WO2020159137A1 - 이중 회전익을 구비한 에어 서큘레이터 - Google Patents

이중 회전익을 구비한 에어 서큘레이터 Download PDF

Info

Publication number
WO2020159137A1
WO2020159137A1 PCT/KR2020/001012 KR2020001012W WO2020159137A1 WO 2020159137 A1 WO2020159137 A1 WO 2020159137A1 KR 2020001012 W KR2020001012 W KR 2020001012W WO 2020159137 A1 WO2020159137 A1 WO 2020159137A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
intake
exhaust
case
assembly
Prior art date
Application number
PCT/KR2020/001012
Other languages
English (en)
French (fr)
Inventor
서동진
오용주
김민석
Original Assignee
주식회사 미로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190171649A external-priority patent/KR20200096105A/ko
Application filed by 주식회사 미로 filed Critical 주식회사 미로
Priority to CN202080005291.7A priority Critical patent/CN112752908A/zh
Priority to US17/279,495 priority patent/US20220034326A1/en
Publication of WO2020159137A1 publication Critical patent/WO2020159137A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air circulator, and more specifically, to an air circulator having a double rotor blade having improved air straightness and high blowing efficiency, consisting of a dual blade of an intake fan having a large diameter of a rotor blade and an exhaust fan having a small diameter. It is about.
  • An axial flow fan (Axial Flow Fan) is a fluid machine that has a plurality of rotor blades arranged radially around a hub and rotates by a motor or the like to blow air in the axial direction of the rotor blade, usually a fan or an indoor ventilation fan or an automobile.
  • a cooling fan that blows air for heat dissipation to a heat exchanger is a typical axial flow fan.
  • the axial flow fan mounted on the heat exchanger of the air conditioning system of a car surrounds the axial flow fan with a bell-mouth type ventilation hole and has a shroud (Stator) that can guide the blowing air in the axial direction from the front or rear side of the ventilation fan ( Shroud) is mounted on the back or front of the heat exchanger.
  • Shroud shroud
  • Such axial fans for automotive air-cooled heat exchangers are classified into a pusher type and a puller type according to the arrangement type of the heat exchanger.
  • the present invention is to solve the problems of the conventional single-wing axial fan as described above, it is an object of the present invention to provide an air circulator having a double rotor blade having improved air straightness and high blowing efficiency.
  • An air circulator having a double rotor blade includes a case assembly having an intake port through which air is sucked and an exhaust port through which air is discharged;
  • An intake fan assembly including an intake motor fixedly coupled to the inside of the case assembly and an intake fan rotated by the intake motor;
  • an exhaust fan assembly including an exhaust motor fixedly coupled to the inside of the case assembly and an exhaust fan rotationally driven by the exhaust motor and having a rotation radius smaller than the rotation radius of the intake fan. It is characterized in that the number of revolutions is greater than the number of revolutions of the intake fan.
  • R1:R2 is characterized in that it is 1:1.5 to 1:1.7.
  • R1:R2 is characterized in that it is 1:1.7 to 1:2.
  • R1:R2 is 1:2.
  • the rotational speed of the intake fan is 70 to 30% greater than the rotational speed of the exhaust fan.
  • the rotational speed of the intake fan is 60 to 40% greater than the rotational speed of the exhaust fan.
  • the exhaust power is compared to the intake fan so that the power consumption of the intake motor and the exhaust motor is reduced.
  • the fan rotation rate is characterized in that the lower one is selected.
  • the case assembly is characterized in that a plurality of intake holes are formed along the outer periphery in which external air is sucked adjacent to the intake.
  • the case assembly is fixedly coupled to the intake fan case between the intake fan case accommodating the intake fan assembly, the exhaust fan case accommodating the exhaust fan assembly, and the intake fan case and the exhaust fan case. It includes a support for fixedly supporting the exhaust fan assembly, it is characterized in that a plurality of intake holes in which external air is sucked is formed on one side and the outer periphery of the intake fan case.
  • the air circulator of the present invention can blow air by using a double rotor blade, it has high blowing efficiency, excellent straightness of the wind, and can reduce power consumption.
  • FIG. 1 is a perspective view of an air circulator having a double rotor blade according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the air circulator of FIG. 1.
  • 3A, 3B, and 3C are schematic diagrams experimenting the straightness of the wind of the air circulator of FIG. 1.
  • 4 and 5 are schematic diagrams experimented by changing the number of revolutions of the exhaust fan.
  • 6A, 6B, and 6C are schematic diagrams experimenting the straightness of the wind according to the structural change of the case assembly.
  • FIG. 7 is a schematic diagram experimenting with vortex generation according to the structure of the case assembly.
  • the terms “include” or “have” are intended to indicate the presence of features, numbers, steps, actions, components, parts or combinations thereof described in the specification, but one or more other features. It should be understood that the existence or addition possibilities of fields or numbers, steps, actions, components, parts or combinations thereof are not excluded in advance.
  • a part such as a layer, film, region, plate, etc. is said to be “above” another part, this includes not only the case “directly above” the other part but also another part in the middle.
  • a portion of a layer, film, region, plate, or the like is said to be “under” another portion, this includes not only the case “underneath” another portion, but also another portion in the middle.
  • the air circulator 100 having a double rotor blade includes a case assembly 110, an intake fan assembly 120, and an exhaust fan assembly 130. can do.
  • the case assembly 110 is composed of two cases having a cylindrical shape as a whole, and may include an intake fan case 111 surrounding the intake fan assembly 120 and an exhaust fan case 112 surrounding the exhaust fan assembly 130. .
  • the intake fan case 111 has a cylindrical shape having an open side on which one side is made larger in diameter than the exhaust fan case 112 so as to surround the intake fan assembly 120 having a large diameter, and has a plurality of intakes formed radially on the rear side where air is sucked. Is formed.
  • the intake fan case 111 is formed with a plurality of intake holes 111a extending in the longitudinal direction of the intake fan case 111 along the outer periphery.
  • the intake hole 111a is advantageously formed as densely as possible on the outer periphery of the intake fan case 111, and its length may also be advantageously formed as long as possible for ease of intake.
  • the intake fan case 111 includes a support 113 for supporting the intake fan assembly 120 and the exhaust fan assembly 130, and the support 113 has two rectangular support plates cross-shaped with each other to form an inner side of the intake fan case 111. It can be fixedly installed.
  • the support 113 may be located in a position away from the intake, substantially in the center when the case assembly 110 is assembled.
  • the support 113 may be installed in the intake fan case 111 to have relatively high rigidity to fixably support the motors of the intake fan assembly 120 and the exhaust fan assembly 130.
  • the intake fan case 111 and the support 113 may be separately manufactured to be combined with each other, or the intake fan case 111 and the support 113 may be made of the same material and integrally manufactured.
  • the exhaust fan case 112 has a cylindrical shape with one side open, which is made smaller in diameter than the intake fan case 111 so as to surround the exhaust fan assembly 130 having a small diameter, and is formed in a top-like shape on the front side where air is discharged. A plurality of outlets are formed.
  • the exhaust fan case 112 is formed with a plurality of exhaust holes 112a extending in the longitudinal direction of the exhaust fan case 112 along the outer periphery.
  • the exhaust hole 112a is advantageously formed as densely as possible on the outer periphery of the exhaust fan case 112, and its length may also be advantageously formed as long as possible for ease of exhaust.
  • the exhaust holes 112a formed in the exhaust fan case 112 are optional, and in this embodiment, a plurality of exhaust holes 112a are formed in the exhaust fan case 112, but the exhaust holes ( An exhaust fan case 112 in which 112a) is not formed may be used.
  • the exhaust fan case 112 is coupled to the intake fan case 111 and can be fixedly coupled with a separate fastening member, for example, a bolt or a clip, which is already known to those skilled in the art and is commonly used. Will be omitted.
  • a separate fastening member for example, a bolt or a clip
  • the intake fan assembly 120 is for sucking external air through an intake port and an intake hole 111a, and includes an intake motor (not shown) fixedly coupled to the support 113 and an intake fan 121 coupled to the intake motor Can.
  • the suction motor rotates the intake fan 121 with a driving power transmitted from the outside.
  • the suction motor may be rotated in the opposite direction to the exhaust motor. That is, the intake fan 121 is rotated in the opposite direction to the exhaust fan 131.
  • the rotation radius of the intake fan 121 may be larger than the rotation radius of the exhaust fan 131.
  • the intake fan 121 is composed of an intake fan hub 122 fixedly coupled to a rotating shaft (not shown) of the intake motor and a plurality of intake blades 123 coupled radially from the intake fan hub 122. It is preferable that the intake blade 123 is made larger than the exhaust blade 133, and more specifically, the rotation radius of the intake blade 123 is larger than the rotation radius of the exhaust blade 133.
  • the exhaust fan assembly 130 is for discharging air sucked into the interior of the case assembly 110 through the intake blade 123 to the outside, and an exhaust motor (not shown) and an exhaust motor fixedly coupled to the support 113 It may include an exhaust fan 131 coupled to.
  • the exhaust motor rotates the exhaust fan 131 with a driving power transmitted from the outside.
  • the exhaust motor may be rotated in the opposite direction to the suction motor. That is, the exhaust fan 131 is rotated in the opposite direction to the intake fan 121.
  • the rotation radius of the exhaust fan 131 may be smaller than the rotation radius of the intake fan 121.
  • the exhaust fan 131 is composed of an exhaust fan hub 132 fixedly coupled to a rotating shaft (not shown) of the exhaust motor and a plurality of exhaust blades 133 radially extending from the exhaust fan hub 132. .
  • the exhaust blade 133 may be smaller than the intake blade 123, and more specifically, it may be preferable that the rotation radius of the exhaust blade 133 is made smaller than the rotation radius of the intake blade 123.
  • 3A, 3B, and 3C are experiments of the straightness of the wind of the air circulator 100 according to the embodiment of the present invention, changing the number of revolutions of the intake fan 121, driving the exhaust fan 131, and not driving and By rotating freely, the straightness of the wind was tested.
  • the rotational speed of the intake fan 121 was 750 RPM, and the rotational speed of the exhaust fan 131 was 1500 RPM, and the straightness of the wind was evaluated.
  • the straightness of the wind was detected very well. That is, when both the intake fan 121 and the exhaust fan 131 are driven, a laminar flow is formed, and thus the wind has a straightness, so that the blowing distance of the wind can be increased.
  • FIG. 3B evaluates wind in the state that the rotational speed of the intake fan 121 is 750 RPM and the exhaust fan 131 is not driven, that is, the exhaust fan 131 is fixed.
  • the exhaust fan 131 acts as a resistance component, so that wind spreads, that is, turbulence occurs.
  • a phenomenon in which the straightness of the wind is significantly lowered has occurred.
  • 3c evaluates the wind in a state in which the rotation speed of the intake fan 121 is 400 RPM and the exhaust fan 131 is freely rotated. In the state in which the exhaust fan 131 is freely rotated, laminar flow is maintained up to a certain distance, and over a certain distance, it is converted into turbulent flow. However, compared to FIG. 3B, although a result of straightness occurred, the straightness and the blowing distance were significantly reduced compared to FIG. 3A.
  • the number of revolutions of the intake fan 750RPM and the number of revolutions of the exhaust fan: 1500RPM
  • the number of revolutions of each fan was increased or decreased to simulate the straightness of the wind.
  • the ratio of the rotational speed (RPM) of the exhaust fan to the intake fan was found to be 1:2, and when the intake fan rotational speed was R1 and the exhaust fan rotational speed was R2, R1:R2 was 1:1.5 to 1:1.7. It is preferred, it may be more preferably 1:1.7 to 1:2, and most preferably 1:2.
  • the air circulator 100 of the present invention has a structure in which an intake hole or an exhaust hole is formed on an outer circumferential surface of the case assembly 110, and the structure of the case assembly 110 It is possible to minimize the occurrence of vortices inside.
  • 6A, 6B, and 6C are experiments of straightness and vortex generation of wind according to the structure of the case assembly 110.
  • FIG. 6A is a result of evaluating the straightness of the wind of the solid case in which intake holes and exhaust holes are not formed on the outer circumferential surface of the case assembly 110
  • FIG. 6B is the wind of the case assembly 110 in which the intake holes are formed on the outer circumferential surface of the intake fan case 111
  • 6C is a result of evaluating the straightness of the wind of the case assembly 110 in which both intake holes are formed on the outer circumferential surface of the intake fan case 111 and exhaust holes are formed on the outer circumferential surface of the exhaust fan case 112.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명의 실시예에 따른 이중 회전익을 구비한 에어 서큘레이터는 공기가 흡입되는 흡입구와 공기가 배출되는 배출구가 형성된 케이스 조립체; 상기 케이스 조립체의 내부에 고정되게 결합되는 흡기모터 및 상기 흡기모터에 의해 회전구동되 는 흡기팬을 포함하는 흡기팬 조립체; 및 상기 케이스 조립체의 내부에 고정되게 결합되는 배기모터 및 상기 배기모터에 의해 회전구동되는 배기팬을 포함하는 배기 팬 조립체를 포함하며, 상기 배기팬의 회전수가 상기 흡기팬의 회전수보다 더 큰 것을 특징으로 한다.

Description

이중 회전익을 구비한 에어 서큘레이터
본 발명은 에어 서큘레이터에 관한 것으로, 더 구체적으로는 회전익의 직경이 큰 흡기팬과 직경이 작은 배기팬의 이중익으로 구성되어 바람의 직진성이 향상되고 송풍 효율이 높은 이중 회전익을 구비한 에어 서큘레이터에 관한 것이다.
축류팬(Axial Flow Fan)은 허브를 중심으로 방사상으로 배열된 다수 회전익을 구비하여, 모터 등에 의해 회전되면서 공기를 회전익의 축방향으로 송풍 하는 유체기계로서, 통상 선풍기나 실내 환기용 환풍기 또는 자동차의 라디에이터 나 콘덴서등의 공랭식 열교환기 방열을 촉진하기 위하여 열교환기에 대하여 방열용 공기를 송풍하는 냉각팬(Cooling Fan) 등은 전형적인 축류팬이다.
특히 자동차의 공기조화장치의 열교환기에 장착되는 축류팬은 축류 팬 주위를 벨 마우스형 통풍구로 둘러싸고 그 통풍구 전면 또는 후면에서 송풍공기 를 축방향으로 유도할 수 있는 안내깃(Stator)을 가지는 쉬라우드(Shroud)와 함께 열교환기 후면 또는 전면에 장착되는 바, 이와 같은 자동차 공랭식 열교환기용 축류팬은 열교환기에 대한 배치형식에 따라 푸셔 타입(Pusher type)과 풀러 타입(Puller type)으로 분류된다.
그러나, 종래 일반적인 축류팬들은 단일 날개구조(單翼)를 가지고 있기 때문에 단익 회전익의 구조적인 한계 때문에 송풍효율이 낮은 문제점을 가지고 있었다.
본 발명은 상술한 바와 같은 종래 단익 축류팬이 가진 문제점이 해소된 것으로서, 바람의 직진성이 향상되고 송풍효율이 높은 이중 회전익을 구비한 에어 서큘레이터를 제공하는 것을 목적으로 한다.
본 발명의 실시예에 따른 이중 회전익을 구비한 에어 서큘레이터는 공기가 흡입되는 흡입구와 공기가 배출되는 배출구가 형성된 케이스 조립체; 상기 케이스 조립체의 내부에 고정되게 결합되는 흡기모터 및 상기 흡기모터에 의해 회 전구동되는 흡기팬을 포함하는 흡기팬 조립체; 및 상기 케이스 조립체의 내부에 고 정되게 결합되는 배기모터 및 상기 배기모터에 의해 회전구동되며 상기 흡기팬의 회전반경보다 작은 회전반경을 갖는 배기팬을 포함하는 배기팬 조립체를 포함하며, 상기 배기팬의 회전수가 상기 흡기팬의 회전수보다 더 큰 것을 특징으로 한다.
여기서, 상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:1.5 내지 1:1.7인 것을 특징으로 한다.
또는, 상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:1.7 내지 1:2인 것을 특징으로 한다.
또는, 상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:2인 것을 특징으로 한다.
또는, 상기 흡기팬의 회전수는 상기 배기팬의 회전수보다 70 내지 30%만큼 큰 것을 특징으로 한다.
또는, 상기 흡기팬의 회전수는 상기 배기팬의 회전수보다 60 내지 40%만큼 큰 것을 특징으로 한다.
또는, 상기 흡기팬의 회전수와 상기 배기팬의 회전수를 가변하여 상 기 케이스 조립체로부터 배출되는 바람의 송풍거리가 동일한 경우, 상기 흡기모터 및 상기 배기모터의 전력소모량이 감소되도록 상기 흡기팬 대비 상기 배기팬의 회 전수 비율은 낮은 것이 선택되는 것을 특징으로 한다.
또는, 상기 케이스 조립체는 상기 흡입구에 인접하게 외부 공기가 흡입되는 흡기공이 외주연을 따라 복수개가 형성된 것을 특징으로 한다.
또는, 상기 케이스 조립체는 상기 흡기팬 조립체를 수용하는 흡기팬 케이스와, 상기 배기팬 조립체를 수용하는 배기팬 케이스와, 상기 흡기팬 케이스와 상기 배기팬 케이스 사이에서 상기 흡기팬 케이스에 고정되게 결합되며 상기 흡기팬 조립체와 상기 배기팬 조립체를 고정되게 지지하는 지지체를 포함하며, 상기 흡기팬 케이스의 일 측면과 외주연에는 외부 공기가 흡입되는 흡기공이 복수개가 형성된 것을 특징으로 한다.
본 발명의 에어 서큘레이터는 이중 회전익을 사용하여 공기를 송풍할 수 있으므로 송풍효율이 높고 바람의 직진성이 우수하고 전력소모량을 줄일 수 있다.
도 1은 본 발명의 일실시예에 따른 이중 회전익을 구비한 에어 서큘 레이터의 사시도이다.
도 2는 도 1의 에어 서큘레이터의 분해 사시도이다.
도 3a, 3b 및 3c는 도 1의 에어 서큘레이터의 바람의 직진성을 실험한 개략도이다.
도 4 및 도 5는 배기팬의 회전수를 변화하여 실험한 개략도이다.
도 6a, 6b 및 6c는 케이스 조립체의 구조 변화에 따른 바람의 직진성을 실험한 개략도이다.
도 7은 케이스 조립체의 구조에 따른 와류 발생을 실험한 개략도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참고부호를 붙였다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
도 1 및 도 2에 도시한 바와 같이, 본 발명의 실시예에 따른 이중 회전익을 구비한 에어 서큘레이터(100)는 케이스 조립체(110), 흡기팬 조립체(120), 배기팬 조립체(130)를 포함할 수 있다.
케이스 조립체(110)는 전체적으로 원기둥 형상을 갖는 두 개의 케이 스로 구성되며, 흡기팬 조립체(120)를 감싸는 흡기팬 케이스(111)와 배기팬 조립체(130)를 감싸는 배기팬 케이스(112)를 포함할 수 있다.
흡기팬 케이스(111)는 직경이 큰 흡기팬 조립체(120)를 감싸도록 배기팬 케이스(112)보다 직경이 크게 제작된 일측이 개방된 원기둥 형상이며 공기가 흡입되는 배면부쪽에 방사상으로 형성되는 복수의 흡입구가 형성되어 있다. 또한, 흡기팬 케이스(111)는 외주연을 따라 흡기팬 케이스(111)의 길이방향으로 연장되는 복수의 흡기공(111a)이 형성되어 있다. 흡기공(111a)은 흡기팬 케이스(111)의 외주 연에 최대한 조밀하게 형성되는 것이 유리하며, 그 길이도 흡기의 용이성을 위해 최대한 길게 형성되는 것이 유리할 수 있다.
흡기팬 케이스(111)는 흡기팬 조립체(120)와 배기팬 조립체(130)를 지지하는 지지체(113)를 포함하며, 지지체(113)는 두 개의 장방형 지지판이 서로 십자 형태로 흡기팬 케이스(111)의 내측에 고정되게 설치될 수 있다. 지지체(113)는 흡입구에서 먼 위치, 실질적으로 케이스 조립체(110)가 조립되었을 시 정 중앙에 위치하는 것이 바람직할 수 있다. 지지체(113)는 흡기팬 조립체(120)와 배기팬 조립체(130)의 모터들을 고정되게 지지하도록 비교적 높은 강성을 갖도록 흡기팬 케이스(111)에 설치될 수 있다. 여기서 흡기팬 케이스(111)와 지지체(113)를 별도로 제작하여 상호 결합할 수도 있고, 흡기팬 케이스(111)와 지지체(113)를 동일 재질로 사출하여 일체로 제작할 수도 있다.
배기팬 케이스(112)는 직경이 작은 배기팬 조립체(130)를 감싸도록 흡기팬 케이스(111)보다 직경이 작게 제작된 일측이 개방된 원기둥 형상이며, 공기가 배출되는 전면부쪽에 상사상으로 형성되는 복수의 배출구가 형성되어 있다. 또한, 배기팬 케이스(112)는 외주연을 따라 배기팬 케이스(112)의 길이방향으로 연장되는 복수의 배기공(112a)이 형성되어 있다. 배기공(112a)은 배기팬 케이스(112)의 외주연에 최대한 조밀하게 형성되는 것이 유리하며, 그 길이도 배기의 용이성을 위해 최대한 길게 형성되는 것이 유리할 수 있다. 다만, 배기팬 케이스(112)에 형성되는 배기공(112a)은 선택적인 사항으로, 본 실시예에서는 배기팬 케이스(112)에 복수의 배기공(112a)을 형성하였으나, 필요에 따라 배기공(112a)이 형성되지 않은 배기팬 케이스(112)를 사용할 수도 있다.
배기팬 케이스(112)는 흡기팬 케이스(111)와 결합되어 별도의 체결 부재, 예를 들면 볼트나 클립 등으로 고정되게 결합될 수 있으며, 이는 당업자에게 이미 공지되어 공용되고 있는 사항이라 이에 대한 구체적인 설명은 생략하기로 한다.
흡기팬 조립체(120)는 외부 공기를 흡기구 및 흡기공(111a)을 통해 흡입하기 위한 것으로, 지지체(113)에 고정결합되는 흡입모터(미도시)와 흡입모터에 결합되는 흡기팬(121)을 포함할 수 있다. 흡입모터는 외부로부터 전달되는 구동 전원으로 흡기팬(121)을 회전시키며 이때 흡입모터는 배기모터와 서로 반대 방향으로 회전될 수 있다. 즉, 흡기팬(121)은 배기팬(131)과 서로 반대방향으로 회전된다. 또한, 흡기팬(121)의 회전반경은 배기팬(131)의 회전반경보다 클 수 있다.
흡기팬(121)은 흡입모터의 회전축(미도시)에 고정되게 결합되는 흡기팬 허브(122)와 이 흡기팬 허브(122)로부터 방사상으로 연장되게 결합되는 복수의 흡기 블레이드(123)로 구성된다. 흡기 블레이드(123)는 배기 블레이드(133)보다 크게, 더 구체적으로는 흡기 블레이드(123)의 회전반경이 배기 블레이드(133)의 회전반경보다 크게 제작되는 것이 바람직할 수 있다.
배기팬 조립체(130)는 흡기 블레이드(123)를 통해 케이스 조립체(110)의 내부로 흡입된 공기를 외부로 배출하기 위한 것으로, 지지체(113)에 고정 결합되는 배기모터(미도시)와 배기모터에 결합되는 배기팬(131)을 포함할 수 있다. 배기모터는 외부로부터 전달되는 구동전원으로 배기팬(131)을 회전시키며 이때 배기모터는 흡입모터와 서로 반대 방향으로 회전될 수 있다. 즉, 배기팬(131)은 흡기팬(121)과 서로 반대방향으로 회전된다. 또한, 배기팬(131)의 회전반경은 흡기팬(121)의 회전반경보다 작을 수 있다.
배기팬(131)은 배기모터의 회전축(미도시)에 고정되게 결합되는 배기팬 허브(132)와 이 배기팬 허브(132)로부터 방사상으로 연장되게 결합되는 복수의 배기 블레이드(133)로 구성된다. 배기 블레이드(133)는 흡기 블레이드(123)보다 작게, 더 구체적으로는 배기 블레이드(133)의 회전반경이 흡기 블레이드(123)의 회전반경보다 작게 제작되는 것이 바람직할 수 있다.
도 3a, 3b 및 3c는 본 발명의 실시예에 따른 에어 서큘레이터(100)의 바람의 직진성을 실험한 것으로, 흡기팬(121)의 회전수를 변화하고 배기팬(131)을 구동, 비 구동 및 자유회전시킴으로써, 바람의 직진성을 실험하였다.
도 3a는 흡기팬(121)의 회전수를 750RPM으로 하고 배기팬(131)의 회 전수를 1500RPM으로 하고 바람의 직진성을 평가하였다. 흡기팬(121)과 배기팬(131)을 상호 반대방향으로 회전함으로써 바람의 직진성이 매우 양호하게 검출되었다. 즉 흡기팬(121)과 배기팬(131)을 모두 구동하는 경우 층류(laminar flow)가 형성되어 바람이 직진성을 가져 바람의 송풍거리가 길어지는 효과를 가질 수 있었다.
도 3b는 흡기팬(121)의 회전수를 750RPM으로 하고 배기팬(131)을 비 구동, 즉 배기팬(131)이 고정된 상태에서 바람을 평가하였다. 배기팬(131)이 정지된 상태에서 배기팬(131)이 저항성분으로 작용하여 바람이 퍼지는 현상, 즉 난류가 발생하였다. 이처럼 배기팬(131)에 의한 저항으로 인해 바람의 직진성은 현저히 저하되는 현상이 발생하였다.
도 3c는 흡기팬(121)의 회전수를 400RPM으로 하고 배기팬(131)을 자 유회전시킨 상태에서 바람을 평가하였다. 배기팬(131)이 자유회전되는 상태에서는 일정거리까지는 층류가 유지되고 일정 거리 이상에서는 난류로 변환되는 현상이 발생하였다. 다만 도 3b에 비해 직진성이 발생하는 결과가 나타났지만 도 3a에 비해 직진성 및 송풍거리는 현저히 감소하는 결과가 나타났다.
상술한 실험을 통해서, 흡기팬(121)과 배기팬(131)을 모두 가동하였을 경우 흡기팬(121)에 의해 생성된 바람이 배기팬(131)과의 상호작용을 통해 층류를 유지하여 바람의 송풍거리가 길어지는 결과를 확인할 수 있었다.
도 4에 도시한 바와 같이, 상술한 구성을 갖는 본 발명의 이중 회전 익을 갖는 에어 서큘레이터(100)를 가지고 흡기팬(121)과 배기팬(131)의 최적 RPM 을 산출하기 위한 실험을 실시하였다.
기본조건으로, 흡기팬의 회전수 : 750RPM, 배기팬의 회전수 : 1500RPM로 설정한 후, 각 팬들의 회전수를 증감하여 바람의 직진성에 대한 시뮬레이션을 실시하였다.
(실험 1)
흡기팬 : 600~900RPM, 배기팬 : 1500RPM
배기팬의 회전수를 고정하고 흡기팬의 회전수를 증감하여 바람의 직 진성을 살펴본 결과, 흡기팬의 회전수가 750RPM 이상이면 양호한 직진성을 나타내었다.
흡기팬 회전수(RPM) 배기팬 회전수(RPM) 바람의 직진성
600 1500 불량
750 1500 양호
900 1500 양호
흡기팬의 회전수가 750RPM인 경우와 900RPM인 경우 모두 양호한 직진성을 나타내고 바람의 송풍거리도 유사하게 나타났다. 이러한 경우 흡기팬을 구동하기 위한 전력소모량이 적은 750RPM인 경우가 가장 높은 효율을 나타낼 것이다.
도 5에 도시한 바와 같이, 상술한 구성을 갖는 본 발명의 이중 회전 익을 갖는 에어 서큘레이터(100)를 가지고 흡기팬(121)과 배기팬(131)의 최적 RPM을 산출하기 위한 실험을 실시하였다.
(실험 2)
흡기팬 : 700~1300RPM, 배기팬 : 2,000RPM
흡기팬 회전수(RPM) 배기팬 회전수(RPM) 바람의 직진성
700 2000 불량
1000 2000 양호
1300 2000 양호
배기팬의 회전수를 2000RPM으로 상승시켜 고정하고 흡기팬의 회전수를 증감하여 바람의 직진성을 살펴본 결과, 흡기팬의 회전수가 1000RPM 이상이면 양호한 직진성을 나타내었다. 흡기팬의 회전수가 1000RPM인 경우와 1300RPM인 경우 모두 양호한 직진성을 나타내고 바람의 송풍거리도 유사하게 나타났다. 이러한 경우 흡기팬을 구동하기 위한 전력소모량이 적은 1000RPM인 경우가 가장 높은 효율을 나타낼 것이다.
상술한 실험을 통해 살펴본 바와 같이, 흡기팬 대비 배기팬의 회전 수가 2배가 되면 바람의 직진성 및 전력 효율이 양호한 결과를 나타내었다.
흡기팬 대비 배기팬의 회전수(RPM) 비율은 1:2가 적당한 것으로 나타났으며, 흡기팬 회전수를 R1, 배기팬 회전수를 R2로 하였을 때, R1:R2는 1:1.5 내지 1:1.7인 것이 바람직하고, 1:1.7 내지 1:2인 것이 더 바람직할 수 있으며, 1:2인 것이 가장 바람직할 수 있다.
한편, 도 6a, 6b 및 6c를 참조로, 본 발명의 에어 서큘레이터(100)는 케이스 조립체(110)의 외주면에 흡기공 또는 배기공이 형성된 구조를 가지며, 이러한 구조에 의해 케이스 조립체(110)의 내부에서 와류의 발생을 최소화할 수 있다. 도 6a, 6b 및 6c는 케이스 조립체(110)의 구조에 따른 바람의 직진성 및 와류 발생을 실험한 것이다.
도 6a는 케이스 조립체(110)의 외주면에 흡기공과 배기공이 형성되지 않은 솔리드 케이스의 바람의 직진성 평가 결과이고, 도 6b는 흡기팬 케이스(111)의 외주면에 흡기공이 형성된 케이스 조립체(110)의 바람의 직진성 평가 결과이고, 도 6c는 흡기팬 케이스(111)의 외주면에 흡기공과 배기팬 케이스(112)의 외주면에 배기공이 모두 형성된 케이스 조립체(110)의 바람의 직진성 평가 결과이다.
3개의 케이스 조립체는 모두 흡기팬과 배기팬을 모두 구동하되, 흡기팬은 750RPM으로 배기팬은 1500RMP으로 서로 반대 방향으로 회전시킨 동일 조건하에서 실험하였다.
도 6a의 솔리드 케이스의 평가 결과, 바람의 직진성은 나타나고 있으나 송풍거리가 비교적 짧게 나타나고 있고, 도 6b와 도 6c의 케이스 조립체는 양호한 직진성 및 송풍거리를 나타냈다.
도 7에 도시한 바와 같이, 솔리드 케이스는 케이스 내부에서 유동 간섭 현상으로 인해 와류가 발생되었고 그 영향으로 층류의 일부가 변동됨으로써 송풍 거리가 감소한 것으로 확인되었고, 그 반면 흡기팬 케이스에 흡기공이 형성되거나, 흡기팬 케이스 및 배기팬 케이스 모두에 흡기공과 배기공이 형성된 케이스 조립체에서는 유동 간섭 현상에 따른 와류가 제거되어 바람의 직진성 및 송풍거리가 양호할 수 있다.
이상에서 본 발명의 실시예에 대하여 설명하였으나, 본 발명의 사상 은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상 범위 내에 든다고 할 것이다.
[부호의 설명]
100 : 에어 서큘레이터
110 : 케이스 조립체
111 : 흡기팬 케이스
111a : 흡기공
112 : 배기팬 케이스
112a : 배기공
113 : 지지체
120 : 흡기팬 조립체
121 : 흡기팬
122 : 흡기팬 허브
123 : 흡기 블레이드
130 : 배기팬 조립체
131 : 배기팬
132 : 배기팬 허브
133 : 배기 블레이드

Claims (7)

  1. 공기가 흡입되는 흡입구와 공기가 배출되는 배출구가 형성된 케이스 조립체;
    상기 케이스 조립체의 내부에 고정되게 결합되는 흡기모터 및 상기 흡기모터에 의해 회전구동되는 흡기팬을 포함하는 흡기팬 조립체; 및
    상기 케이스 조립체의 내부에 고정되게 결합되는 배기모터 및 상기 배기모터 에 의해 회전구동되며 상기 흡기팬의 회전반경보다 작은 회전반경을 갖는 배기팬을 포함하는 배기팬 조립체
    를 포함하며,
    상기 배기팬의 회전수가 상기 흡기팬의 회전수보다 더 큰 것을 특징으로 하 는 이중 회전익을 구비한 에어 서큘레이터.
  2. 제1항에 있어서,
    상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:1.5 내지 1:1.7인 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
  3. 제1항에 있어서,
    상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:1.7 내지 1:2인 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
  4. 제1항에 있어서,
    상기 흡기팬의 회전수가 R1, 상기 배기팬의 회전수가 R2일 때, R1:R2는 1:2 인 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
  5. 제1항에 있어서,
    상기 흡기팬의 회전수와 상기 배기팬의 회전수를 가변하여 상기 케이스 조립 체로부터 배출되는 바람의 송풍거리가 동일한 경우, 상기 흡기모터 및 상기 배기모 터의 전력소모량이 감소되도록 상기 흡기팬 대비 상기 배기팬의 회전수 비율은 낮 은 것이 선택되는 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
  6. 제1항에 있어서,
    상기 케이스 조립체는 상기 흡입구에 인접하게 외부 공기가 흡입되는 흡기공 이 외주연을 따라 복수개가 형성된 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
  7. 제1항에 있어서,
    상기 케이스 조립체는 상기 흡기팬 조립체를 수용하는 흡기팬 케이스와, 상기 배기팬 조립체를 수용하는 배기팬 케이스와, 상기 흡기팬 케이스와 상기 배기팬 케이스 사이에서 상기 흡기팬 케이스에 고정되게 결합되며 상기 흡기팬 조립체와 상기 배기팬 조립체를 고정되게 지지하는 지지체를 포함하며, 상기 흡기팬 케이스의 일 측면과 외주연에는 외부 공기가 흡입되는 흡기공이 복수개가 형성된 것을 특징으로 하는 이중 회전익을 구비한 에어 서큘레이터.
PCT/KR2020/001012 2019-01-31 2020-01-21 이중 회전익을 구비한 에어 서큘레이터 WO2020159137A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005291.7A CN112752908A (zh) 2019-01-31 2020-01-21 具有双旋转翼的空气循环器
US17/279,495 US20220034326A1 (en) 2019-01-31 2020-01-21 Air circulator having dual rotary vane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190013080 2019-01-31
KR10-2019-0013080 2019-01-31
KR1020190171649A KR20200096105A (ko) 2019-01-31 2019-12-20 이중 회전익을 구비한 에어 서큘레이터
KR10-2019-0171649 2019-12-20

Publications (1)

Publication Number Publication Date
WO2020159137A1 true WO2020159137A1 (ko) 2020-08-06

Family

ID=71842213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001012 WO2020159137A1 (ko) 2019-01-31 2020-01-21 이중 회전익을 구비한 에어 서큘레이터

Country Status (2)

Country Link
US (1) US20220034326A1 (ko)
WO (1) WO2020159137A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953186B (zh) * 2018-07-09 2021-04-27 广东美的环境电器制造有限公司 风扇

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200253287Y1 (ko) * 2001-02-16 2001-12-01 주식회사 크린에어 렌지후드용 환풍기
US20050252027A1 (en) * 2004-05-11 2005-11-17 Kolari Gary L Systems for drying moisture-containing work pieces and methods for drying same
KR20070019277A (ko) * 2005-08-12 2007-02-15 엘지전자 주식회사 환기시스템
JP2008025587A (ja) * 2007-09-27 2008-02-07 Matsuura Matsue 低圧タービンによる発電方法とその低圧タービンによる発電装置
US20100183437A1 (en) * 2009-01-16 2010-07-22 Delta Electronics, Inc. Fan

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486619A (en) * 1946-09-07 1949-11-01 Hoover Co Plastic fan for suction cleaners
NL7014555A (ko) * 1970-10-03 1972-04-05
US5811899A (en) * 1997-01-28 1998-09-22 General Signal Corporation Small electric motor with airflow guide structure
US20140206278A1 (en) * 2013-01-21 2014-07-24 Qc Manufacturing, Inc. Automated fresh air cooling system
CN209053822U (zh) * 2018-10-15 2019-07-02 广东美的白色家电技术创新中心有限公司 对旋风扇
CN209180067U (zh) * 2018-10-15 2019-07-30 广东美的白色家电技术创新中心有限公司 对旋风扇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200253287Y1 (ko) * 2001-02-16 2001-12-01 주식회사 크린에어 렌지후드용 환풍기
US20050252027A1 (en) * 2004-05-11 2005-11-17 Kolari Gary L Systems for drying moisture-containing work pieces and methods for drying same
KR20070019277A (ko) * 2005-08-12 2007-02-15 엘지전자 주식회사 환기시스템
JP2008025587A (ja) * 2007-09-27 2008-02-07 Matsuura Matsue 低圧タービンによる発電方法とその低圧タービンによる発電装置
US20100183437A1 (en) * 2009-01-16 2010-07-22 Delta Electronics, Inc. Fan

Also Published As

Publication number Publication date
US20220034326A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2015084030A1 (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
WO2013165056A1 (ko) 선풍기
CN1223803C (zh) 涡轮风机及应用这种涡轮风机的空调机
WO2013058494A1 (ko) 시로코팬 및 그를 갖는 공기조화기
WO2015199332A1 (ko) 환기 및 냉각용 무코어 도너츠형 모터팬
WO2010098522A1 (ko) 국소 배기장치
WO2015093739A1 (ko) 다중 벌류트 시로코팬
KR20100041278A (ko) 원심팬 및 이를 구비하는 공기조화기
GB2123893A (en) Fans for air conditioners
WO2014148793A1 (en) Centrifugal fan and air conditioner having the same
WO2020159137A1 (ko) 이중 회전익을 구비한 에어 서큘레이터
WO2023240976A1 (zh) 暖风机
WO2018169316A1 (ko) 쿨링 팬 및 이를 구비한 시트 쿨링장치
KR20030025428A (ko) 사류식 에어제트 송풍기
WO2016190454A1 (ko) 터보팬 및 이를 포함하는 공기조화기
WO2015020296A1 (ko) 송풍 장치
KR20200096105A (ko) 이중 회전익을 구비한 에어 서큘레이터
WO2023065824A1 (zh) 风扇及电子设备
WO2013176404A1 (ko) 터보 블로워장치
CN217518915U (zh) 组合式出风结构及出风装置
JPH0539930A (ja) 空気調和装置
WO2022071677A1 (ko) 축류팬
WO2013176405A1 (ko) 터보 블로워장치
WO2014178475A1 (ko) 블로워
CN113188172A (zh) 导风管、导风管组、导烟灶具及风幕机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749472

Country of ref document: EP

Kind code of ref document: A1