JP2002081767A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002081767A
JP2002081767A JP2000276610A JP2000276610A JP2002081767A JP 2002081767 A JP2002081767 A JP 2002081767A JP 2000276610 A JP2000276610 A JP 2000276610A JP 2000276610 A JP2000276610 A JP 2000276610A JP 2002081767 A JP2002081767 A JP 2002081767A
Authority
JP
Japan
Prior art keywords
compressor
gas
refrigerant
evaporator
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000276610A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Hiroo Nakamura
啓夫 中村
Saho Funakoshi
砂穂 舟越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000276610A priority Critical patent/JP2002081767A/en
Publication of JP2002081767A publication Critical patent/JP2002081767A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the performance drop caused by impropriety of the quantity of a refrigerant or supercooling at operation mode without gas injection, in an air conditioner capable of gas injection. SOLUTION: This air conditioner operates the optimum degree of supercooling to the difference between outside air temperature or room temperature and set temperature and the operation states of the numbers of revolutions of indoor and outdoor fans, and controls a first motor-operated expansion valve 4 or a second motor-operated expansion valve 6 so that it may be the optimum degree of supercooling, and lets a surplus refrigerant stay in a gas-liquid separator 5. Hereby, it becomes the optimum quantity of a refrigerant or the optimum degree of supercooling, so this can suppress the performance drop.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルを利
用した空気調和装置に関する。
The present invention relates to an air conditioner using a refrigeration cycle.

【0002】[0002]

【従来の技術】ルームエアコンやパッケージエアコン等
の空気調和装置における冷凍サイクルは、圧縮機、凝縮
器、膨張弁、蒸発器を順次管路によって接続して構成さ
れている。圧縮機によって圧縮された高温高圧のガス冷
媒は凝縮器によって低温高圧の液冷媒となる。そして、
膨張弁によって低温低圧の気液が混合した二相流冷媒と
なり蒸発器に流入する。蒸発器によって蒸発した高温低
圧のガス冷媒は再び圧縮機に戻り一巡する。この凝縮器
での冷媒の凝縮が不足するとガス冷媒を多く含んだ冷媒
が蒸発器に流入してしまう。ガス冷媒は液冷媒よりも吸
熱作用が小さく、また二相流状態で蒸発器に流入するこ
とから管路の抵抗が増しこの損失の分圧縮機の電気入力
が増加していた。
2. Description of the Related Art A refrigeration cycle in an air conditioner such as a room air conditioner or a package air conditioner is configured by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator by a pipeline. The high-temperature and high-pressure gas refrigerant compressed by the compressor becomes a low-temperature and high-pressure liquid refrigerant by the condenser. And
The expansion valve becomes a two-phase flow refrigerant in which low-temperature low-pressure gas-liquid is mixed and flows into the evaporator. The high-temperature and low-pressure gas refrigerant evaporated by the evaporator returns to the compressor again and goes around once. If the condensation of the refrigerant in the condenser is insufficient, the refrigerant containing a large amount of the gas refrigerant flows into the evaporator. The gas refrigerant has a smaller endothermic effect than the liquid refrigerant, and flows into the evaporator in a two-phase flow state, so that the resistance of the pipeline is increased and the electric input of the compressor is increased by the loss.

【0003】この問題を解決するため、凝縮器と蒸発器
とを接続する管路途中に気液分離器を接続し、この気液
分離器の両側に第1第2の開度調節可能な膨張弁を設け、
さらに気液分離器と圧縮機の圧縮機構部の圧縮途中の作
動室とを接続することで、ガス冷媒を圧縮機に戻し、液
冷媒を蒸発器に送る所謂ガスインジェクション回路を備
えた冷凍サイクルが知られている。このようなガスイン
ジェクション回路は、特開平11−118263号公報
(文献)に示されている。
In order to solve this problem, a gas-liquid separator is connected in the middle of a pipe connecting the condenser and the evaporator, and a first and second opening-adjustable expansion is provided on both sides of the gas-liquid separator. Provide a valve,
Furthermore, by connecting the gas-liquid separator and the working chamber in the middle of compression of the compression mechanism of the compressor, a refrigeration cycle having a so-called gas injection circuit that returns the gas refrigerant to the compressor and sends the liquid refrigerant to the evaporator is provided. Are known. Such a gas injection circuit is disclosed in JP-A-11-118263 (literature).

【0004】この文献には、ガスインジェクションを行
わない方がより高い効率での運転状態を維持できる場合
は、気液分離器と圧縮機間のインジェクション配管に設
けたバルブを閉じ、ガスインジェクション無しで運転す
る空気調和装置が記載されている。
[0004] According to this document, when operation without gas injection can be maintained at a higher efficiency, a valve provided in an injection pipe between a gas-liquid separator and a compressor is closed, and gas injection is performed without gas injection. An operating air conditioner is described.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記文
献においては、インジェクションを行わない時の更なる
性能向上については配慮されていない。
However, the above document does not consider further improvement in performance when injection is not performed.

【0006】また、気液分離器前後の減圧機構に全閉可
能な電動膨張弁を使用した場合、外気温の低い季節等に
気液分離器に液冷媒が溜まり込み、減圧機構が全閉のま
ま外気温が高い季節になると、気液分離器内の冷媒温度
が上昇して膨張し、圧力増加により破損する恐れがあっ
た。
[0006] Further, when an electrically expandable valve that can be fully closed is used for the pressure reducing mechanism before and after the gas-liquid separator, liquid refrigerant accumulates in the gas-liquid separator during a season when the outside air temperature is low, and the pressure reducing mechanism is completely closed. In a season when the outside air temperature is high as it is, the refrigerant temperature in the gas-liquid separator rises and expands, and there is a possibility that the refrigerant may be broken due to an increase in pressure.

【0007】本発明の第1の目的は、ガスインジェクシ
ョン回路を接続した冷凍サイクルを用いた空気調和装
置、若しくはガスインジェクション回路を接続しない冷
凍サイクルを用いた空気調和装置において、前者におい
てはガスインジェクションを行わないときの性能向上を
図り、後者においてはその性能向上を図った空気調和装
置を提供することにある。
A first object of the present invention is to provide an air conditioner using a refrigeration cycle to which a gas injection circuit is connected or an air conditioner using a refrigeration cycle to which no gas injection circuit is connected. An object of the present invention is to provide an air conditioner in which the performance is improved when not performed, and in the latter case, the performance is improved.

【0008】さらに本発明の第2の目的は、ガスインジ
ェクションが可能な空気調和装置において気液分離器の
冷媒膨張による破損の恐れを防止することにある。
It is a second object of the present invention to prevent a gas-liquid separator from being damaged by refrigerant expansion in an air conditioner capable of gas injection.

【0009】[0009]

【課題を解決するための手段】上記第1の目的は、圧縮
機、凝縮器、第一の減圧機構、蒸発器を順次配管接続し
た空気調和装置において、前記第一の減圧機構と蒸発器
との間の管路途中に受液器及び第二の減圧機構を接続す
ることによって達成される。
The first object of the present invention is to provide an air conditioner in which a compressor, a condenser, a first decompression mechanism, and an evaporator are sequentially connected to a pipe. This is achieved by connecting a receiver and a second decompression mechanism in the middle of the pipeline between.

【0010】上記第1の目的は、圧縮機、凝縮器、第一
の減圧機構、蒸発器を順次配管接続した空気調和装置に
おいて、前記第一の減圧機構と蒸発器との間の管路途中
に受液器及び第二の減圧機構を接続し、前記凝縮器の過
冷却度を検出する過冷却度検出手段と、この検出された
過冷却度が運転状態に応じた値になるように前記第一及
び第二の減圧機構の減圧量を調整する手段とを備えるこ
とによって達成される。
A first object of the present invention is to provide an air conditioner in which a compressor, a condenser, a first decompression mechanism, and an evaporator are sequentially connected to a pipe, in the middle of a pipe between the first decompression mechanism and the evaporator. Connected to a receiver and a second decompression mechanism, a subcooling degree detecting means for detecting the degree of subcooling of the condenser, and the detected supercooling degree is a value corresponding to the operating state. Means for adjusting the reduced pressure amounts of the first and second pressure reducing mechanisms.

【0011】上記第1の目的は、圧縮機、凝縮器、第一
の減圧機構、蒸発器を順次配管接続した空気調和装置に
おいて、前記第一の減圧機構と蒸発器との間の管路途中
に受液器及び第二の減圧機構を接続し、運転状態により
決定される過冷却度設定値に基づいて前記第一の減圧機
構及び前記第二の減圧機構の減圧量を調整する手段とを
備えることによって達成される。
The first object of the present invention is to provide an air conditioner in which a compressor, a condenser, a first pressure reducing mechanism, and an evaporator are sequentially connected in a pipe, in a pipe line between the first pressure reducing mechanism and the evaporator. A receiver and a second decompression mechanism are connected to each other, and a means for adjusting the decompression amount of the first decompression mechanism and the second decompression mechanism based on a supercooling degree set value determined by an operation state. Achieved by providing.

【0012】上記第1の目的は、圧縮機、凝縮器、第一
の減圧機構、蒸発器を順次配管接続した空気調和装置に
おいて、前記第一の減圧機構と蒸発器との間の管路途中
に受液器及び第二の減圧機構を接続し、前記受液器入口
パイプに設けられた乾き度検出手段と、この乾き度検出
手段により検出された乾き度を運転状態に応じて制御す
る手段とを備えることによって達成される。
The first object of the present invention is to provide an air conditioner in which a compressor, a condenser, a first decompression mechanism, and an evaporator are sequentially connected in a pipe, in a line between the first decompression mechanism and the evaporator. , A receiver and a second pressure reducing mechanism are connected to each other, and a dryness detecting means provided at the receiver inlet pipe, and a means for controlling the dryness detected by the dryness detector according to the operation state. This is achieved by providing:

【0013】上記第2の目的は、圧縮機、凝縮器、第一
の減圧機構、気液分離器、第二の減圧機構、蒸発器を順
次配管接続し、この気液分離器で分離された低乾き度冷
媒を蒸発器に流し、高乾き度の冷媒は圧縮機の圧縮過程
途中に流すようにした空気調和装置において、前記第一
の減圧機構及び第二の減圧機構の少なくとも一方を最小
冷媒流量をゼロを超える流量とすることによって達成さ
れる。
The second object is to sequentially connect a compressor, a condenser, a first pressure reducing mechanism, a gas-liquid separator, a second pressure reducing mechanism, and an evaporator with pipes, and to separate them by the gas-liquid separator. In an air conditioner in which a low-dryness refrigerant flows into an evaporator and a high-dryness refrigerant flows in the middle of a compression process of a compressor, at least one of the first pressure reduction mechanism and the second pressure reduction mechanism is a minimum refrigerant. Achieved by setting the flow rate above zero.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態について説明
する。図1は本発明の第一の実施の形態を示す構成図で
ある。冷房・暖房時等に冷媒の流れ方向を切換える四方
弁2は、圧縮機1に管路によって接続されている。冷房
時は凝縮器、暖房時は蒸発器として作用する室外熱交換
器3は四方弁2に接続されている。この室外熱交換器3
は、第一の減圧機構として動作する第一の電動膨張弁4
を介して気液分離器5と接続され、この気液分離器5
は、第二の減圧機構としての第二の電動膨張弁6を介し
て、冷房時は蒸発器、暖房時は凝縮器として作用する室
内熱交換器7に接続され、室内熱交換器7は四方弁2と接
続されている。
Embodiments of the present invention will be described. FIG. 1 is a configuration diagram showing a first embodiment of the present invention. The four-way valve 2 that switches the flow direction of the refrigerant during cooling or heating is connected to the compressor 1 by a pipe. The outdoor heat exchanger 3 that acts as a condenser during cooling and as an evaporator during heating is connected to the four-way valve 2. This outdoor heat exchanger 3
Is a first electric expansion valve 4 that operates as a first pressure reducing mechanism.
Is connected to the gas-liquid separator 5 through the
Is connected to an indoor heat exchanger 7 that acts as an evaporator during cooling and a condenser during heating through a second electric expansion valve 6 as a second pressure reducing mechanism. Connected to valve 2.

【0015】さらに、気液分離器5と圧縮機1の図示し
ない圧縮機構部の圧縮途中の作動室とを接続するインジ
ェクション用配管8、このインジェクション用配管8の
途中に設けられたインジェクションを作用させるときは
開となる二方弁9である。10は室外送風ファン、11
は室内送風ファンである。冷凍サイクルを構成する要素
のうち、圧縮機1、四方弁2、室外熱交換器3、第1の
電動膨張弁4、気液分離器5、第2の電動膨張弁、及び
二方弁9は室外機に、室内熱交換器7は室内機に配置さ
れている。
Further, an injection pipe 8 for connecting the gas-liquid separator 5 and a working chamber in the middle of compression of a compression mechanism (not shown) of the compressor 1, and an injection provided in the injection pipe 8 is operated. It is a two-way valve 9 that is open at times. 10 is an outdoor fan, 11
Is an indoor fan. Among the components that constitute the refrigeration cycle, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the first electric expansion valve 4, the gas-liquid separator 5, the second electric expansion valve, and the two-way valve 9 In the outdoor unit, the indoor heat exchanger 7 is arranged in the indoor unit.

【0016】さらに、12は外気温度センサ、13は室
温センサ、15は冷房時凝縮器温度センサ、16は冷房
時凝縮器出口温度センサ、17は暖房時凝縮器温度セン
サ、18は暖房時凝縮器出口温度センサであり、制御装
置19に接続されている。また、14は室温設定用リモ
コンである。
Further, 12 is an outside air temperature sensor, 13 is a room temperature sensor, 15 is a cooling condenser temperature sensor, 16 is a cooling condenser outlet temperature sensor, 17 is a heating condenser temperature sensor, and 18 is a heating condenser temperature sensor. The outlet temperature sensor is connected to the control device 19. Reference numeral 14 denotes a room temperature setting remote controller.

【0017】このような構成によって、ガスインジェク
ションサイクルを行う場合は気液分離を行うために気液
分離器5に冷媒を滞留させてガス冷媒を圧縮機1に注入
する。また、冷房・暖房において、圧縮機1を定格回転
数以下で運転する場合、ガスインジェクションの効果が
薄れてくるので、二方弁9を閉じてガスインジェクショ
ンを行わない。この場合、気液分離器内に冷媒を滞留さ
せないため余剰冷媒が発生し凝縮器となる熱交換器の過
冷却度(サブクール)が運転状態に対し不適正となり冷
凍サイクル性能が低下する場合がある。特に使用者が希
望する室内設定温度や外気温の変化により冷暖房の能力
が変化する場合は、凝縮圧力や蒸発圧力の変化に伴い、
熱交換器内の冷媒密度が変化し、熱交換器内の冷媒量が
変化するため過冷却度が適正値と異なる場合もある。
With such a configuration, when performing a gas injection cycle, refrigerant is retained in the gas-liquid separator 5 and gas refrigerant is injected into the compressor 1 in order to perform gas-liquid separation. Further, in the case of operating the compressor 1 at the rated speed or less in cooling / heating, the effect of gas injection is reduced, so that the two-way valve 9 is closed and gas injection is not performed. In this case, since the refrigerant does not stay in the gas-liquid separator, surplus refrigerant is generated, and the degree of subcooling (subcooling) of the heat exchanger serving as a condenser is inappropriate for the operation state, and the refrigeration cycle performance may be reduced. . In particular, when the cooling and heating capacity changes due to changes in the indoor set temperature or outside air temperature desired by the user, the change in the condensing pressure or the evaporating pressure causes
Since the refrigerant density in the heat exchanger changes and the amount of refrigerant in the heat exchanger changes, the degree of supercooling may differ from an appropriate value.

【0018】過冷却度の適正値は、熱交換器の大きさ、
熱交換器内の分岐配管数(パス数)等々種々の設計条
件、及び圧縮機の回転数、室内外の気温等々種々の運転
条件によって異なる。しかし、冷凍サイクル内に封入す
る冷媒の量を運転条件によって変化させることは困難で
ある。このため、空気調和装置を出荷するときに封入す
る冷媒の量は、定格条件で空気調和装置を運転させたと
きに最も成績係数(cop)がよい値を実験によって求
めることで決めている。しかし、前述したように、圧縮
機駆動用電動機はインバータによって主に設定室温と実
室内温度との偏差に基づいて回転数を変化させて運転さ
れているので、実際の運転は必ずしも定格で運転される
とは限らず、過冷却度が設定した値からずれてしまい成
績係数が低下してしまう。
The appropriate value of the degree of supercooling is determined by the size of the heat exchanger,
It depends on various design conditions such as the number of branch pipes (number of paths) in the heat exchanger, and various operating conditions such as the number of revolutions of the compressor and the indoor and outdoor temperatures. However, it is difficult to change the amount of the refrigerant sealed in the refrigeration cycle depending on the operating conditions. For this reason, the amount of refrigerant to be charged when the air-conditioning apparatus is shipped is determined by experimentally obtaining a value with the highest coefficient of performance (cop) when the air-conditioning apparatus is operated under rated conditions. However, as described above, the compressor driving motor is operated by changing the number of revolutions based on the deviation between the set room temperature and the actual room temperature mainly by the inverter. The degree of supercooling is not always limited to the set value, and the coefficient of performance is reduced.

【0019】そこで、本実施の形態では、ガスインジェ
クションを行わない運転となったとき気液分離器5を受
液器として機能させることとした。気液分離器5を受液
器として機能させるため、気液分離器5の配管前後に設
けられている第一の電動膨張弁4及び第二の電動膨張弁
6の開度を、凝縮器となる熱交換器の過冷却度をそのと
きの運転状態における適正値となるように、調節するよ
うにした。以下、この適正過冷却度(過冷却度指令)の
算出の仕方を説明する。
Therefore, in the present embodiment, the gas-liquid separator 5 is made to function as a liquid receiver when the operation is performed without performing gas injection. In order for the gas-liquid separator 5 to function as a liquid receiver, the opening degrees of the first electric expansion valve 4 and the second electric expansion valve 6 provided before and after the pipe of the gas-liquid separator 5 are determined by the condenser and the opening degree. The degree of supercooling of the heat exchanger was adjusted to an appropriate value in the operating state at that time. Hereinafter, a method of calculating the appropriate degree of supercooling (supercooling degree command) will be described.

【0020】制御装置19は、二方弁8が閉(=インジ
ェクション無し)であることを検出すると、リモコン1
5により送信される設定室温Tisetと、室内温度センサ
11により検出される室内温度Tiと、外気温度センサ
14により検出される外気温度Toから、冷房時は図
2、暖房時は図4に示されるデータに基づいて適正過冷
却度SCsetを演算する。
When the controller 19 detects that the two-way valve 8 is closed (= no injection), the remote controller 1
5 during the cooling operation and FIG. 4 during the heating operation, based on the set room temperature Tiset transmitted by 5, the indoor temperature Ti detected by the indoor temperature sensor 11, and the outside air temperature To detected by the outside air temperature sensor 14. An appropriate degree of supercooling SCset is calculated based on the data.

【0021】そして、この演算された過冷却度SCとな
るように、冷房時は第二の電動膨張弁6、暖房時は第一
の電動膨張弁4を制御する。制御されない他方の電動膨
張弁は適当に絞られる。なお、実際の過冷却度SCは、
凝縮器となる熱交換器に設けられた温度センサにより検
出される凝縮器温度Tcoutと、凝縮器出口温度センサに
より検出される凝縮器出口温度Tcとの差を求めること
で検出される。
Then, the second electric expansion valve 6 is controlled at the time of cooling, and the first electric expansion valve 4 is controlled at the time of heating so that the calculated supercooling degree SC is obtained. The other uncontrolled motorized expansion valve is throttled appropriately. The actual supercooling degree SC is
It is detected by calculating the difference between the condenser temperature Tcout detected by the temperature sensor provided in the heat exchanger serving as the condenser and the condenser outlet temperature Tc detected by the condenser outlet temperature sensor.

【0022】まず、ガスインジェクション無しの時にお
ける冷房時の動作について説明する。圧縮機1で圧縮さ
れた高温高圧の冷媒ガスは、四方弁2を通り、室外熱交
換器3で室外送風ファン10から送風される空気に放熱
して凝縮し、第一の電動膨張弁4で液とガスが混在する
気液二相の中間圧に減圧され、気液分離器5に流入す
る。気液分離器5では二相のため下部に液冷媒が滞留す
る。そして二方弁9は閉となっているためインジェクシ
ョン動作は行われず、第二の電動膨張弁6で低圧に減圧
され、室内熱交換器7で室内送風ファン11により送風
される空気から吸熱して蒸発し、四方弁2を通り再び圧
縮機1へ戻る。
First, the operation during cooling without gas injection will be described. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown from the outdoor blower fan 10 by the outdoor heat exchanger 3, condenses, and is condensed by the first electric expansion valve 4. The pressure is reduced to the intermediate pressure of the gas-liquid two-phase in which the liquid and the gas are mixed, and flows into the gas-liquid separator 5. In the gas-liquid separator 5, the liquid refrigerant stays in the lower part because of the two phases. Since the two-way valve 9 is closed, the injection operation is not performed, the pressure is reduced to a low pressure by the second electric expansion valve 6, and the indoor heat exchanger 7 absorbs heat from the air blown by the indoor blower fan 11. It evaporates and returns to the compressor 1 again through the four-way valve 2.

【0023】この時、第一の演算装置19は、外気温度
センサ12と室温センサ13と冷房時凝縮器温度センサ
15と冷房時凝縮器出口温度センサ16の出力、及び使
用者がリモコン14で設定した希望室温Tiset、室温T
i、外気温To、凝縮器中間温度Tc、及び凝縮器出口温
度Tcoを検出し、図2に示す予め第一の演算装置19内
のテーブルに記憶されたデータに基づいて適正過冷却度
SCset(適正過冷却度指令)を演算する。
At this time, the first arithmetic unit 19 outputs the outputs of the outside air temperature sensor 12, the room temperature sensor 13, the cooling condenser temperature sensor 15, and the cooling condenser outlet temperature sensor 16, and the user sets with the remote controller 14. Desired room temperature Tiset, room temperature T
i, the outside air temperature To, the condenser intermediate temperature Tc, and the condenser outlet temperature Tco are detected, and based on the data previously stored in the table in the first arithmetic unit 19 shown in FIG. Calculate the appropriate supercooling degree command).

【0024】さらに、凝縮器中間温度Tc及び凝縮器出
口温度Tcoから(Tc−Tco)を実際の過冷却度SCと
して演算する。そして、過冷却度SCが適正過冷却度S
Csetとなるように、第一の電動膨張弁及び第二の電動
膨張弁6の開度を調節する。過冷却度SCが適正過冷却
度SCsetに満たない場合、凝縮器内の液冷媒を増加さ
せる必要があるので、上流側の電動膨張弁を絞り下流側
の電動膨張弁を適正にする。反対に過冷却度SCが適正
過冷却度SCsetよりも大きい場合、気液分離器に液冷
媒をストックする必要があるので、上流側電動膨張弁を
適正に制御し下流側電動膨張弁を絞る制御を行う。な
お、この場合において、制御量が0である場合もその電
動膨張弁を制御するといえる。
Further, (Tc-Tco) is calculated as the actual degree of supercooling SC from the condenser intermediate temperature Tc and the condenser outlet temperature Tco. Then, the subcooling degree SC becomes the appropriate subcooling degree S.
The opening degree of the first electric expansion valve and the second electric expansion valve 6 is adjusted so as to be Cset. If the degree of supercooling SC is less than the appropriate degree of supercooling SCset, it is necessary to increase the amount of liquid refrigerant in the condenser. Therefore, the electric expansion valve on the upstream side is throttled, and the electric expansion valve on the downstream side is made appropriate. Conversely, if the degree of supercooling SC is larger than the appropriate degree of supercooling SCset, it is necessary to stock the liquid refrigerant in the gas-liquid separator, so that the upstream electric expansion valve is appropriately controlled and the downstream electric expansion valve is throttled. I do. In this case, even when the control amount is 0, it can be said that the electric expansion valve is controlled.

【0025】図2は室温Tiと設定温度Tisetとの差
(すなわち必要冷房能力)と外気温に対する適正過冷却
度の関係図である。冷房能力の増加に伴い適正過冷却度
も増加させるように設定されている。この条件は、予め
実験によって求めたものをデータベース化して第一の制
御装置19に記憶したものである。
FIG. 2 is a diagram showing the relationship between the difference between the room temperature Ti and the set temperature Tiset (that is, the required cooling capacity) and the appropriate degree of supercooling with respect to the outside air temperature. It is set so that the appropriate degree of supercooling increases with an increase in cooling capacity. These conditions are obtained by making a database obtained by an experiment in advance and storing it in the first control device 19.

【0026】このように適正過冷却度が算出される理由
を説明する。冷凍サイクル中の冷媒循環量をGr、凝縮
側エンタルピ差をΔhc、伝熱面積をA、熱通過率を
K、空気と冷媒の温度差をΔTとすると、冷房能力Qは
Q=Gr・Δhc=A・K・ΔTとして与えられるため、
必要冷房能力が大きくなると圧縮機回転数を増加させて
冷媒循環量Grを増加させて空気との温度差ΔTを大き
くする必要があるためである。
The reason why the appropriate degree of supercooling is calculated will be described. Assuming that the refrigerant circulation amount in the refrigeration cycle is Gr, the condensation-side enthalpy difference is Δhc, the heat transfer area is A, the heat transfer rate is K, and the temperature difference between air and refrigerant is ΔT, the cooling capacity Q is Q = Gr · Δhc = Given as A · K · ΔT,
This is because, when the required cooling capacity increases, it is necessary to increase the compressor rotation speed to increase the refrigerant circulation amount Gr and increase the temperature difference ΔT from the air.

【0027】すなわち、圧縮機回転数が増加すると、図
3に示すようにモリエル線図は破線から実線に示すよう
に変化し、過冷却度を増加させる必要があるためであ
る。さらに図2では外気温Toが高くなるほど適正過冷
却度SCは高くなるように設定されている。これは外気
温が高くなると、冷媒と空気との温度差を確保するため
に凝縮温度を上昇(凝縮器の圧力を上昇)させる必要が
あり、これに伴いやはり図3のモリエル線図に示すよう
に過冷却度が増加するためである。
That is, when the rotational speed of the compressor increases, the Mollier diagram changes from a broken line to a solid line as shown in FIG. 3, and it is necessary to increase the degree of supercooling. Further, in FIG. 2, the appropriate supercooling degree SC is set to increase as the outside air temperature To increases. This is because when the outside air temperature increases, it is necessary to increase the condensation temperature (increase the pressure of the condenser) in order to secure a temperature difference between the refrigerant and the air, and as a result, as shown in the Mollier diagram of FIG. This is because the degree of supercooling increases.

【0028】これにより例えば現在の室温Tiが28℃
で、使用者が希望する設定室温Tisetが27℃から24
℃に変化した場合(すなわち(Ti−Tiset)が増加し
た場合)、圧縮機回転数を増加させて冷媒循環量Grを
増して、この時、適正過冷却度SCsetは増加するの
で、設定室温を変更する前の過冷却度SCが適正過冷却
度SCsetとなるように、第一の電動膨張弁6を絞る方
向に、第二の電動膨張弁を開ける方向に(制御量0もあ
りうる)制御する。そして余剰冷媒(この場合減少する
が)は、気液二相が混在できる中間圧力の気液分離器5
内に滞留する。また外気温変化についても同様に制御さ
れる。すなわち、外気温が高いときに凝縮させるために
は圧力を増大させて温度偏差を大きくする必要があるか
らである。反対に使用者が希望する設定室温Tisetが2
4℃から27℃に変化した場合(すなわち(Ti−Tise
t)が減少した場合)は、適正過冷却度は小さくなるの
で、余剰冷媒が増加することとなるので、この余剰冷媒
を気液分離器にストックするため、第一の電動膨張弁の
絞り量を小さくして第二の電動膨張弁の絞り量を増大さ
せる(制御量0もありうる)。
As a result, for example, the current room temperature Ti is 28 ° C.
Then, the desired room temperature Tiset desired by the user is from 27 ° C. to 24
° C (that is, when (Ti-Tiset) increases), the compressor rotation speed is increased to increase the refrigerant circulation amount Gr. At this time, the appropriate subcooling degree SCset increases. Control is performed in the direction in which the first electric expansion valve 6 is throttled and in the direction in which the second electric expansion valve is opened (the control amount may be 0) so that the supercooling degree SC before the change becomes the appropriate supercooling degree SCset. I do. The surplus refrigerant (although it decreases in this case) is supplied to the intermediate-pressure gas-liquid separator 5 where gas-liquid two-phase can be mixed.
Stay inside. In addition, the outside air temperature change is similarly controlled. That is, in order to condense when the outside air temperature is high, it is necessary to increase the pressure to increase the temperature deviation. Conversely, the desired room temperature Tiset desired by the user is 2
When the temperature changes from 4 ° C. to 27 ° C. (that is, (Ti−Tise
When the value of t) decreases), the appropriate degree of supercooling decreases, and the excess refrigerant increases. Therefore, the excess refrigerant is stored in the gas-liquid separator. And the throttle amount of the second electric expansion valve is increased (the control amount may be 0).

【0029】次に暖房時の動作について説明する。暖房
時は圧縮機1で圧縮された高温高圧の冷媒ガスは、四方
弁2を通り、室内熱交換器7で室内送風ファン11によ
り送風される空気に放熱して凝縮し、第二の電動膨張弁
6で液とガスが混在する気液二相である中間圧に減圧さ
れて、気液分離器5に流入する、気液分離器5では二相
のため下部に液冷媒が滞留する。そして二方弁9が閉の
ためインジェクションは行われず、第一の電動膨張弁4
で低圧に減圧され、室外熱交換器3に流入して室外送風
ファン10により送風される空気から吸熱して蒸発し、
四方弁2を通り再び圧縮機1へ戻る。すなわち冷房運転
と逆の冷媒流れ方向となる。
Next, the operation during heating will be described. At the time of heating, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown by the indoor blower fan 11 in the indoor heat exchanger 7, and condenses. The pressure is reduced to an intermediate pressure which is a gas-liquid two-phase in which liquid and gas are mixed by the valve 6 and flows into the gas-liquid separator 5. In the gas-liquid separator 5, the liquid refrigerant stays at the lower part because of the two phases. Since the two-way valve 9 is closed, no injection is performed, and the first electric expansion valve 4
Is reduced to a low pressure, flows into the outdoor heat exchanger 3, absorbs heat from the air blown by the outdoor blower fan 10, and evaporates.
It returns to the compressor 1 again through the four-way valve 2. That is, the refrigerant flow direction is opposite to that of the cooling operation.

【0030】この時、第一の演算装置19は、外気温度
センサ12と室温センサ13と暖房時凝縮器温度センサ
17と暖房時凝縮器出口温度センサ18、及び使用者が
リモコン13で設定した設定温度を入力することで、希
望室温Tiset、室温Ti、外気温To、凝縮器中間温度T
c、及び凝縮器出口温度Tcoを検出し、図4に示すデー
タに基づいて適正過冷却度SCsetを演算する。
At this time, the first arithmetic unit 19 includes the outside air temperature sensor 12, the room temperature sensor 13, the heating condenser temperature sensor 17, the heating condenser outlet temperature sensor 18, and the settings set by the user with the remote controller 13. By inputting the temperature, the desired room temperature Tiset, room temperature Ti, outside temperature To, and condenser intermediate temperature T
c and the condenser outlet temperature Tco are detected, and the appropriate degree of supercooling SCset is calculated based on the data shown in FIG.

【0031】さらに、Tc−Tcoから実過冷却度SCを
演算し、過冷却度SCが適正過冷却度SCsetとなるよ
うに、第一の電動膨張弁及び第二の電動膨張弁4を制御
する。
Further, the actual supercooling degree SC is calculated from Tc-Tco, and the first electric expansion valve and the second electric expansion valve 4 are controlled so that the supercooling degree SC becomes an appropriate subcooling degree SCset. .

【0032】図4は室温Tiと設定温度Tisetとの差
(すなわち必要暖房能力)に対する適正過冷却度の関係
図で図2に示した冷房運転時と同様の考えに基づいて設
定されている。ここで冷房時と異なり外気温Toに対す
る関係が示されていないのは、暖房時における室外熱交
換器は蒸発器であり、蒸発器は凝縮器より冷媒の乾き度
が大きく、滞留する冷媒量が凝縮器より小さいので、外
気温Toの影響が小さいためである。
FIG. 4 is a diagram showing the relationship between the difference between the room temperature Ti and the set temperature Tiset (that is, the required heating capacity) and the appropriate degree of supercooling, which is set based on the same idea as in the cooling operation shown in FIG. Here, unlike the case of cooling, the relationship with respect to the outside air temperature To is not shown, because the outdoor heat exchanger during heating is an evaporator, the evaporator has a higher degree of dryness of the refrigerant than the condenser, and the amount of the retained refrigerant is smaller. This is because the influence of the outside air temperature To is small because it is smaller than the condenser.

【0033】これにより例えば現在の室温Tiが20℃
で、ユーザの希望する設定室温Tisetが22℃から25
℃に変化した場合、圧縮機回転数が増加し、適正過冷却
度SCsetは増加して、過冷却度SCが適正過冷却度S
Csetとなるように、第一の電動膨張弁4を開く(制御
量0もありうる)方向に、第二の電動膨張弁6を絞る方
向に制御するる。そして余剰冷媒は、気液二相が混在で
きる中間圧力の気液分離器5内に滞留する。反対にユー
ザの希望する設定室温Tisetが25℃から22℃に変化
した場合、適正過冷却度は減少するので、余剰冷媒を気
液分離器にストックするため、下流側の第1の電動膨張
弁4を絞る方向に、上流側の第二の電動膨張弁を開ける
(制御量0もありうる)方向に制御する。
Thus, for example, if the current room temperature Ti is 20 ° C.
Then, the set room temperature Tiset desired by the user is changed from 22 ° C. to 25.
° C, the compressor rotation speed increases, the appropriate supercooling degree SCset increases, and the supercooling degree SC changes to the appropriate supercooling degree S.
Control is performed such that the first electric expansion valve 4 is opened (the control amount may be 0) and the second electric expansion valve 6 is throttled so as to be Cset. The surplus refrigerant stays in the gas-liquid separator 5 at an intermediate pressure where gas-liquid two phases can coexist. Conversely, when the set room temperature Tiset desired by the user changes from 25 ° C. to 22 ° C., the appropriate degree of supercooling decreases, so that the excess refrigerant is stored in the gas-liquid separator. Control is performed in a direction to open the second electrically-operated expansion valve on the upstream side (a control amount may be 0) in a direction to reduce the number 4.

【0034】以上のようガスインジェクションサイクル
が可能な空気調和装置において、ガスインジェクション
無しの運転モード時にも、運転状態や外気温の変化に対
して適正な過冷却度が確保され、余剰冷媒は中間圧力と
なっている気液分離器5に滞留するので、過冷却度不適
正による性能低下を抑えることが出来る。
In the air conditioner capable of performing a gas injection cycle as described above, even in the operation mode without gas injection, an appropriate degree of supercooling is ensured with respect to changes in the operating state and the outside air temperature, and the excess refrigerant is maintained at the intermediate pressure. Stagnation in the gas-liquid separator 5, so that performance degradation due to improper degree of supercooling can be suppressed.

【0035】また、一方を過冷却制御用、他方を圧縮機
回転数等により決定される圧縮機吐出温度や過熱度とな
るように制御しても良い。この場合過冷却度と過熱度を
それぞれ最適値にでき、よりサイクルの適正化が行え、
より性能が確保される。
Further, one may be controlled so as to control the supercooling, and the other may be controlled so that the compressor discharge temperature or the degree of superheat is determined by the compressor rotation speed or the like. In this case, the degree of supercooling and the degree of superheating can be set to optimal values, and the cycle can be optimized.
More performance is ensured.

【0036】次に、実過冷却度を算出せずに過冷却度を
制御する第二実施の形態を図5に基づいて説明する。図
5は前実施の形態とは、過冷却度検出手段が無く、運転
状態を検出する室外ファン回転数センサ20、室内ファ
ン回転数センサ21が設置されている点が異なる。これ
らファンの回転数をパラメータとして電動膨張弁の開度
を決定するものである。
Next, a second embodiment for controlling the degree of supercooling without calculating the actual degree of supercooling will be described with reference to FIG. FIG. 5 is different from the previous embodiment in that there is no supercooling degree detecting means, and an outdoor fan speed sensor 20 and an indoor fan speed sensor 21 for detecting an operation state are provided. The degree of opening of the electric expansion valve is determined using the rotation speed of the fan as a parameter.

【0037】22は第二の制御装置で、冷房時は図6に
示すように凝縮器となる室外ファン回転数センサ20に
より検出される室外ファン回転数Nofanと設定過冷却度
SCsetから電動膨張弁6の適正開度を演算するもので
ある。暖房時は図7に示すように凝縮器となる室内ファ
ン回転数センサにより検出される室内ファン回転数Nif
anと適正過冷却度SCsetから電動膨張弁4の設定開度
を演算する。
Reference numeral 22 denotes a second control unit, which is an electric expansion valve during cooling, based on the outdoor fan speed Nofan detected by the outdoor fan speed sensor 20 serving as a condenser and the set subcooling degree SCset as shown in FIG. 6 to calculate the appropriate opening degree. During heating, as shown in FIG. 7, the indoor fan rotation speed Nif detected by an indoor fan rotation speed sensor serving as a condenser.
The set opening of the electric expansion valve 4 is calculated from an and the appropriate degree of supercooling SCset.

【0038】図6では冷房時の適正過冷却度SCsetと
上流側電動膨張弁開度の設定値を示し、室外ファン回転
数(=凝縮器側風量)により異なる。適正過冷却度SC
setが大きいほど膨張弁を閉じる指令を出すようになっ
ている。これは、適正過冷却度がSCset大きい場合は
上流側膨張弁を絞り、凝縮圧力を上げれば過冷却度が増
加するためである。また適正過冷却度が同じ場合、室外
ファン回転数が小さい(=凝縮器側風量が小さい)ほど
膨張弁を閉じる指令を出すようになっている。これは、
室外ファン回転数低下に伴い凝縮能力が低下しようとし
ても、膨張弁を閉じて凝縮圧力を上げて冷媒と空気の温
度差を確保することで、凝縮能力を増加させて過冷却度
を確保するためである。なお、下流側の電動膨張弁は上
流側の電動膨張弁と反対の動作をする。
FIG. 6 shows the set values of the appropriate supercooling degree SCset during cooling and the opening degree of the upstream electric expansion valve, and differs depending on the outdoor fan speed (= condenser side air flow). Proper subcooling degree SC
As the set is larger, a command to close the expansion valve is issued. This is because if the appropriate degree of subcooling is larger than SCset, the upstream expansion valve is throttled, and if the condensing pressure is increased, the degree of supercooling increases. When the appropriate degree of subcooling is the same, a command is issued to close the expansion valve as the outdoor fan speed decreases (= condenser-side airflow decreases). this is,
Even if the condensing capacity is going to decrease as the outdoor fan speed decreases, the expansion valve is closed and the condensing pressure is increased to secure the temperature difference between the refrigerant and the air. It is. The downstream electric expansion valve operates in the opposite direction to the upstream electric expansion valve.

【0039】暖房時の適正過冷却度と電動膨張弁開度の
設定値を示す図7も、図6と同様に凝縮器側風量に関す
る図で示されており、制御動作は冷房時と同様であるの
で説明は省略する。また、外気温と設定室温との差に対
しては前実施の形態で説明した現象に基づき膨張弁6の
開度が決定される。そして、適正過冷却度となり、余剰
冷媒は、中間圧力となっている気液分離器5内に滞留す
る。
FIG. 7 showing the set values of the appropriate degree of supercooling during heating and the opening of the electric expansion valve is also shown in a diagram relating to the air flow on the condenser side, similarly to FIG. 6, and the control operation is the same as that during cooling. Description is omitted because there is. Further, the opening degree of the expansion valve 6 is determined based on the phenomenon described in the previous embodiment for the difference between the outside air temperature and the set room temperature. Then, the degree of supercooling becomes appropriate, and the excess refrigerant stays in the gas-liquid separator 5 at the intermediate pressure.

【0040】以上のようガスインジェクションサイクル
が可能な空気調和装置において、余剰冷媒が発生するガ
スインジェクションを行わない運転モードの時にも、適
正な過冷却度が確保され、余剰冷媒は中間圧力となって
いる気液分離器5に滞留するので、過冷却度不適正によ
る性能低下を抑えることが出来る。さらに使用者の設定
温度、外気温、送風ファン回転数等の運転状態により決
定される過冷却度設定値に基づいて電動膨張弁を制御す
る、すなわち、過冷却度を検出しないので、温度センサ
数を低減でき、制御装置等の小型化が図れる。
In the air conditioner capable of performing a gas injection cycle as described above, a proper degree of supercooling is ensured even in an operation mode in which gas injection in which excess refrigerant is generated is not performed, and the excess refrigerant has an intermediate pressure. Since it stays in the gas-liquid separator 5, it is possible to suppress performance degradation due to improper degree of supercooling. Further, the electric expansion valve is controlled based on a supercooling degree set value determined by operating conditions such as a user's set temperature, an outside air temperature, and a number of rotations of a blower fan. And the size of the control device and the like can be reduced.

【0041】また本実施の形態、前実施の形態とも幅広
い「室温と設定温度との差」や「外気温」に対して制御
を行う場合を示したが、ある運転状態のみに実施しても
良く、この場合制御装置の制御メモリ容量を低減するこ
とが出来る。
In both the present embodiment and the previous embodiment, the case where control is performed for a wide range of "difference between room temperature and set temperature" and "outside air temperature" has been described. In this case, the control memory capacity of the control device can be reduced.

【0042】本発明の第三実施の形態について図8を用
いて説明する。図8において、23は第一の減圧機構4
と気液分離器5間のパイプに設けた乾き度検出手段とし
ての第一の静電容量センサ、24は第二の減圧機構6と
気液分離器5間のパイプに設けた乾き度検出手段として
の第二の静電容量センサ、25は第三の制御装置で、冷
房時は第一の静電容量センサ23の検出した気液分離器
内5への流入冷媒の乾き度と、気液分離器の内容積から
気液分離器5に滞留する冷媒量を演算し、さらに運転状
態から気液分離器5に滞留する冷媒量の適正値を演算
し、気液分離器5に滞留する冷媒量が適正値となるよう
に第二の電動膨張弁6を制御するように構成されてい
る。他の部分は前実施の形態と同様のため省略する。
A third embodiment of the present invention will be described with reference to FIG. In FIG. 8, reference numeral 23 denotes a first pressure reducing mechanism 4.
A first capacitance sensor as a dryness detecting means provided on a pipe between the gas and liquid separator 5 and a dryness detecting means 24 provided on a pipe between the second pressure reducing mechanism 6 and the gas / liquid separator 5 The second capacitance sensor as reference numeral 25 is a third control device. During cooling, the degree of dryness of the refrigerant flowing into the gas-liquid separator 5 detected by the first capacitance sensor 23 and the gas-liquid The amount of refrigerant staying in the gas-liquid separator 5 is calculated from the internal volume of the separator, and the appropriate value of the amount of refrigerant staying in the gas-liquid separator 5 is calculated from the operating state. It is configured to control the second electric expansion valve 6 so that the amount becomes an appropriate value. The other parts are the same as in the previous embodiment, and will not be described.

【0043】ここで滞留冷媒量は図9に示すように設定
されている。すなわち、設定温度との差が大きい、ある
いは外気温が高いほど滞留冷媒量は少なくなるように設
定されている。これは第一実施の形態の図2で前述した
通り、設定温度との差が大きい、あるいは外気温が高い
ほど適正過冷却度が大きい、すなわち冷凍サイクル内に
存在できる冷媒量が大きく余剰冷媒量は少ないためであ
る。暖房時は第二の静電容量センサ24の検出した気液
分離器5への流入冷媒の乾き度と、気液分離器5の内容
積から気液分離器5に滞留する冷媒量を演算し、さらに
運転状態から気液分離器5に滞留する冷媒の適正値を演
算し気液分離器5に滞留する冷媒量が適正値となるよう
に第一の電動膨張弁4を制御するように構成されてい
る。他の部分は冷房運転時と同様のため省略する。ここ
で滞留冷媒量は図10に示すように設定されており、冷
房時と同様に適正過冷却度が大きいほど滞留冷媒量は少
ない。
Here, the amount of staying refrigerant is set as shown in FIG. That is, it is set such that the larger the difference from the set temperature or the higher the outside air temperature, the smaller the amount of the staying refrigerant. As described above with reference to FIG. 2 of the first embodiment, the larger the difference from the set temperature, or the higher the outside air temperature, the larger the appropriate degree of supercooling. Is less. During heating, the degree of dryness of the refrigerant flowing into the gas-liquid separator 5 detected by the second capacitance sensor 24 and the amount of refrigerant remaining in the gas-liquid separator 5 are calculated from the internal volume of the gas-liquid separator 5. Further, an appropriate value of the refrigerant staying in the gas-liquid separator 5 is calculated from the operation state, and the first electric expansion valve 4 is controlled so that the amount of the refrigerant staying in the gas-liquid separator 5 becomes an appropriate value. Have been. The other parts are the same as those in the cooling operation, and will not be described. Here, the amount of staying refrigerant is set as shown in FIG. 10, and the amount of staying refrigerant is smaller as the appropriate degree of supercooling is larger, as in the case of cooling.

【0044】以上のように乾き度を検出できる静電容量
センサにより気液分離器内の滞留冷媒量を把握し、気液
分離器5内に運転状態に適した冷媒量を滞留させること
が出来るので、適正な過冷却度で運転することが出来、
余剰冷媒が発生するガスインジェクションを行わない運
転モードでの性能低下を抑えることが出来る。なお本実
施の形態ではガスインジェクション無しのモードについ
て示したが、ガスインジェクション有りの運転モードに
おいても気液分離器内に滞留する冷媒量の検出を行って
も良い、この場合気液分離器内の滞留冷媒量がある値以
上になったときに圧縮機に液冷媒が戻る「液インジェク
ション」が防止でき、液インジェクションによる圧縮機
の信頼性低下を抑えることが出来る。さらに静電容量セ
ンサをガスインジェクションパイプ7に設けて液インジ
ェクションを検出させても良い。
As described above, the amount of refrigerant retained in the gas-liquid separator can be grasped by the capacitance sensor capable of detecting the degree of dryness, and the amount of refrigerant suitable for the operation state can be retained in the gas-liquid separator 5. Therefore, it can be operated with an appropriate degree of subcooling,
It is possible to suppress performance degradation in an operation mode in which gas injection for generating excess refrigerant is not performed. In the present embodiment, the mode without gas injection has been described.However, even in the operation mode with gas injection, the amount of refrigerant remaining in the gas-liquid separator may be detected. It is possible to prevent "liquid injection" in which the liquid refrigerant returns to the compressor when the amount of staying refrigerant becomes a certain value or more, and it is possible to suppress a decrease in the reliability of the compressor due to liquid injection. Further, a capacitance sensor may be provided in the gas injection pipe 7 to detect liquid injection.

【0045】ところで、気液分離器前後の減圧機構に全
閉可能な電動膨張弁を使用した場合、外気温の低い季節
等に気液分離器に液冷媒が溜まり込み、減圧機構が全閉
のまま外気温が高い季節になると、気液分離器内の冷媒
温度が上昇して膨張し、圧力増加により破損する恐れが
あった。この問題を解決する実施の形態を図11及び図
12を用いて説明する。
When a fully-closed electric expansion valve is used for the pressure reducing mechanism before and after the gas-liquid separator, liquid refrigerant accumulates in the gas-liquid separator in a season when the outside air temperature is low, and the pressure reducing mechanism is completely closed. In a season when the outside air temperature is high as it is, the refrigerant temperature in the gas-liquid separator rises and expands, and there is a possibility that the refrigerant may be broken due to an increase in pressure. An embodiment for solving this problem will be described with reference to FIGS.

【0046】図11において、26は最小冷媒流量がゼ
ロを超える流量の第一の減圧機構としての第三の電動膨
張弁、27は最小冷媒流量がゼロを超える流量の第二の
減圧機構としての第四の電動膨張弁である。両電動膨張
弁の流量特性を図12に示す。他部分の構成は前実施の
形態と同様のため省略する。
In FIG. 11, reference numeral 26 denotes a third motor-operated expansion valve as a first pressure reducing mechanism having a minimum refrigerant flow rate exceeding zero, and reference numeral 27 denotes a second pressure reducing mechanism having a minimum refrigerant flow rate exceeding zero. This is the fourth electric expansion valve. FIG. 12 shows the flow characteristics of both electric expansion valves. The configuration of the other parts is the same as that of the previous embodiment, and will not be described.

【0047】以上のように構成することで外気温の低い
季節等に、気液分離器5に液冷媒が溜まり込んだ状態の
まま、外気温が高い季節になって気液分離器5内の冷媒
温度が上昇し、これに伴い容積が増加しても、気液分離
器前後の電動膨張弁は冷媒最小流量がゼロを超える、す
なわち全閉状態ではないので冷媒が気液分離器5から室
外熱交換器2あるいは室内熱交換器7に流出するので、
気液分離器5が内部圧力増加により破壊する恐れがなく
なる。
With the above arrangement, the liquid refrigerant is stored in the gas-liquid separator 5 in the season when the outside air temperature is low, and the season when the outside air temperature is high and the inside of the gas-liquid separator 5 Even if the refrigerant temperature rises and the volume increases accordingly, the electric expansion valves before and after the gas-liquid separator have a refrigerant minimum flow rate exceeding zero, that is, they are not in a fully closed state. Since it flows out to the heat exchanger 2 or the indoor heat exchanger 7,
The possibility that the gas-liquid separator 5 is broken due to an increase in internal pressure is eliminated.

【0048】なお、本実施の形態は気液分離器前後の膨
張弁について冷媒最小流量がゼロを超える膨張弁採用の
例を示したが、上流側と下流側の少なくともどちらか一
方の膨張弁に採用すればそこから冷媒は凝縮器あるいは
蒸発器に流出するので同様の効果が得られる。
In this embodiment, the expansion valve before and after the gas-liquid separator employs an expansion valve in which the minimum flow rate of the refrigerant exceeds zero, but at least one of the expansion valves on the upstream side and the downstream side is used. If adopted, the refrigerant flows out to the condenser or the evaporator, so that the same effect can be obtained.

【0049】ところで、以上説明した実施の形態は、ガ
スインジェクション回路が搭載された冷凍サイクルにつ
いて述べたが、これに限らずガスインジェクション回路
がついていない冷暖房冷凍サイクル、冷房専用冷凍サイ
クルにおいても、凝縮器と蒸発器を接続する配管途中
に、第一の電動膨張弁、気液分離器、第二の電動膨張
弁、その他必要なセンサを設けることにより同様の過冷
却度制御を行うことができる。
In the above-described embodiment, the refrigerating cycle equipped with the gas injection circuit has been described. However, the present invention is not limited to this. The same degree of supercooling control can be performed by providing a first electric expansion valve, a gas-liquid separator, a second electric expansion valve, and other necessary sensors in the middle of a pipe connecting the gas and the evaporator.

【0050】以上本実施の形態によれば、ガスインジェ
クションが可能な空気調和装置において、余剰冷媒が発
生するガスインジェクション無しの運転モードでも、過
冷却度が運転状態に対応して最適に制御されるので、ガ
スインジェクション無し時に起こりうる性能低下を抑え
られるという効果がある。
According to the present embodiment, in the air conditioner capable of gas injection, the degree of supercooling is optimally controlled in accordance with the operating state even in the operation mode without gas injection in which excess refrigerant is generated. Therefore, there is an effect that performance degradation that can occur without gas injection can be suppressed.

【0051】また、気液分離器前後の電動膨張弁の冷媒
最小流量がゼロを超える、すなわち全閉状態ではないの
で気液分離器内の冷媒が膨張しても室外熱交換器や室内
熱交換器に流出するので気液分離器が破壊する恐れがな
い。
Further, since the minimum refrigerant flow rate of the electric expansion valves before and after the gas-liquid separator exceeds zero, that is, it is not in a fully closed state, even if the refrigerant in the gas-liquid separator expands, the outdoor heat exchanger or indoor heat exchange Since it flows into the vessel, there is no danger of breaking the gas-liquid separator.

【0052】[0052]

【発明の効果】以上本発明によれば、ガスインジェクシ
ョン回路を接続した冷凍サイクルを用いた空気調和装
置、若しくはガスインジェクション回路を接続しない冷
凍サイクルを用いた空気調和装置において、前者におい
てはガスインジェクションを行わないときの性能向上を
図り、後者においてはその性能向上を図った空気調和装
置を提供することができる。
As described above, according to the present invention, in an air conditioner using a refrigeration cycle to which a gas injection circuit is connected or an air conditioner using a refrigeration cycle to which no gas injection circuit is connected, the former uses gas injection. It is possible to provide an air conditioner in which the performance is improved when not performed, and in the latter case, the performance is improved.

【0053】さらに本発明によれば、ガスインジェクシ
ョンが可能な空気調和装置において気液分離器の冷媒膨
張による破損の恐れを防止することにある。
Still another object of the present invention is to prevent a gas-liquid separator from being damaged due to refrigerant expansion in an air conditioner capable of gas injection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施の形態の空気調和装置の構成
FIG. 1 is a configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】冷房時の運転条件と過冷却度の関係図FIG. 2 is a diagram showing the relationship between operating conditions during cooling and the degree of supercooling.

【図3】過冷却度を説明するモリエル線図FIG. 3 is a Mollier diagram illustrating a degree of supercooling.

【図4】冷房時の運転条件と過冷却度の関係図FIG. 4 is a diagram showing the relationship between operating conditions during cooling and the degree of supercooling.

【図5】本発明の第二実施の形態の空気調和装置の構成
FIG. 5 is a configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図6】冷房時の適正過冷却度と電動膨張弁開度の関係
FIG. 6 is a relationship diagram between an appropriate degree of supercooling during cooling and an opening degree of an electric expansion valve.

【図7】暖房時の適正過冷却度と電動膨張弁開度の関係
FIG. 7 is a diagram showing the relationship between the appropriate degree of supercooling during heating and the degree of opening of the electric expansion valve.

【図8】本発明の第三実施の形態の空気調和装置の構成
FIG. 8 is a configuration diagram of an air conditioner according to a third embodiment of the present invention.

【図9】冷房時の運転条件と滞留冷媒の関係図FIG. 9 is a diagram showing the relationship between the operating conditions during cooling and the staying refrigerant.

【図10】暖房時の運転条件と滞留冷媒の関係図FIG. 10 is a diagram showing the relationship between the operating conditions during heating and the staying refrigerant.

【図11】本発明の第四実施の形態の空気調和装置の構
成図
FIG. 11 is a configuration diagram of an air conditioner according to a fourth embodiment of the present invention.

【図12】電動膨張弁開度と流量の関係図FIG. 12 is a diagram showing the relationship between the electric expansion valve opening and the flow rate.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、4…第一
の電動膨張弁、5…気液分離器、6…第二の電動膨張
弁、7…室内熱交換器、8…インジェクション用配管、
9…二方弁、10…室外送風ファン、11…室内送風フ
ァン、12…外気温度センサ、13…室温センサ、14
…室温設定用リモコン、15…冷房時凝縮温度センサ、
16…冷房時凝縮器出口温度センサ、17…暖房時凝縮
温度センサ、18…暖房時凝縮器出口温度センサ、19
…制御装置、20…室外ファン回転数センサ、21…室
内ファン回転数センサ、22…第二の制御装置、23…
第一の静電容量センサ、24…第二の静電容量センサ、
25…第三の制御装置、26…第三の電動膨張弁、27
…第四の電動膨張弁。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... First electric expansion valve, 5 ... Gas-liquid separator, 6 ... Second electric expansion valve, 7 ... Indoor heat exchanger, 8 … Injection piping,
9 ... two-way valve, 10 ... outdoor blower fan, 11 ... indoor blower fan, 12 ... outdoor air temperature sensor, 13 ... room temperature sensor, 14
... room temperature setting remote control, 15 ... condensing temperature sensor for cooling,
16: Cooling condenser outlet temperature sensor, 17: Heating condensation temperature sensor, 18: Heating condenser outlet temperature sensor, 19
... Control device, 20 ... Outdoor fan speed sensor, 21 ... Indoor fan speed sensor, 22 ... Second control device, 23 ...
A first capacitance sensor, 24 ... a second capacitance sensor,
25 ... third control device, 26 ... third electric expansion valve, 27
... the fourth electric expansion valve.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、第一の減圧機構、蒸発器
を順次配管接続した空気調和装置において、前記第一の
減圧機構と蒸発器との間の管路途中に受液器及び第二の
減圧機構を接続した空気調和装置。
1. An air conditioner in which a compressor, a condenser, a first decompression mechanism, and an evaporator are sequentially connected by piping, wherein a liquid receiver and a receiver are provided in the middle of a pipe between the first decompression mechanism and the evaporator. An air conditioner to which a second pressure reducing mechanism is connected.
【請求項2】請求項1において、前記受液器と前記圧縮
機とを二方弁を介して管路により接続し、この二方弁が
開いているとき、前記受液器は気液分離器として作用
し、この気液分離器で分離された低乾き度冷媒を蒸発器
に流し、高乾き度の冷媒は圧縮機の圧縮過程途中に流す
ようにした空気調和装置。
2. The apparatus according to claim 1, wherein the liquid receiver and the compressor are connected by a pipe via a two-way valve, and when the two-way valve is open, the liquid receiver is separated by a gas-liquid separator. An air conditioner that acts as a compressor, and allows the low-dryness refrigerant separated by the gas-liquid separator to flow to the evaporator, and the high-dryness refrigerant to flow during the compression process of the compressor.
【請求項3】圧縮機、凝縮器、第一の減圧機構、蒸発器
を順次配管接続した空気調和装置において、前記第一の
減圧機構と蒸発器との間の管路途中に受液器及び第二の
減圧機構を接続し、前記凝縮器の過冷却度を検出する過
冷却度検出手段と、この検出された過冷却度が運転状態
に応じた値になるように前記第一及び第二の減圧機構の
減圧量を調整する手段とを備えた空気調和装置。
3. An air conditioner in which a compressor, a condenser, a first decompression mechanism, and an evaporator are sequentially connected by piping, wherein a liquid receiver and a receiver are provided in the middle of a pipe between the first decompression mechanism and the evaporator. A second pressure reducing mechanism connected thereto, a supercooling degree detecting means for detecting the degree of supercooling of the condenser, and the first and second supercooling degrees so that the detected degree of supercooling becomes a value corresponding to an operation state. Means for adjusting the pressure reduction amount of the pressure reduction mechanism.
【請求項4】請求項3において、前記受液器と前記圧縮
機とを二方弁を介して管路により接続し、この二方弁が
開いているとき、前記受液器は気液分離器として作用
し、この気液分離器で分離された低乾き度冷媒を蒸発器
に流し、高乾き度の冷媒は圧縮機の圧縮過程途中に流す
ようにした空気調和装置。
4. The liquid receiver according to claim 3, wherein the liquid receiver and the compressor are connected by a pipe via a two-way valve, and when the two-way valve is open, the liquid receiver is separated by a gas-liquid separator. An air conditioner that acts as a compressor, and allows the low-dryness refrigerant separated by the gas-liquid separator to flow to the evaporator, and the high-dryness refrigerant to flow during the compression process of the compressor.
【請求項5】圧縮機、凝縮器、第一の減圧機構、蒸発器
を順次配管接続した空気調和装置において、前記第一の
減圧機構と蒸発器との間の管路途中に受液器及び第二の
減圧機構を接続し、運転状態により決定される過冷却度
設定値に基づいて前記第一の減圧機構及び前記第二の減
圧機構の減圧量を調整する手段とを備えた空気調和装
置。
5. An air conditioner in which a compressor, a condenser, a first pressure reducing mechanism, and an evaporator are sequentially connected by piping, wherein a liquid receiver and a liquid receiver are provided in the middle of a pipe between the first pressure reducing mechanism and the evaporator. An air conditioner, comprising: a second pressure reducing mechanism connected thereto, and a unit configured to adjust a reduced pressure amount of the first pressure reducing mechanism and the second pressure reducing mechanism based on a subcooling degree set value determined by an operation state. .
【請求項6】請求項5において、前記受液器と前記圧縮
機とを二方弁を介して管路により接続し、この二方弁が
開いているとき、前記受液器は気液分離器として作用
し、この気液分離器で分離された低乾き度冷媒を蒸発器
に流し、高乾き度の冷媒は圧縮機の圧縮過程途中に流す
ようにした空気調和装置。
6. The liquid receiver according to claim 5, wherein the liquid receiver and the compressor are connected by a pipe via a two-way valve, and when the two-way valve is open, the liquid receiver is separated from the gas-liquid separator. An air conditioner that acts as a compressor, and allows the low-dryness refrigerant separated by the gas-liquid separator to flow to the evaporator, and the high-dryness refrigerant to flow during the compression process of the compressor.
【請求項7】圧縮機、凝縮器、第一の減圧機構、蒸発器
を順次配管接続した空気調和装置において、前記第一の
減圧機構と蒸発器との間の管路途中に受液器及び第二の
減圧機構を接続し、前記受液器入口パイプに設けられた
乾き度検出手段と、この乾き度検出手段により検出され
た乾き度を運転状態に応じて制御する手段とを備えた空
気調和装置。
7. An air conditioner in which a compressor, a condenser, a first depressurizing mechanism, and an evaporator are sequentially connected by piping, wherein a liquid receiver and a receiver are provided in the middle of a pipe between the first depressurizing mechanism and the evaporator. An air having a second decompression mechanism connected thereto, comprising: a dryness detection means provided at the liquid inlet pipe; and a means for controlling the dryness detected by the dryness detection means in accordance with an operation state. Harmony equipment.
【請求項8】請求項7において、前記受液器と前記圧縮
機とを二方弁を介して管路により接続し、この二方弁が
開いているとき、前記受液器は気液分離器として作用
し、この気液分離器で分離された低乾き度冷媒を蒸発器
に流し、高乾き度の冷媒は圧縮機の圧縮過程途中に流す
ようにした空気調和装置。
8. The apparatus according to claim 7, wherein the liquid receiver and the compressor are connected by a pipe via a two-way valve, and when the two-way valve is open, the liquid receiver separates the gas and the liquid. An air conditioner that acts as a compressor, and allows the low-dryness refrigerant separated by the gas-liquid separator to flow to the evaporator, and the high-dryness refrigerant to flow during the compression process of the compressor.
【請求項9】圧縮機、凝縮器、第一の減圧機構、気液分
離器、第二の減圧機構、蒸発器を順次配管接続し、この
気液分離器で分離された低乾き度冷媒を蒸発器に流し、
高乾き度の冷媒は圧縮機の圧縮過程途中に流すようにし
た空気調和装置において、前記第一の減圧機構及び第二
の減圧機構の少なくとも一方を最小冷媒流量をゼロを超
える流量とした空気調和装置。
9. A compressor, a condenser, a first depressurizing mechanism, a gas-liquid separator, a second depressurizing mechanism, and an evaporator are sequentially connected to a pipe, and the low-dryness refrigerant separated by the gas-liquid separator is supplied to the compressor. Pour into the evaporator,
In an air conditioner in which a high-dryness refrigerant flows in the middle of a compression process of a compressor, an air conditioner in which at least one of the first pressure reducing mechanism and the second pressure reducing mechanism has a minimum refrigerant flow rate exceeding zero. apparatus.
JP2000276610A 2000-09-07 2000-09-07 Air conditioner Pending JP2002081767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000276610A JP2002081767A (en) 2000-09-07 2000-09-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000276610A JP2002081767A (en) 2000-09-07 2000-09-07 Air conditioner

Publications (1)

Publication Number Publication Date
JP2002081767A true JP2002081767A (en) 2002-03-22

Family

ID=18762043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276610A Pending JP2002081767A (en) 2000-09-07 2000-09-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002081767A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
JP2008196777A (en) * 2007-02-13 2008-08-28 Mitsubishi Electric Corp Heat exchange apparatus for water
EP1970653A1 (en) * 2005-12-16 2008-09-17 Daikin Industries, Limited Air conditioner
JP2009085571A (en) * 2007-10-03 2009-04-23 Daikin Ind Ltd Absorption type refrigerating device
JP2009092317A (en) * 2007-10-10 2009-04-30 Daikin Ind Ltd Absorption type refrigerating device
WO2009103472A1 (en) * 2008-02-20 2009-08-27 Carrier Corporation Method of controlling a heat-rejection heat exchanging side of a refrigerant circuit
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2011069570A (en) * 2009-09-28 2011-04-07 Fujitsu General Ltd Heat pump cycle device
JP2011094810A (en) * 2009-09-30 2011-05-12 Fujitsu General Ltd Heat pump cycle apparatus
KR101160350B1 (en) * 2004-10-28 2012-06-28 삼성전자 주식회사 Air conditioner
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
CN102927640A (en) * 2012-11-09 2013-02-13 沈阳建筑大学 Phase change heat storage type air condition cooling reservoir
CN103162328A (en) * 2011-12-19 2013-06-19 松下电器产业株式会社 Hydronic heater
CN103344066A (en) * 2013-07-15 2013-10-09 江苏七政新能源有限公司 Bent tube type cooler
WO2013165535A1 (en) * 2012-05-03 2013-11-07 Carrier Corporation Air conditioning system having supercooled phase change material
JP2014009928A (en) * 2012-07-02 2014-01-20 Toshiba Carrier Corp Show case
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
KR101502011B1 (en) * 2008-09-30 2015-03-12 엘지전자 주식회사 Method for setting the over cooling degree of an air-conditioner
JP2015068614A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Refrigeration unit
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
CN104937350A (en) * 2013-01-29 2015-09-23 大金工业株式会社 Air conditioner
JP2017503141A (en) * 2014-01-17 2017-01-26 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft How to set the size of the heat transfer surface
JP2018059648A (en) * 2016-10-04 2018-04-12 パナソニックIpマネジメント株式会社 Dual heat pump device
WO2024009351A1 (en) * 2022-07-04 2024-01-11 三菱電機株式会社 Refrigeration cycle device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
KR101160350B1 (en) * 2004-10-28 2012-06-28 삼성전자 주식회사 Air conditioner
EP1970653A1 (en) * 2005-12-16 2008-09-17 Daikin Industries, Limited Air conditioner
EP1970653A4 (en) * 2005-12-16 2014-07-23 Daikin Ind Ltd Air conditioner
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP2008196777A (en) * 2007-02-13 2008-08-28 Mitsubishi Electric Corp Heat exchange apparatus for water
JP2009085571A (en) * 2007-10-03 2009-04-23 Daikin Ind Ltd Absorption type refrigerating device
JP2009092317A (en) * 2007-10-10 2009-04-30 Daikin Ind Ltd Absorption type refrigerating device
WO2009103472A1 (en) * 2008-02-20 2009-08-27 Carrier Corporation Method of controlling a heat-rejection heat exchanging side of a refrigerant circuit
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
KR101502011B1 (en) * 2008-09-30 2015-03-12 엘지전자 주식회사 Method for setting the over cooling degree of an air-conditioner
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
US8978402B2 (en) 2009-09-28 2015-03-17 Fujitsu General Limited Heat pump apparatus
JP2011069570A (en) * 2009-09-28 2011-04-07 Fujitsu General Ltd Heat pump cycle device
JP2011094810A (en) * 2009-09-30 2011-05-12 Fujitsu General Ltd Heat pump cycle apparatus
EP2607809A3 (en) * 2011-12-19 2014-05-14 Panasonic Corporation Hydronic heater
CN103162328A (en) * 2011-12-19 2013-06-19 松下电器产业株式会社 Hydronic heater
WO2013165535A1 (en) * 2012-05-03 2013-11-07 Carrier Corporation Air conditioning system having supercooled phase change material
CN104246378A (en) * 2012-05-03 2014-12-24 开利公司 Air conditioning system having supercooled phase change material
JP2014009928A (en) * 2012-07-02 2014-01-20 Toshiba Carrier Corp Show case
CN102927640A (en) * 2012-11-09 2013-02-13 沈阳建筑大学 Phase change heat storage type air condition cooling reservoir
CN104937350A (en) * 2013-01-29 2015-09-23 大金工业株式会社 Air conditioner
CN104937350B (en) * 2013-01-29 2017-03-08 大金工业株式会社 Air-conditioning device
CN103344066A (en) * 2013-07-15 2013-10-09 江苏七政新能源有限公司 Bent tube type cooler
JP2015068614A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Refrigeration unit
JP2017503141A (en) * 2014-01-17 2017-01-26 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft How to set the size of the heat transfer surface
US9885505B2 (en) 2014-01-17 2018-02-06 Siemens Aktiengesellschaft Method for configuring the size of a heat transfer surface
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
JP5797354B1 (en) * 2014-03-07 2015-10-21 三菱電機株式会社 Air conditioner
AU2014385084B2 (en) * 2014-03-07 2017-08-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US10655900B2 (en) 2014-03-07 2020-05-19 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2018059648A (en) * 2016-10-04 2018-04-12 パナソニックIpマネジメント株式会社 Dual heat pump device
WO2024009351A1 (en) * 2022-07-04 2024-01-11 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2002081767A (en) Air conditioner
EP2083230B1 (en) Air conditioning system
JP4725387B2 (en) Air conditioner
JP4321095B2 (en) Refrigeration cycle equipment
EP2068096B1 (en) Refrigeration device
JP4895883B2 (en) Air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
WO2016171052A1 (en) Refrigeration cycle device
JP4375171B2 (en) Refrigeration equipment
US11268737B2 (en) Refrigeration cycle apparatus
WO2014091909A1 (en) Heat pump-type heating device
WO2006013938A1 (en) Freezing apparatus
WO2007026620A1 (en) Air conditioner
JP4206870B2 (en) Refrigeration cycle equipment
GB2564009A (en) Air conditioner
JPH0599525A (en) Multi-chamber type air conditioner
JP2001280669A (en) Refrigerating cycle device
WO2007102345A1 (en) Refrigeration device
WO2020262624A1 (en) Refrigeration device
WO2023190140A1 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP2008096072A (en) Refrigerating cycle device
JP7375167B2 (en) heat pump
JP3317170B2 (en) Refrigeration equipment
JP2004286266A (en) Refrigeration device and heat pump type cooling and heating machine