WO2020155604A1 - 测量上报的方法与装置 - Google Patents

测量上报的方法与装置 Download PDF

Info

Publication number
WO2020155604A1
WO2020155604A1 PCT/CN2019/100217 CN2019100217W WO2020155604A1 WO 2020155604 A1 WO2020155604 A1 WO 2020155604A1 CN 2019100217 W CN2019100217 W CN 2019100217W WO 2020155604 A1 WO2020155604 A1 WO 2020155604A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
resources
channel resource
signal
resource
Prior art date
Application number
PCT/CN2019/100217
Other languages
English (en)
French (fr)
Inventor
樊波
管鹏
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020155604A1 publication Critical patent/WO2020155604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • This application relates to the field of communications, and specifically to a method and device for measurement reporting.
  • the 5th generation (5G) mobile communication system uses high-frequency communication, that is, uses high-frequency (for example, a frequency band higher than 6 GHz) signals to transmit data.
  • high-frequency communication uses high-frequency (for example, a frequency band higher than 6 GHz) signals to transmit data.
  • One of the main problems of high-frequency communication is that the signal energy drops sharply with the transmission distance, resulting in a shorter signal transmission distance.
  • analog beam technology has been proposed for high-frequency communication.
  • the analog beam technology refers to the use of large-scale antenna arrays to concentrate the signal energy in a small range to form a signal similar to a beam, thereby increasing the transmission distance. This beam-like signal can be called an analog beam, or beam for short.
  • the beam measurement process roughly includes the following process: the network device configures multiple measurement resources (resources for short) for the terminal device through the measurement configuration information, and each resource corresponds to a beam; the terminal device measures the resources configured by the network device to determine the resources (ie resources). The reference signal receiving power (RSRP) of the corresponding beam) is measured, and then several resources with the largest RSRP are selected, and the indexes of these resources and RSRP are reported to the network equipment; the network equipment reports from the terminal equipment Select one resource among several resources, and use the beam corresponding to the resource to send data.
  • RSRP reference signal receiving power
  • multi-user transmission that is, network equipment transmits data to multiple users through multiple beams in the same time slot. If beams with strong interference are used to transmit data, it will cause data transmission errors and reduce multi-user transmission. effectiveness. Therefore, in the multi-user transmission scenario, the problem of beam interference needs to be solved.
  • network equipment judges the interference between beams based on RSRP. For example, the network device selects one of the largest RSRP resources reported by the terminal device as the channel resource, that is, uses the beam corresponding to the channel resource as the beam for data transmission, and treats the remaining resources as strong interference resources. In multi-user transmission , Avoid using these several RSRP largest resources at the same time.
  • the several RSRP largest resources reported by the terminal device may not necessarily have strong interference with each other. Therefore, the network device cannot accurately know the interference situation between the beams.
  • This application provides a method and device for measurement and reporting, which can enable network equipment to more accurately learn the interference resources of channel resources, so that the network equipment can perform reasonable beam interference management, thereby avoiding simultaneous use of multiple interference resources with strong mutual interference.
  • the beam performs multi-user transmission.
  • a measurement report method includes: receiving a measurement signal sent by a network device through a measurement resource; based on the measurement signal, determining N channel resources to be reported and the N channel resources M interference resources for each channel resource in, where M and N are positive integers; report a measurement result to the network device, the measurement result includes the index of the N channel resources, and the N channels Index of M interference resources for each channel resource in the resource.
  • Channel resources refer to resources reported by the terminal equipment to the network equipment for data transmission. It should be understood that the network device may select one or more resources from the channel resources reported by the terminal to perform data transmission with the terminal device.
  • the interference resource of channel resource A represents the same resource as the receiving beam of the channel resource A. In other words, if the receiving beam used by the terminal device when measuring a certain resource is different from the receiving beam of the channel resource A, the terminal device will not use the resource as the interference resource of the channel resource A.
  • the receiving beam used by the terminal device to measure a resource is configured by the network device or can be independently selected by the terminal device.
  • the terminal device can learn the receiving beam of each resource in the measurement resource configured by the network device according to the configuration of the network device or the autonomous algorithm of the terminal device.
  • For a channel resource to be reported if the receiving beam of a resource in the measurement resource (denoted as resource 1) is the same as the receiving beam of the channel resource, then this resource 1 can be regarded as the interference resource of the channel resource; if the resource is measured If the receiving beam of one resource (denoted as resource 2) is different from the receiving beam of the channel resource, it is considered that resource 2 is not the interference resource of the channel resource.
  • the terminal device may select M resources from the interference resource set of the channel resource A as the M interference resources of the channel resource A.
  • the interference resource set of the channel resource A represents a set of resources in which the receiving beam and the receiving beam of the channel resource A are the same among the measurement resources configured by the network device.
  • the network device when scheduling multiple resources including the channel resource, it can avoid interference or adjust the transmission modulation and coding scheme (MCS) of the interference paired beam.
  • MCS transmission modulation and coding scheme
  • the terminal device reports the interference resource of the channel resource to the network device, so that the network device can learn more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong Beams that interfere with each other are used for transmission, which can improve the efficiency of multi-user transmission.
  • the interference resources of the channel resources reported by the terminal device may all be strong interference resources or all weak interference resources.
  • Strong interference resources refer to resources that cause strong interference to channel resources. Reporting the index of the strong interference resource can inform the network equipment which resource corresponding beam will cause strong interference to the beam corresponding to the channel resource. When multi-user transmission is performed, these interferences should be avoided as much as possible.
  • Weak interference resources refer to resources that cause little interference to channel resources. Reporting the index of weak interference can inform the network device which resource corresponding beams cause little interference to the beam corresponding to the channel resource. When performing multi-user transmission, these beams should be used as much as possible to pair with the beam corresponding to the channel resource for transmission.
  • whether the terminal device reports the strong interference resource or the weak interference resource to the network device may be specified through the network device configuration or protocol.
  • the method further includes: receiving measurement configuration information issued by the network device, where the measurement configuration information includes a value for indicating N And/or, the measurement configuration information includes a field or parameter for indicating the value of M.
  • the method further includes: receiving measurement configuration information issued by the network device, where the measurement configuration information is used to indicate the total number of resources that need to be reported X; Determine the values of N and M according to the preset rules and the value of X.
  • determining the values of N and M according to a preset rule and the value of X includes:
  • the terminal device can learn the number of channel resources to be reported and the number of interference resources for each channel resource.
  • the values of N and M may not only be configured by the network device, but also specified by the protocol.
  • determining the M interference resources for each of the N channel resources to be reported includes: The first channel resource determines M resources among other resources received by the receiving beam of the first channel resource as M interference resources of the first channel resource.
  • the random M resources among other resources received by the receiving beam of the first channel resource may be determined as the M interference resources of the first channel resource.
  • M resources satisfying a certain condition among other resources received by the receiving beam of the first channel resource may be determined as the M interference resources of the first channel resource.
  • determining the M interference resources for each of the N channel resources to be reported includes: The first channel resource determines M other resources with the largest or smallest received power of the reference signal received by the receiving beam of the first channel resource as the M interference resources of the first channel resource.
  • determining the M interference resources for each of the N channel resources to be reported includes: For the first channel resource, calculate the signal-to-interference and noise ratio of the first channel resource under the interference of each of the other resources received by the receiving beam of the first channel resource; in the calculated signal-to-interference and noise ratio, The M resources corresponding to the largest or smallest M signal to interference and noise ratios are determined as the M interference resources of the first channel resource.
  • determining the N channel resources to be reported includes: determining the resources corresponding to the N measurement signals with the largest reference signal received power among the measurement signals as The N channel resources; or, determine the resources corresponding to the N measurement signals with the largest signal-to-interference and noise ratio among the measurement signals as the N channel resources; or, determine the N1 with the largest signal-to-interference and noise ratio among the measurement signals Among the measurement resources corresponding to the two measurement signals, the resources corresponding to the N measurement signals with the largest reference signal received power are determined as the N channel resources, and N1 is an integer greater than or equal to N; or, the reference signal in the measurement signal is received Among the measurement resources corresponding to the N2 measurement signals with the highest power, the resources corresponding to the N measurement signals with the largest SNR are determined as the N channel resources, and N2 is an integer greater than or equal to N.
  • determining the N channel resources to be reported and the M interference resources of each of the N channel resources includes: Determine N channel resources in, and determine M interference resources for each channel resource among candidate interference resources.
  • Candidate channel resources refer to a group of resources used to select channel resources among measurement resources corresponding to measurement signals issued by network resources.
  • Candidate interference resources refer to a group of resources used to select interference resources among the measurement resources corresponding to the measurement signals issued by the network resources.
  • the candidate channel resource and the candidate interference resource may be different groups of resources or the same group of resources. For example, when one resource in the measurement resource corresponding to the measurement signal issued by the network resource is used as the channel resource group, other resources may be used as candidate interference resources.
  • the measurement result further includes the signal-to-interference-to-noise ratio of each of the N channel resources under the interference of the M interference resources. .
  • the network device can obtain more sufficient inter-beam interference, which helps the network device avoid multi-user transmission. At the same time use beams that strongly interfere with each other.
  • the measurement result includes the signal-to-interference and noise ratio of the channel resource
  • multiple ways can be used to express the signal to interference and noise ratio in the measurement result.
  • the M signal-to-interference and noise ratios of the first channel resource in the N channel resources under the interference of the M interference resources are expressed in the following manner:
  • the measurement result includes M fields, the first field of the M fields is a1 bit, the remaining M-1 fields are b1 bits, a1 is a positive integer, and b1 is a positive integer smaller than a1, where,
  • the first field is used to indicate the first signal-to-interference and noise ratio among the M signal-to-interference and noise ratios, and the M-1 fields are respectively used to indicate that the first signal-to-interference and noise ratio is divided by the M signal-to-interference and noise ratios.
  • This method can be called the intra-group difference method.
  • the M*N signal-to-interference and noise ratios of each of the N channel resources under the interference of M interference resources are expressed as follows:
  • the measurement result includes M*N fields, the first field of the M*N fields is a2 bits, the remaining M*N-1 fields are b2 bits, a2 is a positive integer, and b2 is less than a2 A positive integer of, wherein the first field is used to indicate the first signal-to-interference and noise ratio among the M*N signal-to-interference and noise ratios, and the M*N-1 fields are used to indicate the M* The difference between the M*N-1 signal-to-interference-noise ratio and the first signal-to-interference-to-noise ratio among the N signal-to-interference and noise ratios except the first signal-to-interference and noise ratio.
  • This method can be called an inter-group difference method.
  • the M*N signal-to-interference-to-noise ratios of each of the N channel resources under the interference of M interference resources are expressed as follows:
  • M fields are included, where, for the s-th channel resource among the N channel resources, M first fields of a3 bits are included for the N channel resources.
  • the i-th channel resource in the channel resource includes M second fields of b3 bits, i traverses all values from 1 to M that are not equal to s, s is an integer not less than 1 and not greater than M, a3 is a positive integer, b3 is a positive integer smaller than a3.
  • the j-th first field of the M first fields corresponding to the s-th channel resource is used to indicate the j-th signal-to-interference and noise ratio of the s-th channel resource
  • the i-th channel resource corresponds to
  • the j-th second field in the M second fields is used to indicate the difference between the j-th signal-to-interference and noise ratio of the i-th channel resource and the j-th signal-to-interference and noise ratio of the s-th channel resource .
  • This method can also be called an inter-group difference method.
  • the index of the M interference resources of the first channel resource among the N channel resources is determined according to the first
  • the interference energy values of the M interference resources of the channel resource are arranged in ascending or descending order; or, the index of the M interference resources of the first channel resource is arranged according to the interference of the first channel resources in the M interference resources.
  • the sequence of the M signal to interference and noise ratios of the first channel resource is consistent with the sequence of the M interference resources of the first channel resource.
  • the index positions of the M interference resources of the first channel resource are concentrated together, and the M signal interference and noise Or, the index of each interference resource among the M interference resources of the first channel resource and the signal-to-interference and noise ratio of the first channel resource under the interference of each interference resource The arrangement positions are concentrated together.
  • the reference signal received power (RSRP) is replaced with the reference signal received quality (RSRQ).
  • the signal-to-interference and noise ratio may be replaced with a channel quality indicator (CQI) or RSRQ.
  • CQI channel quality indicator
  • RSRQ channel quality indicator
  • the first channel resource among the N channel resources will be described as an example, but this does not limit the application.
  • the relevant description of the first channel resource in this article can be applied to N Each channel resource in the channel resources.
  • the solution provided by this application reports the interference resources of the channel resources to the network equipment through the terminal equipment, so that the network equipment can learn the interference resources of the channel resources more accurately, so that the network equipment can perform reasonable beam interference management. Avoid using multiple beams with strong mutual interference for multi-user transmission at the same time, thereby improving the performance and efficiency of multi-user transmission.
  • a measurement report method includes: sending a measurement signal to a first terminal device through a measurement resource; receiving a measurement result reported by the first terminal device based on the measurement signal, the measurement result including The index of the N channel resources, and the index of the M interference resources of each channel resource in the N channel resources; the first terminal used to send the downlink signal to the first terminal device is determined from the N channel resources A resource, and according to the measurement result, determine a second resource for sending a downlink signal to a second terminal device; use the first resource to send a first downlink signal to the first terminal device, and use the first resource A second resource sends a second downlink signal to the second terminal device, where the second resource does not belong to any one or more of the M interference resources of the first resource, or the second resource Is any one or more of the M interference resources of the first resource.
  • the terminal device reports the interference resource of the channel resource to the network device, so that the network device can learn more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong Beams that interfere with each other are used for transmission, which can improve the efficiency of multi-user transmission.
  • the interference resources of the channel resources reported by the terminal device may be all strong interference resources or all weak interference resources.
  • Strong interference resources refer to resources that cause strong interference to channel resources. Reporting the index of the strong interference resource can inform the network equipment which resource corresponding beam will cause strong interference to the beam corresponding to the channel resource. When multi-user transmission is performed, these interferences should be avoided as much as possible.
  • Weak interference resources refer to resources that cause little interference to channel resources. Reporting the index of weak interference can inform the network device which resource corresponding beams cause little interference to the beam corresponding to the channel resource. When performing multi-user transmission, these beams should be used as much as possible to pair with the beam corresponding to the channel resource for transmission.
  • whether the terminal device reports a strong interference resource or a weak interference resource to the network device can be specified by the network device configuration or protocol.
  • the second resource when the interference resource of the channel resource reported by the first terminal device is a strong interference resource, the second resource is not M of the first resource Any one or more of the interference resources.
  • the second resource is any one or more of the M interference resources of the first resource.
  • the method further includes: sending measurement configuration information to the first terminal device, where the measurement configuration information includes a value indicating N And/or, the measurement configuration information includes a field or parameter for indicating the value of M.
  • the method further includes: sending measurement configuration information to the first terminal device, where the measurement configuration information is used to indicate the total number of resources that need to be reported X.
  • the measurement result further includes the signal-to-interference-to-noise ratio of each of the N channel resources under the interference of the M interference resources. .
  • the measurement result in the solution provided in the second aspect, in the implementation manner in which the measurement result includes the signal-to-interference and noise ratio of the channel resource, the measurement result can be expressed in multiple ways. For details, please refer to the first aspect. Related descriptions are not repeated here.
  • the indexes of the M interference resources for each channel resource can be arranged in multiple ways. For details, please refer to the relevant description in the first aspect, which will not be omitted here. Repeat.
  • the order of the M signal-to-interference and noise ratios of the first channel resource may be the same as that of the first channel resource.
  • the order of the M interference resources is the same.
  • the index positions of the M interference resources of the first channel resource are concentrated together, and the first channel The arrangement positions of the M signal-to-interference and noise ratios of the resources are concentrated; or the index of each interference resource among the M interference resources of the first channel resource and the interference of the first channel resource in each interference resource The arrangement positions of the signal-to-interference-to-noise ratio below are concentrated.
  • a third aspect provides a measurement report method, the method includes: receiving measurement configuration information sent by a network device, the measurement configuration information including configuration information of a first channel resource and K corresponding to the first channel resource
  • the configuration information of the interference resource, K is a positive integer
  • receive the measurement signal sent by the network device according to the measurement configuration information measure the measurement signal to obtain the measurement result of the first channel resource, the first channel resource
  • the measurement result includes the signal-to-interference and noise ratio of the first channel resource under the interference of the K interference resources; the measurement result of the first channel resource is reported to the network device, wherein the first channel
  • the ranking of the K signal-to-interference and noise ratios of the resources in the measurement result of the first channel resource is related to the index of the K interference resources, or is related to the configuration order of the K interference resources.
  • the terminal device is configured with the interference resource corresponding to the channel resource through the network device, so that the terminal device can measure the signal-to-interference and noise ratio of the channel resource under the corresponding interference resource, and can report to the network device that the channel resource is in the corresponding interference resource The lower signal-to-interference and noise ratio, so that the network equipment can learn the interference information of the channel resources.
  • the terminal device reports to the network device the signal-to-interference and noise ratio of the channel resource under the interference of the interference resource in a specific order (for example, related to the index of the interference resource, or related to the configuration order of the interference resource), so that the network device can learn The interference resources corresponding to these SNRs.
  • a fourth aspect provides a measurement report method, the method comprising: sending measurement configuration information to a terminal device, the measurement configuration information including configuration information of a first channel resource and K interference resources corresponding to the first channel resource K is a positive integer; sending a measurement signal to the terminal device according to the measurement configuration information; receiving the measurement result of the first channel resource reported by the terminal device based on the measurement signal, the first
  • the measurement result of the channel resource includes the signal-to-interference and noise ratios of the first channel resource under the interference of the K interference resources, wherein the K signal-to-interference and noise ratios of the first channel resource are in the first channel
  • the ranking in the resource measurement result is related to the index of the K interference resources, or is related to the configuration order of the K interference resources.
  • the terminal device is configured with the interference resource corresponding to the channel resource through the network device, so that the terminal device can measure the signal-to-interference and noise ratio of the channel resource under the corresponding interference resource, and can report to the network device that the channel resource is in the corresponding interference resource The lower signal-to-interference and noise ratio, so that the network equipment can learn the interference information of the channel resources.
  • the terminal device reports to the network device the signal-to-interference and noise ratio of the channel resource under the interference of the interference resource in a specific order (for example, related to the index of the interference resource, or related to the configuration order of the interference resource), so that the network device can learn The interference resources corresponding to these SNRs.
  • the method further includes: determining the order of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource
  • the K signal to interference and noise ratios of the first channel resource correspond to the K interference resources respectively.
  • the network device receives the signal-to-interference and noise ratio of the channel resources reported by the terminal device in a specific order (for example, related to the index of the interference resource, or related to the configuration order of the interference resource) under the interference of the interference resource. Know the interference resources corresponding to these SNRs.
  • the terminal device when the terminal device reports the channel resource measurement result to the network device, it can omit reporting the index of the interference resource, thereby saving signaling.
  • the measurement result of the first channel resource does not carry the indexes of the K interference resources.
  • the K signal to interference and noise ratios of the first channel resource are ranked in the measurement result of the first channel resource as the K interferences
  • the index of the resource is in descending order or descending order.
  • the ranking of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource is related to the index of the K interference resources, or is related to the K interference resources
  • the ordering of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource may also adopt other feasible implementation manners.
  • the ranking of the K signal to interference and noise ratios of the first channel resource in the measurement result of the first channel resource is determined according to application requirements.
  • the measurement configuration information includes configuration information of a channel resource group used to select channel resources and configuration information of an interference resource group used to select interference resources, wherein, the channel resource group includes the first channel resource, and the interference resource group includes the K interference resources.
  • the K interference resources corresponding to the first channel resource are:
  • the interference resource specifically configured for the first channel resource in the measurement configuration information
  • the interference resource specifically configured for the channel resource group where the first channel resource is located in the measurement configuration information
  • All interference resources configured in the measurement configuration information have the same transmission configuration as the first channel resource indicating the interference resource configured by the TCI;
  • the interference resource having the same transmission configuration as the first channel resource indicates the interference resource configured by the TCI.
  • the measurement result of the first channel resource further includes any one or more of the following: reference signal received power RSRP of the first channel resource , The reference signal reception quality RSRQ of the first channel resource, and the channel quality identifier CQI of the first channel resource.
  • a communication device configured to execute the method provided in the foregoing first, second, third, or fourth aspect.
  • the communication device may include a module for executing the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a communication device in a sixth aspect, includes a memory and a processor, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory, and the The execution of causes the processor to execute the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a communication device in a seventh aspect, includes a processor coupled to a memory.
  • the processor executes a computer program or instruction in the memory, the first and second aspects , The method provided by the third aspect or the fourth aspect is executed.
  • a communication device in an eighth aspect, includes a processor and an interface.
  • the processor is coupled to a memory through the interface.
  • the processor executes a computer program or instruction in the memory, the first The method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect is executed.
  • a chip in a ninth aspect, includes a processing module and a communication interface.
  • the processing module is used to control the communication interface to communicate with the outside.
  • the processing module is also used to implement the first and second aspects. , The method provided by the third or fourth aspect.
  • the processing module is a processor.
  • a chip in a tenth aspect, includes a processor and an interface.
  • the processor is used to control the interface to communicate with the outside.
  • the processor is also used to call and run the storage in the memory.
  • a computer-readable storage medium is provided with a computer program stored thereon, which when executed by a computer causes the computer to implement the aspects of the first aspect, the second aspect, the third aspect, or the fourth aspect Any possible implementation method.
  • a twelfth aspect provides a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method provided in the first, second, third, or fourth aspect.
  • the solution provided by this application reports the interference resources of the channel resources to the network equipment through the terminal equipment, so that the network equipment can learn the interference resources of the channel resources more accurately, so that the network equipment can perform reasonable beam interference management. Avoid using multiple beams with strong mutual interference for multi-user transmission at the same time, thereby improving the performance and efficiency of multi-user transmission.
  • FIG. 1 and Fig. 2 are schematic diagrams of a communication system applied in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a measurement report method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a measurement report method provided by another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to a beam-based multi-carrier communication system, for example, a 5G system or a new radio (NR) system.
  • a beam-based multi-carrier communication system for example, a 5G system or a new radio (NR) system.
  • NR new radio
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it can be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technology.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • Beams generally correspond to resources. For example, when performing beam measurement, network devices use different resources to measure different beams. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. During data transmission, the beam information is also indicated by its corresponding resource. For example, the network device indicates the PDSCH beam information of the terminal device through the TCI resource in the DCI.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports can be included in a beam for transmitting data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • the uplink signal includes, but is not limited to: sounding reference signal (SRS) and demodulation reference signal (DMRS).
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS), and synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • CSI-RS channel state information reference signal
  • CS-RS cell-specific reference signal
  • UE-specific reference signal user equipment specific reference signal
  • US-RS demodulation reference signal
  • DMRS demodulation reference signal
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB).
  • Radio resource control radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the uplink/downlink signal resource. It is understandable that the index of the resource may also be referred to as the identifier of the resource, which is not limited in the embodiment of the present application.
  • Beam measurement is a measurement process in the R15 protocol, which mainly includes the following steps 1 to 4.
  • Step 1 The network device sends measurement configuration information to the terminal device.
  • the network device may send measurement configuration information to the terminal through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • Measurement configuration information mainly includes two parts: resource configuration information and report configuration information.
  • Resource configuration information refers to information related to measurement resources.
  • Resource configuration information in the protocol can be configured through a three-level structure (resourceConfig-resourceSet-resource).
  • the network device may configure one or more resource configurations for the terminal device, each resource configuration may include one or more resource sets, and each resource set may include one or more resources.
  • Each resource configuration/resource set/resource can include its own index.
  • each resource configuration/resource set/resource may also include some other parameters, such as the period of the resource and the signal type corresponding to the resource.
  • Reporting configuration information refers to information related to measurement result reporting.
  • the report configuration information can be configured through the report configuration (ReportConfig) in the protocol.
  • the network device can configure one or more reporting configurations for the terminal device, and each reporting configuration can include information related to the reporting of measurement results, such as reporting indicators, reporting time and period, and reporting format.
  • the report configuration may also include the index of the resource configuration, which is used to indicate the measurement configuration through which the reported result is measured.
  • the following is the specific format of resource configuration and report configuration in the R15 protocol.
  • Step 2 The network device sends a downlink signal on the resource particle corresponding to the resource configured by the resource configuration information, so that the terminal device can determine the quality of each resource (that is, the quality of the beam corresponding to the resource) by measuring the downlink signal.
  • Step 3 The terminal device measures the downlink signal according to the measurement configuration information.
  • Step 4 The terminal device sends a beam measurement report to the network device.
  • the beam measurement report may include the index and quality of one or more resources.
  • Table 1 is the reporting format adopted by the beam measurement report in the R15 protocol.
  • the CRI (CSI-RS Index) field and the SSBRI (SSB Resource Index) field are used to indicate the resource index to be reported. It is possible to report only CRI, SSBRI, or both. with Is the length of the CRI field and the SSBRI field.
  • the RSRP field and the differential RSRP field are used to indicate the quality of resources.
  • the reporting of the quality of resources adopts the differential reporting criterion.
  • Table 1 the RSRP of the best resource (such as the RSRP field in Table 1) is reported in 7-bit quantization, while the RSRP of other resources (such as the differential RSRP field in Table 1) is reported in 4-bit quantization.
  • the beam measurement report may be carried in a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the communication system applied in the embodiments of the present application may include one or more network devices and one or more terminal devices.
  • a network device can transmit data or control signaling to one or more terminal devices.
  • multiple network devices can also simultaneously transmit data or control signaling for one terminal device.
  • FIG. 1 is a schematic diagram of a communication system 100 applied in an embodiment of this application.
  • the communication system 100 includes a network device or 110 and multiple terminal devices 120 (terminal device 120a and terminal device 120b as shown in FIG. 1).
  • the network device 110 may simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data to multiple terminal devices.
  • the network device transmits beam 1 and beam 2 at the same time, where beam 1 is used to transmit data for the terminal device 120a, and beam 2 is used to transmit data for the terminal device 120b.
  • the beam 1 may be referred to as the serving beam of the terminal device 120a, and the beam 2 may be referred to as the serving beam of the terminal device 120b.
  • the terminal device 120a and the terminal device 120b may belong to the same cell.
  • the signal of beam 1 reaches the terminal device 120a, and the signal of beam 2 reaches the terminal device 120b.
  • multiple beams simultaneously transmitted by the network device may interfere with the terminal device.
  • the network device 210 transmits beam 3 and beam 4 at the same time.
  • the beam 3 is a beam scheduled by the network device 210 to the terminal device 220a for data transmission, that is, the beam 3 is a serving beam of the terminal device 220a.
  • the beam 4 is a beam scheduled by the network device 210 to the terminal device 220b for data transmission, that is, the beam 4 is a serving beam of the terminal device 220b.
  • the beam 4 is reflected during the transmission process, causing the beam 4 (in whole or in part) to reach the terminal device 220a.
  • the terminal device 220a receives its own serving beam 3 and also receives a non-serving beam 4.
  • beam 3 is a serving beam
  • beam 4 is an interference beam.
  • the beam 4 can also be regarded as the interference beam of the beam 3.
  • the interference of the beam 4 to the beam 3 can be called intra-cell interference.
  • the network equipment determines the beams that interfere with each other by judging the RSRP of a number of resources reported by the terminal equipment.
  • the multiple resources with the largest RSRP reported by the terminal device may not really have strong interference.
  • the terminal device reports the largest RSRP resource 1 and resource 2 to the network device, and the network device regards the resource 1 and the resource 2 as resources that have strong interference with each other.
  • the terminal device uses the receiving beam 1 when measuring the resource 1, and the receiving beam 2 when measuring the resource 2.
  • the RSRP of resource 2 is relatively small.
  • the network device uses the beam corresponding to resource 1 to send data, and the terminal device uses the receive beam 1 to receive, the energy of the interference signal received from the beam corresponding to resource 2 is weak. Therefore, although the terminal device measures resource 2 and measures that it has a larger RSRP, resource 2 is not a strong interference resource of resource 1.
  • the network device cannot obtain a more accurate interference situation between beams.
  • This application proposes a method and device for measurement and reporting, which can enable network equipment to learn more accurate interference between beams, so that when multiple users are transmitting, it can avoid using beams with strong mutual interference for transmission. Can improve the efficiency of multi-user transmission.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal equipment can be a mobile station (MS), subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (personal digital assistant, PDA) computer, Tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (MTC) terminal, etc.
  • the network device involved in the embodiments of the present application is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network equipment may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, or transmission and reception points (transmission and reception points, TRP), etc.
  • the network equipment may be a base station equipment in a 5G network or a network equipment in a future evolved PLMN network.
  • FIG. 3 is a schematic flowchart of a measurement report method 300 according to an embodiment of this application.
  • the method 300 includes the following steps.
  • the network device sends a measurement signal to the terminal device through the measurement resource.
  • the terminal device receives the measurement signal sent by the network device through the measurement resource.
  • the network device may send the measurement signal corresponding to the measurement resource configured by the resource configuration information to the terminal device according to the resource configuration information (as described above).
  • the measurement signal is CSI-RS or SSB.
  • This application does not limit the way of resource allocation.
  • the terminal device determines the N channel resources to be reported and the M interference resources of each channel resource among the N channel resources based on the measurement signal, where M and N are positive integers.
  • the terminal device measures the corresponding measurement signal according to the measurement configuration information, and selects the N channel resources to be reported and the M interference resources for each of the N channel resources according to the measurement result.
  • Channel resources refer to resources reported by the terminal equipment to the network equipment for data transmission. It should be understood that the network device may select one or more resources from the channel resources reported by the terminal to perform data transmission with the terminal device.
  • the interference resource of channel resource A represents the same resource as the receiving beam of the channel resource A. In other words, if the receiving beam used by the terminal device when measuring a certain resource is different from the receiving beam of the channel resource A, the terminal device will not use the resource as the interference resource of the channel resource A.
  • the receiving beam used by the terminal device to measure a resource is configured by the network device or can be independently selected by the terminal device.
  • the terminal device can learn the receiving beam of each resource in the measurement resource configured by the network device according to the configuration of the network device or the autonomous algorithm of the terminal device.
  • For a channel resource to be reported if the receiving beam of a resource in the measurement resource (denoted as resource 1) is the same as the receiving beam of the channel resource, then this resource 1 can be regarded as the interference resource of the channel resource; if the resource is measured If the receiving beam of one resource (denoted as resource 2) is different from the receiving beam of the channel resource, it is considered that resource 2 is not the interference resource of the channel resource.
  • the terminal device may select M resources from the interference resource set of the channel resource A as the M interference resources of the channel resource A.
  • the interference resource set of the channel resource A represents a set of resources in which the receiving beam and the receiving beam of the channel resource A are the same among the measurement resources configured by the network device.
  • the following will describe in detail the manner in which the terminal device determines the values of N and M, and the manner in which the terminal device determines the N channel resources to be reported and the M interference resources for each channel resource.
  • the terminal device reports a measurement result to the network device, and the measurement result includes the index of the N channel resources and the index of the M interference resources of each of the N channel resources.
  • the index of the resource mentioned in this article represents information that can identify the resource.
  • the network device After the network device receives the measurement results reported by the terminal device, it can learn the interference resource of each of the N channel resources. Therefore, the network device can learn the more accurate interference between beams, so that the During transmission, network equipment can effectively avoid using beams with strong mutual interference for transmission, thereby improving the efficiency of multi-user transmission.
  • the network device after the network device obtains the interference resource of the channel resource, when scheduling multiple resources including the channel resource, it can avoid interference or adjust the transmission modulation and coding scheme (MCS) of the interference paired beam to achieve The impact of mutual interference between multiple resources scheduled at the same time on data transmission is reduced, thereby improving the throughput of data transmission.
  • MCS transmission modulation and coding scheme
  • the method 300 may further include step 340 and step 350.
  • the network device determines the first resource used to send the downlink signal to the terminal device from the N channel resources, and according to the measurement result, determines the first resource used to send the downlink signal to other terminal devices (which can be recorded as the second terminal device). Two resources.
  • the second resource and the first resource are not strong interference resources with each other.
  • the second resource is not any one or more of the M interference resources of the first resource.
  • the second resource may be any one or more of the M interference resources of the first resource.
  • the network device may use one or more channel resources among the N channel resources as the first resource for sending a downlink signal to the first terminal device device.
  • the network device uses the first resource to send a first downlink signal to the terminal device, and uses the second resource to send a second downlink signal to other terminal devices.
  • the terminal device reports the interference resource of the channel resource to the network device, so that the network device can learn more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong Beams that interfere with each other are used for transmission, which can improve the efficiency of multi-user transmission.
  • the method 300 further includes: the network device delivers measurement configuration information to the terminal device, where the measurement configuration information includes related information about the measurement resource and related information reported by the measurement result.
  • the related information of the measurement resource includes the index, period, or type of the measurement resource; the related information of the measurement result report includes the period of the measurement result report or the amount of reported data.
  • the interference resources of the channel resources reported by the terminal device may be all strong interference resources or all weak interference resources.
  • Strong interference resources refer to resources that cause strong interference to channel resources.
  • Weak interference resources refer to resources that cause little interference to channel resources.
  • Whether the terminal device reports the strong interference resource or the weak interference resource to the network device may be specified by a standard protocol or specified by the network device.
  • the standard protocol stipulates that the M interference resources of each channel resource reported by the terminal device are the M interference resources that most interfere with the channel resource among all the interference resources of the channel resource.
  • the network equipment knows which resource-corresponding beams will cause strong interference to the beams corresponding to the channel resources.
  • it should try its best Avoid using these strong interference resources to send downlink information for other terminal devices.
  • resource 2 has strong interference to resource 1, so when the network device uses the beam corresponding to resource 1 to transmit data to terminal device 1, it cannot use the beam corresponding to resource 2 to transmit data to other terminal devices at the same time, otherwise the terminal Device 1 causes strong interference.
  • the standard protocol stipulates that the M interference resources of each channel resource reported by the terminal device are the M interference resources that have the least interference to the channel resource among all the interference resources of the channel resource.
  • the network device knows which resource corresponding beam will cause strong interference to the beam corresponding to the channel resource.
  • these weakly interfering resources should be used as much as possible Send downlink information for other terminal devices.
  • resource 2 has weak interference to resource 1, so when the network device uses the beam corresponding to resource 1 to transmit data to terminal device 1, it uses the beam corresponding to resource 2 to transmit data to other terminal devices as much as possible.
  • the network device sends instruction information to indicate whether the interference resource reported by the terminal device to the network device is strong interference or weak interference.
  • the network device sends measurement configuration information to the terminal device, and the measurement configuration information includes information indicating the type of interference, and the type of interference is strong interference or weak interference.
  • the terminal device reports to the network device M strong interference resources for each of the N channel resources. If the interference type configured by the network device is weak interference, the terminal device reports M weak interference resources for each of the N channel resources to the network device.
  • reporting the strong interference resources or weak interference resources of the channel resources through the terminal equipment to the network equipment helps to know more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong interference resources.
  • Interfering beams are used for transmission, which can improve the efficiency of multi-user transmission.
  • the terminal device can determine the number of channel resources to be reported N and the number of interference resources M of each channel resource to be reported by any of the following methods:
  • Method 1) Determine the values of N and M according to the measurement configuration information.
  • the method 300 further includes: the network device sends measurement configuration information to the terminal device, the measurement configuration information includes a field or parameter for indicating the value of N, and also includes a A field or parameter indicating the value of M; the terminal device determines the value of N and M according to the measurement configuration information.
  • Method 2 Determine the value of N according to the measurement configuration information, and determine the value of M using the value specified in the protocol.
  • the method 300 further includes: the network device sends measurement configuration information to the terminal device, the measurement configuration information includes a field or parameter for indicating the value of N; the terminal device according to the measurement The configuration information determines the value of N, and determines the value of M according to the value specified in the protocol.
  • the value of N can be configured through the parameter nrofReportedRS (as described above).
  • the parameter nrofReportedRS is used to configure the number of resource indexes to be reported by the terminal device. Since there is no distinction between channel resources and interference resources in the existing R15 protocol, it can be understood that the parameter nrofReportedRS represents the total number of resources to be reported. In this application, the function of the parameter nrofReportedRS is adjusted as follows, so that it can be used to indicate the value of N in some cases:
  • the parameter reportQuantity is configured as ssb-Index-RSRP or cri-RSRP
  • the parameter nrofReportedRS is used to indicate the number of resources to be reported by the terminal device (also called Is the number of the index of the resource to be reported (CSI-RS Index, CRI)). This situation is the same as the existing R15 agreement.
  • the parameter reportQuantity is configured as ssb-Index-L1-SINR or cri-L1-SINR
  • the parameter nrofReportedRS is used to indicate the channel resources to be reported by the terminal device.
  • the number N (or referred to as the number of indexes of channel resources to be reported).
  • the value of M can also be configured through measurement configuration information, or it can be specified through an agreement.
  • Mode 3 Determine the value of M according to the measurement configuration information, and determine the value of N using the value specified in the protocol.
  • the method 300 further includes: the network device sends measurement configuration information to the terminal device, the measurement configuration information includes a field or parameter for indicating the value of M; the terminal device according to the measurement The configuration information determines the value of M, and determines the value of N according to the value specified in the protocol.
  • Mode 4 Determine the values of M and N using the values specified in the agreement.
  • the terminal equipment determines the values of M and N according to the values specified in the agreement.
  • Mode 5 Determine the values of M and N in an implicit manner.
  • the method 300 further includes: the network device sends measurement configuration information to the terminal device, where the measurement configuration information is used to indicate the total number X of resources that need to be reported; Value, determine the value of N and M.
  • the total number X of resources that need to be reported indicated by the measurement configuration information refers to the total number of resources included in the measurement result reported by the terminal device to the network device, that is, the number of N channel resources and M interferences of each channel resource The sum of the number of resources.
  • X can be configured using existing parameters in the existing R15 protocol.
  • X can be configured using the nrofReportedRS parameter in the R15 protocol, or it can be configured using new parameters. This application does not limit this.
  • the preset rule indicates a rule that enables the terminal device to determine the values of N and M according to the value of X.
  • the preset rule indicates that the value of N is 1, and the value of M is equal to X-1.
  • the terminal device determines the values of N and M according to the preset rule and the value of X, including: the terminal device determines that the value of N is 1, and that the value of M is determined to be X-1.
  • the terminal device needs to report 1 channel resource and 3 interference resources with the channel resource.
  • the preset rule indicates that the value of N is X/Q (X is divisible by Q), and the value of M is (X-N)/N, where Q is an integer greater than 1. For example, Q equals 2, 3, 4, or 5, etc.
  • the terminal device determines the values of N and M according to the preset rule and the value of X, including: the terminal device determines that the value of N is X/Q, and the value of M is (X-N)/N. It should be understood that, in this embodiment, the value of X can be divisible by Q.
  • the preset rule can be expressed as that the value of N is half of X (X is an even number), and the value of M is 1.
  • the terminal device determines the values of N and M according to the preset rule and the value of X, including: the terminal device determines that the value of N is X/2 and the value of M is 1.
  • the terminal device determines the N channel resources to be reported based on the measurement signal issued by the network device, and determines the M interference resources for each channel resource.
  • multiple methods can be used to determine the N channel resources to be reported.
  • the first way to determine N channel resources is to select N channel resources through the reference signal received power (RSRP) of the resource. For example, the resources corresponding to the N measurement signals with the largest reference signal received power (RSRP) among the measurement signals are determined as N channel resources.
  • RSRP reference signal received power
  • the second way to determine N channel resources is to select N channel resources based on the signal to interference and noise ratio of the resources. For example, the resources corresponding to the N measurement signals with the largest signal-to-interference and noise ratio among the measurement signals are determined as N channel resources.
  • the signal-to-interference-to-noise ratio refers to the signal to interference plus noise ratio (SINR).
  • SINR is used to represent the signal-to-interference and noise ratio in the following.
  • SINR signal-to-interference and noise ratio
  • CSI-SINR channel state information signal-to-interference and noise ratio
  • SSB-SINR synchronization signal block signal interference Noise ratio
  • L1-CSI-SINR layer 1 channel state information signal to interference and noise ratio
  • L1-SSB-SINR layer 1 synchronization signal block signal to interference and noise ratio
  • SINR can express the performance that a channel resource can achieve under the interference of a certain interference resource.
  • SINR channel resource energy/(interference resource energy+other energy) Equation (1)
  • the channel resource energy in formula (1) represents the signal energy measured on the channel resource A.
  • the channel resource energy is equal to the linear average of the signal energy on the resource particles carrying the channel measurement signal.
  • the channel measurement signal here refers to the measurement signal corresponding to channel resource A, for example, it may be a non-zero power channel state information reference signal (NZP-CSI-RS), SSB signal or other signals.
  • NZP-CSI-RS non-zero power channel state information reference signal
  • SSB signal or other signals.
  • the interference resource energy in formula (1) represents the interference energy measured on the interference resource of the channel resource A, where the interference resource of the channel resource A refers to the interference energy received on the receiving beam used to receive the channel resource A Other resources.
  • the interference resource energy is equal to the linear average value of the signal energy on the resource particles carrying the interference measurement signal.
  • the interference measurement signal here means the measurement signal corresponding to the interference resource, which may be an NZP-CSI-RS, SSB signal or other signals.
  • the interference resource energy in formula (1) may be the interference energy on one interference resource of channel resource A.
  • the interference resource energy in formula (1) may be the sum of interference energy on multiple interference resources of channel resource A.
  • the interference resource energy in formula (1) is equal to the sum of the interference energy of all interference resources configured by the network device.
  • the interference resource energy in formula (1) is equal to the sum of the interference energy of all the interference resources selected by the terminal device according to the configuration of the network device.
  • the interference resource energy in formula (1) is equal to the sum of the interference energy of all the interference resources of the channel resource A to be reported by the terminal device.
  • the other energy in formula (1) may be the linear average of the interference energy on the resource particles carrying the channel measurement signal. For example, the total energy on the resource particle subtracts the energy of the channel measurement signal, and the remaining energy is equal to other energy.
  • Other energy may also be the total energy measured on a specially configured channel state information interference measurement (CSI-IM).
  • CSI-IM channel state information interference measurement
  • the third way to determine N channel resources is to select N channel resources through the RSRP and SINR of the resources.
  • the resources corresponding to the N measurement signals with the largest signal-to-interference and noise ratio in the measurement signal are determined as N channel resources, and N1 is an integer greater than or equal to N.
  • a channel resource range is first determined by RSRP.
  • the channel resource range is several resources with the largest RSRP among the measured resources, and then N channel resources with the largest SINR are selected from the channel resource range.
  • formula (1) can be used to calculate the signal-to-interference and noise ratio of channel resources.
  • the resources corresponding to the N measurement signals with the largest SINR are determined as N channel resources, and N2 is an integer greater than or equal to N.
  • a channel resource range is first determined by SINR.
  • the channel resource range is several resources with the largest SINR among the measured resources, and then N channel resources with the largest RSRP are selected from the channel resource range.
  • formula (1) can be used to calculate the signal-to-interference and noise ratio of channel resources.
  • the following uses the first channel resource among the N channel resources as an example to describe a solution for determining M interference resources for each channel resource.
  • the following description of the first channel resource may be applicable to each of the N channel resources.
  • determining the M interference resources of each of the N channel resources to be reported includes: for the first channel resource among the N channel resources, other channels received by the receiving beam of the first channel resource are used.
  • the M resources in the resources are determined as the M interference resources of the first channel resource.
  • the random M resources among other resources received by the receiving beam of the first channel resource may be determined as the M interference resources of the first channel resource.
  • M resources satisfying a certain condition among other resources received by the receiving beam of the first channel resource may be determined as the M interference resources of the first channel resource.
  • determining the M interference resources of each of the N channel resources to be reported includes: for the first channel resource among the N channel resources, the first channel resource will be used for receiving The M other resources with the largest or smallest received power of the reference signal received by the beam are determined as the M interference resources of the first channel resource.
  • determining the M interference resources of each of the N channel resources to be reported includes: for the first channel resource among the N channel resources, calculating that the first channel resource is used respectively The signal-to-interference-to-noise ratio under the interference of each of the other resources received by the receiving beam of the first channel resource; in the calculated signal-to-interference-to-noise ratio, the M resources corresponding to the largest or smallest M signal to interference and noise ratios are determined as M interference resources of the first channel resource.
  • the following formula may be used to calculate the signal-to-interference-to-noise ratio SINR1 of the first channel resource under the interference of interference resource 1:
  • SINR channel resource energy/(interference resource energy 1+other energy) Equation (2)
  • the channel resource energy in formula (2) represents the signal energy measured on the first channel resource.
  • the channel resource energy is equal to the linear average of the signal energy on the resource particles carrying the channel measurement signal.
  • the channel measurement signal here means the measurement signal corresponding to the first channel resource, for example, it may be an NZP-CSI-RS, an SSB signal or other signals.
  • the interference resource energy in formula (2) represents the interference energy measured on the interference resource 1 of the channel resource A.
  • the interference resource 1 of the channel resource A refers to another resource received on the receiving beam for receiving the channel resource A.
  • the interference resource energy is equal to the linear average value of the signal energy on the resource particles carrying the interference measurement signal.
  • the interference measurement signal here means the measurement signal corresponding to interference resource 1, which may be an NZP-CSI-RS, SSB signal or other signals.
  • the other energy in formula (2) may be the linear average value of the interference energy on the resource particles carrying the channel measurement signal. For example, the total energy on the resource particle subtracts the energy of the channel measurement signal, and the remaining energy is equal to other energy.
  • the other energy can also be the total energy measured on the specially configured CSI-IM.
  • the terminal device first determines multiple other resources to be received by the receiving beam of the first channel resource; then, according to formula (2), calculates that the first channel resource is in the multiple other resources.
  • the process of selecting two interference resources of channel resource 1 includes: 1) Determine the interference resource set ⁇ 3,4,5,6 ⁇ of channel resource 1, that is, the terminal equipment measurement resource ⁇ 3,4,5,6 ⁇ The receiving beam used is the same as that of channel resource 1; 2) Using resource ⁇ 3,4,5,6 ⁇ as interference respectively, calculate the SINR of channel resource 1: SINR1_3, SINR1_4, SINR1_5 and SINR1_6; 3) Select the resources corresponding to the two smallest SINRs in the interference resource set ⁇ 3,4,5,6 ⁇ as the two interference resources of channel resource 1. For example, if the SINRs of SINR1_3 and SINR1_4 are the smallest, then Select resources 3 and 4 as the 2 interference resources of channel resource 1.
  • determining the resources corresponding to the M smallest signal-to-interference and noise ratios as the M interference resources of the channel resources corresponds to the above-described solution where the interference type is strong interference.
  • the process of selecting two interference resources of channel resource 1 includes: 1) Determine the interference resource set ⁇ 3,4,5,6 ⁇ of channel resource 1, that is, terminal equipment measurement The receiving beam used by resource ⁇ 3,4,5,6 ⁇ is the same as that of channel resource 1; 2) Using resource ⁇ 3,4,5,6 ⁇ as interference respectively, calculate the SINR of channel resource 1: SINR1_3, SINR1_4 , SINR1_5 and SINR1_6; 3) Select the resources corresponding to the two largest SINRs in the interference resource set ⁇ 3,4,5,6 ⁇ as the two interference resources of channel resource 1. For example, if SINR1_5 and SINR1_6 have the largest SINRs, Then, resources 5 and 6 are selected as the two interference resources of channel resource 1.
  • determining the resources corresponding to the M largest signal-to-interference and noise ratios as the M interference resources of the channel resources corresponds to the solution described above in which the interference type is weak interference.
  • M resources may be randomly selected and determined as the M interference resources of the first channel resource.
  • step 320 includes: the terminal device determines N channel resources among the candidate channel resources, and determines M interference resources for each channel resource among the candidate interference resources.
  • Candidate channel resources refer to a group of resources used to select channel resources among measurement resources corresponding to measurement signals issued by network resources.
  • Candidate interference resources refer to a group of resources used to select interference resources among the measurement resources corresponding to the measurement signals issued by the network resources.
  • the candidate channel resource and the candidate interference resource may be different groups of resources or the same group of resources. For example, when one resource in the measurement resource corresponding to the measurement signal issued by the network resource is used as the channel resource group, other resources may be used as candidate interference resources.
  • the network device can configure candidate channel resources and candidate interference resources by issuing measurement configuration information.
  • This application does not limit the resource allocation method.
  • candidate channel resources and candidate interference resources can be configured in the resource configuration (CSI-ResourceConfig), and can also be configured in the report configuration (CSI-ReportConfig).
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of the M interference resources.
  • the measurement result includes M signal-to-interference and noise ratios of the first channel resource. These M signal-to-interference and noise ratios indicate that the first channel resources are in the first channel resources respectively. The signal-to-interference and noise ratio under the interference of each of the M interference resources.
  • the network device can obtain more sufficient inter-beam interference, which helps the network device avoid multi-user transmission. At the same time, beams with strong mutual interference are used.
  • the measurement result may use multiple ways to express the signal-to-interference and noise ratio.
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of M interference resources.
  • the M signal-to-interference and noise ratios of the first channel resource in the channel resources under the interference of M interference resources are expressed in the following manner:
  • the measurement result includes M fields, the first field of the M fields is a1 bit, the remaining M-1 fields are b1 bits, a1 is a positive integer, and b1 is a positive integer smaller than a1, where the first field is Yu represents the first signal-to-interference-to-noise ratio of the M signal-to-interference-noise ratios, and M-1 fields are used to represent the M-1 signal-to-interference-to-noise ratios except the first signal-to-interference and noise ratio The difference between the ratio and the first signal to interference noise ratio.
  • the first signal-to-interference and noise ratio may be the largest or smallest among the M signal-to-interference and noise ratios.
  • the first signal to interference and noise ratio may also be the first signal to interference and noise ratio in the measurement result.
  • the measurement result includes the indexes of 2 channel resources and the indexes of 2 interference resources of each channel resource, and also includes the signal to interference and noise ratio of each channel resource under its interference resource.
  • Interference resource 3 and interference resource 4 are the interference resources of channel resource 1; SINR_3 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 3, and SINR_4 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 4 .
  • Interference resource 6 and interference resource 7 are the interference resources of channel resource 2; SINR_6 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 6, and SINR_7 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 7. .
  • the measurement result includes an a1-bit field and a b1-bit field for each channel resource, a1 is a positive integer, and b1 is a positive integer smaller than a1.
  • the a1-bit field is used to carry SINR_3
  • the b1-bit field is used to carry the difference between SINR_4 and SINR_3.
  • the information carried in the a1 bit field is the result of quantizing SINR_3 using a1 bit
  • the information carried in the b1 bit field is the difference between SINR_4 and SINR_3 using b1 bit. The quantified result.
  • the method in this embodiment may be called the intra-group difference method.
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of M interference resources.
  • the M*N signal-to-interference and noise ratios of each channel resource in the channel resources under the interference of M interference resources are expressed in the following manner:
  • the measurement result includes M*N fields, the first field of the M*N fields is a2 bits, the remaining M*N-1 fields are b2 bits, a2 is a positive integer, and b2 is a positive integer smaller than a2, Among them, the first field is used to indicate the first signal-to-interference and noise ratio among the M*N signal-to-interference and noise ratios, and the M*N-1 fields are respectively used to indicate that the first signal-to-interference and noise ratio among the M*N signal-to-interference and noise ratios is not included. The difference between the M*N-1 signal-to-interference-to-noise ratio and the first signal-to-interference-to-noise ratio other than the noise ratio.
  • the first signal-to-interference-to-noise ratio can be any of the M*N signal-to-interference-to-noise ratios, or the one with the largest or smallest value among the M*N signal-to-interference-to-noise ratios, or it is ranked in the measurement result.
  • a signal to interference noise ratio can be any of the M*N signal-to-interference-to-noise ratios, or the one with the largest or smallest value among the M*N signal-to-interference-to-noise ratios, or it is ranked in the measurement result.
  • a signal to interference noise ratio can be any of the M*N signal-to-interference-to-noise ratios, or the one with the largest or smallest value among the M*N signal-to-interference-to-noise ratios, or it is ranked in the measurement result.
  • the measurement result includes the indexes of two channel resources and the indexes of two interference resources for each channel resource, and also includes the signal to interference and noise ratio of each channel resource under its interference resource.
  • Interference resource 3 and interference resource 4 are the interference resources of channel resource 1; SINR_3 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 3, and SINR_4 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 4 .
  • Interference resource 6 and interference resource 7 are the interference resources of channel resource 2; SINR_6 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 6, and SINR_7 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 7. .
  • the measurement result includes one a2-bit field and three b2-bit fields, a2 is a positive integer, and b2 is a positive integer smaller than a2.
  • the a2-bit field is used to carry SINR_3, and the three b2-bit fields are used to carry the difference between SINR_4, SINR_6, SINR_7 and SINR_3, respectively.
  • the information carried in the a2 bit field is the result of quantizing SINR_3 using a1 bit
  • the information carried in the first b2 bit field is using b2 bit to quantify the difference between SINR_4 and SINR_3
  • the information carried in the second b2 bit field is the result of quantizing the difference between SINR_6 and SINR_3 using b2 bits
  • the information carried in the third b2 bit field is the result of using b2 bits to pair SINR_7 and
  • the difference of SINR_3 is the result of quantization.
  • the method in this embodiment may be referred to as an inter-group difference method.
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of M interference resources.
  • the M*N signal-to-interference and noise ratios of each channel resource in the channel resources under the interference of M interference resources are expressed in the following manner:
  • the first field includes M a3 bits
  • the second field includes M b3 bits.
  • Field, i traverses all values from 1 to M that are not equal to s, s is an integer not less than 1 and not greater than M, a3 is a positive integer, and b3 is a positive integer less than a3;
  • the j-th first field in the M first fields corresponding to the s-th channel resource is used to indicate the j-th signal-to-interference and noise ratio of the s-th channel resource, and in the M second fields corresponding to the i-th channel resource
  • the j-th second field of is used to indicate the difference between the j-th signal-to-interference and noise ratio of the i-th channel resource and the j-th signal-to-interference and noise ratio of the s-th channel resource.
  • the measurement result includes the indexes of 2 channel resources and the indexes of 2 interference resources of each channel resource, and also includes the signal to interference and noise ratio of each channel resource under its interference resource.
  • Interference resource 3 and interference resource 4 are the interference resources of channel resource 1; SINR_3 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 3, and SINR_4 represents the signal to interference and noise ratio of channel resource 1 under the interference of interference resource 4 .
  • Interference resource 6 and interference resource 7 are the interference resources of channel resource 2; SINR_6 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 6, and SINR_7 represents the signal to interference and noise ratio of channel resource 2 under the interference of interference resource 7. .
  • channel resource 1 it includes two a3-bit first fields
  • channel resource 2 it includes two b3-bit second fields.
  • the first field of the first a3 bit of channel resource 1 carries SINR_3, the first field of the second a3 bit of channel resource 1 carries SINR_4;
  • the second field of the first b3 bit of channel resource 2 carries SINR_6 and SINR_3 Difference, the second field of the second b3 bit of channel resource 2 carries the difference between SINR_7 and SINR_4.
  • the method in this embodiment may also be referred to as an inter-group difference method.
  • the indexes of the M interference resources for each channel resource can be arranged in multiple ways.
  • the first channel resource among the N channel resources is taken as an example for description.
  • the indexes of the M interference resources of the first channel resource among the N channel resources are in the ascending order of the interference energy values of the M interference resources of the first channel resource or descending sort.
  • the measurement results reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of the M interference resources, and the N channels
  • the indexes of the M interference resources of the first channel resource in the resource are arranged in ascending or descending order of the signal to interference and noise ratio of the first channel resource under the interference of the M interference resources.
  • the M signal of the first channel resource in the measurement result, the M signal of the first channel resource
  • the sequence of the interference-to-noise ratio is consistent with the sequence of the M interference resources of the first channel resource. As shown in Table 5 and Table 6.
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of the M interference resources, and the first channel
  • the arrangement positions of the indexes of the M interference resources of the resource are grouped together, and the arrangement positions of the M signal-to-interference and noise ratios of the first channel resource are grouped together.
  • the measurement result reported by the terminal device to the network device may also include the signal-to-interference and noise ratio of each of the N channel resources under the interference of the M interference resources, and the first channel The index of each interference resource in the M interference resources of the resource and the arrangement position of the signal-to-interference and noise ratio of the first channel resource under the interference of each interference resource are concentrated together.
  • the index of the first interference resource among the M interference resources of the first channel resource and the arrangement position of the signal-to-interference and noise ratio of the first channel resource under the interference of the first interference resource are concentrated, and the index of the second interference resource
  • the arrangement positions of the signal to interference and noise ratios of the first channel resource under the interference of the second interference resource are concentrated together, and so on.
  • the foregoing arrangement manner of the M interference resource indexes of the channel resources, or the arrangement manner of the M signal-to-interference and noise ratios of the channel resources is only an example and not a limitation.
  • the arrangement of the index of the M interference resources of the channel resources, or the arrangement of the M signal-to-interference and noise ratios of the channel resources can also be other feasible methods other than the methods described above.
  • the method is not limited in this application.
  • the indexes of the M interference resources of the first channel resource may be arranged in the order of measurement of the M interference resources.
  • the measurement result reported by the terminal device to the network device may also include reference signal received power (RSRP) of N channel resources.
  • RSRP reference signal received power
  • the reference signal received power may be replaced with the reference signal received quality (RSRQ).
  • the signal-to-interference and noise ratio may be replaced with a channel quality indicator (CQI) or RSRQ.
  • CQI channel quality indicator
  • RSRQ channel quality indicator
  • the first channel resource among the N channel resources is taken as an example for description, but this does not limit the application.
  • the related description of the first channel resource in this article can be applied to N Each channel resource in the channel resources.
  • the solution provided by this application reports the interference resources of the channel resources to the network equipment through the terminal equipment, so that the network equipment can learn the interference resources of the channel resources more accurately, so that the network equipment can perform reasonable beam interference management. Avoid using multiple beams with strong mutual interference for multi-user transmission at the same time, thereby improving the performance and efficiency of multi-user transmission.
  • the embodiment of the present application also provides a measurement report method.
  • the method includes the following steps.
  • a network device sends measurement configuration information to a terminal device, where the measurement configuration information includes configuration information of a channel resource and configuration information of an interference resource corresponding to the channel resource.
  • the interference resource corresponding to one channel resource may include one or more.
  • the measurement configuration information includes configuration information of the first channel resource and configuration information of K interference resources corresponding to the first channel resource, and K is a positive integer.
  • the measurement configuration information may include configuration information of a channel resource group used to select channel resources and configuration information of an interference resource group used to select interference resources.
  • the channel resource group includes the first channel resource
  • the interference resource group includes K interference resources corresponding to the first channel resource.
  • the measurement configuration information may configure a group of resources (for example, the channel resource group in this embodiment) for channel resource selection, and a group of resources (for example, the interference resource group in this embodiment) for interference resources. s Choice.
  • the terminal device may select the first channel resource (for example, the first channel resource) from the channel resource group, and the interference resource (for example, K interference resources corresponding to the first channel resource) from the interference resource group.
  • the first channel resource for example, the first channel resource
  • the interference resource for example, K interference resources corresponding to the first channel resource
  • the channel resource and the interference resource are resources of different groups.
  • the channel resource and the interference resource may be resources of the same group of resources.
  • one resource in a group of resources is used as a channel resource (for example, the first channel resource in this embodiment)
  • other resources in the group of resources can be used as interference resources.
  • the channel resource group and interference resource group mentioned in this article may be a resource group (resourceSet), or a resource setting (resourceSetting), or other forms of resource groups. This application does not limit the resource allocation method.
  • the measurement configuration information issued by the network device may include information related to measurement resources and information related to measurement result reporting.
  • the information related to the measurement resource includes but is not limited to any one or more of the following: the index of the measurement resource, the period of the measurement resource, and the type of the measurement resource.
  • the information related to the measurement result report includes but is not limited to any one or more of the following: the period when the measurement result is reported, and the reported amount of the measurement result.
  • the above-mentioned measurement configuration information may be configured in the resource configuration (CSI-ResourceConfig), or may be configured in the report configuration (CSI-ReportConfig).
  • channel resources involved in this article can also be referred to as channel measurement resources, and the interference resources can also be referred to as interference measurement resources.
  • the network device sends a corresponding measurement signal to the terminal device through the measurement resource according to the measurement configuration information (for example, the resource configuration information therein).
  • the terminal device receives the measurement signal sent by the network device through the measurement resource according to the measurement configuration information.
  • the terminal device measures a corresponding measurement signal to obtain a measurement result of a channel resource configured by the network device.
  • the measurement result of the channel resource includes a signal to interference and noise ratio (SINR) of the channel resource under interference from its corresponding interference resource.
  • SINR signal to interference and noise ratio
  • the terminal device respectively uses each of the interference resources corresponding to the channel resource as interference, and calculates the signal to interference and noise ratio corresponding to the channel resource under the interference of each interference resource.
  • SINR1_i is the SINR calculated from resource #1 as the channel resource and resource #i as the interference resource.
  • the interference resource corresponding to the channel resource may refer to all interference resources configured by the network device.
  • the interference resource corresponding to the channel resource may refer to an interference resource specifically configured for the channel resource.
  • the network device configures one or more interference resources, or one or more interference resource groups.
  • the terminal device measures the signal-to-interference and noise ratio of a channel resource, it can be based on the network device specifically for the channel resource Configured interference resources.
  • the interference resource corresponding to the channel resource may refer to the interference resource specifically configured for the channel resource group where the channel resource is located.
  • the network device is configured with one or more interference resources, or one or more interference resource groups.
  • the terminal device measures the signal-to-interference and noise ratio of the channel resources in the channel resource group
  • the network device can be used
  • the interference resource is specifically configured for the channel resource group.
  • the interference resource corresponding to the channel resource may refer to the interference resource that has the same transmission configuration indication (TCI) configuration as the channel resource among all the interference resources configured by the network device.
  • TCI transmission configuration indication
  • a network device is configured with a total of 10 interference resources.
  • three of the interference resources have the same TCI configuration as the channel resource.
  • the terminal device measures the signal-to-interference and noise ratio of the channel resource, Based on these 3 interference resources.
  • the interference resource corresponding to the channel resource may refer to an interference resource that has the same TCI configuration as the channel resource among the interference resources specifically configured for the channel resource group where the channel resource is located.
  • the network device configures one or more interference resources, or one or more interference resource groups. For a channel resource in this channel resource group, among the above-mentioned interference resources, only some of the interference resources have the same TCI configuration as the channel resource.
  • the terminal device measures the signal-to-interference and noise ratio of the channel resource, it can be based on the The resource has this part of the interference resource with the same TCI configuration.
  • the terminal device measures the corresponding measurement signal to obtain the measurement result of the first channel resource.
  • the measurement result of the first channel resource includes the first channel resource.
  • the signal-to-interference and noise ratio of a channel resource under K interference resources corresponding to the first channel resource, where the K interference resources corresponding to the first channel resource may be any one of the following 1) to 5).
  • the K interference resources corresponding to the first channel resource are all interference resources configured in the measurement configuration information.
  • the K interference resources corresponding to the first channel resource are interference resources specifically configured for the first channel resource in the measurement configuration information.
  • the K interference resources corresponding to the first channel resource are interference resources specifically configured for the channel resource group where the first channel resource is located in the measurement configuration information.
  • the K interference resources corresponding to the first channel resource are interference resources that have the same transmission configuration as the first channel resource among all the interference resources configured in the measurement configuration information and indicate the TCI configuration.
  • the K interference resources corresponding to the first channel resource are interference resources specifically configured for the channel resource group in which the first channel resource is located in the measurement configuration information and have the same transmission configuration as the first channel resource indicating the TCI configuration.
  • two resources such as the interference resource and the channel resource in the above
  • the two resources may include the following different situations.
  • the two resources have the same TCI configuration, which means that the TCI state (TCI-state) indexes of the two resources are the same.
  • the two resources have the same TCI configuration, which means that the TCI-state indexes of the two resources are different, but the two resources include the reference signal resources corresponding to the typeD QCL information (QCL-info) Are the same.
  • QCL-info typeD QCL information
  • the two resources have the same TCI configuration, which means that the TCI-state indexes of the two resources are different, but the reference signal resources corresponding to all QCL-info included in the two resources are the same.
  • the two resources have the same TCI configuration, which means that the TCI-states of the two resources have a mutual inclusion relationship.
  • the resource included in the TCI-state of resource 2 is resource 1, and it can also be considered that resource 1 and resource 2 have the same TCI configuration.
  • TCI configuration mentioned above can be used between downlink resources and uplink resources.
  • a certain downlink resource and a certain uplink resource have the same TCI configuration may refer to the spatial relation between the reference resource in the TCI-state of the downlink resource and the uplink resource (the uplink configuration is not the TCI-state , But the reference resource in spatial relation) is the same.
  • a certain downlink resource and a certain uplink resource have the same TCI configuration may mean that the reference resource in the TCI-state of the downlink resource is the uplink resource, or that the reference resource in the spatial relation of the uplink resource is the Downlink resources.
  • the same TCI configuration mentioned above can also be used between two uplink resources.
  • that two uplink resources have the same TCI configuration may mean that the two uplink resources have the same TCI-state or spatial-relation.
  • that two uplink resources have the same TCI configuration may mean that the resources included in the TCI-state or spatial-relation of the two uplink resources are the same.
  • two uplink resources having the same TCI configuration may mean that the resource included in the TCI-state or spatial-relation of one uplink resource is the other uplink resource of the two uplink resources.
  • the same TCI configuration mentioned above can also be used between the uplink channel and the uplink resource.
  • a certain uplink channel and a certain uplink resource have the same TCI configuration may mean that the SRS resource corresponding to the uplink channel is the uplink resource.
  • a certain uplink channel and a certain uplink resource have the same TCI configuration may mean that the SRS resource corresponding to the uplink channel is a resource included in the TCI-state or spatial-relation of the uplink resource.
  • the terminal device reports a measurement report result to the network device.
  • the measurement report result includes the measurement result of one or more channel resources.
  • the measurement result of a channel resource includes that the channel resource is interfered by its corresponding interference resource.
  • the signal to interference noise ratio is the frequency division multiplexing technique.
  • the terminal device reports the measurement result of the first channel resource to the network device, and the measurement result of the first channel resource includes the first channel resource Signal to interference and noise ratios under the interference of the K interference resources corresponding to the first channel resource respectively.
  • the ranking of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource is related to the index of the K interference resources, or is related to the configuration order of the K interference resources.
  • the measurement results of the same channel resource are sorted in a specific order.
  • One method is to sort according to the index of each interference resource from largest to smallest or from smallest to largest.
  • SINRs For example, for a channel resource, there are 4 corresponding interference resources, so 4 SINRs need to be reported.
  • the four SINRs are sorted in the reporting format according to the index of the corresponding interference resource from large to small or from small to large.
  • Another method is to sort according to the configuration order of each interference resource.
  • a channel resource there are 4 corresponding interference resources, so 4 SINRs need to be reported.
  • the 4 SINRs are sorted according to the configuration order of the 4 interference resources in the report format.
  • Reporting in a specific order is for the network device to determine which interference resource each measurement result corresponds to, so as to know the interference resource information without reporting the interference resource.
  • the above sequence can be stipulated by the protocol by default or configured by configuration information.
  • the measurement result includes the signal-to-interference-to-noise ratio of the first channel resource under the interference of K interference resources, for example, the K signal-to-interference and noise ratios of the first channel resource
  • the order of the ratio in the measurement result of the first channel resource is: the order of the indexes of the K interference resources from large to small or from small to large; or the configuration order of the K interference resources.
  • the signal to interference and noise ratio of the first channel resource under these K interference resources can be known.
  • the terminal device may not need to send the index of the K interference resources to the network device.
  • the terminal device sends K signal-to-interference and noise ratios of the first channel resource to the network device according to the order of the indexes of the K interference resources from large to small or from small to large, or the configuration sequence of the K interference resources.
  • the K signal-to-interference and noise ratios can be respectively the signal to interference and noise ratios of the first channel resource under which 4 interference resources.
  • the ranking of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource is related to the index of the K interference resources, or is related to the K interference resources
  • the ordering of the K signal-to-interference and noise ratios of the first channel resource in the measurement result of the first channel resource may also adopt other feasible implementation manners.
  • the ranking of the K signal to interference and noise ratios of the first channel resource in the measurement result of the first channel resource is determined according to application requirements.
  • the method further includes: the network device determines the value of the first channel resource according to the ranking of the K signal to interference and noise ratios of the first channel resource in the measurement result of the first channel resource
  • the K signal to interference and noise ratios respectively correspond to the K interference resources.
  • the terminal device is configured with the interference resource corresponding to the channel resource through the network device, so that the terminal device can measure the signal-to-interference and noise ratio of the channel resource under the corresponding interference resource, and can report to the network device that the channel resource is in the corresponding interference resource The lower signal-to-interference and noise ratio, so that the network equipment can learn the interference information of the channel resources.
  • the terminal device reports to the network device the signal-to-interference and noise ratio of the channel resource under the interference of the interference resource in a specific order (for example, related to the index of the interference resource, or related to the configuration order of the interference resource), so that the network device can learn The interference resources corresponding to these SNRs.
  • the terminal device when the terminal device reports the channel resource measurement result to the network device, it can omit reporting the index of the interference resource, thereby saving signaling.
  • the index of the K interference resources may not be carried in the measurement result of the first channel resource.
  • the measurement report result may also include one or more channel resource indexes.
  • the measurement report result includes the index of the first channel resource and the measurement result of the first channel resource
  • the measurement result of the first channel resource includes the signal interference of the first channel resource under the K interference resources corresponding to the first channel resource. Noise ratio.
  • the signal-to-interference and noise ratio may be replaced with a channel quality indicator (CQI) or RSRQ.
  • CQI channel quality indicator
  • RSRQ channel quality indicator
  • the measurement results of each channel resource reported by the terminal device may also include one or more of the following: reference signal received power (RSRP), reference signal Reception quality (RSRQ), channel quality identification (CQI).
  • RSRP reference signal received power
  • RSRQ reference signal Reception quality
  • CQI channel quality identification
  • the RSRQ of a channel resource is obtained according to the interference resource corresponding to the channel resource.
  • the CQI of a channel resource is obtained according to the interference resource corresponding to the channel resource.
  • the measurement result of the first channel resource reported by the terminal device includes the signal-to-interference and noise ratio of the first channel resource under K interference resources corresponding to the first channel resource, and also includes any of the following Or multiple:
  • the terminal device can report the measurement report result to the network device through a variety of implementation methods.
  • the terminal reports a measurement result corresponding to each interference resource among all interference resources corresponding to the channel resource.
  • the measurement result is any one or more of the following: SINR, CQI, RSRQ.
  • the network device is configured with 4 corresponding interference resources, and the terminal device needs to report 4 SINRs of the first channel resource. These 4 SINR is calculated based on these 4 interference resources respectively.
  • the number of measurement results of the channel resource to be reported by the terminal device may be configured by the protocol or specified by default.
  • the measurement result is any one or more of the following: SINR, CQI, RSRQ.
  • K1 corresponding interference resources configured by the network device
  • K1 is a positive integer.
  • the terminal device reports K (K is a positive integer less than or equal to K1) measurement results.
  • the terminal device needs to report K SINRs of the first channel resource, and the K SINRs are calculated based on the K interference resources configured by the network device.
  • the protocol configuration or default specifies, for each channel resource, all interference corresponding to the channel resource is reported
  • the measurement result corresponding to each interference resource in the resource is any one or more of the following: SINR, CQI, RSRQ.
  • the terminal device is configured with the interference resource corresponding to the channel resource through the network device, so that the terminal device can measure the signal-to-interference and noise ratio of the channel resource under the corresponding interference resource, and can report the channel resource status to the network device.
  • the signal-to-interference and noise ratio under the corresponding interference resource so that the network device can learn the interference information of the channel resource.
  • the terminal device reports to the network device the signal-to-interference and noise ratio of the channel resource under the interference of the interference resource in a specific order (for example, related to the index of the interference resource, or related to the configuration order of the interference resource), so that the network device can learn The interference resources corresponding to these SNRs.
  • SINR is used to represent the signal-to-interference and noise ratio, which is only an example and not a limitation.
  • any of the following can also be used to represent the signal to interference and noise ratio: layer 1 signal to interference and noise ratio (L1-SINR), channel state information signal to interference and noise ratio (CSI-SINR), synchronization signal block signal to interference and noise ratio (SSB- SINR), layer 1 channel state information signal to interference and noise ratio (L1-CSI-SINR), layer 1 synchronization signal block signal to interference and noise ratio (L1-SSB-SINR).
  • L1-SINR layer 1 signal to interference and noise ratio
  • CSI-SINR channel state information signal to interference and noise ratio
  • SSB- SINR synchronization signal block signal to interference and noise ratio
  • L1-CSI-SINR layer 1 channel state information signal to interference and noise ratio
  • L1-SSB-SINR layer 1 synchronization signal block signal to interference and noise ratio
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices, and the methods and operations implemented by network devices can also be implemented by Can be used for network equipment components (such as chips or circuits) to achieve.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • the communication device 500 includes a transceiver unit 510 and a processing unit 520.
  • the transceiver unit 510 may communicate with the outside, and the processing unit 510 is used for data processing.
  • the transceiving unit 510 may also be referred to as a communication interface or a communication unit.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the above method embodiment, or the communication device 500 may be used to perform the actions performed by the network device in the above method embodiment.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the method embodiment shown in FIG. 3 above.
  • the communication device 500 may be referred to as a terminal device.
  • the transceiving unit 510 is configured to perform transceiving related operations on the terminal device side in the method embodiment shown in FIG. 3 above
  • the processing unit 520 is configured to perform processing related operations on the terminal device in the method embodiment shown in FIG. 3 above.
  • the transceiver unit 510 is used to receive measurement signals sent by the network device through measurement resources; the processing unit 520 is used to determine the N channel resources to be reported and each of the N channel resources based on the measurement signal M interference resources of the resource, where M and N are positive integers; the transceiver unit 510 is also used to report the measurement result to the network device.
  • the measurement result includes the index of the N channel resources and each channel of the N channel resources The index of the M interference resources of the resource.
  • the terminal device reports the interference resource of the channel resource to the network device, so that the network device can learn more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong Beams that interfere with each other are used for transmission, which can improve the efficiency of multi-user transmission.
  • the processing unit 520 is configured to: for the first channel resource among the N channel resources, use the receive beams of the first channel resource to receive the reference signal received by the reference signal received by the M other channels with the largest or smallest received power.
  • the resource is determined as M interference resources of the first channel resource.
  • the processing unit 520 is configured to: for the first channel resource among the N channel resources, calculate the value of the first channel resource in each of the other resources received by the receiving beam using the first channel resource.
  • Signal to interference and noise ratio under interference in the calculated signal to interference and noise ratio, the M resources corresponding to the largest or smallest M signal to interference and noise ratios are determined as the M interference resources of the first channel resource.
  • the transceiver unit 510 is further configured to receive measurement configuration information issued by the network device, the measurement configuration information includes a field or parameter for indicating the value of N; and/or measurement configuration information Include a field or parameter to indicate the value of M.
  • the transceiving unit 510 is further configured to receive measurement configuration information issued by the network device, and the measurement configuration information is used to indicate the total number X of resources that need to be reported; the processing unit 520 is also configured to: Set the rule and the value of X to determine the values of N and M.
  • the processing unit 520 is configured to: determine that the value of N is 1, and determine that the value of M is X-1; or determine that the value of N is X/2 and the value of M is 1.
  • the measurement result further includes the signal-to-interference and noise ratio of each of the N channel resources under the interference of the M interference resources.
  • the M signal-to-interference and noise ratios of the first channel resource among the N channel resources under the interference of the M interference resources are expressed in the following manner:
  • the measurement result includes M fields, the first field of the M fields is a1 bit, the remaining M-1 fields are b1 bits, a1 is a positive integer, and b1 is a positive integer smaller than a1, where the first field is Yu represents the first signal-to-interference-to-noise ratio of the M signal-to-interference-noise ratios, and M-1 fields are used to represent the M-1 signal-to-interference-to-noise ratios except the first signal-to-interference and noise ratio The difference between the ratio and the first signal to interference noise ratio.
  • the M*N signal-to-interference and noise ratios of each of the N channel resources under the interference of M interference resources are expressed in the following manner:
  • the measurement result includes M*N fields, the first field of the M*N fields is a2 bits, the remaining M*N-1 fields are b2 bits, a2 is a positive integer, and b2 is a positive integer smaller than a2, Among them, the first field is used to indicate the first signal-to-interference and noise ratio among the M*N signal-to-interference and noise ratios, and the M*N-1 fields are respectively used to indicate that the first signal-to-interference and noise ratio among the M*N signal-to-interference and noise ratios is not included. The difference between the M*N-1 signal-to-interference-to-noise ratio and the first signal-to-interference-to-noise ratio other than the noise ratio.
  • the M*N signal-to-interference and noise ratios of each of the N channel resources under the interference of M interference resources are expressed in the following manner:
  • the first field including M a3-bits is included for the i-th channel resource among the N channel resources.
  • Channel resources, including M b3-bit second fields, i traverses all values from 1 to M that are not equal to s, s is an integer not less than 1 and not greater than M, a3 is a positive integer, and b3 is a positive value less than a3 Integer;
  • the j-th first field in the M first fields is used to indicate the j-th signal-to-interference and noise ratio of the s-th channel resource, and the j-th second field in the M second fields of the i-th channel resource
  • the field is used to indicate the difference between the j-th signal-to-interference and noise ratio of the i-th channel resource and the j-th signal-to-interference and noise ratio of the s-th channel resource.
  • the indexes of the M interference resources of the first channel resource among the N channel resources are in the ascending order of the interference energy values of the M interference resources of the first channel resource or Arrangement in descending order; or the indexes of the M interference resources of the first channel resource are arranged according to the ascending or descending order of the signal-to-interference and noise ratio of the first channel resource under the interference of the M interference resources.
  • the M signal of the first channel resource in the measurement result, the M signal of the first channel resource
  • the sequence of the interference-to-noise ratio is consistent with the sequence of the M interference resources of the first channel resource.
  • the index positions of the M interference resources of the first channel resource are grouped together, and the positions of the M signal to interference and noise ratios of the first channel resource are grouped together; or the first channel
  • the index of each interference resource in the M interference resources of the resource and the arrangement position of the signal to interference noise ratio of the first channel resource under the interference of each interference resource are concentrated together.
  • the processing unit 520 is configured to determine N channel resources in any of the following ways:
  • N1 is an integer greater than or equal to N
  • the resources corresponding to the N measurement signals with the largest SINR are determined as N channel resources, and N2 is an integer greater than or equal to N.
  • the communication device 500 may be used to execute the actions performed by the network device in the method embodiment shown in FIG. 3 above.
  • the communication device 500 may be referred to as a network device.
  • the transceiving unit 510 is configured to perform transceiving related operations on the network device side in the method embodiment shown in FIG. 3 above
  • the processing unit 520 is configured to perform processing related operations on the network device in the method embodiment shown in FIG. 3 above.
  • the transceiver unit 510 is configured to send a measurement signal to the first terminal device through measurement resources; to receive a measurement result reported by the first terminal device based on the measurement signal.
  • the measurement result includes the indexes of N channel resources, and N The index of M interference resources for each channel resource in the channel resources.
  • the processing unit 520 is configured to determine a first resource for sending a downlink signal to the first terminal device from N channel resources, and determine a second resource for sending a downlink signal to the second terminal device according to the measurement result.
  • the transceiver unit 510 is further configured to use the first resource to send a first downlink signal to the first terminal device, and use the second resource to send a second downlink signal to the second terminal device.
  • the second resource and the first resource are not strong interference resources with each other.
  • the second resource is not any one or more of the M interference resources of the first resource.
  • the second resource may be any one or more of the M interference resources of the first resource.
  • the terminal device reports the interference resource of the channel resource to the network device, so that the network device can learn more accurate interference between beams, so that in multi-user transmission, it can effectively avoid the use of strong Beams that interfere with each other are used for transmission, which can improve the efficiency of multi-user transmission.
  • the interference resources of the channel resources reported by the terminal device may be all strong interference resources or all weak interference resources.
  • Strong interference resources refer to resources that cause strong interference to channel resources. Reporting the index of the strong interference resource can inform the network equipment which resource corresponding beam will cause strong interference to the beam corresponding to the channel resource. When multi-user transmission is performed, these interferences should be avoided as much as possible.
  • Weak interference resources refer to resources that cause little interference to channel resources. Reporting the index of weak interference can inform the network device which resource corresponding beams cause little interference to the beam corresponding to the channel resource. When performing multi-user transmission, these beams should be used as much as possible to pair with the beam corresponding to the channel resource for transmission.
  • whether the interference resource reported by the first terminal device to the network device is a strong interference resource or a weak interference resource may be specified by the network device configuration or protocol.
  • the second resource when the interference resource of the channel resource reported by the first terminal device is a strong interference resource, the second resource is not any one or more of the M interference resources of the first resource. Resources. When the interference resource of the channel resource reported by the first terminal device is a weak interference resource, the second resource is any one or more of the M interference resources of the first resource.
  • the processing unit 520 is configured to determine measurement configuration information for the terminal device.
  • the transceiver unit 510 is further configured to send the measurement configuration information to the terminal device.
  • the transceiver unit 510 is further configured to send measurement configuration information to the first terminal device.
  • the measurement configuration information includes a field or parameter for indicating the value of N, and/or the measurement configuration
  • the information includes a field or parameter for indicating the value of M.
  • the transceiver unit 510 is further configured to send measurement configuration information to the first terminal device, where the measurement configuration information is used to indicate the total number X of resources that need to be reported.
  • the measurement result further includes the signal-to-interference-to-noise ratio of each of the N channel resources under the interference of the M interference resources.
  • the measurement result includes the signal-to-interference and noise ratio of the channel resource
  • the measurement result can be used to express the signal-to-interference and noise ratio in multiple ways. For details, please refer to the relevant description above and will not be repeated here.
  • the indexes of the M interference resources of each channel resource may be arranged in multiple ways. For details, please refer to the relevant description above, which will not be repeated here.
  • the order of the M signal-to-interference and noise ratios of the first channel resource may be the same as that of the M interference resources of the first channel resource.
  • the order of arrangement is the same.
  • the index positions of the M interference resources of the first channel resource are gathered together, and the M signals of the first channel resource are arranged together.
  • the arrangement positions of the interference-to-noise ratio are concentrated together; or the index of each interference resource among the M interference resources of the first channel resource and the signal-to-interference noise of the first channel resource under the interference of each interference resource
  • the arrangement positions of ratios are concentrated together.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the method embodiment shown in FIG. 4 above.
  • the communication device 500 may be referred to as a terminal device.
  • the transceiving unit 510 is configured to perform transceiving-related operations performed by the terminal device in the method embodiment shown in FIG. 4, and the processing unit 520 is configured to perform processing related operations performed by the terminal device in the method embodiment shown in FIG. 4 above.
  • the transceiver unit 510 is configured to receive measurement configuration information sent by the network device.
  • the measurement configuration information includes the configuration information of the first channel resource and the configuration information of K interference resources corresponding to the first channel resource. K is positive.
  • the processing unit 520 is configured to measure the measurement signal sent by the network device according to the measurement configuration information according to the measurement configuration information, and obtain the measurement result of the first channel resource.
  • the measurement result of the first channel resource includes the first channel resources in K interference
  • the signal-to-interference and noise ratio under the interference of the resource the transceiver unit 510 is further configured to report the measurement result of the first channel resource to the network device, wherein the K signal-to-interference and noise ratios of the first channel resource are in the first channel
  • the ranking in the resource measurement result is related to the index of the K interference resources, or is related to the configuration order of the K interference resources.
  • the measurement configuration information includes configuration information of a channel resource group used to select channel resources and configuration information of an interference resource group used to select interference resources, where the channel resource group includes the first channel resource, and the interference resource group is Including K interference resources.
  • the K interference resources corresponding to the first channel resource are:
  • the interference resource specifically configured for the first channel resource in the measurement configuration information
  • the interference resource specifically configured for the channel resource group where the first channel resource is located in the measurement configuration information
  • the interference resource that has the same transmission configuration as the first channel resource indicates the TCI configuration
  • the interference resource that has the same transmission configuration as the first channel resource indicates the interference resource configured by the TCI.
  • the order of the signal-to-interference-noise ratio of the first channel resource under the K interference resources in the measurement result of the first channel resource is: the index of the K interference resources is in the order of ascending or descending; or The configuration sequence of the K interference resources.
  • the index of K interference resources is not carried in the measurement result of the first channel resource.
  • the measurement result of the first channel resource further includes any one or more of the following: RSRP of the first channel resource, RSRQ of the first channel resource, and CQI of the first channel resource.
  • the communication device 500 may be used to perform the actions performed by the network device in the method embodiment shown in FIG. 4 above.
  • the communication device 500 may be referred to as a network device.
  • the transceiving unit 510510 is configured to perform transceiving-related operations performed by the network device in the method embodiment shown in FIG. 4, and the processing unit 520520 is configured to perform processing related operations performed by the network device in the method embodiment shown in FIG. 4 above.
  • the processing unit 520 is configured to generate measurement configuration information.
  • the measurement configuration information includes configuration information of the first channel resource and configuration information of K interference resources corresponding to the first channel resource, and K is a positive integer; 510, configured to: send measurement configuration information to a terminal device; receive a measurement result of a first channel resource reported by the terminal device, where the measurement result of the first channel resource includes the signal interference of the first channel resource under the interference of K interference resources, respectively Noise ratio, wherein the ranking of the K signal to interference and noise ratios of the first channel resource in the measurement result of the first channel resource is related to the index of the K interference resources, or is related to the K interference resources The order of resource allocation is related.
  • the method further includes: determining the K signal to interference and noise ratios of the first channel resource respectively corresponding to the K signal to interference and noise ratios of the first channel resource according to the ranking of the K signal to interference and noise ratios of the first channel resource in the measurement result of the first channel resource. Interference resources.
  • the measurement configuration information includes configuration information of a channel resource group used to select channel resources and configuration information of an interference resource group used to select interference resources, where the channel resource group includes the first channel resource, and the interference resource group is Including K interference resources.
  • the K interference resources corresponding to the first channel resource are:
  • the interference resource specifically configured for the first channel resource in the measurement configuration information
  • the interference resource specifically configured for the channel resource group where the first channel resource is located in the measurement configuration information
  • the interference resource that has the same transmission configuration as the first channel resource indicates the TCI configuration
  • the interference resource that has the same transmission configuration as the first channel resource indicates the interference resource configured by the TCI.
  • the order of the signal-to-interference-noise ratio of the first channel resource under the K interference resources in the measurement result of the first channel resource is: the index of the K interference resources is in the order of ascending or descending; or The configuration sequence of the K interference resources.
  • the index of K interference resources is not carried in the measurement result of the first channel resource.
  • the measurement result of the first channel resource further includes any one or more of the following: RSRP of the first channel resource, RSRQ of the first channel resource, and CQI of the first channel resource.
  • processing unit 520 in the above embodiments may be implemented by a processor or a processor-related circuit
  • transceiver unit 510 may be implemented by a transceiver or a transceiver-related circuit.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 includes a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 stores a program.
  • the processor 610 is configured to execute the program stored in the memory 620, and execute the program stored in the memory 620 so that the processor 610 uses In executing the relevant processing steps in the above method embodiment, the execution of the program stored in the memory 620 enables the processor 610 to control the transceiver 630 to perform the transceiving-related steps in the above method embodiment.
  • the communication device 600 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to execute the above method embodiment.
  • the processing steps on the terminal device side in the middle execute the program stored in the memory 620, so that the processor 610 controls the transceiver 630 to perform the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 600 is used to execute the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to execute the above method implementation.
  • the processing steps on the network device side execute the programs stored in the memory 620 so that the processor 610 controls the transceiver 630 to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 700, which may be a terminal device or a chip.
  • the communication device 700 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 710 and a processing unit 720.
  • the transceiving unit 710 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 720 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 710 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 710 as the sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 720 is configured to execute step 320 in FIG. 3, and/or the processing unit 720 is further configured to execute other processing steps on the terminal device side in the embodiment shown in FIG. 3.
  • the transceiving unit 710 is also used to perform step 310, step 330, and step 350 shown in FIG. 3, and/or the transceiving unit 710 is also used to perform other transceiving steps on the terminal device side in the embodiment shown in FIG.
  • the processing unit 720 is configured to execute step 430 in FIG. 4, and/or the processing unit 720 is further configured to execute other processing steps on the terminal device side in the embodiment shown in FIG. 4.
  • the transceiving unit 710 is also used to perform the receiving operation in step 410 and step 420 shown in FIG. 4, and the sending operation in step 440, and/or the transceiving unit 710 is also used to perform the terminal device in the embodiment shown in FIG. Other receiving and sending steps on the side.
  • FIG. 7 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 800, which may be a network device or a chip.
  • the communication device 800 can be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 810 and part 820.
  • the 810 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 820 part is mainly used for baseband processing and control of base stations.
  • the 810 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 820 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 810 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 810 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 810 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 820 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 810 is used to perform the sending operation on the network device side in step 310 and step 350 in FIG. 3, the receiving operation on the network device side in step 330, and/or the transceiving unit of part 810
  • the unit is also used to perform other receiving and sending steps on the network device side in the embodiment shown in FIG. 3.
  • the processing unit in part 820 is used to execute the processing operation of step 340 in FIG. 3, and/or the processing unit in part 820 is also used to execute the processing steps on the network device side in the embodiment shown in FIG.
  • the transceiving unit of part 810 is used to perform the sending operation on the network device side in step 410 and step 420 in FIG. 4, the receiving operation on the network device side in step 440, and/or the receiving operation on the network device side in step 440.
  • the transceiver unit is also used to perform other transceiver steps on the network device side in the embodiment shown in FIG. 4.
  • the processing unit in part 820 is used to execute the processing steps on the network device side in the embodiment shown in FIG. 4.
  • FIG. 8 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 8.
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the communication device 800 may include one or more radio frequency units, such as a remote radio unit (RRU) and one or more baseband units (BBU) (also referred to as digital units, digital unit, DU).
  • the RRU may be called a transceiving unit, which corresponds to the transceiving unit 510 in FIG. 5.
  • the RRU part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the BBU part is mainly used for baseband processing and control of the base station.
  • the RRU and the BBU may be physically set together or physically separated, that is, the communication device 800 is a distributed base station.
  • the BBU is the control center of the communication device 800, and can also be called a processing unit, which can correspond to the processing unit 520 in FIG. 5, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • a BBU processing unit
  • the BBU can be composed of one or more single boards, and multiple single boards can jointly support a radio access network with a single access standard (such as an LTE network), or can support wireless access with different access standards. Network (such as LTE network, 5G network or other network).
  • the BBU also includes a memory and a processor.
  • the BBU may correspond to part 820 in FIG. 8.
  • the memory is used to store necessary instructions and data
  • the processor is used to control the communication device 800 to perform necessary actions, for example, to control the communication device 800 to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory and processor can serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the communication device 800 is not limited to the above-mentioned form, and may also be in other forms: for example, it includes a BBU and an adaptive radio unit (ARU), or a BBU and an active antenna unit (AAU); It is a customer premises equipment (CPE), and can also be in other forms, which is not limited in this application.
  • ARU adaptive radio unit
  • AAU active antenna unit
  • CPE customer premises equipment
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the network device side in the above method embodiment.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits ( Application Specific Integrated Circuit (ASIC), ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种测量上报的方法与装置,该方法包括:接收网络设备通过测量资源发送的测量信号;基于该测量信号,确定要上报的N个信道资源以及N个信道资源中每一个信道资源的M个干扰资源,该N个信道资源为部分或全部测量资源,一个信道资源的干扰资源的接收波束与该一个信道资源的接收波束相同;向网络设备上报测量结果,该测量结果中包括N个信道资源的索引,以及N个信道资源中每一个信道资源的M个干扰资源的索引。通过终端设备向网络设备上报信道资源以及信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。

Description

测量上报的方法与装置
本申请要求于2019年01月31日提交中国专利局、申请号为201910100189.4、申请名称为“测量上报的方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种测量上报的方法与装置。
背景技术
第五代移动通信***(5th generation,5G)采用高频通信,即采用高频段(例如高于6GHz的频段)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离较短。为了克服这个问题,模拟波束技术被提出来用于高频通信。模拟波束技术指的是,通过大规模天线阵列将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号,从而提高传输距离。这个类似于光束一样的信号可以称为模拟波束,简称波束。
网络设备可以生成不同的波束,不同的波束指向不同的传输方向。具体采用哪个波束来进行传输是通过波束测量过程来确定的。波束测量过程大致包括如下流程:网络设备通过测量配置信息为终端设备配置多个测量资源(简称资源),每个资源对应一个波束;终端设备通过测量网络设备配置的资源,对各资源(即资源对应的波束)的参考信号接收功率(reference signal receiving power,RSRP)进行测量,然后选择若干个RSRP最大的资源,将这几个资源的索引与RSRP上报给网络设备;网络设备从终端设备上报的若干个资源中选择一个资源,并采用该资源对应的波束发送数据。
在多用户传输中,即网络设备在同一时隙通过多个波束分别向多个用户传输数据,如果采用互相具有较强干扰的波束来进行传输数据,会导致数据传输错误,降低多用户传输的效率。因此,在多用户传输场景中,需要解决波束干扰的问题。
当前技术中,网络设备基于RSRP判断波束之间的干扰情况。例如,网络设备从终端设备上报的若干个RSRP最大的资源中选择一个作为信道资源,即把该信道资源对应的波束作为数据传输的波束,将其余资源视为强干扰资源,在多用户传输中,避免同时使用这若干个RSRP最大的资源。
但实际中,终端设备上报的若干个RSRP最大的资源不一定互相之间具有较强干扰,因此,网络设备无法准确获知波束之间的干扰情况。
因此,采用现有技术,在进行多用户传输时,由于网络设备无法获知波束之间的干扰情况,可能会采用具有较强相互干扰的波束来进行传输,导致数据传输错误,从而降低多用户传输的效率。
发明内容
本申请提供一种测量上报的方法与装置,可以使得网络设备较准确地获知信道资源的干扰资源,以便于网络设备进行合理的波束干扰管理,从而可以避免同时采用具有较强相互干扰的多个波束进行多用户传输。
第一方面,提供了一种测量上报的方法,所述方法包括:接收网络设备通过测量资源发送的测量信号;基于所述测量信号,确定要上报的N个信道资源以及所述N个信道资源中每一个信道资源的M个干扰资源,其中,M与N为正整数;向所述网络设备上报测量结果,所述测量结果中包括所述N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引。
信道资源表示终端设备上报给网络设备的、用于数据传输的资源。应理解,网络设备可以从终端上报的信道资源中选择一个或多个资源来与该终端设备进行数据传输。
以N个信道资源中的一个信道资源(记为信道资源A)为例,信道资源A的干扰资源表示接收波束与该信道资源A的接收波束相同的资源。换句话说,如果终端设备测量某个资源时所采用的接收波束与信道资源A的接收波束不相同,则终端设备不会将该资源作为信道资源A的干扰资源。
应理解,终端设备测量一个资源采用什么接收波束是网络设备配置的,或者可以终端设备自主选择的。换言之,终端设备可以根据网络设备的配置或者终端设备自主算法,可以获知网络设备配置的测量资源中各个资源的接收波束。针对要上报的一个信道资源,如果测量资源中的一个资源(记为资源1)的接收波束与该信道资源的接收波束相同,则这个资源1可以视作该信道资源的干扰资源;如果测量资源中的一个资源(记为资源2)的接收波束与该信道资源的接收波束不同,则认为资源2不是该信道资源的干扰资源。
例如,针对一个信道资源A,终端设备可以该信道资源A的干扰资源集合中选择M个资源作为信道资源A的M个干扰资源。信道资源A的干扰资源集合表示,网络设备配置的测量资源中接收波束与信道资源A的接收波束相同的资源的集合。
应理解,网络设备获取信道资源的干扰资源之后,在调度包括该信道资源的多个资源时,可以通过干扰规避,或者调整干扰配对波束的传输调制与编码策略(modulation and coding scheme,MCS),以降低同时调度的多个资源之间的相互干扰对数据传输的影响,从而可以提高数据传输的吞吐量。
因此,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
结合第一方面,在第一方面的一种可能的实现方式中,终端设备上报的信道资源的干扰资源可以均为强干扰资源,或者均为弱干扰资源。
强干扰资源是指会对信道资源造成的干扰很强的资源。上报强干扰资源的索引可以通知网络设备哪些资源对应的波束会对信道资源对应的波束造成强烈干扰,在进行多用户传输时,应该尽量规避这些干扰。
弱干扰资源是指对信道资源造成的干扰很小的资源。上报弱干扰的索引可以通知网络设备哪些资源对应的波束对信道资源对应的波束造成的干扰很小,在进行多用户传输时,应该尽量采用这些波束来与信道资源对应的波束进行配对传输。
可选地,在本实现方式中,终端设备向网络设备上报强干扰资源还是弱干扰资源,可以通过网络设备配置或协议规定。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:接收所述网络设备下发的测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数;和/或,所述测量配置信息中包括一个用于指示M的值的字段或参数。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:接收所述网络设备下发的测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X;根据预设规则与X的值,确定N和M的值。
可选地,在本实现方式中,根据预设规则与X的值,确定N和M的值,包括:
确定N的值为1,确定M的值为X-1;或,确定N的值为X/2,M的值为1。
应理解,通过网络设备对N和/或M的配置,使得终端设备可以获知要上报的信道资源的数目,以及每个信道资源的干扰资源的数目。
可选地,N和M值除了可以由网络设备配置,还可以通过协议规定。
结合第一方面,在第一方面的一种可能的实现方式中,确定要上报的所述N个信道资源中每一个信道资源的M个干扰资源,包括:针对所述N个信道资源中的第一信道资源,将采用第一信道资源的接收波束接收的其它资源中的M个资源确定为第一信道资源的M个干扰资源。
可以将采用第一信道资源的接收波束接收的其它资源中的随机的M个资源确定为第一信道资源的M个干扰资源。或者,可以将采用第一信道资源的接收波束接收的其它资源中满足一定条件的M个资源确定为第一信道资源的M个干扰资源。
结合第一方面,在第一方面的一种可能的实现方式中,确定要上报的所述N个信道资源中每一个信道资源的M个干扰资源,包括:针对所述N个信道资源中的第一信道资源,将采用所述第一信道资源的接收波束接收的参考信号接收功率最大或最小的M个其它资源确定为所述第一信道资源的M个干扰资源。
结合第一方面,在第一方面的一种可能的实现方式中,确定要上报的所述N个信道资源中每一个信道资源的M个干扰资源,包括:针对所述N个信道资源中的第一信道资源,计算所述第一信道资源分别在采用所述第一信道资源的接收波束接收的其它每个资源的干扰下的信干噪比;在所计算的信干噪比中,将最大或最小的M个信干噪比对应的M个资源确定为所述第一信道资源的M个干扰资源。
结合第一方面,在第一方面的一种可能的实现方式中,确定要上报的N个信道资源,包括:将所述测量信号中参考信号接收功率最大的N个测量信号对应的资源确定为所述N个信道资源;或,将所述测量信号中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源;或,将所述测量信号中信干噪比最大的N1个测量信号对应的测量资源中参考信号接收功率最大的N个测量信号对应的资源确定为所述N个信道资源,N1为大于或等于N的整数;或,将所述测量信号中参考信号接收功率最大的N2个测量信号对应的测量资源中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源,N2为大于或等于N的整数。
结合第一方面,在第一方面的一种可能的实现方式中,确定要上报的N个信道资源以及所述N个信道资源中每一个信道资源的M个干扰资源,包括:在候选信道资源中确定 N个信道资源,在候选干扰资源中确定每个信道资源的M个干扰资源。
候选信道资源表示网络资源下发的测量信号对应的测量资源中的一组用于选择信道资源的资源。候选干扰资源表示网络资源下发的测量信号对应的测量资源中的一组用于选择干扰资源的资源。
候选信道资源与候选干扰资源可以是不同组的资源,也可以是同一组的资源。例如,当把网络资源下发的测量信号对应的测量资源中的一个资源作为信道资源组时,可以把其它资源作为候选干扰资源。
结合第一方面,在第一方面的一种可能的实现方式中,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
应理解,通过终端设备向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获取更加充分的波束之间干扰的情况,有助于网络设备在多用户传输中避免同时使用互相强干扰的波束。
在测量结果包括信道资源的信干噪比的实现方式中,在该测量结果中可以采用多种方式表示该信干噪比。
作为一种方式,在所述测量结果中,对于所述N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
所述测量结果中包括M个字段,所述M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,其中,所述第一字段用于表示所述M个信干噪比中的第一信干噪比,所述M-1个字段分别用于表示所述M个信干噪比中除所述第一信干噪比之外的M-1个信干噪比与所述第一信干噪比的差值。
本方式,可以称为组内差分方式。
应理解,通过组内差分方式上报信道资源的信干噪比,可以节省信令开销。
作为另一种方式,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
所述测量结果中包括M*N个字段,所述M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,其中,所述第一字段用于表示所述M*N个信干噪比中的第一信干噪比,所述M*N-1个字段分别用于表示所述M*N个信干噪比中除所述第一信干噪比之外的M*N-1个信干噪比与所述第一信干噪比的差值。
本方式,可以称为组间差分方式。
作为再一种方式,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
在所述测量结果中,针对每个信道资源,包括M个字段,其中,针对所述N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对所述N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数。
所述第s个信道资源对应的M个第一字段中的第j个第一字段用于表示所述第s个信道资源的第j个信干噪比,所述第i个信道资源对应的M个第二字段中的第j个第二字段用于表示所述第i个信道资源的第j个信干噪比与所述第s个信道资源的第j个信干噪比的 差值。
本方式,也可以称为组间差分方式。
应理解,通过组间差分方式上报信道资源的信干噪比,可以进一步节省信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,在所述测量结果中,所述N个信道资源中的第一信道资源的M个干扰资源的索引,按照所述第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或,所述第一信道资源的M个干扰资源的索引,按照所述第一信道资源分别在所述M个干扰资源的干扰下的信干噪比的升序或降序排列。
结合第一方面,在第一方面的一种可能的实现方式中,在所述测量结果中包括所述第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,在所述测量结果中,所述第一信道资源的M个信干噪比的排列顺序与所述第一信道资源的M个干扰资源的排列顺序一致。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或,所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
可选地,在上述一些实现方式中,参考信号接收功率(RSRP)替换为参考信号接收质量(RSRQ)。
可选地,在上述一些实现方式中,信干噪比(SINR)可以替换为信道质量标识(channel quality indicator,CQI)或RSRQ。
需要说明的是,在本文中,会以N个信道资源中的第一信道资源为例进行描述,但这并不对本申请造成限定,本文中对第一信道资源的相关描述都可以适用于N个信道资源中的每个信道资源。
基于上述描述,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,可以使得网络设备较准确地获知信道资源的干扰资源,以便于网络设备进行合理的波束干扰管理,从而可以避免同时采用具有较强相互干扰的多个波束进行多用户传输,进而提高多用户传输的性能与效率。
第二方面,提供一种测量上报的方法,所述方法包括:通过测量资源向第一终端设备发送测量信号;接收所述第一终端设备基于上述测量信号上报的测量结果,所述测量结果包括N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引;从所述N个信道资源中确定用于向所述第一终端设备发送下行信号的第一资源,并根据所述测量结果,确定用于向第二终端设备发送下行信号的第二资源;使用所述第一资源向所述第一终端设备发送第一下行信号,使用所述第二资源向所述第二终端设备发送第二下行信号,其中,所述第二资源不属于所述第一资源的M个干扰资源中的任一个或多个资源,或者,所述第二资源为所述第一资源的M个干扰资源中的任一个或多个资源。
因此,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
结合第二方面,在第二方面的一种可能的实现方式中,终端设备上报的信道资源的干扰资源可以均为强干扰资源,或者均为弱干扰资源。
强干扰资源是指会对信道资源造成的干扰很强的资源。上报强干扰资源的索引可以通知网络设备哪些资源对应的波束会对信道资源对应的波束造成强烈干扰,在进行多用户传输时,应该尽量规避这些干扰。
弱干扰资源是指对信道资源造成的干扰很小的资源。上报弱干扰的索引可以通知网络设备哪些资源对应的波束对信道资源对应的波束造成的干扰很小,在进行多用户传输时,应该尽量采用这些波束来与信道资源对应的波束进行配对传输。
可选地,在本实现方式中,终端设备向网络设备上报的是强干扰资源还是弱干扰资源,可以通过网络设备配置或协议规定。
结合第二方面,在第二方面的一种可能的实现方式中,当第一终端设备上报的信道资源的干扰资源为强干扰资源时,所述第二资源不是所述第一资源的M个干扰资源中的任一个或多个资源。当第一终端设备上报的信道资源的干扰资源为弱干扰资源时,所述第二资源为所述第一资源的M个干扰资源中的任一个或多个资源。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:向所述第一终端设备发送测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数,和/或,所述测量配置信息中包括一个用于指示M的值的字段或参数。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:向所述第一终端设备发送测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X。
结合第二方面,在第二方面的一种可能的实现方式中,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
在第二方面提供的方案中,在测量结果包括信道资源的信干噪比的实现方式中,在该测量结果中可以采用多种方式表示该信干噪比,具体详见第一方面中的相关描述,这里不再赘述。
在第二方面提供的方案中,在终端设备上报的测量结果中,每个信道资源的M个干扰资源的索引可以采用多种方式排列,具体详见第一方面中的相关描述,这里不再赘述。
在第二方面提供的方案中,在测量结果包括信道资源的信干噪比的实现方式中,在测量结果中,第一信道资源的M个信干噪比的排列顺序可以与第一信道资源的M个干扰资源的排列顺序一致。
在第二方面提供的方案中,在测量结果包括信道资源的信干噪比的实现方式中,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
第三方面提供一种测量上报的方法,所述方法包括:接接收网络设备发送的测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;接收所述网络设备根据所述测量配置信息发送的测量信号;测量所述测量信号,获得所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比;向所述网络设备上报所述第一信道资源的测量结果,其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干 扰资源的配置顺序相关。
在本申请中,通过网络设备为终端设备配置信道资源对应的干扰资源,使得终端设备可以测量信道资源在对应干扰资源下的信干噪比,并可以向网络设备上报信道资源在对应的干扰资源下的信干噪比,从而使得网络设备获知信道资源的干扰信息。此外,通过终端设备按照特定顺序(例如与干扰资源的索引有关,或者,与干扰资源的配置顺序有关)向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获知这些信干噪比所对应的干扰资源。
第四方面提供一种测量上报的方法,所述方法包括:向终端设备发送测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;根据所述测量配置信息向所述终端设备发送测量信号;接收所述终端设备基于所述测量信号上报的所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比,其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
在本申请中,通过网络设备为终端设备配置信道资源对应的干扰资源,使得终端设备可以测量信道资源在对应干扰资源下的信干噪比,并可以向网络设备上报信道资源在对应的干扰资源下的信干噪比,从而使得网络设备获知信道资源的干扰信息。此外,通过终端设备按照特定顺序(例如与干扰资源的索引有关,或者,与干扰资源的配置顺序有关)向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获知这些信干噪比所对应的干扰资源。
结合第四方面,在一种可能的实现方式中,所述方法还包括:根据所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序,确定所述第一信道资源的K个信干噪比分别对应于所述K个干扰资源。
在本申请中,网络设备通过接收终端设备按照特定顺序(例如与干扰资源的索引有关,或者,与干扰资源的配置顺序有关)上报的信道资源在干扰资源的干扰下的信干噪比,可以获知这些信干噪比所对应的干扰资源。
应理解,终端设备在向网络设备上报信道资源的测量结果时,可以省去上报干扰资源的索引,从而可以节省信令。
结合第三方面或第四方面,在一种可能的实现方式中,所述第一信道资源的测量结果中不携带所述K个干扰资源的索引。
结合第三方面或第四方面,在一种可能的实现方式中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序为所述K个干扰资源的索引从大到小或从小到大的顺序。
应理解,在所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关的前提下,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序还可以采用其它可行的实现方式。例如,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序根据应用需求确定。
结合第三方面或第四方面,在一种可能的实现方式中,所述测量配置信息包括用于选 择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息,其中,所述信道资源组中包括所述第一信道资源,所述干扰资源组中包括所述K个干扰资源。
结合第三方面或第四方面,在一种可能的实现方式中,所述第一信道资源对应的K个干扰资源为:
所述测量配置信息中所配置的所有干扰资源;或
所述测量配置信息中专门为所述第一信道资源配置的干扰资源;或
所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源;或
所述测量配置信息中所配置的所有干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源;或
所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源。
可选地,对于所述第一信道资源对应的K个干扰资源,除了上述定义的情形,还可以根据应用需求具有其它可行的定义方式。
结合第三方面或第四方面,在一种可能的实现方式中,所述第一信道资源的测量结果中还包括如下任一项或多项:所述第一信道资源的参考信号接收功率RSRP,所述第一信道资源的参考信号接收质量RSRQ,所述第一信道资源的信道质量标识CQI。
第五方面,提供一种通信设备,所述通信设备用于执行上述第一方面、第二方面、第三方面或第四方面提供的方法。具体地,所述通信设备可以包括用于执行第一方面、第二方面、第三方面或第四方面提供的方法的模块。
第六方面,提供一种通信设备,所述通信设备包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面、第二方面、第三方面或第四方面提供的方法。
第七方面,提供一种通信装置,所述通信装置包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,第一方面、第二方面、第三方面或第四方面提供的方法被执行。
第八方面,提供一种通信装置,所述通信装置包括处理器和接口,所述处理器通过所述接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,第一方面、第二方面、第三方面或第四方面提供的方法被执行。
第九方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面、第二方面、第三方面或第四方面提供的方法。
可选地,处理模块为处理器。
第十方面,提供一种芯片,所述芯片包括处理器和接口,所述处理器用于控制所述接口与外部进行通信,所述处理器还用于从存储器中调用并运行所述存储器中存储的计算机程序,当所述处理器调用并运行所述存储器中的计算机程序时,第一方面、第二方面、第三方面或第四方面提供的方法被执行。
第十一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面或第四方面的任一可能的实现方式中的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面或第四方面提供的方法。
基于上述描述,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,可以使得网络设备较准确地获知信道资源的干扰资源,以便于网络设备进行合理的波束干扰管理,从而可以避免同时采用具有较强相互干扰的多个波束进行多用户传输,进而提高多用户传输的性能与效率。
附图说明
图1与图2是本申请实施例应用的通信***的示意图;
图3是本申请实施例提供的测量上报的方法的示意性流程图;
图4是本申请另一实施例提供的测量上报的方法的示意性流程图;
图5是本申请实施例提供的通信设备的示意性框图;
图6是本申请实施例提供的通信设备的另一示意性框图;
图7是本申请实施例提供的终端设备的示意性框图;
图8是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例可以应用于基于波束的多载波通信***,例如,5G***或新无线(new radio,NR)***。
为便于理解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI中的TCI资源, 来指示终端设备PDSCH波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。
在波束测量中,网络设备的每一个波束对应一个资源,因此可以资源的索引来唯一标识该资源对应的波束。
2、资源
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。
资源可以是上行信号资源,也可以是下行信号资源。
上行信号包括但不限于:探测参考信号(sounding reference signal,SRS)与解调参考信号(demodulation reference signal,DMRS)。
下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的索引,以标识该上行/下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
3、波束测量
波束测量是R15协议中的一个测量流程,主要包括如下步骤一至步骤四。
步骤一、网络设备向终端设备发送测量配置信息。
网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端发送测量配置信息。
测量配置信息主要包括两部分:资源配置信息和上报配置信息。
资源配置信息是指测量资源相关的信息。资源配置信息在协议里可以通过三级结构(资源配置(resourceConfig)-资源集(resourceSet)-资源(resource))进行配置。
网络设备可以为终端设备配置一个或多个资源配置,每个资源配置可以包括一个或多个资源集,每个资源集可以包括一个或多个资源。每个资源配置/资源集/资源中都可以包括一个自己的索引。此外,每个资源配置/资源集/资源中还可以包括一些其它参数,例如,资源的周期、资源对应的信号类型等。
上报配置信息是指测量结果上报相关的信息。上报配置信息在协议里可以通过上报配置(ReportConfig)进行配置。
网络设备可以为终端设备配置一个或多个上报配置,每个上报配置可以包括上报指 标、上报时间和周期以及上报格式等与测量结果上报相关的信息。此外,上报配置里还可以包括资源配置的索引,用于指示上报的结果是通过什么测量配置测得的。
为了更好地理解波束测量的架构,作为示例而非限定,下列是R15协议中资源配置和上报配置的具体格式。
Figure PCTCN2019100217-appb-000001
Figure PCTCN2019100217-appb-000002
步骤二、网络设备在资源配置信息所配置的资源对应的资源粒上发送下行信号,以使得终端设备通过测量下行信号,确定各资源的质量(即资源对应的波束的质量)。
步骤三、终端设备根据测量配置信息对下行信号进行测量。
步骤四、终端设备向网络设备发送波束测量报告。波束测量报告可以包括一个或多个资源的索引与质量等。
作为示例而非限定,表1是R15协议中波束测量报告采用的上报格式。
表1
Figure PCTCN2019100217-appb-000003
其中,CRI(CSI-RS Index)字段和SSBRI(SSB Resource Index)字段用于指示要上报的资源索引。可以只上报CRI或SSBRI,或者二者都上报。
Figure PCTCN2019100217-appb-000004
Figure PCTCN2019100217-appb-000005
是CRI字段和SSBRI字段的长度。
RSRP字段与differential RSRP字段,用于指示资源的质量。资源的质量的上报采用差分上报准则。例如,在表1中,最好的资源的RSRP(如表1中的RSRP字段)采用7比特量化上报,而其它资源的RSRP(如表1中的differential RSRP字段)采用4比特量化上报。
波束测量报告可以承载在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道中(physical uplink shared channel,PUSCH)。
本申请实施例的技术方案可以应用于第五代(5th Generation,5G)***或新无线(New Radio,NR)等。
本申请实施例应用的通信***中可以包括一个或多个网络设备,以及一个或多个终端设备。一个网络设备可以向一个或多个终端设备传输数据或控制信令。或者,多个网络设备也可以同时为一个终端设备传输数据或者控制信令。
作为示例而非限定,图1为本申请实施例应用的通信***100的示意图。该通信***100包括一个网络设备或110与多个终端设备120(如图1中所示的终端设备120a和终端设备120b)。网络设备110可以通过多个射频通道同时发送多个模拟波束来为多个终端设备传输数据。如图1所示,网络设备同时发送波束1和波束2,其中波束1用于为终端设备120a传输数据,波束2用于为终端设备120b传输数据。波束1可以称为终端设备120a的服务波束,波束2可以称为终端设备120b的服务波束。终端设备120a和终端设备120b可以属于同一个小区。
理想情况下,波束1的信号到达终端设备120a,波束2的信号到达终端设备120b。但是,有些情形下,网络设备同时发送的多个波束在终端设备侧会发生干扰。如图2所示,网络设备210同时发送波束3和波束4。波束3为网络设备210调度给终端设备220a的用于数据传输的波束,即波束3为终端设备220a的服务波束。波束4为网络设备210调度给终端设备220b的用于数据传输的波束,即波束4为终端设备220b的服务波束。信号传输过程中,由于信道环境,波束4在传输过程中发生反射,导致波束4(全部或部分)到达终端设备220a。这时,终端设备220a接收到自己的服务波束3,还接收到非服务波束4。对于终端设备220a而言,波束3是服务波束,波束4是干扰波束。在图2示例中,也可以认为波束4是波束3的干扰波束。
在图2中,如果终端设备210a和终端设备220b属于同一个小区,这种情况下,波束4对波束3的干扰可以称为小区内干扰。
如何减弱或避免网络设备同时下发的多个波束之间的干扰,是需要解决的技术问题。
如前文描述,现有技术中,网络设备通过判断终端设备上报的若干的资源的RSRP来确定互为干扰的波束。但实际中,终端设备上报的RSRP最大的多个资源之间不一定真的具有强干扰。例如,终端设备向网络设备上报RSRP最大的资源1和资源2,网络设备经资源1和资源2视为互相具有强干扰的资源。但是,终端设备测量资源1时采用的是接收波束1,在测量资源2时采用的接收波束2。实际中,终端设备采用接收波束1测量资源2时,资源2的RSRP较小。也就是说,当网络设备采用资源1对应的波束发送数据,终 端设备采用接收波束1进行接收时,其从资源2对应的波束收到的干扰信号能量是较弱的。因此,虽然终端设备测量资源2时,测得其具有较大的RSRP,但资源2并不是资源1的强干扰资源。
因此,现有技术中,网络设备无法获知较为准确的波束之间的干扰情况。
本申请提出一种测量上报的方法与装置,可以使得网络设备获知较为准确的波束之间的干扰情况,从而在进行多个用户传输时,可以避免采用具有较强相互干扰的波束来进行传输,可以提高多用户传输的效率。
本申请实施例中涉及的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
本申请实施例中涉及的网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点或传输接收节点(transmission and reception point,TRP)等。网络设备可以是5G网络中的基站设备或者未来演进的PLMN网络中的网络设备等。
图3为本申请实施例的测量上报的方法300的示意性流程图。该方法300包括如下步骤。
310,网络设备通过测量资源向终端设备发送测量信号。相应地,终端设备接收网络设备通过测量资源发送的测量信号。
例如,网络设备可以根据资源配置信息(如前文描述),向终端设备发送资源配置信息所配置的测量资源所对应的测量信号。例如,该测量信号为CSI-RS或SSB。
本申请对资源配置的方式不作限定。
320,终端设备基于测量信号,确定要上报的N个信道资源以及N个信道资源中每一个信道资源的M个干扰资源,其中,M与N为正整数。
例如,终端设备根据测量配置信息,测量相应的测量信号,根据测量的结果选择要上报的N个信道资源以及N个信道资源中每个信道资源的M个干扰资源。
信道资源表示终端设备上报给网络设备的、用于数据传输的资源。应理解,网络设备可以从终端上报的信道资源中选择一个或多个资源来与该终端设备进行数据传输。
以N个信道资源中的一个信道资源(记为信道资源A)为例,信道资源A的干扰资源表示接收波束与该信道资源A的接收波束相同的资源。换句话说,如果终端设备测量某个资源时所采用的接收波束与信道资源A的接收波束不相同,则终端设备不会将该资源作为信道资源A的干扰资源。
应理解,终端设备测量一个资源采用什么接收波束是网络设备配置的,或者可以终端设备自主选择的。换言之,终端设备可以根据网络设备的配置或者终端设备自主算法,可以获知网络设备配置的测量资源中各个资源的接收波束。针对要上报的一个信道资源,如果测量资源中的一个资源(记为资源1)的接收波束与该信道资源的接收波束相同,则这个资源1可以视作该信道资源的干扰资源;如果测量资源中的一个资源(记为资源2)的 接收波束与该信道资源的接收波束不同,则认为资源2不是该信道资源的干扰资源。
例如,针对一个信道资源A,终端设备可以该信道资源A的干扰资源集合中选择M个资源作为信道资源A的M个干扰资源。信道资源A的干扰资源集合表示,网络设备配置的测量资源中接收波束与信道资源A的接收波束相同的资源的集合。
下文将详细描述,终端设备确定N与M的值的方式,以及终端设备确定要上报的N个信道资源与每个信道资源的M个干扰资源的方式。
330,终端设备向网络设备上报测量结果,测量结果中包括N个信道资源的索引,以及N个信道资源中每一个信道资源的M个干扰资源的索引。
本文提及的资源的索引表示可以标识该资源的信息。
应理解,网络设备接收到终端设备上报的测量结果后,可以获知N个信道资源中每个信道资源的干扰资源,因此,网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,网络设备可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
例如,网络设备获取信道资源的干扰资源之后,在调度包括该信道资源的多个资源时,可以通过干扰规避,或者调整干扰配对波束的传输调制与编码策略(modulation and coding scheme,MCS),以降低同时调度的多个资源之间的相互干扰对数据传输的影响,从而可以提高数据传输的吞吐量。
作为示例,如图3所示,该方法300还可以包括步骤340和步骤350。
340,网络设备从N个信道资源中确定用于向终端设备发送下行信号的第一资源,并根据测量结果,确定用于向其它终端设备(可记为第二终端设备)发送下行信号的第二资源。
例如,第二资源与第一资源不互为强干扰资源。
假设终端设备上报的干扰资源表示干扰最强的干扰资源,则所述第二资源不是所述第一资源的M个干扰资源中的任一个或多个资源。
假设终端设备上报的干扰资源表示干扰最弱的干扰资源,则所述第二资源可以是所述第一资源的M个干扰资源中的任一个或多个资源。
应理解,网络设备可以将N个信道资源中的一个或多个信道资源作为向第一终端设备设备发送下行信号的第一资源。
350,网络设备使用第一资源向该终端设备发送第一下行信号,使用第二资源向其它终端设备发送第二下行信号。
因此,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
可选地,在一些实施例中,该方法300还包括:网络设备向终端设备下发测量配置信息,该测量配置信息包括测量资源的相关信息以及测量结果上报的相关信息。
例如,测量资源的相关信息包括测量资源的索引、周期或类型等;测量结果上报的相关信息包括测量结果上报的周期或上报数据量等。
可选地,终端设备上报的信道资源的干扰资源可以均为强干扰资源,或者均为弱干扰资源。强干扰资源是指会对信道资源造成的干扰很强的资源。弱干扰资源是指对信道资源 造成的干扰很小的资源。终端设备向网络设备上报强干扰资源还是弱干扰资源,可以由标准协议规定也可以由网络设备指定。
例如,标准协议规定终端设备上报的每一个信道资源的M个干扰资源为该信道资源的所有的干扰资源中对本信道资源干扰最大的M个干扰资源。在该种情况下,网络设备知道哪些资源对应的波束会对信道资源对应的波束造成强烈干扰,在进行多用户传输时,当采用所述信道资源为第一终端设备发送下行信息时,应该尽量规避采用这些强干扰的资源为其他终端设备发送下行信息。
作为示例,资源2对于资源1是强干扰,那么网络设备在采用资源1对应的波束为终端设备1传输数据时,则不能同时采用资源2对应的波束为其它终端设备传输数据,否则会对终端设备1造成强干扰。
再例如,标准协议规定终端设备上报的每一个信道资源的M个干扰资源为该信道资源的所有的干扰资源中对本信道资源干扰最小的M个干扰资源。网络设备知道哪些资源对应的波束会对信道资源对应的波束造成强烈干扰,在进行多用户传输时,当采用所述信道资源为第一终端设备发送下行信息时,应该尽量采用这些弱干扰的资源为其他终端设备发送下行信息。
作为示例,资源2对于资源1是弱干扰,那么网络设备在采用资源1对应的波束为终端设备1传输数据时,尽可能的采用资源2对应的波束为其它终端设备传输数据。
再例如,通过网络设备下发指示信息来指示终端设备向网络设备上报的干扰资源是强干扰还是弱干扰。例如,网络设备向终端设备下发测量配置信息,该测量配置信息中包括指示干扰类型的信息,该干扰类型为强干扰或弱干扰。
如果网络设备配置的干扰类型为强干扰,则终端设备向网络设备上报N个信道资源中每个信道资源的M个强干扰资源。如果网络设备配置的干扰类型为弱干扰,则终端设备向网络设备上报N个信道资源中每个信道资源的M个弱干扰资源。
应理解,通过终端设备向网络设备上报信道资源的强干扰资源或弱干扰资源,有助于获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
终端设备可以通过如下任一种方式来确定要上报的信道资源的数目N,以及要上报的每个信道资源的干扰资源的数目M:
方式1):根据测量配置信息确定N与M的值。
可选地,在一些实施例中,该方法300还包括:网络设备向终端设备下发测量配置信息,该测量配置信息中包括一个用于指示N的值的字段或参数,还包括一个用于指示M的值的字段或参数;终端设备根据该测量配置信息,确定N与M的值。
方式2):根据测量配置信息确定N的值,采用协议规定的值确定M的值。
可选地,在一些实施例中,该方法300还包括:网络设备向终端设备下发测量配置信息,该测量配置信息中包括一个用于指示N的值的字段或参数;终端设备根据该测量配置信息确定N的值,根据协议规定的值确定M的值。
作为一个示例,在N的值是网络设备通过测量配置信息配置给终端设备的实施例中,N的值可以通过参数nrofReportedRS(如前文描述)来进行配置。
应理解,在现有R15协议中,参数nrofReportedRS是用于配置终端设备要上报的资源 索引数。由于现有R15协议中没有区分信道资源和干扰资源,因此可以理解为,参数nrofReportedRS表示的是要上报的资源的总数。在本申请中,对参数nrofReportedRS的功能进行如下调整,使其在一些情况下可以用于指示N的值:
当终端设备只上报参考信号接收功率(RSRP)时(例如,参数reportQuantity被配置成ssb-Index-RSRP或cri-RSRP时),参数nrofReportedRS用于指示终端设备要上报的资源的数目(也可称为要上报的资源的索引的数目(CSI-RS Index,CRI))。这种情形与现有R15协议相同。
当终端设备需要上报信干噪比(SINR)时(例如,参数reportQuantity被配置成ssb-Index-L1-SINR或cri-L1-SINR时),参数nrofReportedRS用于指示终端设备要上报的信道资源的数目N(或称为要上报的信道资源的索引的数目)。
在N的值通过参数nrofReportedRS配置的情况下,M的值也可以通过测量配置信息配置,也可以通过协议规定。
方式3):根据测量配置信息确定M的值,采用协议规定的值确定N的值。
可选地,在一些实施例中,该方法300还包括:网络设备向终端设备下发测量配置信息,该测量配置信息中包括一个用于指示M的值的字段或参数;终端设备根据该测量配置信息确定M的值,根据协议规定的值确定N的值。
方式4):采用协议规定的值确定M和N的值。
即终端设备根据协议规定的值,确定M和N的值。
方式5):通过隐式的方式确定M和N的值。
可选地,在一些实施例中,该方法300还包括:网络设备向终端设备下发测量配置信息,测量配置信息用于指示需要上报的资源的总数X;终端设备根据预设规则与X的值,确定N和M的值。
该测量配置信息指示的需要上报的资源的总数X,指的是,终端设备向网络设备上报的测量结果中包含的资源的总数,即N个信道资源的数量与每个信道资源的M个干扰资源的数量的总和。
可选地,X可以采用现有R15协议中已有的参数进行配置,例如,X采用R15协议中的nrofReportedRS参数进行配置,也可以采用新的参数进行配置。本申请对此不作限定。
该预设规则表示可以使得终端设备根据X的值确定N与M的值的规则。
作为一个示例,该预设规则表示N的值为1,M的值等于X-1。在本例中,终端设备根据预设规则与X的值,确定N和M的值,包括:终端设备确定N的值为1,确定M的值为X-1。
例如,网络设备配置X等于4,则终端设备要上报1个信道资源,与该信道资源的3个干扰资源。
作为另一示例,该预设规则表示N的值为X/Q(X可以被Q整除),M的值为(X-N)/N,其中Q为大于1的整数。例如,Q等于2、3、4或5等。在本例中,终端设备根据预设规则与X的值,确定N和M的值,包括:终端设备确定N的值为X/Q,M的值为(X-N)/N。应理解,在本实施例中,X的值可以被Q整除。
例如,Q等于2,该预设规则可以表述为,N的值为X的一半(X为偶数),M的值为1。在本例中,终端设备根据预设规则与X的值,确定N和M的值,包括:终端设备 确定N的值为X/2,M的值为1。
上文罗列出若干个该预设规则的示例,为了不赘述,不再枚举。应理解,终端设备根据网络设备配置的需要上报的资源的总数X以及预设规则,确定出N和M的值的方案均落入本申请保护范围。
下文将描述步骤320中,终端设备基于网络设备下发的测量信号,确定要上报的N个信道资源,以及确定每个信道资源的M个干扰资源的方案。
在本申请中,可以采用多种方式确定要上报的N个信道资源。
第一种确定N个信道资源的方式:通过资源的参考信号接收功率(RSRP)选择N个信道资源。例如,将测量信号中参考信号接收功率(RSRP)最大的N个测量信号对应的资源确定为N个信道资源。
第二种确定N个信道资源的方式:通过资源的信干噪比选择N个信道资源。例如,将测量信号中信干噪比最大的N个测量信号对应的资源确定为N个信道资源。
信干噪比指的是,信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。为了描述的简洁,下文中采用SINR表示信干噪比。
需要说明的是,采用SINR表示信干噪比,仅为示例而非限定。还可以采用其它表示方式,例如采用下列任一种来表示信干噪比:层1信干噪比(L1-SINR),信道状态信息信干噪比(CSI-SINR),同步信号块信干噪比(SSB-SINR),层1信道状态信息信干噪比(L1-CSI-SINR),层1同步信号块信干噪比(L1-SSB-SINR)。
SINR可以表达信道资源在一定干扰资源的干扰下能够达到的性能。
以一个信道资源A为例,作为示例,根据如下公式计算信道资源A的SINR:
SINR=信道资源能量/(干扰资源能量+其它能量)      式(1)
其中,公式(1)中的信道资源能量表示,在信道资源A上测得的信号能量。例如,信道资源能量等于承载信道测量信号的资源粒上的信号能量的线性平均值。这里的信道测量信号表示信道资源A对应的测量信号,例如,可以是非零功率信道状态信息参考信号(non-zero power channel state information-reference signal,NZP-CSI-RS)、SSB信号或其它信号。
公式(1)中的干扰资源能量表示,在信道资源A的干扰资源上测得的干扰能量,其中,信道资源A的干扰资源指的是,在用于接收信道资源A的接收波束上接收到的其它资源。例如,干扰资源能量等于承载干扰测量信号的资源粒上的信号能量的线性平均值。这里的干扰测量信号表示干扰资源对应的测量信号,可以是NZP-CSI-RS、SSB信号或其它信号。
可选地,公式(1)中的干扰资源能量可以是信道资源A的一个干扰资源上的干扰能量。
可选地,公式(1)中的干扰资源能量可以是信道资源A的多个干扰资源上的干扰能量之和。
例如,公式(1)中的干扰资源能量等于网络设备配置的所有干扰资源的干扰能量之和。
再例如,公式(1)中的干扰资源能量等于终端设备根据网络设备的配置所选择的所有干扰资源的干扰能量之和。
再例如,公式(1)中的干扰资源能量等于终端设备要上报的信道资源A的所有干扰资源的干扰能量之和。
公式(1)中的其它能量可以是承载信道测量信号的资源粒上的干扰能量的线性平均值。例如资源粒上的总能量减去信道测量信号的能量,剩余的能量等于其他能量。其它能量也可以是专门配置的信道状态信息干扰测量(channel state information-interference measurement,CSI-IM)上测得的总能量。
第三种确定N个信道资源的方式:通过资源的RSRP与SINR选择N个信道资源。
例如,将测量信号中信干噪比最大的N1个测量信号对应的测量资源中参考信号接收功率最大的N个测量信号对应的资源确定为N个信道资源,N1为大于或等于N的整数。
换句话说,先通过RSRP确定一个信道资源范围,例如,这个信道资源范围为测量资源中RSRP最大的若干个资源,再从该信道资源范围中选出SINR最大的N个信道资源。
在本实施例中,可以采用公式(1)计算信道资源的信干噪比。
再例如,将测量信号中参考信号接收功率最大的N2个测量信号对应的测量资源中信干噪比最大的N个测量信号对应的资源确定为N个信道资源,N2为大于或等于N的整数。
换句话说,先通过SINR确定一个信道资源范围,例如,这个信道资源范围为测量资源中SINR最大的若干个资源,再从该信道资源范围中选出RSRP最大的N个信道资源。
在本实施例中,可以采用公式(1)计算信道资源的信干噪比。
需要说明的是,上文结合公式(1)描述计算信道资源的信干噪比的方式,仅为示例而非限定。实际应用中,还可以采用其它可行的方式计算信道资源的信干噪比。本申请对此不作限定。
为了便于理解与描述,下文以N个信道资源中的第一信道资源为例,描述确定每个信道资源的M个干扰资源的方案。下文对第一信道资源的相关描述可以适用于N个信道资源中的每个信道资源。
在步骤320中,确定要上报的N个信道资源中每一个信道资源的M个干扰资源,包括:针对N个信道资源中的第一信道资源,将采用第一信道资源的接收波束接收的其它资源中的M个资源确定为第一信道资源的M个干扰资源。
可以将采用第一信道资源的接收波束接收的其它资源中的随机的M个资源确定为第一信道资源的M个干扰资源。或者,可以将采用第一信道资源的接收波束接收的其它资源中满足一定条件的M个资源确定为第一信道资源的M个干扰资源。
可选地,在步骤320中,确定要上报的N个信道资源中每一个信道资源的M个干扰资源,包括:针对N个信道资源中的第一信道资源,将采用第一信道资源的接收波束接收的参考信号接收功率最大或最小的M个其它资源确定为第一信道资源的M个干扰资源。
应理解,将参考信号接收功率最大的M个资源确定为第一信道资源的M个干扰资源,可以对应于上文描述的干扰类型为强干扰的方案。将参考信号接收功率最小的M个资源确定为第一信道资源的M个干扰资源,可以对应于上文描述的干扰类型为弱干扰的方案。
可选地,在步骤320中,确定要上报的N个信道资源中每一个信道资源的M个干扰资源,包括:针对N个信道资源中的第一信道资源,计算第一信道资源分别在采用第一信道资源的接收波束接收的其它每个资源的干扰下的信干噪比;在所计算的信干噪比中,将最大或最小的M个信干噪比对应的M个资源确定为第一信道资源的M个干扰资源。
例如,可以采用如下公式计算第一信道资源在干扰资源1的干扰下的信干噪比SINR1:
SINR=信道资源能量/(干扰资源能量1+其它能量)     式(2)
其中,公式(2)中的信道资源能量表示,在第一信道资源上测得的信号能量。例如,信道资源能量等于承载信道测量信号的资源粒上的信号能量的线性平均值。这里的信道测量信号表示第一信道资源对应的测量信号,例如,可以是NZP-CSI-RS、SSB信号或其它信号。
公式(2)中的干扰资源能量表示,在信道资源A的干扰资源1上测得的干扰能量。信道资源A的干扰资源1指的是,在用于接收信道资源A的接收波束上接收的一个其它资源。例如,干扰资源能量等于承载干扰测量信号的资源粒上的信号能量的线性平均值。这里的干扰测量信号表示干扰资源1对应的测量信号,可以是NZP-CSI-RS、SSB信号或其它信号。
可以理解到,公式(2)中的干扰资源能量与公式(1)中的干扰资源能量不能混为一谈。
公式(2)中的其它能量可以是承载信道测量信号的资源粒上的干扰能量的线性平均值。例如资源粒上的总能量减去信道测量信号的能量,剩余的能量等于其他能量。其它能量也可以是专门配置的CSI-IM上测得的总能量。
还需要说明的是,上文结合公式(2)描述第一信道资源在干扰资源1的干扰下的信干噪比SINR1的方式,仅为示例而非限定。实际应用中,还可以采用其它可行的方式计算信道资源在某一干扰资源的干扰下的信干噪比。本申请对此不作限定。
作为示例,终端设备先根据网络设备的测量配置信息,确定采用第一信道资源的接收波束接收的多个其它资源;然后,按照公式(2),计算第一信道资源分别在这多个其它资源中的每个资源的干扰下的信干噪比;最后从这多个信干噪比中选择出最大或最小的M个信干噪比作为第一信道资源的M个干扰资源。
例如,假设M等于2,对于信道资源1,选择信道资源1的2个干扰资源的流程包括:1)确定信道资源1的干扰资源集合{3,4,5,6},即终端设备测量资源{3,4,5,6}采用的接收波束与信道资源1的接收波束相同;2)分别将资源{3,4,5,6}作为干扰,计算信道资源1的SINR:SINR1_3,SINR1_4,SINR1_5和SINR1_6;3)在干扰资源集合{3,4,5,6}中选择2个最小SINR所对应的资源作为信道资源1的2个干扰资源,例如,如果SINR1_3和SINR1_4的SINR最小,则选择资源3和4作为信道资源1的2个干扰资源。
应理解,在本例中,将M个最小的信干噪比所对应的资源确定为信道资源的M个干扰资源,对应于上文描述的干扰类型为强干扰的方案。
再例如,假设M等于2,对于信道资源1,选择信道资源1的2个干扰资源的流程包括:1)确定信道资源1的干扰资源集合{3,4,5,6},即终端设备测量资源{3,4,5,6}采用的接收波束与信道资源1的接收波束相同;2)分别将资源{3,4,5,6}作为干扰,计算信道资源1的SINR:SINR1_3,SINR1_4,SINR1_5和SINR1_6;3)在干扰资源集合{3,4,5,6}中选择2个最大SINR所对应的资源作为信道资源1的2个干扰资源,例如,如果SINR1_5和SINR1_6的SINR最大,则选择资源5和6作为信道资源1的2个干扰资源。
应理解,在本例中,将M个最大的信干噪比所对应的资源确定为信道资源的M个干 扰资源,对应于上文描述的干扰类型为弱干扰的方案。
还应理解,也可以在对第一信道资源造成干扰的资源中,随机选择M个资源确定为第一信道资源的M个干扰资源。
可选地,在一些实施例中,步骤320包括:终端设备在候选信道资源中确定N个信道资源,在候选干扰资源中确定每个信道资源的M个干扰资源。
候选信道资源表示网络资源下发的测量信号对应的测量资源中的一组用于选择信道资源的资源。候选干扰资源表示网络资源下发的测量信号对应的测量资源中的一组用于选择干扰资源的资源。
候选信道资源与候选干扰资源可以是不同组的资源,也可以是同一组的资源。例如,当把网络资源下发的测量信号对应的测量资源中的一个资源作为信道资源组时,可以把其它资源作为候选干扰资源。
在本实施例中,网络设备可以通过下发测量配置信息来配置候选信道资源与候选干扰资源。本申请不对资源的配置方式做限定。作为示例,可以在资源配置(CSI-ResourceConfig)中配置候选信道资源与候选干扰资源,也可以在上报配置(CSI-ReportConfig)中配置候选信道资源与候选干扰资源。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
以N个信道资源中的第一信道资源为例,测量结果中包括第一信道资源的M个信干噪比,这M个信干噪比表示,第一信道资源分别在第一信道资源的M个干扰资源中的每个干扰资源的干扰下的信干噪比。
应理解,通过终端设备向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获取更加充分的波束之间干扰的情况,有助于网络设备在多用户传输中避免同时使用具有较强相互干扰的波束。
在测量结果包括信道资源的信干噪比的实施例中,在该测量结果中可以采用多种方式表示该信干噪比。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,对于N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
测量结果中包括M个字段,M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,其中,第一字段用于表示M个信干噪比中的第一信干噪比,M-1个字段分别用于表示M个信干噪比中除第一信干噪比之外的M-1个信干噪比与第一信干噪比的差值。
第一信干噪比可以是M个信干噪比中值最大的或最小的。或者,第一信干噪比还可以是测量结果中排在第一个的信干噪比。
作为示例,测量结果如表2所示。
表2
Figure PCTCN2019100217-appb-000006
Figure PCTCN2019100217-appb-000007
在表2所示的示例中,测量结果中包括2个信道资源的索引,以及每个信道资源的2个干扰资源的索引,还包括每个信道资源在其干扰资源下的信干噪比。干扰资源3和干扰资源4为信道资源1的干扰资源;SINR_3表示信道资源1在干扰资源3的干扰下的信干噪比,SINR_4表示信道资源1在干扰资源4的干扰下的信干噪比。干扰资源6和干扰资源7为信道资源2的干扰资源;SINR_6表示信道资源2在干扰资源6的干扰下的信干噪比,SINR_7表示信道资源2在干扰资源7的干扰下的信干噪比。
如表2所示,在测量结果中,针对每个信道资源,包括一个a1比特的字段与一个b1比特的字段,a1为正整数,b1为小于a1的正整数。以信道资源1为例,a1比特的字段用于承载SINR_3,b1比特的字段用于承载SINR_4与SINR_3的差值。
还以表2中的信道资源1为例,a1比特的字段中承载的信息是采用a1比特对SINR_3进行量化后的结果,b1比特的字段中承载的信息采用b1比特对SINR_4与SINR_3的差值进行量化后的结果。
本实施例的方式,可以称为组内差分方式。
应理解,通过组内差分方式上报信道资源的信干噪比,可以节省信令开销。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,对于N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
测量结果中包括M*N个字段,M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,其中,第一字段用于表示M*N个信干噪比中的第一信干噪比,M*N-1个字段分别用于表示M*N个信干噪比中除第一信干噪比之外的M*N-1个信干噪比与第一信干噪比的差值。
第一信干噪比可以,为M*N个信干噪比中的任一个,或者,为M*N个信干噪比中值最大或最小的一个,或者,为测量结果中排在第一个的信干噪比。
作为示例,测量结果如表3所示。
表3
Figure PCTCN2019100217-appb-000008
在表3所示的示例中,测量结果中包括2个信道资源的索引,以及每个信道资源的2个干扰资源的索引,还包括每个信道资源在其干扰资源下的信干噪比。干扰资源3和干扰资源4为信道资源1的干扰资源;SINR_3表示信道资源1在干扰资源3的干扰下的信干噪比,SINR_4表示信道资源1在干扰资源4的干扰下的信干噪比。干扰资源6和干扰资源7为信道资源2的干扰资源;SINR_6表示信道资源2在干扰资源6的干扰下的信干噪比,SINR_7表示信道资源2在干扰资源7的干扰下的信干噪比。
如表3所示,在测量结果中,包括一个a2比特的字段与三个b2比特的字段,a2为正 整数,b2为小于a2的正整数。a2比特的字段用于承载SINR_3,三个b2比特的字段分别用于承载SINR_4、SINR_6、SINR_7与SINR_3的差值。
作为一种实现方式,a2比特的字段中承载的信息是采用a1比特对SINR_3进行量化后的结果,第一个b2比特的字段中承载的信息是采用b2比特对SINR_4与SINR_3的差值进行量化后的结果,第二个b2比特的字段中承载的信息是采用b2比特对SINR_6与SINR_3的差值进行量化后的结果,第三个b2比特的字段中承载的信息是采用b2比特对SINR_7与SINR_3的差值进行量化后的结果。
本实施例的方式,可以称为组间差分方式。
应理解,通过组间差分方式上报信道资源的信干噪比,可以进一步节省信令开销。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,对于N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
在测量结果中,针对每个信道资源,包括M个字段;其中,针对第s个信道资源,包括M个a3比特的第一字段,针对第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;
第s个信道资源对应的M个第一字段中的第j个第一字段用于表示第s个信道资源的第j个信干噪比,第i个信道资源对应的M个第二字段中的第j个第二字段用于表示第i个信道资源的第j个信干噪比与第s个信道资源的第j个信干噪比的差值。
作为示例,测量结果如表4所示。
表4
Figure PCTCN2019100217-appb-000009
在表4所示的示例中,测量结果中包括2个信道资源的索引,以及每个信道资源的2个干扰资源的索引,还包括每个信道资源在其干扰资源下的信干噪比。干扰资源3和干扰资源4为信道资源1的干扰资源;SINR_3表示信道资源1在干扰资源3的干扰下的信干噪比,SINR_4表示信道资源1在干扰资源4的干扰下的信干噪比。干扰资源6和干扰资源7为信道资源2的干扰资源;SINR_6表示信道资源2在干扰资源6的干扰下的信干噪比,SINR_7表示信道资源2在干扰资源7的干扰下的信干噪比。
如表4所示,在测量结果中,针对信道资源1,包括2个a3比特的第一字段,针对信道资源2,包括2个b3比特的第二字段。信道资源1的第一个a3比特的第一字段承载SINR_3,信道资源1的第二个a3比特的第一字段承载SINR_4;信道资源2的第一个b3比特的第二字段承载SINR_6与SINR_3的差值,信道资源2的第二个b3比特的第二字段承载SINR_7与SINR_4的差值。
本实施例的方式,也可以称为组间差分方式。
应理解,通过组间差分方式上报信道资源的信干噪比,可以进一步节省信令开销。
还应理解,除了上述组内差分方式与组间差分方式之外,还可以采用其他可行的方式上报信道资源的信干噪比,本申请对此不作限定。
在终端设备上报的测量结果中,每个信道资源的M个干扰资源的索引可以采用多种方式排列。
为了便于理解与描述,下文以N个信道资源中的第一信道资源为例进行描述。
可选地,在一些实施例中,在测量结果中,N个信道资源中的第一信道资源的M个干扰资源的索引,按照第一信道资源的M个干扰资源的干扰能量值的升序或降序排列。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,N个信道资源中的第一信道资源的M个干扰资源的索引,按照第一信道资源分别在M个干扰资源的干扰下的信干噪比的升序或降序排列。
可选地,在一些实施例中,在测量结果中包括第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,在测量结果中,第一信道资源的M个信干噪比的排列顺序与第一信道资源的M个干扰资源的排列顺序一致。如表5和表6所示。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,第一信道资源的M个干扰资源的索引的排列位置集中在一起,第一信道资源的M个信干噪比的排列位置集中在一起。
作为示例,测量结果如表5所示。
表5
Figure PCTCN2019100217-appb-000010
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比,第一信道资源的M个干扰资源中每个干扰资源的索引与第一信道资源在该每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
例如,第一信道资源的M个干扰资源中的第一干扰资源的索引与第一信道资源在第一干扰资源的干扰下的信干噪比的排列位置集中在一起,第二干扰资源的索引与第一信道资源在第二干扰资源的干扰下的信干噪比的排列位置集中在一起,以此类推。
作为示例,测量结果如表6所示。
表6
Figure PCTCN2019100217-appb-000011
应理解,上述的信道资源的M个干扰资源的索引的排列方式,或者,信道资源的M个信干噪比的排列方式,仅为示例而非限定。实际应用中,在测量结果中,信道资源的M个干扰资源的索引的排列方式,或者,信道资源的M个信干噪比的排列方式还可以为除了前文描述的方式之外的其他可行的方式,本申请对此不作限定。还以第一信道资源为例, 第一信道资源的M个干扰资源的索引可以该M个干扰资源的测量顺序排列。
可选地,在一些实施例中,终端设备向网络设备上报的测量结果中还可以包括N个信道资源的参考信号接收功率(RSRP)。如表2、表3、表4、表5或表6中所示。
可选地,在上述一些实施例中,参考信号接收功率(RSRP)可以替换为参考信号接收质量(RSRQ)。
可选地,在上述一些实施例中,信干噪比(SINR)可以替换为信道质量标识(channel quality indicator,CQI)或RSRQ。
应理解,在上述一些实施例中,以N个信道资源中的第一信道资源为例进行描述,但这并不对本申请造成限定,本文中对第一信道资源的相关描述都可以适用于N个信道资源中的每个信道资源。
基于上述描述,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,可以使得网络设备较准确地获知信道资源的干扰资源,以便于网络设备进行合理的波束干扰管理,从而可以避免同时采用具有较强相互干扰的多个波束进行多用户传输,进而提高多用户传输的性能与效率。
如图4所示,本申请实施例还提供一种测量上报的方法。该方法包括如下步骤。
401,网络设备向终端设备发送测量配置信息,该测量配置信息中包括信道资源的配置信息以及该信道资源对应的干扰资源的配置信息。其中,一个信道资源对应的干扰资源可以包括一个或多个。
以一个信道资源(记为第一信道资源)为例,该测量配置信息包括第一信道资源的配置信息以及该第一信道资源对应的K个干扰资源的配置信息,K为正整数。
可选地,该测量配置信息中可以包括用于选择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息。
还以第一信道资源为例,该信道资源组中包括第一信道资源,该干扰资源组中包括第一信道资源对应的K个干扰资源。
换言之,该测量配置信息可以配置一组资源(例如,本实施例中的信道资源组)用于信道资源的选择,和一组资源(例如,本实施例中的干扰资源组)用于干扰资源的选择。
应理解,终端设备可以从信道资源组中选择信道资源(例如,第一信道资源)第一信道资源,从干扰资源组中选择干扰资源(例如,第一信道资源对应的K个干扰资源)。
可选地,信道资源和干扰资源为不同组资源的资源。
可选地,信道资源和干扰资源可以是同一组资源的资源。
例如,当把一组资源中的一个资源作为信道资源(例如,本实施例中的第一信道资源)时,可以把这组资源中的其他资源作为干扰资源。
本文中提及的信道资源组和干扰资源组可以是一个资源组(resourceSet),或一个资源设置(resourceSetting),或其他形式的资源组。本申请不对资源的配置方式做限定。
例如,网络设备下发的测量配置信息中可以包括测量资源相关的信息与测量结果上报相关的信息。
例如,测量资源相关的信息包括但不限于如下任一种或多种:测量资源的索引,测量资源的周期,测量资源的类型。
例如,测量结果上报相关的信息包括但不限于如下任一种或多种:测量结果上报的周 期,测量结果上报的上报量。
上述测量配置信息可以配置在资源配置(CSI-ResourceConfig)中,也可以配置在上报配置(CSI-ReportConfig)中。
本文中涉及的信道资源也可以称为信道测量资源,干扰资源也可以称为干扰测量资源。
420,网络设备根据测量配置信息(例如,其中的资源配置信息),通过测量资源向终端设备发送对应的测量信号。相应地,终端设备根据测量配置信息,接收网络设备通过测量资源发送的测量信号。
430,终端设备测量相应的测量信号,获得网络设备所配置的信道资源的测量结果,信道资源的测量结果包括该信道资源在其对应的干扰资源的干扰下的信干噪比(SINR)。
其中,对于每个信道资源,终端设备分别采用该信道资源对应的干扰资源中的每个干扰资源作为干扰,计算出该信道资源在各个干扰资源的干扰下对应的信干噪比。
假设,对于信道资源#1,其对应的干扰资源为资源#3,#4,#5。对于信道资源#1,需要确定3个信干噪比:SINR1_3,SINR1_4和SINR1_5。其中,SINR1_i是以资源#1为信道资源,资源#i为干扰资源计算出来的SINR。
可选地,信道资源对应的干扰资源可以指网络设备所配置的所有干扰资源。
可选地,信道资源对应的干扰资源可以指专门为该信道资源配置的干扰资源。
例如,对于每个信道资源,网络设备配置一个或多个干扰资源,或一个或多个干扰资源组,在终端设备测量一个信道资源的信干噪比时,可基于网络设备专门为该信道资源配置的干扰资源来进行。
可选地,信道资源对应的干扰资源可以指专门为该信道资源所在的信道资源组配置的干扰资源。
例如,对于一个信道资源组,网络设备配置一个或多个干扰资源,或一个或多个干扰资源组,在终端设备测量该信道资源组中的信道资源的信干噪比时,可采用网络设备专门为该信道资源组配置的干扰资源来进行。
可选地,信道资源对应的干扰资源可以指网络设备所配置的所有干扰资源中与该信道资源具有相同传输配置指示(transmission configuration indication,TCI)配置的干扰资源。
例如,网络设备总共配置了10个干扰资源,对于一个信道资源来说,其中有3个干扰资源与该信道资源具有相同的TCI配置,则在终端设备测量该信道资源的信干噪比时,基于这3个干扰资源来进行。
可选地,信道资源对应的干扰资源可以指专门为该信道资源所在的信道资源组配置的干扰资源中,与该信道资源具有相同TCI配置的干扰资源。
例如,对于一个信道资源组,网络设备配置一个或多个干扰资源,或一个或多个干扰资源组。对于这个信道资源组中的一个信道资源,在上述干扰资源中,只有部分干扰资源与该信道资源具有相同TCI配置,则在终端设备测量该信道资源的信干噪比时,可以基于与该信道资源具有相同TCI配置的这部分干扰资源来进行。
以网络设备配置的一个信道资源(记为第一信道资源)为例,在步骤430中,终端设备测量相应的测量信号,获得第一信道资源的测量结果,第一信道资源的测量结果包括第一信道资源在第一信道资源对应的K个干扰资源下的信干噪比,其中,第一信道资源对应 的K个干扰资源可以为如下1)至5)中任一种情形。
1)第一信道资源对应的K个干扰资源为测量配置信息中所配置的所有干扰资源。
2)第一信道资源对应的K个干扰资源为测量配置信息中专门为第一信道资源配置的干扰资源。
3)第一信道资源对应的K个干扰资源为测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源。
4)第一信道资源对应的K个干扰资源为测量配置信息中所配置的所有干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源。
5)第一信道资源对应的K个干扰资源为测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源。
可选地,对于所述第一信道资源对应的K个干扰资源,除了上述定义的情形,还可以根据应用需求具有其它可行的定义方式。
上文提及两个资源(如上文中的干扰资源与信道资源)具有相同TCI配置,其中,两个资源具有相同TCI配置可以包括如下不同的情形。
可选地,两个资源具有相同TCI配置,指的是,这两个资源的TCI状态(TCI-state)索引相同。
可选地,两个资源具有相同TCI配置,指的是,这两个资源的TCI-state索引不同,但这两个资源包括的类型为typeD的QCL信息(QCL-info)对应的参考信号资源是相同的。
可选地,两个资源具有相同TCI配置,指的是,这两个资源的TCI-state索引不同,但这两个资源包括的所有QCL-info对应的参考信号资源都是相同的。
可选地,两个资源具有相同TCI配置,指的是,在这两个资源的TCI-state中具有相互包含关系。
例如资源2的TCI-state中包括的资源是资源1,也可以认为资源1和资源2具有相同的TCI配置。
上文中提及的具有相同的TCI配置可以用于下行资源与上行资源之间。
可选地,某个下行资源与某个上行资源具有相同的TCI配置可以指该下行资源的TCI-state中的参考资源与该上行资源的空间关系(spatial relation)(上行配置的不是TCI-state,而是spatial relation)中的参考资源相同。
可选地,某个下行资源与某个上行资源具有相同的TCI配置可以指该下行资源的TCI-state中的参考资源是该上行资源,或者指该上行资源的spatial relation中的参考资源是该下行资源。
上文中提及的具有相同的TCI配置还可以用于两个上行资源之间。
可选地,两个上行资源具有相同TCI配置可以指这两个上行资源具有相同的TCI-state或spatial-relation。
可选地,两个上行资源具有相同TCI配置可以指这两个上行资源的TCI-state或spatial-relation中包括的资源相同。
可选地,两个上行资源具有相同TCI配置可以指一个上行资源的TCI-state或 spatial-relation中包括的资源为两个上行资源中的另一个上行资源。
上文中提及的具有相同的TCI配置还可以用于上行信道和上行资源之间。
可选地,某个上行信道和某个上行资源具有相同TCI配置可以指该上行信道对应的SRS资源是该上行资源。
可选地,某个上行信道和某个上行资源具有相同TCI配置可以指该上行信道对应的SRS资源是该上行资源的TCI-state或spatial-relation中包括的资源。
440,终端设备向网络设备上报测量上报结果,该测量上报结果中包括一个或多个信道资源的测量结果,其中,一个信道资源的测量结果中包括该信道资源在其对应的干扰资源的干扰下的信干噪比。
以网络设备配置的一个信道资源(记为第一信道资源)为例,在步骤440中,终端设备向网络设备上报第一信道资源的测量结果,第一信道资源的测量结果包括第一信道资源分别在该第一信道资源对应的K个干扰资源的干扰下的信干噪比。其中,第一信道资源的K个信干噪比在第一信道资源的测量结果中的排序与K个干扰资源的索引相关,或者,与K个干扰资源的配置顺序相关。
终端设备上报信道资源的测量结果时,在上报格式中,同一信道资源的各个测量结果按照特定的顺序进行排序。
一种方法是按照各个干扰资源的索引的从大到小或从小到大的顺序进行排序。
例如,对于一个信道资源,其对应的干扰资源有4个,因此要上报4个SINR。这4个SINR在上报格式中按照对应的干扰资源的索引从大到小或从小到大的顺序排序。
另一种方法是按照各个干扰资源的配置顺序进行排序。
例如,对于一个信道资源,其对应的干扰资源有4个,因此要上报4个SINR。这4个SINR在上报格式中按照4个干扰资源的配置顺序进行排序。
按照特定的顺序进行上报是为了让网络设备确定各个测量结果是对应什么干扰资源,从而在不上报干扰资源的情况下知道干扰资源的信息。上述顺序可以是协议默认规定的,也可以是配置信息配置的。
以终端设备向网络设备上报第一信道资源的测量结果,该测量结果包括第一信道资源分别在K个干扰资源的干扰下的信干噪比为例,第一信道资源的K个信干噪比在第一信道资源的测量结果中的排序为:K个干扰资源的索引从大到小或从小到大的顺序;或K个干扰资源的配置顺序。
网络设备在接收到按照K个干扰资源的索引从大到小或从小到大的顺序,或K个干扰资源的配置顺序,发送的第一信道资源在K个干扰资源下的信干噪比之后,可以获知第一信道资源在这K个干扰资源下的信干噪比。在这种情形下,终端设备可以无需向网络设备发送这K个干扰资源的索引。换句话说,终端设备按照K个干扰资源的索引从大到小或从小到大的顺序,或K个干扰资源的配置顺序,向网络设备发送第一信道资源的K个信干噪比,网络设备接收到这K个信干噪比之后,可以这K个信干噪比分别是第一信道资源在哪4个干扰资源下的信干噪比。
应理解,在所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关的前提下,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序还可以采 用其它可行的实现方式。例如,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序根据应用需求确定。
可选地,在图4所示实施例中,该方法还包括:网络设备根据第一信道资源的K个信干噪比在第一信道资源的测量结果中的排序,确定第一信道资源的K个信干噪比分别对应于该K个干扰资源。
在本申请中,通过网络设备为终端设备配置信道资源对应的干扰资源,使得终端设备可以测量信道资源在对应干扰资源下的信干噪比,并可以向网络设备上报信道资源在对应的干扰资源下的信干噪比,从而使得网络设备获知信道资源的干扰信息。此外,通过终端设备按照特定顺序(例如与干扰资源的索引有关,或者,与干扰资源的配置顺序有关)向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获知这些信干噪比所对应的干扰资源。
应理解,终端设备在向网络设备上报信道资源的测量结果时,可以省去上报干扰资源的索引,从而可以节省信令。
可选地,在图4所示实施例中,第一信道资源的测量结果中可以不携带所述K个干扰资源的索引。
测量上报结果中还可以包括一个或多个信道资源的索引。
例如,测量上报结果中包括第一信道资源的索引以及第一信道资源的测量结果,第一信道资源的测量结果包括第一信道资源在该第一信道资源对应的K个干扰资源下的信干噪比。
可选地,在上述一些实施例中,信干噪比(SINR)可以替换为信道质量标识(channel quality indicator,CQI)或RSRQ。
可选地,在一些实施例中,在终端设备上报的每个信道资源的测量结果中,除了信干噪比,还可以包括如下一种或多种:参考信号接收功率(RSRP),参考信号接收质量(RSRQ),信道质量标识(CQI)。
一个信道资源的RSRQ根据该信道资源对应的干扰资源获得。一个信道资源的CQI根据该信道资源对应的干扰资源获得。
以第一信道资源为例,终端设备上报的第一信道资源的测量结果中包括第一信道资源在该第一信道资源对应的K个干扰资源下的信干噪比,还包括如下任一项或多项:
第一信道资源的RSRP;
第一信道资源在该第一信道资源对应的K个干扰资源下的RSRQ;
第一信道资源在该第一信道资源对应的K个干扰资源下的CQI。
终端设备可以通过多种实现方式向网络设备上报测量上报结果。
可选地,作为一种实现方式,对于每个要上报的信道资源,终端上报该信道资源对应的所有干扰资源中每个干扰资源对应的测量结果。其中,该测量结果为如下任一种或多种:SINR,CQI,RSRQ。
例如,以网络设备配置的一个信道资源(记为第一信道资源)为例,网络设备配置其对应的干扰资源有4个,终端设备需要上报该第一信道资源的4个SINR,这4个SINR分别基于这4个干扰资源计算得到。
可选地,作为另一种实现方式,对于每个要上报的信道资源,终端设备要上报的该信 道资源的测量结果的数量可以是协议配置的或默认规定的。其中,该测量结果为如下任一种或多种:SINR,CQI,RSRQ。
例如,协议配置或默认规定,对于每个信道资源,终端设备上报x(x>=1)个测量结果。
例如,以网络设备配置的一个信道资源(记为第一信道资源)为例,网络设备配置其对应的干扰资源有K1个,K1为正整数。假设协议配置或默认规定,对于每个信道资源,终端设备上报K(K为小于或等于K1的正整数)个测量结果。这种情形下,终端设备需要上报该第一信道资源的K个SINR,这K个SINR分别基于网络设备配置的K个干扰资源计算得到。
可选地,在终端设备要上报的每个信道资源的测量结果的数量由协议配置或默认规定的实施例中,协议配置或默认规定,对于每个信道资源,上报该信道资源对应的所有干扰资源中每个干扰资源对应的测量结果。其中,该测量结果为如下任一种或多种:SINR,CQI,RSRQ。
在图4所示实施例中,通过网络设备为终端设备配置信道资源对应的干扰资源,使得终端设备可以测量信道资源在对应干扰资源下的信干噪比,并可以向网络设备上报信道资源在对应的干扰资源下的信干噪比,从而使得网络设备获知信道资源的干扰信息。此外,通过终端设备按照特定顺序(例如与干扰资源的索引有关,或者,与干扰资源的配置顺序有关)向网络设备上报信道资源在干扰资源的干扰下的信干噪比,可以使得网络设备获知这些信干噪比所对应的干扰资源。
此外,通过终端设备按照特定顺序向网络设备上报信道资源在对应各个干扰资源下的信干噪比,可以无需向网络设备上报这些干扰资源的索引,可以节省信令。
需要说明的是,在上文一些实施例中,采用SINR表示信干噪比,仅为示例而非限定。例如还可以采用如下任一种来表示信干噪比:层1信干噪比(L1-SINR),信道状态信息信干噪比(CSI-SINR),同步信号块信干噪比(SSB-SINR),层1信道状态信息信干噪比(L1-CSI-SINR),层1同步信号块信干噪比(L1-SSB-SINR)。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图5为本申请实施例提供的通信设备500的示意性框图。该通信设备500包括收发单元510和处理单元520。收发单元510可以与外部进行通信,处理单元510用于进行数据处理。收发单元510还可以称为通信接口或通信单元。
该通信设备500可以用于执行上文方法实施例中终端设备所执行的动作,或者,该通信设备500可以用于执行上文方法实施例中网络设备所执行的动作。
作为一种实现方式,通信设备500可以用于执行上文图3所示方法实施例中终端设备所执行的动作,这时,该通信设备500可以称为终端设备。收发单元510用于执行上文图3所示方法实施例中终端设备侧的收发相关操作,处理单元520用于执行上文图3所示方法实施例中终端设备的处理相关操作。
在本实现方式中,收发单元510,用于接收网络设备通过测量资源发送的测量信号;处理单元520,用于基于测量信号,确定要上报的N个信道资源以及N个信道资源中每一个信道资源的M个干扰资源,其中,M与N为正整数;收发单元510还用于,向网络设备上报测量结果,测量结果中包括N个信道资源的索引,以及N个信道资源中每一个信道资源的M个干扰资源的索引。
因此,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
可选地,在一些实施例中,处理单元520用于:针对N个信道资源中的第一信道资源,将采用第一信道资源的接收波束接收的参考信号接收功率最大或最小的M个其它资源确定为第一信道资源的M个干扰资源。
可选地,在一些实施例中,处理单元520用于:针对N个信道资源中的第一信道资源,计算第一信道资源分别在采用第一信道资源的接收波束接收的其它每个资源的干扰下的信干噪比;在所计算的信干噪比中,将最大或最小的M个信干噪比对应的M个资源确定为第一信道资源的M个干扰资源。
可选地,在一些实施例中,收发单元510还用于,接收网络设备下发的测量配置信息,测量配置信息中包括一个用于指示N的值的字段或参数;和/或测量配置信息中包括一个用于指示M的值的字段或参数。
可选地,在一些实施例中,收发单元510还用于,接收网络设备下发的测量配置信息,测量配置信息用于指示需要上报的资源的总数X;处理单元520还用于,根据预设规则与X的值,确定N和M的值。
可选地,在一些实施例中,处理单元520用于:确定N的值为1,确定M的值为X-1;或确定N的值为X/2,M的值为1。
可选地,在一些实施例中,测量结果中还包括N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
可选地,在一些实施例中,在测量结果中,对于N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
测量结果中包括M个字段,M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,其中,第一字段用于表示M个信干噪比中的第一信干噪比,M-1个字段分别用于表示M个信干噪比中除第一信干噪比之外的M-1个信干噪比与第一信干噪比的差值。
可选地,在一些实施例中,在测量结果中,对于N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
测量结果中包括M*N个字段,M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,其中,第一字段用于表示M*N个信干噪比中的第一信干噪比,M*N-1个字段分别用于表示M*N个信干噪比中除第一信干噪比之外的M*N-1个信干噪比与第一信干噪比的差值。
可选地,在一些实施例中,在测量结果中,对于N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
在测量结果中,针对每个信道资源,包括M个字段,其中,针对N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;M个第一字段中的第j个第一字段用于表示第s个信道资源的第j个信干噪比,第i个信道资源的M个第二字段中的第j个第二字段用于表示第i个信道资源的第j个信干噪比与第s个信道资源的第j个信干噪比的差值。
可选地,在一些实施例中,在测量结果中,N个信道资源中的第一信道资源的M个干扰资源的索引,按照第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或第一信道资源的M个干扰资源的索引,按照第一信道资源分别在M个干扰资源的干扰下的信干噪比的升序或降序排列。
可选地,在一些实施例中,在测量结果中包括第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,在测量结果中,第一信道资源的M个信干噪比的排列顺序与第一信道资源的M个干扰资源的排列顺序一致。
可选地,在一些实施例中,第一信道资源的M个干扰资源的索引的排列位置集中在一起,第一信道资源的M个信干噪比的排列位置集中在一起;或第一信道资源的M个干扰资源中每个干扰资源的索引与第一信道资源在每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
可选地,在一些实施例中,处理单元520用于采用如下任一种方式确定N个信道资源:
将测量信号中参考信号接收功率最大的N个测量信号对应的资源确定为N个信道资源;或
将测量信号中信干噪比最大的N个测量信号对应的资源确定为N个信道资源;或
将测量信号中信干噪比最大的N1个测量信号对应的测量资源中参考信号接收功率最 大的N个测量信号对应的资源确定为N个信道资源,N1为大于或等于N的整数;或
将测量信号中参考信号接收功率最大的N2个测量信号对应的测量资源中信干噪比最大的N个测量信号对应的资源确定为N个信道资源,N2为大于或等于N的整数。
作为另一种实现方式,通信设备500可以用于执行上文图3所示方法实施例中网络设备所执行的动作,这时,该通信设备500可以称为网络设备。收发单元510用于执行上文图3所示方法实施例中网络设备侧的收发相关操作,处理单元520用于执行上文图3所示方法实施例中网络设备的处理相关操作。
在本实现方式中,收发单元510用于,通过测量资源向第一终端设备发送测量信号;接收第一终端设备基于测量信号上报的测量结果,测量结果中包括N个信道资源的索引,以及N个信道资源中每一个信道资源的M个干扰资源的索引。
处理单元520用于,从N个信道资源中确定用于向第一终端设备发送下行信号的第一资源,并根据测量结果,确定用于向第二终端设备发送下行信号的第二资源。
收发单元510还用于,使用第一资源向第一终端设备发送第一下行信号,使用第二资源向第二终端设备发送第二下行信号。
例如,第二资源与第一资源不互为强干扰资源。
假设终端设备上报的干扰资源表示干扰最强的干扰资源,则所述第二资源不是所述第一资源的M个干扰资源中的任一个或多个资源。
假设终端设备上报的干扰资源表示干扰最弱的干扰资源,则所述第二资源可以是所述第一资源的M个干扰资源中的任一个或多个资源。
因此,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,使得网络设备可以获知较为准确的波束之间的干扰情况,从而在多用户传输中,可以有效避免采用具有较强相互干扰的波束来进行传输,进而可以提高多用户传输的效率。
可选地,在一些实施例中,终端设备上报的信道资源的干扰资源可以均为强干扰资源,或者均为弱干扰资源。
强干扰资源是指会对信道资源造成的干扰很强的资源。上报强干扰资源的索引可以通知网络设备哪些资源对应的波束会对信道资源对应的波束造成强烈干扰,在进行多用户传输时,应该尽量规避这些干扰。
弱干扰资源是指对信道资源造成的干扰很小的资源。上报弱干扰的索引可以通知网络设备哪些资源对应的波束对信道资源对应的波束造成的干扰很小,在进行多用户传输时,应该尽量采用这些波束来与信道资源对应的波束进行配对传输。
可选地,第一终端设备向网络设备上报的干扰资源是强干扰资源还是弱干扰资源,可以通过网络设备配置或协议规定。
可选地,在一些实施例中,当第一终端设备上报的信道资源的干扰资源为强干扰资源时,所述第二资源不是所述第一资源的M个干扰资源中的任一个或多个资源。当第一终端设备上报的信道资源的干扰资源为弱干扰资源时,所述第二资源为所述第一资源的M个干扰资源中的任一个或多个资源。
可选地,在一些实施例中,处理单元520用于为终端设备确定测量配置信息。收发单元510还用于,向终端设备发送该测量配置信息。
可选地,在一些实施例中,收发单元510还用于,向第一终端设备发送测量配置信息, 测量配置信息中包括一个用于指示N的值的字段或参数,和/或,测量配置信息中包括一个用于指示M的值的字段或参数。
可选地,在一些实施例中,收发单元510还用于,向第一终端设备发送测量配置信息,测量配置信息用于指示需要上报的资源的总数X。
可选地,在一些实施例中,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
可选地,在测量结果包括信道资源的信干噪比的实施例中,在该测量结果中可以采用多种方式表示该信干噪比,具体详见上文相关描述,这里不再赘述。
可选地,在一些实施例中,在终端设备上报的测量结果中,每个信道资源的M个干扰资源的索引可以采用多种方式排列,具体详见上文相关描述,这里不再赘述。
可选地,在测量结果包括信道资源的信干噪比的实施例中,在测量结果中,第一信道资源的M个信干噪比的排列顺序可以与第一信道资源的M个干扰资源的排列顺序一致。
可选地,在测量结果包括信道资源的信干噪比的实施例中,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
作为又一种实现方式,通信设备500可以用于执行上文图4所示方法实施例中终端设备所执行的动作,这时,该通信设备500可以称为终端设备。收发单元510用于执行上文图4所示方法实施例中终端设备执行的收发相关操作,处理单元520用于执行上文图4所示方法实施例中终端设备执行的处理相关操作。
在本实现方式中,收发单元510,用于接收网络设备发送的测量配置信息,测量配置信息包括第一信道资源的配置信息以及第一信道资源对应的K个干扰资源的配置信息,K为正整数;处理单元520,用于根据测量配置信息测量网络设备根据测量配置信息发送的测量信号,获得第一信道资源的测量结果,第一信道资源的测量结果包括第一信道资源分别在K个干扰资源的干扰下的信干噪比;收发单元510还用于,向网络设备上报第一信道资源的测量结果,其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
可选地,测量配置信息包括用于选择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息,其中,信道资源组中包括第一信道资源,干扰资源组中包括K个干扰资源。
可选地,第一信道资源对应的K个干扰资源为:
测量配置信息中所配置的所有干扰资源;或
测量配置信息中专门为第一信道资源配置的干扰资源;或
测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源;或
测量配置信息中所配置的所有干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源;或
测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源。
可选地,第一信道资源在K个干扰资源下的信干噪比在第一信道资源的测量结果中的排序为:K个干扰资源的索引从大到小或从小到大的顺序;或K个干扰资源的配置顺序。
可选地,第一信道资源的测量结果中不携带K个干扰资源的索引。
可选地,第一信道资源的测量结果中还包括如下任一项或多项:第一信道资源的RSRP,第一信道资源的RSRQ,第一信道资源的CQI。
作为再一种实现方式,通信设备500可以用于执行上文图4所示方法实施例中网络设备所执行的动作,这时,该通信设备500可以称为网络设备。收发单元510510用于执行上文图4所示方法实施例中网络设备执行的收发相关操作,处理单元520520用于执行上文图4所示方法实施例中网络设备执行的处理相关操作。
在本实现方式中,处理单元520,用于生成测量配置信息,测量配置信息包括第一信道资源的配置信息以及第一信道资源对应的K个干扰资源的配置信息,K为正整数;收发单元510,用于:向终端设备发送测量配置信息;接收终端设备上报的第一信道资源的测量结果,第一信道资源的测量结果包括第一信道资源分别在K个干扰资源的干扰下的信干噪比,其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
可选地,该方法还包括:根据第一信道资源的K个信干噪比在第一信道资源的测量结果中的排序,确定第一信道资源的K个信干噪比分别对应于该K个干扰资源。
可选地,测量配置信息包括用于选择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息,其中,信道资源组中包括第一信道资源,干扰资源组中包括K个干扰资源。
可选地,第一信道资源对应的K个干扰资源为:
测量配置信息中所配置的所有干扰资源;或
测量配置信息中专门为第一信道资源配置的干扰资源;或
测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源;或
测量配置信息中所配置的所有干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源;或
测量配置信息中专门为第一信道资源所在的信道资源组配置的干扰资源中与第一信道资源具有相同传输配置指示TCI配置的干扰资源。
可选地,第一信道资源在K个干扰资源下的信干噪比在第一信道资源的测量结果中的排序为:K个干扰资源的索引从大到小或从小到大的顺序;或K个干扰资源的配置顺序。
可选地,第一信道资源的测量结果中不携带K个干扰资源的索引。
可选地,第一信道资源的测量结果中还包括如下任一项或多项:第一信道资源的RSRP,第一信道资源的RSRQ,第一信道资源的识CQI。
应理解,上文实施例中的处理单元520可以由处理器或处理器相关电路实现,收发单元510可以由收发器或收发器相关电路实现。
如图6所示,本申请实施例还提供一种通信设备600。通信设备600包括处理器610、存储器620和收发器630,存储器620中存储有程序,处理器610用于执行存储器620中存储的程序,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中的相关处理步骤,对存储器620中存储的程序的执行,使得处理器610控制收发器 630执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信设备600用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中终端设备侧的处理步骤,对存储器620中存储的程序的执行,使得处理器610控制收发器630执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信设备600用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中网络设备侧的处理步骤,对存储器620中存储的程序的执行,使得处理器610控制收发器630执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置700,该通信装置700可以是终端设备也可以是芯片。该通信设备700可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信设备700为终端设备时,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图7所示,终端设备包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元720,用于执行图3中的步骤320,和/或处理单元720还用于执行图3所示实施例中终端设备侧的其他处理步骤。收发单元710还用于执行图3中所示的步骤310、步骤330和步骤350,和/或收发单元710还用于执行图3所示 实施例中终端设备侧的其他收发步骤。
例如,在另一种实现方式中,处理单元720,用于执行图4中的步骤430,和/或处理单元720还用于执行图4所示实施例中终端设备侧的其他处理步骤。收发单元710还用于执行图4中所示的步骤410与步骤420中的接收操作,以及步骤440中的发送操作,和/或收发单元710还用于执行图4所示实施例中终端设备侧的其他收发步骤。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图7所示的结构。
当该通信设备700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信设备800,该通信设备800可以是网络设备也可以是芯片。该通信设备800可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信设备800为网络设备时,例如为基站。图8示出了一种简化的基站结构示意图。基站包括810部分以及820部分。810部分主要用于射频信号的收发以及射频信号与基带信号的转换;820部分主要用于基带处理,对基站进行控制等。810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。820部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,810部分的收发单元用于执行图3中步骤310与步骤350中网络设备侧的发送操作,步骤330中网络设备侧的接收操作,和/或810部分的收发单元还用于执行图3所示实施例中网络设备侧的其他收发步骤。820部分的处理单元用于执行图3中步骤340的处理操作,和/或820部分的处理单元还用于执行图3所示实施例中网络设备侧的处理步骤。
例如,在另一种实现方式中,810部分的收发单元用于执行图4中步骤410与步骤420中网络设备侧的发送操作,步骤440中网络设备侧的接收操作,和/或810部分的收发单元还用于执图4所示实施例中网络设备侧的其他收发步骤。820部分的处理单元用于执行图4所示实施例中网络设备侧的处理步骤。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图8所示的结构。
当该通信设备800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以 是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该通信装置800可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)。RRU可以称为收发单元,与图5中的收发单元510对应。RRU部分主要用于射频信号的收发以及射频信号与基带信号的转换。BBU部分主要用于进行基带处理,对基站进行控制等。RRU与BBU可以是物理上设置在一起,也可以物理上分离设置的,即通信装置800为分布式基站。
BBU为通信装置800的控制中心,也可以称为处理单元,可以与图5中的处理单元520对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如BBU(处理单元)可以用于控制通信装置800执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,BBU可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。BBU还包括存储器和处理器,例如BBU可以对应于图8中的820部分。其中,存储器用以存储必要的指令和数据,处理器用于控制通信装置800进行必要的动作,例如用于控制通信装置800执行上述方法实施例中关于网络设备的操作流程。存储器和处理器可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,通信装置800不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (69)

  1. 一种测量上报的方法,其特征在于,包括:
    接收网络设备通过测量资源发送的测量信号;
    基于所述测量信号,确定要上报的N个信道资源以及所述N个信道资源中每一个信道资源的M个干扰资源,其中,M与N为正整数;
    向所述网络设备上报测量结果,所述测量结果中包括所述N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引。
  2. 根据权利要求1所述的方法,其特征在于,确定要上报的所述N个信道资源中每一个信道资源的M个干扰资源,包括:
    针对所述N个信道资源中的第一信道资源,将采用所述第一信道资源的接收波束接收的参考信号接收功率最大或最小的M个其它资源确定为所述第一信道资源的M个干扰资源。
  3. 根据权利要求1所述的方法,其特征在于,确定要上报的所述N个信道资源中每一个信道资源的M个干扰资源,包括:
    针对所述N个信道资源中的第一信道资源,计算所述第一信道资源分别在采用所述第一信道资源的接收波束接收的其它每个资源的干扰下的信干噪比;
    在所计算的信干噪比中,将最大或最小的M个信干噪比对应的M个资源确定为所述第一信道资源的M个干扰资源。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备下发的测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数;和/或
    所述测量配置信息中包括一个用于指示M的值的字段或参数。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备下发的测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X;
    根据预设规则与X的值,确定N和M的值。
  6. 根据权利要求5所述的方法,其特征在于,根据预设规则与X的值,确定N和M的值,包括:
    确定N的值为1,确定M的值为X-1;或
    确定N的值为X/2,M的值为1。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
  8. 根据权利要求7所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
    所述测量结果中包括M个字段,所述M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,
    其中,所述第一字段用于表示所述M个信干噪比中的第一信干噪比,所述M-1个字段分别用于表示所述M个信干噪比中除所述第一信干噪比之外的M-1个信干噪比与所述第一信干噪比的差值。
  9. 根据权利要求7所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    所述测量结果中包括M*N个字段,所述M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,
    其中,所述第一字段用于表示所述M*N个信干噪比中的第一信干噪比,所述M*N-1个字段分别用于表示所述M*N个信干噪比中除所述第一信干噪比之外的M*N-1个信干噪比与所述第一信干噪比的差值。
  10. 根据权利要求7所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    在所述测量结果中,针对每个信道资源,包括M个字段,其中,针对所述N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对所述N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;
    所述第s个信道资源对应的M个第一字段中的第j个第一字段用于表示所述第s个信道资源的第j个信干噪比,所述第i个信道资源对应的M个第二字段中的第j个第二字段用于表示所述第i个信道资源的第j个信干噪比与所述第s个信道资源的第j个信干噪比的差值。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,在所述测量结果中,所述N个信道资源中的第一信道资源的M个干扰资源的索引,按照所述第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或
    所述第一信道资源的M个干扰资源的索引,按照所述第一信道资源分别在所述M个干扰资源的干扰下的信干噪比的升序或降序排列。
  12. 根据权利要求11所述的方法,其特征在于,在所述测量结果中包括所述第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,
    在所述测量结果中,所述第一信道资源的M个信干噪比的排列顺序与所述第一信道资源的M个干扰资源的排列顺序一致。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或
    所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,确定要上报的N个信道资源,包括:
    将所述测量信号中参考信号接收功率最大的N个测量信号对应的资源确定为所述N 个信道资源;或
    将所述测量信号中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源;或
    将所述测量信号中信干噪比最大的N1个测量信号对应的测量资源中参考信号接收功率最大的N个测量信号对应的资源确定为所述N个信道资源,N1为大于或等于N的整数;或
    将所述测量信号中参考信号接收功率最大的N2个测量信号对应的测量资源中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源,N2为大于或等于N的整数。
  15. 一种测量上报的方法,其特征在于,包括:
    通过测量资源向第一终端设备发送测量信号;
    接收所述第一终端设备基于所述测量信号上报的测量结果,所述测量结果包括N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引;
    从所述N个信道资源中确定用于向所述第一终端设备发送下行信号的第一资源,并根据所述测量结果,确定用于向第二终端设备发送下行信号的第二资源;
    使用所述第一资源向所述第一终端设备发送第一下行信号,使用所述第二资源向所述第二终端设备发送第二下行信号,
    其中,所述第二资源不属于所述第一资源的M个干扰资源中的任一个或多个资源,或者,所述第二资源为所述第一资源的M个干扰资源中的任一个或多个资源。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数,和/或,所述测量配置信息中包括一个用于指示M的值的字段或参数。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
  19. 根据权利要求18所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
    所述测量结果中包括M个字段,所述M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,
    其中,所述第一字段用于表示所述M个信干噪比中的第一信干噪比,所述M-1个字段分别用于表示所述M个信干噪比中除所述第一信干噪比之外的M-1个信干噪比与所述第一信干噪比的差值。
  20. 根据权利要求18所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    所述测量结果中包括M*N个字段,所述M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,
    其中,所述第一字段用于表示所述M*N个信干噪比中的第一信干噪比,所述M*N-1个字段分别用于表示所述M*N个信干噪比中除所述第一信干噪比之外的M*N-1个信干噪比与所述第一信干噪比的差值。
  21. 根据权利要求18所述的方法,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    在所述测量结果中,针对每个信道资源,包括M个字段,其中,针对所述N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对所述N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;
    所述第s个信道资源对应的M个第一字段中的第j个第一字段用于表示所述第s个信道资源的第j个信干噪比,所述第i个信道资源对应的M个第二字段中的第j个第二字段用于表示所述第i个信道资源的第j个信干噪比与所述第s个信道资源的第j个信干噪比的差值。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,在所述测量结果中,所述N个信道资源中的第一信道资源的M个干扰资源的索引,按照所述第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或
    所述第一信道资源的M个干扰资源的索引,按照所述第一信道资源分别在所述M个干扰资源的干扰下的信干噪比的升序或降序排列。
  23. 根据权利要求22所述的方法,其特征在于,在所述测量结果中包括所述第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,
    在所述测量结果中,所述第一信道资源的M个信干噪比的排列顺序与所述第一信道资源的M个干扰资源的排列顺序一致。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或
    所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
  25. 一种通信设备,其特征在于,包括:
    收发单元,用于接收网络设备通过测量资源发送的测量信号;
    处理单元,用于基于所述测量信号,确定要上报的N个信道资源以及所述N个信道资源中每一个信道资源的M个干扰资源,其中,M与N为正整数;
    所述收发单元还用于,向所述网络设备上报测量结果,所述测量结果中包括所述N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引。
  26. 根据权利要求25所述的通信设备,其特征在于,所述处理单元用,针对所述N个信道资源中的第一信道资源,将采用所述第一信道资源的接收波束接收的参考信号接收功率最大或最小的M个其它资源确定为所述第一信道资源的M个干扰资源。
  27. 根据权利要求25所述的通信设备,其特征在于,所述处理单元用于:
    针对所述N个信道资源中的第一信道资源,计算所述第一信道资源分别在采用所述第 一信道资源的接收波束接收的其它每个资源的干扰下的信干噪比;
    在所计算的信干噪比中,将最大或最小的M个信干噪比对应的M个资源确定为所述第一信道资源的M个干扰资源。
  28. 根据权利要求25至27中任一项所述的通信设备,其特征在于,所述收发单元还用于,接收所述网络设备下发的测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数;和/或
    所述测量配置信息中包括一个用于指示M的值的字段或参数。
  29. 根据权利要求25至27中任一项所述的通信设备,其特征在于,所述收发单元还用于,接收所述网络设备下发的测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X;
    所述处理单元还用于,根据预设规则与X的值,确定N和M的值。
  30. 根据权利要求29所述的通信设备,其特征在于,所述处理单元用于:
    确定N的值为1,确定M的值为X-1;或
    确定N的值为X/2,M的值为1。
  31. 根据权利要求25至30中任一项所述的通信设备,其特征在于,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
  32. 根据权利要求31所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
    所述测量结果中包括M个字段,所述M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,
    其中,所述第一字段用于表示所述M个信干噪比中的第一信干噪比,所述M-1个字段分别用于表示所述M个信干噪比中除所述第一信干噪比之外的M-1个信干噪比与所述第一信干噪比的差值。
  33. 根据权利要求31所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    所述测量结果中包括M*N个字段,所述M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,
    其中,所述第一字段用于表示所述M*N个信干噪比中的第一信干噪比,所述M*N-1个字段分别用于表示所述M*N个信干噪比中除所述第一信干噪比之外的M*N-1个信干噪比与所述第一信干噪比的差值。
  34. 根据权利要求31所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    在所述测量结果中,针对每个信道资源,包括M个字段,其中,针对所述N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对所述N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;
    所述M个第一字段中的第j个第一字段用于表示所述第s个信道资源的第j个信干噪比,所述第i个信道资源的M个第二字段中的第j个第二字段用于表示所述第i个信道资源的第j个信干噪比与所述第s个信道资源的第j个信干噪比的差值。
  35. 根据权利要求25至34中任一项所述的通信设备,其特征在于,在所述测量结果中,所述N个信道资源中的第一信道资源的M个干扰资源的索引,按照所述第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或
    所述第一信道资源的M个干扰资源的索引,按照所述第一信道资源分别在所述M个干扰资源的干扰下的信干噪比的升序或降序排列。
  36. 根据权利要求35所述的通信设备,其特征在于,在所述测量结果中包括所述第一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,
    在所述测量结果中,所述第一信道资源的M个信干噪比的排列顺序与所述第一信道资源的M个干扰资源的排列顺序一致。
  37. 根据权利要求36所述的通信设备,其特征在于,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或
    所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
  38. 根据权利要求25至37中任一项所述的通信设备,其特征在于,所述处理单元用于:
    将所述测量信号中参考信号接收功率最大的N个测量信号对应的资源确定为所述N个信道资源;或
    将所述测量信号中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源;或
    将所述测量信号中信干噪比最大的N1个测量信号对应的测量资源中参考信号接收功率最大的N个测量信号对应的资源确定为所述N个信道资源,N1为大于或等于N的整数;或
    将所述测量信号中参考信号接收功率最大的N2个测量信号对应的测量资源中信干噪比最大的N个测量信号对应的资源确定为所述N个信道资源,N2为大于或等于N的整数。
  39. 一种通信设备,其特征在于,包括:
    收发单元用于,通过测量资源向第一终端设备发送测量信号;接收所述第一终端设备基于所述测量信号上报的测量结果,所述测量结果中包括N个信道资源的索引,以及所述N个信道资源中每一个信道资源的M个干扰资源的索引;
    处理单元用于,从所述N个信道资源中确定用于向所述第一终端设备发送下行信号的第一资源,并根据所述测量结果,确定用于向第二终端设备发送下行信号的第二资源;
    所述收发单元还用于,使用所述第一资源向所述第一终端设备发送第一下行信号,使用所述第二资源向所述第二终端设备发送第二下行信号,
    其中,所述第二资源不是所述第一资源的M个干扰资源中的任一资源,或所述第二资源为所述第一资源的M个干扰资源中的一个或多个资源。
  40. 根据权利要求39所述的通信设备,其特征在于,所述收发单元还用于,向所述 第一终端设备发送测量配置信息,所述测量配置信息中包括一个用于指示N的值的字段或参数,和/或,所述测量配置信息中包括一个用于指示M的值的字段或参数。
  41. 根据权利要求39所述的通信设备,其特征在于,所述收发单元还用于,向所述第一终端设备发送测量配置信息,所述测量配置信息用于指示需要上报的资源的总数X。
  42. 根据权利要求39至41中任一项所述的通信设备,其特征在于,所述测量结果中还包括所述N个信道资源中每一个信道资源分别在M个干扰资源的干扰下的信干噪比。
  43. 根据权利要求42所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中的第一信道资源分别在M个干扰资源的干扰下的M个信干噪比,采用如下方式表示:
    所述测量结果中包括M个字段,所述M个字段中的第一字段为a1比特,其余的M-1个字段为b1比特,a1为正整数,b1为小于a1的正整数,
    其中,所述第一字段用于表示所述M个信干噪比中的第一信干噪比,所述M-1个字段分别用于表示所述M个信干噪比中除所述第一信干噪比之外的M-1个信干噪比与所述第一信干噪比的差值。
  44. 根据权利要求42所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    所述测量结果中包括M*N个字段,所述M*N个字段中的第一字段为a2比特,其余的M*N-1个字段为b2比特,a2为正整数,b2为小于a2的正整数,
    其中,所述第一字段用于表示所述M*N个信干噪比中的第一信干噪比,所述M*N-1个字段分别用于表示所述M*N个信干噪比中除所述第一信干噪比之外的M*N-1个信干噪比与所述第一信干噪比的差值。
  45. 根据权利要求42所述的通信设备,其特征在于,在所述测量结果中,对于所述N个信道资源中各个信道资源分别在M个干扰资源的干扰下的M*N个信干噪比,采用如下方式表示:
    在所述测量结果中,针对每个信道资源,包括M个字段,其中,针对所述N个信道资源中的第s个信道资源,包括M个a3比特的第一字段,针对所述N个信道资源中的第i个信道资源,包括M个b3比特的第二字段,i遍历1至M中不等于s的所有值,s为不小于1且不大于M的整数,a3为正整数,b3为小于a3的正整数;
    所述第s个信道资源对应的M个第一字段中的第j个第一字段用于表示所述第s个信道资源的第j个信干噪比,所述第i个信道资源对应的M个第二字段中的第j个第二字段用于表示所述第i个信道资源的第j个信干噪比与所述第s个信道资源的第j个信干噪比的差值。
  46. 根据权利要求39至45中任一项所述的通信设备,其特征在于,在所述测量结果中,所述N个信道资源中的第一信道资源的M个干扰资源的索引,按照所述第一信道资源的M个干扰资源的干扰能量值的升序或降序排列;或
    所述第一信道资源的M个干扰资源的索引,按照所述第一信道资源分别在所述M个干扰资源的干扰下的信干噪比的升序或降序排列。
  47. 根据权利要求46所述的通信设备,其特征在于,在所述测量结果中包括所述第 一信道资源分别在M个干扰资源的干扰下的信干噪比的情况下,
    在所述测量结果中,所述第一信道资源的M个信干噪比的排列顺序与所述第一信道资源的M个干扰资源的排列顺序一致。
  48. 根据权利要求47所述的通信设备,其特征在于,所述第一信道资源的M个干扰资源的索引的排列位置集中在一起,所述第一信道资源的M个信干噪比的排列位置集中在一起;或
    所述第一信道资源的M个干扰资源中每个干扰资源的索引与所述第一信道资源在所述每个干扰资源的干扰下的信干噪比的排列位置集中在一起。
  49. 一种测量上报的方法,其特征在于,包括:
    接收网络设备发送的测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;
    接收所述网络设备根据所述测量配置信息发送的测量信号;
    测量所述测量信号,获得所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比;
    向所述网络设备上报所述第一信道资源的测量结果,
    其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
  50. 一种测量上报的方法,其特征在于,包括:
    向终端设备发送测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;
    根据所述测量配置信息向所述终端设备发送测量信号;
    接收所述终端设备基于所述测量信号上报的所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比,
    其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
  51. 根据权利要求50所述的方法,其特征在于,所述方法还包括:
    根据所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序,确定所述第一信道资源的K个信干噪比分别对应于所述K个干扰资源。
  52. 根据权利要求49至51中任一项所述的方法,其特征在于,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序为所述K个干扰资源的索引从大到小或从小到大的顺序。
  53. 根据权利要求49至52中任一项所述的方法,其特征在于,所述第一信道资源的测量结果中不携带所述K个干扰资源的索引。
  54. 根据权利要求49至53中任一项所述的方法,其特征在于,所述测量配置信息包括用于选择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息,其中,所述信道资源组中包括所述第一信道资源,所述干扰资源组中包括所述K个干扰资源。
  55. 根据权利要求49至54中任一项所述的方法,其特征在于,所述第一信道资源对 应的K个干扰资源为:
    所述测量配置信息中所配置的所有干扰资源;或
    所述测量配置信息中专门为所述第一信道资源配置的干扰资源;或
    所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源;或
    所述测量配置信息中所配置的所有干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源;或
    所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源。
  56. 根据权利要求49至55中任一项所述的方法,其特征在于,所述第一信道资源的测量结果中还包括如下任一项或多项:所述第一信道资源的参考信号接收功率RSRP,所述第一信道资源的参考信号接收质量RSRQ,所述第一信道资源的信道质量标识CQI。
  57. 一种通信装置,其特征在于,包括:
    收发单元,用于:
    接收网络设备发送的测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;
    接收所述网络设备根据所述测量配置信息发送的测量信号;
    处理单元,用于测量所述测量信号,获得所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比;
    所述收发单元还用于,向所述网络设备上报所述第一信道资源的测量结果,
    其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
  58. 一种通信装置,其特征在于,包括:
    处理单元,用于生成测量配置信息,所述测量配置信息包括第一信道资源的配置信息以及所述第一信道资源对应的K个干扰资源的配置信息,K为正整数;
    收发单元,用于:
    向终端设备发送所述测量配置信息;
    根据所述测量配置信息向所述终端设备发送测量信号;
    接收所述终端设备基于所述测量信号上报的所述第一信道资源的测量结果,所述第一信道资源的测量结果包括所述第一信道资源分别在所述K个干扰资源的干扰下的信干噪比,
    其中,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序与所述K个干扰资源的索引相关,或者,与所述K个干扰资源的配置顺序相关。
  59. 根据权利要求58所述的通信装置,其特征在于,所述处理单元还用于,根据所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序,确定所述第一信道资源的K个信干噪比分别对应于所述K个干扰资源。
  60. 根据权利要求57至59中任一项所述的通信装置,其特征在于,所述第一信道资源的K个信干噪比在所述第一信道资源的测量结果中的排序为所述K个干扰资源的索引从大到小或从小到大的顺序。
  61. 根据权利要求57至60中任何一项所述的通信装置,其特征在于,所述第一信道 资源的测量结果中不携带所述K个干扰资源的索引。
  62. 根据权利要求57至61中任一项所述的通信装置,其特征在于,所述测量配置信息包括用于选择信道资源的信道资源组的配置信息以及用于选择干扰资源的干扰资源组的配置信息,其中,所述信道资源组中包括所述第一信道资源,所述干扰资源组中包括所述K个干扰资源。
  63. 根据权利要求57至62中任一项所述的通信装置,其特征在于,所述第一信道资源对应的K个干扰资源为:
    所述测量配置信息中所配置的所有干扰资源;或
    所述测量配置信息中专门为所述第一信道资源配置的干扰资源;或
    所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源;或
    所述测量配置信息中所配置的所有干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源;或
    所述测量配置信息中专门为所述第一信道资源所在的信道资源组配置的干扰资源中与所述第一信道资源具有相同传输配置指示TCI配置的干扰资源。
  64. 根据权利要求57至63中任一项所述的通信装置,其特征在于,所述第一信道资源的测量结果中还包括如下任一项或多项:所述第一信道资源的参考信号接收功率RSRP,所述第一信道资源的参考信号接收质量RSRQ,所述第一信道资源的信道质量标识CQI。
  65. 一种通信设备,其特征在于,包括:
    存储器,包括计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,并且,对所述计算机指令的执行,使得所述通信设备执行如权利要求1至14中任一项所述的方法,或者,如权利要求15至24中任一项所述的方法,或者,如权利要求49至56中任一项所述的方法。
  66. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,权利要求1至14中任一项所述的方法,或者,如权利要求15至24中任一项所述的方法,或者,如权利要求49至56中任一项所述的方法被执行。
  67. 一种通信装置,其特征在于,包括处理器和接口,所述处理器通过所述接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,权利要求1至14中任一项所述的方法,或者,如权利要求15至24中任一项所述的方法,或者,如权利要求49至56中任一项所述的方法被执行。
  68. 一种芯片,其特征在于,包括处理器和接口,所述处理器用于控制所述接口与外部进行通信,所述处理器还用于从存储器中调用并运行所述存储器中存储的计算机程序,当所述处理器调用并运行所述存储器中的计算机程序时,权利要求1至14中任一项所述的方法,或者,如权利要求15至24中任一项所述的方法,或者,如权利要求49至56中任一项所述的方法被执行。
  69. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得,所述计算机执行如权利要求1至14中任一项所述的方法,或者,如权利要求15至24中任一项所述的方法,或者,如权利要求49至56中任一项所述的方法。
PCT/CN2019/100217 2019-01-31 2019-08-12 测量上报的方法与装置 WO2020155604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910100189.4 2019-01-31
CN201910100189.4A CN111510946B (zh) 2019-01-31 2019-01-31 测量上报的方法与装置

Publications (1)

Publication Number Publication Date
WO2020155604A1 true WO2020155604A1 (zh) 2020-08-06

Family

ID=71841970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100217 WO2020155604A1 (zh) 2019-01-31 2019-08-12 测量上报的方法与装置

Country Status (2)

Country Link
CN (1) CN111510946B (zh)
WO (1) WO2020155604A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499855A (zh) * 2021-06-18 2022-12-20 华为技术有限公司 通信方法和通信装置
WO2022261937A1 (zh) * 2021-06-18 2022-12-22 北京小米移动软件有限公司 干扰测量方法及其装置
CN115734239A (zh) * 2021-08-31 2023-03-03 华为技术有限公司 测量干扰的方法和装置
CN118055453A (zh) * 2022-11-16 2024-05-17 华为技术有限公司 一种信号传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064529A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 频分多址***中的干扰测量方法、资源分配方法及其装置
US20160212733A1 (en) * 2015-01-16 2016-07-21 Alexei Davydov User equipment and base station for dynamic csi-rs and csi-im transmission in lte systems
CN108282212A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息处理的方法、装置和***
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188796B (zh) * 2011-12-28 2017-09-08 中兴通讯股份有限公司 聚合cqi发送方法及装置
CN104159314B (zh) * 2014-09-03 2017-12-08 重庆邮电大学 异构网络的分布式节能资源分配方法
CN109151875B (zh) * 2017-06-16 2023-06-16 华为技术有限公司 用于测量信道状态的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064529A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 频分多址***中的干扰测量方法、资源分配方法及其装置
US20160212733A1 (en) * 2015-01-16 2016-07-21 Alexei Davydov User equipment and base station for dynamic csi-rs and csi-im transmission in lte systems
CN108282212A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息处理的方法、装置和***
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures(Release 14)", 3GPP TS 36.213 V14.8.0 (2018-09), 30 September 2018 (2018-09-30), DOI: 20191010183645A *

Also Published As

Publication number Publication date
CN111510946A (zh) 2020-08-07
CN111510946B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN111385042B (zh) 干扰测量的方法和通信装置
WO2020207269A1 (zh) 干扰测量的方法和装置
WO2020155604A1 (zh) 测量上报的方法与装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
US8289917B1 (en) Method and apparatus for defining resource elements for the provision of channel state information reference signals
WO2020029942A1 (zh) 波束测量的方法和装置
US9225490B2 (en) Method and apparatus for configuring resource elements for the provision of channel state information reference signals
WO2020199066A1 (zh) 功率控制方法及相关装置
CN112672378B (zh) 资源测量的方法和装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2021017874A1 (zh) 一种通信方法及通信装置
CN107431942A (zh) 一种信道状态信息的上报方法、用户设备和基站
WO2020238808A1 (zh) 一种信息上报的方法及装置
US20220264584A1 (en) Measurement and reporting method and apparatus
CN105247937A (zh) 下行信道聚合级别的确定方法、设备和***
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
CN116325877A (zh) 一种信道状态信息上报方法及装置
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
WO2022252963A1 (zh) 信道状态信息的测量方法和装置
CN111194040B (zh) 波束上报的方法与装置
WO2024067441A1 (zh) 通信方法、装置和***
WO2021097625A1 (zh) 信道确定的方法和通信装置
WO2022206652A1 (zh) 信息指示的方法与装置
WO2023160692A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912581

Country of ref document: EP

Kind code of ref document: A1