WO2020157788A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2020157788A1
WO2020157788A1 PCT/JP2019/002650 JP2019002650W WO2020157788A1 WO 2020157788 A1 WO2020157788 A1 WO 2020157788A1 JP 2019002650 W JP2019002650 W JP 2019002650W WO 2020157788 A1 WO2020157788 A1 WO 2020157788A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow rate
capacity
heat exchange
heat exchanger
Prior art date
Application number
PCT/JP2019/002650
Other languages
French (fr)
Japanese (ja)
Inventor
雄亮 田代
佐藤 正典
早丸 靖英
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/288,999 priority Critical patent/US20210404710A1/en
Priority to JP2020568881A priority patent/JP7086231B2/en
Priority to CN201980088167.9A priority patent/CN113302436A/en
Priority to EP19912296.1A priority patent/EP3919835A4/en
Priority to PCT/JP2019/002650 priority patent/WO2020157788A1/en
Publication of WO2020157788A1 publication Critical patent/WO2020157788A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner.
  • the operating capacity of the compressor can be increased or decreased by changing the operating frequency by inverter control, which can reduce the air conditioning capacity.
  • the lower limit of the operating frequency of the compressor is set, and it is impossible to continuously perform the air conditioning operation with a very low capacity. Therefore, even when inverter control is used, room temperature may fluctuate due to repeated operation and stop of the compressor.
  • Patent Document 1 discloses a technique of circulating a more appropriate amount of refrigerant in an air conditioner capable of switching between a natural circulation cycle and a forced circulation cycle. However, in this technique, the amount of refrigerant is adjusted appropriately for the circulation system, but the amount of refrigerant is not positively adjusted to adjust the air conditioning capacity.
  • the present invention has been made in view of such problems, and an object thereof is to provide an air conditioner capable of significantly lowering the lower limit capacity during operation as compared with the conventional air conditioner.
  • the present disclosure relates to an air conditioner in which a refrigerant circulates in the order of a compressor, a condenser, an expander, and an evaporator during operation.
  • the condenser includes a first heat exchange section and a second heat exchange section configured to allow the refrigerant to flow in parallel with each other, a flow rate of the refrigerant passing through the first heat exchange section, and a refrigerant passing through the second heat exchange section.
  • a flow rate limiting unit configured to be capable of providing a flow rate difference with the flow rate of
  • the air conditioner includes a control device that controls the compressor and the flow rate limiting unit. The control device uses the frequency of the compressor and the flow rate difference in combination when changing the air conditioning capacity of the air conditioner.
  • the condenser is divided into the first heat exchange section and the second heat exchange section, and the refrigerant is stored in one of the heat exchange sections, so that it is possible to further lower the air conditioning lower limit capacity. ..
  • FIG. 6 is a PH diagram of a refrigeration cycle during operation when the amount of refrigerant is normal. It is a figure showing the flow of the refrigerant of air conditioning operation at the time of low capacity.
  • FIG. 6 is a PH diagram of the refrigeration cycle during operation when the refrigerant is stored in the heat exchanger. It is a flow chart for explaining the refrigerant storage control during the cooling operation. It is the figure which showed the flow of the refrigerant
  • FIG. 1 is a configuration diagram of an air conditioner 1 according to the present embodiment.
  • the air conditioning apparatus 1 includes a compressor 10, an indoor heat exchanger 20, an expansion valve 30, an outdoor heat exchanger 40, and a four-way valve 91.
  • the outdoor heat exchanger 40 includes a first heat exchange section 40A and a second heat exchange section 40B.
  • the first heat exchanging section 40A and the second heat exchanging section 40B are, for example, the outdoor heat exchanger 40 divided into upper and lower parts.
  • the indoor heat exchanger 20 includes a first heat exchange section 20A and a second heat exchange section 20B.
  • the first heat exchanging unit 20A and the second heat exchanging unit 20B are, for example, the indoor heat exchanger 20 divided into two parts, that is, the upper and lower parts or the left and right parts.
  • the outdoor unit 2 includes stop valves 110 and 112, a four-way valve 91, a compressor 10, an outdoor heat exchanger 40, an expansion valve 30, and pipes interconnecting these.
  • the pipe 90 connects the port H of the four-way valve 91 and the stop valve 110 on the gas side.
  • the pipe 92 connects the stop valve 112 on the liquid side and the expansion valve 30.
  • the expansion valve 30 is arranged between the pipe 92 and the pipe 94.
  • the pipe 94 branches into a pipe 94A and a pipe 94B from the middle, and connects the expansion valve 30 to the first heat exchange section 40A and the second heat exchange section 40B.
  • a flow rate adjusting valve 34 is arranged at a branch portion between the pipe 94A and the pipe 94B.
  • the discharge port and the suction port of the compressor 10 are connected to the ports G and E of the four-way valve 91 by pipes 99 and 98, respectively.
  • One end of the pipe 96 is connected to the port F of the four-way valve 91, and the other end branches into pipes 96A and 96B from the middle.
  • the branched pipes 96A and 96B are connected to the first heat exchange unit 40A and the second heat exchange unit 40B, respectively.
  • the air conditioner 1 further includes a control device 200, a refrigerant pressure sensor (not shown), and a refrigerant temperature sensor.
  • the control device 200 includes a communication circuit 201, a processor 202, and a memory 203.
  • the memory 203 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the flash memory stores an operating system, application programs, and various data.
  • the processor 202 controls the overall operation of the air conditioning apparatus 1.
  • the functions of the control device 200 are realized by the processor 202 executing the operating system and application programs stored in the memory 203. When executing the application program, various data stored in the memory 203 are referenced.
  • the communication circuit 201 is configured to transmit a control signal to the compressor 10, the four-way valve 91, the expansion valve 30, and the fan 42 flow rate adjusting valve 34 which are control targets.
  • the communication circuit 201 is further configured to transmit a control signal to the fan 22 and the flow rate control valve 32 that are the control targets.
  • the communication circuit 201 may be configured to receive a control signal from a remote controller (not shown) that remotely controls the control device 200.
  • the control device 200 may be divided into a plurality of control units and arranged in the outdoor unit 2, the indoor unit 3, and the remote controller.
  • each of the plurality of control units includes a processor.
  • a plurality of processors cooperate to perform overall control of the air conditioner 1.
  • the compressor 10 is configured to change the operating frequency according to a control signal received from the control device 200.
  • the output of the compressor 10 is adjusted by changing the operating frequency of the compressor 10.
  • Various types of compressors can be adopted, for example, rotary type, reciprocating type, scroll type, screw type, etc. can be adopted.
  • the pipe 96 connects the first heat exchange unit 40A and the second heat exchange unit 40B to the port F of the four-way valve 91.
  • the four-way valve 91 communicates with the pipe 99 and the pipe 96 to which the discharge port of the compressor 10 is connected as shown by the solid line during the cooling operation, and also to the pipe 98 and the pipe 98 to which the suction port of the compressor 10 is connected. Connect with 90.
  • the four-way valve 91 connects the pipe 99 and the pipe 90 to which the discharge port of the compressor 10 is connected with each other as shown by a broken line during the heating operation, and also connects the pipe 98 and the pipe 98 to which the suction port of the compressor 10 is connected. 96 and communication.
  • the indoor unit 3 includes an indoor heat exchanger 20, a fan 22, pipes 101 and 102, and a room temperature sensor 24.
  • One end of the pipe 101 is branched into a pipe 101A and a pipe 101B from the middle, and the pipe 101A and the pipe 101B are connected to the first heat exchange unit 20A and the second heat exchange unit 20B, respectively.
  • the other end of the pipe 101 is connected to the stop valve 110 by an extension pipe 100.
  • the one end of the pipe 102 is branched into a pipe 102A and a pipe 102B from the middle, and is connected to the first heat exchange unit 20A and the second heat exchange unit 20B, respectively.
  • a flow rate adjusting valve 32 is arranged at a branch portion between the pipe 102A and the pipe 102B.
  • the other end of the pipe 102 is connected to the stop valve 112 by an extension pipe 103.
  • the stop valves 110 and 112 are brought into communication with each other when the connection of the refrigerant circuit is completed during construction.
  • the room temperature sensor 24 detects the room temperature and transmits it to the control device 200. It should be noted that the room temperature sensor 24 does not necessarily have to be arranged inside the indoor unit 3, and may be arranged in a remote controller or the like in the same room as the indoor unit 3.
  • FIG. 2 is a diagram showing the flow of the refrigerant in the cooling operation during normal operation.
  • the refrigerant flows in the direction shown by the arrow in FIG.
  • the compressor 10 draws in and compresses the refrigerant from the pipe 90 via the four-way valve 91 and the pipe 98.
  • the compressed refrigerant flows to the pipe 96 via the four-way valve 91.
  • each heat exchanger functions as a condenser or an evaporator will be described together for easy understanding.
  • the outdoor heat exchanger 40 condenses the refrigerant that has flowed into the pipe 96 from the compressor 10 via the four-way valve 91 and flows it into the pipe 94.
  • the outdoor heat exchanger 40 (condenser) is configured so that the refrigerant, which has been discharged from the compressor 10 and has become high-temperature and high-pressure superheated steam, exchanges heat with the outside air to radiate heat. By this heat exchange, the refrigerant is condensed and liquefied near the outlet of the outdoor heat exchanger 40.
  • the fan 42 is provided side by side with the outdoor heat exchanger 40 (condenser), and the control device 200 adjusts the rotation speed of the fan 42 by a control signal. By changing the rotation speed of the fan 42, the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 40 (condenser) can be adjusted.
  • the expansion valve 30 reduces the pressure of the refrigerant flowing from the outdoor heat exchanger 40 (condenser) to the pipe 94.
  • the depressurized refrigerant flows into the pipe 92.
  • the expansion valve 30 is configured so that the opening degree can be adjusted by a control signal received from the control device 200.
  • the opening degree of the expansion valve 30 is changed to the closing direction, the refrigerant pressure on the outlet side of the expansion valve 30 decreases and the dryness of the refrigerant increases.
  • the opening degree of the expansion valve 30 is changed to the opening direction, the refrigerant pressure at the outlet side of the expansion valve 30 increases and the dryness of the refrigerant decreases.
  • the indoor heat exchanger 20 evaporates the refrigerant flowing from the expansion valve 30 to the pipe 92, the extension pipe 103, and the pipe 102.
  • the evaporated refrigerant flows into the pipe 98 via the pipe 101, the extension pipe 100, the stop valve 110 and the four-way valve 91.
  • the indoor heat exchanger 20 (evaporator) is configured such that the refrigerant decompressed by the expansion valve 30 exchanges heat with the indoor air to absorb heat. By this heat exchange, the refrigerant evaporates and becomes superheated steam near the outlet of the indoor heat exchanger 20.
  • the fan 22 is attached to the indoor heat exchanger 20 (evaporator).
  • the control device 200 adjusts the rotation speed of the fan 22 according to the control signal. By changing the rotation speed of the fan 22, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 20 (evaporator) can be adjusted.
  • FIG. 3 is a PH diagram of the refrigeration cycle during operation when the amount of refrigerant is normal.
  • the refrigerant is R32 will be described as an example.
  • points A1 and A2 are compression processing by the compressor 10
  • points A2 and A3 are condensation processing by a condenser
  • points A3 and A4 are decompression by the expansion valve 30.
  • the processing, point A4 to point A1 respectively correspond to the evaporation processing by the evaporator.
  • the refrigerating capacity is a value obtained by multiplying the enthalpy difference dH between the points A1 and A4 by the refrigerant circulation amount Gr per unit time.
  • the refrigerating capacity Q is expressed by the following equation (1), where enthalpy difference dH and refrigerant circulation amount Gr per unit time are given.
  • FIG. 4 is a diagram showing the flow of the refrigerant in the cooling operation when the capacity is low.
  • the state shown in FIG. 4 is different from the state shown in FIG. 2 in that the flow rate adjusting valve 34 limits the flow rate of the second heat exchange section 40B.
  • the fan 42 continues to blow air.
  • the liquefied refrigerant is not discharged while the refrigerant is condensed, so that the liquid refrigerant is stored inside the second heat exchange section 40B.
  • the flow of the refrigerant in the other portions is the same as that in FIG. 2, and therefore the description will not be repeated in FIG.
  • the flow rate adjusting valve 34 is configured not to completely close the pipe 94B side to ensure a minute flow rate.
  • the two-phase refrigerant flows into the expansion valve 30 as the amount of circulating refrigerant decreases, it is preferable to use a valve having a larger diameter than the conventional one as the expansion valve 30.
  • FIG. 5 is a PH diagram of the refrigeration cycle during operation when the refrigerant is stored in the heat exchanger.
  • points B1 and B2 are compression processing by the compressor 10
  • points B2 and B4 are condensation processing by a condenser
  • points B4 and B5 are decompression by the expansion valve 30.
  • Processing, point B5 to point B1 respectively correspond to the evaporation processing by the evaporator.
  • the refrigerating capacity is a value obtained by multiplying the enthalpy difference dH between the points B1 and B5 by the refrigerant circulation amount Gr per unit time.
  • Point B3 in FIG. 5 indicates the state of the outlet of the condenser (second heat exchange section 40B) in FIG.
  • Point B4 in FIG. 5 shows the state of the outlet of the condenser (first heat exchange section 40A) in FIG.
  • the enthalpy Hj after the two have joined together is given by the following equation using the enthalpies H40A and H40B at the outlets of the first heat exchange section 40A and the second heat exchange section 40B and the refrigerant flow rates Gr40A and Gr40B.
  • Hj (H40A*Gr40A+H40B*Gr40B)/(Gr40A+Gr40B) That is, as shown in FIG. 5, when the pipe 94B side of the flow rate adjusting valve 34 is closed and the flow rate is small, the enthalpy Hj after the merging is substantially equal to the enthalpy H40A on the pipe 94A side with a large refrigerant flow rate. Further, the enthalpy at the point B4, that is, the enthalpy at the point B5 at the evaporator inlet can be adjusted by the flow rate of the refrigerant flowing to the pipe 94B side.
  • FIG. 6 is a flowchart for explaining refrigerant storage control during the cooling operation.
  • control device 200 determines whether the room temperature detected by room temperature sensor 24 is lower than the set temperature set by a remote controller or the like.
  • the control device 200 determines in step S2 whether the operating frequency f of the compressor 10 is higher than the lower limit frequency fmin. If f>fmin (YES in S2), the control device 200 reduces the operating frequency f of the compressor 10 by ⁇ 2 in step S3 to reduce the cooling capacity of the air conditioner 1.
  • step S4 the control device 200 determines whether or not the room temperature detected by the room temperature sensor 24 is lower than the set temperature set by the remote controller or the like. If the room temperature is less than the set temperature (YES in S4), the process returns to step S2. On the other hand, when the indoor temperature ⁇ the set temperature (NO in S4), in step S5, the control device 200 increases the operating frequency f of the compressor 10 by ⁇ 1 and increases the cooling capacity of the air conditioner 1.
  • steps S1 to S5 are processes for adjusting the operating frequency of the compressor 10 by inverter control so that the air conditioning capacity of the air conditioner 1 in operation matches the air conditioning load.
  • the process proceeds to the process of adjusting the refrigerant circulation amount after step S6. ..
  • step S6 the operation of storing the refrigerant in the outdoor heat exchanger 40 is started.
  • the control device 200 sets the opening degree L of the flow rate adjusting valve 34 that determines the flow rate of the second heat exchange section 40B to the maximum opening degree Lmax.
  • the maximum opening Lmax is the opening L in the initial state.
  • control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is lower than the set temperature set by the remote controller or the like.
  • step S8 the control device 200 narrows the opening degree L of the flow rate adjusting valve 34 by ⁇ 3 to store the liquid refrigerant in the second heat exchange section 40B. Increase the amount. As a result, the refrigerant circulation amount Gr decreases. Then, in step S9, the control device 200 determines whether or not the opening L of the flow rate adjusting valve 34 is the lower limit opening Lmin.
  • step S7 When the opening L of the flow rate adjusting valve 34 is not the lower limit opening Lmin (NO in S9), the process of step S7 is executed again. If the indoor temperature is equal to or higher than the set temperature in step S7 (NO in S7), it is considered that there is no need to further reduce the cooling capacity and the air conditioning load and the air conditioning capacity are in balance, so that the flow rate adjustment valve 34 is opened in step S10. Control ends, and the process returns to the main routine in step S11.
  • the control device 200 stops the compressor 10 in step S12. , Prevent the room temperature from dropping too low.
  • FIG. 7 is the figure which showed the flow of the refrigerant
  • the refrigerant flows in the direction shown by the arrow in FIG. 7.
  • the compressor 10 draws in and compresses the refrigerant from the pipe 96 via the four-way valve 91 and the pipe 98.
  • the compressed refrigerant flows to the pipe 90 via the four-way valve 91.
  • each heat exchanger functions as a condenser or an evaporator will be described together for easy understanding.
  • the indoor heat exchanger 20 condenses the refrigerant that has flowed into the pipe 101 from the compressor 10 via the four-way valve 91, the pipe 90, and the extension pipe 100 to flow into the pipe 102.
  • the indoor heat exchanger 20 (condenser) is configured so that the refrigerant, which has been discharged from the compressor 10 and has become high-temperature and high-pressure superheated steam, exchanges heat with the indoor air to radiate heat. By this heat exchange, the refrigerant is condensed and liquefied near the outlet of the indoor heat exchanger 20.
  • the fan 22 is attached to the indoor heat exchanger 20 (condenser), and the control device 200 adjusts the rotation speed of the fan 22 by a control signal. By changing the rotation speed of the fan 22, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 20 (condenser) can be adjusted.
  • the expansion valve 30 reduces the pressure of the refrigerant flowing from the indoor heat exchanger 20 (condenser) to the pipe 92 via the pipe 102 and the extension pipe 103.
  • the depressurized refrigerant flows to the pipe 94.
  • the expansion valve 30 is configured so that the opening degree can be adjusted by a control signal received from the control device 200.
  • the opening degree of the expansion valve 30 is changed to the closing direction, the refrigerant pressure on the outlet side of the expansion valve 30 decreases and the dryness of the refrigerant increases.
  • the opening degree of the expansion valve 30 is changed to the opening direction, the refrigerant pressure at the outlet side of the expansion valve 30 increases and the dryness of the refrigerant decreases.
  • the outdoor heat exchanger 40 evaporates the refrigerant flowing from the expansion valve 30 to the pipe 94.
  • the evaporated refrigerant flows to the pipe 98 via the pipe 96 and the four-way valve 91.
  • the outdoor heat exchanger 40 (evaporator) is configured such that the refrigerant decompressed by the expansion valve 30 exchanges heat with the outside air and absorbs heat. By this heat exchange, the refrigerant evaporates and becomes superheated steam near the outlet of the outdoor heat exchanger 40.
  • the fan 42 is attached to the outdoor heat exchanger 40 (evaporator).
  • the control device 200 adjusts the rotation speed of the fan 42 according to the control signal. By changing the rotation speed of the fan 42, the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 40 (evaporator) can be adjusted.
  • FIG. 8 is a diagram showing the flow of the refrigerant in the heating operation when the capacity is low.
  • the state shown in FIG. 8 differs from the state shown in FIG. 7 in that the flow rate adjusting valve 32 limits the flow rate of the second heat exchange section 20B.
  • the fan 22 continues to blow air.
  • the liquefied refrigerant is not discharged while the refrigerant is condensed, so that the liquid refrigerant is stored inside the second heat exchange section 20B.
  • the flow of the refrigerant in the other parts is the same as that in FIG. 7, and therefore the description will not be repeated in FIG.
  • the flow rate adjusting valve 32 is configured not to completely close the pipe 102B side to ensure a minute flow rate.
  • the PH diagram corresponding to FIG. 7 and the PH diagram corresponding to FIG. 8 differ from FIGS. 3 and 5 in the condensation temperature and the evaporation temperature, but when the refrigerant is R32, Regarding the point that the enthalpy difference is smaller in the operation shown in FIG. 8 than in FIG. 7, there is a tendency similar to the relationship in FIGS. 3 and 5.
  • the condensing capacity can be kept smaller than before even in the case of heating.
  • FIG. 9 is a flowchart for explaining refrigerant storage control during heating operation.
  • control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is higher than the set temperature set by a remote controller or the like.
  • the control device 200 determines in step S12 whether the operating frequency f of the compressor 10 is higher than the lower limit frequency fmin. When f>fmin (YES in S12), the control device 200 reduces the operating frequency f of the compressor 10 by ⁇ 2 in step S13 to reduce the heating capacity of the air conditioner 1.
  • step S14 the control device 200 determines whether or not the room temperature detected by the room temperature sensor 24 is higher than the set temperature set by the remote controller or the like. If the room temperature>the set temperature (YES in S14), the process returns to step S12. On the other hand, when the indoor temperature ⁇ the set temperature (NO in S14), the control device 200 increases the operating frequency f of the compressor 10 by ⁇ 1 and increases the heating capacity of the air conditioning device 1 in step S15.
  • steps S11 to S15 are processes for adjusting the operating frequency of the compressor 10 by inverter control so that the air conditioning capacity of the air conditioner 1 in operation matches the air conditioning load.
  • the operating frequency f becomes equal to or lower than the lower limit value fmin (NO in S12)
  • it is impossible to suppress the air conditioning capacity by further lowering the operating frequency so that the process proceeds to the process of adjusting the refrigerant circulation amount after step S16. ..
  • step S16 the operation of storing the refrigerant in the indoor heat exchanger 20 is started.
  • the control device 200 sets the opening L of the flow rate adjusting valve 32 that determines the flow rate of the second heat exchange unit 20B to the maximum opening Lmax.
  • the maximum opening Lmax is the opening L in the initial state.
  • control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is higher than the set temperature set by the remote controller or the like.
  • step S18 the control device 200 narrows the opening degree L of the flow rate adjusting valve 32 by ⁇ 3 to store the liquid refrigerant in the second heat exchange section 20B. Increase the amount. Then, in step S19, the control device 200 determines whether or not the opening L of the flow rate adjusting valve 32 is the lower limit opening Lmin.
  • step S17 When the opening L of the flow rate adjusting valve 32 is not the lower limit opening Lmin (NO in S19), the process of step S17 is executed again. If the indoor temperature is equal to or lower than the set temperature in step S17 (NO in S17), it is considered that there is no need to further reduce the heating capacity, and the air conditioning load and the air conditioning capacity are in balance, so the flow control valve 32 is opened in step S20. Control is completed, and the process returns to the main routine in step S21.
  • the control device 200 stops the compressor 10 in step S22. , Prevent the room temperature from rising too high.
  • FIG. 10 is a diagram showing the lower limit capabilities of the case where the control of the present embodiment is performed and the case where the normal control is performed, in comparison.
  • the rated capacity is set to 100%
  • the lower limit capacity when only the frequency control of the compressor 10 is executed is 15%
  • the lower limit capacity when controlling the refrigerant storage amount was 10%.
  • the lower limit capacity of the air conditioner of the present embodiment can be reduced to 66.7% compared to the normal machine.
  • FIG. 11 is a diagram showing a modified example in which the flow rate adjusting valve is modified.
  • the flow rate adjusting valves 32 and 34 in FIG. 1 are changed to flow rate adjusting units 32A and 34A, respectively.
  • the flow rate adjusting valves 32 and 34 are specifically intended to be three-way valves having a flow rate adjusting function.
  • the amount of circulating refrigerant can be adjusted by slightly opening the three-way valve, so the adjustment range of the air-conditioning capacity can be increased by adjusting the compressor frequency and the three-way valve ( The lower limit capacity can be further reduced).
  • the refrigerant is a compressor 10, a condenser (outdoor heat exchanger 40/indoor heat exchanger 20), an expansion device (expansion valve 30), and an evaporator (indoor heat exchanger 20/outdoor heat exchange).
  • the air conditioner 1 that circulates in the order of the device 40).
  • the condenser (outdoor heat exchanger 40/indoor heat exchanger 20) includes a first heat exchange section 40A/20A and a second heat exchange section 40B/20B configured to allow the refrigerant to flow in parallel with each other.
  • a flow rate restricting unit (flow rate adjusting valve 34/32) configured to be able to make a flow rate difference between the flow rate of the refrigerant passing through the heat exchange section 40A/20A and the flow rate of the refrigerant passing through the second heat exchange section 40B/20B. ) And.
  • the air conditioner 1 includes a control device 200 that controls the compressor 10 and the flow rate limiting unit (flow rate adjusting valve 34/32). The control device 200 uses the frequency and the flow rate difference of the compressor 10 in combination when changing the air conditioning capacity of the air conditioner 1.
  • the expansion device corresponds to the expansion valve 30, but is not necessarily a valve and may be, for example, a capillary tube.
  • the refrigerant circulation amount can be increased or decreased without using a refrigerant container such as an accumulator and a receiver, and the lower limit capacity can be used. Can be kept small. Further, even when using a refrigerant container such as an accumulator and a receiver, a small size is sufficient.
  • the control device 200 reduces the frequency f of the compressor 10 when changing (a) the air conditioning capacity from the first capacity to the second capacity that is smaller than the first capacity, and (b) sets the air conditioning capacity to the first capacity.
  • the flow rate of the refrigerant passing through the second heat exchange section 40B/20B is changed by the flow rate restriction section (flow rate adjusting valve 34/32) to the first heat exchange section.
  • Changing the operating frequency of the compressor 10 to lower the air conditioning capacity has better response than lowering the air conditioning capacity by increasing the refrigerant storage amount by the flow rate limiting unit. Therefore, when lowering the air conditioning capacity, it is better to lower the air conditioning capacity by lowering the operating frequency first, and at the same time or after that, increasing the refrigerant storage amount by the flow rate limiting unit to lower the air conditioning capacity, and the fluctuation of room temperature can be small. ..
  • the air conditioner 1 further includes a four-way valve 91 that switches the circulation direction of the refrigerant between cooling operation and heating operation.
  • the indoor heat exchanger 20 and the outdoor heat exchanger 40 are both divided into two.
  • the outdoor heat exchanger 40 functions as a condenser during the cooling operation, and the indoor heat exchanger 20 functions as a condenser during the heating operation.
  • one of the flow paths of the flow rate adjusting valve 34 arranged on the outdoor heat exchanger 40 side is closed. Since the fan 42 of the outdoor heat exchanger 40 is rotating, the refrigerant is stored in the heat exchanger on the closed side (the second heat exchange unit 40B in FIG. 4).
  • one of the flow paths of the flow rate adjusting valve 32 arranged on the indoor heat exchanger 20 side is closed. Since the fan of the indoor heat exchanger 20 is rotating, the refrigerant is stored in the heat exchanger on the closed side (the second heat exchange section 20B in FIG. 8).
  • one of the features is that the rotation of the condenser fan is maintained in order to positively let the refrigerant lie in the heat exchanger in order to reduce the air conditioning capacity.
  • the fan of the condenser in the outdoor heat exchanger, in the normal configuration, is one fan shared by the two divided heat exchange sections.
  • the fan of the condenser In the indoor heat exchanger, the fan of the condenser is one fan that is common to the line flow fan, but in the case of a configuration having two propeller fans on the left and right, both fans will rotate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention provides an air conditioner (1), wherein during operation, a refrigerant circulates through a compressor (10), a condenser (40/20), an expansion device (30), and an evaporator (20/ 40) in the stated order. The condenser (40/20) includes a first heat exchanger unit (40A/20A) and a second heat exchanger unit (40B/20B) that are configured to channel the refrigerant parallel to each other, and a flow-rate-restricting unit (34/32) configured so as to be capable of producing a flow rate difference between the flow rate of the refrigerant passing through the first heat exchanger unit (40A/20A) and the flow rate of the refrigerant passing through the second heat exchanger unit (40B/20B). The air conditioner (1) comprises a control device (200) for controlling the compressor (10) and the flow-rate-restricting unit (34/32). When changing the air conditioning performance of the air conditioner (1), the control device (200) uses, in combination, the frequency of the compressor (10) and the flow rate difference of the refrigerant passing through the two heat exchanger units.

Description

空気調和装置Air conditioner
 この発明は、空気調和装置に関する。 The present invention relates to an air conditioner.
 近年、高気密高断熱住宅の普及により、一旦快適な温度になった部屋を快適に維持するための空調負荷は非常に小さくて済むようになった。一方で、空調のオンオフ制御によって室温を適温に維持しようとすると、どうしても室温が変動する。室温の変動幅を小さく抑えるためには、小さな空調負荷と均衡する低い空調能力で空気調和装置を連続的に運転することが必要である。 In recent years, the spread of airtight and highly insulated houses has made it possible to reduce the air-conditioning load to maintain a comfortable temperature in a room. On the other hand, if an attempt is made to maintain the room temperature at an appropriate temperature by controlling the on/off of the air conditioning, the room temperature will fluctuate. In order to reduce the fluctuation range of room temperature to a small level, it is necessary to continuously operate the air conditioner with a low air conditioning capacity that balances a small air conditioning load.
 したがって、空気調和装置は、室温を早期に適温に到達させるための定格能力に加えて運転時の下限能力をより低下させることが必要となってきた。 Therefore, it has become necessary for the air conditioner to lower the lower limit capacity during operation in addition to the rated capacity for early reaching room temperature to an appropriate temperature.
特許第5639664号公報Japanese Patent No. 5639664.
 圧縮機の運転能力は、インバータ制御によって運転周波数を変えることによって増減させることができ、これによって空調能力を下げることができる。しかし、圧縮機は、運転周波数の下限が定められており、ごく低い能力の空調運転を連続して行なうことができない。したがって、インバータ制御を用いる場合であっても、圧縮機の運転と停止を繰返すことによって室温に変動が生じてしまうことがある。 The operating capacity of the compressor can be increased or decreased by changing the operating frequency by inverter control, which can reduce the air conditioning capacity. However, the lower limit of the operating frequency of the compressor is set, and it is impossible to continuously perform the air conditioning operation with a very low capacity. Therefore, even when inverter control is used, room temperature may fluctuate due to repeated operation and stop of the compressor.
 一方、空調能力の調節のために、冷凍サイクル中を循環する冷媒量を変更することが考えられる。特許第5639664号公報(特許文献1)には、自然循環サイクルと強制循環サイクルとを切替えることが可能な空気調和装置において、より適正な冷媒量を循環させる技術が開示されている。しかし、この技術では循環方式に対して適正な冷媒量に調整を行なうが、空調能力の調節のために積極的に冷媒量を調整するものではない。 On the other hand, it is possible to change the amount of refrigerant circulating in the refrigeration cycle in order to adjust the air conditioning capacity. Japanese Patent No. 5639664 (Patent Document 1) discloses a technique of circulating a more appropriate amount of refrigerant in an air conditioner capable of switching between a natural circulation cycle and a forced circulation cycle. However, in this technique, the amount of refrigerant is adjusted appropriately for the circulation system, but the amount of refrigerant is not positively adjusted to adjust the air conditioning capacity.
 この発明は、かかる課題に鑑みてなされたものであり、その目的は、運転時の下限能力を従来よりも大幅に下げることが可能な空気調和装置を提供することである。 The present invention has been made in view of such problems, and an object thereof is to provide an air conditioner capable of significantly lowering the lower limit capacity during operation as compared with the conventional air conditioner.
 本開示は、運転中に、冷媒が圧縮機、凝縮器、膨張装置および蒸発器の順に循環する空気調和装置に関する。凝縮器は、冷媒が互いに並行して流れるように構成された第1熱交換部および第2熱交換部と、第1熱交換部を通過する冷媒の流量と第2熱交換部を通過する冷媒の流量とに流量差をつけることが可能に構成された流量制限部とを含む。空気調和装置は、圧縮機と流量制限部とを制御する制御装置を備える。制御装置は、空気調和装置の空調能力を変更する場合に、圧縮機の周波数と流量差とを組み合わせて使用する。 The present disclosure relates to an air conditioner in which a refrigerant circulates in the order of a compressor, a condenser, an expander, and an evaporator during operation. The condenser includes a first heat exchange section and a second heat exchange section configured to allow the refrigerant to flow in parallel with each other, a flow rate of the refrigerant passing through the first heat exchange section, and a refrigerant passing through the second heat exchange section. And a flow rate limiting unit configured to be capable of providing a flow rate difference with the flow rate of The air conditioner includes a control device that controls the compressor and the flow rate limiting unit. The control device uses the frequency of the compressor and the flow rate difference in combination when changing the air conditioning capacity of the air conditioner.
 本開示に係る空気調和装置は、凝縮器を第1熱交換部と第2熱交換部に分け、一方の熱交換部に冷媒を貯留するので、空調下限能力をより低下させることが可能となる。 In the air conditioner according to the present disclosure, the condenser is divided into the first heat exchange section and the second heat exchange section, and the refrigerant is stored in one of the heat exchange sections, so that it is possible to further lower the air conditioning lower limit capacity. ..
本実施の形態に従う空気調和装置1の構成図である。It is a block diagram of the air conditioning apparatus 1 according to this Embodiment. 通常時の冷房運転の冷媒の流れを示した図である。It is the figure which showed the flow of the refrigerant|coolant of the cooling operation at the time of normal. 冷媒量が通常である場合の運転時の冷凍サイクルのP-H線図である。FIG. 6 is a PH diagram of a refrigeration cycle during operation when the amount of refrigerant is normal. 低能力時の冷房運転の冷媒の流れを示した図である。It is a figure showing the flow of the refrigerant of air conditioning operation at the time of low capacity. 冷媒を熱交換器内に貯留させた場合の運転時の冷凍サイクルのP-H線図である。FIG. 6 is a PH diagram of the refrigeration cycle during operation when the refrigerant is stored in the heat exchanger. 冷房運転中における冷媒貯留制御を説明するためのフローチャートである。It is a flow chart for explaining the refrigerant storage control during the cooling operation. 通常時の暖房運転の冷媒の流れを示した図である。It is the figure which showed the flow of the refrigerant|coolant of heating operation at the time of normal. 低能力時の暖房運転の冷媒の流れを示した図である。It is a figure showing the flow of the refrigerant of heating operation at the time of low capacity. 暖房運転中における冷媒貯留制御を説明するためのフローチャートである。It is a flow chart for explaining refrigerant storage control in heating operation. 本実施の形態の制御を行なった場合と通常の制御を行なった場合の下限能力を対比して示す図である。It is a figure which shows in comparison the lower limit capability when performing control of this Embodiment, and when performing normal control. 流量調整弁を変形した変形例を示す図である。It is a figure which shows the modification which deformed the flow control valve.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the embodiments. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and description thereof will not be repeated.
 図1は、本実施の形態に従う空気調和装置1の構成図である。図1を参照して、空気調和装置1は、圧縮機10と、室内熱交換器20と、膨張弁30と、室外熱交換器40と、四方弁91とを含む。室外熱交換器40は、第1熱交換部40Aと、第2熱交換部40Bとを含む。第1熱交換部40Aと、第2熱交換部40Bとは、たとえば、上下に室外熱交換器40が2分割されたものである。室内熱交換器20は、第1熱交換部20Aと、第2熱交換部20Bとを含む。第1熱交換部20Aと、第2熱交換部20Bとは、たとえば、上下または左右に室内熱交換器20が2分割されたものである。 FIG. 1 is a configuration diagram of an air conditioner 1 according to the present embodiment. With reference to FIG. 1, the air conditioning apparatus 1 includes a compressor 10, an indoor heat exchanger 20, an expansion valve 30, an outdoor heat exchanger 40, and a four-way valve 91. The outdoor heat exchanger 40 includes a first heat exchange section 40A and a second heat exchange section 40B. The first heat exchanging section 40A and the second heat exchanging section 40B are, for example, the outdoor heat exchanger 40 divided into upper and lower parts. The indoor heat exchanger 20 includes a first heat exchange section 20A and a second heat exchange section 20B. The first heat exchanging unit 20A and the second heat exchanging unit 20B are, for example, the indoor heat exchanger 20 divided into two parts, that is, the upper and lower parts or the left and right parts.
 室外機2は、ストップバルブ110,112と、四方弁91と、圧縮機10と、室外熱交換器40と、膨張弁30と、これらを相互に接続する管とを含む。 The outdoor unit 2 includes stop valves 110 and 112, a four-way valve 91, a compressor 10, an outdoor heat exchanger 40, an expansion valve 30, and pipes interconnecting these.
 管90は、四方弁91のポートHとガス側のストップバルブ110とを接続する。管92は、液側のストップバルブ112と膨張弁30とを接続する。膨張弁30は、管92と管94との間に配置される。管94は、途中から管94Aと管94Bに分岐しており、膨張弁30と第1熱交換部40Aおよび第2熱交換部40Bとを接続する。管94Aと管94Bの分岐部には、流量調整弁34が配置される。 The pipe 90 connects the port H of the four-way valve 91 and the stop valve 110 on the gas side. The pipe 92 connects the stop valve 112 on the liquid side and the expansion valve 30. The expansion valve 30 is arranged between the pipe 92 and the pipe 94. The pipe 94 branches into a pipe 94A and a pipe 94B from the middle, and connects the expansion valve 30 to the first heat exchange section 40A and the second heat exchange section 40B. A flow rate adjusting valve 34 is arranged at a branch portion between the pipe 94A and the pipe 94B.
 圧縮機10の吐出口と吸入口とは、それぞれ管99,98によって、四方弁91のポートG,Eに接続される。管96は、一端が四方弁91のポートFに接続され、他端は途中から管96A,96Bに分岐する。分岐した管96A,96Bは、それぞれ第1熱交換部40A、第2熱交換部40Bに接続される。 The discharge port and the suction port of the compressor 10 are connected to the ports G and E of the four-way valve 91 by pipes 99 and 98, respectively. One end of the pipe 96 is connected to the port F of the four-way valve 91, and the other end branches into pipes 96A and 96B from the middle. The branched pipes 96A and 96B are connected to the first heat exchange unit 40A and the second heat exchange unit 40B, respectively.
 空気調和装置1は、さらに、制御装置200と、図示しない冷媒圧力センサと、冷媒温度センサとを含む。 The air conditioner 1 further includes a control device 200, a refrigerant pressure sensor (not shown), and a refrigerant temperature sensor.
 制御装置200は、通信回路201と、プロセッサ202と、メモリ203とを含む。
 メモリ203は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。
The control device 200 includes a communication circuit 201, a processor 202, and a memory 203.
The memory 203 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory. The flash memory stores an operating system, application programs, and various data.
 プロセッサ202は、空気調和装置1の全体の動作を制御する。なお、制御装置200の機能は、プロセッサ202がメモリ203に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ203に記憶されている各種のデータが参照される。通信回路201は、制御対象とする圧縮機10、四方弁91、膨張弁30、ファン42流量調整弁34に対して制御信号を送信するように構成される。通信回路201は、さらに、制御対象とするファン22、流量調整弁32に対して制御信号を送信するように構成される。 The processor 202 controls the overall operation of the air conditioning apparatus 1. The functions of the control device 200 are realized by the processor 202 executing the operating system and application programs stored in the memory 203. When executing the application program, various data stored in the memory 203 are referenced. The communication circuit 201 is configured to transmit a control signal to the compressor 10, the four-way valve 91, the expansion valve 30, and the fan 42 flow rate adjusting valve 34 which are control targets. The communication circuit 201 is further configured to transmit a control signal to the fan 22 and the flow rate control valve 32 that are the control targets.
 なお、通信回路201は、制御装置200を遠隔制御するリモコン(図示せず)からの制御信号を受信するように構成しても良い。 Note that the communication circuit 201 may be configured to receive a control signal from a remote controller (not shown) that remotely controls the control device 200.
 制御装置200は、室外機2、室内機3、およびリモコンに、複数の制御部に分割されて配置されていても良い。制御装置が複数の制御部に分割されている場合には、複数の制御部の各々にプロセッサが含まれる。このような場合には、複数のプロセッサが連携して空気調和装置1の全体制御を行なう。 The control device 200 may be divided into a plurality of control units and arranged in the outdoor unit 2, the indoor unit 3, and the remote controller. When the control device is divided into a plurality of control units, each of the plurality of control units includes a processor. In such a case, a plurality of processors cooperate to perform overall control of the air conditioner 1.
 圧縮機10は、制御装置200から受ける制御信号によって運転周波数を変更するように構成される。圧縮機10の運転周波数を変更することにより圧縮機10の出力が調整される。圧縮機10には種々のタイプを採用可能であり、たとえば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 is configured to change the operating frequency according to a control signal received from the control device 200. The output of the compressor 10 is adjusted by changing the operating frequency of the compressor 10. Various types of compressors can be adopted, for example, rotary type, reciprocating type, scroll type, screw type, etc. can be adopted.
 図1に示す構成では、管96は、第1熱交換部40Aおよび第2熱交換部40Bを四方弁91のポートFに接続する。四方弁91は、冷房運転のときは実線で示すように圧縮機10の吐出口が接続された管99と管96とを連通させるとともに、圧縮機10の吸入口が接続された管98と管90とを連通させる。四方弁91は、暖房運転のときは破線で示すように圧縮機10の吐出口が接続された管99と管90とを連通させるとともに、圧縮機10の吸入口が接続された管98と管96とを連通させる。 In the configuration shown in FIG. 1, the pipe 96 connects the first heat exchange unit 40A and the second heat exchange unit 40B to the port F of the four-way valve 91. The four-way valve 91 communicates with the pipe 99 and the pipe 96 to which the discharge port of the compressor 10 is connected as shown by the solid line during the cooling operation, and also to the pipe 98 and the pipe 98 to which the suction port of the compressor 10 is connected. Connect with 90. The four-way valve 91 connects the pipe 99 and the pipe 90 to which the discharge port of the compressor 10 is connected with each other as shown by a broken line during the heating operation, and also connects the pipe 98 and the pipe 98 to which the suction port of the compressor 10 is connected. 96 and communication.
 室内機3は、室内熱交換器20と、ファン22と、管101,102と、室温センサ24とを含む。 The indoor unit 3 includes an indoor heat exchanger 20, a fan 22, pipes 101 and 102, and a room temperature sensor 24.
 管101の一端は、途中から管101Aと管101Bに分岐しており、管101Aと管101Bは、第1熱交換部20Aおよび第2熱交換部20Bにそれぞれ接続される。管101の他端は、延長配管100によって、ストップバルブ110に接続される。 One end of the pipe 101 is branched into a pipe 101A and a pipe 101B from the middle, and the pipe 101A and the pipe 101B are connected to the first heat exchange unit 20A and the second heat exchange unit 20B, respectively. The other end of the pipe 101 is connected to the stop valve 110 by an extension pipe 100.
 管102の一端は、途中から管102Aと管102Bに分岐しており第1熱交換部20Aおよび第2熱交換部20Bにそれぞれ接続される。管102Aと管102Bの分岐部には、流量調整弁32が配置される。管102の他端は、延長配管103によって、ストップバルブ112に接続される。 The one end of the pipe 102 is branched into a pipe 102A and a pipe 102B from the middle, and is connected to the first heat exchange unit 20A and the second heat exchange unit 20B, respectively. A flow rate adjusting valve 32 is arranged at a branch portion between the pipe 102A and the pipe 102B. The other end of the pipe 102 is connected to the stop valve 112 by an extension pipe 103.
 ストップバルブ110,112は、施工時に冷媒回路の接続が完了すると、各々連通状態とされる。 The stop valves 110 and 112 are brought into communication with each other when the connection of the refrigerant circuit is completed during construction.
 室温センサ24は、室温を検出して制御装置200に送信する。なお、室温センサ24は、必ずしも室内機3の内部に配置されていなくても良く、室内機3と同じ部屋にあるリモコンなどに配置されていても良い。 The room temperature sensor 24 detects the room temperature and transmits it to the control device 200. It should be noted that the room temperature sensor 24 does not necessarily have to be arranged inside the indoor unit 3, and may be arranged in a remote controller or the like in the same room as the indoor unit 3.
 (冷房運転中の冷媒量制御)
 まず、冷房運転の基本的な動作について説明する。図2は、通常時の冷房運転の冷媒の流れを示した図である。冷房運転では、図2に矢印で示した向きに冷媒が流れる。圧縮機10は管90から四方弁91および管98を経由して冷媒を吸入し、圧縮する。圧縮された冷媒は四方弁91を経由して管96へ流れる。以下、各熱交換器が凝縮器として働くのか蒸発器として働くのかを、理解の容易のために併記する。
(Control of refrigerant amount during cooling operation)
First, the basic operation of the cooling operation will be described. FIG. 2 is a diagram showing the flow of the refrigerant in the cooling operation during normal operation. In the cooling operation, the refrigerant flows in the direction shown by the arrow in FIG. The compressor 10 draws in and compresses the refrigerant from the pipe 90 via the four-way valve 91 and the pipe 98. The compressed refrigerant flows to the pipe 96 via the four-way valve 91. Hereinafter, whether each heat exchanger functions as a condenser or an evaporator will be described together for easy understanding.
 室外熱交換器40(凝縮器)は、圧縮機10から四方弁91を経由して管96に流入した冷媒を凝縮して管94へ流す。室外熱交換器40(凝縮器)は、圧縮機10から吐出された高温高圧の過熱蒸気となった冷媒が外気と熱交換して放熱を行なうように構成される。この熱交換により、冷媒は凝縮されて室外熱交換器40の出口付近で液化する。ファン42が、室外熱交換器40(凝縮器)に併設され、制御装置200は制御信号によってファン42の回転速度を調整する。ファン42の回転速度を変更することにより、室外熱交換器40(凝縮器)における冷媒と外気との熱交換量を調整することができる。 The outdoor heat exchanger 40 (condenser) condenses the refrigerant that has flowed into the pipe 96 from the compressor 10 via the four-way valve 91 and flows it into the pipe 94. The outdoor heat exchanger 40 (condenser) is configured so that the refrigerant, which has been discharged from the compressor 10 and has become high-temperature and high-pressure superheated steam, exchanges heat with the outside air to radiate heat. By this heat exchange, the refrigerant is condensed and liquefied near the outlet of the outdoor heat exchanger 40. The fan 42 is provided side by side with the outdoor heat exchanger 40 (condenser), and the control device 200 adjusts the rotation speed of the fan 42 by a control signal. By changing the rotation speed of the fan 42, the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 40 (condenser) can be adjusted.
 膨張弁30は、室外熱交換器40(凝縮器)から管94へ流れた冷媒を減圧する。減圧された冷媒は管92へ流れる。膨張弁30は、制御装置200から受ける制御信号によって開度を調整可能に構成される。膨張弁30の開度を閉方向に変化させると、膨張弁30出口側の冷媒圧力は低下し、冷媒の乾き度は上昇する。一方、膨張弁30の開度を開方向に変化させると、膨張弁30出口側の冷媒圧力は上昇し、冷媒の乾き度は低下する。 The expansion valve 30 reduces the pressure of the refrigerant flowing from the outdoor heat exchanger 40 (condenser) to the pipe 94. The depressurized refrigerant flows into the pipe 92. The expansion valve 30 is configured so that the opening degree can be adjusted by a control signal received from the control device 200. When the opening degree of the expansion valve 30 is changed to the closing direction, the refrigerant pressure on the outlet side of the expansion valve 30 decreases and the dryness of the refrigerant increases. On the other hand, when the opening degree of the expansion valve 30 is changed to the opening direction, the refrigerant pressure at the outlet side of the expansion valve 30 increases and the dryness of the refrigerant decreases.
 室内熱交換器20(蒸発器)は、膨張弁30から管92,延長配管103、管102へ流れた冷媒を蒸発させる。蒸発した冷媒は、管101、延長配管100、ストップバルブ110および四方弁91を経由して管98へ流れる。室内熱交換器20(蒸発器)は、膨張弁30により減圧された冷媒が室内空気と熱交換し、吸熱を行なうように構成される。この熱交換により、冷媒は蒸発して室内熱交換器20の出口付近で過熱蒸気となる。ファン22が、室内熱交換器20(蒸発器)に併設される。制御装置200は、制御信号によってファン22の回転速度を調整する。ファン22の回転速度を変更することにより、室内熱交換器20(蒸発器)における冷媒と室内空気との熱交換量を調整することができる。 The indoor heat exchanger 20 (evaporator) evaporates the refrigerant flowing from the expansion valve 30 to the pipe 92, the extension pipe 103, and the pipe 102. The evaporated refrigerant flows into the pipe 98 via the pipe 101, the extension pipe 100, the stop valve 110 and the four-way valve 91. The indoor heat exchanger 20 (evaporator) is configured such that the refrigerant decompressed by the expansion valve 30 exchanges heat with the indoor air to absorb heat. By this heat exchange, the refrigerant evaporates and becomes superheated steam near the outlet of the indoor heat exchanger 20. The fan 22 is attached to the indoor heat exchanger 20 (evaporator). The control device 200 adjusts the rotation speed of the fan 22 according to the control signal. By changing the rotation speed of the fan 22, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 20 (evaporator) can be adjusted.
 図3は、冷媒量が通常である場合の運転時の冷凍サイクルのP-H線図である。冷媒がR32である場合を例として説明する。図3に示すP-H線図において、点A1-点A2は、圧縮機10による圧縮処理、点A2-点A3は、凝縮器による凝縮処理、点A3-点A4は、膨張弁30による減圧処理、点A4-点A1は、蒸発器による蒸発処理に、それぞれ対応する。冷凍能力は、点A1と点A4のエンタルピー差dHに単位時間当たりの冷媒循環量Grを掛けた値となる。 FIG. 3 is a PH diagram of the refrigeration cycle during operation when the amount of refrigerant is normal. A case where the refrigerant is R32 will be described as an example. In the PH diagram shown in FIG. 3, points A1 and A2 are compression processing by the compressor 10, points A2 and A3 are condensation processing by a condenser, and points A3 and A4 are decompression by the expansion valve 30. The processing, point A4 to point A1, respectively correspond to the evaporation processing by the evaporator. The refrigerating capacity is a value obtained by multiplying the enthalpy difference dH between the points A1 and A4 by the refrigerant circulation amount Gr per unit time.
 定格運転時の性能改善および能力確保のため、凝縮器出口部分に相当する点A3で過冷却(SC:subcool)状態が十分に確保できるように、冷媒回路には十分な量の冷媒が封入されている。そのため、低能力で運転するときでも十分な冷媒量があるため凝縮器出口に相当する点A3では冷媒は過冷却状態となる。このため冷凍能力Qは、エンタルピー差dH、単位時間当たりの冷媒循環量Grとすると、次式(1)で示される。
Q=Gr*dH  … (1)
 循環する冷媒の量が一定量の場合、dHが固定となり、圧縮機の運転周波数を下げて冷媒循環量Grを落として低能力を実現している。しかし、圧縮機の下限周波数は潤滑油の供給等により限界がある。
In order to improve performance and ensure capacity during rated operation, a sufficient amount of refrigerant is filled in the refrigerant circuit so that a supercooled (SC: subcool) state can be sufficiently ensured at point A3 corresponding to the condenser outlet. ing. Therefore, the refrigerant is in a supercooled state at the point A3 corresponding to the outlet of the condenser because there is a sufficient amount of the refrigerant even when operating with low capacity. Therefore, the refrigerating capacity Q is expressed by the following equation (1), where enthalpy difference dH and refrigerant circulation amount Gr per unit time are given.
Q=Gr*dH (1)
When the amount of circulating refrigerant is constant, dH is fixed, and the operating frequency of the compressor is lowered to reduce the refrigerant circulation amount Gr to realize low capacity. However, the lower limit frequency of the compressor is limited due to the supply of lubricating oil and the like.
 本実施の形態では、上記の式中のdHを小さくすることによって、従来以上に大幅に低能力が実現できる。 In the present embodiment, by lowering dH in the above formula, it is possible to achieve a significantly lower capacity than before.
 図4は、低能力時の冷房運転の冷媒の流れを示した図である。図4に示す状態が図2に示す状態と異なる点は、流量調整弁34によって第2熱交換部40Bの流量が制限されている点である。一方で、ファン42による送風は継続されている。第2熱交換部40Bにおいて、冷媒の凝縮が行なわれる一方で液化した冷媒が排出されないため、第2熱交換部40Bの内部に液冷媒が貯留された状態となる。他の部分の冷媒の流れについては、図2と同じであるので、図4では説明は繰返さない。 FIG. 4 is a diagram showing the flow of the refrigerant in the cooling operation when the capacity is low. The state shown in FIG. 4 is different from the state shown in FIG. 2 in that the flow rate adjusting valve 34 limits the flow rate of the second heat exchange section 40B. On the other hand, the fan 42 continues to blow air. In the second heat exchange section 40B, the liquefied refrigerant is not discharged while the refrigerant is condensed, so that the liquid refrigerant is stored inside the second heat exchange section 40B. The flow of the refrigerant in the other portions is the same as that in FIG. 2, and therefore the description will not be repeated in FIG.
 図4に示すように、第2熱交換部40Bの内部に液冷媒が貯留されると、冷媒回路を循環する冷媒の量が減少する。なお、第2熱交換部40Bの液封を避けるため、流量調整弁34は、管94B側を完全に閉止せず微少の流量を確保するように構成されることが好ましい。また、循環する冷媒量の減少に伴い、膨張弁30には二相冷媒が流入するため、膨張弁30として従来よりも口径が大きい弁を使用することが好ましい。 As shown in FIG. 4, when the liquid refrigerant is stored inside the second heat exchange section 40B, the amount of the refrigerant circulating in the refrigerant circuit decreases. In order to avoid liquid sealing of the second heat exchange section 40B, it is preferable that the flow rate adjusting valve 34 is configured not to completely close the pipe 94B side to ensure a minute flow rate. In addition, since the two-phase refrigerant flows into the expansion valve 30 as the amount of circulating refrigerant decreases, it is preferable to use a valve having a larger diameter than the conventional one as the expansion valve 30.
 図5は、冷媒を熱交換器内に貯留させた場合の運転時の冷凍サイクルのP-H線図である。図5に示すP-H線図において、点B1-点B2は、圧縮機10による圧縮処理、点B2-点B4は、凝縮器による凝縮処理、点B4-点B5は、膨張弁30による減圧処理、点B5-点B1は、蒸発器による蒸発処理に、それぞれ対応する。この場合、冷凍能力は、点B1と点B5のエンタルピー差dHに単位時間あたりの冷媒循環量Grを掛けた値となる。 FIG. 5 is a PH diagram of the refrigeration cycle during operation when the refrigerant is stored in the heat exchanger. In the PH diagram shown in FIG. 5, points B1 and B2 are compression processing by the compressor 10, points B2 and B4 are condensation processing by a condenser, and points B4 and B5 are decompression by the expansion valve 30. Processing, point B5 to point B1, respectively correspond to the evaporation processing by the evaporator. In this case, the refrigerating capacity is a value obtained by multiplying the enthalpy difference dH between the points B1 and B5 by the refrigerant circulation amount Gr per unit time.
 図3と図5とを比較すると、冷凍能力に関する蒸発器のエンタルピー差dHは、図5の場合が減少している。また、循環する冷媒の量も第2熱交換部40Bの内部に液冷媒が貯留される分減少する。したがって、エンタルピー差dHも冷媒循環量Grも両方とも減少するため、式(1)に示したようにそれらの積で表される冷凍能力Qは従来に比べて小さく抑えることができる。 Comparing FIG. 3 and FIG. 5, the enthalpy difference dH of the evaporator regarding the refrigerating capacity is reduced in the case of FIG. In addition, the amount of the circulating refrigerant is reduced by the amount of the liquid refrigerant stored inside the second heat exchange section 40B. Therefore, both the enthalpy difference dH and the refrigerant circulation amount Gr decrease, so that the refrigerating capacity Q represented by the product of them as shown in the equation (1) can be suppressed smaller than in the conventional case.
 ここで図5における蒸発器入口に相当する点B5が図3の点A3よりエンタルピーHの値が大きい理由について説明する。図5における点B3は図4の凝縮器(第2熱交換部40B)の出口の状態を示す。図5における点B4は図4の凝縮器(第1熱交換部40A)の出口の状態を示す。両者が合流した後のエンタルピーHjは、第1熱交換部40A、第2熱交換部40Bのそれぞれの出口のエンタルピーH40A,H40Bおよび冷媒流量Gr40A,Gr40Bを用いて、以下の式で与えられる。 Here, the reason why the point B5 corresponding to the evaporator inlet in FIG. 5 has a larger enthalpy H value than the point A3 in FIG. 3 will be described. Point B3 in FIG. 5 indicates the state of the outlet of the condenser (second heat exchange section 40B) in FIG. Point B4 in FIG. 5 shows the state of the outlet of the condenser (first heat exchange section 40A) in FIG. The enthalpy Hj after the two have joined together is given by the following equation using the enthalpies H40A and H40B at the outlets of the first heat exchange section 40A and the second heat exchange section 40B and the refrigerant flow rates Gr40A and Gr40B.
 Hj=(H40A*Gr40A+H40B*Gr40B)/(Gr40A+Gr40B)
 すなわち、図5に示したように、流量調整弁34の管94B側が閉じており流量が少ない場合、合流後のエンタルピーHjは冷媒流量の多い管94A側のエンタルピーH40Aとほぼ等しくなる。また、点B4のエンタルピー、すなわち蒸発器入口の点B5のエンタルピーは、管94B側に流れる冷媒流量で調整可能である。
Hj=(H40A*Gr40A+H40B*Gr40B)/(Gr40A+Gr40B)
That is, as shown in FIG. 5, when the pipe 94B side of the flow rate adjusting valve 34 is closed and the flow rate is small, the enthalpy Hj after the merging is substantially equal to the enthalpy H40A on the pipe 94A side with a large refrigerant flow rate. Further, the enthalpy at the point B4, that is, the enthalpy at the point B5 at the evaporator inlet can be adjusted by the flow rate of the refrigerant flowing to the pipe 94B side.
 図6は、冷房運転中における冷媒貯留制御を説明するためのフローチャートである。図1、図6を参照して、ステップS1において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも低いか否かを判断する。 FIG. 6 is a flowchart for explaining refrigerant storage control during the cooling operation. Referring to FIGS. 1 and 6, in step S1, control device 200 determines whether the room temperature detected by room temperature sensor 24 is lower than the set temperature set by a remote controller or the like.
 室内温度<設定温度であった場合(S1でYES)、ステップS2において、制御装置200は、圧縮機10の運転周波数fが下限周波数fminより高いか否かを判断する。f>fminであった場合(S2でYES)、ステップS3において制御装置200は、圧縮機10の運転周波数fをδ2だけ低下させて、空気調和装置1の冷房能力を低下させる。 When the room temperature is less than the set temperature (YES in S1), the control device 200 determines in step S2 whether the operating frequency f of the compressor 10 is higher than the lower limit frequency fmin. If f>fmin (YES in S2), the control device 200 reduces the operating frequency f of the compressor 10 by δ2 in step S3 to reduce the cooling capacity of the air conditioner 1.
 続いて、ステップS4において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも低いか否かを判断する。室内温度<設定温度であった場合(S4でYES)、再びステップS2に処理が戻る。一方、室内温度≧設定温度であった場合(S4でNO)、ステップS5において、制御装置200は、圧縮機10の運転周波数fをδ1だけ増加させ、空気調和装置1の冷房能力を増加させる。 Subsequently, in step S4, the control device 200 determines whether or not the room temperature detected by the room temperature sensor 24 is lower than the set temperature set by the remote controller or the like. If the room temperature is less than the set temperature (YES in S4), the process returns to step S2. On the other hand, when the indoor temperature≧the set temperature (NO in S4), in step S5, the control device 200 increases the operating frequency f of the compressor 10 by δ1 and increases the cooling capacity of the air conditioner 1.
 以上のステップS1~S5の処理は、インバータ制御によって圧縮機10の運転周波数を調整し、運転中の空気調和装置1の空調能力を空調負荷に一致させる処理である。しかし、運転周波数fが下限値fmin以下となると(S2でNO)、これ以上運転周波数を下げることによる空調能力の抑制が不可能であるため、ステップS6以降の冷媒循環量を調整する処理に移る。 The above steps S1 to S5 are processes for adjusting the operating frequency of the compressor 10 by inverter control so that the air conditioning capacity of the air conditioner 1 in operation matches the air conditioning load. However, when the operating frequency f becomes equal to or lower than the lower limit value fmin (NO in S2), it is impossible to suppress the air conditioning capacity by further lowering the operating frequency, and therefore, the process proceeds to the process of adjusting the refrigerant circulation amount after step S6. ..
 具体的にはステップS6において、冷媒を室外熱交換器40に貯留させる運転が開始される。ステップS6では、制御装置200は、第2熱交換部40Bの流量を決定する流量調整弁34の開度Lを最大開度Lmaxとする。最大開度Lmaxは、初期状態における開度Lである。そして、ステップS7において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも低いか否かを判断する。 Specifically, in step S6, the operation of storing the refrigerant in the outdoor heat exchanger 40 is started. In step S6, the control device 200 sets the opening degree L of the flow rate adjusting valve 34 that determines the flow rate of the second heat exchange section 40B to the maximum opening degree Lmax. The maximum opening Lmax is the opening L in the initial state. Then, in step S7, control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is lower than the set temperature set by the remote controller or the like.
 室内温度<設定温度であった場合(S7でYES)、ステップS8において、制御装置200は、流量調整弁34の開度Lをδ3だけ狭くし、第2熱交換部40B内の液冷媒の貯留量を増加させる。これにより、冷媒循環量Grは減少する。そして、ステップS9において、制御装置200は、流量調整弁34の開度Lが下限開度Lminであるか否かを判断する。 When the indoor temperature is less than the set temperature (YES in S7), in step S8, the control device 200 narrows the opening degree L of the flow rate adjusting valve 34 by δ3 to store the liquid refrigerant in the second heat exchange section 40B. Increase the amount. As a result, the refrigerant circulation amount Gr decreases. Then, in step S9, the control device 200 determines whether or not the opening L of the flow rate adjusting valve 34 is the lower limit opening Lmin.
 流量調整弁34の開度Lが下限開度Lminでない場合(S9でNO)、再びステップS7の処理が実行される。ステップS7において室内温度が設定温度以上であれば(S7でNO)、これ以上冷房能力を低下させる必要がなく、空調負荷と空調能力が釣り合ったと考えられるので、ステップS10において流量調整弁34の開度制御が終了し、ステップS11においてメインルーチンに処理が戻る。 When the opening L of the flow rate adjusting valve 34 is not the lower limit opening Lmin (NO in S9), the process of step S7 is executed again. If the indoor temperature is equal to or higher than the set temperature in step S7 (NO in S7), it is considered that there is no need to further reduce the cooling capacity and the air conditioning load and the air conditioning capacity are in balance, so that the flow rate adjustment valve 34 is opened in step S10. Control ends, and the process returns to the main routine in step S11.
 一方、流量調整弁34の開度Lが下限開度Lminであった場合(S9でYES)、これ以上冷媒を貯留させることができないので、制御装置200は、ステップS12において圧縮機10を停止させ、室内温度が低下しすぎるのを防ぐ。 On the other hand, when the opening L of the flow rate adjusting valve 34 is the lower limit opening Lmin (YES in S9), the refrigerant cannot be stored any more, and therefore the control device 200 stops the compressor 10 in step S12. , Prevent the room temperature from dropping too low.
 (暖房運転中の冷媒量制御)
 次に、暖房運転の基本的な動作について説明する。図7は、通常時の暖房運転の冷媒の流れを示した図である。暖房運転では、図7に矢印で示した向きに冷媒が流れる。圧縮機10は管96から四方弁91および管98を経由して冷媒を吸入し、圧縮する。圧縮された冷媒は四方弁91を経由して管90へ流れる。以下、各熱交換器が凝縮器として働くのか蒸発器として働くのかを、理解の容易のために併記する。
(Control of refrigerant amount during heating operation)
Next, the basic operation of the heating operation will be described. FIG. 7: is the figure which showed the flow of the refrigerant|coolant of the heating operation at the time of normal. In the heating operation, the refrigerant flows in the direction shown by the arrow in FIG. 7. The compressor 10 draws in and compresses the refrigerant from the pipe 96 via the four-way valve 91 and the pipe 98. The compressed refrigerant flows to the pipe 90 via the four-way valve 91. Hereinafter, whether each heat exchanger functions as a condenser or an evaporator will be described together for easy understanding.
 室内熱交換器20(凝縮器)は、圧縮機10から四方弁91、管90、延長配管100を経由して管101に流入した冷媒を凝縮して管102へ流す。室内熱交換器20(凝縮器)は、圧縮機10から吐出された高温高圧の過熱蒸気となった冷媒が室内空気と熱交換して放熱を行なうように構成される。この熱交換により、冷媒は凝縮されて室内熱交換器20の出口付近で液化する。ファン22が、室内熱交換器20(凝縮器)に併設され、制御装置200は制御信号によってファン22の回転速度を調整する。ファン22の回転速度を変更することにより、室内熱交換器20(凝縮器)における冷媒と室内空気との熱交換量を調整することができる。 The indoor heat exchanger 20 (condenser) condenses the refrigerant that has flowed into the pipe 101 from the compressor 10 via the four-way valve 91, the pipe 90, and the extension pipe 100 to flow into the pipe 102. The indoor heat exchanger 20 (condenser) is configured so that the refrigerant, which has been discharged from the compressor 10 and has become high-temperature and high-pressure superheated steam, exchanges heat with the indoor air to radiate heat. By this heat exchange, the refrigerant is condensed and liquefied near the outlet of the indoor heat exchanger 20. The fan 22 is attached to the indoor heat exchanger 20 (condenser), and the control device 200 adjusts the rotation speed of the fan 22 by a control signal. By changing the rotation speed of the fan 22, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 20 (condenser) can be adjusted.
 膨張弁30は、室内熱交換器20(凝縮器)から管102および延長配管103を経由して管92へ流れた冷媒を減圧する。減圧された冷媒は管94へ流れる。膨張弁30は、制御装置200から受ける制御信号によって開度を調整可能に構成される。膨張弁30の開度を閉方向に変化させると、膨張弁30出口側の冷媒圧力は低下し、冷媒の乾き度は上昇する。一方、膨張弁30の開度を開方向に変化させると、膨張弁30出口側の冷媒圧力は上昇し、冷媒の乾き度は低下する。 The expansion valve 30 reduces the pressure of the refrigerant flowing from the indoor heat exchanger 20 (condenser) to the pipe 92 via the pipe 102 and the extension pipe 103. The depressurized refrigerant flows to the pipe 94. The expansion valve 30 is configured so that the opening degree can be adjusted by a control signal received from the control device 200. When the opening degree of the expansion valve 30 is changed to the closing direction, the refrigerant pressure on the outlet side of the expansion valve 30 decreases and the dryness of the refrigerant increases. On the other hand, when the opening degree of the expansion valve 30 is changed to the opening direction, the refrigerant pressure at the outlet side of the expansion valve 30 increases and the dryness of the refrigerant decreases.
 室外熱交換器40(蒸発器)は、膨張弁30から管94へ流れた冷媒を蒸発させる。蒸発した冷媒は、管96および四方弁91を経由して管98へ流れる。室外熱交換器40(蒸発器)は、膨張弁30により減圧された冷媒が外気と熱交換し、吸熱を行なうように構成される。この熱交換により、冷媒は蒸発して室外熱交換器40の出口付近で過熱蒸気となる。ファン42が、室外熱交換器40(蒸発器)に併設される。制御装置200は、制御信号によってファン42の回転速度を調整する。ファン42の回転速度を変更することにより、室外熱交換器40(蒸発器)における冷媒と外気との熱交換量を調整することができる。 The outdoor heat exchanger 40 (evaporator) evaporates the refrigerant flowing from the expansion valve 30 to the pipe 94. The evaporated refrigerant flows to the pipe 98 via the pipe 96 and the four-way valve 91. The outdoor heat exchanger 40 (evaporator) is configured such that the refrigerant decompressed by the expansion valve 30 exchanges heat with the outside air and absorbs heat. By this heat exchange, the refrigerant evaporates and becomes superheated steam near the outlet of the outdoor heat exchanger 40. The fan 42 is attached to the outdoor heat exchanger 40 (evaporator). The control device 200 adjusts the rotation speed of the fan 42 according to the control signal. By changing the rotation speed of the fan 42, the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 40 (evaporator) can be adjusted.
 図8は、低能力時の暖房運転の冷媒の流れを示した図である。図8に示す状態が図7に示す状態と異なる点は、流量調整弁32によって第2熱交換部20Bの流量が制限されている点である。一方で、ファン22による送風は継続されている。第2熱交換部20Bにおいて、冷媒の凝縮が行なわれる一方で液化した冷媒が排出されないため、第2熱交換部20Bの内部に液冷媒が貯留された状態となる。他の部分の冷媒の流れについては、図7と同じであるので、図8では説明は繰返さない。 FIG. 8 is a diagram showing the flow of the refrigerant in the heating operation when the capacity is low. The state shown in FIG. 8 differs from the state shown in FIG. 7 in that the flow rate adjusting valve 32 limits the flow rate of the second heat exchange section 20B. On the other hand, the fan 22 continues to blow air. In the second heat exchange section 20B, the liquefied refrigerant is not discharged while the refrigerant is condensed, so that the liquid refrigerant is stored inside the second heat exchange section 20B. The flow of the refrigerant in the other parts is the same as that in FIG. 7, and therefore the description will not be repeated in FIG.
 図8に示すように、第2熱交換部20Bの内部に液冷媒が貯留されると、冷媒回路を循環する冷媒の量が減少する。なお、第2熱交換部20Bの液封を避けるため、流量調整弁32は、管102B側を完全に閉止せず微少の流量を確保するように構成されることが好ましい。 As shown in FIG. 8, when the liquid refrigerant is stored inside the second heat exchange section 20B, the amount of the refrigerant circulating in the refrigerant circuit decreases. In order to avoid liquid sealing of the second heat exchange section 20B, it is preferable that the flow rate adjusting valve 32 is configured not to completely close the pipe 102B side to ensure a minute flow rate.
 図7に対応するP-H線図と図8に対応するP-H線図は、図3、図5とは凝縮温度、蒸発温度などが異なるが、冷媒がR32である場合、凝縮器のエンタルピー差が図7よりも図8に示す運転の方が低減する点については図3、図5の関係と同様な傾向となる。 The PH diagram corresponding to FIG. 7 and the PH diagram corresponding to FIG. 8 differ from FIGS. 3 and 5 in the condensation temperature and the evaporation temperature, but when the refrigerant is R32, Regarding the point that the enthalpy difference is smaller in the operation shown in FIG. 8 than in FIG. 7, there is a tendency similar to the relationship in FIGS. 3 and 5.
 したがって、暖房時の凝縮器におけるエンタルピー差が減少するため、凝縮能力は暖房の場合でも従来に比べて小さく抑えることができる。 Therefore, since the enthalpy difference in the condenser during heating is reduced, the condensing capacity can be kept smaller than before even in the case of heating.
 図9は、暖房運転中における冷媒貯留制御を説明するためのフローチャートである。図1、図9を参照して、ステップS11において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも高いか否かを判断する。 FIG. 9 is a flowchart for explaining refrigerant storage control during heating operation. Referring to FIGS. 1 and 9, in step S11, control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is higher than the set temperature set by a remote controller or the like.
 室内温度>設定温度であった場合(S11でYES)、ステップS12において、制御装置200は、圧縮機10の運転周波数fが下限周波数fminより高いか否かを判断する。f>fminであった場合(S12でYES)、ステップS13において制御装置200は、圧縮機10の運転周波数fをδ2だけ低下させて、空気調和装置1の暖房能力を低下させる。 When the room temperature>the set temperature (YES in S11), the control device 200 determines in step S12 whether the operating frequency f of the compressor 10 is higher than the lower limit frequency fmin. When f>fmin (YES in S12), the control device 200 reduces the operating frequency f of the compressor 10 by δ2 in step S13 to reduce the heating capacity of the air conditioner 1.
 続いて、ステップS14において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも高いか否かを判断する。室内温度>設定温度であった場合(S14でYES)、再びステップS12に処理が戻る。一方、室内温度≦設定温度であった場合(S14でNO)、ステップS15において、制御装置200は、圧縮機10の運転周波数fをδ1だけ増加させ、空気調和装置1の暖房能力を増加させる。 Subsequently, in step S14, the control device 200 determines whether or not the room temperature detected by the room temperature sensor 24 is higher than the set temperature set by the remote controller or the like. If the room temperature>the set temperature (YES in S14), the process returns to step S12. On the other hand, when the indoor temperature≦the set temperature (NO in S14), the control device 200 increases the operating frequency f of the compressor 10 by δ1 and increases the heating capacity of the air conditioning device 1 in step S15.
 以上のステップS11~S15の処理は、インバータ制御によって圧縮機10の運転周波数を調整し、運転中の空気調和装置1の空調能力を空調負荷に一致させる処理である。しかし、運転周波数fが下限値fmin以下となると(S12でNO)、これ以上運転周波数を下げることによる空調能力の抑制が不可能であるため、ステップS16以降の冷媒循環量を調整する処理に移る。 The above steps S11 to S15 are processes for adjusting the operating frequency of the compressor 10 by inverter control so that the air conditioning capacity of the air conditioner 1 in operation matches the air conditioning load. However, when the operating frequency f becomes equal to or lower than the lower limit value fmin (NO in S12), it is impossible to suppress the air conditioning capacity by further lowering the operating frequency, so that the process proceeds to the process of adjusting the refrigerant circulation amount after step S16. ..
 具体的にはステップS16において、冷媒を室内熱交換器20に貯留させる運転が開始される。ステップS16では、制御装置200は、第2熱交換部20Bの流量を決定する流量調整弁32の開度Lを最大開度Lmaxとする。最大開度Lmaxは初期状態における開度Lである。そして、ステップS17において制御装置200は、室温センサ24で検出された室内温度がリモコンなどによって設定された設定温度よりも高いか否かを判断する。 Specifically, in step S16, the operation of storing the refrigerant in the indoor heat exchanger 20 is started. In step S16, the control device 200 sets the opening L of the flow rate adjusting valve 32 that determines the flow rate of the second heat exchange unit 20B to the maximum opening Lmax. The maximum opening Lmax is the opening L in the initial state. Then, in step S17, control device 200 determines whether or not the room temperature detected by room temperature sensor 24 is higher than the set temperature set by the remote controller or the like.
 室内温度>設定温度であった場合(S17でYES)、ステップS18において、制御装置200は、流量調整弁32の開度Lをδ3だけ狭くし、第2熱交換部20B内の液冷媒の貯留量を増加させる。そして、ステップS19において、制御装置200は、流量調整弁32の開度Lが下限開度Lminであるか否かを判断する。 When the room temperature>the set temperature (YES in S17), in step S18, the control device 200 narrows the opening degree L of the flow rate adjusting valve 32 by δ3 to store the liquid refrigerant in the second heat exchange section 20B. Increase the amount. Then, in step S19, the control device 200 determines whether or not the opening L of the flow rate adjusting valve 32 is the lower limit opening Lmin.
 流量調整弁32の開度Lが下限開度Lminでない場合(S19でNO)、再びステップS17の処理が実行される。ステップS17において室内温度が設定温度以下であれば(S17でNO)、これ以上暖房能力を低下させる必要がなく、空調負荷と空調能力が釣り合ったと考えられるので、ステップS20において流量調整弁32の開度制御が終了し、ステップS21においてメインルーチンに処理が戻る。 When the opening L of the flow rate adjusting valve 32 is not the lower limit opening Lmin (NO in S19), the process of step S17 is executed again. If the indoor temperature is equal to or lower than the set temperature in step S17 (NO in S17), it is considered that there is no need to further reduce the heating capacity, and the air conditioning load and the air conditioning capacity are in balance, so the flow control valve 32 is opened in step S20. Control is completed, and the process returns to the main routine in step S21.
 一方、流量調整弁32の開度Lが下限開度Lminであった場合(S19でYES)、これ以上冷媒を貯留させることができないので、制御装置200は、ステップS22において圧縮機10を停止させ、室内温度が上昇しすぎるのを防ぐ。 On the other hand, when the opening degree L of the flow rate adjusting valve 32 is the lower limit opening degree Lmin (YES in S19), the refrigerant cannot be stored any more, so the control device 200 stops the compressor 10 in step S22. , Prevent the room temperature from rising too high.
 図10は、本実施の形態の制御を行なった場合と通常の制御を行なった場合の下限能力を対比して示す図である。定格能力を100%としたときに、圧縮機10の周波数制御のみを実行した場合の下限能力は、15%であるのに対して、圧縮機10の周波数制御に加えて熱交換器内への冷媒貯留量を制御した場合の下限能力は、10%となった。本実施の形態の空調機は、下限能力を通常機と比べて66.7%まで下げることができる。 FIG. 10 is a diagram showing the lower limit capabilities of the case where the control of the present embodiment is performed and the case where the normal control is performed, in comparison. When the rated capacity is set to 100%, the lower limit capacity when only the frequency control of the compressor 10 is executed is 15%, whereas in addition to the frequency control of the compressor 10, the lower limit capacity The lower limit capacity when controlling the refrigerant storage amount was 10%. The lower limit capacity of the air conditioner of the present embodiment can be reduced to 66.7% compared to the normal machine.
 したがって、本実施の形態の空気調和装置によれば、高気密高断熱の住宅において、空調負荷が少ない場合に温度変動を従来よりも抑えることができる。 Therefore, according to the air conditioner of the present embodiment, in a highly airtight and highly insulated house, temperature fluctuations can be suppressed more than before when the air conditioning load is small.
 図11は、流量調整弁を変形した変形例を示す図である。図11に示す変形例は、図1における流量調整弁32,34をそれぞれ流量調整部32A、34Aに変更したものである。流量調整弁32,34は、具体的には流量調整機能を有する三方弁などを意図していた。 FIG. 11 is a diagram showing a modified example in which the flow rate adjusting valve is modified. In the modification shown in FIG. 11, the flow rate adjusting valves 32 and 34 in FIG. 1 are changed to flow rate adjusting units 32A and 34A, respectively. The flow rate adjusting valves 32 and 34 are specifically intended to be three-way valves having a flow rate adjusting function.
 流量調整弁として三方弁を使用する場合、三方弁を微開にすることで循環する冷媒量を調整できるので、圧縮機周波数と三方弁の調整により空調能力の変化幅を大きくすることができる(下限能力をさらに低下させることができる)。 When a three-way valve is used as the flow rate control valve, the amount of circulating refrigerant can be adjusted by slightly opening the three-way valve, so the adjustment range of the air-conditioning capacity can be increased by adjusting the compressor frequency and the three-way valve ( The lower limit capacity can be further reduced).
 しかし、流量調整弁32,34として、もっと簡単な構成を採用することも可能である。図11に示すように冷媒を貯留させる第2熱交換部20B,40B側のみに流量調整弁を設けた構成としても、同様な制御が可能である。 However, it is also possible to adopt a simpler configuration as the flow rate adjusting valves 32, 34. Similar control is possible even if the flow rate adjusting valve is provided only on the second heat exchange section 20B, 40B side for storing the refrigerant as shown in FIG.
 最後に、本実施の形態について、再び図面を参照して総括する。
 本開示は、運転中に、冷媒が圧縮機10、凝縮器(室外熱交換器40/室内熱交換器20)、膨張装置(膨張弁30)および蒸発器(室内熱交換器20/室外熱交換器40)の順に循環する空気調和装置1に関する。凝縮器(室外熱交換器40/室内熱交換器20)は、冷媒が互いに並行して流れるように構成された第1熱交換部40A/20Aおよび第2熱交換部40B/20Bと、第1熱交換部40A/20Aを通過する冷媒の流量と第2熱交換部40B/20Bを通過する冷媒の流量とに流量差をつけることが可能に構成された流量制限部(流量調整弁34/32)とを含む。空気調和装置1は、圧縮機10と流量制限部(流量調整弁34/32)とを制御する制御装置200を備える。制御装置200は、空気調和装置1の空調能力を変更する場合に、圧縮機10の周波数と流量差とを組み合わせて使用する。
Finally, the present embodiment will be summarized again with reference to the drawings.
In the present disclosure, during operation, the refrigerant is a compressor 10, a condenser (outdoor heat exchanger 40/indoor heat exchanger 20), an expansion device (expansion valve 30), and an evaporator (indoor heat exchanger 20/outdoor heat exchange). The air conditioner 1 that circulates in the order of the device 40). The condenser (outdoor heat exchanger 40/indoor heat exchanger 20) includes a first heat exchange section 40A/20A and a second heat exchange section 40B/20B configured to allow the refrigerant to flow in parallel with each other. A flow rate restricting unit (flow rate adjusting valve 34/32) configured to be able to make a flow rate difference between the flow rate of the refrigerant passing through the heat exchange section 40A/20A and the flow rate of the refrigerant passing through the second heat exchange section 40B/20B. ) And. The air conditioner 1 includes a control device 200 that controls the compressor 10 and the flow rate limiting unit (flow rate adjusting valve 34/32). The control device 200 uses the frequency and the flow rate difference of the compressor 10 in combination when changing the air conditioning capacity of the air conditioner 1.
 なお、冷房時と暖房時で凝縮器、蒸発器に対応する熱交換器が異なり、流量制限部に対応する要素も異なるため、上記のように対応関係を示した。また膨張装置は、膨張弁30が対応するが、必ずしも弁でなくても良く、たとえば、キャピラリーチューブのようなものであっても良い。 Note that the heat exchangers corresponding to the condenser and evaporator differ during cooling and heating, and the elements corresponding to the flow rate restriction unit also differ, so the correspondence relationship is shown above. The expansion device corresponds to the expansion valve 30, but is not necessarily a valve and may be, for example, a capillary tube.
 このような構成とすることによって、冷媒を貯留させる容器のように凝縮器の一部を使用することができるため、アキュムレータおよびレシーバ等の冷媒容器を用いずに冷媒循環量を増減させ、下限能力を小さく抑えることができる。また、アキュムレータおよびレシーバ等の冷媒容器を用いる場合であっても、小型のサイズで済む。 With such a configuration, since a part of the condenser can be used like a container for storing the refrigerant, the refrigerant circulation amount can be increased or decreased without using a refrigerant container such as an accumulator and a receiver, and the lower limit capacity can be used. Can be kept small. Further, even when using a refrigerant container such as an accumulator and a receiver, a small size is sufficient.
 好ましくは、制御装置200は、(a)空調能力を第1能力から第1能力よりも小さい第2能力に変更する場合に、圧縮機10の周波数fを低減させ、(b)空調能力を第2能力から第2能力よりも小さい第3能力に変更する場合に、流量制限部(流量調整弁34/32)によって第2熱交換部40B/20Bを通過する冷媒の流量を第1熱交換部40A/20Aを通過する冷媒の流量よりも制限し、第2熱交換部40B/20Bに貯留する冷媒を増加させることにより、冷媒の循環量を低減させる。 Preferably, the control device 200 reduces the frequency f of the compressor 10 when changing (a) the air conditioning capacity from the first capacity to the second capacity that is smaller than the first capacity, and (b) sets the air conditioning capacity to the first capacity. When changing from the second capacity to the third capacity smaller than the second capacity, the flow rate of the refrigerant passing through the second heat exchange section 40B/20B is changed by the flow rate restriction section (flow rate adjusting valve 34/32) to the first heat exchange section. By limiting the flow rate of the refrigerant passing through 40A/20A and increasing the amount of refrigerant stored in the second heat exchange section 40B/20B, the circulation amount of the refrigerant is reduced.
 圧縮機10の運転周波数を変化させて空調能力を下げる方が、流量制限部によって冷媒貯留量を増加させて空調能力を下げるよりも、応答性が良い。したがって、空調能力を下げる場合には、まず運転周波数を低下させ、それと同時またはその後に流量制限部によって冷媒貯留量を増加させて空調能力を下げるほうが応答性が良く、室温の変動も少なくて済む。 Changing the operating frequency of the compressor 10 to lower the air conditioning capacity has better response than lowering the air conditioning capacity by increasing the refrigerant storage amount by the flow rate limiting unit. Therefore, when lowering the air conditioning capacity, it is better to lower the air conditioning capacity by lowering the operating frequency first, and at the same time or after that, increasing the refrigerant storage amount by the flow rate limiting unit to lower the air conditioning capacity, and the fluctuation of room temperature can be small. ..
 好ましくは、空気調和装置1は、冷媒の循環方向を冷房運転時と暖房運転時とで切り換える四方弁91をさらに備える。室内熱交換器20と室外熱交換器40は、ともに2つに分割されている。冷房運転時には室外熱交換器40が凝縮器として働き、暖房運転時には室内熱交換器20が凝縮器として働く。 Preferably, the air conditioner 1 further includes a four-way valve 91 that switches the circulation direction of the refrigerant between cooling operation and heating operation. The indoor heat exchanger 20 and the outdoor heat exchanger 40 are both divided into two. The outdoor heat exchanger 40 functions as a condenser during the cooling operation, and the indoor heat exchanger 20 functions as a condenser during the heating operation.
 冷房運転時には、室外熱交換器40側に配置されている流量調整弁34の流路の一方の流路を閉にする。室外熱交換器40のファン42が回っているため、閉止された側の熱交換器(図4の第2熱交換部40B)に冷媒が貯留する。 During the cooling operation, one of the flow paths of the flow rate adjusting valve 34 arranged on the outdoor heat exchanger 40 side is closed. Since the fan 42 of the outdoor heat exchanger 40 is rotating, the refrigerant is stored in the heat exchanger on the closed side (the second heat exchange unit 40B in FIG. 4).
 一方、暖房運転時には、室内熱交換器20側に配置されている流量調整弁32の流路の一方を閉にする。室内熱交換器20のファンが回っているため、閉止された側の熱交換器(図8の第2熱交換部20B)に冷媒が貯留する。 On the other hand, during the heating operation, one of the flow paths of the flow rate adjusting valve 32 arranged on the indoor heat exchanger 20 side is closed. Since the fan of the indoor heat exchanger 20 is rotating, the refrigerant is stored in the heat exchanger on the closed side (the second heat exchange section 20B in FIG. 8).
 このような構成とすることによって、1台の空気調和装置において、冷房時、暖房時の両方において、下限の空調能力を引き下げることが可能となる。 With such a configuration, it is possible to lower the lower limit air conditioning capacity in one air conditioner both during cooling and during heating.
 なお、本実施の形態の空気調和装置1では、空調能力を低下させるために、積極的に冷媒を熱交換器に寝込ませるため、凝縮器のファンの回転を維持する点も特徴の一つである。室外熱交換器では、通常の構成では、凝縮器のファンは、分割された2つの熱交換部で共有される一つのファンである。室内熱交換器では、凝縮器のファンは、ラインフローファンだと共通な一つのファンであるが、左右にプロペラファンが2つある構成の場合は、ファンを2つとも回転させることになる。 In addition, in the air conditioner 1 of the present embodiment, one of the features is that the rotation of the condenser fan is maintained in order to positively let the refrigerant lie in the heat exchanger in order to reduce the air conditioning capacity. Is. In the outdoor heat exchanger, in the normal configuration, the fan of the condenser is one fan shared by the two divided heat exchange sections. In the indoor heat exchanger, the fan of the condenser is one fan that is common to the line flow fan, but in the case of a configuration having two propeller fans on the left and right, both fans will rotate.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 空気調和装置、2 室外機、3 室内機、10 圧縮機、20 室内熱交換器、20A,40A 第1熱交換部、20B,40B 第2熱交換部、22,42 ファン、24 室温センサ、30 膨張弁、32,34 流量調整弁、32A 流量調整部、40 室外熱交換器、90,92,94,94A,94B,96,97A,97B,98,99,101,101A,101B,102,102A,102B 管、91 四方弁、100,103 延長配管、110,112 ストップバルブ、200 制御装置、201 通信回路、202 プロセッサ、203 メモリ、E,F,G,H ポート。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 10 compressor, 20 indoor heat exchanger, 20A, 40A first heat exchange section, 20B, 40B second heat exchange section, 22, 42 fan, 24 room temperature sensor, 30 expansion valve, 32, 34 flow rate adjusting valve, 32A flow rate adjusting section, 40 outdoor heat exchanger, 90, 92, 94, 94A, 94B, 96, 97A, 97B, 98, 99, 101, 101A, 101B, 102, 102A, 102B pipe, 91 four-way valve, 100, 103 extension pipe, 110, 112 stop valve, 200 control device, 201 communication circuit, 202 processor, 203 memory, E, F, G, H port.

Claims (3)

  1.  運転中に、冷媒が圧縮機、凝縮器、膨張装置および蒸発器の順に循環する空気調和装置であって、
     前記凝縮器は、
     前記冷媒が互いに並行して流れるように構成された第1熱交換部および第2熱交換部と、
     前記第1熱交換部を通過する冷媒の流量と前記第2熱交換部を通過する冷媒の流量とに流量差をつけることが可能に構成された流量制限部とを含み、
     前記空気調和装置は、前記圧縮機と前記流量制限部とを制御する制御装置を備え、
     前記制御装置は、前記空気調和装置の空調能力を変更する場合に、前記圧縮機の周波数と前記流量差とを組み合わせて使用する、空気調和装置。
    An air conditioner in which a refrigerant circulates in order of a compressor, a condenser, an expander, and an evaporator during operation,
    The condenser is
    A first heat exchange section and a second heat exchange section configured such that the refrigerant flows in parallel with each other;
    A flow rate limiting unit configured to be capable of providing a flow rate difference between the flow rate of the refrigerant passing through the first heat exchange section and the flow rate of the refrigerant passing through the second heat exchange section,
    The air conditioner includes a control device that controls the compressor and the flow rate limiter,
    The air conditioner, wherein the control device uses a combination of the frequency of the compressor and the flow rate difference when changing the air conditioning capacity of the air conditioner.
  2.  前記制御装置は、(a)前記空調能力を第1能力から前記第1能力よりも小さい第2能力に変更する場合に、前記圧縮機の周波数を低減させ、(b)前記空調能力を前記第2能力から前記第2能力よりも小さい第3能力に変更する場合に、前記流量制限部によって前記第2熱交換部を通過する冷媒の流量を前記第1熱交換部を通過する冷媒の流量よりも制限し、前記第2熱交換部に貯留する冷媒を増加させることにより、冷媒の循環量を低減させる、請求項1に記載の空気調和装置。 The control device (a) reduces the frequency of the compressor when changing the air conditioning capacity from a first capacity to a second capacity smaller than the first capacity, and (b) sets the air conditioning capacity to the second capacity. When changing from the second capacity to the third capacity that is smaller than the second capacity, the flow rate of the refrigerant that passes through the second heat exchange section by the flow rate limiting section is smaller than the flow rate of the refrigerant that passes through the first heat exchange section. The air conditioner according to claim 1, wherein the amount of circulation of the refrigerant is reduced by limiting the amount of refrigerant and increasing the amount of refrigerant stored in the second heat exchange unit.
  3.  前記冷媒の循環方向を冷房運転時と暖房運転時とで切り換える四方弁をさらに備え、
     室内熱交換器と室外熱交換器がともに2つに分割されており、
     冷房運転時には前記室外熱交換器が前記凝縮器として働き、
     暖房運転時には前記室内熱交換器が前記凝縮器として働く、請求項1または2に記載の空気調和装置。
    Further comprising a four-way valve that switches the circulation direction of the refrigerant between cooling operation and heating operation,
    The indoor heat exchanger and the outdoor heat exchanger are both divided into two,
    During the cooling operation, the outdoor heat exchanger works as the condenser,
    The air conditioner according to claim 1, wherein the indoor heat exchanger functions as the condenser during heating operation.
PCT/JP2019/002650 2019-01-28 2019-01-28 Air conditioner WO2020157788A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/288,999 US20210404710A1 (en) 2019-01-28 2019-01-28 Air conditioner
JP2020568881A JP7086231B2 (en) 2019-01-28 2019-01-28 Air conditioner
CN201980088167.9A CN113302436A (en) 2019-01-28 2019-01-28 Air conditioning apparatus
EP19912296.1A EP3919835A4 (en) 2019-01-28 2019-01-28 Air conditioner
PCT/JP2019/002650 WO2020157788A1 (en) 2019-01-28 2019-01-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002650 WO2020157788A1 (en) 2019-01-28 2019-01-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2020157788A1 true WO2020157788A1 (en) 2020-08-06

Family

ID=71840182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002650 WO2020157788A1 (en) 2019-01-28 2019-01-28 Air conditioner

Country Status (5)

Country Link
US (1) US20210404710A1 (en)
EP (1) EP3919835A4 (en)
JP (1) JP7086231B2 (en)
CN (1) CN113302436A (en)
WO (1) WO2020157788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075235A1 (en) * 2022-10-06 2024-04-11 三菱電機株式会社 Air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240061047A (en) * 2022-10-31 2024-05-08 엘지전자 주식회사 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639664B2 (en) 1974-05-15 1981-09-14
JPS6144259A (en) * 1984-08-09 1986-03-03 株式会社日立製作所 Air conditioner
JPS646657A (en) * 1987-06-26 1989-01-11 Matsushita Refrigeration Multiple chamber type air conditioner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908013B2 (en) * 1990-07-31 1999-06-21 株式会社東芝 Air conditioner
JP2922002B2 (en) * 1991-02-20 1999-07-19 株式会社東芝 Air conditioner
JPH09229500A (en) * 1995-12-27 1997-09-05 Mando Mach Co Ltd Air conditioner for multiple rooms
JP4151625B2 (en) * 2004-07-21 2008-09-17 松下電器産業株式会社 Air conditioner
JP5125124B2 (en) * 2007-01-31 2013-01-23 ダイキン工業株式会社 Refrigeration equipment
WO2010082325A1 (en) * 2009-01-15 2010-07-22 三菱電機株式会社 Air conditioner
EP2600082B1 (en) * 2010-07-29 2018-09-26 Mitsubishi Electric Corporation Heat pump
EP3062045B1 (en) * 2013-10-24 2020-12-16 Mitsubishi Electric Corporation Air conditioner
JP6022058B2 (en) * 2014-02-27 2016-11-09 三菱電機株式会社 Heat source side unit and refrigeration cycle apparatus
WO2015132966A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device
CN206944520U (en) * 2017-06-20 2018-01-30 深圳市英维克科技股份有限公司 A kind of refrigeration system
US10753663B2 (en) * 2018-01-25 2020-08-25 Johnson Controls Technology Company HVAC system with multiple compressors and heat exchangers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639664B2 (en) 1974-05-15 1981-09-14
JPS6144259A (en) * 1984-08-09 1986-03-03 株式会社日立製作所 Air conditioner
JPS646657A (en) * 1987-06-26 1989-01-11 Matsushita Refrigeration Multiple chamber type air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919835A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075235A1 (en) * 2022-10-06 2024-04-11 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP7086231B2 (en) 2022-06-17
JPWO2020157788A1 (en) 2021-10-14
EP3919835A4 (en) 2022-01-19
CN113302436A (en) 2021-08-24
US20210404710A1 (en) 2021-12-30
EP3919835A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP4457928B2 (en) Refrigeration equipment
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
JP4725387B2 (en) Air conditioner
CN110337570B (en) Air conditioner
JP5182358B2 (en) Refrigeration equipment
WO2013145006A1 (en) Air conditioning device
JP2002054836A (en) Indoor multi-air conditioner
JP2002081767A (en) Air conditioner
WO2018020654A1 (en) Refrigeration cycle device
WO2016079834A1 (en) Air conditioning device
WO2015140994A1 (en) Heat source side unit and air conditioner
WO2020157788A1 (en) Air conditioner
CN113454408B (en) Air conditioning apparatus
US8769968B2 (en) Refrigerant system and method for controlling the same
KR20210026645A (en) Air conditioner and control method thereof
WO2016002021A1 (en) Air conditioning device
CN114127479B (en) Refrigerating device
WO2020262624A1 (en) Refrigeration device
WO2017094172A1 (en) Air conditioning device
JP6707698B2 (en) Air conditioning system control device and control method, and air conditioning system
JP6847022B2 (en) Control method of heat pump device and heat pump device
JP6507598B2 (en) Air conditioning system
EP4328525A1 (en) Refrigeration cycle device
JP2019095128A (en) Control method of heat pump device, and heat pump device
JP7367213B2 (en) Control method for refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912296

Country of ref document: EP

Effective date: 20210830