WO2020042696A1 - 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法 - Google Patents

一种动基座旋转加速度计重力梯度仪误差补偿装置及方法 Download PDF

Info

Publication number
WO2020042696A1
WO2020042696A1 PCT/CN2019/089302 CN2019089302W WO2020042696A1 WO 2020042696 A1 WO2020042696 A1 WO 2020042696A1 CN 2019089302 W CN2019089302 W CN 2019089302W WO 2020042696 A1 WO2020042696 A1 WO 2020042696A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion error
module
linear motion
angular
gradient
Prior art date
Application number
PCT/CN2019/089302
Other languages
English (en)
French (fr)
Inventor
蔡体菁
喻名彪
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2020042696A1 publication Critical patent/WO2020042696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00

Definitions

  • the invention relates to an error compensation device and method of a moving base rotary accelerometer gravity gradient meter, and belongs to the technical field of precision measurement.
  • Moving base gravity gradient exploration is a low-cost, high-efficiency gravity gradient exploration method; it is currently the most advanced gravity field exploration method in the world.
  • Gravity gradient data is widely used in geological analysis, gravity field modeling, high-precision navigation, and resource exploration.
  • Gravity gradient instrument has extremely important national defense and civilian value.
  • the gravity gradient instruments under research at home and abroad mainly include cold atom gravity gradient instrument, superconducting gravity gradient instrument, MEMS gravity gradient instrument and so on.
  • Gravity gradiometers that have been put into commercial use abroad mainly include rotary accelerometer gravity gradient meters and rotary superconducting accelerometer gravity gradient meters. The prototype of China's gravity gradient instrument is under development.
  • the invention provides a device and method capable of real-time compensating the linear motion error, angular motion error, and self-gradient of a gravity gradient instrument.
  • the present invention provides a moving base rotary accelerometer gravity gradient meter error compensation device capable of feedback compensation of the acceleration, angular motion, and self-gradient output measurement errors caused by the gravity gradient meter, which can suppress environments such as temperature and electromagnetic fields
  • the influence of factors on the error transfer coefficient can also avoid overvoltage saturation and overvoltage damage of the front-end signal conditioning circuit of the gravity gradient instrument caused by the acceleration, angular velocity, and angular acceleration of the gravity gradient instrument.
  • the invention also provides a method for compensating for the error of the gravimetric gradient accelerometer of the moving base rotary accelerometer which has the above effects and solves the above problems.
  • the error compensation device of the gravity base of the moving base rotary accelerometer of the present invention includes:
  • a reference signal generating module for generating a quadrature amplitude modulation carrier
  • a self-gradient compensation signal generating module for generating a self-gradient compensation signal in real time
  • An angular motion error compensation signal generating module for generating a gravity gradient instrument angular motion error compensation signal in real time and detecting a centrifugal gradient of the gravity gradient instrument;
  • An angular motion error transfer coefficient processing module for fine-tuning the angular motion error transfer coefficient in real time
  • a linear motion error compensation signal generating module for generating a linear motion error compensation signal of the gravity gradient instrument in real time
  • Linear motion error transfer coefficient processing module for fine-tuning the linear motion error transfer coefficient in real time
  • a gravity gradient accelerometer signal processing module for summing and subtracting output signals of accelerometers mounted on a rotating disc
  • Accelerometer scaling coefficient adjustment module for adjusting the accelerometer scaling coefficient in real time
  • Compensation operation module for compensating the gravity gradient signal including angular motion error, linear motion error, and self-gradient;
  • a gravity gradient signal recovery module for demodulating and outputting a gravity gradient signal from a compensated gravity gradient instrument signal
  • the output of the reference signal generation module is connected to the inputs of a self-gradient compensation signal generation module, an angular motion error compensation signal generation module, and a linear motion error compensation signal generation module; the self-gradient compensation signal generation module and angular motion error compensation signal generation
  • the output of the module, the linear motion error compensation signal generation module, the gravity gradient accelerometer signal processing module is connected to the input of the compensation operation module; the output of the compensation operation module is connected to the accelerometer scale coefficient adjustment module, the angular motion error transfer coefficient
  • the output of the module is connected to the input of the angular motion error compensation signal generating module; the output of the accelerometer scale coefficient adjustment module is connected to the input of the gravity gradient accelerometer signal processing module.
  • the reference signal generating module includes a gravity gradient instrument rotating disc axis encoder and a signal generator; the gravity gradient instrument rotating disc axis encoder detects a phase angle of the rotation of the gravity gradient instrument disc.
  • ⁇ t the signal generator according to the phase angle ⁇ t, quadrature amplitude modulation carrier wave generating sin ⁇ t, sin2 ⁇ t, cos ⁇ t , cos2 ⁇ t;
  • the angular motion error transfer coefficient processing module includes an angular motion error transfer coefficient initial value setting module and an angular motion error transfer coefficient adjustment module, and the angular motion error transfer coefficient initial value setting module is used to set Initial value of angular motion error transfer coefficient:
  • the angular motion error transfer coefficient adjustment module generates an adjustment amount according to the feedback-compensated gravity gradient meter signal, and fine-tunes the angular motion error transfer coefficient.
  • the angular motion error transfer coefficient processing module has two working modes, an adjustment mode and a non-slot mode. When working in the adjustment mode, the angular motion error transmission coefficient is adjusted in real time; when working in the non-adjustment mode, the angular motion error transmission system remains unchanged.
  • the angular motion error compensation signal generation module includes an angular motion error transfer coefficient input module, an angular motion detection module, a reference signal input module, an angular motion compensation signal generation module, and a centrifugal gradient detection module;
  • the angular motion error transfer coefficient input module is used to input the angular motion error transfer coefficient;
  • the reference signal input module is used to input a quadrature amplitude modulation carrier;
  • the angular motion detection module includes an angular rate sensor and a low-pass filter,
  • the angular rate sensor is used to detect the angular motion of the gravity gradient instrument;
  • the angular rate sensor is installed on the x-axis, y-axis, and z-axis of the coordinate system of the gravity gradient instrument, and measures the angular velocity ⁇ x , ⁇ y , ⁇ z of the coordinate system And angular accelerations ⁇ ax , ⁇ ay , ⁇ az ;
  • the low-pass filter filters high-frequency noise in angular velocity and angular acceleration signals;
  • the angular motion compensation signal generation module modulates the carrier and angular motion according to orthogonal amplitudes
  • the centrifugal gradient detection module has two working modes, calibration mode and non-calibration mode.
  • the calibration mode the centrifugal gradient detection unit outputs the detected centrifugal gradient. There is no output from the centrifugal gradient detection unit in non-calibration mode.
  • the angular motion error compensation signal generating module has three working modes, non-compensation mode, normal mode, and calibration mode; in non-compensation mode, the generated angular motion error compensation signal C A (t )for:
  • the generated angular motion error compensation signal C A (t) is:
  • sin2 ⁇ t , cos2 ⁇ t , sin ⁇ t , and cos ⁇ t are quadrature amplitude modulation carriers of the input angular motion error compensation signal generation module at time t;
  • ⁇ x (t), ⁇ y (t), ⁇ z (t), ⁇ ax (t), ⁇ ay (t), ⁇ az (t) represents the angular motion signal of the input angular motion error compensation signal generation module at time t.
  • the linear motion error transfer coefficient processing module includes a linear motion error transfer coefficient initial value setting module and a linear motion error transfer coefficient adjustment module, and the linear motion error transfer coefficient initial value setting module is used to set Initial value of linear motion error transfer coefficient:
  • the linear motion error transfer difference coefficient adjustment module generates an adjustment amount and fine-tunes the linear motion error transfer coefficient according to the feedback-compensated gravity gradient instrument signal;
  • the linear motion error transfer coefficient processing module has two working modes, adjustment mode and non-slot Mode, when working in the adjustment mode, adjust the linear motion error transfer coefficient in real time; when working in the non-adjustment mode, the linear motion error transmission system remains unchanged.
  • the linear motion error compensation signal generating module includes a linear motion detection module, a linear motion error transfer coefficient input module, a reference signal input module, and a linear motion compensation signal generating module.
  • the linear motion detection module includes An accelerometer and a low-pass filter are used to detect the acceleration of the gravity gradient instrument; the accelerometer is installed on the x-axis, y-axis, and z-axis of the coordinate system of the gravity gradient instrument to measure the acceleration a x ay , az ; the low-pass filter filters high-frequency noise in the acceleration signal; the linear motion error transfer coefficient input module is used to input the linear motion error transfer coefficient; and the reference signal generation module is used to An orthogonal amplitude modulation carrier is input; the linear motion compensation signal generating module generates a linear motion error compensation signal according to the input orthogonal amplitude modulation carrier, acceleration signal, and linear motion error transfer coefficient.
  • the linear motion error compensation signal generating module has two working modes: non-compensation mode and compensation mode; in non-compensation mode, the linear motion compensation signal C L (t) is
  • the generated linear motion compensation signal C L (t) is:
  • sin2 ⁇ t , cos2 ⁇ t , sin ⁇ t , and cos ⁇ t are quadrature amplitude modulation carriers of the input line motion error compensation signal generation module at time t;
  • a x (t), a y (t), a z (t) represents the acceleration signal of the input linear motion error compensation signal generation module at time t.
  • the compensation operation module generates the linear motion error compensation signal and the angular motion error compensation signal generation module generated from the self-gradient compensation signal output by the self-gradient compensation signal generation module, the linear motion error compensation signal generated by the linear motion error compensation signal generation module, and the angular motion error compensation signal generation module.
  • the angular motion error compensation signal is used to compensate the output of the self-gradient error, linear motion error, and angular motion error generated by the gravity gradient accelerometer signal processing module.
  • the method for compensating the error of a gravity accelerometer of a rotating base rotary accelerometer of the present invention includes the following steps:
  • Represents the linear motion error transfer coefficient at time t Represents the coefficient of linear motion error transmission at time t-1;
  • g c (t-1) represents the signal of the gravity gradient instrument after compensation at time t-1;
  • F 1 (g c (t-1)) is the transmission of linear motion error at time t Coefficient of fine-tuning, which is a function of g c (t-1);
  • Represents the angular motion error transfer coefficient at time t Represents the angular motion error transfer coefficient at time t-1;
  • g c (t-1) represents the gravimetric gradient signal after compensation at time t-1;
  • F 2 (g c (t-1)) represents the angular motion error transfer at time t Coefficient fine-tuning amount, which is a function of g c (t-1);
  • linear motion error transfer coefficient at time t 0 Angular motion error transfer coefficient All obtained through calibration;
  • I the attitude angle of the gravity gradient instrument at time t
  • P is a parameter of the self-gradient model
  • g c (t) g (t) -C L (t) -C sg (t) -C A (t)
  • g c (t) is the gravity gradient instrument signal after compensation at time t
  • g (t) is the gravity gradient instrument signal including linear motion error, angular motion error, and self-gradient at time t
  • C L (t) is time t
  • C sg (t) is a self-gradient compensation signal
  • C A (t) is an angular motion error compensation signal.
  • the acceleration, angular velocity, and angular acceleration of the gravity gradient instrument are caused.
  • the output of the gravity gradient instrument causes measurement error.
  • the linear motion error transfer coefficient and angular motion error transfer coefficient of the gravity gradient instrument are easily affected by environmental factors such as temperature and electromagnetic field.
  • acceleration, angular velocity, and angular acceleration of the gravity gradient instrument can cause overvoltage saturation or damage of the overvoltage of the signal conditioning circuit at the front end of the gravity gradient instrument.
  • the present invention has the following advantages:
  • the invention is the first time to provide a real-time compensation device and method for linear motion error, angular motion error, and self-gradient compensation of a rotary accelerometer gravity gradient instrument.
  • the present invention provides a device and method capable of real-time compensation for linear motion error, angular motion error, and self-gradient of a gravity gradient instrument. It fine-tunes the angular motion error transfer coefficient and linear motion error in real time based on the feedback compensated gravity gradient instrument signal.
  • the transfer coefficient and accelerometer scaling coefficient can offset the effects of environmental factors such as temperature and magnetic field on the gravity gradient instrument's linear motion error transfer coefficient, angular motion error transfer coefficient, and scale factor, and can compensate the gravity gradient instrument's linear motion.
  • Angular motion, self-gradient measurement error improve the measurement accuracy of gravity gradient instrument.
  • the quadrature amplitude modulation of the linear motion error, angular motion error, and self-gradient signal of the gravity gradient instrument is directly compensated for the signal before the demodulation of the gravity gradient instrument, so it can also solve the problems caused by the acceleration and angular velocity of the gravity gradient instrument.
  • the front-end signal conditioning circuit is over-saturated and over-voltage damaged.
  • FIG. 1 is a schematic diagram of a rotary accelerometer gravity gradient meter error real-time compensation device.
  • FIG. 1 Schematic diagram of the reference signal generation module.
  • FIG. 3 is a schematic diagram of a linear motion error transfer coefficient processing module and an angular motion error transfer coefficient processing module.
  • FIG. 4 is a schematic diagram of an angular motion error compensation signal generating module and a linear motion error compensation signal generating module.
  • Figure 5 Schematic diagram of angular velocity rate sensor and accelerometer installation.
  • an error compensation device of a moving base rotary accelerometer gravity gradient instrument of the present invention includes: a reference signal generating module for generating a quadrature amplitude modulation carrier; and a self-gradient for generating a self-gradient compensation signal in real time.
  • an angular motion error compensation signal generation module for generating a gravity gradient instrument angular motion error compensation signal in real time, this module can also detect the sensitive centrifugal gradient of the gravity gradient instrument; used to fine-tune the angle of the angular motion error transfer coefficient in real time
  • Motion error transfer coefficient processing module linear motion error compensation signal generation module for generating a gravity gradient linear motion error compensation signal in real time
  • linear motion error transfer coefficient processing module for fine-tuning the linear motion error transfer coefficient in real time
  • a gravity gradient accelerometer signal processing module for summing and subtracting the output signals of accelerometers on a rotating disc; an accelerometer scaling coefficient adjusting module for adjusting the accelerometer scaling coefficients in real time;
  • Motion error, linear motion error, gravity gradient signal from gradient Compensation calculation module for line compensation; a gravity gradient signal recovery module for demodulating and outputting a gravity gradient signal from a compensated gravity gradient instrument signal;
  • the output of the reference signal generation module is connected to the inputs of a self-gradient compensation signal generation module, an angular motion error compensation signal generation module, and a linear motion error compensation signal generation module; the self-gradient compensation signal generation module and angular motion error compensation signal generation
  • the output of the module, the linear motion error compensation signal generation module, the gravity gradient accelerometer signal processing module is connected to the input of the compensation operation module; the output of the compensation operation module is connected to the accelerometer scale coefficient adjustment module, the angular motion error transfer coefficient
  • the output of the module is connected to the input of the angular motion error compensation signal generating module; the output of the accelerometer scale coefficient adjustment module is connected to the input of the gravity gradient accelerometer signal processing module.
  • the reference signal generating module includes a gravity gradient instrument rotating disc axis encoder and a signal generator; the gravity gradient instrument rotating disc axis encoder detects a phase angle ⁇ t of the rotation of the gravity gradient instrument disc. , the signal generator phase angle ⁇ t, quadrature amplitude modulation carrier wave generating sin ⁇ t, sin2 ⁇ t, cos ⁇ t , cos2 ⁇ t according to;
  • the angular motion error transfer coefficient processing module is composed of an angular motion error transfer coefficient initial value setting module and an angular motion error transfer coefficient adjustment module; the angular motion error transfer coefficient initial value setting module , Used to set the initial value of the angular motion error transfer coefficient:
  • the angular motion error transmission difference coefficient adjustment module generates an adjustment amount according to the feedback-compensated gravity gradient instrument signal to fine-tune the angular motion error transmission coefficient;
  • the angular motion error transmission coefficient processing module has two working modes, adjustment mode and non-regular In joint mode, the angular motion error transfer coefficient is adjusted in real time when working in the adjustment mode; when working in non-adjustment mode, the angular motion error transmission system remains unchanged.
  • the angular motion error compensation signal generation module is composed of an angular motion error transfer coefficient input module, an angular motion detection module, a reference signal input module, an angular motion compensation signal generation module, and a centrifugal gradient detection module.
  • the angular motion error transfer coefficient input module is used to input the angular motion error transfer coefficient;
  • the reference signal input module is used to input the quadrature amplitude modulation carrier;
  • the angular motion detection module is composed of an angular rate sensor and a low-pass filter; It is used to detect the angular motion of the gravity gradient instrument; as shown in FIG.
  • the angular rate sensor is installed on the x-axis, y-axis, and z-axis of the coordinate system of the gravity gradient instrument, and measures the angular velocity of the coordinate system of the gravity gradient instrument.
  • the low-pass filter filters high-frequency noise in angular velocity and angular acceleration signals;
  • the angular motion error generation module is based on orthogonality Amplitude modulation carrier, angular motion error transfer coefficient, angular acceleration, angular velocity, generating angular motion error compensation signals;
  • the centrifugal gradient detection module has two working modes , Calibration mode and a non-calibration mode, the calibration mode, the centrifugal gradient centrifugation gradient detection unit outputs the detection, in a non-calibration mode, no output centrifugation gradient detection means;.
  • the angular motion error compensation signal generating module has three working modes, non-compensation mode, normal mode, and calibration mode.
  • non-compensation mode the angular motion error compensation signal C A (t) is:
  • the generated angular motion error compensation signal C A (t) is:
  • sin2 ⁇ t , cos2 ⁇ t , sin ⁇ t , and cos ⁇ t are quadrature amplitude modulation carriers of the input angular motion error compensation signal generation module at time t;
  • ⁇ x (t), ⁇ y (t), ⁇ z (t), ⁇ ax (t), ⁇ ay (t), ⁇ az (t) represents the angular motion signal of the input angular motion error compensation signal generation module at time t;
  • the linear motion error transfer coefficient processing module is composed of a linear motion error transfer coefficient initial value setting module and a linear motion error transfer coefficient adjustment module; the linear motion error transfer coefficient initial value setting module , Set the initial value of the linear motion error transfer coefficient:
  • the linear motion error transmission difference coefficient adjustment module generates an adjustment amount according to the feedback-compensated gravity gradient instrument signal to fine-tune the linear motion error transmission coefficient;
  • the linear motion error transmission coefficient processing module has two working modes, adjustment mode and non-regular In joint mode, the linear motion error transmission coefficient is adjusted in real time when working in the adjustment mode; when working in non-adjustment mode, the linear motion error transmission system remains unchanged;
  • the linear motion error compensation signal generating module is composed of a linear motion detection module, a linear motion error transfer coefficient input module, and a reference signal input module.
  • the linear motion detection module is composed of an accelerometer, low A pass filter is used to detect the acceleration of the gravity gradient instrument; as shown in FIG.
  • the accelerometer is installed on the x-axis, y-axis, and z-axis of the coordinate system of the gravity gradient instrument, and Acceleration a x , a y , a z ;
  • the low-pass filter filters high-frequency noise in acceleration signals;
  • the linear motion error transfer coefficient input module is used to input linear motion error transfer coefficients;
  • the reference signal The generating module is configured to input a quadrature amplitude modulation carrier; the linear motion compensation signal generating module generates a linear motion error compensation signal according to the input quadrature amplitude modulation carrier, an acceleration signal, and a linear motion error transfer coefficient.
  • the linear motion error compensation signal generating module has two working modes: non-compensated mode and compensation mode; in non-compensated mode, the generated linear motion compensation signal C L (t) is:
  • the generated linear motion compensation signal C L (t) is:
  • sin2 ⁇ t , cos2 ⁇ t , sin ⁇ t , and cos ⁇ t are quadrature amplitude modulation carriers of the input line motion error compensation signal generation module at time t;
  • a x (t), a y (t), a z (t) represents the acceleration signal of the input linear motion error compensation signal generation module at time t.
  • the compensation operation module According to the self-gradient compensation signal output from the self-gradient compensation signal generating module, the linear motion error compensation signal generated by the linear motion error compensation signal generating module, and the angular motion error compensation signal generated by the angular motion error compensation signal generating module, Compensate the output containing the self-gradient error, linear motion error, and angular motion error produced by the gravity gradient accelerometer signal processing module;
  • a method for compensating the error of a gravity accelerometer of a rotating base rotary accelerometer includes the following steps:
  • Represents the linear motion error transfer coefficient at time t Represents the coefficient of linear motion error transmission at time t-1;
  • g c (t-1) represents the signal of the gravity gradient instrument after compensation at time t-1;
  • F 1 (g c (t-1)) is the transmission of linear motion error at time t Coefficient of fine-tuning, which is a function of g c (t-1);
  • Represents the angular motion error transfer coefficient at time t Represents the angular motion error transfer coefficient at time t-1;
  • g c (t-1) represents the gravimetric gradient signal after compensation at time t-1;
  • F 2 (g c (t-1)) represents the angular motion error transfer at time t Coefficient fine-tuning amount, which is a function of g c (t-1);
  • linear motion error transfer coefficient at time t 0 Angular motion error transfer coefficient Obtained through calibration;
  • I the attitude angle of the gravity gradient instrument at time t
  • P is a parameter of the self-gradient model
  • g c (t) g (t) -C L (t) -C sg (t) -C A (t)
  • g c (t) is the gravity gradient instrument signal after compensation at time t
  • g (t) is the gravity gradient instrument signal including linear motion error, angular motion error, and self-gradient at time t
  • C L (t) is time t Linear motion error compensation signal
  • C sg (t) is a self-gradient compensation signal
  • C A (t) is an angular motion error compensation signal

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开一种动基座旋转加速度计重力梯度仪误差补偿装置及方法,根据检测的重力梯度仪的角运动,线运动,姿态角,基于重力梯度仪解析模型,自梯度模型,计算重力梯度仪的角运动误差,线运动误差,自梯度,并将角运动误差,线运动误差,自梯度进行正交幅值调制,对重力梯度仪解调前的信号进行补偿。本发明不仅补偿了重力梯度仪输出信号中的角运动误差,线运动误差,自梯度,还解决了重力梯度仪角运动,线运动,自梯度引起的重力梯度仪前端调理电路过电压损坏,过电压饱和的问题。重力梯度仪补偿后的信号用于反馈调节线运动误差传递系数,角运动误差传递系数,加速度计标度系数,能够抵消温度、磁场等环境因素对重力梯度仪误差传递系数的影响。

Description

一种动基座旋转加速度计重力梯度仪误差补偿装置及方法 技术领域
本发明涉及一种动基座旋转加速度计重力梯度仪误差补偿装置及方法,属于精密测量技术领域。
背景技术
动基座重力梯度勘探是一种低成本、高效率的重力梯度勘探方法;是目前世界上最先进的重力场勘探方式。重力梯度数据广泛应用于地质分析、重力场建模、高精度导航、资源勘探等。重力梯度仪具有极其重要的国防、民用价值。目前国内外在研的重力梯度仪主要有冷原子重力梯度仪、超导重力梯度仪、MEMS重力梯度仪等。国外已经投入商业应用的重力梯度仪主要有旋转加速度计重力梯度仪及旋转超导加速度计重力梯度仪。我国的重力梯度仪样机正处于研制中。
在动基座重力梯度勘探时,由于重力梯度仪内部的加速度计存在安装误差、加速度计一阶、高阶标度系数不匹配、电路增益不匹配等,导致重力梯度仪的加速度,角速度,角加速度传递到重力梯度仪的输出,造成测量误差。同时重力梯度仪线运动、自梯度、角运动会引起重力梯度仪前端信号调理电路过电压饱和或损坏。本发明提供一种能够实时补偿重力梯度仪线运动误差、角运动误差、自梯度的装置及方法,目前没有关于重力梯度仪线运动误差、角运动误差实时补偿装置及技术的公开的报道。
发明内容
技术问题:本发明提供一种能够反馈补偿重力梯度仪的加运动、角运动、自梯度引起的输出测量误差的动基座旋转加速度计重力梯度仪误差补偿装置,既能抑制温度、电磁场等环境因素对误差传递系数的影响,同时还能避免重力梯度仪的加速度、角速度、角加速度引起的重力梯度仪前端信号调理电路过电压饱和及过电压损坏。本发明同时提供一种具有以上效果、解决了以上问题的动基座旋转加速度计重力梯度仪误差补偿方法。
技术方案:本发明的动基座旋转加速度计重力梯度仪误差补偿装置,包括:
用于产生正交幅度调制载波的参考信号产生模块;
用于实时产生自梯度补偿信号的自梯度补偿信号产生模块;
用于实时产生重力梯度仪角运动误差补偿信号及检测重力梯度仪离心梯度的角运动误差补偿信号产生模块;
用于实时微调角运动误差传递系数的角运动误差传递系数处理模块;
用于实时产生重力梯度仪线运动误差补偿信号的线运动误差补偿信号产生模块;
用于实时微调线运动误差传递系数的线运动误差传递系数处理模块;
用于对安装在旋转圆盘上的加速度计的输出信号求和、求差运算的重力梯度仪加速度计信号处理模块;
用于实时调节加速度计标度系数的加速度计标度系数调节模块;
用于对含有角运动误差,线运动误差,自梯度的重力梯度信号进行补偿的补偿运算模块;
用于从补偿后的重力梯度仪信号解调输出重力梯度信号的重力梯度信号恢复模块;
所述参考信号产生模块的输出连接到自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块的输入;所述自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块、重力梯度仪加速度计信号处理模块的输出连接到补偿运算模块的输入;所述补偿运算模块的输出连接到加速度计标度系数调节模块、角运动误差传递系数处理模块、线运动误差传递系数处理模块、重力梯度信号恢复模块的输入;所述线运动误差传递系数处理模块的输出连接到线运动误差补偿信号产生模块的输入;所述角运动误差传递系数处理模块的输出连接到角运动误差补偿信号产生模块的输入;所述加速度计标度系数调节模块的输出连接到重力梯度仪加速度计信号处理模块的输入。
进一步的,本发明装置中,所述参考信号产生模块包括重力梯度仪旋转圆盘轴编码器和信号发生器;所述重力梯度仪旋转圆盘轴编码器检测重力梯度仪圆盘旋转的相位角φ t,所述信号发生器根据相位角φ t,产生正交幅度调制载波波sinφ t,sin2φ t,cosφ t,cos2φ t
进一步的,本发明装置中,所述角运动误差传递系数处理模块包括角运动误差传递系数初值设置模块和角运动误差传递系数调节模块,所述角运动误差传递系数初值设置模块用于设置角运动误差传递系数初值:
Figure PCTCN2019089302-appb-000001
所述角运动误差传递系数调节模块根据反馈的补偿后的重力梯度仪信号产生调节量,微调角运动误差传递系数;角运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节角运动误差传递系数;当工作在非调节模式时,角运动误差传递系保持不变。
进一步的,本发明装置中,所述的角运动误差补偿信号产生模块包括角运动误差传递系数输入模块、角运动检测模块、参考信号输入模块、角运动补偿信号产生模块、离心梯度检测模块;
所述角运动误差传递系数输入模块用于输入角运动误差传递系数;所述参考信号输入模块用于输入正交幅值调制载波;所述角运动检测模块包括角速率传感器和低通滤波器,用于检测重力梯度仪的角运动;所述角速率传感器安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的角速度ω xyz及角加速度ω axayaz;所述低通滤波器则滤除角速度、角加速度信号中的高频噪声;所述角运动补偿信号产生模块根据正交幅值调制载波、角运动误差传递系数、角加速度、角速度产生角运动误差补偿信号;所述离心梯度检测模块有两种工作模式,标定模式和非标定模式,在标定模式下,离心梯度检测单元输出检测的离心梯度,在非标定模式下,离心梯度检测单元无输出。
进一步的,本发明装置中,所述的角运动误差补偿信号产生模块具有三种工作模式,非补偿模式,正常模式,标定模式;非补偿模式下,产生的角运动误差补偿信号C A(t)为:
C A(t)=0;
在正常模式下,产生的角运动误差补偿信号C A(t)为:
Figure PCTCN2019089302-appb-000002
在标定模式下,产生的角运动误差补偿信号C A(t)为:
Figure PCTCN2019089302-appb-000003
式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入角运动误差补偿信号产生模块的正交幅度调制载波;
Figure PCTCN2019089302-appb-000004
表示t时刻输入角运动误差补偿信号产生模块的角运动误差传递系数;ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻输入角运动误差补偿信号产生模块的角运动信号。
进一步的,本发明装置中,所述线运动误差传递系数处理模块包括线运动误差传递系数初值设置模块和线运动误差传递系数调节模块,所述线运动误差传递系数初值设置模块用以设置线运动误差传递系数初值:
Figure PCTCN2019089302-appb-000005
所述线运动 误差传递差系数调节模块根据反馈的补偿后的重力梯度仪信号产生调节量和微调线运动误差传递系数;线运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节线运动误差传递系数;当工作在非调节模式时,线运动误差传递系保持不变。
进一步的,本发明装置中,所述线运动误差补偿信号产生模块包括线运动检测模块、线运动误差传递系数输入模块、参考信号输入模块、线运动补偿信号产生模块,所述线运动检测模块包括加速度计和低通滤波器,用于检测重力梯度仪的加速度;所述加速度计安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的加速度a x,a y,a z;所述低通滤波器则滤除加速度信号中的高频噪声;所述线运动误差传递系数输入模块用于输入线运动误差传递系数;所述参考信号产生模块用于输入正交幅值调制载波;所述线运动补偿信号产生模块根据输入的正交幅值调制载波、加速度信号、线运动误差传递系数产生线运动误差补偿信号。
进一步的,本发明装置中,所述线运动误差补偿信号产生模块具有两种工作模式:非补偿模式,补偿模式;非补偿模式下,产生的线运动补偿信号C L(t)为:
C L(t)=0;
补偿模式下,产生的线运动补偿信号C L(t)为:
Figure PCTCN2019089302-appb-000006
式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入线运动误差补偿信号产生模块的正交幅度调制载波;
Figure PCTCN2019089302-appb-000007
表示t时刻输入线运动误差补偿信号产生模块的线运动误差传递系数;a x(t),a y(t),a z(t)表示t时刻输入线运动误差补偿信号产生模块的加速度信号。
进一步的,本发明装置中,所述补偿运算模块根据自梯度补偿信号产生模块输出的自梯度补偿信号、线运动误差补偿信号产生模块产生的线运动误差补偿信号、角运动误差补偿信号产生模块产生的角运动误差补偿信号,对重力梯度仪加速度计信号处理模块产生的含有自梯度误差、线运动误差、角运动误差的输出进行补偿。
本发明的动基座旋转加速度计重力梯度仪误差补偿方法,包括以下步骤:
1)根据反馈的补偿后的重力梯度仪信号及线运动误差传递系数处理模块的工作模式,计算t时刻的线运动误差传递系数:
调节模式:
Figure PCTCN2019089302-appb-000008
非调节模式:
Figure PCTCN2019089302-appb-000009
式中
Figure PCTCN2019089302-appb-000010
表示t时刻的线运动误差传递系数,
Figure PCTCN2019089302-appb-000011
表示t-1时刻的线运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 1(g c(t-1))是t时刻线运动误差传递系数的微调量,它是g c(t-1)的函数;
根据反馈的补偿后的重力梯度仪信号及角运动误差传递系数处理模块的工作模式,计算t时刻的角运动误差传递系数:
调节模式:
Figure PCTCN2019089302-appb-000012
非调节模式:
Figure PCTCN2019089302-appb-000013
式中
Figure PCTCN2019089302-appb-000014
表示t时刻的角运动误差传递系数,
Figure PCTCN2019089302-appb-000015
表示t-1时刻的角运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 2(g c(t-1))表示t时刻角运动误差传递系数的微调量,它是g c(t-1)的函数;t=0时刻的线运动误差传递系数
Figure PCTCN2019089302-appb-000016
角运动误差传递系数
Figure PCTCN2019089302-appb-000017
均通过标定得到;
根据反馈的补偿后的重力梯度仪信号,计算t时刻的加速度计标度系数:
Figure PCTCN2019089302-appb-000018
式中
Figure PCTCN2019089302-appb-000019
表示安装在旋转圆盘上的四只加速度计在t时刻的标度系数,
Figure PCTCN2019089302-appb-000020
表示安装在旋转圆盘上的四只加速度计在t-1时刻的标度系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 3(g c(t-1))表示t时刻加速度计标度系数的调节量,它是g c(t-1)的函数;
2)检测旋转加速度计重力梯度仪旋转圆盘在t时刻的相位角φ t,计算t时刻的正交幅度调制载波sinφ t,sin2φ t,cosφ t,cos2φ t;检测旋转旋转加速度计重力梯度仪在t时刻的加速度
Figure PCTCN2019089302-appb-000021
检测旋转加速度计重力梯度仪在t时刻的角速度及角加速度ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t);
根据下式计算t时刻的3类线运动误差补偿信号C L1(t),C L2(t),C L3(t):
Figure PCTCN2019089302-appb-000022
根据下式计算t时刻的3类角运动误差补偿信号C A1(t),C A2(t),C A3(t):
Figure PCTCN2019089302-appb-000023
3)根据线运动误差补偿信号产生模块的工作模式,计算t时刻的总的线运动误差补偿信号C L(t):
非补偿模式时,C L(t)=0;
补偿模式时,C L(t)=C L1(t)+C L2(t)+C L3(t);
根据角运动误差补偿信号产生模块的工作模式,计算t时刻总的角运动误差补偿信号C A(t):
非补偿模式时,C A(t)=0;
正常模式时,C A(t)=C A1(t)+C A2(t)+C A3(t);
标定模式时,C A(t)=C A2(t)+C A3(t);
根据自梯度补偿信号产生模块的工作模式,计算t时刻的自梯度补偿信号C sg(t):
补偿模式时,
Figure PCTCN2019089302-appb-000024
在非补偿模式时,C sg(t)=0;
式中
Figure PCTCN2019089302-appb-000025
是t时刻重力梯度仪的姿态角,P是自梯度模型的参数,
Figure PCTCN2019089302-appb-000026
是自梯度模型的inline通道的输出,它是姿态角的函数,
Figure PCTCN2019089302-appb-000027
是自梯度模型的cross通道的输出,它是姿态角的函数;
4)对t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号g(t),根据下式进行线运动误差补偿、角运动误差补偿、自梯度补偿;
g c(t)=g(t)-C L(t)-C sg(t)-C A(t)
式中g c(t)是t时刻补偿后的重力梯度仪信号,g(t)是t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号,C L(t)是t时刻的线运动误差补偿信号,C sg(t)是自梯度补偿信号,C A(t)是角运动误差补偿信号。
在动基座重力梯度勘探时,由于重力梯度仪内部的加速度计存在安装误差、加速度计一阶、高阶标度系数不匹配、电路增益不匹配等,导致重力梯度仪的加速度,角速度,角加速度传递到重力梯度仪的输出,造成测量误差,此外重力梯度仪的线运动误差传递系数、角运动误差传递系数容易受温度、电磁场等环境因素的影响。同时重力梯度仪的加速度,角速度,角加速度会引起重力梯度仪前端信号调理电路过电压饱和,或过电压损坏,本发明能够解决以上问题。
有益效果:本发明与现有技术相比,具有以下优点:
本发明是首次给出旋转加速度计重力梯度仪线运动误差、角运动误差、自梯度实时补偿装置及方法。本发明提供一种能够对重力梯度仪线运动误差、角运动误差、自梯度进行实时补偿的装置和方法,它根据反馈的补偿后的重力梯度仪信号实时微调角运动误差传递系数、线运动误差传递系数、加速度计标度系数,能够抵消重力梯度仪环境因素比如温度、磁场等对重力梯度仪线运动误差传递系数、角运动误差传递系数、标度系数的影响,能够补偿重力梯度仪线运动、角运动、自梯度引起的测量误差,提高重力梯度仪的测量精度。同时,对重力梯度仪线运动误差、角运动误差、自梯度信号进行了正交幅值调制,直接补偿重力梯度仪解调前的信号,因此还能够解决由于重力梯度仪加速度、角速度等引起的前端信号调理电路过电压饱和,过电压损坏问题。
附图说明
图1一种旋转加速度计重力梯度仪误差实时补偿装置原理图。
图2参考信号产生模块原理图。
图3线运动误差传递系数处理模块及角运动误差传递系数处理模块原理图。
图4角运动误差补偿信号产生模块及线运动误差补偿信号产生模块原理图。
图5角速度率传感器、加速度计安装示意图。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步地说明。
如图1所示,本发明一种动基座旋转加速度计重力梯度仪误差补偿装置,包括:用于产生正交幅度调制载波的参考信号产生模块;用于实时产生自梯度补偿信号的自梯度补偿信号产生模块;用于实时产生重力梯度仪角运动误差补偿信号的角运动误差补偿信号产生模块,该模块还能检测重力梯度仪敏感的离心梯度;用于实时微调角运动误差传递系数的角运动误差传递系数处理模块;用于实时产生重力梯度仪线运动误差补偿信号的线运动误差补偿信号产生模块;用于实时微调线运动误差传递系数的线运动误差传递系数处理模块;用于对安装在旋转圆盘上的加速度计的输出信号求和、求差运算的重力梯度仪加速度计信号处理模块;用于实时调节加速度计标度系数的加速度计标度系数调节模块;用于对含有角运动误差,线运动误差,自梯度的重力梯度信号进行补偿的补偿运算模块;用于从补偿后的重力梯度仪信号解调输出重力梯度信号的重力梯度信号恢复模块;
所述参考信号产生模块的输出连接到自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块的输入;所述自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块、重力梯度仪加速度计信号处理模 块的输出连接到补偿运算模块的输入;所述补偿运算模块的输出连接到加速度计标度系数调节模块、角运动误差传递系数处理模块、线运动误差传递系数处理模块、重力梯度信号恢复模块的输入;所述线运动误差传递系数处理模块的输出连接到线运动误差补偿信号产生模块的输入;所述角运动误差传递系数处理模块的输出连接到角运动误差补偿信号产生模块的输入;所述加速度计标度系数调节模块的输出连接到重力梯度仪加速度计信号处理模块的输入。
如图2所示,所述参考信号产生模块包括重力梯度仪旋转圆盘轴编码器和信号发生器;所述重力梯度仪旋转圆盘轴编码器检测重力梯度仪圆盘旋转的相位角φ t,所述信号发生器根据相位角φ t,产生正交幅度调制载波波sinφ t,sin2φ t,cosφ t,cos2φ t
如图3(a)所示,所述角运动误差传递系数处理模块,由角运动误差传递系数初值设置模块,角运动误差传递系数调节模块组成;所述角运动误差传递系数初值设置模块,用于设置角运动误差传递系数初值:
Figure PCTCN2019089302-appb-000028
所述角运动误差传递差系数调节模块,根据反馈的补偿后的重力梯度仪信号产生调节量,微调角运动误差传递系数;角运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节角运动误差传递系数;当工作在非调节模式时,角运动误差传递系保持不变。
如图4(b)所示,所述的角运动误差补偿信号产生模块由角运动误差传递系数输入模块,角运动检测模块,参考信号输入模块,角运动补偿信号产生模块,离心梯度检测模块组成;所述角运动误差传递系数输入模块用于输入角运动误差传递系数;所述参考信号输入模块用于输入正交幅值调制载波;所述角运动检测模块由角速率传感器及低通滤波器组成,用于检测重力梯度仪的角运动;如图5所示,所述角速率传感器安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的角速度ω xyz及角加速度ω axayaz;所述低通滤波器则滤除角速度、角加速度信号中的高频噪声;所述角运动误差产生模块根据正交幅值调制载波,角运动误差传递系数,角加速度,角速度,产生角运动误差补偿信号;所述离心梯度检测模块,有两种工作模式,标定模式和非标定模式,在标定模式下,离心梯度检测单元输出检测的离心梯度,在非标定模式下,离心梯度检测单元无输出;。
所述的角运动误差补偿信号产生模块具有三种工作模式,非补偿模式,正常模式,标 定模式;非补偿模式下,产生的角运动误差补偿信号C A(t)为:
C A(t)=0;
在正常模式下,产生的角运动误差补偿信号C A(t)为:
Figure PCTCN2019089302-appb-000029
在标定模式下,产生的角运动误差补偿信号C A(t)为:
Figure PCTCN2019089302-appb-000030
式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入角运动误差补偿信号产生模块的正交幅度调制载波;
Figure PCTCN2019089302-appb-000031
表示t时刻输入角运动误差补偿信号产生模块的角运动误差传递系数;ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻输入角运动误差补偿信号产生模块的角运动信号;
如图3(b)所示,所述线运动误差传递系数处理模块,由线运动误差传递系数初值设置模块,线运动误差传递系数调节模块组成;所述线运动误差传递系数初值设置模块,设置线运动误差传递系数初值:
Figure PCTCN2019089302-appb-000032
所述线运动误差传递差系数调节模块,根据反馈的补偿后的重力梯度仪信号产生调节量,微调线运动误差传递系数;线运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节线运动误差传递系数;当工作在非调节模式时,线运动误差传递系保持不变;
如图4(a)所示,所述线运动误差补偿信号产生模块由线运动检测模块,线运动误差传递系数输入模块,参考信号输入模块,组成;所述线运动检测模块由加速度计,低通滤波器组成,用于检测重力梯度仪的加速度;如图5所示,所述加速度计安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的加速度a x,a y,a z;所述低通滤波器则滤除加速度信号中的高频噪声;所述线运动误差传递系数输入模块,用于输入线运 动误差传递系数;所述参考信号产生模块用于输入正交幅值调制载波;所述线运动补偿信号产生模块根据输入的正交幅值调制载波,加速度信号,线运动误差传递系数产生线运动误差补偿信号。
所述线运动误差补偿信号产生模块具有两种工作模式:非补偿模式,补偿模式;非补偿模式下,产生的线运动补偿信号C L(t)为:
C L(t)=0;
补偿模式下,产生的线运动补偿信号C L(t)为:
Figure PCTCN2019089302-appb-000033
式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入线运动误差补偿信号产生模块的正交幅度调制载波;
Figure PCTCN2019089302-appb-000034
表示t时刻输入线运动误差补偿信号产生模块的线运动误差传递系数;a x(t),a y(t),a z(t)表示t时刻输入线运动误差补偿信号产生模块的加速度信号。
所述补偿运算模块,根据自梯度补偿信号产生模块输出的自梯度补偿信号,线运动误差补偿信号产生模块产生的线运动误差补偿信号,角运动误差补偿信号产生模块产生的角运动误差补偿信号,对重力梯度仪加速度计信号处理模块产生的含有自梯度误差、线运动误差、角运动误差的输出进行补偿;
本发明的一种动基座旋转加速度计重力梯度仪误差补偿方法,包括以下步骤:
1)根据反馈的补偿后的重力梯度仪信号及线运动误差传递系数处理模块的工作模式,计算t时刻的线运动误差传递系数:
调节模式:
Figure PCTCN2019089302-appb-000035
非调节模式:
Figure PCTCN2019089302-appb-000036
式中
Figure PCTCN2019089302-appb-000037
表示t时刻的线运动误差传递系数,
Figure PCTCN2019089302-appb-000038
表示t-1时刻的线运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 1(g c(t-1))是t时刻线运动误差传递系数的微调量,它是g c(t-1)的函数;
根据反馈的补偿后的重力梯度仪信号及角运动误差传递系数处理模块的工作模式,计算t时刻的角运动误差传递系数:
调节模式:
Figure PCTCN2019089302-appb-000039
非调节模式:
Figure PCTCN2019089302-appb-000040
式中
Figure PCTCN2019089302-appb-000041
表示t时刻的角运动误差传递系数,
Figure PCTCN2019089302-appb-000042
表示t-1时刻的角运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 2(g c(t-1))表示t时刻角运动误差传递系数的微调量,它是g c(t-1)的函数;t=0时刻的线运动误差传递系数
Figure PCTCN2019089302-appb-000043
角运动误差传递系数
Figure PCTCN2019089302-appb-000044
通过标定得到;
根据反馈的补偿后的重力梯度仪信号,计算t时刻的加速度计标度系数:
Figure PCTCN2019089302-appb-000045
式中
Figure PCTCN2019089302-appb-000046
表示安装在旋转圆盘上的四只加速度计在t时刻的标度系数,
Figure PCTCN2019089302-appb-000047
表示安装在旋转圆盘上的四只加速度计在t-1时刻的标度系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 3(g c(t-1))表示t时刻加速度计标度系数的调节量,它是g c(t-1)的函数;
2)检测旋转加速度计重力梯度仪旋转圆盘在t时刻的相位角φ t,计算t时刻的正交幅度调制载波sinφ t,sin2φ t,cosφ t,cos2φ t;检测旋转旋转加速度计重力梯度仪在t时刻的加速度a x(t),a y(t),a z(t;)检测旋转加速度计重力梯度仪在t时刻的角速度及角加速度ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t);
根据下式计算t时刻的3类线运动误差补偿信号C L1(t),C L2(t),C L3(t):
Figure PCTCN2019089302-appb-000048
根据下式计算t时刻的3类角运动误差补偿信号C A1(t),C A2(t),C A3(t):
Figure PCTCN2019089302-appb-000049
3)根据线运动误差补偿信号产生模块的工作模式,计算t时刻的总的线运动误差补偿信号C L(t):
非补偿模式时,C L(t)=0;
补偿模式时,C L(t)=C L1(t)+C L2(t)+C L3(t);
根据角运动误差补偿信号产生模块的工作模式,计算t时刻总的角运动误差补偿信号C A(t):
非补偿模式时,C A(t)=0;
正常模式时,C A(t)=C A1(t)+C A2(t)+C A3(t);
标定模式时,C A(t)=C A2(t)+C A3(t);
根据自梯度补偿信号产生模块的工作模式,计算t时刻的自梯度补偿信号C sg(t):
补偿模式时,
Figure PCTCN2019089302-appb-000050
在非补偿模式时,C sg(t)=0;
式中
Figure PCTCN2019089302-appb-000051
是t时刻重力梯度仪的姿态角,P是自梯度模型的参数,
Figure PCTCN2019089302-appb-000052
是自梯度模型的inline通道的输出,它是姿态角的函数,
Figure PCTCN2019089302-appb-000053
是自梯度模型的cross通道的输出,它是姿态角的函数;
4)对t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号g(t),根据下式进行线运动误差补偿、角运动误差补偿、自梯度补偿;
g c(t)=g(t)-C L(t)-C sg(t)-C A(t)
式中g c(t)是t时刻补偿后的重力梯度仪信号,g(t)是t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号,C L(t)是t时刻的线运动误差补偿信号,C sg(t)是自梯度补偿信号,C A(t)是角运动误差补偿信号;

Claims (10)

  1. 一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于,该装置包括:
    用于产生正交幅度调制载波的参考信号产生模块;
    用于实时产生自梯度补偿信号的自梯度补偿信号产生模块;
    用于实时产生重力梯度仪角运动误差补偿信号及检测重力梯度仪离心梯度的角运动误差补偿信号产生模块;
    用于实时微调角运动误差传递系数的角运动误差传递系数处理模块;
    用于实时产生重力梯度仪线运动误差补偿信号的线运动误差补偿信号产生模块;
    用于实时微调线运动误差传递系数的线运动误差传递系数处理模块;
    用于对安装在旋转圆盘上的加速度计的输出信号求和、求差运算的重力梯度仪加速度计信号处理模块;
    用于实时调节加速度计标度系数的加速度计标度系数调节模块;
    用于对含有角运动误差,线运动误差,自梯度的重力梯度信号进行补偿的补偿运算模块;
    用于从补偿后的重力梯度仪信号解调输出重力梯度信号的重力梯度信号恢复模块;
    所述参考信号产生模块的输出连接到自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块的输入;所述自梯度补偿信号产生模块、角运动误差补偿信号产生模块、线运动误差补偿信号产生模块、重力梯度仪加速度计信号处理模块的输出连接到补偿运算模块的输入;所述补偿运算模块的输出连接到加速度计标度系数调节模块、角运动误差传递系数处理模块、线运动误差传递系数处理模块、重力梯度信号恢复模块的输入;所述线运动误差传递系数处理模块的输出连接到线运动误差补偿信号产生模块的输入;所述角运动误差传递系数处理模块的输出连接到角运动误差补偿信号产生模块的输入;所述加速度计标度系数调节模块的输出连接到重力梯度仪加速度计信号处理模块的输入。
  2. 如权利要求1所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述参考信号产生模块包括重力梯度仪旋转圆盘轴编码器和信号发生器;所述重力梯度仪旋转圆盘轴编码器检测重力梯度仪圆盘旋转的相位角φ t,所述信号发生器根据相位角φ t,产生正交幅度调制载波波sinφ t,sin2φ t,cosφ t,cos2φ t
  3. 如权利要求1所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述角运动误差传递系数处理模块包括角运动误差传递系数初值设置模块和角运动误 差传递系数调节模块,所述角运动误差传递系数初值设置模块用于设置角运动误差传递系数初值:
    Figure PCTCN2019089302-appb-100001
    所述角运动误差传递系数调节模块根据反馈的补偿后的重力梯度仪信号产生调节量,微调角运动误差传递系数;角运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节角运动误差传递系数;当工作在非调节模式时,角运动误差传递系保持不变。
  4. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述的角运动误差补偿信号产生模块包括角运动误差传递系数输入模块、角运动检测模块、参考信号输入模块、角运动补偿信号产生模块、离心梯度检测模块;
    所述角运动误差传递系数输入模块用于输入角运动误差传递系数;所述参考信号输入模块用于输入正交幅值调制载波;所述角运动检测模块包括角速率传感器和低通滤波器,用于检测重力梯度仪的角运动;所述角速率传感器安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的角速度ω xyz及角加速度ω axayaz;所述低通滤波器则滤除角速度、角加速度信号中的高频噪声;所述角运动补偿信号产生模块根据正交幅值调制载波、角运动误差传递系数、角加速度、角速度产生角运动误差补偿信号;所述离心梯度检测模块有两种工作模式,标定模式和非标定模式,在标定模式下,离心梯度检测单元输出检测的离心梯度,在非标定模式下,离心梯度检测单元无输出。
  5. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述的角运动误差补偿信号产生模块具有三种工作模式,非补偿模式,正常模式,标定模式;非补偿模式下,产生的角运动误差补偿信号C A(t)为:
    C A(t)=0;
    在正常模式下,产生的角运动误差补偿信号C A(t)为:
    Figure PCTCN2019089302-appb-100002
    在标定模式下,产生的角运动误差补偿信号C A(t)为:
    Figure PCTCN2019089302-appb-100003
    式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入角运动误差补偿信号产生模块的正交幅度调制载波;
    Figure PCTCN2019089302-appb-100004
    表示t时刻输入角运动误差补偿信号产生模块的角运动误差传递系数;ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示t时刻输入角运动误差补偿信号产生模块的角运动信号。
  6. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述线运动误差传递系数处理模块包括线运动误差传递系数初值设置模块和线运动误差传递系数调节模块,所述线运动误差传递系数初值设置模块用以设置线运动误差传递系数初值:
    Figure PCTCN2019089302-appb-100005
    所述线运动误差传递差系数调节模块根据反馈的补偿后的重力梯度仪信号产生调节量和微调线运动误差传递系数;线运动误差传递系数处理模块具有两种工作模式,调节模式和非条节模式,当工作在调节模式时,实时调节线运动误差传递系数;当工作在非调节模式时,线运动误差传递系保持不变。
  7. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述线运动误差补偿信号产生模块包括线运动检测模块、线运动误差传递系数输入模块、参考信号输入模块、线运动补偿信号产生模块,所述线运动检测模块包括加速度计和低通滤波器,用于检测重力梯度仪的加速度;所述加速度计安装在重力梯度仪测量坐标系的x轴,y轴,z轴,测量重力梯度仪测量坐标系的加速度a x,a y,a z;所述低通滤波器则滤除加速度信号中的高频噪声;所述线运动误差传递系数输入模块用于输入线运动误差传递系数;所述参考信号产生模块用于输入正交幅值调制载波;所述线运动补偿信号产生模块根据输入的正交幅值调制载波、加速度信号、线运动误差传递系数产生线运动误差补偿信号。
  8. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述线运动误差补偿信号产生模块具有两种工作模式:非补偿模式,补偿模式;非补偿模式下,产生的线运动补偿信号C L(t)为:
    C L(t)=0;
    补偿模式下,产生的线运动补偿信号C L(t)为:
    Figure PCTCN2019089302-appb-100006
    式中sin2φ t,cos2φ t,sinφ t,cosφ t为t时刻输入线运动误差补偿信号产生模块的正交幅度调制载波;
    Figure PCTCN2019089302-appb-100007
    表示t时刻输入线运动误差补偿信号产生模块的线运动误差传递系数;a x(t),a y(t),a z(t)表示t时刻输入线运动误差补偿信号产生模块的加速度信号。
  9. 如权利要求1、2或3所述的一种动基座旋转加速度计重力梯度仪误差补偿装置,其特征在于:所述补偿运算模块根据自梯度补偿信号产生模块输出的自梯度补偿信号、线运动误差补偿信号产生模块产生的线运动误差补偿信号、角运动误差补偿信号产生模块产生的角运动误差补偿信号,对重力梯度仪加速度计信号处理模块产生的含有自梯度误差、线运动误差、角运动误差的输出进行补偿。
  10. 一种动基座旋转加速度计重力梯度仪误差补偿方法,其特征在于,该方法包括以下步骤:
    1)根据反馈的补偿后的重力梯度仪信号及线运动误差传递系数处理模块的工作模式,计算t时刻的线运动误差传递系数:
    调节模式:
    Figure PCTCN2019089302-appb-100008
    非调节模式:
    Figure PCTCN2019089302-appb-100009
    式中
    Figure PCTCN2019089302-appb-100010
    表示t时刻的线运动误差传递系数,
    Figure PCTCN2019089302-appb-100011
    表示t-1时刻的线运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 1(g c(t-1))是t时刻线运动误差传递系数的微调量, 它是g c(t-1)的函数;
    根据反馈的补偿后的重力梯度仪信号及角运动误差传递系数处理模块的工作模式,计算t时刻的角运动误差传递系数:
    调节模式:
    Figure PCTCN2019089302-appb-100012
    非调节模式:
    Figure PCTCN2019089302-appb-100013
    式中
    Figure PCTCN2019089302-appb-100014
    表示t时刻的角运动误差传递系数,
    Figure PCTCN2019089302-appb-100015
    表示t-1时刻的角运动误差传递系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 2(g c(t-1))表示t时刻角运动误差传递系数的微调量,它是g c(t-1)的函数;t=0时刻的线运动误差传递系数
    Figure PCTCN2019089302-appb-100016
    角运动误差传递系数
    Figure PCTCN2019089302-appb-100017
    均通过标定得到;
    根据反馈的补偿后的重力梯度仪信号,计算t时刻的加速度计标度系数:
    Figure PCTCN2019089302-appb-100018
    式中
    Figure PCTCN2019089302-appb-100019
    表示安装在旋转圆盘上的四只加速度计在t时刻的标度系数,
    Figure PCTCN2019089302-appb-100020
    表示安装在旋转圆盘上的四只加速度计在t-1时刻的标度系数;g c(t-1)表示t-1时刻补偿后的重力梯度仪信号;F 3(g c(t-1))表示t时刻加速度计标度系数的调节量,它是g c(t-1)的函数;
    2)检测旋转加速度计重力梯度仪旋转圆盘在t时刻的相位角φ t,计算t时刻的正交幅度调制载波sinφ t,sin2φ t,cosφ t,cos2φ t;检测旋转旋转加速度计重力梯度仪在t时刻的加速度
    Figure PCTCN2019089302-appb-100021
    检测旋转加速度计重力梯度仪在t时刻的角速度及角加速度 ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t);
    根据下式计算t时刻的3类线运动误差补偿信号C L1(t),C L2(t),C L3(t):
    Figure PCTCN2019089302-appb-100022
    根据下式计算t时刻的3类角运动误差补偿信号C A1(t),C A2(t),C A3(t):
    Figure PCTCN2019089302-appb-100023
    3)根据线运动误差补偿信号产生模块的工作模式,计算t时刻的总的线运动误差补偿信号C L(t):
    非补偿模式时,C L(t)=0;
    补偿模式时,C L(t)=C L1(t)+C L2(t)+C L3(t);
    根据角运动误差补偿信号产生模块的工作模式,计算t时刻总的角运动误差补偿信号C A(t):
    非补偿模式时,C A(t)=0;
    正常模式时,C A(t)=C A1(t)+C A2(t)+C A3(t);
    标定模式时,C A(t)=C A2(t)+C A3(t);
    根据自梯度补偿信号产生模块的工作模式,计算t时刻的自梯度补偿信号C sg(t):
    补偿模式时,
    Figure PCTCN2019089302-appb-100024
    在非补偿模式时,C sg(t)=0;
    式中
    Figure PCTCN2019089302-appb-100025
    是t时刻重力梯度仪的姿态角,P是自梯度模型的参数,
    Figure PCTCN2019089302-appb-100026
    是自 梯度模型的inline通道的输出,它是姿态角的函数,
    Figure PCTCN2019089302-appb-100027
    是自梯度模型的cross通道的输出,它是姿态角的函数;
    4)对t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号g(t),根据下式进行线运动误差补偿、角运动误差补偿、自梯度补偿;
    g c(t)=g(t)-C L(t)-C sg(t)-C A(t)
    式中g c(t)是t时刻补偿后的重力梯度仪信号,g(t)是t时刻含有线运动误差、角运动误差、自梯度的重力梯度仪信号,C L(t)是t时刻的线运动误差补偿信号,C sg(t)是自梯度补偿信号,C A(t)是角运动误差补偿信号;
PCT/CN2019/089302 2018-08-27 2019-05-30 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法 WO2020042696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810985818.1A CN109212620B (zh) 2018-08-27 2018-08-27 动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN201810985818.1 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020042696A1 true WO2020042696A1 (zh) 2020-03-05

Family

ID=64985949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089302 WO2020042696A1 (zh) 2018-08-27 2019-05-30 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法

Country Status (2)

Country Link
CN (1) CN109212620B (zh)
WO (1) WO2020042696A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212620B (zh) * 2018-08-27 2020-01-07 东南大学 动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN109709628B (zh) 2019-02-15 2020-08-14 东南大学 一种旋转加速度计重力梯度仪标定方法
CN114137447B (zh) * 2022-02-07 2022-07-12 西南民族大学 磁梯度仪摆动噪声补偿方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181967B2 (en) * 2002-03-18 2007-02-27 Bhp Billiton Innovation Pty Ltd Enhancement of sensors for airborne operation
CN105717553A (zh) * 2016-01-29 2016-06-29 东南大学 一种旋转加速度计重力梯度仪标定方法
CN107870371A (zh) * 2017-12-05 2018-04-03 东南大学 一种动基座重力梯度仪自梯度补偿方法
CN109212620A (zh) * 2018-08-27 2019-01-15 东南大学 动基座旋转加速度计重力梯度仪误差补偿装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357802A (en) * 1993-05-07 1994-10-25 Textron, Incorporated Rotating accelerometer gradiometer
US5922951A (en) * 1997-06-11 1999-07-13 The Broken Hill Proprietary Company Ltd. Gravity gradiometer
US7444867B2 (en) * 2005-01-04 2008-11-04 Bell Geospace, Inc. Accelerometer and rate sensor package for gravity gradiometer instruments
CA2598623A1 (en) * 2005-10-06 2007-04-12 Technological Resources Pty Limited Gravity gradiometer
CN105044798A (zh) * 2015-06-29 2015-11-11 东南大学 旋转加速度计重力梯度仪加速度计标度因子反馈调整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181967B2 (en) * 2002-03-18 2007-02-27 Bhp Billiton Innovation Pty Ltd Enhancement of sensors for airborne operation
CN105717553A (zh) * 2016-01-29 2016-06-29 东南大学 一种旋转加速度计重力梯度仪标定方法
CN107870371A (zh) * 2017-12-05 2018-04-03 东南大学 一种动基座重力梯度仪自梯度补偿方法
CN109212620A (zh) * 2018-08-27 2019-01-15 东南大学 动基座旋转加速度计重力梯度仪误差补偿装置及方法

Also Published As

Publication number Publication date
CN109212620B (zh) 2020-01-07
CN109212620A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2020042696A1 (zh) 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN106679649B (zh) 一种手部运动追踪***及追踪方法
WO2020164206A1 (zh) 一种旋转加速度计重力梯度仪标定方法
CN101852818B (zh) 一种基于旋转机构的加速度计误差标定与补偿方法
CN101893722B (zh) 一种基于巨磁阻传感器的地磁横滚角测量***及方法
CN105371846B (zh) 载体姿态检测方法及其***
WO2020140378A1 (zh) 一种旋转加速度计重力梯度仪运动误差事后补偿方法
CN104698485A (zh) 基于bd、gps及mems的组合导航***及导航方法
CN105865453B (zh) 一种位置传感器和姿态传感器的导航***及其融合方法
CN105044798A (zh) 旋转加速度计重力梯度仪加速度计标度因子反馈调整方法
CN104075699A (zh) 三维固态电子罗盘及其传感器的零点和比例系数核正方法
CN110108299A (zh) 一种硅微机械陀螺仪标度因数在线自校准***
CN109581524A (zh) 一种旋转加速度计式重力梯度敏感器动态测量解调方法
CN111624671B (zh) 旋转加速度计重力梯度仪重力梯度解调相位角确定方法及装置
CN113885098A (zh) 一种重力敏感器低频频率响应误差在线建模及补偿方法
CN104570142B (zh) 一种重力梯度仪重力梯度测量信号的解调方法
CN110058324B (zh) 利用重力场模型的捷联式重力仪水平分量误差修正方法
CN102538787A (zh) 一种数字式定向参数测量装置
CN110207647A (zh) 一种基于互补卡尔曼滤波器的臂环姿态角计算方法
CN102252692A (zh) 一种基于旋转机构的陀螺与加速度相关漂移的标定与补偿方法
CN109212619B (zh) 一种旋转加速度计重力梯度仪线运动误差补偿装置及方法
CN109212629B (zh) 旋转加速度计重力梯度仪角运动误差补偿装置及方法
CN105716626B (zh) 一种悬浮类陀螺仪的定子旋转调制误差补偿方法
CN105300353B (zh) 基于过采样技术的高精度倾角测量仪
Zhang et al. Implementation and complexity analysis of orientation estimation algorithms for human body motion tracking using low-cost sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853468

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19853468

Country of ref document: EP

Kind code of ref document: A1