,L a(t)表示t时刻的角运动向量,L a(t p)表示结束时刻t p的角运动向量;
(2-3).根据下式,标定线运动误差系数向量C m,角运动误差系数向量C A,C m是1×10向量,C A是1×8向量:
[C m,C A]=G out·L +
式中G out是旋转加速度计重力梯度仪的输出,L +表示L矩阵的加号逆;重力梯度仪的标度系数k ggi等于角运动误差系数向量C A的第1个元素,也就是k ggi=C A(1);
(3)根据下述方式,标定自梯度模型参数:
(3-1).根据下式,计算所有时刻的调制向量
C ref(t)=[sin2Ωt,cos2Ωt]
C ref(t)表示t时刻的调制向量;
(3-2).将姿态数据代入下式,计算所有时刻的姿态特征参数:
Figure PCTCN2019089236-appb-000006
式中,c,c 2分别表示cos(),cos 2(),s,s 2分别表示sin(),sin 2();θ x(t),θ y(t),θ z(t)表示t时刻的姿态,a 1,1(t),…,a 1,18(t),a 21(t),…,a 2,18(t)是t时刻的姿态特征参数;
(3-3).将计算的姿态特征参数,代入下式,计算所有时刻的姿态特征矩阵:
Figure PCTCN2019089236-appb-000007
式中A attu(t)表示时刻t的姿态特征矩阵,A attu(t)是2×18矩阵;
(3-4).根据下式,标定重力梯度仪自梯度模型参数:
Figure PCTCN2019089236-appb-000008
式中P表示标定的自梯度模型参数,C m是步骤2)中标定的线运动误差系数向量,C A是步骤2)中标定的角运动误差系数向量,C A(1)是角运动误差系数向量的第1个元素;L m(t 1)是起始时刻t 1的线运动向量,L m(t)是t时刻的线运动向量,L m(t p)是结束时刻t p的线运动向量;L a(t)是t时刻的角运动向量,L a(t 1)是起始时刻t 1的角运动向量,L a(t p)是结束时刻t p的角运动向量;C ref(t)是t时刻的调制向量,C ref(t 1)是起始时刻t 1的调制向量,C ref(t p)是结束时刻t p的调制向量;A attu(t)是t时刻的姿态特征矩阵,A attu(t 1)是起始时刻t 1的姿态特征矩阵,A attu(t p)是结束时刻t p的姿态特征矩阵。
有益效果:
本发明提供一种通过改变重力梯度仪的线运动激励、角运动激励、自梯度激励,一次标定重力梯度仪的标度系数、运动误差系数、自梯度模型参数的方法,该标定方法不需要外部检测质量,利用重力梯度仪***本身、借助计算机程序可实现自标定,不受标定场所限制,非常适合工程应用。
附图说明
图1重力梯度仪角运动、线运动传感器安装示意图。
图2旋转加速度计重力梯度仪标定流程。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步地说明。
如图1所示,A1,A2,A3,A4是旋转加速度计重力梯度仪上安装的四只加速度计,是万有引力梯度敏感元件;重力梯度仪测量坐标系的原点位于圆盘中心,x m是重力梯度仪 测量坐标系的x轴,y m是重力梯度仪测量坐标系的y轴,z m是重力梯度仪测量坐标系的z轴;在重力梯度仪旋转圆盘中心点安装一只三轴加速度计,用于记录重力梯度仪经历的线运动;在重力梯度仪测量坐标系的三个坐标轴分别安装陀螺仪,用于记录重力梯度仪经历的角运动(角速度,角加速度)。
如图2所示,一种旋转加速度计重力梯度仪标定方法,包括以下步骤:
(1)对旋转加速度计重力梯度仪施加线运动、角运动,同时不断改变重力梯度仪的姿态,记录重力梯度仪经历的线运动(a x,a y,a z)、角运动(ω xyzaxayaz)、姿态(θ xyz)、重力梯度仪的输出(G out)作为标定的数据;用于标定的数据起始时间为t 1,结束时间为t p,重力梯度仪的线运动数据为:
Figure PCTCN2019089236-appb-000009
式中a x表示重力梯度仪测量坐标系x方向的加速度数据,a x(t 1)表示t 1时刻重力梯度仪测量坐标系x方向的加速度;a x(t)表示t时刻重力梯度仪测量坐标系x方向的加速度;a x(t 2)表示t 2时刻重力梯度仪测量坐标系x方向的加速度;a y表示重力梯度仪测量坐标系y方向的加速度数据,a y(t 1)表示t 1时刻重力梯度仪测量坐标系y方向的加速度;a y(t)表示t时刻重力梯度仪测量坐标系y方向的加速度;a y(t 2)表示t 2时刻重力梯度仪测量坐标系y方向的加速度;a z表示重力梯度仪测量坐标系z方向的加速度数据,a z(t 1)表示t 1时刻重力梯度仪测量坐标系z方向的加速度;a z(t)表示t时刻重力梯度仪测量坐标系z方向的加速度;a z(t 2)表示t 2时刻重力梯度仪测量坐标系z方向的加速度;式中[·] T表示转置运算;重力梯度仪角运动数据为:
Figure PCTCN2019089236-appb-000010
式中ω x表示重力梯度仪测量坐标系x方向的角速度数据,ω x(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角速度,ω x(t)表示t时刻重力梯度仪测量坐标系x方向的角速度,ω x(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角速度;
ω y表示重力梯度仪测量坐标系y方向的角速度数据,ω y(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角速度,ω y(t)表示t时刻重力梯度仪测量坐标系y方向的角速度,ω y(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角速度;
ω z表示重力梯度仪测量坐标系z方向的角速度数据,ω z(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角速度,ω z(t)表示t时刻重力梯度仪测量坐标系z方向的角速度,ω z(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角速度;
ω ax表示重力梯度仪测量坐标系x方向的角加速度数据,ω ax(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角加速度,ω ax(t)表示t时刻重力梯度仪测量坐标系x方向的角加速度,ω ax(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角加速度;ω ay表示重力梯度仪测量坐标系y方向的角加速度数据,ω ay(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角加速度,ω ay(t)表示t时刻重力梯度仪测量坐标系y方向的角加速度,ω ay(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角加速度;ω az表示重力梯度仪测量坐标系z方向的角加速度数据,ω az(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角加速度,ω az(t)表示t时刻重力梯度仪测量坐标系z方向的角加速度,ω az(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角加速度;重力梯度仪的姿态数据为:
Figure PCTCN2019089236-appb-000011
式中θ x表示绕x轴旋转的姿态角数据,θ x(t 1)表示起始时刻t 1,绕x轴旋转的姿态角,θ x(t)表示t时刻绕x轴旋转的姿态角,θ x(t p)表示结束时刻t p,绕x轴旋转的姿态角;θ y表示绕y轴旋转的姿态角数据,θ y(t 1)表示起始时刻t 1,绕y轴旋转的姿态角,θ y(t)表示t时刻绕y轴旋转的姿态角,θ y(t p)表示结束时刻t p,绕y轴旋转的姿态角;θ z表示绕z轴旋转的姿态角数据,θ z(t 1)表示起始时刻t 1,绕z轴旋转的姿态角,θ z(t)表示t时刻绕z轴旋转的姿态角,θ z(t p)表示结束时刻t p,绕z轴旋转的姿态角;
重力梯度仪的输出数据为:
G out=[G out(t 1),…,G out(t),…,G out(t p)]
式中G out是重力梯度仪的输出数据,G out(t 1)表示起始时刻t 1,重力梯度仪的输出,G out(t)表示t时刻重力梯度仪的输出,G out(t p)表示t p时刻重力梯度仪的输出;
(2)根据下述方式,标定旋转加速度计重力梯度仪的线运动误差系数向量C m、角运动误差系数向量C A、标度系数k ggi
(2-1).根据下式,计算所有时刻的线运动向量、角运动向量:
Figure PCTCN2019089236-appb-000012
式中L m(t)表示t时刻的线运动向量,L a(t)表示t时刻的角运动向量,a x(t),a y(t),a z(t)表示t时刻的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻的角 运动数据,Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
(2-2).将所有时刻的线运动向量、角运动向量,代入下式计算运动矩阵L:
Figure PCTCN2019089236-appb-000013
式中L m(t 1)表示起始时刻t 1的线运动向量,L m(t)表示t时刻的线运动向量,L m(t p)表示结束时刻t p的线运动向量;L a(t 1)表示起始时刻t 1的角运动向量,L a(t)表示t时刻的角运动向量,L a(t p)表示结束时刻t p的角运动向量;
(2-3).根据下式,标定线运动误差系数向量C m,角运动误差系数向量C A,C m是1×10向量,C A是1×8向量:
[C m,C A]=G out·L +
式中G out是旋转加速度计重力梯度仪的输出,L +表示L矩阵的加号逆;重力梯度仪的标度系数k ggi等于角运动误差系数向量C A的第1个元素,也就是k ggi=C A(1);
(3)根据下述方式,标定自梯度模型参数:
(3-1).根据下式,计算所有时刻的调制向量
C ref(t)=[sin2Ωt,cos2Ωt]
C ref(t)表示t时刻的调制向量;
(3-2).将姿态数据代入下式,计算所有时刻的姿态特征参数:
Figure PCTCN2019089236-appb-000014
式中,c,c 2分别表示cos(),cos 2(),s,s 2分别表示sin(),sin 2();θ x(t),θ y(t),θ z(t)表示t时刻的姿态,a 1,1(t),…,a 1,18(t),a 21(t),…,a 2,18(t)是t时刻的姿态特征参数;
(3-3).将计算的姿态特征参数,代入下式,计算所有时刻的姿态特征矩阵:
Figure PCTCN2019089236-appb-000015
式中A attu(t)表示时刻t的姿态特征矩阵,A attu(t)是2×18矩阵;
(3-4).根据下式,标定重力梯度仪自梯度模型参数:
Figure PCTCN2019089236-appb-000016
式中P表示标定的自梯度模型参数,C m是步骤2)中标定的线运动误差系数向量,C A是步骤2)中标定的角运动误差系数向量,C A(1)是角运动误差系数向量的第1个元素;L m(t 1)是起始时刻t 1的线运动向量,L m(t)是t时刻的线运动向量,L m(t p)是结束时刻t p的线运动向量;L a(t)是t时刻的角运动向量,L a(t 1)是起始时刻t 1的角运动向量,L a(t p)是结束时刻t p的角运动向量;C ref(t)是t时刻的调制向量,C ref(t 1)是起始时刻t 1的调制向量,C ref(t p)是结束时刻t p的调制向量;A attu(t)是t时刻的姿态特征矩阵,A attu(t 1)是起始时刻t 1的姿态特征矩阵,A attu(t p)是结束时刻t p的姿态特征矩阵
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (1)

  1. 一种旋转加速度计重力梯度仪标定方法,其特征在于,该方法包括以下步骤:
    (1)对旋转加速度计重力梯度仪施加线运动、角运动,同时不断改变重力梯度仪的姿态,记录重力梯度仪经历的线运动(a x,a y,a z)、角运动(ω xyzaxayaz)、姿态(θ xyz)、重力梯度仪的输出(G out)作为标定的数据;用于标定的数据起始时间为t 1,结束时间为t p,重力梯度仪的线运动数据为:
    Figure PCTCN2019089236-appb-100001
    式中a x表示重力梯度仪测量坐标系x方向的加速度数据,a x(t 1)表示t 1时刻重力梯度仪测量坐标系x方向的加速度;a x(t)表示t时刻重力梯度仪测量坐标系x方向的加速度;a x(t 2)表示t 2时刻重力梯度仪测量坐标系x方向的加速度;a y表示重力梯度仪测量坐标系y方向的加速度数据,a y(t 1)表示t 1时刻重力梯度仪测量坐标系y方向的加速度;a y(t)表示t时刻重力梯度仪测量坐标系y方向的加速度;a y(t 2)表示t 2时刻重力梯度仪测量坐标系y方向的加速度;a z表示重力梯度仪测量坐标系z方向的加速度数据,a z(t 1)表示t 1时刻重力梯度仪测量坐标系z方向的加速度;a z(t)表示t时刻重力梯度仪测量坐标系z方向的加速度;a z(t 2)表示t 2时刻重力梯度仪测量坐标系z方向的加速度;式中[·] T表示转置运算;重力梯度仪角运动数据为:
    Figure PCTCN2019089236-appb-100002
    式中ω x表示重力梯度仪测量坐标系x方向的角速度数据,ω x(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角速度,ω x(t)表示t时刻重力梯度仪测量坐标系x 方向的角速度,ω x(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角速度;
    ω y表示重力梯度仪测量坐标系y方向的角速度数据,ω y(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角速度,ω y(t)表示t时刻重力梯度仪测量坐标系y方向的角速度,ω y(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角速度;
    ω z表示重力梯度仪测量坐标系z方向的角速度数据,ω z(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角速度,ω z(t)表示t时刻重力梯度仪测量坐标系z方向的角速度,ω z(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角速度;
    ω ax表示重力梯度仪测量坐标系x方向的角加速度数据,ω ax(t 1)表示起始时刻t 1,重力梯度仪测量坐标系x方向的角加速度,ω ax(t)表示t时刻重力梯度仪测量坐标系x方向的角加速度,ω ax(t p)表示结束时刻t p,重力梯度仪测量坐标系x方向的角加速度;ω ay表示重力梯度仪测量坐标系y方向的角加速度数据,ω ay(t 1)表示起始时刻t 1,重力梯度仪测量坐标系y方向的角加速度,ω ay(t)表示t时刻重力梯度仪测量坐标系y方向的角加速度,ω ay(t p)表示结束时刻t p,重力梯度仪测量坐标系y方向的角加速度;ω az表示重力梯度仪测量坐标系z方向的角加速度数据,ω az(t 1)表示起始时刻t 1,重力梯度仪测量坐标系z方向的角加速度,ω az(t)表示t时刻重力梯度仪测量坐标系z方向的角加速度,ω az(t p)表示结束时刻t p,重力梯度仪测量坐标系z方向的角加速度;重力梯度仪的姿态数据为:
    Figure PCTCN2019089236-appb-100003
    式中θ x表示绕x轴旋转的姿态角数据,θ x(t 1)表示起始时刻t 1,绕x轴旋转的姿态角,θ x(t)表示t时刻绕x轴旋转的姿态角,θ x(t p)表示结束时刻t p,绕x轴旋转的姿态角;θ y表示绕y轴旋转的姿态角数据,θ y(t 1)表示起始时刻t 1,绕y轴旋转的姿态角,θ y(t)表示t时刻绕y 轴旋转的姿态角,θ y(t p)表示结束时刻t p,绕y轴旋转的姿态角;θz表示绕z轴旋转的姿态角数据,θ z(t 1)表示起始时刻t 1,绕z轴旋转的姿态角,θ z(t)表示t时刻绕z轴旋转的姿态角,θz(t p)表示结束时刻t p,绕z轴旋转的姿态角;
    重力梯度仪的输出数据为:
    G out=[G out(t 1),…,G out(t),…,G out(t p)]
    式中G out是重力梯度仪的输出数据,G out(t 1)表示起始时刻t 1,重力梯度仪的输出,G out(t)表示t时刻重力梯度仪的输出,G out(t p)表示t p时刻重力梯度仪的输出;
    (2)根据下述方式,标定旋转加速度计重力梯度仪的线运动误差系数向量C m、角运动误差系数向量C A、标度系数k ggi,具体步骤如下:
    (2-1).根据下式,计算所有时刻的线运动向量、角运动向量:
    Figure PCTCN2019089236-appb-100004
    式中L m(t)表示t时刻的线运动向量,L a(t)表示t时刻的角运动向量,a x(t),a y(t),a z(t)表示t时刻的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻的角运动数据,Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
    (2-2).将所有时刻的线运动向量、角运动向量,代入下式计算运动矩阵L:
    Figure PCTCN2019089236-appb-100005
    式中L m(t 1)表示起始时刻t 1的线运动向量,L m(t)表示t时刻的线运动向量,L m(t p)表示结束时刻t p的线运动向量;L a(t 1)表示起始时刻t 1的角运动向量,L a(t)表示t时刻 的角运动向量,L a(t p)表示结束时刻t p的角运动向量;
    (2-3).根据下式,标定线运动误差系数向量C m,角运动误差系数向量C A,C m是1×10向量,C A是1×8向量:
    [C m,C A]=G out·L +
    式中G out是旋转加速度计重力梯度仪的输出,L +表示L矩阵的加号逆;重力梯度仪的标度系数k ggi等于角运动误差系数向量C A的第1个元素,也就是k ggi=C A(1);
    (3)标定自梯度模型参数,具体步骤为:
    (3-1).根据下式,计算所有时刻的调制向量
    C ref(t)=[sin 2Ωt,cos 2Ωt]
    C ref(t)表示t时刻的调制向量;
    (3-2).将姿态数据代入下式,计算所有时刻的姿态特征参数:
    Figure PCTCN2019089236-appb-100006
    式中,c,c 2分别表示cos(),cos 2(),s,s 2分别表示sin(),sin 2();θ x(t),θ y(t),θ z(t)表示t时刻的姿态,a 1,1(t),…,a 1,18(t),a 21(t),…,a 2,18(t)是t时刻的姿态特征参数;
    (3-3).将计算的姿态特征参数,代入下式,计算所有时刻的姿态特征矩阵:
    Figure PCTCN2019089236-appb-100007
    式中A attu(t)表示时刻t的姿态特征矩阵,A attu(t)是2×18矩阵;
    (3-4).根据下式,标定重力梯度仪自梯度模型参数:
    Figure PCTCN2019089236-appb-100008
    式中P表示标定的自梯度模型参数,C m是步骤2)中标定的线运动误差系数向量,C A是步骤2)中标定的角运动误差系数向量,C A(1)是角运动误差系数向量的第1个元素;L m(t 1)是起始时刻t 1的线运动向量,L m(t)是t时刻的线运动向量,L m(t p)是结束时刻t p的线运动向量;L a(t)是t时刻的角运动向量,L a(t 1)是起始时刻t 1的角运动向量,L a(t p)是结束时刻t p的角运动向量;C ref(t)是t时刻的调制向量,C ref(t 1)是起始时刻t 1的调制向量,C ref(t p)是结束时刻t p的调制向量;A attu(t)是t时刻的姿态特征矩阵,A attu(t 1)是起始时刻t 1的姿态特征矩阵,A attu(t p)是结束时刻t p的姿态特征矩阵。
PCT/CN2019/089236 2019-02-15 2019-05-30 一种旋转加速度计重力梯度仪标定方法 WO2020164206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/421,383 US11372130B2 (en) 2019-02-15 2019-05-30 Calibration method for rotating accelerometer gravity gradiometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910117180.4 2019-02-15
CN201910117180.4A CN109709628B (zh) 2019-02-15 2019-02-15 一种旋转加速度计重力梯度仪标定方法

Publications (1)

Publication Number Publication Date
WO2020164206A1 true WO2020164206A1 (zh) 2020-08-20

Family

ID=66263654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089236 WO2020164206A1 (zh) 2019-02-15 2019-05-30 一种旋转加速度计重力梯度仪标定方法

Country Status (3)

Country Link
US (1) US11372130B2 (zh)
CN (1) CN109709628B (zh)
WO (1) WO2020164206A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709628B (zh) 2019-02-15 2020-08-14 东南大学 一种旋转加速度计重力梯度仪标定方法
CN110068876B (zh) * 2019-05-30 2021-01-26 中国船舶重工集团公司第七0七研究所 基于载体自振动航空重力梯度仪运动误差补偿方法
CN112363247B (zh) * 2020-10-27 2021-09-07 华中科技大学 一种重力梯度仪运动误差事后补偿方法
CN113267821B (zh) * 2021-04-30 2022-05-03 北京大学 一种基于角运动的重力梯度测量方法及***
CN114089441B (zh) * 2021-11-26 2022-08-30 华中科技大学 一种重力梯度仪测量***数值仿真方法
CN115755206A (zh) * 2022-11-09 2023-03-07 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种陆地重力仪数字调平补偿***及方法
CN117110649A (zh) * 2023-08-02 2023-11-24 中国科学院自动化研究所 一种运动数据的质量增强方法、装置和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339684A (en) * 1991-12-10 1994-08-23 Textron Inc. Gravity aided inertial navigation system
CN105717553A (zh) * 2016-01-29 2016-06-29 东南大学 一种旋转加速度计重力梯度仪标定方法
CN108931824A (zh) * 2018-04-27 2018-12-04 东南大学 一种动基座旋转加速度计重力梯度仪误差增益系数标定方法
CN109212620A (zh) * 2018-08-27 2019-01-15 东南大学 动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN109709628A (zh) * 2019-02-15 2019-05-03 东南大学 一种旋转加速度计重力梯度仪标定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918186B2 (en) * 2003-08-01 2005-07-19 The Charles Stark Draper Laboratory, Inc. Compact navigation system and method
CA2598623A1 (en) * 2005-10-06 2007-04-12 Technological Resources Pty Limited Gravity gradiometer
US20110310698A1 (en) * 2010-06-21 2011-12-22 Sercel, Inc. Dual Axis Geophones For Pressure/Velocity Sensing Streamers Forming a Triple Component Streamer
JP2013061158A (ja) * 2011-09-12 2013-04-04 Yoichi Takagi 地球の重力測定装置と方法
CN107576992B (zh) * 2017-09-04 2019-02-22 东南大学 一种重力梯度仪自标定方法及离心梯度补偿方法
CN107870371B (zh) * 2017-12-05 2019-04-30 东南大学 一种动基座重力梯度仪自梯度补偿方法
CN109001841B (zh) * 2018-05-25 2020-02-18 东南大学 一种基于地球自转角速度的重力梯度仪标定方法
CN109085654B (zh) * 2018-06-11 2020-01-07 东南大学 一种旋转加速度计重力梯度仪数字建模仿真方法
CN108873093B (zh) * 2018-07-12 2019-11-05 临沂大学 一种航空重力梯度仪自梯度补偿方法
CN109766812B (zh) * 2018-12-31 2021-03-09 东南大学 一种旋转加速度计重力梯度仪运动误差事后补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339684A (en) * 1991-12-10 1994-08-23 Textron Inc. Gravity aided inertial navigation system
CN105717553A (zh) * 2016-01-29 2016-06-29 东南大学 一种旋转加速度计重力梯度仪标定方法
CN108931824A (zh) * 2018-04-27 2018-12-04 东南大学 一种动基座旋转加速度计重力梯度仪误差增益系数标定方法
CN109212620A (zh) * 2018-08-27 2019-01-15 东南大学 动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN109709628A (zh) * 2019-02-15 2019-05-03 东南大学 一种旋转加速度计重力梯度仪标定方法

Also Published As

Publication number Publication date
US20220091299A1 (en) 2022-03-24
CN109709628A (zh) 2019-05-03
CN109709628B (zh) 2020-08-14
US11372130B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2020164206A1 (zh) 一种旋转加速度计重力梯度仪标定方法
CN107655493B (zh) 一种光纤陀螺sins六位置***级标定方法
CN106052595B (zh) 基于激光陀螺捷联惯导的三轴转台轴线垂直度检测方法
CN104075699B (zh) 三维固态电子罗盘及其传感器的零点和比例系数核正方法
Deng et al. Analysis and calibration of the nonorthogonal angle in dual-axis rotational INS
CN103323625B (zh) 一种mems-imu中加速度计动态环境下的误差标定补偿方法
CN107121707A (zh) 一种三轴磁传感器测量基准与结构基准的误差校正方法
CN110006454B (zh) 一种imu标定三轴转台垂直度和初始姿态的方法
CN104697521A (zh) 一种采用陀螺冗余斜交配置方式测量高速旋转体姿态和角速度的方法
CN115046539A (zh) Mems电子罗盘动态校准方法
CN110736484B (zh) 基于陀螺仪及磁传感器融合的背景磁场标定方法
Lin et al. A high-accuracy method for calibration of nonorthogonal angles in dual-axis rotational inertial navigation system
CN112577514A (zh) 一种mems惯性器件的标定方法
CN111829503A (zh) 一种光纤陀螺阈值测试方法及装置
WO2020042696A1 (zh) 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN112254717B (zh) 一种基于冷原子干涉陀螺仪的惯性导航装置及方法
CN105716626B (zh) 一种悬浮类陀螺仪的定子旋转调制误差补偿方法
CN109085654B (zh) 一种旋转加速度计重力梯度仪数字建模仿真方法
CN113776560B (zh) 一种基于高精度三轴转台的陀螺标度因数测试方法
Zhang et al. Implementation and complexity analysis of orientation estimation algorithms for human body motion tracking using low-cost sensors
CN105758422A (zh) 一种积分式闭环光纤陀螺的测试方法
CN114509580A (zh) 一种小量程加速度计高精度温度建模方法
CN110568387B (zh) 一种基于磁梯度张量的航天器磁矩测试方法
CN112595314A (zh) 一种可实时测量重力加速度的惯性导航***
Wang et al. A fast and non-directional calibration method for fiber optic gyro inertial navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915171

Country of ref document: EP

Kind code of ref document: A1