WO2022261937A1 - 干扰测量方法及其装置 - Google Patents

干扰测量方法及其装置 Download PDF

Info

Publication number
WO2022261937A1
WO2022261937A1 PCT/CN2021/100895 CN2021100895W WO2022261937A1 WO 2022261937 A1 WO2022261937 A1 WO 2022261937A1 CN 2021100895 W CN2021100895 W CN 2021100895W WO 2022261937 A1 WO2022261937 A1 WO 2022261937A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
signal
type
terminal device
interference
Prior art date
Application number
PCT/CN2021/100895
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21945522.7A priority Critical patent/EP4358572A1/en
Priority to PCT/CN2021/100895 priority patent/WO2022261937A1/zh
Priority to CN202180001845.0A priority patent/CN115918137A/zh
Publication of WO2022261937A1 publication Critical patent/WO2022261937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present application relates to the technical field of communications, and in particular to an interference measurement method and device thereof.
  • the same frequency and simultaneous full-duplex technology can be used on the network device side, but limited by factors such as the size and cost of terminal devices, in The terminal device side needs to use time division duplex (Time Division Duplex, TDD) or frequency division duplex (Frequency Division Duplex, FDD) technology.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • network devices may use the same time and frequency for transmission and reception, mutual interference exists between multiple terminal devices in the same cell or adjacent cells.
  • the network equipment may use the same-frequency simultaneous full-duplex technology for data transmission and data reception when multiple terminal equipment interfere with each other seriously, resulting in poor data transmission efficiency and low accuracy. Low.
  • the embodiment of the first aspect of the present disclosure proposes an interference measurement method, the method is executed by a first terminal device, and the method includes: receiving a measurement signal using a receiving beam of the PDSCH on the first terminal device; determining the measurement Interference measurements of the signal.
  • the measurement signal received by the receiving beam of the physical downlink shared channel PDSCH on the first terminal device can determine the interference measurement result of the measurement signal, so that the first terminal device can determine that there is strong mutual interference with itself Other terminal devices, so as to facilitate the scheduling of network devices, avoid the data reception of the first terminal device at the same time at the same frequency, and the data transmission of other terminal devices with strong mutual interference, and improve the efficiency and accuracy of data transmission.
  • the determining the interference measurement result of the measurement signal includes: determining a measurement mode corresponding to the measurement type according to the measurement type configured by the network device; performing the measurement on the measurement signal according to the measurement mode Channel quality measurement, determining measurement data under the measurement type; determining the interference measurement result according to the measurement data and a measurement threshold under the measurement type configured by the network device.
  • the determining the interference measurement result according to the measurement data and the measurement threshold under the measurement type configured by the network device includes: determining the interference measurement result corresponding to the measurement type configured by the network device.
  • a measurement threshold is used to determine the interference measurement.
  • the measurement signal belongs to an interference signal to be reported, wherein the measurement data is greater than or equal to the measurement threshold; it is determined that the measurement signal does not belong to an interference signal to be reported, wherein the measurement data is less than The measurement threshold.
  • the determining the reported data of the measurement signal includes: parsing and processing the measurement signal to obtain a terminal device identifier, wherein the network device configures the signal type of the measurement signal as an inter-terminal cross link channel interference management reference signal UE-CLI-RS; generating the report data according to the terminal equipment identifier, the receiving time period of the measurement signal and the measurement data.
  • the determining the reporting data of the measurement signal includes: generating the reporting data according to a receiving time period of the measurement signal and the measurement data, wherein the network device is not configured with the measurement signal signal type.
  • the channel for sending the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the measurement type configured by the network device is RSSI; or, the network device configures the signal type of the measurement signal as Inter-terminal cross link interference management reference signal UE-CLI-RS, the measurement type configured by the network device includes at least one of the following: signal received power RSRP, signal received quality RSRQ, signal to interference plus noise ratio SINR , Signal received strength RSSI.
  • the embodiment of the second aspect of the present disclosure provides an interference measurement method, the method is executed by a second terminal device, and the method includes: generating a measurement signal; and sending the measurement signal by using a transmission beam in a transmission beam set.
  • the generating the measurement signal includes: generating the measurement signal whose signal type is an inter-terminal cross-link interference management reference signal UE-CLI-RS according to the terminal device identifier of the second terminal device, wherein the network The device configures the signal type of the measurement signal as UE-CLI-RS; or, generates the measurement signal of any signal type, wherein the network device does not configure the signal type of the measurement signal.
  • UE-CLI-RS inter-terminal cross-link interference management reference signal
  • the method of determining the set of sending beams includes: according to the reference synchronization signal block SSB configured by the network device, determining the receiving beam for receiving the reference synchronization signal block SSB; or, according to the channel configured by the network device
  • the state information reference signal CSI-RS determines a receiving beam for receiving the CSI-RS; generates the sending beam set according to a sending beam corresponding to the receiving beam.
  • the embodiment of the third aspect of the present disclosure proposes an interference measurement method, the method is executed by a network device, and the method includes: receiving reported data sent by a first terminal device; wherein, the reported data includes: measurement of a measurement signal data and a receiving time period, the measurement signal is a measurement signal received by the first terminal device from the second terminal device using the receiving beam of the PDSCH, and the measurement data of the measurement signal under the measurement type is greater than or equal to the measurement signal The measurement threshold under type.
  • configuring the set of transmission beams used for sending the measurement signal of the second terminal device; or, configuring the set of transmission beams and the set of transmission beams of the second terminal device used for sending the measurement signal The signal type of the measurement signal.
  • configuring the transmission beam set includes: configuring a reference synchronization signal block SSB, so as to determine the transmission beam set according to the transmission beam corresponding to the reception beam of the reference synchronization signal block SSB; or, configuring the channel state information reference signal CSI-RS, so as to determine the set of transmitting beams according to the transmitting beams corresponding to the receiving beams of the CSI-RS.
  • configuring the measurement type and the measurement threshold of the measurement signal of the first terminal device or, configuring the measurement type and the measurement threshold of the measurement signal of the first terminal device Threshold and the type of signal.
  • the measurement type of the measurement signal when the signal type of the measurement signal is not configured, configure the measurement type as signal reception strength, and configure the measurement threshold under the measurement type; or, configure the signal type of the measurement signal as terminal
  • inter-cross link interference management reference signal UE-CLI-RS configure the measurement type to include at least one of the following: received signal power RSRP, received signal quality RSRQ, signal-to-interference-plus-noise ratio SINR, received signal strength RSSI , and configure the measurement threshold under the measurement type.
  • the embodiment of the fourth aspect of the present disclosure proposes an interference measurement device, the device includes: a transceiver unit, configured to use a receiving beam of the PDSCH on the first terminal device to receive a measurement signal; a processing unit, configured to determine the measurement signal interfere with the measurement results.
  • the processing unit is specifically configured to, according to the measurement type configured by the network device, determine a measurement mode corresponding to the measurement type; perform channel quality measurement on the measurement signal according to the measurement mode, and determine the the measurement data under the measurement type; and determine the interference measurement result according to the measurement data and the measurement threshold under the measurement type configured by the network device.
  • the processing unit is specifically configured to determine that the measurement signal belongs to an interference signal to be reported, where the measurement data is greater than or equal to the measurement threshold; and determine that the measurement signal does not belong to an interference signal to be reported , wherein the measurement data is smaller than the measurement threshold.
  • the processing unit is further configured to determine the reported data of the measurement signal, where the interference measurement result of the measurement signal is that the measurement signal belongs to an interference signal to be reported; the transceiver unit, It is also used to send the report data to the network device.
  • the processing unit is specifically configured to analyze and process the measurement signal to obtain a terminal device identifier, wherein the network device configures the signal type of the measurement signal as an inter-terminal cross-link interference management reference signal UE-CLI-RS: Generate the report data according to the terminal device identifier, the receiving time period of the measurement signal and the measurement data.
  • UE-CLI-RS inter-terminal cross-link interference management reference signal
  • the processing unit is specifically configured to generate the report data according to a receiving time period of the measurement signal and the measurement data, wherein the network device is not configured with a signal type of the measurement signal.
  • the channel for sending the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the measurement type configured by the network device is RSSI; or, the network device configures the signal type of the measurement signal as Inter-terminal cross link interference management reference signal UE-CLI-RS, the measurement type configured by the network device includes at least one of the following thresholds: signal received power RSRP, signal received quality RSRQ, signal to interference plus noise ratio SINR, received signal strength RSSI.
  • the embodiment of the fifth aspect of the present disclosure provides another interference measurement device, which includes: a processing unit, configured to generate a measurement signal; and a transceiver unit, configured to use a transmission beam in a transmission beam set to transmit the measurement signal.
  • the processing unit is specifically configured to generate the measurement signal whose signal type is an inter-terminal cross-link interference management reference signal UE-CLI-RS according to the terminal device identifier of the second terminal device, where the network device configuration
  • the signal type of the measurement signal is UE-CLI-RS; or, generating the measurement signal of any signal type, wherein the network device is not configured with the signal type of the measurement signal.
  • the method of determining the set of sending beams includes: according to the reference synchronization signal block SSB configured by the network device, determining the receiving beam for receiving the reference synchronization signal block SSB; or, according to the channel configured by the network device
  • the state information reference signal CSI-RS determines a receiving beam for receiving the CSI-RS; generates the sending beam set according to a sending beam corresponding to the receiving beam.
  • the embodiment of the sixth aspect of the present disclosure proposes another interference measurement device, the device includes: a transceiver unit, configured to receive the report data sent by the first terminal device; wherein the report data includes: measurement data of the measurement signal and The receiving time period, the measurement signal is a measurement signal received by the first terminal device from the second terminal device using the receiving beam of the PDSCH, and the measurement data of the measurement signal under the measurement type is greater than or equal to that under the measurement type measurement threshold.
  • the apparatus further includes: a processing unit configured to configure a transmission beam set of the second terminal device for transmitting the measurement signal; or configure a transmission beam set of the second terminal device for transmitting the measurement signal; The transmission beam set of the measurement signal and the signal type of the measurement signal.
  • a processing unit configured to configure a transmission beam set of the second terminal device for transmitting the measurement signal; or configure a transmission beam set of the second terminal device for transmitting the measurement signal; The transmission beam set of the measurement signal and the signal type of the measurement signal.
  • configuring the transmission beam set includes: configuring a reference synchronization signal block SSB, so as to determine the transmission beam set according to the transmission beam corresponding to the reception beam of the reference synchronization signal block SSB; or, configuring the channel state information reference signal CSI-RS, so as to determine the set of transmitting beams according to the transmitting beams corresponding to the receiving beams of the CSI-RS.
  • the processing unit is further configured to configure the measurement type for receiving the measurement signal and the measurement threshold of the first terminal device; or, configure the first terminal device for The measurement type, the measurement threshold, and the signal type of the measurement signal are received.
  • the processing unit is specifically configured to, when the signal type of the measurement signal is not configured, configure the measurement type as signal reception strength, and configure the measurement threshold under the measurement type; or, configure the
  • the signal type of the measurement signal is the inter-terminal cross-link interference management reference signal UE-CLI-RS
  • the configuration of the measurement type includes at least one of the following: signal received power RSRP, signal received quality RSRQ, signal and interference plus Noise ratio SINR, signal received strength RSSI, and configure the measurement threshold under the measurement type.
  • the embodiment of the seventh aspect of the present disclosure provides another interference measurement device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that The device executes the method described in the embodiment of the first aspect above; or, the method described in the embodiment of the second aspect above.
  • the embodiment of the eighth aspect of the present disclosure provides an interference measurement device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method described in the embodiment of the third aspect above.
  • the embodiment of the ninth aspect of the present disclosure proposes another interference measurement device, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run The code instructions are used to execute the method described in the embodiment of the first aspect above; or, the method described in the embodiment of the second aspect above.
  • the embodiment of the tenth aspect of the present disclosure proposes another interference measurement device, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run The code instructions are used to execute the method described in the embodiment of the third aspect above.
  • the embodiment of the eleventh aspect of the present disclosure provides a computer-readable storage medium for storing instructions. When the instructions are executed, the method described in the above-mentioned embodiment of the first aspect is implemented; or, the above-mentioned The method described in the embodiment of the second aspect is implemented.
  • the embodiment of the twelfth aspect of the present disclosure provides another computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the above-mentioned embodiment of the third aspect is implemented.
  • FIG. 1 is a schematic flowchart of an interference measurement method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an interference measurement device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another interference measurement device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an interference measurement device provided by an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a user terminal provided by an embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • Fig. 1 is an interference measurement method provided by an embodiment of the present disclosure. It should be noted that the interference measurement method in the embodiment of the present disclosure is executed by the first terminal device.
  • the interference measurement method may include the following steps:
  • Step 101 using a receiving beam of the PDSCH on the first terminal device to receive a measurement signal.
  • the second terminal device may send the generated measurement signal to the first terminal device, and the first terminal device may use a receiving beam of a physical downlink shared channel PDSCH (Physical Downlink Shared Channel, PDSCH for short) to receive the measurement signal .
  • the measurement signal may be various reference signals, data signals, or other signals generated by the second terminal device.
  • the receiving beam can be pre-configured, or indicated by the network device, or determined by beam measurement. It can be a wide beam or a narrow beam. The width of the beam can be flexibly adjusted according to actual needs. Configuration, the receiving beam may also be a set of multiple receiving beams generated by the first terminal device.
  • the second terminal equipment may be UE-A (User Equipment A, user equipment A)
  • the first terminal equipment may be UE-B (User Equipment B, user equipment B).
  • Step 102 determining an interference measurement result of the measurement signal.
  • the first terminal device may analyze the measurement signal, and determine the second terminal device that sends the measurement signal according to the analysis result. According to the received measurement signal, the first terminal device can also determine the measurement data of the measurement signal, and according to the measurement data, it can be determined whether the second terminal device sending the measurement signal causes interference to the first terminal device.
  • the measurement signal received by the receiving beam of the physical downlink shared channel PDSCH on the first terminal device can determine the interference measurement result of the measurement signal, so that the first terminal device can determine other terminal devices that have strong mutual interference with itself , so as to facilitate the scheduling of network devices, avoid the data reception of the first terminal device and the data transmission of other terminal devices with strong mutual interference at the same frequency at the same time, and improve the efficiency and accuracy of data transmission.
  • FIG. 2 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method can be executed by a first terminal device, and the interference measurement method can be independently The execution may also be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in the related art.
  • the interference measurement method may include the following steps:
  • Step 201 using a receiving beam of a PDSCH on a first terminal device to receive a measurement signal.
  • the first terminal device may use the receiving beam to receive the measurement signal sent by the second terminal device on the time-frequency resource configured by the network device.
  • the time-frequency resource may be a time-frequency resource configured by a network device (such as a base station) through signaling, or the time-frequency resource may be a time-frequency resource pool configured by a network device through signaling time-frequency resources.
  • there are resources with the same time and frequency in the time-frequency resource of the signal received by the first terminal device and the time-frequency resource of the signal sent by the second terminal device there are resources with the same time and frequency.
  • Step 202 according to the measurement type configured by the network device, determine a measurement mode corresponding to the measurement type.
  • the measurement type configured by the network device is determined according to the signal type of the measurement signal configured by the network device.
  • the network device does not configure the signal type of the measurement signal, and it is determined that the measurement type configured by the network device is Received Signal Strength Indicator (RSSI for short).
  • RSSI Received Signal Strength Indicator
  • the network device configures the signal type of the measurement signal as an inter-terminal cross link interference management reference signal (inter UE Cross Link Interference Reference Signal, referred to as UE-CLI-RS), and the network device configures
  • the measurement type includes at least one of the following: Signal Received Power (Reference Signal Received Power, referred to as RSRP), Signal Received Quality (Reference Signal Received Quality, referred to as RSRQ), Signal-to-Interference plus Noise Ratio (Signal-to-Interference plus Noise Ratio, referred to as SINR), signal received strength RSSI.
  • RSRP Signal Received Power
  • RSRQ Signal Received Quality
  • SINR Signal-to-Interference plus Noise Ratio
  • SINR Signal received strength RSSI.
  • Step 203 Perform channel quality measurement on the measurement signal according to the measurement mode, and determine measurement data under the measurement type.
  • the first terminal device performs channel quality measurement on the received measurement signal according to the measurement manner determined in step 202, and determines measurement data of a corresponding measurement type.
  • the measurement data is the data obtained by the first terminal device performing measurement during the process of receiving the measurement signal, and there is corresponding measurement data under each measurement type.
  • the corresponding measurement data under each measurement type is determined to obtain multiple measurement data.
  • the measurement data in response to the measurement type being RSSI, is the reception strength RSSI when the first terminal device receives the measurement signal; in response to the measurement type being RSRP, the measurement data is the reception power RSRP when the first terminal device receives the measurement signal; In response to the measurement type being RSRQ, the measurement data is reception quality RSRQ when the first terminal device receives the measurement signal; in response to the measurement type being SINR, the measurement data is signal-to-interference-noise ratio SINR when the first terminal device receives the measurement signal.
  • the relative magnitude between the measurement signal and the interference may be the ratio of the strength of the measurement signal received by the first terminal device to the strength of the received interference signal (noise and interference).
  • Step 204 comparing the measurement data with the measurement threshold under the measurement type configured by the network device.
  • the measurement data may include one or more of RSRP, RSRQ, SINR, and RSSI, and different data in the measurement data correspond to different measurement thresholds.
  • the measurement threshold corresponding to the measurement data is configured by the network device, or determined according to the protocol.
  • Step 205 in response to the measurement data being greater than or equal to the measurement threshold, it is determined that the interference result is that the measurement signal belongs to the interference signal to be reported.
  • the measurement data includes one of RSRP, RSRQ, SINR, and RSSI
  • the measurement data is greater than or equal to the measurement threshold corresponding to the measurement data
  • it may be determined that the interference measurement result is that the measurement signal belongs to the first The interference signal to be reported by the terminal device.
  • the measurement thresholds corresponding to different data in the measurement data can be obtained respectively, and any data in the measurement data is greater than When the corresponding measurement threshold is met, it may be determined that the interference measurement result is that the measurement signal belongs to an interference signal to be reported by the first terminal device.
  • the interference result is that the measurement signal does not belong to the interference signal to be reported.
  • the measurement data includes one of RSRP, RSRQ, SINR, and RSSI
  • the measurement data is smaller than the measurement threshold corresponding to the measurement data, it may be determined that the measurement signal does not belong to the first terminal device Interference signal to be reported.
  • the measurement data includes two or more of RSRP, RSRQ, SINR, and RSSI, and all the data in the measurement data are less than the corresponding measurement threshold, it may be determined that the interference measurement result is a measurement signal It does not belong to the interference signal to be reported by the first terminal device.
  • Step 206 generate report data according to the time period of receiving the measurement signal and the measurement data.
  • the time period for receiving the measurement signal may be a time slot index of a time slot for receiving the measurement signal, or may be other indication information that can determine time information for receiving the measurement signal.
  • the first terminal device in response to the signal type of the measurement signal being UE-CLI-RS, analyzes the UE-CLI-RS, and according to the analysis result, the first terminal device that sends the UE-CLI-RS can be obtained. 2.
  • the terminal device identifier of the terminal device.
  • report data is generated according to the terminal device identifier, the receiving time period of the UE-CLI-RS and the measurement data.
  • Step 207 sending the report data to the network device.
  • the channel for sending the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the measurement signal is received by using the receiving beam; according to the measurement type configured by the network device, the measurement method corresponding to the measurement type is determined; wherein, if the network does not configure the signal type of the measurement signal, the measurement type is RSSI; according to The measurement method performs channel quality measurement on the measurement signal to determine the measurement data under the measurement type; the measurement data is greater than or equal to the measurement threshold, and the interference result is determined to be that the measurement signal belongs to the interference signal to be reported; according to the reception of the measurement signal Time period and measurement data, generate report data; send report data to network devices.
  • the measurement type is RSSI
  • the measurement type of the network configuration measurement signal is UE-CLI-RS
  • the measurement type is at least one of RSRP, RSRQ, SINR, and RSSI; perform channel quality measurement on the measurement signal according to the measurement method corresponding to the measurement type, and determine the measurement type
  • the method determines the second terminal device sending the UE-CLI-RS by analyzing the UE-CLI-RS, and determines whether the UE-CLI-RS belongs to the interference to be reported by the first terminal device according to the measurement data of the UE-CLI-RS
  • the measurement signal when the UE-CLI-RS belongs to the interfering terminal device to be reported by the first terminal device, the terminal device identifier of the second terminal device, the receiving time period of the UE-CLI-RS and Measurement data is sent to network devices.
  • the first terminal device can determine the second terminal device that interferes with itself, so as to facilitate network device scheduling and improve data transmission efficiency and accuracy.
  • the interference measurement method of the embodiment of the present disclosure is performed by the first terminal device, and by receiving the measurement signal with a receiving beam, the interference measurement result of the measurement signal can be determined, so that the first terminal device can determine the second terminal that interferes with itself equipment, so as to facilitate the scheduling of network equipment, avoid the data reception of the first terminal equipment and the data transmission of the second terminal equipment at the same frequency at the same time, and improve the efficiency and accuracy of data transmission.
  • FIG. 3 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method may be performed by a second terminal device, for example, the second terminal device may be UE-A.
  • the interference measurement method may include the following steps:
  • Step 301 generating a measurement signal
  • the measurement signal may be various reference signals, may also be a data signal, and may also be other signals generated by the second terminal device.
  • the measurement signal may also be generated according to the configuration of the network device.
  • Step 302 Send the measurement signal by using a sending beam in the sending beam set.
  • the sending beam set may be pre-configured, configured by a network device, or determined through beam measurement.
  • the second terminal device generates the measurement signal and sends it through the sending beam in the sending beam set.
  • the first terminal device can receive through the receiving beam, and according to the received measurement signal, it can determine the second terminal device that interferes with itself, so as to facilitate the scheduling of network devices and avoid simultaneous transmission of the first terminal device on the same frequency.
  • Data reception and data transmission by the second terminal device improve data transmission efficiency and accuracy.
  • FIG. 4 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method can be executed by the second terminal device.
  • the interference measurement method may include the following steps:
  • Step 401 generating a measurement signal.
  • an inter-terminal cross-link interference management reference signal UE-CLI-RS is generated according to the terminal device identifier of the second terminal device .
  • the UE-CLI-RS r(m) can be generated according to the following formula, specifically as follows:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod 2;
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod 2;
  • UE-CLI-RS r(n) can be generated according to the following formula, as follows:
  • N represents the sequence length
  • n represents an integer greater than or equal to 0 and less than or equal to N
  • the values of ⁇ and q can be respectively determined by the identification of the second terminal device, the radio frame number, the subframe number and other time-related parameters.
  • the measurement signal of any signal type is generated.
  • the measurement signal may be a data signal, may also be a reference signal, or may be other signals generated by the second terminal device. This means that the second terminal can generate any type of signal as the measurement signal.
  • Step 402 receiving a reference signal configured by a network device, and determining a receiving beam for receiving the reference signal.
  • the network device uses the beams in the beam set to send the configured reference signal to the second terminal device, and the second terminal device uses the receiving beams to receive and determine the best receiving beam corresponding to each beam.
  • the beam set may be pre-configured, or may be determined according to information of the second terminal device.
  • the network device uses the beams in the beam set to send the reference synchronization signal block SSB or the channel state information reference signal CSI-RS.
  • the network device configures a reference synchronization signal block SSB, and the second terminal device receives the reference synchronization signal block SSB, and determines a receiving beam for receiving the SSB.
  • the network device configures a channel state information reference signal CSI-RS, and the second terminal device receives the channel state information reference signal CSI-RS, and determines a receiving beam for receiving the CSI-RS.
  • Step 403 Generate a set of sending beams according to the sending beams corresponding to the receiving beams.
  • the receiving beam is the receiving beam determined in step 402 .
  • using beam reciprocity using the determined sending beam corresponding to the receiving beam, and generating a sending beam set according to the sending beam.
  • Step 404 use the transmission beam in the transmission beam set to transmit the measurement signal.
  • the sending beam set is the sending beam set generated in step 403 .
  • the measurement signal is transmitted using each transmit beam in the set of transmit beams.
  • the time-frequency resource for sending the measurement signal is a time-frequency resource configured by the network device, or a time-frequency resource selected from a time-frequency resource pool configured by the network device.
  • the second terminal device sends the generated measurement signal using the transmission beam in the transmission beam set configured by the network device, where it should be noted that the time-frequency of the second terminal device for transmitting the measurement signal
  • the resource is a time-frequency resource configured by the network device according to the signaling, or a time-frequency resource selected from a time-frequency resource pool configured by the network device according to the signaling.
  • the second terminal device generates the measurement signal according to the measurement signal type configured by the network device; if the signal type is UE-CLI-RS, UE-CLI-RS is generated according to the terminal identifier of the second terminal device; using the network device
  • the transmission beams in the configured transmission beam set transmit the measurement signal, wherein the transmission beam set is determined according to the transmission beam corresponding to the reception beam receiving the reference signal configured by the network device.
  • This method enables the second terminal device to use the transmission beams in the transmission beam set configured by the network device to send measurement signals, which improves the quality of data transmission, and can generate UE-CLI-RS according to the identity of the second terminal device, and send the UE -CLI-RS is sent to the first terminal device.
  • the first terminal device After receiving the UE-CLI-RS, the first terminal device can determine the second terminal device that interferes with itself according to the UE-CLI-RS, so as to facilitate the scheduling of network devices , to avoid data reception by the first terminal device and data transmission by the second terminal device at the same frequency, and improve data transmission efficiency and accuracy.
  • the interference measurement method of the embodiment of the present disclosure is performed by the second terminal device, and generates a measurement signal according to the signal type configured by the network device; the measurement signal is sent by using the transmission beam in the transmission beam set configured by the network device, and the method makes the second terminal
  • the device uses the transmission beams in the transmission beam set configured by the network device to send signals, which improves the quality of data transmission, and can flexibly generate measurement signals according to the signal type configured by the network device, reducing system overhead, and sends the measurement signals to the first A terminal device.
  • the first terminal device After the first terminal device receives the measurement signal, it can determine the second terminal device that interferes with itself according to the measurement signal, so as to facilitate the scheduling of network devices and avoid simultaneous data transmission of the first terminal device on the same frequency. receiving, and data sending by the second terminal device, to improve data transmission efficiency and accuracy.
  • FIG. 5 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method can be executed by a network device.
  • the interference measurement method may include the following steps:
  • Step 501 receiving report data sent by a first terminal device.
  • the reported data includes: measurement data of a measurement signal and a receiving time period, the measurement signal is a measurement signal received by the first terminal device from the second terminal device using the receiving beam of the PDSCH, and the measurement signal is in the measurement type
  • the measurement data under is greater than or equal to the measurement threshold under the measurement type.
  • the reception time period of the measurement signal refers to information that can indicate the time of reception of the measurement signal, such as a reception time slot index of the measurement signal.
  • the network device can infer the sending beam, and then infer the second terminal device sending the measurement signal, so as to perform network scheduling and improve the efficiency of network scheduling.
  • the channel for receiving the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the network device may determine a terminal scheduling strategy based on the reported data, so as to avoid data reception by the first terminal device and data transmission by the second terminal device that interfere with each other at the same frequency.
  • the measurement data is that the first terminal device receives from the second terminal device The measurement data of the measurement signal.
  • the scheduling policies of the first terminal device and the second terminal device may be determined according to the measurement data. This method enables the first terminal device to determine the second terminal device that interferes with itself according to the measurement signal after receiving the measurement signal, and report the measurement data and the receiving time period to the network device, thereby facilitating the scheduling of the network device and avoiding The data reception of the first terminal device and the data transmission of the second terminal device are performed simultaneously on the same frequency, so as to improve the efficiency and accuracy of data transmission.
  • FIG. 6 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method can be executed by a network device.
  • the interference measurement method may include the following steps:
  • Step 601 configure a set of sending beams for sending measurement signals of a second terminal device.
  • the network device uses the beams in the beam set to send the configured reference signal to the second terminal device, and the second terminal device uses the receiving beams to receive and determine the best receiving beam corresponding to each beam.
  • the beam set may be preconfigured, or may be determined according to information of the second terminal device, for example, the beam set is determined according to position information of the second terminal device.
  • the network device uses the beams in the beam set to send the reference synchronization signal block SSB or the channel state information reference signal CSI-RS.
  • the network device configures the reference synchronization signal block SSB to determine the set of transmission beams according to the transmission beams corresponding to the reception beams of the reference synchronization signal block SSB.
  • the network device configures a channel state information reference signal CSI-RS, so as to determine the set of transmission beams according to a transmission beam corresponding to a reception beam of the CSI-RS.
  • CSI-RS channel state information reference signal
  • the network device may also configure the signal type of the measurement signal, for example, configure the signal type of the measurement signal as inter-terminal cross-link interference management reference signal UE-CLI-RS, and indicate to the second terminal device through signaling.
  • the signal type of the measurement signal for example, configure the signal type of the measurement signal as inter-terminal cross-link interference management reference signal UE-CLI-RS, and indicate to the second terminal device through signaling.
  • the network device may also configure the time-frequency resource for the second terminal device to send the measurement signal, or configure the time-frequency resource for the second terminal device to send the measurement signal as a selected time-frequency resource in the time-frequency resource pool.
  • Step 602 configure the measurement type and measurement threshold of the measurement signal of the first terminal device.
  • the measurement type of the measurement signal when the signal type of the measurement signal is not configured, the measurement type is configured as signal received strength, and the measurement threshold under the measurement type is configured.
  • configuring the measurement type includes at least one of the following: signal received power RSRP, signal Receive quality RSRQ, signal-to-interference-plus-noise ratio SINR, signal received strength RSSI, and configure the measurement threshold under the measurement type.
  • the network device may also configure the time-frequency resource for the first terminal device to receive the measurement signal, or configure the time-frequency resource for the first terminal device to receive the measurement signal as a selected time-frequency resource in the time-frequency resource pool.
  • Step 603 receiving the reported data.
  • time-frequency resources configured by the network device for receiving the measurement signal of the first terminal device and the time-frequency resource for sending the measurement signal of the second terminal device have the same existence time and frequency Resources.
  • the measurement data is that the first terminal device receives from the second terminal device The measurement data of the measurement signal.
  • the scheduling policies of the first terminal device and the second terminal device may be determined according to the measurement data. This method enables the first terminal device to determine the second terminal device that interferes with itself according to the measurement signal after receiving the measurement signal, and report the measurement data and the receiving time period to the network device, thereby facilitating the scheduling of the network device and avoiding The data reception of the first terminal device and the data transmission of the second terminal device are performed simultaneously on the same frequency, so as to improve the efficiency and accuracy of data transmission.
  • FIG. 7 is a schematic flowchart of another interference measurement method provided by an embodiment of the present disclosure.
  • the interference measurement method may include the following steps:
  • step 701 the network device configures a set of sending beams for sending measurement signals of the second terminal device.
  • the network device uses the beams in the beam set to send the configured reference signal to the second terminal device, and the second terminal device uses the receiving beams to receive and determine the best receiving beam corresponding to each beam.
  • a set of sending beams is determined according to the sending beams corresponding to the determined receiving beams.
  • the network device configures the reference synchronization signal block SSB to determine the set of transmission beams according to the transmission beams corresponding to the reception beams of the reference synchronization signal block SSB.
  • the network device configures a channel state information reference signal CSI-RS, so as to determine the set of transmission beams according to a transmission beam corresponding to a reception beam of the CSI-RS.
  • CSI-RS channel state information reference signal
  • the network device may also configure the signal type of the measurement signal, for example, configure the signal type of the measurement signal as inter-terminal cross-link interference management reference signal UE-CLI-RS, and indicate to the second terminal device through signaling.
  • the signal type of the measurement signal for example, configure the signal type of the measurement signal as inter-terminal cross-link interference management reference signal UE-CLI-RS, and indicate to the second terminal device through signaling.
  • the network device may also configure the time-frequency resource for the second terminal device to send the measurement signal, or configure the time-frequency resource for the second terminal device to send the measurement signal as a selected time-frequency resource in the time-frequency resource pool.
  • Step 702 the network device configures the measurement type and measurement threshold of the measurement signal of the first terminal device.
  • the measurement type is configured as signal reception strength, and the measurement threshold under the measurement type is configured.
  • configuring the measurement type includes at least one of the following: signal received power RSRP , received signal quality RSRQ, signal-to-interference-plus-noise ratio SINR, received signal strength RSSI, and configure the measurement threshold under the measurement type.
  • the network device may also configure the time-frequency resource for the first terminal device to receive the measurement signal, or configure the time-frequency resource for the first terminal device to receive the measurement signal as a selected time-frequency resource in the time-frequency resource pool.
  • Step 703 the second terminal device generates a measurement signal.
  • an inter-terminal cross-link interference management reference signal UE-CLI-RS is generated according to the terminal device identifier of the second terminal device .
  • the measurement signal of any signal type is generated.
  • Step 704 the second terminal device sends the measurement signal by using the sending beam in the sending beam set.
  • the measurement signal is transmitted using each transmit beam in the set of transmit beams.
  • Step 705 the first terminal device receives the measurement signal on the PDSCH using the receive beam.
  • Step 706 the first terminal device determines the measurement data of the measurement signal according to the measurement type.
  • Step 707 the first terminal device compares the measurement data with the measurement threshold.
  • Step 708 the measurement data is greater than or equal to the measurement threshold, and the first terminal device determines that the interference measurement result indicates that the measurement signal belongs to the interference signal to be reported.
  • the interference measurement result is that the measurement signal does not belong to the interference signal to be reported.
  • Step 709 the first terminal device generates report data.
  • Step 710 the network device receives the report data sent by the first terminal device.
  • the channel for receiving the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the network device may determine a terminal scheduling strategy based on the reported data, so as to avoid data reception by the first terminal device and data transmission by the second terminal device that interfere with each other at the same frequency.
  • time-frequency resources configured by the network device for receiving the measurement signal of the first terminal device and the time-frequency resource for sending the measurement signal of the second terminal device have the same existence time and frequency Resources.
  • the network device configures the set of transmission beams used for sending measurement signals of the second terminal device, and further configures the signal type of the measurement signal; the network device configures the measurement type and measurement threshold of the measurement signal of the first terminal device;
  • the second terminal device generates a measurement signal according to the configured signal type; uses the transmission beam in the transmission beam set configured by the network device to send the measurement signal; the first terminal device uses the reception beam to receive the measurement signal on the PDSCH; the network device receives the signal sent by the first terminal device The measurement data of the measurement signal and the receiving time period; wherein, the measurement signal belongs to the interference signal to be reported by the first terminal device; the measurement data is the measurement data of the measurement signal received by the first terminal device from the second terminal device.
  • the scheduling policies of the first terminal device and the second terminal device may be determined according to the measurement data.
  • This method enables the second terminal device to use the transmission beams in the transmission beam set configured by the network device to send signals, which improves the quality of data transmission, and can flexibly generate measurement signals according to the signal type configured by the network device, reducing system overhead.
  • a terminal device can determine the second terminal device that interferes with itself according to the measurement signal, and report the measurement data and receiving time period to the network device, so as to facilitate the scheduling of the network device and avoid the same frequency at the same time.
  • Data reception by the first terminal device and data transmission by the second terminal device are performed to improve data transmission efficiency and accuracy.
  • the present disclosure also provides an interference measurement device.
  • the method is corresponding, so the implementation of the interference measurement method is also applicable to the interference measurement device provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of an interference measurement device provided by an embodiment of the present disclosure.
  • the interference measurement device 800 includes: a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 is configured to receive the measurement signal by using the receiving beam of the PDSCH on the first terminal device; the processing unit 820 is configured to determine the interference measurement result of the measurement signal.
  • the processing unit 820 is specifically configured to, according to the measurement type configured by the network device, determine a measurement mode corresponding to the measurement type; perform the measurement signal on the measurement signal according to the measurement mode Channel quality measurement, determining measurement data under the measurement type; determining the interference measurement result according to the measurement data and a measurement threshold under the measurement type configured by the network device.
  • the processing unit 820 is specifically configured to determine that the measurement signal belongs to an interference signal to be reported, where the measurement data is greater than or equal to the measurement threshold; and determine that the measurement signal is not It belongs to the interference signal to be reported, wherein the measurement data is smaller than the measurement threshold.
  • the processing unit 820 is further configured to determine the reported data of the measurement signal, where the interference measurement result of the measurement signal is that the measurement signal belongs to the interference to be reported signal; the transceiver unit is further configured to send the report data to the network device.
  • the processing unit 820 is specifically configured to analyze and process the measurement signal to obtain the terminal device identifier, wherein the network device configures the signal type of the measurement signal as inter-terminal crossover Link interference management reference signal UE-CLI-RS; generating the report data according to the terminal device identifier, the receiving time period of the measurement signal and the measurement data.
  • the network device configures the signal type of the measurement signal as inter-terminal crossover Link interference management reference signal UE-CLI-RS; generating the report data according to the terminal device identifier, the receiving time period of the measurement signal and the measurement data.
  • the processing unit 820 is specifically configured to generate the reported data according to the receiving time period of the measurement signal and the measurement data, wherein the network device is not configured with the measurement The signal type of the signal.
  • the channel for sending the reported data is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the measurement type configured by the network device is received signal strength RSSI; or, the network device configures the The signal type of the measurement signal is an inter-terminal cross-link interference management reference signal UE-CLI-RS, and the measurement type configured by the network device includes at least one of the following thresholds: signal received power RSRP, signal received quality RSRQ , signal to interference plus noise ratio SINR, received signal strength RSSI.
  • the interference measurement device of the embodiment of the present disclosure can determine the interference measurement result of the measurement signal by using the receiving beam to receive the measurement signal, so that the first terminal device can determine the second terminal device that interferes with itself, thereby facilitating the network device. Scheduling avoids data reception of the first terminal device and data transmission of the second terminal device at the same frequency at the same time, improving data transmission efficiency and accuracy.
  • the present disclosure also provides an interference measurement device.
  • the method is corresponding, so the implementation of the interference measurement method is also applicable to the interference measurement device provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an interference measurement device provided by an embodiment of the present disclosure.
  • the interference measurement device 900 includes: a processing unit 910 and a transceiver unit 920 .
  • the processing unit 910 is configured to generate a measurement signal; the transceiver unit 920 is configured to use a transmission beam in the transmission beam set to transmit the measurement signal.
  • the processing unit 910 is specifically configured to generate the measurement signal whose signal type is an inter-terminal cross-link interference management reference signal UE-CLI-RS according to the terminal device identifier of the second terminal device , wherein the network device configures the signal type of the measurement signal as UE-CLI-RS; or, generates the measurement signal of any signal type, wherein the network device does not configure the signal type of the measurement signal.
  • the network device configures the signal type of the measurement signal as UE-CLI-RS; or, generates the measurement signal of any signal type, wherein the network device does not configure the signal type of the measurement signal.
  • the method of determining the set of transmission beams includes: according to the reference synchronization signal block SSB configured by the network device, determining the reception beam that receives the reference synchronization signal block SSB; or, according to the The channel state information reference signal CSI-RS configured by the network device determines a receiving beam for receiving the CSI-RS; and generates the sending beam set according to a sending beam corresponding to the receiving beam.
  • the interference measurement device in the embodiment of the present disclosure can generate a measurement signal according to the signal type configured by the network device; use the transmission beam in the transmission beam set configured by the network device to transmit the measurement signal, and the method enables the second terminal device to use the signal type configured by the network device.
  • the transmission beams in the transmission beam set transmit signals, which improves the quality of data transmission, and can flexibly generate measurement signals according to the signal types configured by the network equipment, reducing system overhead, and sending the measurement signals to the first terminal equipment, the first After receiving the measurement signal, the terminal device can determine the second terminal device that interferes with itself according to the measurement signal, so as to facilitate the scheduling of network devices and avoid simultaneous data reception of the first terminal device and the second terminal device at the same frequency.
  • the data transmission of the device improves the efficiency and accuracy of data transmission.
  • the present disclosure also provides an interference measurement device.
  • the method is corresponding, so the implementation of the interference measurement method is also applicable to the interference measurement device provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of an interference measurement device provided by an embodiment of the present disclosure.
  • the interference measurement device 1000 includes: a transceiver unit 1010 .
  • the transceiver unit 1010 is configured to receive the report data sent by the first terminal device; wherein, the report data includes: measurement data of a measurement signal and a receiving time period, and the measurement signal is the first terminal device using PDSCH The measurement signal received by the beam from the second terminal device is received, and the measurement data of the measurement signal under the measurement type is greater than or equal to the measurement threshold under the measurement type.
  • the apparatus 1000 further includes: a processing unit 1020 configured to configure a set of transmission beams of the second terminal device for transmitting the measurement signal; or configure the second The set of sending beams used by the terminal device to send the measurement signal and the signal type of the measurement signal.
  • a processing unit 1020 configured to configure a set of transmission beams of the second terminal device for transmitting the measurement signal; or configure the second The set of sending beams used by the terminal device to send the measurement signal and the signal type of the measurement signal.
  • configuring the set of sending beams includes: configuring a reference synchronization signal block SSB, so as to determine the set of sending beams according to a sending beam corresponding to a receiving beam of the reference synchronization signal block SSB; Or, configuring a channel state information reference signal CSI-RS, so as to determine the set of sending beams according to a sending beam corresponding to a receiving beam of the CSI-RS.
  • the processing unit 1020 is further configured to configure the measurement type and the measurement threshold for receiving the measurement signal of the first terminal device; or configure the second The measurement type, the measurement threshold, and the signal type of a terminal device for receiving the measurement signal.
  • the processing unit 1020 is specifically configured to, when the signal type of the measurement signal is not configured, configure the measurement type as signal reception strength, and configure the measurement under the measurement type Threshold; or, when configuring the signal type of the measurement signal as inter-terminal cross-link interference management reference signal UE-CLI-RS, configuring the measurement type includes at least one of the following: signal received power RSRP, signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR, received signal strength RSSI, and configure the measurement threshold under the measurement type.
  • the interference measurement device of the embodiment of the present disclosure receives the measurement data and the receiving time period of the measurement signal sent by the first terminal device; wherein, the measurement signal belongs to the interference signal to be reported by the first terminal device; the measurement data is, the first terminal device Measurement data of the measurement signal received from the second terminal device. Further, the scheduling policies of the first terminal device and the second terminal device may be determined according to the measurement data.
  • This method enables the first terminal device to determine the second terminal device that interferes with itself according to the measurement signal after receiving the measurement signal, and report the measurement data and the receiving time period to the network device, thereby facilitating the scheduling of the network device and avoiding
  • the data reception of the first terminal device and the data transmission of the second terminal device are performed simultaneously on the same frequency, so as to improve the efficiency and accuracy of data transmission.
  • an embodiment of the present disclosure also proposes another interference measurement device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device performs The method described in the embodiment of FIG. 1 to FIG. 2 ; or, the method described in the embodiment of FIG. 3 to FIG. 4 .
  • an embodiment of the present disclosure also proposes another interference measurement device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device executes the to the method described in the embodiment of FIG. 6 .
  • the embodiments of the present disclosure also propose another interference measurement device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code Instructions to execute the method described in the embodiment in FIG. 1 to FIG. 2 ; or, the method described in the embodiment in FIG. 3 to FIG. 4 .
  • the embodiments of the present disclosure also propose another interference measurement device, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the The above code instructions are used to execute the methods described in the embodiments in FIG. 5 to FIG. 6 .
  • the embodiments of the present disclosure further propose a computer-readable storage medium for storing instructions, and when the instructions are executed, the methods described in the embodiments in FIGS. 1 to 2 are implemented; or , so that the method described in the embodiment in FIG. 3 to FIG. 4 is realized.
  • the embodiments of the present disclosure further propose another computer-readable storage medium for storing instructions, and when the instructions are executed, the methods described in the embodiments in FIG. 5 to FIG. 6 are implemented.
  • the present disclosure also proposes a computer program product, which, when running on a computer, causes the computer to execute the methods described in the embodiments of FIGS. 1 to 2 of the present disclosure, or, the embodiments of FIGS. 3 to 4 the method described.
  • the present disclosure further proposes a computer program product, which, when run on a computer, causes the computer to execute the methods described in the embodiments of FIG. 5 to FIG. 6 of the present disclosure.
  • Fig. 11 is a block diagram of a UE 1100 provided by an embodiment of the present disclosure.
  • UE 1100 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • UE 1100 may include at least one of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, and a communication component 1116.
  • a processing component 1102 a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, and a communication component 1116.
  • a processing component 1102 may include at least one of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, and a communication component 1116.
  • I/O input/output
  • Processing component 1102 generally controls the overall operations of UE 1100, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include at least one processor 1120 to execute instructions, so as to complete all or part of the steps of the above method.
  • processing component 1102 can include at least one module to facilitate interaction between processing component 1102 and other components.
  • processing component 1102 may include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102 .
  • the memory 1104 is configured to store various types of data to support operations at the UE 1100 . Examples of such data include instructions for any application or method operating on UE 1100, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1104 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1106 provides power to various components of the UE 1100.
  • Power component 1106 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1100 .
  • the multimedia component 1108 includes a screen providing an output interface between the UE 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • multimedia component 1108 includes a front camera and/or rear camera. When the UE1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1110 is configured to output and/or input audio signals.
  • the audio component 1110 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1100 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1104 or sent via communication component 1116 .
  • the audio component 1110 also includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1114 includes at least one sensor for providing various aspects of status assessment for the UE 1100 .
  • the sensor component 1114 can detect the open/closed state of the UE1100, the relative positioning of components, such as the display and the keypad of the UE1100, the sensor component 1114 can also detect the position change of the UE1100 or a component of the UE1100, and the user and the UE1100 Presence or absence of contact, UE1100 orientation or acceleration/deceleration and temperature change of UE1100.
  • Sensor assembly 1114 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1114 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1116 is configured to facilitate wired or wireless communications between UE 1100 and other devices.
  • UE1100 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 1100 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), a controller, a microcontroller, a microprocessor or other electronic components to implement the method in any of the above embodiments.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller a microcontroller, a microprocessor or other electronic components to implement the method in any of the above embodiments.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1104 including instructions, which can be executed by the processor 1120 of the UE 1100 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the network device 1200 includes a processing component 1222 , which further includes at least one processor, and a memory resource represented by a memory 1232 for storing instructions executable by the processing component 1222 , such as application programs.
  • the application program stored in memory 1232 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1222 is configured to execute instructions to perform any of the aforementioned methods applied to the network device, for example, the methods shown in any one of FIG. 5 to FIG. 6 .
  • Network device 1200 may also include a power supply component 1226 configured to perform power management of network device 1200, a wired or wireless network interface 1250 configured to connect network device 1200 to a network, and an input output (I/O) interface 1258 .
  • the network device 1200 can operate based on an operating system stored in the memory 1232, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the embodiments of the present disclosure also provide a communication device
  • the communication device may be a network device, a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method.
  • the communication device may also be a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in any of the above method embodiments, and for details, refer to the description in the above method embodiments.
  • the communication device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the method described in any of the foregoing method embodiments.
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the method described in any one of the above method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this disclosure can be implemented in IC (Integrated Circuit, integrated circuit), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, ASIC (Application Specific Integrated Circuit, application specific integrated circuit), PCB (Printed Circuit Board, printed circuit board), electronic equipment, etc.
  • the processor and transceiver can also be manufactured with various IC process technologies, such as CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor), NMOS (nMetal-Oxide-Semiconductor, N-type Metal Oxide Semiconductor), PMOS ( Positive Channel Metal Oxide Semiconductor, P-type metal oxide semiconductor), BJT (Bipolar Junction Transistor, bipolar junction transistor), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor
  • NMOS nMetal-Oxide-Semiconductor, N-type Metal Oxide Semiconductor
  • PMOS Positive Channel Metal Oxide Semiconductor, P-type metal oxide semiconductor
  • BJT Bipolar Junction Transistor, bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip may include a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种干扰测量方法及其装置,涉及通信技术领域,其中,干扰测量方法应用于第一终端设备,该干扰测量方法包括:使用第一终端设备上PDSCH的接收波束接收测量信号(101);确定测量信号的干扰测量结果(102)。该方法通过第一终端设备上的物理下行共享信道PDSCH的接收波束接收的测量信号,可确定测量信号的干扰测量结果,使得第一终端设备能够确定与自身存在较强相互干扰的其他终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及存在较强相互干扰的其他终端设备的数据发送,提高数据传输效率以及准确率。

Description

干扰测量方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种干扰测量方法及其装置。
背景技术
相关技术中,随着射频技术及数字域干扰消除技术的发展,某些场景下,在网络设备侧可以使用同频同时全双工技术,但受限于终端设备的体积、成本等因素,在终端设备侧需要使用时分双工(Time Division Duplex,TDD)或者频分双工(Frequency Division Duplex,FDD)技术。
在该场景下,由于网络设备可能使用相同的时间和频率进行发送和接收,导致同一小区或相邻小区内的多个终端设备之间存在相互干扰。而目前没有有效的干扰测量措施,则网络设备可能在多个终端设备相互干扰比较严重的情况下,启用同频同时全双工技术进行数据发送和数据接收,从而导致数据传输效率差,准确率低。
发明内容
本公开第一方面实施例提出了一种干扰测量方法,所述方法由第一终端设备执行,所述方法包括:使用所述第一终端设备上PDSCH的接收波束接收测量信号;确定所述测量信号的干扰测量结果。
在该技术方案中,通过第一终端设备上的物理下行共享信道PDSCH的接收波束接收的测量信号,可确定测量信号的干扰测量结果,使得第一终端设备能够确定与自身存在较强相互干扰的其他终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及存在较强相互干扰的其他终端设备的数据发送,提高数据传输效率以及准确率。
可选地,所述确定所述测量信号的干扰测量结果,包括:根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
可选地,所述根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果,包括:根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
可选地,确定所述测量信号属于待上报的干扰信号,其中,所述测量数据大于或者等于所述测量阈值;确定所述测量信号不属于待上报的干扰信号,其中,所述测量数据小于所述测量阈值。
可选地,确定所述测量信号的上报数据,其中,所述测量信号的所述干扰测量结果为,所述测量信号属于待上报的干扰信号;向网络设备发送所述上报数据。
可选地,所述确定所述测量信号的上报数据,包括:对所述测量信号进行解析处理,获取终端设备标识,其中,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS;根据所述终端设备标识、所述测量信号的接收时间段以及所述测量数据,生成所述上报数据。
可选地,所述确定所述测量信号的上报数据,包括:根据所述测量信号的接收时间段以及所述测量数据,生成所述上报数据,其中,所述网络设备未配置所述测量信号的信号类型。
可选地,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,所述网络设备未配置所述测量信号的信号类型时,所述网络设备配置的所述测量类型为信号接收强度RSSI; 或者,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,所述网络设备配置的所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI。
本公开第二方面实施例提出了一种干扰测量方法,所述方法由第二终端设备执行,所述方法包括:生成测量信号;使用发送波束集合中的发送波束发送所述测量信号。
可选地,所述生成测量信号,包括:根据所述第二终端设备的终端设备标识生成信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS的所述测量信号,其中,网络设备配置所述测量信号的信号类型为UE-CLI-RS;或者,生成任意信号类型的所述测量信号,其中,所述网络设备未配置所述测量信号的信号类型。
可选地,所述发送波束集合的确定方式包括:根据所述网络设备配置的参考同步信号块SSB,确定接收所述参考同步信号块SSB的接收波束;或者,根据所述网络设备配置的信道状态信息参考信号CSI-RS,确定接收所述CSI-RS的接收波束;根据所述接收波束对应的发送波束,生成所述发送波束集合。
本公开第三方面实施例提出了一种干扰测量方法,所述方法由网络设备执行,所述方法包括:接收第一终端设备发送的上报数据;其中,所述上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
可选地,配置所述第二终端设备的用于发送所述测量信号的发送波束集合;或者,配置所述第二终端设备的用于发送所述测量信号的所述发送波束集合以及所述测量信号的信号类型。
可选地,配置所述发送波束集合包括:配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合;或者,配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
可选地,配置所述第一终端设备的所述测量信号的所述测量类型以及所述测量阈值;或者,配置所述第一终端设备的所述测量信号的所述测量类型、所述测量阈值以及所述信号类型。
可选地,未配置所述测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值;或者,配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
本公开第四方面实施例提出了一种干扰测量装置,所述装置包括:收发单元,用于使用第一终端设备上PDSCH的接收波束接收测量信号;处理单元,用于确定所述测量信号的干扰测量结果。
可选地,所述处理单元具体用于,根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
可选地,所述处理单元具体用于,确定所述测量信号属于待上报的干扰信号,其中,所述测量数据大于或者等于所述测量阈值;确定所述测量信号不属于待上报的干扰信号,其中,所述测量数据小于所述测量阈值。
可选地,所述处理单元还用于确定所述测量信号的上报数据,其中,所述测量信号的所述干扰测量结果为,所述测量信号属于待上报的干扰信号;所述收发单元,还用于向网络设备发送所述上报数据。
可选地,所述处理单元具体用于,对所述测量信号进行解析处理,获取终端设备标识,其中,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS;根据所述终端设备标识、所述测量信号的接收时间段以及所述测量数据,生成所述上报数据。
可选地,所述处理单元具体用于,根据所述测量信号的接收时间段以及所述测量数据,生成所述上报数据,其中,所述网络设备未配置所述测量信号的信号类型。
可选地,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,所述网络设备未配置所述测量信号的信号类型时,所述网络设备配置的所述测量类型为信号接收强度RSSI;或者,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,所述网络设备配置的所述测量类型包括以下阈值中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI。
本公开第五方面实施例提出了另一种干扰测量装置,所述装置包括:处理单元,用于生成测量信号;收发单元,用于使用发送波束集合中的发送波束发送所述测量信号。
可选地,所述处理单元具体用于,根据第二终端设备的终端设备标识生成信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS的所述测量信号,其中,网络设备配置所述测量信号的信号类型为UE-CLI-RS;或者,生成任意信号类型的所述测量信号,其中,所述网络设备未配置所述测量信号的信号类型。
可选地,所述发送波束集合的确定方式包括:根据所述网络设备配置的参考同步信号块SSB,确定接收所述参考同步信号块SSB的接收波束;或者,根据所述网络设备配置的信道状态信息参考信号CSI-RS,确定接收所述CSI-RS的接收波束;根据所述接收波束对应的发送波束,生成所述发送波束集合。
本公开第六方面实施例提出了另一种干扰测量装置,所述装置包括:收发单元,用于接收第一终端设备发送的上报数据;其中,所述上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
可选地,所述装置还包括:处理单元,用于,配置所述第二终端设备的用于发送所述测量信号的发送波束集合;或者,配置所述第二终端设备的用于发送所述测量信号的所述发送波束集合以及所述测量信号的信号类型。
可选地,配置所述发送波束集合包括:配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合;或者,配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
可选地,所述处理单元还用于,配置所述第一终端设备的用于接收所述测量信号的所述测量类型以及所述测量阈值;或者,配置所述第一终端设备的用于接收所述测量信号的所述测量类型、所述测量阈值以及所述信号类型。
可选地,所述处理单元具体用于,未配置所述测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值;或者,配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
本公开第七方面实施例提出了另一种干扰测量装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例所述的方法;或者,上述第二方面实施例所述的方法。
本公开第八方面实施例提出了一种干扰测量装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第三方面实施例所述的方法。
本公开第九方面实施例提出了另一种干扰测量装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第一方面实施例所述的方法;或者,上述第二方面实施例所述的方法。
本公开第十方面实施例提出了另一种干扰测量装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第三方面实施例所述的方法。
本公开第十一方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的方法被实现;或者,使上述第二方面实施例所述的方法被实现。
本公开第十二方面实施例提出了另一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第三方面实施例所述的方法被实现。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本公开实施例提供的一种干扰测量方法的流程示意图;
图2为本公开实施例提供的另一种干扰测量方法的流程示意图;
图3为本公开实施例提供的另一种干扰测量方法的流程示意图;
图4为本公开实施例提供的另一种干扰测量方法的流程示意图;
图5为本公开实施例提供的另一种干扰测量方法的流程示意图;
图6为本公开实施例提供的另一种干扰测量方法的流程示意图;
图7为本公开实施例提供的另一种干扰测量方法的流程示意图;
图8为本公开实施例所提供的一种干扰测量装置的结构示意图;
图9为本公开实施例所提供的另一种干扰测量装置的结构示意图;
图10为本公开实施例所提供的一种干扰测量装置的结构示意图;
图11为本公开实施例所提供的一种用户终端的框图;
图12为本公开实施例所提供的一种网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
图1为本公开实施例所提供的一种干扰测量方法。需要说明的是,本公开实施例的干扰测量方法由第一终端设备执行。
如图1所示,该干扰测量方法可包括如下步骤:
步骤101,使用所述第一终端设备上PDSCH的接收波束接收测量信号。
在本公开实施例中,第二终端设备可将生成的测量信号发送给第一终端设备,第一终端设备可以使用物理下行共享信道PDSCH(Physical Downlink Shared Channel,简称PDSCH)的接收波束接收测量信号。其中,测量信号可以是各类 参考信号,也可是数据信号,还可以是第二终端设备生成的其他信号。另外,接收波束可以是预先配置的,也可以是由网络设备指示的,还可以是通过波束测量确定的,可以是宽波束,也可以是窄波束,波束的宽度可以根据实际需要而进行灵活地配置,接收波束还可以是第一终端设备生成的多个接收波束的集合。需要说明的是,第二终端设备可为UE-A(User Equipment A,用户设备A),第一终端设备可为UE-B(User Equipment B,用户设备B)。
步骤102,确定所述测量信号的干扰测量结果。
可选地,第一终端设备在接收到测量信号之后,可以对测量信号进行解析,根据解析结果可以确定发送测量信号的第二终端设备。第一终端设备根据接收到的测量信号还可以确定测量信号的测量数据,根据该测量数据可以确定发送该测量信号的第二终端设备是否对第一终端设备造成干扰。
综上,通过第一终端设备上的物理下行共享信道PDSCH的接收波束接收的测量信号,可确定测量信号的干扰测量结果,使得第一终端设备能够确定与自身存在较强相互干扰的其他终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及存在较强相互干扰的其他终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图2为本公开实施例提供的另一种干扰测量方法的流程示意图,该干扰测量方法可由第一终端设备执行,该干扰测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图2所示,该干扰测量方法可包括如下步骤:
步骤201,使用第一终端设备上PDSCH的接收波束接收测量信号。
可选地,第一终端设备可以使用接收波束在网络设备配置的时频资源上接收第二终端设备发送的测量信号。其中,需要说明的是,所述时频资源可以为网络设备(如,基站)通过信令配置的时频资源,或者,所述时频资源为网络设备通过信令配置的时频资源池中的时频资源。此外,第一终端设备的接收信号的时频资源和第二终端设备的发送信号的时频资源中,存在时间和频率均相同的资源。
步骤202,根据网络设备配置的测量类型,确定与所述测量类型对应的测量方式。
可选地,网络设备配置的测量类型是根据网络设备配置的测量信号的信号类型确定的。
在一种实施方式中,网络设备未配置所述测量信号的信号类型,确定所述网络设备配置的所述测量类型为信号接收强度(Received Signal Strength Indicator,简称RSSI)。
在一种实施方式中,网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号(inter UE Cross Link Interference Reference Signal,简称UE-CLI-RS),所述网络设备配置的所述测量类型包括以下中的至少一种:信号接收功率(Reference Signal Received Power,简称RSRP)、信号接收质量(Reference Signal Received Quality,简称RSRQ)、信号与干扰加噪声比(Signal-to-Interference plus Noise Ratio,简称SINR)、信号接收强度RSSI。
步骤203,按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据。
在本公开实施例中,第一终端设备按照步骤202中确定的测量方式对接收到的测量信号进行信道质量测量,确定对应测量类型下的测量数据。其中,测量数据是第一终端设备接收上述测量信号过程中进行测量而获得的数据,每个测量类型下有对应的测量数据。测量类型为多个时,确定出每个测量类型下对应的测量数据,得到多个测量数据。
可选地,响应于测量类型为RSSI,测量数据为第一终端设备接收测量信号时的接收强度RSSI;响应于测量类型为RSRP,测量数据为第一终端设备接收测量信号时的接收功率RSRP;响应于测量类型为RSRQ,测量数据为第一终端设备接收测量信号时的接收质量RSRQ;响应于测量类型为SINR,测量数据为第一终端设备接收测量信号时的信干噪比SINR。
需要说明的是,RSRQ是N倍的RSRP与RSSI的比值,RSRQ=N*RSRP/RSSI,其中N表示RSSI的测量带宽内包含的RB(Resource Block,资源块)数目,RSRQ可反映出接收到的测量信号和干扰之间的相对大小;SINR可为第一终端设备接收到的测量信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。
步骤204,比较测量数据以及网络设备配置的测量类型下的测量阈值。
在本公开实施例中,测量数据可包括RSRP、RSRQ、SINR、RSSI中的一种或多种,测量数据中不同数据对应的测量阈值也不同。其中,需要说明的是,测量数据对应的测量阈值,由网络设备配置,或者,根据协议规定确定。
步骤205,响应于测量数据大于或者等于测量阈值,则确定干扰结果为测量信号属于待上报的干扰信号。
作为一种示例,在测量数据包括RSRP、RSRQ、SINR、RSSI中的一种数据时,在该测量数据大于或者等于与测量数据对应的测量阈值时,可确定干扰测量结果为测量信号属于第一终端设备待上报的干扰信号。
作为另一种示例,在测量数据包括RSRP、RSRQ、SINR、RSSI中的两种或以上的数据时,可分别获取测量数据中不同数据对应的测量阈值,在测量数据中的任一种数据大于对应的测量阈值时,可确定干扰测量结果为测量信号属于第一终端设备待上报的干扰信号。
进一步地,响应于比较结果为测量数据小于测量阈值,确定干扰结果为测量信号不属于待上报的干扰信号。
作为一种示例,在测量数据包括RSRP、RSRQ、SINR、RSSI中的一种数据时,在该测量数据小于测量数据对应的测量阈值时,可确定干扰测量结果为测量信号不属于第一终端设备待上报的干扰信号。
作为另一种示例,在测量数据包括RSRP、RSRQ、SINR、RSSI中的两种或以上的数据时,在该测量数据中所有数据均小于对应的测量阈值时,可确定干扰测量结果为测量信号不属于第一终端设备待上报的干扰信号。
步骤206,根据测量信号的接收时间段以及测量数据,生成上报数据。
其中,测量信号的接收时间段可以是接收测量信号时隙的时隙索引,还可以是其他可以确定出接收测量信号的时间信息的指示信息。
在一种实施方式中,响应于所述测量信号的信号类型为UE-CLI-RS,第一终端设备对UE-CLI-RS进行解析,根据解析结果可以获取发送该UE-CLI-RS的第二终端设备的终端设备标识。
进一步地,根据所述终端设备标识、UE-CLI-RS的接收时间段以及测量数据,生成上报数据。
步骤207,向网络设备发送上报数据。
其中,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
综上,通过使用接收波束接收测量信号;根据网络设备配置的测量类型,确定与所述测量类型对应的测量方式;其中,若网络未配置测量信号的信号类型,所述测量类型为RSSI;按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;测量数据大于或者等于测量阈值,确定干扰结果为测量信号属于待上报的干扰信号;根据测量信号的接收时间段以及测量数据,生成上报数据;向网络设备发送上报数据。
若网络配置测量信号的信号类型为UE-CLI-RS,所述测量类型为RSRP、RSRQ、SINR、RSSI中的至少一个;按照测量类型对应的测量方式对测量信号进行信道质量测量,确定测量类型下的测量数据;测量数据大于或者等于测量阈值,确定干扰结果为UE-CLI-RS属于待上报的干扰信号;对UE-CLI-RS进行解析处理,获取终端设备标识;根据终端设备标识、UE-CLI-RS的接收时间段以及测量数据,生成上报数据;向网络设备发送上报数据。该方法通过解析UE-CLI-RS,确定发送UE-CLI-RS的第二终端设备,并根据UE-CLI-RS的测量数据,确定UE-CLI-RS是否属于第一终端设备待上报的干扰测量信号,在UE-CLI-RS属于第一终端设备待上报的干扰终端设备时,将UE-CLI-RS解析出的第二终端设备的终端设备标识、UE-CLI-RS的接收时间段以及测量数据发送给网络设备。由此,可使第一终端设备能够确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,提高数据传输效率以及准确率。
本公开实施例的干扰测量方法,由第一终端设备执行,通过用接收波束接收测量信号,可确定确定测量信号的干扰测量结果,使得第一终端设备能够确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图3为本公开实施例提供的另一种干扰测量方法的流程示意图。该干扰测量方法可由第二终端设备执行,比如,第二终端设备可为UE-A。
如图3所示,该干扰测量方法可以包括以下步骤:
步骤301,生成测量信号;
其中,测量信号可以是各类参考信号,也可是数据信号,还可以是第二终端设备生成的其他信号。另外,测量信号也可以是根据网络设备配置生成的。
步骤302,使用发送波束集合中的发送波束发送所述测量信号。
其中,发送波束集合可以是预先配置的,也可以是由网络设备配置的,还可以是通过波束测量确定的。
综上,第二终端设备生成测量信号,并通过发送波束集合中的发送波束进行发送。第一终端设备可以通过接收波束进行接收,并根据接收到的测量信号可以确定出与其自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图4为本公开实施例提供的另一种干扰测量方法的流程示意图。该干扰测量方法可由第二终端设备执行。
如图4所示,该干扰测量方法可以包括以下步骤:
步骤401,生成测量信号。
在一种实施方式中,响应于网络设备配置所述测量信号的信号类型为UE-CLI-RS,根据第二终端设备的终端设备标识生成终端间交叉链路干扰管理参考信号UE-CLI-RS。
可选地,作为一种示例,可根据如下公式,生成UE-CLI-RS r(m),具体如下:
Figure PCTCN2021100895-appb-000001
其中,m、n分别表示大于等于0的整数;c(n)可通过如下公式生成:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2;
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2;
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2;
其中,N C=1600;n表示大于等于0的整数,x 1(0)=1,x 1(n)=1,2,...30,x 2(n)的初始化值根据第二终端设备的标识和无线帧号、子帧号以及其他时间相关参数确定。
作为另一种示例,可根据如下公式,生成UE-CLI-RS r(n),具体如下:
Figure PCTCN2021100895-appb-000002
Figure PCTCN2021100895-appb-000003
Figure PCTCN2021100895-appb-000004
其中,N表示序列长度,n表示大于等于0且小于等于N的整数,α、q的值可分别由第二终端设备的标识和无线帧号、子帧号以及其他时间相关参数确定。
在另一种实施方式中,响应于网络设备未配置所述测量信号的信号类型,生成任意信号类型的所述测量信号。
可选地,测量信号可以是数据信号,也可以是参考信号,还可以是第二终端设备生成的其他信号。也就是说,第二终端设备可以生成任意类型的信号作为测量信号。
步骤402,接收网络设备配置的参考信号,确定接收所述参考信号的接收波束。
可选地,网络设备使用波束集合中的波束向第二终端设备发送配置的参考信号,第二终端设备使用接收波束进行接收,并确定出与每个波束对应的最佳的接收波束。其中,所述波束集合可以是预先配置的,也可以是根据第二终端设备设备的信息确定的。其中,网络设备采用波束集合中的波束,进行参考同步信号块SSB或者信道状态信息参考信号CSI-RS 的发送。
在一种实施方式中,网络设备配置参考同步信号块SSB,第二终端设备接收所述参考同步信号块SSB,并确定接收SSB的接收波束。
在另一种实施方式中,网络设备配置信道状态信息参考信号CSI-RS,第二终端设备接收所述信道状态信息参考信号CSI-RS,并确定接收CSI-RS的接收波束。
步骤403,根据接收波束对应的发送波束,生成发送波束集合。
其中,接收波束为步骤402中确定的接收波束。
可选地,利用波束的互易性,使用确定出的接收波束对应的发送波束,根据该发送波束,生成发送波束集合。
步骤404,使用发送波束集合中的发送波束发送测量信号。
其中,发送波束集合为步骤403中生成的发送波束集合。
可选地,使用发送波束集合中的每个发送波束发送测量信号。
可选地,发送测量信号的时频资源为,网络设备配置的时频资源,或者,从网络设备配置的时频资源池中选择的时频资源。
在本公开实施例中,第二终端设备将生成的测量信号,使用网络设备配置的发送波束集合中的发送波束进行发送,其中,需要说明的是,第二终端设备的发送测量信号的时频资源为网络设备根据信令配置的时频资源,或者,从网络设备根据信令配置的时频资源池中选择的时频资源。此外,还需要说明的是,接收测量信号的第一终端设备的接收信号的时频资源和第二终端设备的发送信号的时频资源中,存在时间和频率均相同的资源。
综上,通过根据网络设备配置的测量信号信号类型,第二终端设备生成测量信号;若信号类型为UE-CLI-RS,根据第二终端设备的终端标识生成UE-CLI-RS;使用网络设备配置的发送波束集合中的发送波束发送测量信号,其中,发送波束集合是根据接收网络设备配置的参考信号的接收波束对应的发送波束确定的。该方法使得第二终端设备使用网络设备配置的发送波束集合中的发送波束发送测量信号,提高了数据传输的质量,并可以根据第二终端设备的标识,生成UE-CLI-RS,并将UE-CLI-RS发送给第一终端设备,第一终端设备在接收到UE-CLI-RS后,可根据UE-CLI-RS确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例的干扰测量方法,由第二终端设备执行,根据网络设备配置的信号类型,生成测量信号;使用网络设备配置的发送波束集合中的发送波束发送测量信号,该方法使得第二终端设备使用网络设备配置的发送波束集合中的发送波束发送信号,提高了数据传输的质量,并可以根据网络设备配置的信号类型,灵活生成测量信号,降低了***开销,并将测量信号发送给第一终端设备,第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图5为本公开实施例提供的另一种干扰测量方法的流程示意图。该干扰测量方法可由网络设备执行。
如图5所示,该干扰测量方法可以包括以下步骤:
步骤501,接收第一终端设备发送的上报数据。
其中,上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
需要说明的是,测量信号的接收时间段是指可以指示测量信号的接收的时间的信息,比如测量信号的接收时隙索引等。根据测量信号的接收时间段,网络设备可以推测出发送波束,进而推测出发送测量信号的第二终端设备,以进行网络调度,提高网络调度的效率。
可选地,接收上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,网络设备接收到上报数据后,可以根据上报数据确定终端的调度策略,避免在同频同时存在相互干扰的第一终端设备的数据接收和第二终端设备的数据发送。
综上,通过接收第一终端设备发送的测量信号的测量数据以及接收时间段;其中,测量信号属于第一终端设备待上报的干扰信号;测量数据为,第一终端设备从第二终端设备接收的测量信号的测量数据。进一步地,可以根据测量数据,确定第一终端设备和第二终端设备的调度策略。该方法使得第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,并向网络设备上报测量数据及接收时间段,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图6为本公开实施例提供的另一种干扰测量方法的流程示意图。该干扰测量方法可由网络设备执行。
如图6所示,该干扰测量方法可以包括以下步骤:
步骤601,配置第二终端设备的用于发送测量信号的发送波束集合。
可选地,网络设备使用波束集合中的波束向第二终端设备发送配置的参考信号,第二终端设备使用接收波束进行接收,并确定出与每个波束对应的最佳的接收波束。其中,所述波束集合可以是预先配置的,也可以是根据第二终端设备设备的信息确定的,比如根据第二终端设备的位置信息确定波束集合。其中,网络设备采用波束集合中的波束,进行参考同步信号块SSB或者信道状态信息参考信号CSI-RS的发送。
在一种实施方式中,网络设备配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合。
在另一种实施方式中,网络设备配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
进一步地,网络设备还可以配置测量信号的信号类型,比如,配置测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,并通过信令指示给第二终端设备。
进一步地,网络设备还可以配置第二终端设备发送测量信号的时频资源,或者,配置第二终端设备发送测量信号的时频资源为时频资源池中选择的时频资源。
步骤602,配置第一终端设备的测量信号的测量类型以及测量阈值。
在一种实施方式中,未配置测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值。
在另一种实施方式中,配置测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
进一步地,网络设备还可以配置第一终端设备接收测量信号的时频资源,或者,配置第一终端设备接收测量信号的时频资源为时频资源池中选择的时频资源。
步骤603,接收上报数据。
在本公开实施例中,需要说明的是,网络设备配置的第一终端设备的接收测量信号的的时频资源和第二终端设备的发送测量信号的时频资源中,存在时间和频率均相同的资源。
综上,通过接收第一终端设备发送的测量信号的测量数据以及接收时间段;其中,测量信号属于第一终端设备待上报的干扰信号;测量数据为,第一终端设备从第二终端设备接收的测量信号的测量数据。进一步地,可以根据测量数据,确定第一终端设备和第二终端设备的调度策略。该方法使得第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,并向网络设备上报测量数据及接收时间段,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
本公开实施例提供了另一种干扰测量方法,图7为本公开实施例提供的另一种干扰测量方法的流程示意图。
如图7所示,该干扰测量方法可以包括以下步骤:
步骤701,网络设备配置第二终端设备的用于发送测量信号的发送波束集合。
可选地,网络设备使用波束集合中的波束向第二终端设备发送配置的参考信号,第二终端设备使用接收波束进行接收,并确定出与每个波束对应的最佳的接收波束。利用波束互易性,根据确定的接收波束对应的发送波束确定发送波束集合。
在一种实施方式中,网络设备配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合。
在另一种实施方式中,网络设备配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
进一步地,网络设备还可以配置测量信号的信号类型,比如,配置测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,并通过信令指示给第二终端设备。
进一步地,网络设备还可以配置第二终端设备发送测量信号的时频资源,或者,配置第二终端设备发送测量信号的时频资源为时频资源池中选择的时频资源。
步骤702,网络设备配置第一终端设备的测量信号的测量类型以及测量阈值。
在一种实施方式中,网络设备未配置测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值。
在另一种实施方式中,网络设备配置测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
进一步地,网络设备还可以配置第一终端设备接收测量信号的时频资源,或者,配置第一终端设备接收测量信号的时频资源为时频资源池中选择的时频资源。
步骤703,第二终端设备生成测量信号。
在一种实施方式中,响应于网络设备配置所述测量信号的信号类型为UE-CLI-RS,根据第二终端设备的终端设备标识生成终端间交叉链路干扰管理参考信号UE-CLI-RS。
在另一种实施方式中,响应于网络设备未配置所述测量信号的信号类型,生成任意信号类型的所述测量信号。
步骤704,第二终端设备使用发送波束集合中的发送波束发送测量信号。
可选地,使用发送波束集合中的每个发送波束发送测量信号。
步骤705,第一终端设备在PDSCH使用接收波束接收测量信号。
步骤706,第一终端设备根据测量类型确定测量信号的测量数据。
步骤707,第一终端设备比较测量数据和测量阈值。
步骤708,测量数据大于或者等于测量阈值,第一终端设备确定干扰测量结果为测量信号属于待上报的干扰信号。
进一步地,若测量数据小于测量阈值,确定干扰测量结果为测量信号不属于待上报的干扰信号。
步骤709,第一终端设备生成上报数据。
步骤710,网络设备接收第一终端设备发送的上报数据。
可选地,接收上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,网络设备接收到上报数据后,可以根据上报数据确定终端的调度策略,避免在同频同时存在相互干扰的第一终端设备的数据接收和第二终端设备的数据发送。
在本公开实施例中,需要说明的是,网络设备配置的第一终端设备的接收测量信号的的时频资源和第二终端设备的发送测量信号的时频资源中,存在时间和频率均相同的资源。
综上,网络设备配置第二终端设备的用于发送测量信号的发送波束集合,进一步地还可以配置测量信号的信号类型;网络设备配置第一终端设备的测量信号的测量类型以及测量阈值;第二终端设备根据配置的信号类型生成测量信号;使用网络设备配置的发送波束集合中的发送波束发送测量信号;第一终端设备在PDSCH使用接收波束接收测量信号;网络设备接收第一终端设备发送的测量信号的测量数据以及接收时间段;其中,测量信号属于第一终端设备待上报的干扰信号;测量数据为,第一终端设备从第二终端设备接收的测量信号的测量数据。进一步地,可以根据测量数据,确定第一终端设备和第二终端设备的调度策略。该方法使得第二终端设备使用网络设备配置的发送波束集合中的发送波束发送信号,提高了数据传输的质量,并可以根据网络设备配置的信号类型,灵活生成测量信号,降低了***开销,第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,并向网络设备上报测量数据及接收时间段,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
与上述图1至图2实施例提供的干扰测量方法相对应,本公开还提供一种干扰测量装置,由于本公开实施例提供的干扰测量装置与上述图1至图2实施例提供的干扰测量方法相对应,因此在干扰测量方法的实施方式也适用于本公开实施例提供的干扰测量装置,在本公开实施例中不再详细描述。
图8为本公开实施例所提供的一种干扰测量装置的结构示意图。
如图8示,该干扰测量装置800包括:收发单元810、处理单元820。
其中,收发单元810,用于使用第一终端设备上PDSCH的接收波束接收测量信号;处理单元820,用于确定所述测量信号的干扰测量结果。
作为本公开实施例的一种实现方式,处理单元820具体用于,根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
作为本公开实施例的一种实现方式,处理单元820具体用于,确定所述测量信号属于待上报的干扰信号,其中,所述测量数据大于或者等于所述测量阈值;确定所述测量信号不属于待上报的干扰信号,其中,所述测量数据小于所述测量阈值。
作为本公开实施例的一种实现方式,处理单元820还用于,确定所述测量信号的上报数据,其中,所述测量信号的所述干扰测量结果为,所述测量信号属于待上报的干扰信号;所述收发单元,还用于向网络设备发送所述上报数据。
作为本公开实施例的一种实现方式,处理单元820具体用于,对所述测量信号进行解析处理,获取终端设备标识,其中,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS;根据所述终端设备标识、所述测量信号的接收时间段以及所述测量数据,生成所述上报数据。
作为本公开实施例的一种实现方式,处理单元820具体用于,根据所述测量信号的接收时间段以及所述测量数据,生成所述上报数据,其中,所述网络设备未配置所述测量信号的信号类型。
作为本公开实施例的一种实现方式,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
作为本公开实施例的一种实现方式,所述网络设备未配置所述测量信号的信号类型时,所述网络设备配置的所述测量类型为信号接收强度RSSI;或者,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,所述网络设备配置的所述测量类型包括以下阈值中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI。
本公开实施例的干扰测量装置,通过使用接收波束接收测量信号,可确定确定测量信号的干扰测量结果,使得第一终端设备能够确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
与上述图3至图4实施例提供的干扰测量方法相对应,本公开还提供一种干扰测量装置,由于本公开实施例提供的 干扰测量装置与上述图3至图4实施例提供的干扰测量方法相对应,因此在干扰测量方法的实施方式也适用于本公开实施例提供的干扰测量装置,在本公开实施例中不再详细描述。
图9为本公开实施例所提供的一种干扰测量装置的结构示意图。
如图9示,该干扰测量装置900包括:处理单元910、收发单元920。
其中,处理单元910,用于生成测量信号;收发单元920,用于使用发送波束集合中的发送波束发送所述测量信号。
作为本公开实施例的一种实现方式,处理单元910具体用于,根据第二终端设备的终端设备标识生成信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS的所述测量信号,其中,网络设备配置所述测量信号的信号类型为UE-CLI-RS;或者,生成任意信号类型的所述测量信号,其中,所述网络设备未配置所述测量信号的信号类型。
作为本公开实施例的一种实现方式,发送波束集合的确定方式包括:根据所述网络设备配置的参考同步信号块SSB,确定接收所述参考同步信号块SSB的接收波束;或者,根据所述网络设备配置的信道状态信息参考信号CSI-RS,确定接收所述CSI-RS的接收波束;根据所述接收波束对应的发送波束,生成所述发送波束集合。
本公开实施例的干扰测量装置,可以根据网络设备配置的信号类型,生成测量信号;使用网络设备配置的发送波束集合中的发送波束发送测量信号,该方法使得第二终端设备使用网络设备配置的发送波束集合中的发送波束发送信号,提高了数据传输的质量,并可以根据网络设备配置的信号类型,灵活生成测量信号,降低了***开销,并将测量信号发送给第一终端设备,第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
与上述图5至图6实施例提供的干扰测量方法相对应,本公开还提供一种干扰测量装置,由于本公开实施例提供的干扰测量装置与上述图5至图6实施例提供的干扰测量方法相对应,因此在干扰测量方法的实施方式也适用于本公开实施例提供的干扰测量装置,在本公开实施例中不再详细描述。
图10为本公开实施例所提供的一种干扰测量装置的结构示意图。
如图10示,该干扰测量装置1000包括:收发单元1010。
其中,收发单元1010,用于接收第一终端设备发送的上报数据;其中,所述上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
作为本公开实施例的一种实现方式,装置1000还包括:处理单元1020,用于,配置所述第二终端设备的用于发送所述测量信号的发送波束集合;或者,配置所述第二终端设备的用于发送所述测量信号的所述发送波束集合以及所述测量信号的信号类型。
作为本公开实施例的一种实现方式,配置所述发送波束集合包括:配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合;或者,配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
作为本公开实施例的一种实现方式,处理单元1020还用于,配置所述第一终端设备的用于接收所述测量信号的所述测量类型以及所述测量阈值;或者,配置所述第一终端设备的用于接收所述测量信号的所述测量类型、所述测量阈值以及所述信号类型。
作为本公开实施例的一种实现方式,处理单元1020具体用于,未配置所述测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值;或者,配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
本公开实施例的干扰测量装置,通过接收第一终端设备发送的测量信号的测量数据以及接收时间段;其中,测量信号属于第一终端设备待上报的干扰信号;测量数据为,第一终端设备从第二终端设备接收的测量信号的测量数据。进一 步地,可以根据测量数据,确定第一终端设备和第二终端设备的调度策略。该方法使得第一终端设备在接收到测量信号后,可根据测量信号确定与自身存在相互干扰的第二终端设备,并向网络设备上报测量数据及接收时间段,从而方便网络设备进行调度,避免在同频同时进行第一终端设备的数据接收,以及第二终端设备的数据发送,提高数据传输效率以及准确率。
为了实现上述实施例,本公开实施例还提出另一种干扰测量装置,该装置包括处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图1至图2实施例所述的方法;或者,图3至图4实施例所述的方法。
为了实现上述实施例,本公开实施例还提出另一种干扰测量装置,该装置包括处理器和存储器,存储器中存储有计算机程序,处理器执行存储器中存储的计算机程序,以使装置执行图5至图6实施例所述的方法。
为了实现上述实施例,本公开实施例还提出另一种干扰测量装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图1至图2实施例所述的方法;或者,图3至图4实施例所述的方法。
为了实现上述实施例,本公开实施例还提出另一种干扰测量装置,包括:处理器和接口电路;接口电路,用于接收代码指令并传输至所述处理器;处理器,用于运行所述代码指令以执行图5至图6实施例所述的方法。
为了实现上述实施例,本公开实施例还提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使图1至图2实施例所述的方法被实现;或者,使图3至图4实施例所述的方法被实现。
为了实现上述实施例,本公开实施例还提出另一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使图5至图6实施例所述的方法被实现。
为了实现上述实施例,本公开还提出一种计算机程序产品,当其在计算机上运行时,使得计算机执行本公开图1至图2实施例所述的方法,或者,图3至图4实施例所述的方法。
为了实现上述实施例,本公开还提出一种计算机程序产品,当其在计算机上运行时,使得计算机执行本公开图5至图6实施例所述的方法。
图11为本公开实施例所提供的一种UE1100的框图。例如,UE1100可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,UE1100可以包括以下至少一个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制UE1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括至少一个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括至少一个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在UE1100的操作。这些数据的示例包括用于在UE1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为UE1100的各种组件提供电力。电源组件1106可以包括电源管理***,至少一个电源,及其他与为UE1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述UE1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头 和/或后置摄像头。当UE1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当UE1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括至少一个传感器,用于为UE1100提供各个方面的状态评估。例如,传感器组件1114可以检测到UE1100的打开/关闭状态,组件的相对定位,例如所述组件为UE1100的显示器和小键盘,传感器组件1114还可以检测UE1100或UE1100一个组件的位置改变,用户与UE1100接触的存在或不存在,UE1100方位或加速/减速和UE1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于UE1100和其他设备之间有线或无线方式的通信。UE1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1100可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由UE1100的处理器1120执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,为本公开实施例所提供的一种网络设备的结构示意图。参照图12,网络设备1200包括处理组件1222,其进一步包括至少一个处理器,以及由存储器1232所代表的存储器资源,用于存储可由处理组件1222的执行的指令,例如应用程序。存储器1232中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1222被配置为执行指令,以执行上述方法前述应用在所述网络设备的任意方法,例如,如图5至图6任一所示的方法。
网络设备1200还可以包括一个电源组件1226被配置为执行网络设备1200的电源管理,一个有线或无线网络接口1250被配置为将网络设备1200连接到网络,和一个输入输出(I/O)接口1258。网络设备1200可以操作基于存储在存储器1232的操作***,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
为了实现上述实施例,本公开实施例还提供了一种通信装置,通信装置可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述任一方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
其中,通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述任一方法实施例中描述的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述任一方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在IC(Integrated Circuit,集成电路)、模拟IC、射频集成电路RFIC、混合信号IC、ASIC(Application Specific Integrated Circuit,专用集成电路)、PCB(Printed Circuit Board,印刷电路板)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)、NMOS(nMetal-Oxide-Semiconductor,N型金属氧化物半导体)、PMOS(Positive Channel Metal Oxide Semiconductor,P型金属氧化物半导体)、BJT(Bipolar Junction Transistor,双极结型晶体管)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片可以包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种干扰测量方法,其特征在于,所述方法由第一终端设备执行,所述方法包括:
    使用所述第一终端设备上PDSCH的接收波束接收测量信号;
    确定所述测量信号的干扰测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述测量信号的干扰测量结果,包括:
    根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;
    按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;
    根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果,包括:
    确定所述测量信号属于待上报的干扰信号,其中,所述测量数据大于或者等于所述测量阈值;
    确定所述测量信号不属于待上报的干扰信号,其中,所述测量数据小于所述测量阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述测量信号的上报数据,其中,所述测量信号的所述干扰测量结果为,所述测量信号属于待上报的干扰信号;
    向网络设备发送所述上报数据。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述测量信号的上报数据,包括:
    对所述测量信号进行解析处理,获取终端设备标识,其中,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS;
    根据所述终端设备标识、所述测量信号的接收时间段以及所述测量数据,生成所述上报数据。
  6. 根据权利要求4所述的方法,其特征在于,所述确定所述测量信号的上报数据,包括:
    根据所述测量信号的接收时间段以及所述测量数据,生成所述上报数据,其中,所述网络设备未配置所述测量信号的信号类型。
  7. 根据权利要求4所述的方法,其特征在于,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  8. 根据权利要求2至7任一项所述的方法,其特征在于,所述网络设备未配置所述测量信号的信号类型时,所述网络设备配置的所述测量类型为信号接收强度RSSI;
    或者,
    所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,所述网络设备配置的所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI。
  9. 一种干扰测量方法,其特征在于,所述方法由第二终端设备执行,所述方法包括:
    生成测量信号;
    使用发送波束集合中的发送波束发送所述测量信号。
  10. 根据权利要求9所述的方法,其特征在于,所述生成测量信号,包括:
    根据所述第二终端设备的终端设备标识生成信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS的所述测量信号,其中,网络设备配置所述测量信号的信号类型为UE-CLI-RS;
    或者,
    生成任意信号类型的所述测量信号,其中,所述网络设备未配置所述测量信号的信号类型。
  11. 根据权利要求9所述的方法,其特征在于,所述发送波束集合的确定方式包括:
    根据所述网络设备配置的参考同步信号块SSB,确定接收所述参考同步信号块SSB的接收波束;或者,根据所述网络设备配置的信道状态信息参考信号CSI-RS,确定接收所述CSI-RS的接收波束;
    根据所述接收波束对应的发送波束,生成所述发送波束集合。
  12. 一种干扰测量方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    接收第一终端设备发送的上报数据;其中,所述上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    配置所述第二终端设备的用于发送所述测量信号的发送波束集合;
    或者,
    配置所述第二终端设备的用于发送所述测量信号的所述发送波束集合以及所述测量信号的信号类型。
  14. 根据权利要求13所述的方法,其特征在于,配置所述发送波束集合包括:
    配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合;
    或者,
    配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    配置所述第一终端设备的所述测量信号的所述测量类型以及所述测量阈值;
    或者,
    配置所述第一终端设备的所述测量信号的所述测量类型、所述测量阈值以及所述信号类型。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,未配置所述测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值;
    或者,
    配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
  17. 一种干扰测量装置,其特征在于,所述装置包括:
    收发单元,用于使用第一终端设备上PDSCH的接收波束接收测量信号;
    处理单元,用于确定所述测量信号的干扰测量结果。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元具体用于,
    根据所述网络设备配置的测量类型,确定与所述测量类型对应的测量方式;
    按照所述测量方式对所述测量信号进行信道质量测量,确定所述测量类型下的测量数据;
    根据所述测量数据以及所述网络设备配置的所述测量类型下的测量阈值,确定所述干扰测量结果。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于,
    确定所述测量信号属于待上报的干扰信号,其中,所述测量数据大于或者等于所述测量阈值;
    确定所述测量信号不属于待上报的干扰信号,其中,所述测量数据小于所述测量阈值。
  20. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于确定所述测量信号的上报数据,其中,所述测量信号的所述干扰测量结果为,所述测量信号属于待上报的干扰信号;
    所述收发单元,还用于向网络设备发送所述上报数据。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于,对所述测量信号进行解析处理,获取终端 设备标识,其中,所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS;
    根据所述终端设备标识、所述测量信号的接收时间段以及所述测量数据,生成所述上报数据。
  22. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于,根据所述测量信号的接收时间段以及所述测量数据,生成所述上报数据,其中,所述网络设备未配置所述测量信号的信号类型。
  23. 根据权利要求20所述的装置,其特征在于,发送所述上报数据的信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  24. 根据权利要求18至23任一项所述的装置,其特征在于,所述网络设备未配置所述测量信号的信号类型时,所述网络设备配置的所述测量类型为信号接收强度RSSI;
    或者,
    所述网络设备配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS,所述网络设备配置的所述测量类型包括以下阈值中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI。
  25. 一种干扰测量装置,其特征在于,所述装置包括:
    处理单元,用于生成测量信号;
    收发单元,用于使用发送波束集合中的发送波束发送所述测量信号。
  26. 根据权利要求25所述的装置,其特征在于,所述处理单元具体用于,
    根据第二终端设备的终端设备标识生成信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS的所述测量信号,其中,网络设备配置所述测量信号的信号类型为UE-CLI-RS;
    或者,
    生成任意信号类型的所述测量信号,其中,所述网络设备未配置所述测量信号的信号类型。
  27. 根据权利要求25所述的装置,其特征在于,所述发送波束集合的确定方式包括:
    根据所述网络设备配置的参考同步信号块SSB,确定接收所述参考同步信号块SSB的接收波束;或者,根据所述网络设备配置的信道状态信息参考信号CSI-RS,确定接收所述CSI-RS的接收波束;
    根据所述接收波束对应的发送波束,生成所述发送波束集合。
  28. 一种干扰测量装置,其特征在于,所述装置包括:
    收发单元,用于接收第一终端设备发送的上报数据;其中,所述上报数据包括:测量信号的测量数据以及接收时间段,所述测量信号为所述第一终端设备使用PDSCH的接收波束从第二终端设备接收到的测量信号,所述测量信号在测量类型下的测量数据大于或者等于所述测量类型下的测量阈值。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括:处理单元,用于,
    配置所述第二终端设备的用于发送所述测量信号的发送波束集合;
    或者,
    配置所述第二终端设备的用于发送所述测量信号的所述发送波束集合以及所述测量信号的信号类型。
  30. 根据权利要求29所述的装置,其特征在于,配置所述发送波束集合包括:
    配置参考同步信号块SSB,以根据所述参考同步信号块SSB的接收波束对应的发送波束,确定所述发送波束集合;
    或者,
    配置信道状态信息参考信号CSI-RS,以根据所述CSI-RS的接收波束对应的发送波束,确定所述发送波束集合。
  31. 根据权利要求28所述的装置,其特征在于,所述处理单元还用于,
    配置所述第一终端设备的用于接收所述测量信号的所述测量类型以及所述测量阈值;
    或者,
    配置所述第一终端设备的用于接收所述测量信号的所述测量类型、所述测量阈值以及所述信号类型。
  32. 根据权利要求28至31任一项所述的装置,其特征在于,所述处理单元具体用于,
    未配置所述测量信号的信号类型时,配置所述测量类型为信号接收强度,并配置所述测量类型下的所述测量阈值;
    或者,
    配置所述测量信号的信号类型为终端间交叉链路干扰管理参考信号UE-CLI-RS时,配置所述测量类型包括以下中的至少一种:信号接收功率RSRP、信号接收质量RSRQ、信号与干扰加噪声比SINR、信号接收强度RSSI,并配置所述测量类型下的所述测量阈值。
  33. 一种干扰测量装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至8中任一项所述的方法;或者,如权利要求9至11中任一项所述的方法。
  34. 一种干扰测量装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12至16中任一项所述的方法。
  35. 一种干扰测量装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法;或者,如权利要求9至11中任一项所述的方法。
  36. 一种干扰测量装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求12至16中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现;或者,使如权利要求9至11中任一项所述的方法被实现。
  38. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求12至16中任一项所述的方法被实现。
PCT/CN2021/100895 2021-06-18 2021-06-18 干扰测量方法及其装置 WO2022261937A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21945522.7A EP4358572A1 (en) 2021-06-18 2021-06-18 Interference measurement method and apparatus thereof
PCT/CN2021/100895 WO2022261937A1 (zh) 2021-06-18 2021-06-18 干扰测量方法及其装置
CN202180001845.0A CN115918137A (zh) 2021-06-18 2021-06-18 干扰测量方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100895 WO2022261937A1 (zh) 2021-06-18 2021-06-18 干扰测量方法及其装置

Publications (1)

Publication Number Publication Date
WO2022261937A1 true WO2022261937A1 (zh) 2022-12-22

Family

ID=84526499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100895 WO2022261937A1 (zh) 2021-06-18 2021-06-18 干扰测量方法及其装置

Country Status (3)

Country Link
EP (1) EP4358572A1 (zh)
CN (1) CN115918137A (zh)
WO (1) WO2022261937A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219970A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中跨链路干扰测量方法及设备
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置
CN111988099A (zh) * 2019-05-23 2020-11-24 海信集团有限公司 一种交叉链路干扰测量的方法、网络侧设备、终端和***
US20210006997A1 (en) * 2019-07-04 2021-01-07 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting cross-link interference in next-generation mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219970A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中跨链路干扰测量方法及设备
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置
CN111988099A (zh) * 2019-05-23 2020-11-24 海信集团有限公司 一种交叉链路干扰测量的方法、网络侧设备、终端和***
US20210006997A1 (en) * 2019-07-04 2021-01-07 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting cross-link interference in next-generation mobile communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on UE-to-UE cross-link interference management", 3GPP DRAFT; R1-1710784, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 17 June 2017 (2017-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051305213 *
HUAWEI, HISILICON: "UE-to-UE measurement for cross-link interference mitigation", 3GPP DRAFT; R1-1706911, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051261568 *
HUAWEI, HISILICON: "UE-to-UE measurement for cross-link interference mitigation", 3GPP DRAFT; R1-1709982, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 17 June 2017 (2017-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051304722 *
ZTE: "UE-to-UE measurement as an enabler for CLI mitigation schemes", 3GPP DRAFT; R1-1710128 - 5.1.6.1 UE-TO-UE MEASUREMENT FOR CLI MITIGATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao; 20170627 - 20170630, 16 June 2017 (2017-06-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051304208 *

Also Published As

Publication number Publication date
CN115918137A (zh) 2023-04-04
EP4358572A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
CN111095824B (zh) 波束测量方法及波束测量装置
CN111512685B (zh) 信道状态信息测量方法、装置及计算机存储介质
CN111543076A (zh) 传输方法、装置及计算机存储介质
CN112997573A (zh) 一种信息上报方法、信息上报装置及存储介质
CN113767675A (zh) 节能配置方法及其装置
WO2022261937A1 (zh) 干扰测量方法及其装置
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2022246847A1 (zh) 干扰测量方法、干扰处理方法及其装置
CN113728723A (zh) 辅助配置方法及其装置
US20230137584A1 (en) Multiple-input multiple-output mode configuration method and apparatus, and storage medium
CN113366775A (zh) 信道状态信息测量方法、装置及存储介质
WO2023168590A1 (zh) 波束确定方法及装置
WO2023283792A1 (zh) 通信方法及其装置
WO2023236161A1 (zh) 波束管理方法、装置
WO2023155200A1 (zh) 一种测量放松方法及设备、存储介质、装置
CN116830671B (zh) Trp选择方法及装置、通信设备、通信***及存储介质
WO2022266862A1 (zh) 联合信道估计方法及其装置
WO2024087118A1 (zh) 幅度系数的上报方法、装置及存储介质
WO2022236551A1 (zh) 协作小区波束测量方法、装置及通信设备
WO2023206247A1 (zh) 一种传输配置信息的方法、装置及可读存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
US20240163135A1 (en) Configuration method and apparatus for joint channel estimation, and device and storage medium
CN116939659A (zh) 信道状态信息报告方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18570863

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021945522

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945522

Country of ref document: EP

Effective date: 20240115