WO2020156202A1 - 射频通道的校正方法和装置及天线和基站 - Google Patents

射频通道的校正方法和装置及天线和基站 Download PDF

Info

Publication number
WO2020156202A1
WO2020156202A1 PCT/CN2020/072465 CN2020072465W WO2020156202A1 WO 2020156202 A1 WO2020156202 A1 WO 2020156202A1 CN 2020072465 W CN2020072465 W CN 2020072465W WO 2020156202 A1 WO2020156202 A1 WO 2020156202A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
correction signal
interface
circuit
Prior art date
Application number
PCT/CN2020/072465
Other languages
English (en)
French (fr)
Inventor
肖伟宏
王琳琳
龚兰平
陈蕾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20747743.1A priority Critical patent/EP3905552B1/en
Publication of WO2020156202A1 publication Critical patent/WO2020156202A1/zh
Priority to US17/388,872 priority patent/US11784728B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • This application relates to communication technology, and in particular to a method and device for calibrating a radio frequency channel, an antenna and a base station.
  • base station antennas have shown a multi-port and diversified development trend, including Multiple-Input Multiple-Output (MIMO), Beamforming (Beamforming, BF), Massive MIMO (Massive MIMO) , MM) and other antenna technologies, its smart beam characteristics all need to correct the phase and amplitude of the radio frequency channel of the base station.
  • MIMO Multiple-Input Multiple-Output
  • Beamforming Beamforming, BF
  • Massive MIMO Massive MIMO
  • MM Massive MIMO
  • other antenna technologies its smart beam characteristics all need to correct the phase and amplitude of the radio frequency channel of the base station.
  • This application provides a method and device for radio frequency channel correction, antenna and base station, which can reduce the interference of the signal on the main feed circuit to the correction signal, ensure the correctness of the correction result, and be compatible with various RRU equipment.
  • the present application provides an antenna including: three or more radio frequency interfaces and a feeder network arranged between the three or more radio frequency interfaces, and the three or more radio frequency interfaces are respectively connected to a radio frequency channel with the RRU; wherein , The first interface is used to receive signals from the RRU and transmit the signals to the second interface through the feeder network; the second interface is used to send signals to the RRU; the second interface is one of more than three radio frequency interfaces, the first One interface is the radio frequency interface excluding the second interface among more than three radio frequency interfaces; the feeding network includes the main feeding circuit, the correction signal circuit and the switch; the correction signal circuit is used to transmit the correction signal from the first interface to the second interface , The correction signal is used to correct the phase and amplitude of the radio frequency channel connected to the first interface; the switch is used to isolate the correction signal from the signal on the main feed circuit.
  • a certain radio frequency channel between the antenna and the RRU is used to calibrate other radio frequency channels, so that the phase and amplitude of other radio frequency channels are consistent. , It not only avoids the interference of the signal on the main circuit of the feeder to the correction signal, and obtains accurate correction and compensation information, but also does not need to increase the installation and connection of the additional correction channel, which is compatible with various RRU equipment.
  • the switch is arranged on the main feed circuit.
  • the space switch isolates the correction signal from the signal on the main feed circuit by turning off the main feed circuit; or, when the switch is a time switch, the time switch increases the signal on the main feed circuit The time delay isolates the correction signal from the signal on the main feeding circuit; or, when the switch is a frequency switch, the frequency switch corrects the correction signal and the signal on the main feeding circuit by changing the frequency of the signal on the main feeding circuit Be isolated.
  • This application adds a switch to the main feed circuit in the feed network between the antenna and the RRU, and realizes that a certain radio frequency channel between the antenna and the RRU is used to calibrate other radio frequency channels, so that other radio frequency channels
  • the phase and amplitude are kept consistent, which not only avoids the interference of the signal on the main circuit of the feeder on the correction signal, and obtains accurate correction and compensation information, but also does not require the installation and connection of additional correction channels, which is compatible with various RRU equipment.
  • the switch is arranged on the correction signal circuit.
  • the space switch first turns off the correction signal circuit to obtain the signal on the main feeding circuit, and then connects to the correction signal circuit to obtain the mixed signal of the correction signal and the signal on the main feeding circuit, and finally through the mixed signal and the feed
  • the signal on the electrical main circuit isolates the correction signal from the signal on the main feed circuit; or, when the switch is a time switch, the time switch performs the correction signal and the signal on the main feed circuit by increasing the delay of the correction signal Isolation; or, when the switch is a frequency switch, the frequency switch isolates the correction signal from the signal on the main feed circuit by changing the frequency of the correction signal.
  • At least two couplers are further provided on the correction signal circuit; wherein, the first coupler is used to couple the correction signal from the main feed circuit to the correction signal circuit, and the first coupler is at least two One of the two couplers; the second coupler is used for coupling the correction signal from the correction signal circuit to the main feed circuit, and the second coupler is one of the at least two couplers except the first coupler.
  • the present application provides a base station, including: an antenna and a remote radio unit RRU; the antenna adopts any one of the antennas in the first aspect; there are more than three radio frequency channels between the RRU and the antenna, among which, the first channel Is the radio frequency channel connected to the first interface in the antenna, the second channel is the radio frequency channel connected to the second interface in the antenna; the second channel is one of more than three radio frequency channels, and the first channel is more than three radio frequency channels RF channels except for the second channel.
  • the first channel and the second channel are connected to different radio frequency interfaces of the RRUs respectively; or, when the number of RRUs is more than two, the first channel The second channel and the second channel are respectively connected to different radio frequency interfaces of different RRUs.
  • the present application provides a method for calibrating a radio frequency channel.
  • the method is applied to the base station of the second aspect.
  • the method includes: transmitting a calibration signal to a first interface respectively connected to an antenna through two or more first channels;
  • the correction signal is isolated from the signal on the main feed circuit, and the correction signal is transmitted to the second interface;
  • the correction signal is received through the second channel connected to the second interface;
  • the correction signal is obtained according to the received correction signal for two or more first Compensation information for the phase and amplitude of the channel.
  • This application realizes the use of a certain radio frequency channel between the antenna and the RRU to calibrate other radio frequency channels, so that the phase and amplitude of other radio frequency channels are kept consistent, which avoids the signal on the main circuit of the feeder to the correction signal. Interference, accurate correction and compensation information is obtained, and the installation and connection of additional correction channels are not needed, which can be compatible with various RRU devices.
  • the two or more first channels and the second channels are respectively radio frequency channels between different radio frequency interfaces on the same RRU and the radio frequency interface of the antenna.
  • two or more first channels and second channels are radio frequency channels between radio frequency interfaces on different RRUs and radio frequency interfaces of antennas.
  • the present application provides a radio frequency channel correction device.
  • the device is set on the base station of the second aspect described above.
  • the device includes: a transmitting module for connecting to the first antennas of the antennas through two or more first channels.
  • the interface transmits the correction signal;
  • the isolation module is used to isolate the correction signal and the signal on the main feed circuit, and transmits the correction signal to the second interface;
  • the receiving module is used to receive through the second channel connected to the second interface Correction signal;
  • a correction module for obtaining compensation information for the phase and amplitude of two or more first channels according to the received correction signal.
  • the two or more first channels and the second channels are respectively radio frequency channels between different radio frequency interfaces on the same RRU and the radio frequency interface of the antenna.
  • two or more first channels and second channels are radio frequency channels between radio frequency interfaces on different RRUs and radio frequency interfaces of antennas.
  • the present application provides a computer-readable storage medium, which stores instructions, and when the instructions are run on a computer, they are used to execute the method of any one of the above-mentioned third aspects.
  • the present application provides a computer program, which is characterized in that, when the computer program is executed by a computer, it is used to execute any one of the methods in the third aspect.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the antenna of this application.
  • FIG. 6 and Figure 7 are two schematic structural diagrams of an embodiment of a base station according to this application.
  • FIG. 8 is a flowchart of an embodiment of a method for calibrating a radio frequency channel of this application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a correction device for a radio frequency channel of this application.
  • Fig. 1 is a schematic structural diagram of antenna embodiment 1 of this application.
  • this application provides an antenna 0, which may include more than three radio frequency interfaces (for example, four radio frequency interfaces DIN1 and DIN2 are shown in the figure. , DIN3 and DIN4) and a feeder network 5 arranged between more than three radio frequency interfaces, which are respectively connected to a radio frequency channel with RRU6 (for example, four radio frequency channels 7-10 are shown in the figure) , Where RF channel 7 is the RF channel between RRU6 and RF interface DIN1 in antenna 0, RF channel 8 is the RF channel between RRU6 and RF interface DIN2 in antenna 0, and RF channel 9 is between RRU6 and antenna 0.
  • RRU6 radio frequency channel 7
  • RF channel 8 is the RF channel between RRU6 and RF interface DIN2 in antenna
  • RF channel 9 is between RRU6 and antenna 0.
  • the radio frequency channel between the radio frequency interface DIN3, the radio frequency channel 10 is the radio frequency channel between the RRU6 and the radio frequency interface DIN4 in the antenna 0).
  • the first interface (such as DIN2 and DIN4) is used to receive signals from RRU6 and transmit the signals to the second interface (such as DIN1) through the feeder network 5, and the second interface (such as DIN1) is used to send signals to the RRU .
  • the feed network 5 includes a correction signal circuit 51, a feed main circuit 52, and a switch 53
  • the correction signal circuit 51 is used to transmit the correction signal from the first interface to the second interface (for example, DIN4 and DIN1, DIN2 and
  • the correction signal circuit 51 between DIN1, the direction of the signal flow is from DIN4 to DIN1, from DIN2 to DIN1)
  • the correction signal is used to correct the phase of the radio frequency channels connected to the first interface (for example, radio frequency channels 10 and 8) And amplitude.
  • the main feeder circuit 52 is used to transmit the main signal from the first interface to the second interface (for example, the main feeder circuit 52 between DIN4 and DIN1, DIN2 and DIN1 is shown in the figure, and the signal flow direction is from DIN4 To DIN1, from DIN2 to DIN1).
  • the switch 53 is used to isolate the correction signal from the signal on the main feed circuit.
  • the switch 53 of the present application may be provided on the main power feeding circuit or the correction signal circuit (for example, the switch 53 provided on the main power feeding circuit 52 is shown in the figure
  • this application uses a certain radio frequency channel between the antenna and the RRU to calibrate other radio frequency channels to keep the phase and amplitude of other radio frequency channels consistent, in order to ensure the correctness of the calibration, the second interface is required to transmit
  • the correction signal to the RRU is not interfered by other signals, especially the signal on the main feeding circuit. Therefore, this application isolates the correction signal from the signal on the main feeding circuit by setting a switch.
  • a certain radio frequency channel between the antenna and the RRU is used to calibrate other radio frequency channels, so that the phase and amplitude of other radio frequency channels are consistent. , It not only avoids the interference of the signal on the main circuit of the feeder to the correction signal, and obtains accurate correction and compensation information, but also does not need to increase the installation and connection of the additional correction channel, which is compatible with various RRU equipment.
  • FIGS 2 and 3 are schematic structural diagrams of Embodiment 2 of the antenna of this application.
  • the present application provides an antenna including four sets of positive and negative dipoles, and each set of positive and negative dipoles is connected to two radio frequency interfaces. That is, the positive and negative vibrators 11 are connected to the radio frequency interfaces DIN1 and DIN2, the positive and negative vibrators 12 are connected to the radio frequency interfaces DIN3 and DIN4, the positive and negative vibrators 13 are connected to the radio frequency interfaces DIN5 and DIN6, and the positive and negative vibrators 14 are connected to the radio frequency interfaces DIN7 and DIN8. At least two couplers (such as directional couplers) are provided on the correction signal circuit between the two radio frequency interfaces of each group of positive and negative vibrators.
  • the positive and negative vibrators 11 are connected to the radio frequency interfaces DIN1 and DIN2
  • the positive and negative vibrators 12 are connected to the radio frequency interfaces DIN3 and DIN4
  • the positive and negative vibrators 13 are connected to the radio frequency interfaces DIN5 and DIN6
  • Couplers 11a, 11b, 11c and 11d, two couplers 12a and 12c are provided on the correction signal circuit between the radio frequency interfaces DIN3 and DIN4, and two couplers are provided on the correction signal circuit between the radio frequency interfaces DIN5 and DIN6 13a and 13c, two couplers 14a and 14c are provided on the correction signal circuit between the radio frequency interfaces DIN7 and DIN8.
  • the function of the coupler is divided into two categories, one is to couple the correction signal from the main feed circuit to the correction signal circuit, and the other is to couple the correction signal from the correction signal circuit to the main feed circuit.
  • Several combiners are arranged between the two adjacent groups of positive and negative vibrators.
  • the switch 53 is arranged on the main power feeding circuit.
  • the switch 53 performs correction signals and signals on the main power feeding circuit by turning off the main power feeding circuit. isolation.
  • the time switch isolates the correction signal from the signal on the main feed circuit by increasing the time delay of the signal on the main feed circuit.
  • the switch is a frequency switch, the frequency switch isolates the correction signal from the signal on the main feed circuit by changing the frequency of the signal on the main feed circuit.
  • the correction signal is received by DIN2, and the correction signal circuit that it passes through includes A2+C2+CC+A1, where the correction signal is coupled by coupler 11a to C2 after passing A2, and then coupled by coupler 11b after passing through the combiner.
  • A1 finally to DIN1.
  • the signal on the main feeder circuit is received by DIN2, and the main feeder circuit it passes through includes A2+B2+U2+B1+A1.
  • the signal on the main feeder circuit passes through A2 and continues upward through B2, and then passes through positive and negative.
  • the polar oscillator 11 ie U2 then follows B1 and A1 and then reaches DIN1.
  • the correction signal is received by DIN4, and the correction signal circuit it passes through includes A4+C4+CC+A1.
  • the correction signal is coupled to C4 by coupler 12a after passing A4, and then coupled by coupler 11b after passing through the combiner. To A1, finally to DIN1.
  • the signal on the main feeder circuit is received by DIN4, and the main feeder circuit it passes through includes A4+B4+U4+U2+B1+A1.
  • the signal on the main feeder circuit passes through A4 and continues upward through B4, and then through The positive and negative vibrators 12 (i.e. U4) and 11 (i.e. U2) follow B1 and A1 and then reach DIN1. It can be seen that the signals on the main feed circuit sent from DIN2 and DIN4 will pass through B1, so switch 53 is set at B1.
  • the space switch corrects the correction signal and feeds by turning off the main feed circuit at B1.
  • the signal on the electrical main circuit is isolated so that the calibration signal arrives at DIN1 first.
  • the time switch isolates the correction signal from the signal on the feed main circuit by increasing the time delay of the signal on the main feed circuit, so that the correction signal arrives at DIN1 first.
  • the frequency switch isolates the correction signal from the signal on the main feed circuit by changing the frequency of the signal on the main feed circuit, so that the signal received from DIN1 can be easily distinguished and corrected. Signals and signals on the main circuit of the feed.
  • this application realizes the use of a certain radio frequency channel between the antenna and the RRU to calibrate other radio frequency channels. Keep the phase and amplitude of other RF channels consistent, which not only avoids the interference of the signal on the main circuit of the feeder on the correction signal, and obtains accurate correction and compensation information, but also does not require the installation and connection of additional correction channels, which can be compatible with each other. RRU-like equipment.
  • FIGs 4 and 5 are schematic structural diagrams of Embodiment 3 of the antenna of this application.
  • this application provides an antenna including four sets of positive and negative dipoles, and each set of positive and negative dipoles is connected to two radio frequency interfaces. That is, the positive and negative vibrators 11 are connected to the radio frequency interfaces DIN1 and DIN2, the positive and negative vibrators 12 are connected to the radio frequency interfaces DIN3 and DIN4, the positive and negative vibrators 13 are connected to the radio frequency interfaces DIN5 and DIN6, and the positive and negative vibrators 14 are connected to the radio frequency interfaces DIN7 and DIN8. At least two couplers (such as directional couplers) are provided on the correction signal circuit between the two radio frequency interfaces of each group of positive and negative vibrators.
  • couplers such as directional couplers
  • Couplers 11a, 11b, 11c and 11d, two couplers 12a and 12c are provided on the correction signal circuit between the radio frequency interfaces DIN3 and DIN4, and two couplers are provided on the correction signal circuit between the radio frequency interfaces DIN5 and DIN6 13a and 13c, two couplers 14a and 14c are provided on the correction signal circuit between the radio frequency interfaces DIN7 and DIN8.
  • the function of the coupler is divided into two categories, one is to couple the correction signal from the main feed circuit to the correction signal circuit, and the other is to couple the correction signal from the correction signal circuit to the main feed circuit.
  • Several combiners are arranged between the two adjacent groups of positive and negative vibrators.
  • the switch 53 is arranged on the correction signal circuit, and the switch 53 can be implemented in three ways, that is, when the switch is a space switch, the space switch first turns off the correction signal circuit to obtain the signal on the main feed circuit, and then connects to the correction signal circuit Obtain the mixed signal of the correction signal and the signal on the main feeding circuit, and finally isolate the correction signal from the signal on the main feeding circuit through the mixed signal and the signal on the main feeding circuit.
  • the switch is a time switch
  • the time switch isolates the correction signal from the signal on the main feed circuit by increasing the time delay of the correction signal.
  • the switch is a frequency switch
  • the frequency switch isolates the correction signal from the signal on the main feed circuit by changing the frequency of the correction signal.
  • the correction signal is received by DIN2, and the correction signal circuit that it passes through includes A2+C2+CC+A1, where the correction signal is coupled by coupler 11a to C2 after passing A2, and then coupled by coupler 11b after passing through the combiner.
  • A1 finally to DIN1.
  • the signal on the main feeder circuit is received by DIN2, and the main feeder circuit it passes through includes A2+B2+U2+B1+A1.
  • the signal on the main feeder circuit passes through A2 and continues upward through B2, and then passes through positive and negative.
  • the polar oscillator 11 ie U2 then follows B1 and A1 and then reaches DIN1.
  • the correction signal is received by DIN4, and the correction signal circuit it passes through includes A4+C4+CC+A1.
  • the correction signal is coupled to C4 by coupler 12a after passing A4, and then coupled by coupler 11b after passing through the combiner.
  • the signal on the main feeder circuit is received by DIN4, and the main feeder circuit it passes through includes A4+B4+U4+U2+B1+A1.
  • the signal on the main feeder circuit passes through A4 and continues upward through B4, and then through
  • the positive and negative vibrators 12 (i.e. U4) and 11 (i.e. U2) follow B1 and A1 and then reach DIN1. It can be seen that the calibration signals sent from DIN2 and DIN4 will pass through CC, so switch 53 is set at CC.
  • the space switch When the switch is a space switch, the space switch first turns off the calibration signal circuit at CC to obtain the signal on the main circuit of the feeder, and then connect it The correction signal circuit at CC obtains the mixed signal of the correction signal and the signal on the main feeding circuit, and finally removes the signal on the main feeding circuit from the mixed signal, thereby obtaining the corrected signal.
  • the time switch isolates the correction signal from the signal on the feeder main circuit by increasing the time delay of the correction signal, and allows the correction signal to reach DIN1.
  • the switch when the switch is a frequency switch, the frequency switch isolates the correction signal from the signal on the main feed circuit by changing the frequency of the correction signal, so that the signal received from DIN1 can easily distinguish the correction signal from the main feeder. Signal on the circuit.
  • this application realizes the use of a certain radio frequency channel between the antenna and the RRU to calibrate other radio frequency channels, so that other The phase and amplitude of the radio frequency channel are kept consistent, which not only avoids the interference of the signal on the main circuit of the feeder on the correction signal, and obtains accurate correction and compensation information, but also does not require the installation and connection of additional correction channels, which is compatible with various RRUs equipment.
  • FIGs 6 and 7 are two schematic structural diagrams of embodiments of a base station of this application.
  • the base station includes an antenna 0 and an RRU 6.
  • the antenna 0 may adopt the structure shown in any of the embodiments in Figures 1 to 5. Based on the correction principle of the radio frequency channel in the above embodiment, as shown in Fig.
  • radio interface 64 and antenna 0 can be Is connected to a certain radio frequency interface (as the second interface) to receive the correction signals from the radio frequency interfaces 65-68 (connected to the 4 radio frequency interfaces in antenna 0 (as the first interface) respectively), according to the radio frequency interface 64 received
  • the phase and amplitude of the RF interfaces 65-68 are respectively corrected to keep the same.
  • the RF interface 65 can also be connected to a certain RF interface in antenna 0 (as the second interface), and receive from the RF interfaces 61-64 (respectively connected to the 4 RF interfaces in antenna 0 (as the first interface) According to the correction signal received by the radio frequency interface 65, the phase and amplitude of the radio frequency interfaces 61-64 are respectively corrected to keep the same.
  • each RRU has 4 radio interfaces (61-64), which allows the radio interface 64 on RRU6a to be connected to a radio interface in antenna 0 (As the second interface) connection, receive the correction signals from the radio frequency interfaces 61-64 of the RRU 6b (connected to the 4 radio frequency interfaces in the antenna 0 (as the first interface)), according to the radio frequency interface 64 on the RRU 6a
  • the correction signal the phase and amplitude of the radio frequency interfaces 61-64 of the RRU 6b are respectively corrected to keep the same.
  • radio frequency interface 61 on the RRU 6b it is also possible to connect the radio frequency interface 61 on the RRU 6b to a radio frequency interface (as the second interface) in the antenna 0, and receive the radio frequency interfaces 61-64 from the RRU 6a (respectively connect to the 4 radio frequency interfaces in the antenna 0 (as the first interface). According to the correction signal received by the radio frequency interface 61 on the RRU 6b, the phase and amplitude of the radio frequency interface 61-64 of the RRU 6a are corrected to keep the same.
  • radio frequency interface for sending and receiving signals is not fixed, and may be any radio frequency interface of the antenna and the RRU, which is not limited in this application.
  • the base station in this application uses its own radio frequency channel between the antenna and the RRU to choose one of them to correct the phase and amplitude of other radio frequency channels, and does not set up special correction ports and channels for the antenna and RRU. It not only avoids the interference of the signal on the main circuit of the feeder to the correction signal, and obtains accurate correction and compensation information, but also does not require the installation and connection of additional correction channels, and it is compatible with various RRU equipment.
  • FIG. 8 is a flowchart of an embodiment of a method for calibrating a radio frequency channel of this application. As shown in FIG. 8, the method of this embodiment may be executed by the base station shown in FIG. 6 or FIG. 7, and the method may include:
  • Step 101 Transmit correction signals to respective first interfaces of antennas through two or more first channels.
  • the first channel is the radio frequency channel to be calibrated, such as the radio frequency channels connected to the radio frequency interfaces 65-68 or the radio frequency interfaces 61-64 in Fig. 6, and the radio frequency interface 61-64 of the RRU 6b or the radio frequency interface 61 of the RRU 6a in Fig. 7 -64 RF channels connected respectively.
  • Step 102 Isolate the correction signal from the signal on the main feeding circuit, and transmit the correction signal to the second interface.
  • Step 103 Receive the correction signal through the second channel connected to the second interface.
  • the second channel is the radio frequency channel as the calibration channel.
  • the radio frequency interface connected to the antenna is the second interface, such as the radio frequency interface on the antenna connected to the radio frequency interface 64 in FIG. 6, or the radio frequency interface on the antenna connected to the radio frequency interface 65.
  • the radio frequency interface is another example of the radio frequency interface on the antenna connected to the radio frequency interface 61 in 66b in FIG. 7 or the radio frequency interface on the antenna connected to the radio frequency interface 64 in 66a.
  • the above-mentioned first channel and the second channel may be radio frequency channels between different radio frequency interfaces on the same RRU and the radio frequency interface of the antenna, respectively, or radio frequency channels between radio frequency interfaces on different RRUs and the radio frequency interface of the antenna respectively.
  • Step 104 Acquire compensation information for the phase and amplitude of the two or more first channels according to the received correction signal.
  • the base station After the base station receives the correction signal corresponding to each first channel, it compensates the signal of each RF channel for the purpose of keeping the phase and amplitude of these radio frequency channels consistent.
  • This application realizes the use of a certain radio frequency channel between the antenna and the RRU to calibrate other radio frequency channels, so that the phase and amplitude of other radio frequency channels are kept consistent, which avoids the signal on the main circuit of the feeder to the correction signal. Interference, accurate correction and compensation information is obtained, and the installation and connection of additional correction channels are not needed, which can be compatible with various RRU devices.
  • FIG. 9 is a schematic structural diagram of an embodiment of a correction device for a radio frequency channel of this application.
  • the device includes: a transmitting module 31, an isolation module 32, a receiving module 33, and a correction module 34.
  • the transmitting module 31 is used for The correction signal is respectively transmitted to the first interface connected to the antenna through two or more first channels;
  • the isolation module 32 is used to isolate the correction signal from the signal on the main feed circuit, and transmit the correction signal To the second interface;
  • the receiving module 33 configured to receive the correction signal through the second channel connected to the second interface;
  • the correction module 34 configured to obtain the correction signal for the two or more Compensation information for the phase and amplitude of the first channel.
  • the two or more first channels and the second channel are respectively radio frequency channels between different radio frequency interfaces on the same RRU and the radio frequency interface of the antenna.
  • the two or more first channels and the second channels are radio frequency channels between radio frequency interfaces on different RRUs and radio frequency interfaces of antennas.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 8, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the present application provides a computer-readable storage medium that stores instructions.
  • the instructions When the instructions are run on a computer, they are used to execute the above-mentioned embodiment shown in FIG. 8 Methods.
  • this application provides a computer program, when the computer program is executed by a computer, it is used to execute the method in the embodiment shown in FIG. 8.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种射频通道的校正方法和装置及天线和基站。该天线包括:三个以上射频接口和设置于三个以上射频接口之间的馈电网络,三个以上射频接口分别连接一个与射频拉远单元RRU之间的射频通道;其中,第一接口用于接收来自RRU的信号,并将信号通过馈电网络传输至第二接口;第二接口用于向RRU发送信号;馈电网络包括馈电主电路、校正信号电路和开关;校正信号电路用于传输从第一接口到第二接口的校正信号,校正信号用于校正连接于第一接口上的射频通道的相位和幅度;开关用于对校正信号和馈电主电路上的信号进行隔离。本申请既可以减少馈电主电路上的信号对校正信号的干扰,保证校正结果的正确性,又可以兼容各类RRU设备。

Description

射频通道的校正方法和装置及天线和基站
本申请要求于2019年1月30日提交中国专利局、申请号为201910094297.5、申请名称为“射频通道的校正方法和装置及天线和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种射频通道的校正方法和装置及天线和基站。
背景技术
随着无线通信的高速发展,基站天线呈现多端口、多样化的发展趋势,包括多入多出(Multiple-Input Multiple-Output,MIMO)、波束成形(Beamforming,BF)、大规模MIMO(Massive MIMO,MM)等在内的天线技术,其智能波束特性都需要对基站的射频通道的相位和幅度进行校正。
目前可以通过在天线和射频拉远单元(Radio Remote Unit,RRU)之间增加专门的校准通道来校正射频通道的相位和幅度。
但是,上述技术不能兼容当前已经部署的无专用校正通道的RRU,且由于需要增加专门的校正通道,导致部署成本增高。
发明内容
本申请提供一种射频通道的校正方法和装置及天线和基站,既可以减少馈电主电路上的信号对校正信号的干扰,保证校正结果的正确性,又可以兼容各类RRU设备。
第一方面,本申请提供一种天线,包括:三个以上射频接口和设置于三个以上射频接口之间的馈电网络,三个以上射频接口分别连接一个与RRU之间的射频通道;其中,第一接口用于接收来自RRU的信号,并将信号通过馈电网络传输至第二接口;第二接口用于向RRU发送信号;第二接口为三个以上射频接口的其中之一,第一接口为三个以上射频接口中除第二接口外的射频接口;馈电网络包括馈电主电路、校正信号电路和开关;校正信号电路用于传输从第一接口到第二接口的校正信号,校正信号用于校正连接于第一接口上的射频通道的相位和幅度;开关用于对校正信号和馈电主电路上的信号进行隔离。
本申请通过在天线和RRU之间的馈电网络中增加开关,实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
在一种可能的实现方式中,开关设置于馈电主电路上。当开关为空间开关时,空间开关通过关断馈电主电路对校正信号和馈电主电路上的信号进行隔离;或者,当开关为时间开关时,时间开关通过增加馈电主电路上的信号的时延对校正信号和馈电主电路上的信号进行隔离;或者,当开关为频率开关时,频率开关通过改变馈电主电路上的信号的频率对校正信号和馈电主电路上的信号进行隔离。
本申请通过在天线和RRU之间的馈电网络中的馈电主电路上增加开关,实现了在天 线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
在一种可能的实现方式中,开关设置于校正信号电路上。当开关为空间开关时,空间开关先关断校正信号电路获取馈电主电路上的信号,再连通校正信号电路获取校正信号和馈电主电路上的信号的混合信号,最后通过混合信号和馈电主电路上的信号对校正信号和馈电主电路上的信号进行隔离;或者,当开关为时间开关时,时间开关通过增加校正信号的时延对校正信号和馈电主电路上的信号进行隔离;或者,当开关为频率开关时,频率开关通过改变校正信号的频率对校正信号和馈电主电路上的信号进行隔离。
本申请通过在天线和RRU之间馈电网络中的校正信号电路上增加开关,实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
在一种可能的实现方式中,校正信号电路上还设置有至少两个耦合器;其中,第一耦合器用于将校正信号从馈电主电路耦合至校正信号电路,第一耦合器为至少两个耦合器的其中之一;第二耦合器用于将校正信号从校正信号电路耦合至馈电主电路,第二耦合器为至少两个耦合器中除第一耦合器外的其中之一。
第二方面,本申请提供一种基站,包括:天线和射频拉远单元RRU;天线采用上述第一方面中任一项的天线;RRU和天线之间有三条以上射频通道,其中,第一通道为与天线中的第一接口连接的射频通道,第二通道为与天线中的第二接口连接的射频通道;第二通道为三条以上射频通道的其中之一,第一通道为三条以上射频通道中除第二通道外的射频通道。
在一种可能的实现方式中,当RRU的个数为一个时,第一通道和第二通道分别与RRU的不同射频接口连接;或者,当RRU的个数为两个以上时,第一通道和第二通道分别与不同的RRU的不同射频接口连接。
第三方面,本申请提供一种射频通道的校正方法,方法应用于上述第二方面的基站,方法包括:通过两个以上第一通道分别向天线中各自连接的第一接口发射校正信号;对校正信号和馈电主电路上的信号进行隔离,并将校正信号传输至第二接口;通过与第二接口连接的第二通道接收校正信号;根据接收到的校正信号获取针对两个以上第一通道的相位和幅度的补偿信息。
本申请实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
在一种可能的实现方式中,两个以上第一通道和第二通道分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道。或者,两个以上第一通道和第二通道分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
第四方面,本申请提供一种射频通道的校正装置,装置设置于上述第二方面的基站上,装置包括:发射模块,用于通过两个以上第一通道分别向天线中各自连接的第一接口发射 校正信号;隔离模块,用于对校正信号和馈电主电路上的信号进行隔离,并将校正信号传输至第二接口;接收模块,用于通过与第二接口连接的第二通道接收校正信号;校正模块,用于根据接收到的校正信号获取针对两个以上第一通道的相位和幅度的补偿信息。
在一种可能的实现方式中,两个以上第一通道和第二通道分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道。或者,两个以上第一通道和第二通道分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
第五方面,本申请提供一种计算机可读存储介质,计算机可读存储介质存储有指令,当指令在计算机上运行时,用于执行上述第三方面中任一项的方法。
第六方面,本申请提供一种计算机程序,其特征在于,当计算机程序被计算机执行时,用于执行上述第三方面中任一项的方法。
附图说明
图1为本申请天线实施例一的结构示意图;
图2和图3为本申请天线实施例二的结构示意图;
图4和图5为本申请天线实施例三的结构示意图;
图6和图7为本申请基站实施例的两个结构示意图;
图8为本申请射频通道的校正方法实施例的流程图;
图9为本申请射频通道的校正装置实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请天线实施例一的结构示意图,如图1所示,本申请提供了一种天线0,可以包括:三个以上射频接口(例如图中示出了四个射频接口DIN1、DIN2、DIN3和DIN4)和设置于三个以上射频接口之间的馈电网络5,该三个以上射频接口分别连接一个与RRU6之间的射频通道(例如图中示出了四条射频通道7-10,其中,射频通道7是RRU6和天线0中的射频接口DIN1之间的射频通道,射频通道8是RRU6和天线0中的射频接口DIN2之间的射频通道,射频通道9是RRU6和天线0中的射频接口DIN3之间的射频通道,射频通道10是RRU6和天线0中的射频接口DIN4之间的射频通道)。其中,第一接口(例如DIN2和DIN4)用于接收来自RRU6的信号,并将信号通过馈电网络5传输至第二接口(例如DIN1),第二接口(例如DIN1)用于向RRU发送信号。馈电网络5包括校正信号电路51、馈电主电路52和开关53,校正信号电路51用于传输从第一接口到第二接口的校正信号(例如图中示出了DIN4和DIN1、DIN2和DIN1之间的校正信号电路51,其信号流的方向为从DIN4到DIN1,从DIN2到DIN1),校正信号用于校正连接于第一接口上的射频通道(例如射频通道10和8)的相位和幅度。馈电主电路52用于传输从第一接口到第二接口的主信号(例如图中示出了DIN4和DIN1、DIN2和DIN1之间的馈电主电路52,其信号流的方向为从DIN4到DIN1,从DIN2到DIN1)。开关53 用于对校正信号和馈电主电路上的信号进行隔离。本申请开关53可以设置于馈电主电路或者校正信号电路上(例如图中示出了设置于馈电主电路52上的开关53)。
由于本申请是在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,因此为了确保校正的正确性,需要让第二接口传输给RRU的校正信号不受其他信号,尤其是馈电主电路上的信号的干扰,因此本申请通过设置开关来对校正信号和馈电主电路上的信号进行隔离。本申请通过在天线和RRU之间的馈电网络中增加开关,实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
下面采用几个具体的实施例,对图1所示实施例的技术方案进行详细说明。
图2和图3为本申请天线实施例二的结构示意图,如图2所示,本申请提供了一种天线,包括四组正负极振子,每组正负极振子连接两个射频接口,即正负极振子11连接射频接口DIN1和DIN2,正负极振子12连接射频接口DIN3和DIN4,正负极振子13连接射频接口DIN5和DIN6,正负极振子14连接射频接口DIN7和DIN8。每组正负极振子的两个射频接口之间的校正信号电路上设置有至少两个耦合器(例如定向耦合器),例如,射频接口DIN1和DIN2之间的校正信号电路上设置有四个耦合器11a、11b、11c和11d,射频接口DIN3和DIN4之间的校正信号电路上设置有两个耦合器12a和12c,射频接口DIN5和DIN6之间的校正信号电路上设置有两个耦合器13a和13c,射频接口DIN7和DIN8之间的校正信号电路上设置有两个耦合器14a和14c。耦合器的作用分为两类,一类是将校正信号从馈电主电路耦合至校正信号电路,另一类是将校正信号从校正信号电路耦合至馈电主电路。相邻两组正负极振子之间设置有若干合路器。本实施例中开关53设置在馈电主电路上,开关53有三种实现方式,即当开关为空间开关时,空间开关通过关断馈电主电路对校正信号和馈电主电路上的信号进行隔离。或者,当开关为时间开关时,时间开关通过增加馈电主电路上的信号的时延对校正信号和馈电主电路上的信号进行隔离。或者,当开关为频率开关时,频率开关通过改变馈电主电路上的信号的频率对校正信号和馈电主电路上的信号进行隔离。
如图3所示,以校正与第一接口(DIN2和DIN4)连接的两个射频通道为例,DIN1为第二接口。校正信号由DIN2接收,其经过的校正信号电路包括A2+C2+CC+A1,其中,校正信号经过A2后被耦合器11a耦合至C2上,经过合路器后再经过CC被耦合器11b耦合至A1上,最后到达DIN1。馈电主电路上的信号由DIN2接收,其经过的馈电主电路包括A2+B2+U2+B1+A1,其中,馈电主电路上的信号经过A2后继续向上经过B2,再经过正负极振子11(即U2)后沿着B1和A1后到达DIN1。校正信号由DIN4接收,其经过的校正信号电路包括A4+C4+CC+A1,其中,校正信号经过A4后被耦合器12a耦合至C4上,经过合路器后再经过CC被耦合器11b耦合至A1上,最后到达DIN1。馈电主电路上的信号由DIN4接收,其经过的馈电主电路包括A4+B4+U4+U2+B1+A1,其中,馈电主电路上的信号经过A4后继续向上经过B4,再经过正负极振子12(即U4)和11(即U2)后沿着B1和A1后到达DIN1。可见从DIN2和DIN4发出的馈电主电路上的信号都会经过B1,因此在B1处设置开关53,当开关为空间开关时,空间开关通过关断B1处的 馈电主电路对校正信号和馈电主电路上的信号进行隔离,让校正信号先到DIN1。或者,当开关为时间开关时,时间开关通过增加馈电主电路上的信号的时延对校正信号和馈电主电路上的信号进行隔离,让校正信号先到DIN1。或者,当开关为频率开关时,频率开关通过改变馈电主电路上的信号的频率对校正信号和馈电主电路上的信号进行隔离,使得从DIN1收到的信号很容易就能区分出校正信号和馈电主电路上的信号。
由此可见,本申请通过在天线和RRU之间的馈电网络中的馈电主电路上增加开关,实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
图4和图5为本申请天线实施例三的结构示意图,如图4所示,本申请提供了一种天线,包括四组正负极振子,每组正负极振子连接两个射频接口,即正负极振子11连接射频接口DIN1和DIN2,正负极振子12连接射频接口DIN3和DIN4,正负极振子13连接射频接口DIN5和DIN6,正负极振子14连接射频接口DIN7和DIN8。每组正负极振子的两个射频接口之间的校正信号电路上设置有至少两个耦合器(例如定向耦合器),例如,射频接口DIN1和DIN2之间的校正信号电路上设置有四个耦合器11a、11b、11c和11d,射频接口DIN3和DIN4之间的校正信号电路上设置有两个耦合器12a和12c,射频接口DIN5和DIN6之间的校正信号电路上设置有两个耦合器13a和13c,射频接口DIN7和DIN8之间的校正信号电路上设置有两个耦合器14a和14c。耦合器的作用分为两类,一类是将校正信号从馈电主电路耦合至校正信号电路,另一类是将校正信号从校正信号电路耦合至馈电主电路。相邻两组正负极振子之间设置有若干合路器。本实施例中开关53设置在校正信号电路上,开关53有三种实现方式,即当开关为空间开关时,空间开关先关断校正信号电路获取馈电主电路上的信号,再连通校正信号电路获取校正信号和馈电主电路上的信号的混合信号,最后通过混合信号和馈电主电路上的信号对校正信号和馈电主电路上的信号进行隔离。或者,当开关为时间开关时,时间开关通过增加校正信号的时延对校正信号和馈电主电路上的信号进行隔离。或者,当开关为频率开关时,频率开关通过改变校正信号的频率对校正信号和馈电主电路上的信号进行隔离。
如图5所示,以校正与第一接口(DIN2和DIN4)连接的两个射频通道为例,DIN1为第二接口。校正信号由DIN2接收,其经过的校正信号电路包括A2+C2+CC+A1,其中,校正信号经过A2后被耦合器11a耦合至C2上,经过合路器后再经过CC被耦合器11b耦合至A1上,最后到达DIN1。馈电主电路上的信号由DIN2接收,其经过的馈电主电路包括A2+B2+U2+B1+A1,其中,馈电主电路上的信号经过A2后继续向上经过B2,再经过正负极振子11(即U2)后沿着B1和A1后到达DIN1。校正信号由DIN4接收,其经过的校正信号电路包括A4+C4+CC+A1,其中,校正信号经过A4后被耦合器12a耦合至C4上,经过合路器后再经过CC被耦合器11b耦合至A1上,最后到达DIN1。馈电主电路上的信号由DIN4接收,其经过的馈电主电路包括A4+B4+U4+U2+B1+A1,其中,馈电主电路上的信号经过A4后继续向上经过B4,再经过正负极振子12(即U4)和11(即U2)后沿着B1和A1后到达DIN1。可见从DIN2和DIN4发出的校正信号都会经过CC,因此在CC处设置开关53,当开关为空间开关时,空间开关先关断CC处的校正信号电路 获取馈电主电路上的信号,再连通CC处的校正信号电路获取校正信号和馈电主电路上的信号的混合信号,最后从混合信号中剔除馈电主电路上的信号,从而得到校正信号。或者,当开关为时间开关时,时间开关通过增加校正信号的时延对校正信号和馈电主电路上的信号进行隔离,让校正信号后到DIN1。或者,当开关为频率开关时,频率开关通过改变校正信号的频率对校正信号和馈电主电路上的信号进行隔离,使得从DIN1收到的信号很容易就能区分出校正信号和馈电主电路上的信号。
由此可见,本申请通过在天线和RRU之间馈电网络中的校正信号电路上增加开关,实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
图6和图7为本申请基站实施例的两个结构示意图,如图6所示,基站包括天线0和RRU6,该天线0可以采用图1-图5任一实施例所示的结构。基于上述实施例中对射频通道的校正原理,如图6所示,当RRU6有一个时,该RRU6上一共有8个射频接口(61-68),可以让其中的射频接口64与天线0中的某个射频接口(作为第二接口)连接,接收来自射频接口65-68(分别与天线0中的4个射频接口(作为第一接口)连接)的校正信号,根据射频接口64接收到的校正信号的情况分别对射频接口65-68的相位和幅度进行校正使其保持一致。还可以让其中的射频接口65与天线0中的某个射频接口(作为第二接口)连接,接收来自射频接口61-64(分别与天线0中的4个射频接口(作为第一接口)连接)的校正信号,根据射频接口65接收到的校正信号的情况分别对射频接口61-64的相位和幅度进行校正使其保持一致。如图7所示,当RRU6有两个(RRU6a和6b)时,每个RRU上有4个射频接口(61-64),可以让RRU6a上的射频接口64与天线0中的某个射频接口(作为第二接口)连接,接收来自RRU6b的射频接口61-64(分别与天线0中的4个射频接口(作为第一接口)连接)的校正信号,根据RRU6a上的射频接口64接收到的校正信号的情况分别对RRU6b的射频接口61-64的相位和幅度进行校正使其保持一致。还可以让RRU6b上的射频接口61与天线0中的某个射频接口(作为第二接口)连接,接收来自RRU6a的射频接口61-64(分别与天线0中的4个射频接口(作为第一接口)连接)的校正信号,根据RRU6b上的射频接口61接收到的校正信号的情况分别对RRU6a的射频接口61-64的相位和幅度进行校正使其保持一致。
需要说明的是,本申请上述实施例中作为示例的发送和接收信号的射频接口并不固定,可以是天线和RRU自有的任一射频接口,本申请对此不做限定。
可见,本申请中基站是通过天线和RRU之间自有的射频通道,从中择其一来对其他的射频通道的相位和幅度进行校正,并没有对天线和RRU设置专门的校正端口和通道,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
图8为本申请射频通道的校正方法实施例的流程图,如图8所示,本实施例的方法可以由图6或图7所示基站执行,该方法可以包括:
步骤101、通过两个以上第一通道分别向天线中各自连接的第一接口发射校正信号。
第一通道即为待校正的射频通道,例如图6中射频接口65-68或者射频接口61-64分 别连接的射频通道,又例如图7中RRU6b的射频接口61-64或者RRU6a的射频接口61-64分别连接的射频通道。
步骤102、对校正信号和馈电主电路上的信号进行隔离,并将校正信号传输至第二接口。
该步骤的实现原理可以参照图1-图5任一所示实施例,此处不再赘述。
步骤103、通过与第二接口连接的第二通道接收校正信号。
第二通道为作为校正通道的射频通道,其在天线中连接的射频接口为第二接口,例如图6中与射频接口64连通的天线上的射频接口,或者与射频接口65连通的天线上的射频接口,又例如图7中与66b中的射频接口61连通的天线上的射频接口,或者与66a中的射频接口64连通的天线上的射频接口。
上述第一通道和第二通道可以分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道,也可以分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
步骤104、根据接收到的校正信号获取针对两个以上第一通道的相位和幅度的补偿信息。
基站接收到对应于各个第一通道的校正信号后,以保持这些射频通道的相位和幅度一致为目的,对各个射频通道的信号做出补偿。
本申请实现了在天线中利用和RRU之间自有的某一个射频通道来校正其它射频通道,使其它射频通道的相位和幅度保持一致,既避免了馈电主电路上的信号对校正信号的干扰,得到准确的校正补偿信息,又不需要的额外增加校正通道的安装和连接,可以兼容各类RRU设备。
图9为本申请射频通道的校正装置实施例的结构示意图,如图9所示,该装置包括:发射模块31、隔离模块32、接收模块33和校正模块34,其中,发射模块31,用于通过两个以上第一通道分别向天线中各自连接的第一接口发射校正信号;隔离模块32,用于对所述校正信号和馈电主电路上的信号进行隔离,并将所述校正信号传输至第二接口;接收模块33,用于通过与所述第二接口连接的第二通道接收所述校正信号;校正模块34,用于根据接收到的所述校正信号获取针对所述两个以上第一通道的相位和幅度的补偿信息。
所述两个以上第一通道和所述第二通道分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道。或者,所述两个以上第一通道和所述第二通道分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
本实施例的装置,可以用于执行图8所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一种可能的实现方式中,本申请提供一种计算机可读存储介质,该计算机可读存储介质存储有指令,当该指令在计算机上运行时,用于执行上述图8所示实施例中的方法。
在一种可能的实现方式中,本申请提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述图8所示实施例中的方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种天线,其特征在于,包括:三个以上射频接口和设置于所述三个以上射频接口之间的馈电网络,所述三个以上射频接口分别连接一个与射频拉远单元RRU之间的射频通道;其中,第一接口用于接收来自所述RRU的信号,并将所述信号通过所述馈电网络传输至第二接口;所述第二接口用于向所述RRU发送所述信号;所述第二接口为所述三个以上射频接口的其中之一,所述第一接口为所述三个以上射频接口中除所述第二接口外的射频接口;
    所述馈电网络包括馈电主电路、校正信号电路和开关;所述校正信号电路用于传输从所述第一接口到所述第二接口的校正信号,所述校正信号用于校正连接于所述第一接口上的所述射频通道的相位和幅度;所述开关用于对所述校正信号和所述馈电主电路上的信号进行隔离。
  2. 根据权利要求1所述的天线,其特征在于,所述开关设置于所述馈电主电路上。
  3. 根据权利要求2所述的天线,其特征在于,当所述开关为空间开关时,所述空间开关通过关断所述馈电主电路对所述校正信号和所述馈电主电路上的信号进行隔离;或者,
    当所述开关为时间开关时,所述时间开关通过增加所述馈电主电路上的信号的时延对所述校正信号和所述馈电主电路上的信号进行隔离;或者,
    当所述开关为频率开关时,所述频率开关通过改变所述馈电主电路上的信号的频率对所述校正信号和所述馈电主电路上的信号进行隔离。
  4. 根据权利要求1所述的天线,其特征在于,所述开关设置于所述校正信号电路上。
  5. 根据权利要求4所述的天线,其特征在于,当所述开关为空间开关时,所述空间开关先关断所述校正信号电路获取所述馈电主电路上的信号,再连通所述校正信号电路获取所述校正信号和所述馈电主电路上的信号的混合信号,最后通过所述混合信号和所述馈电主电路上的信号对所述校正信号和所述馈电主电路上的信号进行隔离;或者,
    当所述开关为时间开关时,所述时间开关通过增加所述校正信号的时延对所述校正信号和所述馈电主电路上的信号进行隔离;或者,
    当所述开关为频率开关时,所述频率开关通过改变所述校正信号的频率对所述校正信号和所述馈电主电路上的信号进行隔离。
  6. 根据权利要求1-5中任一项所述的天线,其特征在于,所述校正信号电路上还设置有至少两个耦合器;其中,第一耦合器用于将所述校正信号从所述馈电主电路耦合至所述校正信号电路,所述第一耦合器为所述至少两个耦合器的其中之一;第二耦合器用于将所述校正信号从所述校正信号电路耦合至所述馈电主电路,所述第二耦合器为所述至少两个耦合器中除所述第一耦合器外的其中之一。
  7. 一种基站,其特征在于,包括:天线和射频拉远单元RRU;所述天线采用权利要求1-6中任一项所述的天线;所述RRU和所述天线之间有三条以上射频通道,其中,第一通道为与所述天线中的第一接口连接的射频通道,第二通道为与所述天线中的第二接口连接的射频通道;所述第二通道为所述三条以上射频通道的其中之一,所述第一通道为所述三条以上射频通道中除所述第二通道外的射频通道。
  8. 根据权利要求7所述的基站,其特征在于,当所述RRU的个数为一个时,所述第一通道和所述第二通道分别与所述RRU的不同射频接口连接;或者,
    当所述RRU的个数为两个以上时,所述第一通道和所述第二通道分别与不同的所述RRU的不同射频接口连接。
  9. 一种射频通道的校正方法,其特征在于,所述方法应用于权利要求7或8所述的基站,所述方法包括:
    通过两个以上第一通道分别向天线中各自连接的第一接口发射校正信号;
    对所述校正信号和馈电主电路上的信号进行隔离,并将所述校正信号传输至第二接口;
    通过与所述第二接口连接的第二通道接收所述校正信号;
    根据接收到的所述校正信号获取针对所述两个以上第一通道的相位和幅度的补偿信息。
  10. 根据权利要求9所述的方法,其特征在于,所述两个以上第一通道和所述第二通道分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道。
  11. 根据权利要求9所述的方法,其特征在于,所述两个以上第一通道和所述第二通道分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
  12. 一种射频通道的校正装置,其特征在于,所述装置设置于权利要求7或8所述的基站上,所述装置包括:
    发射模块,用于通过两个以上第一通道分别向天线中各自连接的第一接口发射校正信号;
    隔离模块,用于对所述校正信号和馈电主电路上的信号进行隔离,并将所述校正信号传输至第二接口;
    接收模块,用于通过与所述第二接口连接的第二通道接收所述校正信号;
    校正模块,用于根据接收到的所述校正信号获取针对所述两个以上第一通道的相位和幅度的补偿信息。
  13. 根据权利要求12所述的装置,其特征在于,所述两个以上第一通道和所述第二通道分别为同一RRU上的不同射频接口与天线的射频接口之间的射频通道。
  14. 根据权利要求12所述的装置,其特征在于,所述两个以上第一通道和所述第二通道分别为不同RRU上的射频接口与天线的射频接口之间的射频通道。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,用于执行权利要求9-11中任一项所述的方法。
  16. 一种计算机程序,其特征在于,当所述计算机程序被计算机执行时,用于执行权利要求9-11中任一项所述的方法。
PCT/CN2020/072465 2019-01-30 2020-01-16 射频通道的校正方法和装置及天线和基站 WO2020156202A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20747743.1A EP3905552B1 (en) 2019-01-30 2020-01-16 Radio-frequency channel correcting method and apparatus, antenna, and base station
US17/388,872 US11784728B2 (en) 2019-01-30 2021-07-29 Radio frequency channel calibration method and apparatus, antenna, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910094297.5A CN111510229B (zh) 2019-01-30 2019-01-30 射频通道的校正方法和装置及天线和基站
CN201910094297.5 2019-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/388,872 Continuation US11784728B2 (en) 2019-01-30 2021-07-29 Radio frequency channel calibration method and apparatus, antenna, and base station

Publications (1)

Publication Number Publication Date
WO2020156202A1 true WO2020156202A1 (zh) 2020-08-06

Family

ID=71840831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072465 WO2020156202A1 (zh) 2019-01-30 2020-01-16 射频通道的校正方法和装置及天线和基站

Country Status (4)

Country Link
US (1) US11784728B2 (zh)
EP (1) EP3905552B1 (zh)
CN (1) CN111510229B (zh)
WO (1) WO2020156202A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站
US11431422B2 (en) * 2020-11-05 2022-08-30 Electronics And Telecommunications Research Institute Calibration method for cooperative transmission of cell-free wireless network, and apparatus therefor
CN113190271B (zh) * 2021-04-07 2022-10-14 中国电子科技集团公司第二十九研究所 一种多个独立***互联的通道校正的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026558A1 (zh) * 2012-08-14 2014-02-20 华为技术有限公司 通道校正方法、装置及无线接入***
CN104243055A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 多天线信道校正的方法、装置和基站***
CN107547146A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 天线校正方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236839B1 (en) * 1999-09-10 2001-05-22 Utstarcom, Inc. Method and apparatus for calibrating a smart antenna array
JP3444270B2 (ja) * 2000-05-23 2003-09-08 日本電気株式会社 アレーアンテナ受信装置の校正システム
JP2002353865A (ja) * 2001-05-23 2002-12-06 Nec Corp アレーアンテナ送受信装置及びそのキャリブレーション方法
US8320903B2 (en) * 2005-09-07 2012-11-27 Samsung Electronics Co., Ltd. Method and system for calibrating multiple types of base stations in a wireless network
EP1791278A1 (en) * 2005-11-29 2007-05-30 Interuniversitair Microelektronica Centrum (IMEC) Device and method for calibrating MIMO systems
CN100512046C (zh) * 2006-02-10 2009-07-08 华为技术有限公司 一种在多输入多输出***中发射通道校正方法
CN103259074B (zh) * 2008-08-14 2015-09-23 华为技术有限公司 有源天线、刷新幅度和相位的方法及信号处理方法
EP2494703A4 (en) * 2009-10-29 2014-09-03 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT IN A COMMUNICATION SYSTEM
WO2011074031A1 (ja) * 2009-12-16 2011-06-23 株式会社 東芝 無線信号処理装置及び無線装置
CN102111202B (zh) * 2010-02-05 2014-05-21 电信科学技术研究院 一种天线校准的方法及装置
CN102594426B (zh) * 2012-02-21 2014-09-10 中兴通讯股份有限公司 一种有源天线多收发通道同步校准的装置和方法
US20130260844A1 (en) * 2012-03-28 2013-10-03 Andrew Llc Series-connected couplers for active antenna systems
EP2896137B1 (en) * 2012-09-13 2019-07-10 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for antenna calibration
CN103716075B (zh) * 2012-09-29 2016-12-21 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
CN104244296B (zh) * 2013-06-13 2018-02-06 华为技术有限公司 多rru间通道校正方法及装置
EP3066762B1 (en) * 2013-11-08 2018-02-21 Telefonaktiebolaget LM Ericsson (publ) Radio unit with internal parallel antenna calibration
US10056685B2 (en) * 2014-03-06 2018-08-21 Samsung Electronics Co., Ltd. Antenna array self-calibration
CN103997352B (zh) * 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、***及收发校准方法
EP3198755B1 (en) * 2014-09-23 2020-12-23 Axell Wireless Ltd. Automatic mapping and handling pim and other uplink interferences in digital distributed antenna systems
CN106330350B (zh) 2015-06-30 2019-06-14 华为技术有限公司 多远程射频单元联合通道校正的方法和相关装置
CN107483125B (zh) * 2016-06-08 2020-06-09 大唐移动通信设备有限公司 基于lte/lte升级版小区的数据处理方法和***
US11271299B2 (en) * 2016-07-06 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for antenna calibration
EP3565134B1 (en) * 2017-01-24 2020-08-05 Huawei Technologies Co., Ltd. Antenna correction method and device
US11177567B2 (en) * 2018-02-23 2021-11-16 Analog Devices Global Unlimited Company Antenna array calibration systems and methods
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026558A1 (zh) * 2012-08-14 2014-02-20 华为技术有限公司 通道校正方法、装置及无线接入***
CN104243055A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 多天线信道校正的方法、装置和基站***
CN107547146A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 天线校正方法及装置

Also Published As

Publication number Publication date
CN111510229A (zh) 2020-08-07
EP3905552A4 (en) 2022-02-23
CN111510229B (zh) 2022-12-27
US20210391929A1 (en) 2021-12-16
US11784728B2 (en) 2023-10-10
EP3905552B1 (en) 2024-07-31
EP3905552A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
AU2018413673B2 (en) Multiway switch, radio frequency system, and wireless communication device
US10651875B2 (en) Multi-way switch, radio frequency system, and wireless communication device
US10560137B2 (en) Multiway switch, radio frequency system, and wireless communication device
WO2020156202A1 (zh) 射频通道的校正方法和装置及天线和基站
US20190288733A1 (en) Multiway Switch, Radio Frequency System, and Wireless Communication Device
AU2018413406B2 (en) Multiway switch, radio frequency system, and wireless communication device
US10567027B2 (en) Multiway switch, radio frequency system, and wireless communication device
AU2018413695B2 (en) Multi-way switch, radio frequency system, and wireless communication device
US10419040B1 (en) Multiway switch, radio frequency system, and communication device
US8260234B2 (en) Apparatus and method for calibration in multi-antenna system
US8441964B2 (en) Feeding device for smart antenna
US10567028B2 (en) Multiway switch, radio frequency system, and wireless communication device
US11784727B2 (en) Transmission channel calibration apparatus and wireless communications device
CN110661074B (zh) 4t4r对称天线***及多输入多输出功率均衡方法
EP3982554B1 (en) Apparatus and method for correcting deviation between plurality of transmission channels
US10164345B2 (en) Antenna arrangement
US10944489B2 (en) Active antenna system, communication device, calibration method of active antenna system and recording medium
CN103516408A (zh) 天馈网络***
US20230344529A1 (en) Antenna calibration method and system
WO2024001819A1 (zh) 一种校正装置以及校正方法
WO2024140036A1 (zh) 天线及基站
WO2020258318A1 (zh) 一种用于校正多个传输通道间偏差的装置及无线通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020747743

Country of ref document: EP

Effective date: 20210726