WO2020164121A1 - 一种雷达以及增益控制方法 - Google Patents

一种雷达以及增益控制方法 Download PDF

Info

Publication number
WO2020164121A1
WO2020164121A1 PCT/CN2019/075246 CN2019075246W WO2020164121A1 WO 2020164121 A1 WO2020164121 A1 WO 2020164121A1 CN 2019075246 W CN2019075246 W CN 2019075246W WO 2020164121 A1 WO2020164121 A1 WO 2020164121A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
gain
module
moment
target object
Prior art date
Application number
PCT/CN2019/075246
Other languages
English (en)
French (fr)
Inventor
***
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/075246 priority Critical patent/WO2020164121A1/zh
Priority to CN201980052105.2A priority patent/CN112534302B/zh
Publication of WO2020164121A1 publication Critical patent/WO2020164121A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Definitions

  • This application relates to the field of automatic driving, and in particular to a radar and a gain control method.
  • Artificial intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge, and use knowledge to obtain the best results.
  • artificial intelligence is a branch of computer science that attempts to understand the essence of intelligence and produce a new kind of intelligent machine that can react in a similar way to human intelligence.
  • Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
  • Research in the field of artificial intelligence includes robotics, natural language processing, computer vision, decision-making and reasoning, human-computer interaction, recommendation and search, and basic AI theories.
  • Autonomous driving is a mainstream application in the field of artificial intelligence.
  • Autonomous driving technology relies on the collaboration of computer vision, radar, monitoring devices, and global positioning systems to allow motor vehicles to achieve autonomous driving without requiring human active operations.
  • Self-driving vehicles use various computing systems to help transport passengers from one location to another. Some autonomous vehicles may require some initial input or continuous input from an operator (such as a navigator, driver, or passenger). The self-driving vehicle permits the operator to switch from manual mode operation to automatic driving mode or a mode in between. Since autonomous driving technology does not require humans to drive motor vehicles, it can theoretically effectively avoid human driving errors, reduce traffic accidents, and improve highway transportation efficiency. Therefore, autonomous driving technology has received more and more attention.
  • lidar can scan the range of target objects in the surrounding environment, generate 3D point clouds, and provide real-time data input for automatic driving assistance systems. It has the characteristics of high temporal and spatial resolution, high sensitivity, and strong anti-interference ability. The application of auxiliary systems is becoming more and more extensive.
  • lidar measures the distance between the lidar and the target object through the flight time of the echo signal reflected by the target object. Therefore, the power of the echo signal reflected by the target object has a greater impact on the measurement accuracy of the lidar.
  • the signal processing circuit in the lidar needs to work in the linear range to avoid the ranging error caused by the saturation or weak echo signal.
  • the industry usually detects the intensity of the echo signal and adjusts the gain of the variable gain amplifier (VGA) according to the detection result, so that the amplitude of the signal to be processed by the signal processing circuit in the laser radar is kept within a certain range , So that the signal processing circuit in the laser radar works in the linear range.
  • VGA variable gain amplifier
  • the present application provides a radar and a gain control method, so as to realize real-time adjustment of the signal gain reflected by a target object received by the radar and improve the detection accuracy of the radar.
  • the present application provides a radar that includes a transmitting module, a gain adjustment module, a gain control module, and a receiving module.
  • the gain control module is connected to the transmitting module and the gain adjustment module, respectively.
  • the gain adjustment module is also connected to the receiving module.
  • the transmitting module is used to transmit a first signal, and the first signal is used to detect a target object; the receiving module is used to receive a second signal, and output the second signal to the gain adjustment Module; wherein, the second signal is the signal reflected after the first signal encounters the target object; the gain control module is used to determine the corresponding relationship between the first propagation time and the signal gain and propagation time The gain at the first moment, and output the determined gain to the gain adjustment module; wherein, the first propagation duration is the duration from the moment when the transmitting module transmits the first signal to the first moment The first moment is the moment when the gain adjustment module receives the second signal; the gain adjustment module is configured to adjust the strength of the second signal according to the gain at the first moment.
  • the gain control module in the radar can determine the first propagation time from the moment when the transmitter module transmits the first signal to the moment when the gain adjustment module receives the second signal, and the corresponding relationship between signal gain and propagation time.
  • the gain at the time when the gain adjustment module receives the second signal so that the gain adjustment module can adjust the strength of the second signal according to the gain at the time when the second signal is received, where the second signal is The signal reflected by the first signal after encountering the target object, that is, the gain control module can determine in real time that the second signal is received through the first propagation time and the corresponding relationship between the signal gain and the propagation time
  • the real-time gain is simpler and the real-time performance is better.
  • the gain control module includes a timing module and a gain determination module.
  • the timing module is configured to determine the first propagation duration according to the time when the first signal is transmitted and the first moment;
  • the gain determining module is configured to determine the first propagation duration according to the first propagation duration and the According to the corresponding relationship, the gain at the first moment is determined, and the determined gain is transmitted to the gain adjustment module.
  • the gain control module further includes a reflectivity determination module.
  • the transmitting module is also used for transmitting a third signal, and the third signal is used for detecting the target object;
  • the receiving module is also used for receiving a fourth signal, and transmitting the fourth signal to In the gain adjustment module, the fourth signal is a signal after the third signal is reflected by the target object;
  • the timing module is further configured to: determine according to the time when the third signal is transmitted and the second time The second propagation duration, where the second propagation duration is the moment when the gain adjustment module receives the fourth signal;
  • the reflectivity determination module is configured to determine the target according to the adjusted second signal The reflectivity of the object;
  • the gain determination module is further used to: determine the gain at the second moment according to the reflectivity of the target object, the second propagation duration, and the corresponding relationship, and combine the determined gain Transmitted to the gain adjustment module;
  • the gain adjustment module is further configured to adjust the strength of the fourth signal according to the gain at the second moment.
  • the gain control module is based on the reflectivity of the target object and the first propagation. The duration and the corresponding relationship between the signal gain and the propagation duration, and determining the gain at the second moment can improve the accuracy of the determined gain, which in turn can further improve the detection accuracy of the radar.
  • the radar further includes a waveform detection module, which is respectively connected to the reflectivity determination module and the gain adjustment module.
  • the waveform detection module is configured to detect the adjusted amplitude of the second signal;
  • the reflectance determining module is specifically configured to: determine the target according to the adjusted amplitude of the second signal The reflectivity of the object.
  • the waveform detection module may be a peak detection circuit.
  • the gain control module further includes a weather estimation module.
  • the weather estimation module is configured to determine weather information according to the adjusted second signal, and the weather information is used to characterize current weather conditions; the gain determining module is also configured to: according to the target object Determine the gain at the second moment, and transmit the determined gain to the gain adjustment module.
  • the gain determining module specifically determines the gain at the second moment by any one of the following methods:
  • the gain determination module modifies the target object based on the weather information.
  • the reflectivity of the target object and then correct the determined gain at the second moment, or directly correct the gain determined when the weather factor is not considered according to the weather information, and adjust the strength of the fourth signal through the corrected gain.
  • the detection accuracy of the radar is further improved.
  • the radar further includes a waveform detection module, which is respectively connected to the reflectance determination module, the weather estimation module, and the gain adjustment module.
  • the waveform detection module is configured to detect the adjusted amplitude of the second signal and the waveform characteristics of the adjusted second signal;
  • the reflectance determination module is specifically configured to: The amplitude of the second signal determines the reflectivity of the target object;
  • the weather estimation module is specifically configured to determine the weather information according to the adjusted waveform characteristics of the second signal.
  • the gain control module further includes a weather estimation module.
  • the transmitting module is also used for transmitting a third signal, and the third signal is used for detecting the target object;
  • the receiving module is also used for receiving a fourth signal, and transmitting the fourth signal to
  • the fourth signal is a signal after the third signal is reflected by the target object;
  • the timing module is further configured to: determine according to the time when the third signal is transmitted and the second time The second propagation time length is the time when the gain adjustment module receives the fourth signal;
  • the weather estimation module is configured to determine weather information according to the adjusted second signal, so The weather information is used to characterize the current weather conditions;
  • the gain determination module is also used to: determine the gain at the second moment according to the weather information, the second propagation duration, and the corresponding relationship, and compare The determined gain is transmitted to the gain adjustment module;
  • the gain adjustment module is further configured to adjust the strength of the fourth signal according to the gain at the second moment.
  • the weather conditions on the propagation path of the signal reflected by the target object will also affect the intensity of the signal reflected by the target object. For example, in a foggy day, particles suspended in the air will scatter the signal reflected by the target object, thereby affecting all The intensity of the signal reflected by the target object when it propagates to the radar, which in turn affects the detection accuracy of the radar. Therefore, the gain determining module is based on the determined weather information, the second propagation duration, and the signal gain. The corresponding relationship of the propagation time, the gain at the second time is determined, and the influence of weather factors on the gain of the fourth signal is taken into account, which can improve the accuracy of the determined gain at the current time, thereby further improving the radar The detection accuracy.
  • the gain determining module specifically determines the gain at the second moment by the following method: determining the reference gain according to the second propagation duration and the correspondence between the signal gain and the propagation duration; according to The weather information corrects the reference gain, and determines the corrected reference gain as the gain at the second moment.
  • the gain determination module corrects the gain determined when the weather factor is not considered according to the determined weather information, and passes The modified gain adjusts the strength of the fourth signal, which can improve the accuracy of the determined gain at the second moment, and thus can further improve the detection accuracy of the radar.
  • the gain adjustment module is a variable gain amplifier VGA, or a multi-stage amplifier.
  • this application provides a gain control method applied to radar.
  • the method includes: transmitting a first signal for detecting a target object; determining the gain at the first time according to the first propagation time and the corresponding relationship between the signal gain and the propagation time, wherein the first propagation time is from the transmitting station The length of time from the moment of the first signal to the first moment, the first moment is the moment when a second signal is received, and the second signal is a signal reflected after the first signal encounters the target object When receiving the second signal, adjust the strength of the second signal according to the gain at the first moment.
  • the radar can determine the gain at the first time when the second signal is received according to the first propagation time from the moment when the first signal is transmitted to the moment when the second signal is received and the corresponding relationship between the signal gain and the propagation time.
  • the strength of the second signal is adjusted according to the determined gain, where the second signal is the signal reflected after the first signal encounters the target object, that is, the The radar can determine the gain at the first moment in real time through the first propagation time and the corresponding relationship between the signal gain and the propagation time, and when receiving the second signal, adjust the strength of the second signal in real time.
  • the implementation method is simple and the real-time performance is better.
  • the radar may also determine the reflectance of the target object according to the adjusted second signal; and , Transmit a third signal for detecting the target object; determine the gain at the second time according to the reflectivity of the target object, the second propagation time and the corresponding relationship, and adjust the gain at the second time according to the gain at the second time
  • the strength of the fourth signal wherein, the second propagation duration is the moment when the fourth signal is received, the second moment is the moment when the fourth signal is received, and the fourth signal is the first Three signals are signals reflected by the target object.
  • the radar determines the gain at the second time according to the reflectivity of the target object, the determined second propagation time, and the corresponding relationship between the signal gain and the propagation time. The accuracy of the determined gain can be improved, and the detection accuracy of the radar can be further improved.
  • the radar may specifically determine the reflectivity of the target object through the following steps: the radar detects the adjusted amplitude of the second signal, and determines according to the adjusted amplitude of the second signal The reflectivity of the target object. Specifically, the radar may estimate the amplitude of the received second signal (that is, the corresponding relationship between the propagation time of the second signal and the amplitude of the second signal according to the first propagation time). The amplitude of the second signal after loss on the propagation path), and then determine the amplitude of the second signal according to the gain at the first moment, the estimated amplitude of the second signal, and the detected amplitude of the second signal The reflectivity of the target object.
  • the radar may also determine weather information according to the adjusted second signal, and the weather information is used for Characterizing current weather conditions; determining the gain at the second moment according to the reflectivity of the target object, the weather information, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration.
  • the radar Since the weather conditions of the signal propagation path reflected by the target object will also affect the intensity of the signal reflected by the target object, and in turn will also affect the accuracy of the determined reflectivity of the target object, the radar according to the The reflectance of the target object, the weather information, the second propagation time, and the corresponding relationship between the signal gain and the propagation time, and determining the gain at the second time can improve the accuracy of the determined gain, and thus can The detection accuracy of the radar is further improved.
  • the radar may determine the gain at the current moment by but not limited to any of the following two methods:
  • Method I Correct the reflectivity of the target object according to the weather information; determine the reflectivity of the target object after the correction, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration. Describe the gain at the second moment.
  • Manner II Determine the reference gain according to the reflectivity of the target object, the second propagation time, and the correspondence between the signal gain and the propagation time; according to the weather information, the reference gain is corrected, and the corrected The reference gain is determined as the gain at the second moment.
  • the radar determines Modify the reflectivity of the target object, and then modify the determined gain at the second moment, or directly modify the determined gain when weather factors are not taken into consideration based on the determined weather information, and adjust the gain through the modified gain
  • the strength of the fourth signal can further improve the detection accuracy of the radar.
  • the radar may also determine weather information according to the adjusted second signal, and the weather information is represented by The current weather conditions; transmit a third signal for detecting the target object; determine the gain at the second time according to the weather information, the second propagation duration, and the corresponding relationship, and according to the gain at the second time, Adjust the strength of the fourth signal; the second propagation duration is the moment when the fourth signal is received, the second moment is the moment when the fourth signal is received, and the fourth signal is the third The signal is reflected by the target object.
  • the radar may determine the gain at the second time in the following manner, but is not limited to: determining a reference gain according to the second propagation duration and the corresponding relationship between the signal gain and the propagation duration; According to the weather information, the reference gain is corrected, and the corrected reference gain is determined as the gain at the second moment.
  • the weather conditions on the propagation path of the signal reflected by the target object will also affect the intensity of the signal reflected by the target object. For example, in a foggy day, particles suspended in the air will scatter the signal reflected by the target object, thereby affecting all The intensity of the signal reflected by the target object when it propagates to the radar, which in turn affects the detection accuracy of the radar. Therefore, the radar corrects the gain determined when weather factors are not taken into account according to the determined weather information, and passes the corrected gain Adjusting the strength of the fourth signal can further improve the detection accuracy of the radar.
  • the radar may specifically determine the weather information through the following steps: the radar detects and adjusts the waveform characteristics of the second signal, wherein the waveform characteristics of the second signal include the Waveform shape, steepness of the falling edge, etc.; determining the current weather condition according to the adjusted waveform characteristics of the second signal. For example, when the falling edge of the second signal is relatively gentle and the tail is long, it is a foggy or sandy day or other weather with obvious scattered particles in the air.
  • the present application also provides a computer storage medium in which computer-executable instructions are stored.
  • the computer executes the second The method provided in any possible implementation manner in the aspect.
  • the present application also provides a computer program product containing instructions that, when the instructions run on a computer, cause the computer to execute the method provided in any one of the possible implementations of the second aspect.
  • the present application also provides a chip, the chip is connected to a memory or the chip includes the memory, and is used to read and execute the software program stored in the memory to implement the above-mentioned second aspect Any one of the possible implementation methods provided.
  • Figure 1a is one of the structural schematic diagrams of a lidar increasing control device in the prior art
  • Figure 1b is the second structural schematic diagram of a lidar increasing control device in the prior art
  • FIG. 2 is a schematic structural diagram of a vehicle provided by an embodiment of the application.
  • FIG. 3 is one of the schematic structural diagrams of a radar provided by an embodiment of this application.
  • FIG. 4 is one of the schematic structural diagrams of a gain control module in a radar provided by an embodiment of the application;
  • FIG. 5 is the second structural diagram of a gain control module in a radar according to an embodiment of the application.
  • FIG. 6 is the second schematic diagram of a radar structure provided by an embodiment of this application.
  • FIG. 7 is the third structural diagram of a gain control module in a radar provided by an embodiment of the application.
  • FIG. 8a is one of the schematic structural diagrams of a gain adjustment module in a radar provided by an embodiment of the application.
  • FIG. 8b is the second structural diagram of a gain adjustment module in a radar according to an embodiment of the application.
  • FIG. 9 is the third structural diagram of a gain adjustment module in a radar according to an embodiment of the application.
  • FIG. 10 is the third schematic diagram of a radar structure provided by an embodiment of this application.
  • FIG. 11 is a fourth schematic structural diagram of a radar provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of a gain control method provided by an embodiment of the application.
  • Lidar usually uses the flight time of the echo signal reflected by the target object to measure the distance between the laser radar and the target object. Therefore, the power of the echo signal reflected by the target object has a greater impact on the measurement accuracy of the laser radar.
  • lidar usually needs to cover a detection range of several meters to hundreds of meters. At the same time, the reflectivity of target objects detected by lidar varies greatly, which makes the power fluctuation range of the echo signal reflected by the target object. Larger. In order to ensure the ranging accuracy of the lidar, the signal processing circuit in the lidar needs to work in the linear range to avoid the ranging error caused by the saturation or weak echo signal.
  • the industry mainly adopts the following two methods to ensure that the signal processing circuit in the laser radar works in the linear range, thereby ensuring the ranging accuracy of the laser radar:
  • Manner 1 Use the increasing control device 111 as shown in FIG. 1a to adjust the amplitude of the signal to be processed by the signal processing circuit in the laser radar.
  • the increasing control device 110 includes a delay module 111, a gain set circuitry 112, and a variable gain amplifier VGA113.
  • VGA113 variable gain amplifier
  • the gain adjustment circuit 112 determines that the amplitude of the echo signal (that is, the input signal) reflected by the target object is small, increase the gain of VGA113, and when the gain adjustment circuit 112 determines that the amplitude of the input signal is large, decrease the gain of VGA113 Therefore, it is ensured that the signal output by the increasing control device 110 to the constant fraction timing (CFD) circuit is maintained within a certain linear interval, thereby reducing the drift error of the CFD circuit.
  • CFD constant fraction timing
  • the signal input to the VGA needs to be delayed by the delay module 111, so as to realize the real-time adjustment of the gain of the echo signal received by the lidar .
  • the delay module 111 in order to achieve real-time adjustment of the gain of the echo signal received by the lidar, the delay module 111 usually needs to delay more than 20 ns, which is difficult to achieve. If a coaxial cable is used to achieve a delay of more than 20 ns, the length of the coaxial cable is too long, which directly affects the volume and convenience of the entire increase control device 110. In addition, there is currently no chip that can achieve this long delay.
  • the second method is to use the increasing control device 120 shown in FIG. 1b to adjust the amplitude of the signal to be processed by the signal processing circuit in the laser radar.
  • the increasing control device 120 includes a VGA 121, a gain control module 122 and a peak detection module 123.
  • the echo signal (that is, the input signal) reflected by the target object directly enters the VGA121, and the VGA121 first amplifies the echo signal reflected by the target object according to the preset initial gain.
  • the peak detection module 123 detects the amplitude of the signal output by the VGA121, and the gain control module 122 adjusts the gain setting of the VGA121 according to the detection result of the peak detection module 123, so that The VGA121 adjusts the echo signal reflected by the target object according to the adjusted gain in the next cycle of the echo signal reflected by the target object.
  • This method is relatively simple in structure and easy to implement, but it can only be applied to the next cycle of the echo signal reflected by the target object, and the echo signal reflected by the target object is adjusted according to the adjusted gain, which has poor real-time performance.
  • the present application provides a radar and a gain control method to realize real-time adjustment of the signal gain reflected by the target object received by the radar and improve the detection accuracy of the radar.
  • improvements are mainly made to the gain control method of the radar.
  • the radar may be a radar in which the amplitude of the received signal such as a laser radar has a greater influence on the target detection accuracy.
  • the radar provided in the embodiment of the present application is a complete radar, and also has the structure of a known radar. Here, only the components involved in gain control in the radar will be described, and other components will not be repeated.
  • FIG. 2 is a functional block diagram of a vehicle 200 with an automatic driving function provided by an embodiment of the present application.
  • the vehicle 200 is configured in a fully or partially autonomous driving mode.
  • the vehicle 200 can control itself while in the automatic driving mode, and can determine the current state of the vehicle and its surrounding environment through human operations, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine the other vehicle
  • the confidence level corresponding to the possibility of performing possible actions is controlled based on the determined information.
  • the vehicle 200 can be set to operate without human interaction.
  • the vehicle 200 may include various subsystems, such as a travel system 202, a sensing system 204, a control system 206, one or more peripheral devices 208 and a power supply 210, a computer system 212, and a user interface 216.
  • the vehicle 200 may include more or fewer subsystems, and each subsystem may include multiple elements.
  • each subsystem and element of the vehicle 200 may be interconnected by wires or wirelessly.
  • the travel system 202 may include components that provide power movement for the vehicle 200.
  • the travel system 202 may include an engine 218, an energy source 219, a transmission 220, and wheels/tires 221.
  • the engine 218 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a hybrid engine composed of a gas oil engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine.
  • the engine 218 converts the energy source 219 into mechanical energy.
  • Examples of energy sources 219 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 219 may also provide energy for other systems of the vehicle 100.
  • the transmission 220 can transmit the mechanical power from the engine 218 to the wheels 221.
  • the transmission 220 may include a gearbox, a differential, and a drive shaft.
  • the transmission device 220 may also include other components, such as a clutch.
  • the drive shaft may include one or more shafts that can be coupled to one or more wheels 221.
  • the sensing system 204 may include several sensors that sense information about the environment around the vehicle 200.
  • the sensing system 204 may include a positioning system 222 (the positioning system may be a global positioning system (GPS) system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 224 , Radar 226, laser rangefinder 228, and camera 230.
  • the sensing system 204 may also include sensors of the internal system of the monitored vehicle 200 (for example, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). Such detection and identification are key functions for the safe operation of the autonomous vehicle 100.
  • the positioning system 222 can be used to estimate the geographic location of the vehicle 200.
  • the IMU 224 is used to sense the position and orientation changes of the vehicle 200 based on inertial acceleration.
  • the IMU 224 may be a combination of an accelerometer and a gyroscope.
  • the radar 226 may use radio signals to sense objects in the surrounding environment of the vehicle 200. In some embodiments, in addition to sensing the object, the radar 226 may also be used to sense the speed and/or direction of the object.
  • the laser rangefinder 228 can use laser light to sense objects in the environment where the vehicle 100 is located.
  • the laser rangefinder 228 may include one or more laser sources, laser scanners, and one or more detectors, as well as other system components.
  • the camera 230 may be used to capture multiple images of the surrounding environment of the vehicle 200.
  • the camera 230 may be a still camera or a video camera.
  • the control system 206 controls the operation of the vehicle 200 and its components.
  • the control system 206 may include various components, including a steering system 232, a throttle 234, a braking unit 236, a sensor fusion algorithm 238, a computer vision system 240, a route control system 242, and an obstacle avoidance system 244.
  • the steering system 232 is operable to adjust the forward direction of the vehicle 200.
  • it may be a steering wheel system in one embodiment.
  • the throttle 234 is used to control the operating speed of the engine 218 and thereby control the speed of the vehicle 200.
  • the braking unit 236 is used to control the vehicle 200 to decelerate.
  • the braking unit 236 may use friction to slow the wheels 221.
  • the braking unit 236 may convert the kinetic energy of the wheels 221 into electric current.
  • the braking unit 236 may also take other forms to slow down the rotation speed of the wheels 221 to control the speed of the vehicle 200.
  • the computer vision system 240 may be operable to process and analyze the images captured by the camera 230 in order to identify objects and/or features in the surrounding environment of the vehicle 200.
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • the computer vision system 240 may use object recognition algorithms, structure from motion (SFM) algorithms, video tracking, and other computer vision technologies.
  • the computer vision system 240 may be used to map the environment, track objects, estimate the speed of objects, and so on.
  • the route control system 242 is used to determine the travel route of the vehicle 200.
  • the route control system 142 may combine data from the sensor 238, the GPS 222, and one or more predetermined maps to determine the driving route for the vehicle 200.
  • the obstacle avoidance system 244 is used to identify, evaluate, and avoid or otherwise cross over potential obstacles in the environment of the vehicle 200.
  • control system 206 may additionally or alternatively include components other than those shown and described. Alternatively, a part of the components shown above may be reduced.
  • the vehicle 200 interacts with external sensors, other vehicles, other computer systems, or users through peripheral devices 208.
  • the peripheral device 208 may include a wireless communication system 246, a car computer 248, a microphone 250, and/or a speaker 252.
  • the peripheral device 208 provides a means for the user of the vehicle 200 to interact with the user interface 216.
  • the onboard computer 248 can provide information to the user of the vehicle 200.
  • the user interface 216 can also operate the onboard computer 248 to receive user input.
  • the on-board computer 248 can be operated through a touch screen.
  • the peripheral device 208 may provide a means for the vehicle 200 to communicate with other devices located in the vehicle.
  • the microphone 250 may receive audio (eg, voice commands or other audio input) from a user of the vehicle 200.
  • the speaker 252 may output audio to the user of the vehicle 200.
  • the wireless communication system 246 may wirelessly communicate with one or more devices directly or via a communication network.
  • the wireless communication system 246 may use 3G cellular communication, such as code division multiple access (CDMA), EVD0, global system for mobile communications (GSM)/general packet radio service technology (general packet radio service technology). Packet radio service, GPRS), or 4G cellular communication, such as long term evolution (LTE), or 5G cellular communication.
  • the wireless communication system 246 may use WiFi to communicate with a wireless local area network (WLAN).
  • the wireless communication system 246 may directly communicate with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols such as various vehicle communication systems.
  • the wireless communication system 246 may include one or more dedicated short-range communication (DSRC) devices, which may include vehicles and/or roadside stations. Public and/or private data communications.
  • DSRC dedicated short-range communication
  • the power supply 210 may provide power to various components of the vehicle 200.
  • the power source 210 may be a rechargeable lithium ion or lead acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the vehicle 200.
  • the power source 210 and the energy source 219 may be implemented together, such as in some all-electric vehicles.
  • the computer system 212 may include at least one processor 213 that executes instructions 215 stored in a non-transitory computer readable medium such as the memory 214.
  • the computer system 212 may also be multiple computing devices that control individual components or subsystems of the vehicle 200 in a distributed manner.
  • the processor 213 may be any conventional processor, such as a commercially available central processing unit (CPU). Alternatively, the processor may be a dedicated device such as an application specific integrated circuit (ASIC) or other hardware-based processor.
  • FIG. 2 functionally illustrates the processor, memory, and other elements of the computer 210 in the same block, those of ordinary skill in the art should understand that the processor, computer, or memory may actually include Multiple processors, computers, or memories stored in the same physical enclosure.
  • the memory may be a hard disk drive or other storage medium located in a housing other than the computer 210. Therefore, a reference to a processor or computer will be understood to include a reference to a collection of processors or computers or memories that may or may not operate in parallel. Rather than using a single processor to perform the steps described here, some components such as steering components and deceleration components may each have its own processor that only performs calculations related to component-specific functions .
  • the processor may be located away from the vehicle and wirelessly communicate with the vehicle.
  • some of the processes described herein are executed on a processor disposed in the vehicle and others are executed by a remote processor, including taking the necessary steps to perform a single manipulation.
  • the memory 214 may contain instructions 215 (eg, program logic), which may be executed by the processor 213 to perform various functions of the vehicle 200, including those functions described above.
  • the memory 214 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or controlling one or more of the traveling system 202, the sensing system 204, the control system 206, and the peripheral device 208 Instructions.
  • the memory 214 may also store data, such as road maps, route information, the location, direction, and speed of the vehicle, and other such vehicle data, as well as other information. Such information may be used by the vehicle 200 and the computer system 212 during operation of the vehicle 200 in autonomous, semi-autonomous, and/or manual modes.
  • the user interface 216 is used to provide information to or receive information from a user of the vehicle 200.
  • the user interface 216 may include one or more input/output devices in the set of peripheral devices 208, such as a wireless communication system 246, an in-vehicle computer 248, a microphone 250, and a speaker 252.
  • the computer system 212 may control the functions of the vehicle 200 based on input received from various subsystems (eg, the travel system 202, the sensing system 204, and the control system 206) and from the user interface 216. For example, the computer system 212 may use input from the control system 206 to control the steering unit 232 to avoid obstacles detected by the sensing system 204 and the obstacle avoidance system 244. In some embodiments, the computer system 212 is operable to provide control of many aspects of the vehicle 200 and its subsystems.
  • various subsystems eg, the travel system 202, the sensing system 204, and the control system 206
  • the computer system 212 may use input from the control system 206 to control the steering unit 232 to avoid obstacles detected by the sensing system 204 and the obstacle avoidance system 244.
  • the computer system 212 is operable to provide control of many aspects of the vehicle 200 and its subsystems.
  • one or more of these components described above may be installed or associated with the vehicle 200 separately.
  • the storage 214 may exist partially or completely separately from the vehicle 200.
  • the aforementioned components may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 2 should not be construed as a limitation to the embodiments of the present application.
  • An autonomous vehicle traveling on a road can recognize objects in its surrounding environment to determine the adjustment to the current speed.
  • the object may be other vehicles, traffic control equipment, or other types of objects.
  • each recognized object can be considered independently, and based on the respective characteristics of the object, such as its current speed, acceleration, distance from the vehicle, etc., can be used to determine the speed to be adjusted by the autonomous vehicle.
  • the self-driving car 200 or the computing device associated with the self-driving vehicle 200 may be based on the characteristics of the recognized object and the state of the surrounding environment (For example, traffic, rain, ice on the road, etc.) to predict the behavior of the identified object.
  • each recognized object depends on each other's behavior, so all recognized objects can also be considered together to predict the behavior of a single recognized object.
  • the vehicle 200 can adjust its speed based on the predicted behavior of the identified object.
  • an autonomous vehicle can determine what stable state the vehicle will need to adjust to (for example, accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the vehicle 200, such as the lateral position of the vehicle 200 on the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and so on.
  • the computing device can also provide instructions to modify the steering angle of the vehicle 200 so that the self-driving car follows a given trajectory and/or maintains an object near the self-driving car (such as , The safe horizontal and vertical distances of cars in adjacent lanes on the road.
  • the above-mentioned vehicle 200 may be a car, truck, motorcycle, bus, boat, airplane, helicopter, lawn mower, recreational vehicle, playground vehicle, construction equipment, tram, golf cart, train, and trolley, etc.
  • the application examples are not particularly limited.
  • the present application provides a radar 300, which can be applied to the vehicle 200 shown in FIG.
  • the radar 300 includes: a transmitting module 310, a receiving module 320, a gain control module 330, and a gain adjusting module 340.
  • the gain control module 330 is connected to the transmitting module 310 and the gain adjusting module 340, respectively.
  • the gain adjustment module 340 is also connected to the receiving module 320. among them,
  • the transmitting module 310 is used for transmitting a first signal, and the first signal is used for detecting a target object.
  • the receiving module 320 is configured to receive a second signal and output the second signal to the gain adjustment module 340; wherein, the second signal is the reflection of the first signal after encountering the target object
  • the second signal is an echo signal.
  • the gain control module 330 is configured to determine the gain at the first moment according to the first propagation duration and the corresponding relationship between the signal gain and the propagation duration, and transmit the determined gain to the gain adjustment module 340; wherein, the The first propagation duration is the duration from the moment when the transmitting module 310 transmits the first signal to the first moment, and the first moment is the moment when the gain adjustment module 340 receives the second signal.
  • the gain adjustment module 340 is configured to adjust the strength of the second signal according to the gain at the first moment. Specifically, the gain adjustment module 340 may adjust the amplitude or power of the second signal according to the gain at the current moment. Wherein, the gain adjustment module 340 may preconfigure the initial value of the gain as the gain in the initial state (that is, when the radar 300 is just started).
  • the transmitting module 310 and the receiving module 320 may be transceiver circuits, etc.
  • the gain control module 330 may be a processor or a controller
  • the gain adjustment module 340 may be a gain control module. Adjusted power amplifier circuit.
  • the gain control module 330 may determine the corresponding relationship between the signal gain and the propagation time at each time within the first propagation time length according to the propagation time corresponding to each time and the corresponding relationship between the signal gain and the propagation time. The gain at each time, so that when the gain adjustment module 340 receives the second signal, it can adjust the strength of the second signal according to the gain at the current time to achieve real-time adjustment of the radar gain.
  • the gain control module 330 may include a timing module 331 and a gain determination module 332.
  • the timing module 331 is configured to determine the first propagation duration according to the time when the first signal is transmitted and the first moment; the gain determining module 332 is configured to determine the first propagation duration according to the first propagation time And the corresponding relationship between the signal gain and the propagation time, determine the gain at the first moment, and transmit the determined gain to the gain adjustment module 340.
  • the timing module 331 may be implemented by a timer
  • the gain determination module 332 may be implemented by a processor, for example, a microcontroller unit (MCU) or a central processing unit (CPU) Wait.
  • MCU microcontroller unit
  • CPU central processing unit
  • the gain control module 330 includes a timing module In addition to 331 and the gain determination module 332, a weather estimation module 333 may also be included, as shown in FIG. 5.
  • the transmitting module 310 is also used for transmitting a third signal, and the third signal is used for detecting the target object; the receiving module 320 is also used for receiving a fourth signal, and combining the fourth signal The signal is transmitted to the gain adjustment module; wherein, the fourth signal is a signal after the third signal is reflected by the target object; the timing module 331 is also used to: according to the time when the third signal is transmitted And the second time, determine the second propagation time; wherein, the second propagation time is the time when the gain adjustment module 340 receives the fourth signal; the weather estimation module 333 is configured to determine the The second signal determines weather information, the weather information is used to characterize current weather conditions; the gain determination module 332 is further used to: determine according to the weather information, the second propagation duration, and the corresponding relationship The gain at the second moment, and transmit the determined gain to the gain adjustment module 340; the gain adjustment module 340 is further configured to: adjust the strength of the fourth signal according to the gain at the second moment .
  • the gain determining module 332 may determine the gain at the second time in the following manner, but is not limited to: determining the reference gain according to the determined propagation duration and the corresponding relationship between the gain of the second signal and the propagation duration; According to the weather information, the reference gain is corrected, and the corrected reference gain is determined as the gain at the current moment.
  • the gain determining module 332 corrects the determined reference gain according to the determined weather information, and determines the corrected reference gain as the gain at the second moment, that is, the gain determining module 332 can use the received at the previous moment
  • the signal (the second signal) determines the reflectivity of the target object, and the gain at the current moment (the second moment) is determined, which can improve the accuracy of the determined gain at the current moment, thereby improving the The detection accuracy of radar 300.
  • this application does not limit the timing for the transmitting module 310 to transmit the third signal. Whenever it can satisfy that the gain adjustment module 340 receives the fourth signal, the reflectance determining module 334 The launch timing that can determine the condition of the reflectivity of the target object can be applied to this application. For example, the transmitting module 310 transmits the third signal after the receiving module 320 or the gain adjusting module 340 receives the second signal.
  • the radar 300 further includes a waveform detection module 350 which is connected to the gain control module 330 and the gain adjustment module 340 respectively.
  • the waveform detection module 350 is configured to detect the waveform characteristics of the adjusted second signal, where the waveform characteristics of the second signal include the waveform shape of the second signal, the steepness of the falling edge, etc.
  • the weather estimation module 333 determines the weather information according to the adjusted second signal, it is specifically configured to determine the weather information according to the waveform characteristics of the adjusted second signal. For example, when the falling edge of the second signal is relatively gentle and the trailing length is long, it is a foggy or sandy day, etc., when there are obvious scattered particles in the air.
  • the gain control module 330 may include a timing module 331 and a gain determination module 332, as well as Reflectivity determination module 334.
  • the transmitting module 310 is also used for transmitting a third signal, and the third signal is used for detecting the target object; the receiving module 320 is also used for receiving a fourth signal, and combining the fourth signal The signal is transmitted to the gain adjustment module; wherein, the fourth signal is a signal after the third signal is reflected by the target object; the timing module 331 is also used to: according to the time when the third signal is transmitted And a second time, determine a second propagation time; wherein, the second propagation time is the time when the gain adjustment module receives the fourth signal; the reflectivity determination module 334 is configured to determine the The second signal determines the reflectivity of the target object; the gain determination module 332 is further configured to: determine the second signal according to the reflectivity of the target object, the second propagation duration, and the corresponding relationship. And transmit the determined gain to the gain adjustment module 340; the gain adjustment module 340 is further configured to adjust the strength of the fourth signal according to the gain at the second time.
  • this application does not limit the timing for the transmitting module 310 to transmit the third signal.
  • the reflectance determining module 334 It is possible to determine the reflectivity of the target object and the transmission timing of the weather information, which can be applied to this application.
  • the transmitting module 310 transmits the third signal after the receiving module 320 or the gain adjusting module 340 receives the second signal.
  • the waveform detection module 350 may also be used to detect the adjusted amplitude of the second signal; the reflectance determination module 334 is specifically used to: according to the adjusted amplitude of the second signal To determine the reflectivity of the target object.
  • the waveform detection module 350 can be implemented by a peak detection circuit.
  • the reflectance determining module 334 may estimate the corresponding relationship between the first propagation time and the propagation time of the second signal and the amplitude of the second signal to estimate the The amplitude of the second signal (that is, the amplitude of the second signal after loss on the propagation path), and then according to the gain at the first moment, the estimated amplitude of the second signal, and the waveform detection module The amplitude of the second signal detected by 350 determines the reflectivity of the target object.
  • the gain control module 330 not only includes a timing module 331, a gain determination module 332, and a reflectivity determination module 334, but also includes a weather estimation module 333.
  • the weather estimation module 333 is used to adjust The second signal determines weather information, the weather information is used to characterize current weather conditions; the gain determination module 332 is also used to: according to the reflectivity of the target object, the weather information, the first Second, the propagation duration and the corresponding relationship between the signal gain and the propagation duration determine the gain at the second moment.
  • the waveform detection module 350 is connected to the reflectivity determination module 334, the weather estimation module 333, the gain determination module, and the gain adjustment module, respectively.
  • the waveform detection module 350 is used for detecting adjusted In addition to the amplitude of the second signal, it is also used to detect the waveform characteristics of the adjusted second signal, so that the gain control module 330 determines the waveform characteristics of the second signal after adjustment.
  • Weather information wherein the waveform characteristics of the second signal include the waveform shape of the second signal, the steepness of the falling edge, and the like.
  • the gain determining module 332 may determine the gain at the second moment by but not limited to any one of the following two methods:
  • Method A Correct the reflectivity of the target object according to the weather information; determine the reflectivity of the target object after the correction, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration. Describe the gain at the second moment.
  • the gain determination module 332 corrects the reflectance of the target object according to the current weather conditions, and may determine the gain at the second moment according to the second propagation time and the corrected reflectance of the target object Therefore, the accuracy of the determined gain can be improved, and the detection accuracy of the radar 300 can be improved.
  • Manner B Determine the reference gain according to the reflectance of the target object, the second propagation time, and the correspondence between the signal gain and the propagation time; according to the weather information, the reference gain is corrected, and the corrected The reference gain is determined as the gain at the current moment.
  • the gain determination module 332 corrects the determined reference gain according to the current weather conditions, which can improve the accuracy of the determined gain, and thus can achieve the purpose of improving the detection accuracy of the radar 300.
  • the gain adjustment module 340 can be implemented by a variable gain amplifier VGA, where the VGA can be an analog control type VGA, that is, the gain control module 330 controls the analog control through a first control signal.
  • the first control signal is an analog signal used to control the gain of the analog control type VGA, as shown in FIG. 8a; the VGA may also be a digital control type VGA, that is, the gain control
  • the module 330 controls the digital control type VGA through a second control signal, and the second control signal is a digital signal used to control the gain of the digital control type VGA, as shown in FIG. 8b.
  • the gain adjustment module 340 may be implemented by a multi-stage amplifier, as shown in FIG. 9.
  • the gain control module 330 can control the gain of each amplifier in the multi-stage amplifier through a control signal, so that the gain of the multi-stage amplifier is the gain at the current moment determined by the gain control module 330, for example
  • the control signal may simultaneously control the gain of each amplifier in the multi-stage amplifier in an encoding manner; the gain control module 330 may separately control the gain of each amplifier in the multi-stage amplifier through multiple control signals.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the weather estimation module 333 may be integrated with the waveform detection module 350 in a physical unit, and the physical unit may detect the adjusted waveform characteristics of the second signal, and according to the adjusted second signal Waveform characteristics, determine the current weather conditions, and output the determined weather conditions to the gain determination module 332;
  • the reflectivity determination module 334 can be integrated with the waveform detection module 350 in a physical unit, the physical unit It is possible to detect the adjusted second signal amplitude, determine the reflectance of the target object according to the adjusted second signal amplitude, and output the determined reflectance to the gain determination module 332
  • the weather estimation module 333 and the reflectivity determination module 334 and the waveform detection module 350 are integrated in a physical unit, the physical unit can detect the adjusted waveform characteristics of the second signal, according to the adjustment After the waveform characteristics of the second signal, determine the current weather conditions, and detect the adjusted second signal amplitude, and determine the reflection of the target object according to the adjusted second signal amplitude And output the determined weather conditions and reflectivity to the gain determination module 332.
  • the radar 300 may include multiple receiving modules 320 and multiple gain adjustment modules 340, by simultaneously transmitting multiple signals (for example, 2 channels, 8 channels, 16 channels, 32 channels, or 64 channels, etc.) signals, and The multiple reflected echo signals are processed to improve the detection range and detection accuracy of the radar 300, and the plurality of receiving modules 320 correspond to the plurality of gain adjustment modules 340 one-to-one. That is, the radar 300 includes at least one transmitting module 310, at least one receiving module 320, at least one gain control module 330, at least one gain adjustment module 340, wherein each gain control module 330 controls one or more gain adjustments. Module 340, the at least one receiving module 320 corresponds to the at least one gain adjustment module 340 one-to-one. Wherein, when one gain control module 330 controls multiple gain adjustment modules 340, the gain control module 330 needs to determine in parallel the current gains corresponding to the multiple gain adjustment modules 340.
  • the radar 300 includes at least one transmitting module 310, at least one receiving module 320, at least one gain
  • the radar 300 may also include one or more waveform detection modules 350. Wherein, when the radar 300 includes a waveform detection module 350, the waveform detection module 350 needs to detect the second signal fed back by each of the multiple receiving modules 310 through the corresponding gain adjustment module 340 in parallel.
  • the radar 300 includes a transmitting module 310, a plurality of receiving modules 320, a gain control module 330, a plurality of gain adjustment modules 340, and an environmental monitoring module 350; as another example, as shown in FIG. As shown, the radar 300 includes a transmitting module 310, multiple receiving modules 320, multiple gain control modules 330, and multiple gain adjustment modules 340.
  • One gain control module 330 controls a gain adjustment module group (as shown in FIG. 11). As shown in the dashed box), each gain adjustment module group includes one or more gain adjustment modules 340.
  • the gain control module 330 in the radar 300 can be based on the first propagation time from the moment when the transmitter module 310 transmits the first signal to the moment when the gain adjustment module 340 receives the second signal, and the signal gain and propagation time.
  • the corresponding relationship of the duration, the gain at the moment when the gain adjustment module 340 receives the second signal is determined, and the determined gain is transmitted to the gain adjustment module 340, so that the gain adjustment module 340 can receive the second signal according to the
  • the gain at the moment of the signal is adjusted to adjust the strength of the second signal, where the second signal is the signal reflected after the first signal encounters the target object, that is, the gain control module 330 can pass all
  • the first propagation time length and the corresponding relationship between the signal gain and the propagation time length determine the gain at the moment when the second signal is received in real time, and adjust the strength of the second signal in real time through the gain adjustment module 340, compared to
  • the existing technology has a simple implementation method and good real-time performance.
  • This application also provides a gain control method applied to radar to improve the real-time performance of signal gain adjustment during radar detection.
  • the gain control method specifically includes the following steps:
  • S1201 Transmit a first signal for detecting a target object.
  • S1202 Determine the gain at the first moment according to the first propagation duration and the corresponding relationship between the signal gain and the propagation duration.
  • the first propagation duration is the duration from the moment when the first signal is transmitted to the first moment, the first moment is the moment when a second signal is received, and the second signal is the first moment. A signal reflected after encountering the target object.
  • S1203 When receiving the second signal, adjust the strength of the second signal according to the gain at the first moment.
  • the radar may determine each time at each time within the first propagation time according to the propagation time corresponding to each time and the corresponding relationship between the signal gain and the propagation time. In order to enable the radar to adjust the strength of the second signal according to the gain at the current moment when receiving the second signal, the radar gain can be adjusted in real time.
  • weather information may be determined according to the adjusted second signal, and the weather information is used to characterize current weather conditions.
  • the radar also emits a third signal for detecting the target object, and determines the gain at the second time according to the weather information, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration, And adjust the strength of the fourth signal according to the gain at the second moment; wherein, the second propagation duration is the moment when the fourth signal is received, and the second moment is the moment when the fourth signal is received At the moment, the fourth signal is a signal after the third signal is reflected by the target object.
  • the radar may specifically determine the weather information through the following steps: the radar detects and adjusts the waveform characteristics of the second signal, wherein the waveform characteristics of the second signal include the Waveform shape, steepness of the falling edge, etc.; determining the current weather condition according to the adjusted waveform characteristics of the second signal. For example, when the falling edge of the second signal is relatively gentle and the trailing length is long, it is a foggy or sandy day, etc., when there are obvious scattered particles in the air.
  • the radar may determine the gain at the second time in the following manners, but not limited to: determining the reference gain according to the second propagation duration and the corresponding relationship between the signal gain and the propagation duration; Information, correcting the reference gain, and determining the corrected reference gain as the gain at the second moment.
  • the weather conditions on the propagation path of the second signal reflected by the target object will also affect the intensity of the signal reflected by the target object. For example, in a foggy day, particles suspended in the air will scatter the fourth signal, thereby affecting the The strength of the fourth signal when it propagates to the radar affects the detection accuracy of the radar. Therefore, the radar corrects the gain determined without considering weather factors according to the weather conditions at the current moment, and adjusts the gain by the corrected gain.
  • the strength of the fourth signal that is, the weather information determined by the signal received at the previous moment (the second signal), to determine the gain at the current moment (the second moment), can further improve the radar performance Detection accuracy.
  • the radar adjusts the second signal
  • the reflectance of the target object may be determined according to the adjusted second signal.
  • the radar also transmits a third signal for detecting the target object, and determines the second time according to the reflectivity of the target object, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration And adjust the strength of the fourth signal according to the gain at the second moment; wherein, the second propagation duration is the moment when the fourth signal is received, and the second moment is when the first signal is received.
  • the fourth signal is a signal after the third signal is reflected by the target object.
  • the radar determines that the gain at the second time can be determined based on the reflectivity of the target object, the second propagation time, and the corresponding relationship between the signal gain and the propagation time. Improving the accuracy of the determined gain can further improve the detection accuracy of the radar.
  • the radar may specifically determine the reflectance of the target object through the following steps: the radar detects the adjusted amplitude of the second signal, and determines the reflectance of the second signal according to the adjusted amplitude of the second signal.
  • the reflectivity of the target object Specifically, the radar may estimate the amplitude of the received second signal (that is, the second signal amplitude) according to the propagation time length and the corresponding relationship between the propagation time length of the second signal and the second signal amplitude. Second signal after loss on the propagation path), and then determine the target according to the gain at the first moment, the estimated amplitude of the second signal, and the detected amplitude of the second signal The reflectivity of the object.
  • the weather information may be determined according to the adjusted second signal; according to the reflectivity of the target object, the weather information, and the Second, the propagation duration and the corresponding relationship between the signal gain and the propagation duration, determining the gain at the second moment, and adjusting the strength of the fourth signal according to the gain at the second moment.
  • the radar can determine the gain at the second moment by but not limited to any of the following two methods:
  • Method I Correct the reflectivity of the target object according to the weather information; determine the reflectivity of the target object after the correction, the second propagation duration, and the corresponding relationship between the signal gain and the propagation duration. Describe the gain at the second moment.
  • Manner II Determine the reference gain according to the reflectivity of the target object, the second propagation time, and the correspondence between the signal gain and the propagation time; according to the weather information, the reference gain is corrected, and the corrected The reference gain is determined as the gain at the current moment.
  • the radar corrects the The reflectivity of the target object is then corrected for the gain at the second moment, or the gain determined when the weather factor is not considered is corrected directly according to the weather information, and the strength of the fourth signal is adjusted by the corrected gain, that is, using The weather information and the reflectivity of the target object determined by the signal (the second signal) received at the previous time, and the gain at the current time (the second time) can be determined, which can further improve the detection of the radar Accuracy.
  • the radar can determine the gain at the first time according to the first propagation time and the corresponding relationship between the signal gain and the propagation time, and when the first signal meets the second signal reflected by the target object, the The determined gain is used to adjust the strength of the second signal, wherein the first propagation duration is the duration from the moment when the first signal is transmitted to the first moment, and the first moment is when the second signal is received.
  • the time of the signal that is, the radar can determine in real time the gain at the time when the signal reflected by the target object is received through the first propagation time and the corresponding relationship between the signal gain and the propagation time, and adjust the reflection of the target object in real time.
  • the signal strength is simpler in implementation and better real-time.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种雷达(300)以及增益控制方法,涉及人工智能领域中的自动驾驶技术,雷达(300)包括:发射模块(310)、接收模块(320)、增益控制模块(330)和增益调整模块(340)。其中,发射模块(310)用于发射探测目标物体的第一信号;接收模块(320)用于接收第一信号遇到目标物体后反射的第二信号,并将第二信号输出到增益调整模块(340);增益控制模块(330)用于根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,并将所确定的增益输出到增益调整模块(340),第一传播时长为从发射模块(310)发射第一信号的时刻到第一时刻的时长,第一时刻为增益调整模块(340)接收到第二信号的时刻;增益调整模块(340)用于根据第一时刻的增益调整第二信号的强度。

Description

一种雷达以及增益控制方法 技术领域
本申请涉及自动驾驶领域,尤其涉及一种雷达以及增益控制方法。
背景技术
人工智能(artificial intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用***。换句话说,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。人工智能领域的研究包括机器人,自然语言处理,计算机视觉,决策与推理,人机交互,推荐与搜索,AI基础理论等。
自动驾驶是人工智能领域的一种主流应用,自动驾驶技术依靠计算机视觉、雷达(radar)、监控装置和全球定位***等协同合作,让机动车辆可以在不需要人类主动操作下,实现自动驾驶。自动驾驶的车辆使用各种计算***来帮助将乘客从一个位置运输到另一位置。一些自动驾驶车辆可能要求来自操作者(诸如,领航员、驾驶员、或者乘客)的一些初始输入或者连续输入。自动驾驶车辆准许操作者从手动模操作式切换到自动驾驶模式或者介于两者之间的模式。由于自动驾驶技术无需人类来驾驶机动车辆,所以理论上能够有效避免人类的驾驶失误,减少交通事故的发生,且能够提高公路的运输效率。因此,自动驾驶技术越来越受到重视。
由于雷达能够在车载环境中实现障碍物测量、碰撞预测、自适应巡航控制等功能,有效地降低驾驶难度和减少事故的发生率,因而在汽车领域得到了广泛应用。其中,激光雷达可以对周围环境中目标物体进行测距扫描,生成3D点云,为自动驾驶辅助***提供实时的数据输入,具有时空分辨率高、灵敏度高以及抗干扰能力强等特点,在驾驶辅助***的应用越来越广泛。
目前,激光雷达通过目标物体反射的回波信号的飞行时间,测量激光雷达与目标物体之间的距离,因此,目标物体反射的回波信号的功率对激光雷达的测量精度影响较大。为了保证激光雷达的测距精度,激光雷达中的信号处理电路需要工作在线性区间内,以避免因回波信号饱和或微弱而造成测距误差。业界通常通过检测回波信号的强度,根据检测结果对可变增益放大器(variable gain amplifier,VGA)的增益进行调整,使得激光雷达中的信号处理电路所要处理的信号的幅值保持在一定范围内,从而使得激光雷达中的信号处理电路工作在线性区间内。但是,如果要保证在回波信号到达激光雷达时完成VGA的增益调整,则需要对回波信号进行较长时间的延迟,而在实际应用中较长的时延难以实现,如果不延迟,则只能在回波信号的下一个周期通过确定的增益进行调整,从而导致增益调整的实时性较差。
发明内容
本申请提供一种雷达以及增益控制方法,以实现对雷达接收到的目标物体反射的信号增益的实时调整,提高雷达的探测精度。
第一方面,本申请提供了一种雷达,所述雷达包括发射模块、增益调整模块、增益控制模块和接收模块,所述增益控制模块分别与所述发射模块以及所述增益调整模块连接,所述增益调整模块还与所述接收模块连接。其中,所述发射模块,用于发射第一信号,所述第一信号用于探测目标物体;所述接收模块,用于接收第二信号,并将所述第二信号输出到所述增益调整模块;其中,所述第二信号为所述第一信号遇到所述目标物体后反射的信号;所述增益控制模块,用于根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,并将所确定的增益输出到所述增益调整模块;其中,所述第一传播时长为从所述发射模块发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为所述增益调整模块接收到所述第二信号的时刻;所述增益调整模块,用于根据所述第一时刻的增益,调整所述第二信号的强度。
通过上述方案,所述雷达中的增益控制模块能够根据从发射模块发射第一信号的时刻到增益调整模块接收到第二信号时刻的第一传播时长,以及信号增益与传播时长的对应关系,确定所述增益调整模块接收到第二信号的时刻的增益,使得所述增益调整模块能够根据接收到第二信号的时刻的增益,调整所述第二信号的强度,其中,所述第二信号为所述第一信号遇到目标物体后反射的信号,也就是说,所述增益控制模块能够通过所述第一传播时长以及信号增益与传播时长的对应关系,实时确定接收到所述第二信号的时刻的增益,并通过所述增益调整模块实时调整所述第二信号的强度,相较于现有技术,实现方式简单,实时性较好。
一种可能的实施方式中,所述增益控制模块包括计时模块和增益确定模块。其中,所述计时模块,用于根据发射所述第一信号的时刻和所述第一时刻,确定所述第一传播时长;所述增益确定模块,用于根据所述第一传播时长以及所述对应关系,确定所述第一时刻的增益,并将所确定的增益传输到所述增益调整模块。
进一步地,所述增益控制模块还包括反射率确定模块。其中,所述发射模块还用于:发射第三信号,所述第三信号用于探测所述目标物体;所述接收模块还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块,所述第四信号为所述第三信号经过所述目标物体反射后的信号;所述计时模块还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长,所述第二传播时长为所述增益调整模块接收到所述第四信号的时刻;所述反射率确定模块,用于根据调整后的所述第二信号,确定所述目标物体的反射率;所述增益确定模块还用于:根据所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块;所述增益调整模块还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
由于在雷达探测目标物体的过程中,目标物体的反射率对所述目标物体反射的信号的强度影响较大,因此,所述增益控制模块根据所述目标物体的反射率、所述第一传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益能够提高所确定的增益的准确性,进而可以进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述雷达还包括波形检测模块,分别与所述反射率确定模块以及所述增益调整模块连接。其中,所述波形检测模块,用于检测调整后的所述第二信号的幅值;所述反射率确定模块具体用于:根据调整后的所述第二信号的幅值,确定所述目 标物体的反射率。
其中,所述波形检测模块可以为峰值检测电路。
一种可能的实施方式中,所述增益控制模块还包括天气估计模块。其中,所述天气估计模块,用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;所述增益确定模块还用于:根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块。
一种可能的实施方式中,所述增益确定模块具体通过以下方法中的任意一种,确定所述第二时刻的增益:
A、根据所述天气信息,修正所述目标物体的反射率;根据修正后的所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
B、根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
由于所述目标物体反射的信号传播路径的天气状况也会影响所述目标物体反射的信号的强度以及所确定的所述目标物体的反射率,所述增益确定模块根据所述天气信息,修正所述目标物体的反射率,进而修正所确定的第二时刻的增益,或者直接根据所述天气信息修正没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,能够进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述雷达还包括波形检测模块,分别与所述反射率确定模块、所述天气估计模块以及所述增益调整模块连接。其中,所述波形检测模块,用于检测调整后的所述第二信号的幅值以及调整后的所述第二信号的波形特征;所述反射率确定模块具体用于:根据调整后的所述第二信号的幅值,确定所述目标物体的反射率;所述天气估计模块具体用于:根据调整后的所述第二信号的波形特征,确定所述天气信息。
一种可能的实施方式中,所述增益控制模块还包括天气估计模块。其中,所述发射模块还用于:发射第三信号,所述第三信号用于探测所述目标物体;所述接收模块还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块,所述第四信号为所述第三信号经过所述目标物体反射后的信号;所述计时模块还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长,所述第二传播时长为所述增益调整模块接收到所述第四信号的时刻;所述天气估计模块,用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;所述增益确定模块还用于:根据所述天气信息、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块;所述增益调整模块还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
由于目标物体反射的信号传播路径上的天气状况也会影响所述目标物体反射的信号的强度,例如在雾天,空气中悬浮的颗粒会对所述目标物体反射的信号进行散射,进而影响所述目标物体反射的信号传播到所述雷达时的强度,进而影响所述雷达的探测精度,因此,所述增益确定模块根据所确定的天气信息、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益,考虑了天气因素对所述第四信号的增益的 影响,可以提高所确定的当前时刻的增益的准确性,进而能够进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述增益确定模块具体通过以下方法确定所述第二时刻的增益:根据所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
由于目标物体反射的信号传播路径上的天气状况也会影响所述目标物体反射的信号的强度,因此,所述增益确定模块根据所确定的天气信息修正没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,可以提高所确定的第二时刻的增益的准确性,进而能够进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述增益调整模块为可变增益放大器VGA,或者多级放大器。
第二方面,本申请提供了一种增益控制方法,应用于雷达。所述方法包括:发射用于探测目标物体的第一信号;根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,其中,所述第一传播时长为从发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为接收到第二信号的时刻,所述第二信号为所述第一信号遇到所述目标物体后反射的信号;接收到所述第二信号时,根据所述第一时刻的增益,调整所述第二信号的强度。
通过上述方法,雷达能够根据从发射第一信号的时刻到接收到第二信号时刻的第一传播时长以及信号增益与传播时长的对应关系,确定接收到第二信号的第一时刻的增益,并在接收到所述第二信号时,根据所确定的增益,调整所述第二信号的强度,其中,所述第二信号为第一信号遇到目标物体后反射的信号,也就是说,所述雷达能够通过所述第一传播时长以及信号增益与传播时长的对应关系,实时确定第一时刻的增益,并在接收到所述第二信号时,实时调整所述第二信号的强度,相较于现有技术,实现方式简单,实时性较好。
一种可能的实施方式中,所述雷达根据所述第一时刻的增益,调整所述第二信号之后,还可以根据调整后的所述第二信号,确定所述目标物体的反射率;以及,发射用于探测所述目标物体的第三信号;根据所述目标物体的反射率、第二传播时长以及所述对应关系,确定第二时刻的增益,根据所述第二时刻的增益,调整所述第四信号的强度;其中,所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号。
由于在雷达探测目标物体的过程中,目标物体的反射率对所述目标物体反射的信号的强度影响较大,反射率较大的目标物体反射的信号的强度较大,反射率较小的目标物体反射的信号的强度较小,因此,所述雷达根据所述目标物体的反射率、所确定的第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益能够提高所确定的增益的准确性,进而可以进一步提高所述雷达的探测精度。
进一步地,所述雷达具体可以通过以下步骤确定所述目标物体的反射率:所述雷达检测调整后的所述第二信号的幅值,根据调整后的所述第二信号的幅值,确定所述目标物体的反射率。具体地,所述雷达可以根据所述第一传播时长以及所述第二信号的传播时长与所述第二信号幅值的对应关系,估计接收到的所述第二信号的幅值(即所述第二信号在传播路径上损耗后的幅值),然后根据所述第一时刻的增益、估计的所述第二信号的幅值以及检测到的所述第二信号的幅值,确定所述目标物体的反射率。
一种可能的实施方式中,所述雷达根据所述第一时刻的增益,调整所述第二信号之后,还可以根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;根据所述目标物体的反射率、所述天气信息、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
由于所述目标物体反射的信号传播路径的天气状况也会影响所述目标物体反射的信号的强度,进而也会影响所确定的所述目标物体的反射率的准确性,所述雷达根据所述目标物体的反射率、所述天气信息、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益,能够提高所确定的增益的准确性,进而能够进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述雷达可以通过但不限于以下两种方式中的任意一种,确定当前时刻的增益:
方式I、根据所述天气信息,修正所述目标物体的反射率;根据修正后的所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
方式II、根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
由于所述目标物体反射的信号传播路径的天气状况也会影响所述目标物体反射的信号的强度,进而也会影响所确定的所述目标物体的反射率的准确性,所述雷达根据所确定的天气信息,修正所述目标物体的反射率,进而修正所确定的第二时刻的增益,或者直接根据所确定的天气信息修正当没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,能够进一步提高所述雷达的探测精度。
一种可能的实施方式中,所述雷达根据所述第一时刻的增益,调整所述第二信号之后,还可以根据调整后的所述第二信号,确定天气信息,所述天气信息用表征当前的天气状况;发射用于探测所述目标物体的第三信号;根据所述天气信息、第二传播时长以及所述对应关系,确定第二时刻的增益,根据所述第二时刻的增益,调整所述第四信号的强度;所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号。
一种可能的实施方式中,所述雷达可以通过但不限于以下方式确定所述第二时刻的增益:根据所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
由于目标物体反射的信号传播路径上的天气状况也会影响所述目标物体反射的信号的强度,例如在雾天,空气中悬浮的颗粒会对所述目标物体反射的信号进行散射,进而影响所述目标物体反射的信号传播到所述雷达时的强度,进而影响所述雷达的探测精度,因此,所述雷达根据所确定的天气信息修正没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,能够进一步提高所述雷达的探测精度。
进一步地,所述雷达具体可以通过以下步骤确定所述天气信息:所述雷达检测调整后的所述第二信号的波形特征,其中,所述第二信号的波形特征包括所述第二信号的波形形状、下降沿的陡峭程度等;根据调整后的所述第二信号的波形特征,确定所述当前的天气状况。例如,当所述第二信号的下降沿比较平缓,且拖尾较长时,则此时为雾天或沙尘天 等空气中存在明显散射颗粒的天气。
第三方面,本申请还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,当所述计算机可执行指令在被所述计算机调用时,使得所述计算机执行上述第二方面中任意一种可能的实施方式提供的方法。
第四方面,本申请还提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得计算机执行上述第二方面中任意一种可能的实施方式所提供的方法。
第五方面,本申请还提供了一种芯片,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现上述第二方面中任意一种可能的实施方式所提供的方法。
附图说明
图1a为现有技术中激光雷达的增控制装置的结构示意图之一;
图1b为现有技术中激光雷达的增控制装置的结构示意图之二;
图2为本申请实施例提供的一种车辆的结构示意图;
图3为本申请实施例提供的一种雷达的结构示意图之一;
图4为本申请实施例提供的一种雷达中增益控制模块的结构示意图之一;
图5为本申请实施例提供的一种雷达中增益控制模块的结构示意图之二;
图6为本申请实施例提供的一种雷达的结构示意图之二;
图7为本申请实施例提供的一种雷达中增益控制模块的结构示意图之三;
图8a为本申请实施例提供的一种雷达中增益调整模块的结构示意图之一;
图8b为本申请实施例提供的一种雷达中增益调整模块的结构示意图之二;
图9为本申请实施例提供的一种雷达中增益调整模块的结构示意图之三;
图10为本申请实施例提供的一种雷达的结构示意图之三;
图11为本申请实施例提供的一种雷达的结构示意图之四;
图12为本申请实施例提供的一种增益控制方法的流程示意图。
具体实施方式
激光雷达通常利用目标物体反射的回波信号的飞行时间,测量激光雷达与目标物体之间的距离,因此,目标物体反射的回波信号的功率对激光雷达的测量精度影响较大。但是,为了满足自动驾驶辅助***的要求,激光雷达通常需要覆盖几米到上百米的探测范围,同时激光雷达探测到的目标物体的反射率千差万别,使得目标物体反射的回波信号的功率波动范围较大。为了保证激光雷达的测距精度,激光雷达中的信号处理电路需要工作在线性区间内,以避免因回波信号饱和或微弱而造成测距误差。
目前,业界主要采用以下两种方式,保证激光雷达中的信号处理电路工作在线性区间内,进而保证激光雷达的测距精度:
方式一、采用如图1a所示的增控制装置111调整激光雷达中的信号处理电路所要处理的信号的幅值。所述增控制装置110包括延时(delay)模块111、增益调整电路(gain set circuitry)112以及可变增益放大器VGA113。当增益调整电路112确定目标物体反射的回波信号(即输入信号)的幅值较小时,增大VGA113的增益,当增益调整电路112确定输 入信号的幅值较大时,减小VGA113的增益,从而保证增控制装置110输出到恒比定时(constant fraction timing,CFD)电路的信号维持在一定的线性区间内,从而减小CFD电路的漂移误差。为了保证在目标物体反射的回波信号到来之前,VGA113的增益调整完成,需要通过延时模块111对输入到VGA的信号进行延时,从而实现对激光雷达接收到的回波信号增益的实时调整。
然而,在实际应用中,为了实现对激光雷达接收到的回波信号增益的实时调整,通常延时模块111需要延时20ns以上,难以实现。如果采用同轴线缆实现20ns以上的延时,同轴线缆长度过长,直接影响整个增控制装置110的体积和便捷性。另外,目前也没有可实现这久延时的芯片。
方式二、采用如图1b所示的增控制装置120调整激光雷达中的信号处理电路所要处理的信号的幅值。所述增控制装置120包括VGA121,增益控制模块122和峰值检测模块123。目标物体反射的回波信号(即输入信号)直接进入到VGA121中,VGA121先根据预先设定的初始增益,对目标物体反射的回波信号进行初步放大。VGA121对目标物体反射的回波信号进行初步放大后,峰值检测模块123检测VGA121输出的信号的幅值,增益控制模块122根据峰值检测模块123的检测结果,对VGA121的增益设置进行调整,从而使得VGA121在目标物体反射的回波信号的下一个周期,根据调整后的增益调整目标物体反射的回波信号。
这种方式结构相对简单,容易实现,但是只能应用在目标物体反射的回波信号的下一个周期,根据调整后的增益调整目标物体反射的回波信号,实时性较差。
为了解决现有技术中存在的上述问题,本申请提供一种雷达以及增益控制方法,以实现对雷达接收到的目标物体反射的信号增益的实时调整,提高雷达的探测精度。本申请实施例中,主要针对雷达的增益控制方式进行改进,所述雷达可以是激光雷达等接收到的信号的幅值对目标探测精度影响较大的雷达。但是应当理解的是,本申请实施例提供的雷达为一个完整的雷达,也具备已知的雷达具有的结构,在此仅对雷达中涉及增益控制的部件进行说明,对于其他部件不予赘述。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
图2是本申请实施例提供的具有自动驾驶功能的车辆200的功能框图。在一个实施例中,将车辆200配置为完全或部分地自动驾驶模式。例如,车辆200可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆200。在车辆200处于自动驾驶模式中时,可以将车辆200置为在没有和人交互的情况下操作。
车辆200可包括各种子***,例如行进***202、传感***204、控制***206、一个或多个***设备208以及电源210、计算机***212和用户接口216。可选地,车辆200可包括更多或更少的子***,并且每个子***可包括多个元件。另外,车辆200的每个子***和元件可以通过有线或者无线互连。
行进***202可包括为车辆200提供动力运动的组件。在一个实施例中,行进***202 可包括引擎218、能量源219、传动装置220和车轮/轮胎221。引擎218可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如气油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎218将能量源219转换成机械能量。
能量源219的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源219也可以为车辆100的其他***提供能量。
传动装置220可以将来自引擎218的机械动力传送到车轮221。传动装置220可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置220还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮221的一个或多个轴。
传感***204可包括感测关于车辆200周边的环境的信息的若干个传感器。例如,传感***204可包括定位***222(定位***可以是全球定位***(global positioning system,GPS)***,也可以是北斗***或者其他定位***)、惯性测量单元(inertial measurement unit,IMU)224、雷达226、激光测距仪228以及相机230。传感***204还可包括被监视车辆200的内部***的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位***222可用于估计车辆200的地理位置。IMU 224用于基于惯性加速度来感测车辆200的位置和朝向变化。在一个实施例中,IMU 224可以是加速度计和陀螺仪的组合。
雷达226可利用无线电信号来感测车辆200的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达226还可用于感测物体的速度和/或前进方向。
激光测距仪228可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪228可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他***组件。
相机230可用于捕捉车辆200的周边环境的多个图像。相机230可以是静态相机或视频相机。
控制***206为控制车辆200及其组件的操作。控制***206可包括各种元件,其中包括转向***232、油门234、制动单元236、传感器融合算法238、计算机视觉***240、路线控制***242以及障碍物避免***244。
转向***232可操作来调整车辆200的前进方向。例如在一个实施例中可以为方向盘***。
油门234用于控制引擎218的操作速度并进而控制车辆200的速度。
制动单元236用于控制车辆200减速。制动单元236可使用摩擦力来减慢车轮221。在其他实施例中,制动单元236可将车轮221的动能转换为电流。制动单元236也可采取其他形式来减慢车轮221转速从而控制车辆200的速度。
计算机视觉***240可以操作来处理和分析由相机230捕捉的图像以便识别车辆200周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉***240可使用物体识别算法、运动中恢复结构(structure from motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉***240可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制***242用于确定车辆200的行驶路线。在一些实施例中,路线控制***142 可结合来自传感器238、GPS 222和一个或多个预定地图的数据以为车辆200确定行驶路线。
障碍物避免***244用于识别、评估和避免或者以其他方式越过车辆200的环境中的潜在障碍物。
当然,在一个实例中,控制***206可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆200通过***设备208与外部传感器、其他车辆、其他计算机***或用户之间进行交互。***设备208可包括无线通信***246、车载电脑248、麦克风250和/或扬声器252。
在一些实施例中,***设备208提供车辆200的用户与用户接口216交互的手段。例如,车载电脑248可向车辆200的用户提供信息。用户接口216还可操作车载电脑248来接收用户的输入。车载电脑248可以通过触摸屏进行操作。在其他情况中,***设备208可提供用于车辆200与位于车内的其它设备通信的手段。例如,麦克风250可从车辆200的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器252可向车辆200的用户输出音频。
无线通信***246可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信***246可使用3G蜂窝通信,例如码分多址(code division multiple access,CDMA)、EVD0、全球移动通信***(global system for mobile communications,GSM)/是通用分组无线服务技术(general packet radio service,GPRS),或者4G蜂窝通信,例如长期演进(long term evolution,LTE),或者5G蜂窝通信。无线通信***246可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信***246可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如各种车辆通信***,例如,无线通信***246可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源210可向车辆200的各种组件提供电力。在一个实施例中,电源210可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆200的各种组件提供电力。在一些实施例中,电源210和能量源219可一起实现,例如一些全电动车中那样。
车辆200的部分或所有功能受计算机***212控制。计算机***212可包括至少一个处理器213,处理器213执行存储在例如存储器214这样的非暂态计算机可读介质中的指令215。计算机***212还可以是采用分布式方式控制车辆200的个体组件或子***的多个计算设备。
处理器213可以是任何常规的处理器,诸如商业可获得的中央处理器(central processing unit,CPU)。替选地,该处理器可以是诸如专用集成电路(application specific integrated circuits,ASIC)或其它基于硬件的处理器的专用设备。尽管图2功能性地图示了处理器、存储器、和在相同块中的计算机210的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机210的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对 可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器214可包含指令215(例如,程序逻辑),指令215可被处理器213执行来执行车辆200的各种功能,包括以上描述的那些功能。存储器214也可包含额外的指令,包括向行进***202、传感***204、控制***206和***设备208中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令215以外,存储器214还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆200在自主、半自主和/或手动模式中操作期间被车辆200和计算机***212使用。
用户接口216,用于向车辆200的用户提供信息或从其接收信息。可选地,用户接口216可包括在***设备208的集合内的一个或多个输入/输出设备,例如无线通信***246、车车在电脑248、麦克风250和扬声器252。
计算机***212可基于从各种子***(例如,行进***202、传感***204和控制***206)以及从用户接口216接收的输入来控制车辆200的功能。例如,计算机***212可利用来自控制***206的输入以便控制转向单元232来避免由传感***204和障碍物避免***244检测到的障碍物。在一些实施例中,计算机***212可操作来对车辆200及其子***的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆200分开安装或关联。例如,存储器214可以部分或完全地与车辆200分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图2不应理解为对本申请实施例的限制。
在道路行进的自动驾驶汽车,如上面的车辆200,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车车辆200或者与自动驾驶车辆200相关联的计算设备(如图2的计算机***212、计算机视觉***240、存储器214)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆200能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定车辆200的速度,诸如,车辆200在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆200的 转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆200可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
如图3所示,本申请提供了一种雷达300,所述雷达300可以应用在如图2所示的车辆200中。具体地,所述雷达300包括:发射模块310、接收模块320、增益控制模块330和增益调整模块340,所述增益控制模块330分别与所述发射模块310、所述增益调整模块340连接,所述增益调整模块340还与所述接收模块320连接。其中,
所述发射模块310,用于发射第一信号,所述第一信号用于探测目标物体。
所述接收模块320,用于接收第二信号,并将所述第二信号输出到所述增益调整模块340;其中,所述第二信号为所述第一信号遇到所述目标物体后反射的信号,即第二信号为回波信号。
所述增益控制模块330,用于根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,并将所确定的增益传输到所述增益调整模块340;其中,所述第一传播时长为从所述发射模块310发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为所述增益调整模块340接收到所述第二信号的时刻。
所述增益调整模块340,用于根据所述第一时刻的增益,调整所述第二信号的强度。具体地,所述增益调整模块340可以根据当前时刻的增益调整所述第二信号幅值或者功率。其中,所述增益调整模块340中可以预先配置增益的初始值作为初始状态下(即所述雷达300刚启动时)的增益。
当采用硬件形式实现时,本申请实施例中,发射模块310和接收模块320可以是收发电路等,所述增益控制模块330可以是处理器或控制器,所述增益调整模块340可以是增益可调的功率放大电路。
具体实施中,所述增益控制模块330可以在所述第一传播时长内的每个时刻,分别根据所述每个时刻对应的传播时长以及所述信号增益与传播时长的对应关系,确定所述每个时刻的增益,以使所述增益调整模块340能够在接收到所述第二信号时,即可根据当前时刻的增益,调整所述第二信号的强度,实现雷达增益的实时调整。
具体地,如图4所示,所述增益控制模块330可以包括计时模块331和增益确定模块332。其中,所述计时模块331,用于根据发射所述第一信号的时刻和所述第一时刻,确定所述第一传播时长;所述增益确定模块332,用于根据所述第一传播时长以及所述信号增益与传播时长的对应关系,确定所述第一时刻的增益,并将所确定的增益传输到所述增益调整模块340。在具体实施中,所述计时模块331可以通过计时器实现,所述增益确定模块332可以通过处理器实现,例如,微处理单元(microcontroller unit,MCU)或者中央处理器(central processing unit,CPU)等。
进一步地,所述目标物体反射的信号传播路径的天气状况也会影响所述第二信号的强度,例如在雾天,空气中悬浮的颗粒会对所述目标物体反射的信号进行散射,进而影响所述目标物体反射的信号传播到所述雷达300时的强度,进而影响所述雷达300的探测精度,因此,为了进一步提高所述雷达300的探测精度,所述增益控制模块330除了包括计时模块331和增益确定模块332外,还可以包括天气估计模块333,如图5所示。
此时,所述发射模块310还用于:发射第三信号,所述第三信号用于探测所述目标物体;所述接收模块320还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块;其中,所述第四信号为所述第三信号经过所述目标物体反射后的信号;所述计时模块331还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长;其中,所述第二传播时长为所述增益调整模块340接收到所述第四信号的时刻;所述天气估计模块333,用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;所述增益确定模块332还用于:根据所述天气信息、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块340;所述增益调整模块340还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
其中,所述增益确定模块332可以通过但不限于以下方式,确定所述第二时刻的增益:根据所确定的传播时长以及所述第二信号的增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为当前时刻的增益。
所述增益确定模块332根据所确定的天气信息,修正所确定的参考增益,将修正后的参考增益确定为所述第二时刻的增益,即所述增益确定模块332可以利用上一时刻接收到的信号(所述第二信号)确定的所述目标物体的反射率,确定当前时刻(所述第二时刻)的增益,能够提高所确定的当前时刻的增益的准确性,进而可以提高所述雷达300的探测精度。
需要说明的是,本申请并不对所述发射模块310发射所述第三信号的时机进行限定,凡是能够满足所述增益调整模块340接收到所述第四信号时,所述反射率确定模块334能够确定出所述目标物体的反射率这一条件的发射时机均可应用于本申请。例如,所述发射模块310在所述接收模块320或者所述增益调整模块340接收到所述第二信号之后,发射所述第三信号。
进一步地,如图6所示,所述雷达300还包括波形检测模块350,分别与所述增益控制模块330以及所述增益调整模块340连接。其中,所述波形检测模块350,用于检测调整后的所述第二信号的波形特征,其中,所述第二信号的波形特征包括所述第二信号的波形形状、下降沿的陡峭程度等;所述天气估计模块333在根据调整后的所述第二信号,确定所述天气信息时,具体用于:根据调整后的所述第二信号的波形特征,确定所述天气信息。例如,当所述第二信号的下降沿比较平缓,且拖尾较长时,则此时为雾天或沙尘天等空气中存在明显散射颗粒的天气。
另外,由于雷达探测目标物体的过程中,目标物体的反射率对所述目标物体反射的信号的强度影响较大,反射率较大的目标物体反射的信号的强度较大,反射率较小的目标物体反射的信号的强度较小,因此,为了进一步提高所述雷达300的探测精度,如图7所示,所述增益控制模块330除了包括计时模块331和增益确定模块332外,还可以包括反射率确定模块334。
此时,所述发射模块310还用于:发射第三信号,所述第三信号用于探测所述目标物体;所述接收模块320还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块;其中,所述第四信号为所述第三信号经过所述目标物体反射后的信号;所述计时模块331还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长;其中,所述第二传播时长为所述增益调整模块接收到所述第四信号的时刻;所述反射率确定模块334,用于根据调整后的所述第二信号,确定所述目标物体的反射率;所述增益确定模块332还 用于:根据所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块340;所述增益调整模块340还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
需要说明的是,本申请并不对所述发射模块310发射所述第三信号的时机进行限定,凡是能够满足所述增益调整模块340接收到所述第四信号时,所述反射率确定模块334能够确定出所述目标物体的反射率以及所述天气信息这一条件的发射时机均可应用于本申请。例如,所述发射模块310在所述接收模块320或者所述增益调整模块340接收到所述第二信号之后,发射所述第三信号。
进一步地,所述波形检测模块350还可以用于:检测调整后的所述第二信号的幅值;所述反射率确定模块334具体用于:根据调整后的所述第二信号的幅值,确定所述目标物体的反射率。其中,所述波形检测模块350可以通过峰值检测电路实现。
具体地,所述反射率确定模块334可以根据所述第一传播时长以及所述第二信号的传播时长与所述第二信号幅值的对应关系,估计所述接收模块320接收到的所述第二信号的幅值(即所述第二信号在传播路径上损耗后的幅值),然后根据所述第一时刻的增益、估计的所述第二信号的幅值以及所述波形检测模块350检测到的所述第二信号的幅值,确定所述目标物体的反射率。
进一步地,由于所述目标物体反射的第二信号传播路径的天气状况也会影响所述第二信号的强度,进而也会影响所确定的所述目标物体的反射率的准确性,为了进一步提高所述雷达300的探测精度,所述增益控制模块330除了包括计时模块331、增益确定模块332和反射率确定模块334外,还包括天气估计模块333,所述天气估计模块333用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;所述增益确定模块332还用于:根据所述目标物体的反射率、所述天气信息、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
此时,所述波形检测模块350分别与所述反射率确定模块334、天气估计模块333、所述增益确定模块以及所述增益调整模块连接,所述波形检测模块350除了用于检测调整后的所述第二信号的幅值外,还用于检测调整后的所述第二信号的波形特征,以使所述增益控制模块330根据调整后的所述第二信号的波形特征,确定所述天气信息,其中,所述第二信号的波形特征包括所述第二信号的波形形状、下降沿的陡峭程度等。
其中,所述增益确定模块332可以通过但不限于以下两种方式中的任意一种,确定所述第二时刻的增益:
方式A、根据所述天气信息,修正所述目标物体的反射率;根据修正后的所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
所述增益确定模块332根据当前的天气状况,修正所述目标物体的反射率,进而可以根据所述第二传播时长以及修正后的所述目标物体的反射率,确定所述第二时刻的增益,能够提高所确定的增益的准确性,进而可以达到提高所述雷达300的探测精度的目的。
方式B、根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为当前时刻的增益。
所述增益确定模块332根据当前的天气状况,修正所确定的参考增益,能够提高所确 定的增益的准确性,进而可以达到提高所述雷达300的探测精度的目的。
在具体实施中,所述增益调整模块340可以通过可变增益放大器VGA实现,其中,所述VGA可以为模拟控制型的VGA,即所述增益控制模块330通过第一控制信号控制所述模拟控制型的VGA,所述第一控制信号为用于控制所述模拟控制型的VGA的增益的模拟信号,如图8a所示;所述VGA也可以为数字控制型的VGA,即所述增益控制模块330通过第二控制信号控制所述数字控制型的VGA,所述第二控制信号为用于控制所述数字控制型的VGA的增益的数字信号,如图8b所示。
或者,所述增益调整模块340可以通过多级放大器实现,如图9所示。其中,所述增益控制模块330可以通过一路控制信号控制所述多级放大器中每个放大器的增益,以使所述多级放大器的增益为所述增益控制模块330确定的当前时刻的增益,例如,所述控制信号可以采用编码的方式同时控制所述多级放大器中每个放大器的增益;所述增益控制模块330可以通过多路控制信号分别控制所述多级放大器中每个放大器的增益。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。例如,所述天气估计模块333可以与所述波形检测模块350集成在一个物理单元中,该物理单元可以检测调整后的所述第二信号的波形特征,根据调整后的所述第二信号的波形特征,确定当前的天气状况,并将所确定的天气状况输出到所述增益确定模块332;所述反射率确定模块334可以与所述波形检测模块350集成在一个物理单元中,该物理单元可以检测调整后的所述第二信号幅值,根据调整后的所述第二信号的幅值,确定所述目标物体的反射率,并将所确定的反射率输出到所述增益确定模块332;或者,所述天气估计模块333以及所述反射率确定模块334与所述波形检测模块350集成在一个物理单元中,该物理单元可以检测调整后的所述第二信号的波形特征,根据调整后的所述第二信号的波形特征,确定当前的天气状况,以及检测调整后的所述第二信号幅值,根据调整后的所述第二信号的幅值,确定所述目标物体的反射率,并将所确定的天气状况、反射率输出到所述增益确定模块332。
在实际应用中,所述雷达300可以包括多个接收模块320以及多个增益调整模块340,通过同时发射多路(例如2路、8路、16路、32路或者64路等)信号,以及处理多路反射的回波信号,以提高所述雷达300的探测范围以及探测精度,所述多个接收模块320与所述多个增益调整模块340一一对应。也就是说,所述雷达300包括至少一个发射模块310,至少一个接收模块320,至少一个增益控制模块330、至少一个增益调整模块340,其中,每个增益控制模块330控制一个或多个增益调整模块340,所述至少一个接收模块320与所述至少一个增益调整模块340一一对应。其中,当一个增益控制模块330控制多个增益调整模块340时,该增益控制模块330需要并行确定所述多个增益调整模块340对应的当前时刻的增益。
进一步地,所述雷达300还可以包括一个或多个波形检测模块350。其中,当所述雷达300包括一个波形检测模块350时,所述波形检测模块350需要并行检测每个所述多个接收模块310通过对应的增益调整模块340反馈的第二信号。
例如,如图10所示,所述雷达300包括一个发射模块310、多个接收模块320、一个 增益控制模块330、多个增益调整模块340以及一个环境监测模块350;又如,如图11所示,所述雷达300包括一个发射模块310、多个接收模块320、多个增益控制模块330以及多个增益调整模块340,其中,一个增益控制模块330控制一个增益调整模块组(如图11中虚线框所示),每个增益调整模块组包括一个或多个增益调整模块340。
通过上述方案,所述雷达300中的增益控制模块330能够根据从所述发射模块310发射第一信号的时刻到增益调整模块340接收到第二信号时刻的第一传播时长,以及信号增益与传播时长的对应关系,确定所述增益调整模块340接收到第二信号的时刻的增益,并将所确定的增益传输到所述增益调整模块340,使得所述增益调整模块340能够根据接收到第二信号的时刻的增益,调整所述第二信号的强度,其中,所述第二信号为所述第一信号遇到目标物体后反射的信号,也就是说,所述增益控制模块330能够通过所述第一传播时长以及信号增益与传播时长的对应关系,实时确定接收到所述第二信号的时刻的增益,并通过所述增益调整模块340实时调整所述第二信号的强度,相较于现有技术,实现方式简单,实时性较好。
本申请还提供了一种增益控制方法,应用于雷达,以提高雷达探测过程中信号增益调节的实时性。如图12所示,所述增益控制方法具体包括以下步骤:
S1201:发射用于探测目标物体的第一信号。
S1202:根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益。
其中,所述第一传播时长为从发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为接收到第二信号的时刻,所述第二信号为所述第一信号遇到所述目标物体后反射的信号。
S1203:接收到所述第二信号时,根据所述第一时刻的增益,调整所述第二信号的强度。
具体实施中,所述雷达可以在所述第一传播时长内的每个时刻,分别根据所述每个时刻对应的传播时长以及所述信号增益与传播时长的对应关系,确定所述每个时刻的增益,以使所述雷达能够在接收到所述第二信号时,即可根据当前时刻的增益,调整所述第二信号的强度,实现雷达增益的实时调整。
进一步地,所述雷达调整所述第二信号之后,还可以根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况。此时,所述雷达还发射用于探测所述目标物体的第三信号,并根据所述天气信息、第二传播时长以及所述信号增益与传播时长的对应关系,确定第二时刻的增益,并根据所述第二时刻的增益,调整所述第四信号的强度;其中,所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号。
进一步地,所述雷达具体可以通过以下步骤确定所述天气信息:所述雷达检测调整后的所述第二信号的波形特征,其中,所述第二信号的波形特征包括所述第二信号的波形形状、下降沿的陡峭程度等;根据调整后的所述第二信号的波形特征,确定所述当前的天气状况。例如,当所述第二信号的下降沿比较平缓,且拖尾较长时,则此时为雾天或沙尘天等空气中存在明显散射颗粒的天气。
其中,所述雷达可以通过但不限于以下方式中,确定所述第二时刻的增益:根据所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信 息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
由于目标物体反射的第二信号传播路径上的天气状况也会影响所述目标物体反射的信号的强度,例如在雾天,空气中悬浮的颗粒会对所述第四信号进行散射,进而影响所述第四信号传播到所述雷达时的强度,进而影响所述雷达的探测精度,因此,所述雷达根据当前时刻的天气状况修正没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,即利用上一时刻接收到的信号(所述第二信号)确定的所述天气信息,确定当前时刻(所述第二时刻)的增益,能够进一步提高所述雷达的探测精度。
进一步地,所述雷达调整所述第二信号之后,还可以根据调整后的所述第二信号,确定所述目标物体的反射率。此时,所述雷达还发射用于探测所述目标物体的第三信号,并根据所述目标物体的反射率、第二传播时长以及所述信号增益与传播时长的对应关系,确定第二时刻的增益,并根据所述第二时刻的增益,调整所述第四信号的强度;其中,所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号。
由于在雷达探测目标物体的过程中,目标物体的反射率对所述目标物体反射的信号的强度影响较大,反射率较大的目标物体反射的信号的强度较大,反射率较小的目标物体反射的信号的强度较小,因此,所述雷达根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益能够提高所确定的增益的准确性,进而可以进一步提高所述雷达的探测精度。
其中,所述雷达具体可以通过以下步骤确定所述目标物体的反射率:所述雷达检测调整后的所述第二信号的幅值,根据调整后的所述第二信号的幅值,确定所述目标物体的反射率。具体地,所述雷达可以根据所述传播时长以及所述第二信号的传播时长与所述第二信号幅值的对应关系,估计接收到的所述第二信号的幅值(即所述第二信号在传播路径上损耗后的幅值),然后根据所述第一时刻的增益、估计的所述第二信号的幅值以及检测到的所述第二信号的幅值,确定所述目标物体的反射率。
进一步地,所述雷达调整所述第二信号的强度之后,还可以根据调整后的所述第二信号,确定所述天气信息;根据所述目标物体的反射率、所述天气信息、所第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益,并根据所述第二时刻的增益,调整所述第四信号的强度。
其中,所述雷达可以通过但不限于以下两种方式中的任意一种,确定所述第二时刻的增益:
方式I、根据所述天气信息,修正所述目标物体的反射率;根据修正后的所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定所述第二时刻的增益。
方式II、根据所述目标物体的反射率、所述第二传播时长以及所述信号增益与传播时长的对应关系,确定参考增益;根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为当前时刻的增益。
由于所述目标物体反射的信号传播路径的天气状况也会影响所述目标物体反射的信号的强度以及所确定的所述目标物体的反射率,所述雷达根据所确定的天气信息,修正所述目标物体的反射率,进而修正所述第二时刻的增益,或者直接根据所述天气信息修正当没有考虑天气因素时所确定的增益,通过修正的增益调整所述第四信号的强度,即利用上 一时刻接收到的信号(所述第二信号)确定的所述天气信息以及所述目标物体的反射率,确定当前时刻(所述第二时刻)的增益,能够进一步提高所述雷达的探测精度。
通过上述方法,所述雷达能够根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,并在接收到第一信号遇到目标物体反射的第二信号时,根据所确定的增益,调整所述第二信号的强度,其中,所述第一传播时长为从发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为接收到第二信号的时刻,也就是说,所述雷达能够通过所述第一传播时长以及信号增益与传播时长的对应关系,实时确定接收到目标物体反射的信号的时刻的增益,并实时调整目标物体反射的信号的强度,相较于现有技术,实现方式简单,实时性较好。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (22)

  1. 一种雷达,其特征在于,包括:发射模块、增益调整模块、增益控制模块和接收模块;其中,所述增益控制模块分别与所述发射模块以及所述增益调整模块连接,所述增益调整模块还与所述接收模块连接;
    所述发射模块,用于发射第一信号,所述第一信号用于探测目标物体;
    所述接收模块,用于接收第二信号,并将所述第二信号输出到所述增益调整模块;其中,所述第二信号为所述第一信号经过所述目标物体反射后的信号;
    所述增益控制模块,用于根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,并将所确定的增益输出到所述增益调整模块;其中,所述第一传播时长为从所述发射模块发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为所述增益调整模块接收到所述第二信号的时刻;
    所述增益调整模块,用于根据所述第一时刻的增益,调整所述第二信号的强度。
  2. 如权利要求1所述的雷达,其特征在于,所述增益控制模块包括计时模块和增益确定模块;
    所述计时模块,用于根据发射所述第一信号的时刻和所述第一时刻,确定所述第一传播时长;
    所述增益确定模块,用于根据所述第一传播时长以及所述对应关系,确定所述第一时刻的增益,并将所确定的增益传输到所述增益调整模块。
  3. 如权利要求2所述的雷达,其特征在于,所述增益控制模块还包括:反射率确定模块,其中:
    所述发射模块还用于:发射第三信号,所述第三信号用于探测所述目标物体;
    所述接收模块还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块;其中,所述第四信号为所述第三信号经过所述目标物体反射后的信号;
    所述计时模块还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长;其中,所述第二传播时长为所述增益调整模块接收到所述第四信号的时刻;
    所述反射率确定模块,用于根据调整后的所述第二信号,确定所述目标物体的反射率;
    所述增益确定模块还用于:根据所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块;
    所述增益调整模块还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
  4. 如权利要求3所述的雷达,其特征在于,还包括波形检测模块,分别与所述反射率确定模块以及所述增益调整模块连接,其中:
    所述波形检测模块,用于检测调整后的所述第二信号的幅值;
    所述反射率确定模块具体用于:根据调整后的所述第二信号的幅值,确定所述目标物体的反射率。
  5. 如权利要求4所述的雷达,其特征在于,所述波形检测模块为峰值检测电路。
  6. 如权利要求3所述的雷达,其特征在于,所述增益控制模块还包括天气估计模块;
    所述天气估计模块,用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;
    所述增益确定模块还用于:根据所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块。
  7. 如权利要求6所述的雷达,其特征在于,所述增益确定模块具体用于:
    根据所述天气信息,修正所述目标物体的反射率;
    根据修正后的所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益。
  8. 如权利要求6所述的雷达,其特征在于,所述增益确定模块具体用于:
    根据所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定参考增益;
    根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
  9. 如权利要求6-8任意一项所述的雷达,其特征在于,还包括波形检测模块,分别与所述反射率确定模块、所述天气估计模块以及所述增益调整模块连接;
    所述波形检测模块,用于检测调整后的所述第二信号的幅值以及调整后的所述第二信号的波形特征;
    所述反射率确定模块具体用于:根据调整后的所述第二信号的幅值,确定所述目标物体的反射率;
    所述天气估计模块具体用于:根据调整后的所述第二信号的波形特征,确定所述天气信息。
  10. 如权利要求2所述的雷达,其特征在于,所述增益控制模块还包括天气估计模块,其中:
    所述发射模块还用于:发射第三信号,所述第三信号用于探测所述目标物体;
    所述接收模块还用于:接收第四信号,并将所述第四信号传输到所述增益调整模块;其中,所述第四信号为所述第三信号经过所述目标物体反射后的信号;
    所述计时模块还用于:根据发射所述第三信号的时刻和第二时刻,确定第二传播时长;其中,所述第二传播时长为所述增益调整模块接收到所述第四信号的时刻;
    所述天气估计模块,用于根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;
    所述增益确定模块还用于:根据所述天气信息、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,并将所确定的增益传输到所述增益调整模块;
    所述增益调整模块还用于:根据所述第二时刻的增益,调整所述第四信号的强度。
  11. 如权利要求10所述的雷达,其特征在于,所述增益确定模块具体用于:
    根据所述第二传播时长以及所述对应关系,确定参考增益;
    根据所述当前的天气状况,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
  12. 如权利要求10或11所述的雷达,其特征在于,还包括波形检测模块,分别与所述天气估计模块以及所述增益调整模块连接;
    所述波形检测模块,用于检测调整后的所述第二信号的波形特征;
    所述天气估计模块具体用于:根据调整后的所述第二信号的波形特征,确定所述天气信息。
  13. 如权利要求1-12任意一项所述的雷达,其特征在于,所述增益调整模块为可变增 益放大器VGA,或者多级放大器。
  14. 一种增益控制方法,其特征在于,应用于雷达,包括:
    发射用于探测目标物体的第一信号;
    根据第一传播时长以及信号增益与传播时长的对应关系,确定第一时刻的增益,其中,所述第一传播时长为从发射所述第一信号的时刻到所述第一时刻的时长,所述第一时刻为接收到第二信号的时刻,所述第二信号为所述第一信号经过所述目标物体反射后的信号;
    接收到所述第二信号时,根据所述第一时刻的增益,调整所述第二信号的强度。
  15. 如权利要求14所述的方法,其特征在于,根据所述第一时刻的增益,调整所述第二信号的强度之后,还包括:根据调整后的所述第二信号,确定所述目标物体的反射率;
    发射用于探测所述目标物体的第三信号;
    根据所述目标物体的反射率、第二传播时长以及所述对应关系,确定第二时刻的增益;其中,所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号;
    根据所述第二时刻的增益,调整所述第四信号的强度。
  16. 如权利要求15所述的方法,其特征在于,根据所述第一时刻的增益,调整所述第二信号的强度之后,还包括:根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;
    根据所述目标物体的反射率、所述当前的天气状况、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益。
  17. 如权利要求16所述的方法,其特征在于,根据所述目标物体的反射率、所述天气信息、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益,包括:
    根据所述天气信息,修正所述目标物体的反射率;
    根据修正后的所述目标物体的反射率、所述第二传播时长以及所述对应关系,确定所述第二时刻的增益。
  18. 如权利要求16所述的方法,其特征在于,根据所述目标物体的反射率、所述天气信息、所述第二传播时长以及所述对应关系,确定第二时刻的增益,包括:
    根据所述第二传播时长以及所述对应关系,确定参考增益;
    根据所述目标物体的反射率以及所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
  19. 如权利要求15-18任意一项所述的方法,其特征在于,根据调整后的所述第二信号,确定所述目标物体的反射率,包括:
    检测调整后的所述第二信号的幅值;
    根据调整后的所述第二信号的幅值,确定所述目标物体的反射率。
  20. 如权利要求14所述的方法,其特征在于,根据所述第一时刻的增益,调整所述第二信号的强度之后,还包括:根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况;
    发射用于探测所述目标物体的第三信号;
    根据所述天气信息、第二传播时长以及所述对应关系,确定第二时刻的增益;其中,所述第二传播时长为接收到第四信号的时刻,所述第二时刻为接收到所述第四信号的时刻,所述第四信号为所述第三信号经过所述目标物体反射后的信号;
    根据所述第二时刻的增益,调整所述第四信号的强度。
  21. 如权利要求20所述的方法,其特征在于,根据所述天气信息、第二传播时长以及所述对应关系,确定所述第二时刻的增益,包括:
    根据所述第二传播时长以及所述对应关系,确定参考增益;
    根据所述天气信息,修正所述参考增益,将修正后的参考增益确定为所述第二时刻的增益。
  22. 如权利要求16-18、20或21中任意一项所述的方法,其特征在于,根据调整后的所述第二信号,确定天气信息,所述天气信息用于表征当前的天气状况,包括:
    检测调整后的所述第二信号的波形特征;
    根据调整后的所述第二信号的波形特征,确定所述天气信息。
PCT/CN2019/075246 2019-02-15 2019-02-15 一种雷达以及增益控制方法 WO2020164121A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075246 WO2020164121A1 (zh) 2019-02-15 2019-02-15 一种雷达以及增益控制方法
CN201980052105.2A CN112534302B (zh) 2019-02-15 2019-02-15 一种雷达以及增益控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075246 WO2020164121A1 (zh) 2019-02-15 2019-02-15 一种雷达以及增益控制方法

Publications (1)

Publication Number Publication Date
WO2020164121A1 true WO2020164121A1 (zh) 2020-08-20

Family

ID=72044157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075246 WO2020164121A1 (zh) 2019-02-15 2019-02-15 一种雷达以及增益控制方法

Country Status (2)

Country Link
CN (1) CN112534302B (zh)
WO (1) WO2020164121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230099685A1 (en) * 2020-03-02 2023-03-30 Calterah Semiconductor Technology (Shanghai) Co., Ltd. Automatic gain control method, sensor, and radio device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201560A (ja) * 2000-01-21 2001-07-27 Mitsubishi Electric Corp レーダ装置及びその制御方法
CN1904640A (zh) * 2006-06-29 2007-01-31 哈尔滨工业大学 增益调制式脉冲成像激光雷达***
JP2008107158A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp 車載用レーダ装置
CN101557204A (zh) * 2009-05-22 2009-10-14 天津大学 超声测距用多级高动态范围自动增益控制电路
CN103026255A (zh) * 2010-07-28 2013-04-03 松下电器产业株式会社 雷达装置
CN104777470A (zh) * 2015-03-20 2015-07-15 中国科学院合肥物质科学研究院 一种扩展脉冲激光近程动态增益范围电路
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN106772437A (zh) * 2016-12-12 2017-05-31 中国科学院合肥物质科学研究院 自适应控制动态范围的激光雷达装置
CN208013435U (zh) * 2018-03-16 2018-10-26 深圳市砝石激光雷达有限公司 脉冲参数加密的激光测距***
CN108919282A (zh) * 2018-05-17 2018-11-30 北京航空航天大学 一种激光雷达信号时刻鉴别***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594000B2 (en) * 2001-01-25 2003-07-15 Science And Technology Corporation Automatic gain control system for use with multiple wavelength signal detector
CN103592640A (zh) * 2013-11-20 2014-02-19 中国船舶重工集团公司第七二四研究所 一种气象雷达收发通道增益自动高精度校准方法
CN105548975B (zh) * 2015-12-11 2017-11-10 中国科学院电子学研究所 高稳定性射频信道增益校准装置和方法
CN108401444B (zh) * 2017-03-29 2022-07-08 深圳市大疆创新科技有限公司 一种激光雷达以及基于激光雷达的时间测量方法
CN106970391B (zh) * 2017-03-31 2019-10-11 成都微光云科技有限公司 一种基于激光测距的uav地形检测***
CN207636763U (zh) * 2017-12-16 2018-07-20 北京国科欣翼科技有限公司 高速抗饱和放大电路以及安装有该电路的激光雷达和汽车

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201560A (ja) * 2000-01-21 2001-07-27 Mitsubishi Electric Corp レーダ装置及びその制御方法
CN1904640A (zh) * 2006-06-29 2007-01-31 哈尔滨工业大学 增益调制式脉冲成像激光雷达***
JP2008107158A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp 車載用レーダ装置
CN101557204A (zh) * 2009-05-22 2009-10-14 天津大学 超声测距用多级高动态范围自动增益控制电路
CN103026255A (zh) * 2010-07-28 2013-04-03 松下电器产业株式会社 雷达装置
CN104777470A (zh) * 2015-03-20 2015-07-15 中国科学院合肥物质科学研究院 一种扩展脉冲激光近程动态增益范围电路
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN106772437A (zh) * 2016-12-12 2017-05-31 中国科学院合肥物质科学研究院 自适应控制动态范围的激光雷达装置
CN208013435U (zh) * 2018-03-16 2018-10-26 深圳市砝石激光雷达有限公司 脉冲参数加密的激光测距***
CN108919282A (zh) * 2018-05-17 2018-11-30 北京航空航天大学 一种激光雷达信号时刻鉴别***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230099685A1 (en) * 2020-03-02 2023-03-30 Calterah Semiconductor Technology (Shanghai) Co., Ltd. Automatic gain control method, sensor, and radio device

Also Published As

Publication number Publication date
CN112534302A (zh) 2021-03-19
CN112534302B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2021027568A1 (zh) 障碍物避让方法及装置
US10906549B2 (en) Systems and methods of autonomously controlling vehicle lane change maneuver
EP4071661A1 (en) Automatic driving method, related device and computer-readable storage medium
WO2021000800A1 (zh) 道路可行驶区域推理方法及装置
WO2021103511A1 (zh) 一种设计运行区域odd判断方法、装置及相关设备
CN113525373B (zh) 一种车辆的变道控制***、控制方法以及变道控制装置
CN112512887B (zh) 一种行驶决策选择方法以及装置
WO2021189210A1 (zh) 一种车辆换道方法及相关设备
WO2022022384A1 (zh) 车辆运动状态识别方法及装置
WO2022016901A1 (zh) 一种规划车辆行驶路线的方法以及智能汽车
WO2022062825A1 (zh) 车辆的控制方法、装置及车辆
US20240017719A1 (en) Mapping method and apparatus, vehicle, readable storage medium, and chip
CN115042821B (zh) 车辆控制方法、装置、车辆及存储介质
WO2022061702A1 (zh) 驾驶提醒的方法、装置及***
WO2021243529A1 (zh) 一种波达角aoa估计方法和装置
WO2020164121A1 (zh) 一种雷达以及增益控制方法
CN115056784B (zh) 车辆控制方法、装置、车辆、存储介质及芯片
CN116135654A (zh) 一种车辆行驶速度生成方法以及相关设备
WO2022148068A1 (zh) 一种车辆检测方法和车辆检测装置
WO2022127502A1 (zh) 控制方法和装置
US20220011414A1 (en) Ranging method and apparatus based on detection signal
WO2022151839A1 (zh) 一种车辆转弯路线规划方法及装置
CN115042814A (zh) 交通灯状态识别方法、装置、车辆及存储介质
CN113859265A (zh) 一种驾驶过程中的提醒方法及设备
CN115407344B (zh) 栅格地图创建方法、装置、车辆及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914937

Country of ref document: EP

Kind code of ref document: A1