WO2020155188A1 - 通信方法、装置及*** - Google Patents

通信方法、装置及*** Download PDF

Info

Publication number
WO2020155188A1
WO2020155188A1 PCT/CN2019/074721 CN2019074721W WO2020155188A1 WO 2020155188 A1 WO2020155188 A1 WO 2020155188A1 CN 2019074721 W CN2019074721 W CN 2019074721W WO 2020155188 A1 WO2020155188 A1 WO 2020155188A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain position
time domain
frequency resource
time
sequence
Prior art date
Application number
PCT/CN2019/074721
Other languages
English (en)
French (fr)
Inventor
苏俞婉
李军
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980091181.4A priority Critical patent/CN113383593B/zh
Priority to PCT/CN2019/074721 priority patent/WO2020155188A1/zh
Priority to EP19913216.8A priority patent/EP3897054B1/en
Publication of WO2020155188A1 publication Critical patent/WO2020155188A1/zh
Priority to US17/390,646 priority patent/US11997671B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and in particular to a communication method, device and system.
  • the narrowband internet of things (NB-IoT) system is used to support communications with a larger coverage area.
  • NB-IoT version (Release) 16 is studying uplink scheduling-free transmission, that is, when performing uplink data transmission, the terminal device does not have to apply for uplink transmission resources from the network device, and does not need to wait for the network device to issue the scheduling information for uplink transmission. This can reduce interaction procedures, reduce power consumption delay, and reduce signaling overhead.
  • the network device can configure different preconfigured uplink resources (PUR)-dedicated resources for different terminal devices, or for different terminals
  • PUR preconfigured uplink resources
  • the equipment is configured with the same or partially overlapping pre-configured uplink time-frequency resources-shared resources. Compared with dedicated resources, shared resources help reduce network resource overhead and improve spectrum utilization.
  • the terminal device simultaneously sends a demodulation reference signal (DMRS) when transmitting uplink data.
  • DMRS demodulation reference signal
  • the DMRS is used by the network device for channel estimation and channel equalization, so as to correctly demodulate the uplink data.
  • orthogonal DMRS sequences need to be used, and network devices distinguish different terminal devices according to the orthogonal DMRS sequences.
  • multiple terminal devices are required to start transmitting uplink data at the start position of the pre-configured uplink time-frequency resource. Once the terminal device has no uplink data to be transmitted at the start position of the pre-configured uplink time-frequency resource, and there is uplink data to be transmitted after the start position of the pre-configured uplink time-frequency resource, the terminal device needs to wait until the next pre-configuration The start position of the uplink time-frequency resource starts to transmit uplink data.
  • the embodiments of the present application provide communication methods, devices, and systems, which are used to realize that when a terminal device has uplink data to transmit after the start position of the pre-configured uplink time-frequency resource, it can be before the start position of the next pre-configured uplink time-frequency resource , For uplink data transmission.
  • a communication method is provided, which is applicable to a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource.
  • the terminal device includes a first terminal device, and the method includes: the first terminal device determines a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices ,
  • the reference time domain position is used to initialize the first sequence; the first terminal device generates the first reference signal according to the first sequence and the time interval, where the time interval is the reference time domain position and the start time domain position of the first reference signal transmission The interval between; the first terminal device sends the first reference signal to the network device.
  • the first terminal device and the network device determine the reference time domain position according to the pre-configured uplink time-frequency resource, and the reference time domain position is compared with the reference time domain position determined by other terminal devices among the multiple terminal devices Similarly, the reference time domain position is used to initialize the first sequence.
  • the first terminal device and the network device generate the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the first terminal device sends the first reference signal to the network device.
  • the network device receives the second reference signal from the first terminal device; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the first reference signal is generated according to the first sequence and the foregoing time interval.
  • the foregoing time interval is such that the first sequence corresponding to different terminal devices is the same on the same time-frequency resource, starting from the start time domain position of the first reference signal transmission
  • the uplink data transmission can be performed before the start position of the next pre-configured uplink time-frequency resource.
  • the reference time domain position is a time domain position before the start time domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the first terminal device determining the reference time domain position according to the pre-configured uplink time-frequency resource includes: the first terminal device receives first indication information from the network device, the first indication information is used to indicate The first offset duration of the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; the first terminal device according to the first indication information and the start of the period in which the pre-configured uplink time-frequency resource is located Position, determine the reference time domain position. Based on this solution, the first terminal device can determine the reference time domain position.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, including: the first terminal device receives second indication information from the network device, and the second indication information is used to indicate The second offset duration of the start time domain position of the preconfigured uplink time-frequency resource relative to the reference time domain position; the first terminal device according to the second indication information and the preconfigured start time domain position of the uplink time-frequency resource, Determine the reference time domain location. Based on this solution, the first terminal device can determine the reference time domain position.
  • the first terminal device generating the first reference signal according to the first sequence and the time interval includes: the first terminal device generating the first reference signal according to the first sequence and the time interval with a length equal to the transmission duration of the first reference signal The first reference signal.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first terminal device generates the first reference signal according to the first sequence and the time interval, including: the first terminal device generates the time length according to the first sequence as the time interval and the transmission duration of the first reference signal The second sequence of the sum; the first terminal device determines that the sequence whose length is the transmission duration of the first reference signal in the second sequence is the first reference signal, where the first value of the first reference signal is the same as the second sequence The value of the time interval from the first value.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal
  • the first terminal device generates the first reference signal according to the first sequence and the time interval, including: the first terminal The device determines that the sequence whose length is the transmission duration of the first reference signal in the first sequence is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; the first terminal The device generates the first reference signal according to the third sequence.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • a communication method is provided, which is applicable to a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource.
  • the terminal device includes a first terminal device, and the method includes: the network device determines a reference time domain position according to a pre-configured uplink time-frequency resource, where the reference time domain position is the same as the reference time domain position determined by other terminal devices of the multiple terminal devices, The reference time domain position is used to initialize the first sequence; the network device generates the first reference signal according to the first sequence and the time interval, where the time interval is the distance between the reference time domain position and the start time domain position of the first reference signal transmission Interval; the network device receives the second reference signal from the first terminal device; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the first terminal device and the network device determine the reference time domain position according to the pre-configured uplink time-frequency resource, and the reference time domain position is compared with the reference time domain position determined by other terminal devices among the multiple terminal devices Similarly, the reference time domain position is used to initialize the first sequence.
  • the first terminal device and the network device generate the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the first terminal device sends the first reference signal to the network device.
  • the network device receives the second reference signal from the first terminal device; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the first reference signal is generated according to the first sequence and the foregoing time interval.
  • the foregoing time interval is such that the first sequence corresponding to different terminal devices is the same on the same time-frequency resource, starting from the start time domain position of the first reference signal transmission
  • the uplink data transmission can be performed before the start position of the next pre-configured uplink time-frequency resource.
  • the reference time domain position is a time domain position before the start time domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the network device determining the reference time domain position according to the pre-configured uplink time-frequency resource includes: the network device determines the first indication information, the first indication information is used to indicate that the reference time domain position is relative to the pre-configured The first offset duration of the start position of the period in which the uplink time-frequency resource is located; the network device determines the reference time domain position according to the first indication information and the start position of the period in which the uplink time-frequency resource is pre-configured. Based on this solution, the first terminal device can determine the reference time domain position.
  • the network device determining the reference time domain location according to the pre-configured uplink time-frequency resource includes: the network device determines second indication information, the second indication information is used to indicate the pre-configured uplink time-frequency resource The second offset duration of the starting time domain position relative to the reference time domain position; the network device determines the reference time domain position according to the second indication information and the starting time domain position of the pre-configured uplink time-frequency resource. Based on this solution, the first terminal device can determine the reference time domain position.
  • the network device generating the first reference signal according to the first sequence and the time interval includes: the network device generating the first reference signal whose length is the transmission duration of the first reference signal according to the first sequence and the time interval .
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the network device generating the first reference signal according to the first sequence and the time interval includes: the network device generates the time length according to the first sequence as the first of the sum of the time interval and the transmission duration of the first reference signal The second sequence; the network device determines that the sequence whose length is the transmission duration of the first reference signal in the second sequence is the first reference signal, where the first value of the first reference signal is the distance time from the first value of the second sequence The value of the interval.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal
  • the network device generates the first reference signal according to the first sequence and the time interval, including: the network device determines the first reference signal In the sequence, the sequence whose length is the transmission duration of the first reference signal is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; the network device generates it according to the third sequence The first reference signal.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • a communication method is provided, which is applicable to a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource.
  • the terminal device includes a first terminal device, and the method includes: the first terminal device determines a reference time domain location, the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices, and the reference time domain location is used for initialization The first sequence; the first terminal device generates the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission; the first terminal The device sends the first reference signal to the network device.
  • the reference time domain position in the embodiment of the present application may be related to the pre-configured uplink time-frequency resource, or may not be related to the pre-configured uplink time-frequency resource, and is an absolute position, which is described here in a unified manner.
  • the technical effects brought about by the third aspect can be referred to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • a communication method is provided, which is applicable to a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource.
  • the terminal device includes a first terminal device, and the method includes: the network device determines a reference time domain location, the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices, and the reference time domain location is used to initialize the first terminal device.
  • the network device generates the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission; the network equipment from the first terminal The device receives the second reference signal; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the reference time domain position in the embodiment of the present application may be related to the pre-configured uplink time-frequency resource, or may not be related to the pre-configured uplink time-frequency resource, and is an absolute position, which is described here in a unified manner.
  • the technical effects brought about by the fourth aspect may refer to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • a first terminal device is provided.
  • the first terminal device is suitable for a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple uplink data capable of transmitting uplink data on the same uplink time-frequency resource.
  • a terminal device, the plurality of terminal devices include a first terminal device; wherein, the first terminal device includes a transceiver module and a processing module; the processing module is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position and The reference time domain positions determined by other terminal devices among the multiple terminal devices are the same, and the reference time domain position is used to initialize the first sequence; the processing module is used to generate the first reference signal according to the first sequence and the time interval, where the time interval It is the interval between the reference time domain position and the start time domain position of the first reference signal transmission; the transceiver module is used to send the first reference signal to the network device.
  • the reference time domain position is a time domain position before the start time domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the processing module is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resources, and includes: a transceiver module, configured to receive the first indication information from the network device, and the first indication information is used for Indicates the first offset duration of the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; a processing module, configured to perform according to the first indication information and the period in which the pre-configured uplink time-frequency resource is located Determine the reference time domain position.
  • the processing module is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resources, and includes: a transceiver module, configured to receive the second indication information from the network device, the second indication information is used for To indicate the second offset duration of the start time domain position of the pre-configured uplink time-frequency resource relative to the reference time domain position; the processing module is used for according to the second indication information and the start time of the pre-configured uplink time-frequency resource Domain position, determine the reference time domain position.
  • a transceiver module configured to receive the second indication information from the network device, the second indication information is used for To indicate the second offset duration of the start time domain position of the pre-configured uplink time-frequency resource relative to the reference time domain position
  • the processing module is used for according to the second indication information and the start time of the pre-configured uplink time-frequency resource Domain position, determine the reference time domain position.
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, including: the processing module is configured to generate the transmission of the first reference signal with a length according to the first sequence and the time interval The first reference signal of duration.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, and includes: the processing module is configured to generate the time interval of the time interval and the first reference signal according to the first sequence.
  • the first value of the second sequence is the value of the time interval.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, and includes: a processing module , Used to determine that the sequence whose length is the transmission duration of the first reference signal in the first sequence is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; processing The module is used to generate the first reference signal according to the third sequence.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • a network device is provided.
  • the network device is suitable for a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices that can transmit uplink data on the same uplink time-frequency resource.
  • Each terminal device includes a first terminal device; wherein, the network device includes a processing module and a transceiver module; the processing module is used to determine a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position and the multiple terminal equipment
  • the reference time domain position determined by other terminal devices is the same, the reference time domain position is used to initialize the first sequence;
  • the processing module is used to generate the first reference signal according to the first sequence and the time interval, where the time interval is the reference time domain position and The interval between the start time domain positions of the first reference signal transmission;
  • the transceiver module is used to receive the second reference signal from the first terminal device; the processing module is used to demodulate the signal from the first reference signal and the second reference signal Uplink data
  • the reference time domain position is a time domain position before the start time domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the processing module is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resource, including: the processing module is configured to determine the first indication information, the first indication information is used to indicate the reference time The first offset duration of the domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; a processing module, configured to perform according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource is located , To determine the reference time domain position.
  • the processing module is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resource, including: the processing module is configured to determine the second indication information, the second indication information is used to indicate the pre-configuration The second offset duration of the start time domain position of the uplink time-frequency resource relative to the reference time domain position; the processing module is configured to determine the start time domain position of the uplink time-frequency resource according to the second indication information and the pre-configured uplink time-frequency resource Refer to the time domain position.
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, including: the processing module is configured to generate the transmission of the first reference signal with a length according to the first sequence and the time interval The first reference signal of duration.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, and includes: the processing module is configured to generate the time interval of the time interval and the first reference signal according to the first sequence.
  • the first value of the second sequence is the value of the time interval.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal
  • the processing module is configured to generate the first reference signal according to the first sequence and the time interval, and includes: a processing module , Used to determine that the sequence whose length is the transmission duration of the first reference signal in the first sequence is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; processing The module is used to generate the first reference signal according to the third sequence.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • a first terminal device is provided.
  • the first terminal device is suitable for a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple uplink data capable of transmitting uplink data on the same uplink time-frequency resource.
  • Terminal equipment, the plurality of terminal equipment includes a first terminal equipment; wherein, the first terminal equipment includes a transceiver module and a processing module; the processing module is used to determine the reference time domain position, the reference time domain position and other terminals in the plurality of terminal equipment
  • the reference time domain position determined by the device is the same, the reference time domain position is used to initialize the first sequence; the processing module is used to generate the first reference signal according to the first sequence and the time interval, where the time interval is the reference time domain position and the first The interval between the starting time domain positions of the reference signal transmission; the transceiver module is used to send the first reference signal to the network device.
  • a network device is provided.
  • the network device is suitable for a wireless communication system.
  • the wireless communication system includes a first cell.
  • the first cell includes multiple terminal devices that can transmit uplink data on the same uplink time-frequency resource.
  • Each terminal device includes a first terminal device; wherein, the network device includes a processing module and a transceiver module; the processing module is used to determine the reference time domain position, and the reference time domain position is determined by the reference time domain of other terminal devices among the multiple terminal devices The position is the same, the reference time domain position is used to initialize the first sequence; the processing module is used to generate the first reference signal according to the first sequence and the time interval, where the time interval is the reference time domain position and the start of the first reference signal transmission The interval between the time domain positions; the transceiver module is used to receive the second reference signal from the first terminal device; the processing module is used to demodulate the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • a communication device including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to execute the communication method as described in the first or third aspect.
  • a communication device including a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to execute the communication method as described in the second or fourth aspect.
  • a computer-readable storage medium stores instructions.
  • the computer or the processor executes the first aspect or its The communication method in any possible implementation manner, or the communication method in the second aspect or any of its possible implementation manners, or the communication in the third aspect or any of its possible implementation manners Method, or execute the communication method as in the fourth aspect or any one of its possible implementation manners.
  • the twelfth aspect provides a computer program product containing instructions, which when the instructions run on a computer or processor, cause the computer or processor to perform communications as in the first aspect or any one of its possible implementations.
  • a communication system which includes the first terminal device described in the fifth aspect and the network device described in the sixth aspect, or includes the first terminal device described in the seventh aspect and The network device according to the eighth aspect, or includes the communication device according to the ninth aspect and the communication device according to the tenth aspect.
  • the technical effects of the third aspect to the thirteenth aspect may refer to the content of the various possible implementation manners of the first aspect to the second aspect.
  • Figure 1 is a schematic diagram of the location of an existing DMRS
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of another structure of a terminal device provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the principle of orthogonality of DMRS sequences provided by an embodiment of the application.
  • FIG. 6 is a communication method 1 provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram 1 of a reference time domain position provided by an embodiment of this application.
  • FIG. 8 is a second schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 9 is a third schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of the first offset duration provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a second offset duration provided by an embodiment of the application.
  • FIG. 12 is a fourth schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram 5 of a reference time domain position provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the same Gold sequence provided by an embodiment of the application.
  • FIG. 15 is a second communication method provided by an embodiment of this application.
  • 16 is a schematic diagram 1 of generating a first reference signal according to a first sequence according to an embodiment of the application;
  • FIG. 17 is a third communication method provided by an embodiment of this application.
  • FIG. 18 is a second schematic diagram of generating a first reference signal according to a first sequence according to an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • LTE long term evolution
  • NB-IoT NB-IoT
  • GSM global system for mobile communication
  • UMTS mobile communication system
  • CDMA code division multiple access
  • IoT is the "Internet of Things Connected”. It extends the user end of the Internet to any item and item, so that information can be exchanged and communicated between any item and item.
  • This communication method is also called machine type communications (MTC).
  • MTC machine type communications
  • the communication node is called MTC terminal or MTC device.
  • Typical IoT applications include smart grids, smart agriculture, smart transportation, smart homes, and environmental detection.
  • MTC terminals in certain scenarios are used in environments with poor coverage, such as electricity meters and water meters, which are usually installed indoors or even basements and other places with poor wireless network signals, coverage enhancement technologies are needed to solve them.
  • coverage enhancement technologies are needed to solve them.
  • the number of MTC terminals in some scenarios is much larger than the number of devices for human-to-human communication, that is to say, large-scale deployment is required, so it is required to obtain and use MTC terminals at a very low cost.
  • MTC terminals because the data packets transmitted by the MTC terminal in some scenarios are very small and are not sensitive to delay, it is required to support a low-rate MTC terminal. Or, because in most cases, MTC terminals are powered by batteries, but at the same time in many scenarios, MTC terminals are required to be able to use for more than ten years without changing the battery, which requires MTC terminals to be able to use extremely low Power consumption to work.
  • the mobile communication standardization organization 3GPP adopted a new research topic at the RAN#62 plenary meeting to study methods to support extremely low complexity and low-cost Internet of Things in cellular networks.
  • the project was established at the meeting as the NB-IoT topic.
  • NB-IoT uplink data transmission supports single-tone and multi-tone.
  • the number of sub-carriers corresponding to single-tone transmission is 1, which is mainly suitable for low-rate scenarios with enhanced coverage scenarios, which can provide lower implementation costs; the number of sub-carriers corresponding to multi-tone transmission is greater than 1, which can be compared to single-tone
  • the transmission provides a greater rate and can also support coverage enhancement.
  • the basic scheduling unit for uplink data transmission is a resource unit (RU).
  • RU resource unit
  • the NB-IoT system only supports single-tone, and 1 RU occupies 1 subcarrier in the frequency domain and 16 slots in the time domain; when the subcarrier interval is 15kHz , Table 1 defines the following RU ( Represents the number of sub-carriers occupied on 1 RU frequency domain, It represents the number of consecutive slots occupied in the time domain of 1 RU.
  • Each slot is composed of 7 single-carrier frequency-division multiple access (SC-FDMA) symbols.
  • SC-FDMA single-carrier frequency-division multiple access
  • uplink data transmission may have repetitions.
  • the NB-IoT narrowband physical uplink shared channel (narrowband physical uplink shared channel, NPUSCH) format 1 is used for uplink data transmission.
  • the terminal equipment will send DMRS at the same time, and the DMRS is used by the network equipment for channel estimation and channel equalization, so as to correctly demodulate the uplink data.
  • the guard period (GP) in FIG. 1 can refer to the existing related description, which will not be repeated here.
  • single tone there are two transmission methods: single tone and multitone.
  • single tone there are two subcarrier spacings of 3.75kHz and 15kHz. Regardless of the subcarrier spacing, for single tone, one RU occupies 16 slots.
  • Single tone 3.75kHz and 15kHz are the same in the DMRS generation method, only the DMRS is different in mapping.
  • the embodiment of the application mainly relates to the generation method of the DMRS, and how the specific DMRS is mapped during uplink data transmission is not specifically limited in the embodiment of the application.
  • the DMRS can be generated by combining the following formula (1) and formula (2):
  • c(n) represents a gold (Gold) sequence
  • w(n) represents a Hadamard sequence
  • Ru (n) represents the DMRS sequence
  • Indicates the number of repetitions of NPUSCH Indicates the number of consecutive slots occupied by one RU, which may be 16 for example
  • N RU represents the number of RUs occupied by one data block, and mod() represents the remainder.
  • the Gold sequence c(n) is generated as shown in the following formula (3):
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2; formula (5)
  • the value of the initialization seed of the sequence x 2 (n+N C ) is related to the specific application.
  • the initialization seed of the sequence x 2 (n+N C ) is 35.
  • C init 35 can get the sequence x 2 (n+N C ).
  • u in Table 2 is the index of Hadamard sequence w(n).
  • the Hadamard sequences corresponding to the indexes of different Hadamard sequences w(n) are orthogonal to each other.
  • one RU occupies 16 slots, and these 16 slots can respectively correspond to a 16-length Hadamard sequence w(n).
  • the calculation formula for the index u of the Hadamard sequence w(n) in the group-hop scenario is different from the formula for the index u of the Hadamard sequence w(n) in the non-group-hop scenario.
  • a data block occupies 2 RUs
  • NPUSCH is repeated twice, and a total of 4 RUs are used as an example
  • the mapping between the cell identity and the index u of the Hadamard sequence w(n) used by the RU The relationship can be as shown in Table 3. It can be seen from Table 3 that at this time, the index u of the Hadamard sequence w(n) used on each RU is the same; among cells of the same frequency, such as cell 0 and cell 16, the index of the Hadamard sequence w(n) used u is exactly the same.
  • f gh (n s ) represents the group skip pattern (pattern); f ss represents the sequence shift pattern; mod represents the remainder; Indicates the length of one RU, which can be 16 for example.
  • c(n) represents the Gold sequence
  • c(n) is initialized at the beginning of each RU, and the initialization seed is Means round down, Indicates the cell identity, Indicates the length of an RU, which can be 16 for example; n 's is the first slot number of each RU for a single tone; mod represents the remainder; Indicates the length of one RU, which can be 16 for example.
  • one data block occupies 2 RUs, NPUSCH is repeated twice, and a total of 4 RUs are used as an example.
  • f gh (n s ) and f ss determines the index u of the Hadamard sequence.
  • the mapping relationship between the cell identity and the index u of the Hadamard sequence used by the RU may be as shown in Table 4. It can be seen from Table 4 that at this time, the index u of the Hadamard sequence used on each RU is not the same; among cells of the same frequency, such as cell 0 and cell 16, the index u of the Hadamard sequence used is also different.
  • the value of the index u of the Hadamard sequence in Table 4 is only an indication.
  • f gh (n s ) is another value, the value of the index u of the Hadamard sequence may be different from Table 4, which is not specifically limited in the embodiment of the present application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiments of this application can be applied to LTE systems, such as NB-IoT systems; and can also be applied to other wireless communication systems, such as Global System for Mobile Communication (GSM), Universal Mobile Telecommunications System, UMTS), Code Division Multiple Access (CDMA) systems, Wideband Code Division Multiple Access (WCDMA), and future-oriented new network equipment systems, etc., this application embodiment
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • future-oriented new network equipment systems etc.
  • this application embodiment There is no specific limitation. Among them, the above-mentioned communication system to which this application is applied is only an example, and the communication system to which this application is applied is not limited to this, and it is explained here in a unified manner, and will not be repeated hereafter.
  • the term “system” can be replaced with "network”.
  • the communication system 20 includes a network device 30 and multiple terminal devices 40 in a first cell covered by the network device 30, and the multiple terminal devices 40 can transmit uplink data on the same uplink time-frequency resource.
  • different terminal devices among the multiple terminal devices 40 may communicate with each other.
  • the first cell may be any one of the one or more cells covered by the network device 30.
  • the multiple terminal devices 40 include a first terminal device, and the first terminal device is any one of the multiple terminal devices 40 as an example.
  • the network device 30 in the embodiment of the present application is a device that connects the terminal device 40 to the wireless network, and may be an evolved Node B (evolutional Node B in long term evolution (LTE)). eNB or eNodeB); or the base station (Base Transceiver Station, BTS) in GSM or CDMA; or the base station (NodeB) in the WCDMA system; or the fifth generation (5G) network or the future evolved public land mobile network ( Base stations in the public land mobile network (PLMN), broadband network service gateways (BNG), aggregation switches or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc., examples of this application There is no specific restriction on this.
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application. .
  • the terminal device 40 in the embodiment of the present application may be a device used to implement a wireless communication function, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a wireless communication in the 5G network or the future evolution of the PLMN Equipment, terminal agent or terminal device, etc.
  • the access terminal can be a cell phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the network device 30 and the terminal device 40 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 3 it is a schematic structural diagram of the network device 30 and the terminal device 40 provided in the embodiment of this application.
  • the terminal device 40 includes at least one processor (in FIG. 3 exemplarily includes a processor 401 as an example for illustration) and at least one transceiver (in FIG. 3 exemplarily includes a transceiver 403 as an example for illustration) ).
  • the terminal device 40 may also include at least one memory (in FIG. 3 exemplarily includes a memory 402 as an example for illustration), at least one output device (in FIG. 3 exemplarily, an output device 404 is included as an example.
  • an input device 405 is included as an example for description).
  • the processor 401, the memory 402, and the transceiver 403 are connected through a communication line.
  • the communication line may include a path to transmit information between the aforementioned components.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 402 may exist independently and is connected to the processor 401 through a communication line.
  • the memory 402 may also be integrated with the processor 401.
  • the memory 402 is used to store computer execution instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 402, so as to implement the communication method described in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the communication method provided in the following embodiments of the present application.
  • the transceiver 403 is responsible for communicating with other devices or communication networks. The embodiment does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 403 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 communicates with the processor 401 and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 405 communicates with the processor 401 and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 30 includes at least one processor (in FIG. 3 exemplarily includes a processor 301 as an example for description), at least one transceiver (in FIG. 3 exemplarily includes a transceiver 303 as an example for description), and At least one network interface (in FIG. 3, one network interface 304 is included as an example for illustration).
  • the network device 30 may further include at least one memory (in FIG. 3, one memory 302 is exemplarily described as an example).
  • the processor 301, the memory 302, the transceiver 303, and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 3) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • the processor 301, the memory 302, and the transceiver 303 reference may be made to the description of the processor 401, the memory 402, and the transceiver 403 in the terminal device 40, which are not repeated here.
  • FIG. 4 is a specific structural form of the terminal device 40 provided in an embodiment of the application.
  • the functions of the processor 401 in FIG. 3 may be implemented by the processor 110 in FIG. 4.
  • the function of the transceiver 403 in FIG. 3 can be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 4.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 40 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 40.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 40, including wireless local area networks (wireless local area networks, WLAN) (such as Wi-Fi networks), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 40, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a NFC wireless communication solution applied to the terminal device 40, which means that the first device includes an electronic tag (such as radio frequency identification (RFID) tags). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 402 in FIG. 3 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 4.
  • an external memory such as a Micro SD card
  • the function of the output device 404 in FIG. 3 may be implemented by the display screen 194 in FIG. 4.
  • the display screen 194 is used to display images, videos, and so on.
  • the display screen 194 includes a display panel.
  • the function of the input device 405 in FIG. 3 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 4.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • the terminal device 40 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a “speaker”), a receiver 170B (also called a “handset”), a microphone 170C (also called a “microphone”, “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a “speaker”
  • a receiver 170B also called a “handset”
  • a microphone 170C also called a “microphone”, "Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the terminal device 40.
  • the terminal device 40 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • Solution 1 Based on the existing DMRS sequence generation method (that is, different terminal devices in the same cell use the same DMRS sequence), different terminal devices use different Hadamard codes w(n) index u, so that different terminal devices Use orthogonal DMRS sequences.
  • Solution 2 Using the existing DMRS sequence generation method (that is, different terminal devices in the same cell use the same DMRS sequence) as the base sequence, different terminal devices are assigned different cyclic shift indexes to obtain different cyclic shifts. By cyclically shifting the base sequence, different terminal devices use orthogonal DMRS sequences.
  • the terminal device When the terminal device transmits uplink data on the pre-configured uplink time-frequency resource, it is in the idle state. When the data arrives, the terminal device sends it autonomously, instead of being scheduled by the base station. The terminal device does not know whether there are other terminal devices. When sending uplink data on the same pre-configured uplink time-frequency resource, different terminal devices cannot coordinate through the base station to the same position on the same pre-configured uplink time-frequency resource to start transmitting uplink data.
  • a simple method is to restrict terminal equipment to only start transmitting uplink data at the beginning of the pre-configured uplink time-frequency resource, so as to ensure that different terminal equipment can start transmitting uplink data at the same time-frequency resource position, and use normal
  • the handed DMRS sequence ensures that the base station can distinguish different terminal devices.
  • the embodiment of the application provides a communication method.
  • a terminal device transmits uplink data on a pre-configured uplink time-frequency resource
  • the current pre-configured uplink time-frequency resource can also be used to transmit the uplink data without waiting for the next pre-configured uplink time-frequency resource.
  • the DMRS sequence is obtained by linear operation of Gold sequence c(n) and Hadamard sequence w(n).
  • different terminal devices can use different Hadamard indexes as shown in Table 2. u, so that the Hadamard sequences w(n) corresponding to different terminal devices are orthogonal. Therefore, it is only necessary to ensure that the Gold sequences c(n) corresponding to different terminal devices are the same on the same time-frequency resource.
  • UE1 and UE2 send uplink data to the network device on the same pre-configured uplink time-frequency resource
  • UE1 is at the beginning of the pre-configured uplink time-frequency resource
  • the time domain position (that is, the 0th time slot position of the pre-configured uplink time-frequency resource) starts to send uplink data
  • the UE2 can start sending uplink data at the 16th time slot position of the pre-configured uplink time-frequency resource.
  • the Gold sequence c(n) corresponding to UE1 and UE2 are both c(16), the Hadamard sequence w(n) corresponding to UE1 is w u1 (0), and the Hadamard sequence w( n) is w u2 (0), the DMRS sequence generated by UE1 according to c(16) and w u1 (0) is ru1 (16), and the DMRS sequence generated by UE2 according to c(16) and w u2 (0) is r u2 (16).
  • UE1 and UE2 generate DMRS sequences in the same way.
  • the Gold sequences corresponding to UE1 and UE2 are both c(16) to c(31), the Gold sequences are the same.
  • the Hadamard sequence corresponding to UE1 is w u1 (0) to w u1 (15)
  • the Hadamard sequence corresponding to UE2 is w u2 (0) to w u2 (15). Therefore, the Hadamard sequences are orthogonal. Therefore, UE1 and UE2 are on the same RU and obtain the orthogonal DMRS sequence through the linear operation of the same Gold sequence and the orthogonal Hadamard sequence (similar to formula (1)). In the subsequent RU, the same is true.
  • the Gold sequence c(n) corresponding to different terminal devices is the same on the same time-frequency resource.
  • the Gold sequence c(n) must be initialized at the same position. The embodiment of this application chooses to initialize the Gold sequence c(n) at the reference time domain position.
  • the embodiment of the present application provides two ways to select a specific Gold sequence c(n), one is to directly select the corresponding Gold sequence from the start time domain position of DMRS signal transmission, and then generate the DMRS sequence, so that The Gold sequence c(n) corresponding to different terminal devices is the same; another way is to select the corresponding DMRS sequence from the start time domain position of DMRS signal transmission after generating the DMRS sequence, and implicitly make the Gold sequence corresponding to different terminal devices c(n) is the same.
  • the communication method includes the following steps:
  • the first terminal device determines a reference time domain position according to a pre-configured uplink time-frequency resource.
  • the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices.
  • multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource correspond to the same reference time domain location.
  • the reference time domain position is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located .
  • the reference time domain position may be the pre-configured uplink time-frequency resource within the period of the pre-configured uplink time-frequency resource 1.
  • the reference time domain position may be the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource, as shown in FIG. 9.
  • the pre-configured uplink time-frequency resources here may be periodic or aperiodic, which is not specifically limited here.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, which may include: the first terminal device receives first indication information from the network device, where the first indication information is used to indicate the reference time domain position The first offset duration relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; the first terminal device determines the reference according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource is located Time domain location.
  • the first indication information may be used to indicate the first offset duration P1 of the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource 1 is located, and further, The first terminal device may determine the reference time domain position according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource 1 is located, as shown in FIG. 10.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, which may include: the first terminal device receives second indication information from the network device, the second indication information is used to indicate the pre-configuration The second offset duration of the start time domain position of the uplink time-frequency resource relative to the reference time domain position; the first terminal device determines the reference according to the second indication information and the pre-configured start time domain position of the uplink time-frequency resource Time domain location.
  • the second indication information may be used to indicate the second offset duration P2 of the starting time domain position of the pre-configured uplink time-frequency resource 1 relative to the reference time domain position, and further, the first A terminal device can determine the reference time domain position according to the second indication information and the pre-configured starting time domain position of the uplink time-frequency resource 2, as shown in FIG. 11.
  • every N pre-configured uplink resources may correspond to a reference time domain position, and the reference time domain position is every N pre-configured In the period where the first pre-configured uplink time-frequency resource in the uplink time-frequency resource is located, a time-domain position before the start time-domain position of the first pre-configured uplink time-frequency resource, N is greater than 1. Positive integer.
  • the terminal device may also determine the reference time domain position according to the indication information sent by the network device, where the indication information is used to indicate that each reference time domain position is relative to every N pre-configured uplink time-frequency resources.
  • the fourth offset duration of the configured start position of the uplink time-frequency resource with respect to each reference time-domain position For related examples, refer to the foregoing FIG. 10 or FIG. 11, and details are not described herein again.
  • every N pre-configured uplink resources may correspond to a reference time domain position, and the reference time domain position is every N pre-configured
  • the starting position of the first pre-configured uplink time-frequency resource in the uplink time-frequency resource, N is a positive integer greater than 1.
  • every two pre-configured uplink resources correspond to a reference time domain position.
  • the pre-configured uplink time-frequency resource 5 is in the fifth cycle
  • the pre-configured If the uplink time-frequency resource 6 is in the 6th cycle, the pre-configured uplink time-frequency resource 7 is in the 7th cycle, and the pre-configured uplink time-frequency resource 8 is in the 8th cycle, then the pre-configured uplink time-frequency resource 8 is in the 8th cycle.
  • the resource 5 and the pre-configured uplink time-frequency resource 6 may correspond to the reference time domain position 3, and the pre-configured uplink time-frequency resource 7 and the pre-configured uplink time-frequency resource 8 may correspond to the reference time domain position 4. That is to say, assuming that the pre-configured uplink time-frequency resource in step S601 is the pre-configured uplink time-frequency resource 8 shown in FIG. 12, the reference time domain position determined according to the pre-configured uplink time-frequency resource 8 It should be the reference time domain position 4 shown in FIG.
  • the reference time domain position determined according to the pre-configured uplink time-frequency resource 5 should be as shown in FIG. 12
  • the reference time domain position 3 shown is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource 5 in the period in which the pre-configured uplink time-frequency resource 5 is located.
  • the reference time domain position illustrated in Fig. 12 is that in every N pre-configured uplink time-frequency resources, the first pre-configured uplink time-frequency resource is located in the period of the first pre-configured uplink time-frequency resource. A position between the start time domain position of the time-frequency resource and the start position of the cycle in which the first pre-configured uplink time-frequency resource is located.
  • the reference time domain position can also be every N pre-configured uplink Among the time-frequency resources, the first pre-configured uplink time-frequency resource is the start position of the period; or, the reference time domain position can also be the first pre-configured uplink time-frequency resource in every N pre-configured uplink time-frequency resources The starting position of the uplink time-frequency resources of the, will not be illustrated one by one here.
  • the starting position of the period in which the pre-configured uplink time-frequency resource is located satisfies:
  • the first setting value may be 1; or, for example, if the unit of the period of the pre-configured uplink time-frequency resource is (10 ms), the first setting value here may be 10.
  • the second setting here may be 10; or, for example, if the unit of the period of the pre-configured uplink time-frequency resource is 10 ms, the second set value here may be 1.
  • the reference time domain position may also have no relationship with the pre-configured uplink time-frequency resource, that is, the first terminal device may directly determine the reference time domain position.
  • the reference time domain position can be an absolute time domain position, which can be configured by the network device to the terminal device, or pre-configured on the terminal device in advance or specified by the agreement. The embodiments of this application do not specifically limit this.
  • the reference time domain position is used to initialize the first sequence.
  • the first sequence is the Gold sequence c(n) as an example for description.
  • UE1 and UE2 send uplink data to the network device on the same pre-configured uplink time-frequency resource, and UE1 is at the starting time domain position of the pre-configured uplink time-frequency resource (That is, the 0th time slot position of the pre-configured uplink time-frequency resource) starts to send uplink data, and UE2 can start sending uplink data at the 16th time slot position of the pre-configured uplink time-frequency resource.
  • the Gold sequence c(n) corresponding to UE1 and UE2 are both c(16), and at the 31st time slot position, the Gold sequence c(n) corresponding to UE1 and UE2 are both c (31).
  • the first terminal device generates a first reference signal according to the first sequence and the time interval.
  • the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the first terminal device generates the first reference signal whose length is the transmission duration of the first reference signal according to the first sequence and the time interval.
  • step S602 may include steps S6021 and S6022.
  • step S6021 the first terminal device generates the length according to the first sequence c(n) as
  • step S6022 the first terminal device intercepts the second sequence X(n) from the offset position of the time interval and the length is The sequence of is used as the first reference signal ru (n).
  • the first terminal device generates, according to the first sequence, a second sequence whose time length is the sum of the time interval and the transmission time length of the first reference signal.
  • the value range of n can be increased to among them, Is the transmission duration of the first reference signal, and offset is the time interval. That is, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • the second sequence may be a DMRS sequence
  • offset is a time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first terminal device determines that the sequence whose length is the transmission duration of the first reference signal in the second sequence is the first reference signal.
  • the first value of the first reference signal is the value of the time interval from the first value of the second sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the Gold sequence corresponding to different terminal devices on the same time-frequency resource c(n) is the same.
  • the orthogonal Hadamard sequence w(n) corresponding to different terminal equipment is linearly calculated.
  • the DMRS sequence corresponding to different terminal equipment is positive. Handed in.
  • step S602 may include S6023 and S6024.
  • the length of the first sequence c(n) is The first terminal device determines that the length from the time interval offset position in the first sequence c(n) is The sequence for the third sequence c (n + offset); at a step S6024, the first terminal device generates a first reference signal r u (n) according to the third sequence c (n + offset).
  • the first terminal device determines that the sequence whose length is the transmission duration of the first reference signal in the first sequence is the third sequence.
  • the first value of the third sequence is the value of the time interval from the first value of the first sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the third sequence is c(n+offset), where the value range of n satisfies
  • the first terminal device generates a first reference signal according to the third sequence.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the initial Gold sequence corresponding to different terminal devices is the same.
  • the terminal device starts to intercept the Gold sequence at the position corresponding to the starting time domain position of the first reference signal transmission, so that after the starting time domain position, the same The Gold sequences corresponding to different terminal devices on the time-frequency resources are the same.
  • the DMRS sequences corresponding to different terminal devices are orthogonal on the same time-frequency resource. Therefore, the first reference signals of different terminal devices on the same time-frequency resource of the pre-configured uplink time-frequency resource are still orthogonal.
  • the network device determines a reference time domain position according to the pre-configured uplink time-frequency resource.
  • the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices.
  • the reference time domain position is used to initialize the first sequence.
  • the reference time domain position may also have nothing to do with the pre-configured uplink time-frequency resource, that is, the network device can directly determine the reference time domain position.
  • the reference time domain position can be an absolute time domain position, which can be determined by the network device, or pre-configured on the network device in advance or specified by the protocol. The example does not specifically limit this.
  • the network device generates a first reference signal according to the first sequence and the time interval.
  • the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • steps S603-S604 please refer to the above-mentioned steps S601-S602, which will not be repeated here.
  • the first terminal device sends a first reference signal to the network device.
  • the network device receives the second reference signal from the first terminal device.
  • the first reference signal sent by the first terminal device is affected by interference etc. during the process of transmission in the spatial channel, and the network device finally receives the second reference signal from the first terminal device.
  • the second reference signal is the first reference signal.
  • a reference signal is a first reference signal obtained by spatial interference.
  • the first terminal device may send the first reference signal to the network device on the pre-configured uplink time-frequency resource.
  • the pre-configured uplink time-frequency resource can be a dedicated resource, or a shared resource, and it can also include a part of a dedicated resource and a part of a shared resource, which will not be detailed here. limited.
  • the first reference signal may be carried in an uplink data frame (for example, PUSCH), and the uplink data frame also includes uplink data.
  • an uplink data frame for example, PUSCH
  • the uplink data frame also includes uplink data.
  • the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the network device performs channel estimation and channel equalization according to the first reference signal and the second reference signal, and demodulates the uplink data from the first terminal device according to the estimated and equalized channel, that is, the data received in step S605
  • the uplink data in the uplink data frame is demodulated.
  • Steps S601-S602 can be executed first, and then steps S603-S604; or step S603-S604 can be executed first.
  • S604, perform steps S601-S602 again; it is also possible to perform steps S601-S602 and steps S603-S604 at the same time, which is not specifically limited in the embodiment of the present application.
  • the first terminal device and the network device determine the reference time domain position according to the pre-configured uplink time-frequency resource, and the reference time domain position is compared with the reference time domain position determined by other terminal devices among the multiple terminal devices Similarly, the reference time domain position is used to initialize the first sequence.
  • the first terminal device and the network device generate the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the first terminal device sends the first reference signal to the network device.
  • the network device receives the second reference signal from the first terminal device; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the first reference signal is generated according to the first sequence and the foregoing time interval.
  • the foregoing time interval is such that the first sequence corresponding to different terminal devices is the same on the same time-frequency resource, starting from the start time domain position of the first reference signal transmission
  • the uplink data transmission can be performed before the start position of the next pre-configured uplink time-frequency resource.
  • the methods and/or steps implemented by the first terminal device can also be implemented by components (such as chips or circuits) that can be used in the first terminal device, and the methods and/or steps implemented by the network device /Or steps can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the first terminal device in the foregoing method embodiment, or a device including the foregoing first terminal device, or a component that can be used in the first terminal device; or, the communication device may be the foregoing method embodiment Network equipment, or a device containing the above-mentioned network equipment, or a component that can be used for network equipment.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 19 shows a schematic structural diagram of a first terminal device 190.
  • the first terminal device 190 includes a processing module 1901 and a transceiver module 1902.
  • the transceiver module 1902 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 1901 is configured to determine a reference time domain position, where the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices, and the reference time domain position is used to initialize the first sequence.
  • the processing module 1901 is configured to generate a first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the transceiver module 1902 is configured to send the first reference signal to the network device.
  • the processing module 1901 is configured to determine a reference time domain position according to the pre-configured uplink time-frequency resource, the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices, and the reference time domain position is used to initialize the first A sequence.
  • the processing module 1901 is configured to generate a first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the transceiver module 1902 is configured to send the first reference signal to the network device.
  • the reference time domain position is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the processing module 1901 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, and includes: a transceiver module 1902, configured to receive first indication information from a network device, where the first indication information is used to indicate reference The first offset duration of the time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; the processing module 1901 is configured to perform according to the first indication information and the start of the period in which the pre-configured uplink time-frequency resource is located Start position, determine the reference time domain position.
  • a transceiver module 1902 configured to receive first indication information from a network device, where the first indication information is used to indicate reference The first offset duration of the time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located
  • the processing module 1901 is configured to perform according to the first indication information and the start of the period in which the pre-configured uplink time-frequency resource is located Start position, determine the reference time domain position.
  • the processing module 1901 is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resources, and includes: a transceiver module 1902, configured to receive second indication information from a network device, the second indication information being used to indicate the pre-configuration The second offset duration of the start time domain position of the configured uplink time-frequency resource relative to the reference time domain position; the processing module 1901 is configured to perform according to the second indication information and the pre-configured start time domain position of the uplink time-frequency resource , To determine the reference time domain position.
  • a transceiver module 1902 configured to receive second indication information from a network device, the second indication information being used to indicate the pre-configuration The second offset duration of the start time domain position of the configured uplink time-frequency resource relative to the reference time domain position
  • the processing module 1901 is configured to perform according to the second indication information and the pre-configured start time domain position of the uplink time-frequency resource , To determine the reference time domain position.
  • a processing module 1901 configured to generate a first reference signal according to a first sequence and a time interval, includes: a processing module 1901, configured to generate a first reference signal whose length is the transmission duration of the first reference signal according to the first sequence and time interval A reference signal.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the processing module 1901 is configured to generate the first reference signal according to the first sequence and the time interval, and includes: the processing module 1901 is configured to generate the time length according to the first sequence as the difference between the time interval and the transmission duration of the first reference signal The second sequence of the sum; the processing module 1901, configured to determine that the sequence whose length is the transmission duration of the first reference signal in the second sequence is the first reference signal, where the first value of the first reference signal is the same as the second sequence The value of the time interval from the first value.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal.
  • the processing module 1901 is configured to generate the first reference signal according to the first sequence and the time interval, and includes: a processing module 1901, configured to Determine that the sequence in the first sequence whose length is the length of the first reference signal transmission time is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; the processing module 1901, Used to generate the first reference signal according to the third sequence.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • the first terminal device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first terminal device 190 may take the form of the terminal device 40 shown in FIG. 3.
  • the processor 401 in the terminal device 40 shown in FIG. 3 may invoke the computer execution instruction stored in the memory 402 to make the terminal device 40 execute the communication method in the foregoing method embodiment.
  • the function/implementation process of the processing module 1901 and the transceiver module 1902 in FIG. 19 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling the computer execution instructions stored in the memory 402.
  • the function/implementation process of the processing module 1901 in FIG. 19 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling a computer execution instruction stored in the memory 402, and the function of the transceiver module 1902 in FIG. 19 /The realization process can be realized by the transceiver 403 in the terminal device 40 shown in FIG. 3.
  • the first terminal device 190 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 20 shows a schematic structural diagram of a network device 200.
  • the network device 200 includes a processing module 2001 and a transceiver module 2002.
  • the transceiver module 2002 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 2001 is configured to determine a reference time domain position, where the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices, and the reference time domain position is used to initialize the first sequence.
  • the processing module 2001 is configured to generate a first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the transceiver module 2002 is configured to receive the second reference signal from the first terminal device.
  • the processing module 2001 is configured to demodulate the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the processing module 2001 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices, and the reference time domain position is used to initialize the first A sequence.
  • the processing module 2001 is configured to generate a first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission.
  • the transceiver module 2002 is configured to receive the second reference signal from the first terminal device.
  • the processing module 2001 is configured to demodulate the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the reference time domain position is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the processing module 2001 is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resources, and includes: the processing module 2001 is configured to determine the first indication information, the first indication information is used to indicate the relative reference time domain position The first offset duration at the start position of the period in which the pre-configured uplink time-frequency resource is located; the processing module 2001 is configured to determine according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource is located Refer to the time domain position.
  • the processing module 2001 is configured to determine the reference time domain position according to the pre-configured uplink time-frequency resource, including: the processing module 2001 is configured to determine the second indication information, the second indication information is used to indicate the pre-configured uplink time The second offset duration of the start time domain position of the frequency resource relative to the reference time domain position; the processing module 2001 is configured to determine the reference time according to the second indication information and the start time domain position of the pre-configured uplink time-frequency resource Domain location.
  • the processing module 2001 is configured to generate the first reference signal according to the first sequence and the time interval, including: the processing module 2001 is configured to generate, according to the first sequence and the time interval, the first reference signal whose length is the transmission duration of the first reference signal A reference signal.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the processing module 2001 is configured to generate the first reference signal according to the first sequence and the time interval, including: the processing module 2001 is configured to generate the time length according to the first sequence as the time interval and the transmission time length of the first reference signal And the second sequence of the sum; the processing module 2001, used to determine that the sequence whose length is the transmission duration of the first reference signal in the second sequence is the first reference signal, where the first value of the first reference signal is the same as the second sequence The value of the time interval from the first value.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the second sequence satisfy the following formula:
  • X(n) is the second sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the first sequence is a Gold sequence
  • the first sequence, the time interval, the transmission duration of the first reference signal, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block
  • c(n) is the Gold sequence
  • w(n) is the Hadamard sequence.
  • the length of the first sequence is the sum of the time interval and the transmission duration of the first reference signal
  • the processing module 2001 is configured to generate the first reference signal according to the first sequence and the time interval, and includes: a processing module 2001 for Determine that the sequence in the first sequence whose length is the length of the first reference signal transmission time is the third sequence, where the first value of the third sequence is the value of the time interval from the first value of the first sequence; the processing module 2001, Used to generate the first reference signal according to the third sequence.
  • the first sequence is the Gold sequence c(n), where the value range of n satisfies offset is the time interval, Is the transmission duration of the first reference signal, Is the number of repetitions of the narrowband physical uplink shared channel transmission, Is the number of time slots occupied by a resource unit, and N RU is the number of resource units occupied by a data block.
  • the time interval, the transmission duration of the first reference signal, the third sequence, and the first reference signal satisfy the following formula:
  • ru (n) is the first reference signal
  • c(n+offset) is the third sequence
  • offset is the time interval
  • N RU is the number of resource units occupied by a data block.
  • the network device 200 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 200 can take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 2001 and the transceiver module 2002 in FIG. 20 may be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 2001 in FIG. 20 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 2002 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the network device 200 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • An embodiment of the present application further provides a communication device, including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to make the communication device execute the network in FIGS. 6, 15, and 17.
  • the communication method of the device including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to make the communication device execute the network in FIGS. 6, 15, and 17. The communication method of the device.
  • the embodiment of the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer or a processor, the computer or the processor executes Figures 6, 15, and 17.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the communication method of the terminal device or the network device in FIGS. 6, 15, and 17.
  • the embodiment of the present application provides a chip system, which includes a processor, and is used for a communication device to execute the communication method of the terminal device in FIGS. 6, 15, and 17.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, the reference time domain position is the same as the reference time domain position determined by other terminal devices among the multiple terminal devices, and the reference time domain position is used to initialize the first terminal device.
  • a sequence the first terminal device generates the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission; the first terminal equipment Send the first reference signal to the network device.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may include a chip, an integrated circuit, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application provides a chip system, which includes a processor, and is used for a communication device to execute the communication method of the network device in FIGS. 6, 15, and 17.
  • the network device determines the reference time-domain position according to the pre-configured uplink time-frequency resource, the reference time-domain position is the same as the reference time-domain position determined by other terminal devices among the multiple terminal devices, and the reference time-domain position is used to initialize the first sequence
  • the network device generates the first reference signal according to the first sequence and the time interval, where the time interval is the interval between the reference time domain position and the start time domain position of the first reference signal transmission; the network device receives from the first terminal device The second reference signal; the network device demodulates the uplink data from the first terminal device according to the first reference signal and the second reference signal.
  • the chip system further includes a memory for storing necessary program instructions and data for the network device.
  • the chip system may include a chip, an integrated circuit, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the communication device, computer storage medium, computer program product, or chip system provided in the present application are all used to execute the communication method described above. Therefore, the beneficial effects that can be achieved can be referred to in the embodiments provided above The beneficial effects of, will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or include one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及***,涉及通信领域,用于实现终端设备在预配置的上行时频资源起始位置后有上行数据需要传输时,能够在下一个预配置的上行时频资源起始位置之前,进行上行数据传输。通信方法包括:第一终端设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;第一终端设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;第一终端设备向网络设备发送第一参考信号。

Description

通信方法、装置及*** 技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置及***。
背景技术
在第五代(5th generation,5G)通信技术中,窄带物联网(narrowband internet of things,NB-IoT)***用于支持较大覆盖范围的通信。
NB-IoT版本(Release)16中正在研究上行免调度传输,即进行上行数据传输时,终端设备不必向网络设备申请上行传输资源,不必等待网络设备下发上行传输的调度信息。这样可以减少交互流程,降低功耗时延,降低信令开销。特别地,在上行免调度传输中,网络设备可以给不同的终端设备配置不同的预配置的上行时频资源(preconfigured uplink resources,PUR)——专用资源(dedicated resource),也可以给不同的终端设备配置相同或部分重叠的预配置的上行时频资源——共享资源(shared resource)。相对于专用资源来说,共享资源有利于降低网络资源的开销,提升频谱利用率。
另外,终端设备在进行上行数据传输时会同时发送解调参考信号(demodulation reference signal,DMRS),DMRS用于网络设备做信道估计、信道均衡,以便正确解调上行数据。不同的终端设备在共享资源上进行上行数据传输时,需要采用正交的DMRS序列,网络设备根据正交的DMRS序列区分不同的终端设备。
为了使多个终端设备进行上行数据传输时能够使用正交的DMRS序列,要求多个终端设备均在预配置的上行时频资源起始位置上开始传输上行数据。一旦终端设备在预配置的上行时频资源起始位置没有上行数据需要传输,而在预配置的上行时频资源起始位置后有上行数据需要传输,此时,需要终端设备等到下一个预配置的上行时频资源起始位置开始传输上行数据。
发明内容
本申请实施例提供通信方法、装置及***,用于实现终端设备在预配置的上行时频资源起始位置后有上行数据需要传输时,能够在下一个预配置的上行时频资源起始位置之前,进行上行数据传输。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,方法适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备,方法包括:第一终端设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;第一终端设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;第一终端设备向网络设备发送第一参考信号。
本申请实施例提供的通信方法,第一终端设备和网络设备根据预配置的上行时频 资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。第一终端设备和网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。第一终端设备向网络设备发送第一参考信号。网络设备从所述第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。由于在参考时域位置初始化第一序列,在相同时频资源上,不同终端设备对应的第一序列相同。第一参考信号是根据第一序列以及上述时间间隔生成的,上述时间间隔使得从第一参考信号传输的起始时域位置开始,在相同时频资源上,不同终端设备对应的第一序列相同,第一序列与正交的Hadamard序列进行线性运算得到第一参考信号后,保证了在相同时频资源上,不同终端设备对应的第一参考信号始终是正交的。因此即使在预配置的上行时频资源起始位置之后有上行数据需要传输,仍能在预配置的上行时频资源进行发送,实现了终端设备在预配置的上行时频资源起始位置后有上行数据需要传输时,能够在下一个预配置的上行时频资源起始位置之前,进行上行数据传输。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
在一种可能的实施方式中,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源的起始时域位置。
在一种可能的实施方式中,第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:第一终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;第一终端设备根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
在一种可能的实施方式中,第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:第一终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;第一终端设备根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
在一种可能的实施方式中,第一终端设备根据第一序列和时间间隔生成第一参考信号,包括:第一终端设备根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000001
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000002
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000003
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000004
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一终端设备根据第一序列和时间间隔生成第一参考信号,包括:第一终端设备根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;第一终端设备确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000005
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000006
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000007
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000008
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一参考信号为r u(n),其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000009
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000010
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000011
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000012
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000013
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一序列的长度为时间间隔与第一参考信号的传输时长之和,第一终端设备根据第一序列和时间间隔生成第一参考信号,包括:第一终端设备确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;第一终端设备根据第三序列生成第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000014
offset为时间间隔,
Figure PCTCN2019074721-appb-000015
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000016
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000017
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
在一种可能的实施方式中,时间间隔、第一参考信号的传输时长、第三序列以及 第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000018
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000019
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000020
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000021
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
第二方面,提供了一种通信方法,方法适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备,该方法包括:网络设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;网络设备从第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
本申请实施例提供的通信方法,第一终端设备和网络设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。第一终端设备和网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。第一终端设备向网络设备发送第一参考信号。网络设备从所述第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。由于在参考时域位置初始化第一序列,在相同时频资源上,不同终端设备对应的第一序列相同。第一参考信号是根据第一序列以及上述时间间隔生成的,上述时间间隔使得从第一参考信号传输的起始时域位置开始,在相同时频资源上,不同终端设备对应的第一序列相同,第一序列与正交的Hadamard序列进行线性运算得到第一参考信号后,保证了在相同时频资源上,不同终端设备对应的第一参考信号始终是正交的。因此即使在预配置的上行时频资源起始位置之后有上行数据需要传输,仍能在预配置的上行时频资源进行发送,实现了终端设备在预配置的上行时频资源起始位置后有上行数据需要传输时,能够在下一个预配置的上行时频资源起始位置之前,进行上行数据传输。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
在一种可能的实施方式中,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源的起始时域位置。
在一种可能的实施方式中,网络设备根据预配置的上行时频资源确定参考时域位置,包括:网络设备确定第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;网络设备根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
在一种可能的实施方式中,网络设备根据预配置的上行时频资源确定参考时域位置,包括:网络设备确定第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;网络设备根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
在一种可能的实施方式中,网络设备根据第一序列和时间间隔生成第一参考信号,包括:网络设备根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000022
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000023
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000024
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000025
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,网络设备根据第一序列和时间间隔生成第一参考信号,包括:网络设备根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;网络设备确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000026
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000027
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000028
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000029
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一参考信号为
Figure PCTCN2019074721-appb-000030
其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000031
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000032
其中,r u(n) 为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000033
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000034
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000035
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一序列的长度为时间间隔与第一参考信号的传输时长之和,网络设备根据第一序列和时间间隔生成第一参考信号,包括:网络设备确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;网络设备根据第三序列生成第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000036
offset为时间间隔,
Figure PCTCN2019074721-appb-000037
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000038
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000039
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
在一种可能的实施方式中,时间间隔、第一参考信号的传输时长、第三序列以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000040
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000041
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000042
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000043
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
第三方面,提供了一种通信方法,方法适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备,方法包括:第一终端设备确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;第一终端设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;第一终端设备向网络设备发送第一参考信号。
需要说明的是,本申请实施例中的参考时域位置可能和预配置的上行时频资源有关系,也可能和预配置的上行时频资源没有关系,是一个绝对位置,在此统一说明。
其中,第三方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
第四方面,提供了一种通信方法,方法适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备,该方法包括:网络设备确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;网络设备从第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来 自第一终端设备的上行数据。
需要说明的是,本申请实施例中的参考时域位置可能和预配置的上行时频资源有关系,也可能和预配置的上行时频资源没有关系,是一个绝对位置,在此统一说明。
其中,第四方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
第五方面,提供了一种第一终端设备,第一终端设备适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备;其中,第一终端设备包括收发模块和处理模块;处理模块,用于根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;处理模块,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;收发模块,用于向网络设备发送第一参考信号。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
在一种可能的实施方式中,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源的起始时域位置。
在一种可能的实施方式中,处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:收发模块,用于接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;处理模块,用于根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
在一种可能的实施方式中,处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:收发模块,用于接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;处理模块,用于根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
在一种可能的实施方式中,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000044
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000045
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000046
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000047
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;处理模块,用于确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000048
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000049
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000050
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000051
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一参考信号为r u(n),其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000052
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000053
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000054
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000055
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000056
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一序列的长度为时间间隔与第一参考信号的传输时长之和,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;处理模块,用于根据第三序列生成第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000057
offset为时间间隔,
Figure PCTCN2019074721-appb-000058
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000059
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000060
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
在一种可能的实施方式中,时间间隔、第一参考信号的传输时长、第三序列以及 第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000061
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000062
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000063
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000064
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
第六方面,提供了一种网络设备,网络设备适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备;其中,网络设备包括处理模块和收发模块;处理模块,用于根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;处理模块,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;收发模块,用于从第一终端设备接收第二参考信号;处理模块,用于根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
在一种可能的实施方式中,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
在一种可能的实施方式中,参考时域位置为预配置的上行时频资源的起始时域位置。
在一种可能的实施方式中,处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:处理模块,用于确定第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;处理模块,用于根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
在一种可能的实施方式中,处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:处理模块,用于确定第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;处理模块,用于根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
在一种可能的实施方式中,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000065
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000066
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000067
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000068
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;处理模块,用于确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000069
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000070
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000071
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000072
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一参考信号为
Figure PCTCN2019074721-appb-000073
其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000074
在一种可能的实施方式中,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000075
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000076
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000077
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000078
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
在一种可能的实施方式中,第一序列的长度为时间间隔与第一参考信号的传输时长之和,处理模块,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块,用于确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;处理模块,用于根据第三序列生成第一参考信号。
在一种可能的实施方式中,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000079
offset为时间间隔,
Figure PCTCN2019074721-appb-000080
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000081
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000082
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
在一种可能的实施方式中,时间间隔、第一参考信号的传输时长、第三序列以及 第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000083
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000084
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000085
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000086
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
第七方面,提供了一种第一终端设备,第一终端设备适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备;其中,第一终端设备包括收发模块和处理模块;处理模块,用于确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;处理模块,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;收发模块,用于向网络设备发送第一参考信号。
第八方面,提供了一种网络设备,网络设备适用于无线通信***,无线通信***包括第一小区,第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,多个终端设备包括第一终端设备;其中,网络设备包括处理模块和收发模块;处理模块,用于确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;处理模块,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;收发模块,用于从第一终端设备接收第二参考信号;处理模块,用于根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
第九方面,提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行如第一方面或第三方面所述的通信方法。
第十方面,提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行如第二方面或第四方面所述的通信方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的通信方法,或者执行如第二方面或者其任一种可能的实施方式中的通信方法,或者执行如第三方面或者其任一种可能的实施方式中的通信方法,或者执行如第四方面或者其任一种可能的实施方式中的通信方法。
第十二方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的通信方法,或者执行如第二方面或者其任一种可能的实施方式中的通信方法,或者执行如第三方面或者其任一种可能的实施方式中的通信方法,或者执行如第四方面或者其任一种可能的实施方式中的通信方法。
第十三方面,提供了一种通信***,包括如第五方面所述的第一终端设备和如第六方面所述的网络设备,或者,包括如第七方面所述的第一终端设备和如第八方面所 述的网络设备,或者,包括如第九方面所述的通信装置和如第十方面所述的通信装置。
第三方面至第十三方面的技术效果可以参照第一方面至第二方面的各种可能实施方式所述内容。
附图说明
图1为现有的DMRS的位置示意图;
图2为本申请实施例提供的一种通信***的结构示意图;
图3为本申请实施例提供的终端设备和网络设备的结构示意图;
图4为本申请实施例提供的终端设备的另一种结构示意图;
图5为本申请实施例提供的DMRS序列正交原理示意图;
图6为本申请实施例提供的一种通信方法一;
图7为本申请实施例提供的参考时域位置示意图一;
图8为本申请实施例提供的参考时域位置示意图二;
图9为本申请实施例提供的参考时域位置示意图三;
图10为本申请实施例提供的第一偏移时长示意图;
图11为本申请实施例提供的第二偏移时长示意图;
图12为本申请实施例提供的参考时域位置示意图四;
图13为本申请实施例提供的参考时域位置示意图五;
图14为本申请实施例提供的相同Gold序列的示意图;
图15为本申请实施例提供的一种通信方法二;
图16为本申请实施例提供的根据第一序列生成第一参考信号的示意图一;
图17为本申请实施例提供的一种通信方法三;
图18为本申请实施例提供的根据第一序列生成第一参考信号的示意图二;
图19为本申请实施例提供的第一终端设备的结构示意图;
图20为本申请实施例提供的网络设备的结构示意图。
具体实施方式
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例依托无线通信网络中5G网络的场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例可以适用于长期演进(long term evolution,LTE)***,如NB-IoT***中。也可以适用于其他无线通信***,例如全球移动通信***(global system for mobile communication,GSM),移动通信***(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)***,以及新的网络设备***等。下面以LTE***为例进行具体实施例的介绍。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,IoT:
IoT是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之 间,使得在任何物品与物品之间可以进行信息交换和通信。这样的通信方式也称为机器间通信(machine type communications,MTC)。其中,通信的节点称为MTC终端或MTC设备。典型的IoT应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。
由于物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。比如,由于某些场景下的MTC终端应用在覆盖较差的环境下,如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,因此需要覆盖增强的技术来解决。或者,由于某些场景下的MTC终端的数量要远远大于人与人通信的设备数量,也就是说需要大规模部署,因此要求能够以非常低的成本获得并使用MTC终端。或者,由于某些场景下的MTC终端传输的数据包很小,并且对延时并不敏感,因此要求支持低速率的MTC终端。或者,由于在大多数情况下,MTC终端是通过电池来供电的,但是同时在很多场景下,MTC终端又要求能够使用十年以上而不需要更换电池,这就要求MTC终端能够以极低的电力消耗来工作。
为了满足上述需求,移动通信标准化组织3GPP在RAN#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为NB-IoT课题。
第二,上行数据传输:
和长期演进(long term evolution,LTE)不同,NB-IoT上行数据传输支持单频音(single-tone)和多频音(multi-tone)。single-tone传输对应的子载波个数为1,主要适用于低速率、覆盖场景增强的场景,可以提供更低实现成本;multi-tone传输对应的子载波个数大于1,可以比Single-tone传输提供更大速率,也可以支持覆盖增强。此外,NB-IoT上行传输的子载波间隔有15kHz和3.75kHz两种,当子载波个数为1(single-tone)时,支持15kHz和3.75kHz两种子载波间隔,当子载波个数大于1(multi-tone)时,只支持15kHz的子载波间隔。
上行数据传输的基本调度单位是资源单元(resource unit,RU)。当子载波间隔为3.75kHz时,NB-IoT***只支持single-tone,1个RU在频域上占用1个子载波,时域上占用16个时隙(slot);当子载波间隔为15kHz时,表一定义了以下几种RU(
Figure PCTCN2019074721-appb-000087
表示1个RU频域上占用的子载波数,
Figure PCTCN2019074721-appb-000088
表示1个RU时域上占用的连续slot数),每个slot由7个单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)符号(symbol)组成。
表一
Figure PCTCN2019074721-appb-000089
此外,上行数据传输可能有重复(repetition),一个数据块占M个RU,repetition数=N,则表示本次上行传输占据N*M个RU,即重复(repetition)是以M*RU为单位的。
第三,DMRS:
NB-IoT窄带物理上行共享信道(narrow band physical uplink shared channel,NPUSCH)格式(format)1用于上行数据传输。其中,在上行数据传输过程中,终端设备会同时发送DMRS,DMRS用于网络设备进行信道估计、信道均衡,以便正确解调上行数据。如图1所示,在进行上行数据传输时,1个slot中有1个SC-FDMA symbol用于传输DMRS、其余6个SC-FDMA symbol用于传输上行数据。其中,图1中的保护间隔(guard period,GP)可参考现有的相关描述,在此不予赘述。
如上所述,对于上行数据传输来说,有两种传输方式:single tone和multi tone。对于single tone来说,有3.75kHz和15kHz两种子载波间隔,不论是哪种子载波间隔,对于single tone,一个RU占用16个slot。single tone的3.75kHz和15kHz在DMRS的生成方式上是一样的,仅是DMRS在映射上有所不同。本申请实施例主要涉及DMRS的生成方式,具体DMRS在上行数据传输时如何映射,本申请实施例对此不作具体限定。
示例性的,可以结合下述公式(1)和公式(2)生成DMRS:
Figure PCTCN2019074721-appb-000090
Figure PCTCN2019074721-appb-000091
其中,c(n)表示金(Gold)序列,且现有技术中,c(n)在NPUSCH传输开始位置进行初始化,初始化种子为C init=35;w(n)表示哈达码(Hadamard)序列;r u(n)表示DMRS序列;
Figure PCTCN2019074721-appb-000092
表示NPUSCH的重复次数;
Figure PCTCN2019074721-appb-000093
表示一个RU占用的连续slot数目,示例性的可以为16;N RU表示一个数据块占用的RU数目,mod()表示取余。
下面对Gold序列c(n)的生成方法进行说明。
其中,Gold序列c(n)的生成方式如下述公式(3)所示:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2;                                公式(3)
其中,将Gold序列c(n)的长度记为M PN,即n的取值范围为:0,1,……M PN-1,x 1(n+N C)、x 2(n+N C)为生成c(n)的两个序列,N C=1600,mod()表示取余。
上述的序列x 1(n+N C)可以通过如下公式(4)确定:
x 1(n+31)=(x 1(n+3)+x 1(n))mod2;                                  公式(4)
其中,序列x 1(n+N C)的初始化种子为x 1(0)=1,x 1(n)=0,n=1,2,......30。
上述的序列x 2(n+N C)可以通过如下公式(5)确定:
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2;                 公式(5)
其中,可选的,序列x 2(n+N C)的初始化种子的取值与具体的应用有关,在DMRS序列的生成中,序列x 2(n+N C)的初始化种子为35。通过公式
Figure PCTCN2019074721-appb-000094
以及C init=35可以得到序列x 2(n+N C)。
16长Hadamard序列w(n)如下表二所示:
表二
Figure PCTCN2019074721-appb-000095
Figure PCTCN2019074721-appb-000096
其中,表二中的u为Hadamard序列w(n)的索引。不同的Hadamard序列w(n)的索引对应的Hadamard序列相互正交。对于single tone来说,不论是哪种子载波间隔,一个RU占用16个slot,这16个slot可以分别对应一个16长Hadamard序列w(n)。
现有技术中,组跳场景下Hadamard序列w(n)的索引u的计算公式与不组跳场景下Hadamard序列w(n)的索引u的计算公式不同。
不组跳场景下Hadamard序列w(n)的索引u的计算公式如下述公式(6)所示:
Figure PCTCN2019074721-appb-000097
其中,
Figure PCTCN2019074721-appb-000098
表示小区标识;mod()表示取余。
根据上述公式(6),示例性的,以一个数据块占用2个RU、NPUSCH重复2次,共4个RU为例,则小区标识和RU使用的Hadamard序列w(n)的索引u的映射关系可以如表三所示。由表三可知,此时,每个RU上使用的Hadamard序列w(n)的索引u相同;同频小区之间,如0号小区和16号小区,使用的Hadamard序列w(n)的索引u完全相同。
表三
Figure PCTCN2019074721-appb-000099
Figure PCTCN2019074721-appb-000100
组跳场景下Hadamard序列w(n)的索引u的计算公式如下述公式(7)所示:
Figure PCTCN2019074721-appb-000101
其中,f gh(n s)表示组跳图案(pattern);f ss表示序列移位图案;mod表示取余;
Figure PCTCN2019074721-appb-000102
表示一个RU的长度,示例性的可以为16。
f gh(n s)的计算公式如下述公式(8)所示:
Figure PCTCN2019074721-appb-000103
其中,c(n)表示Gold序列,且现有技术中,c(n)在每个RU开始位置进行初始化,初始化种子为
Figure PCTCN2019074721-appb-000104
表示向下取整,
Figure PCTCN2019074721-appb-000105
表示小区标识,
Figure PCTCN2019074721-appb-000106
表示一个RU的长度,示例性的可以为16;n′ s对于single tone是每个RU的第一个slot号;mod表示取余;
Figure PCTCN2019074721-appb-000107
表示一个RU的长度,示例性的可以为16。
f ss的计算公式如下述公式(9)所示:
Figure PCTCN2019074721-appb-000108
其中,
Figure PCTCN2019074721-appb-000109
表示小区标识;mod()表示取余;
Figure PCTCN2019074721-appb-000110
表示一个RU的长度,示例性的可以为16;△ ss∈{0,1,...,29}是高层配置的参数,如果没有配置这个参数,默认为0。
根据上述公式(7)至公式(9),示例性的,以一个数据块占用2个RU、NPUSCH重复2次,共4个RU为例,此时,可以通过f gh(n s)和f ss确定Hadamard序列的索引u。其中,小区标识和RU使用的Hadamard序列的索引u的映射关系可以如表四所示。由表四可知,此时,每个RU上使用的Hadamard序列的索引u不相同;同频小区之间,如0号小区和16号小区,使用的Hadamard序列的索引u也不相同。
表四
Figure PCTCN2019074721-appb-000111
Figure PCTCN2019074721-appb-000112
需要说明的是,表四中的Hadamard序列的索引u的数值仅是一个示意,以C init=0时,f gh(n s)=1、5、7、9;C init=1时,f gh(n s)=2、9、3、5)为例进行说明。当f gh(n s)为其它数值时,Hadamard序列的索引u的数值可能与表四不同,本申请实施例对此不作具体限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE***,如NB-IoT***中;也可以适用于其他无线通信***,例如全球移动通信***(Global System for Mobile Communication,GSM),移动通信***(Universal Mobile Telecommunications System,UMTS),码分多址接入(Code Division Multiple Access,CDMA)***,宽带码分多址(Wideband Code Division Multiple Access,WCDMA)以及面向未来的新的网络设备***等,本申请实施例对此不作具体限定。其中,上述适用本申请的通信***仅是举例说明,适用本申请的通信***不限于此,在此统一说明,以下不再赘述。此外,术语“***”可以和“网络”相互替换。
如图2所示,为本申请实施例提供的一种通信***20。该通信***20包括网络设备30以及该网络设备30所覆盖的第一小区内的多个终端设备40,该多个终端设备40能够在相同的上行时频资源上传输上行数据。可选的,多个终端设备40中的不同终端设备之间可以相互通信。第一小区可以为该网络设备30所覆盖的一个或多个小区中的任意一个小区。
本申请实施例以多个终端设备40中包括第一终端设备,该第一终端设备为多个终端设备40中的任一终端设备为例。
可选的,本申请实施例中的网络设备30,是一种将终端设备40接入到无线网络的设备,可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB);或者GSM或CDMA中的基站(Base Transceiver Station,BTS);或者WCDMA***中的基站(NodeB);或者第五代(5th generation,5G)网络或者 未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端设备40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图3所示,为本申请实施例提供的网络设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图3中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图3中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图3中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图3中示例性的以包括一个输入设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设 备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的通信方法中的处理相关的功能,收发器403负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备30包括至少一个处理器(图3中示例性的以包括一个处理器301为例进行说明)、至少一个收发器(图3中示例性的以包括一个收发器303为例进行说明)和至少一个网络接口(图3中示例性的以包括一个网络接口304为例进行说明)。可选的,网络设备30还可以包括至少一个存储器(图3中示例性的以包括一个存储器302为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图3中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
结合图3所示的终端设备40的结构示意图,示例性的,图4为本申请实施例提供的终端设备40的一种具体结构形式。
其中,在一些实施例中,图3中的处理器401的功能可以通过图4中的处理器110实现。
在一些实施例中,图3中的收发器403的功能可以通过图4中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备40是第一设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备40是第二设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)或星基增强***(satellite based augmentation  systems,SBAS)。
在一些实施例中,图3中的存储器402的功能可以通过图4中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图3中的输出设备404的功能可以通过图4中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图3中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图4中的传感器模块180来实现。示例性的,如图4所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图4所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图4所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图4,以图2所示的多个终端设备40中的第一终端设备与网络设备进行交互为例,对本申请实施例提供的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如前文所述的,对于single-tone传输模式,为了支持多个终端设备在相同的PUR上传输上行数据,不同的终端设备使用正交的DMRS序列。具体的可以采用下述方案:
方案1:在现有DMRS序列的生成方式(即相同小区不同终端设备使用相同DMRS序列)的基础上,不同的终端设备使用不同的Hadamard码w(n)的索引u,从而使不同的终端设备使用正交的DMRS序列。
方案2:以现有DMRS序列的生成方式(即相同小区不同终端设备使用相同DMRS序列)为基序列,为不同的终端设备分配不同的循环移位索引,以得到不同的循环移位。通过对基序列循环移位使不同的终端设备使用正交的DMRS序列。
不论采用上述哪种方案,对于single-tone传输模式来说,为了使不同终端设备传输上行数据时能够使用正交的DMRS序列,都需要不同终端设备在相同的资源位置上开始传输上行数据。
而终端设备在预配置的上行时频资源上传输上行数据的时候,处于空闲(idle)态,数据到达时由终端设备自主发送,而非由基站调度,终端设备不知道是否有其他终端设备也在相同的预配置的上行时频资源上发送上行数据,不同终端设备不能通过基站 协调到同一个预配置的上行时频资源上的同一位置上开始传输上行数据。一种简单的方法是限制终端设备只能在预配置的上行时频资源的开始位置开始传输上行数据,从而保证不同终端设备能够在相同的时频资源位置上开始传输上行数据,并通过使用正交的DMRS序列保证基站能够区分不同的终端设备。一旦在预配置的上行时频资源开始位置之后有上行数据需要传输,需要等到下一个预配置的上行时频资源发送上行数据。
本申请实施例提供了一种通信方法,当终端设备在预配置的上行时频资源上传输上行数据时,不必限制只能在预配置的上行时频资源开始位置开始传输上行数据,即使在预配置的上行时频资源开始位置之后有上行数据传输,也可以使用当前的预配置的上行时频资源传输上行数据,不用等到下一个预配置的上行时频资源。
具体的,为了在预配置的上行时频资源的开始位置之后、下一个预配置的上行时频资源之前传输上行数据,需要保证在相同的时频资源上,不同终端设备对应的DMRS序列是正交的。而根据公式(1),DMRS序列由Gold序列c(n)和Hadamard序列w(n)线性运算得到,在相同的时频资源上,不同终端设备可以通过使用表二所示的不同的Hadamard索引u,使得不同终端设备对应的Hadamard序列w(n)是正交的,因此只要保证在相同的时频资源上,不同终端设备对应的Gold序列c(n)相同即可。
示例性的,如图5所示,假设两个终端设备(UE1和UE2)在相同的预配置的上行时频资源上向网络设备发送上行数据,UE1在预配置的上行时频资源的起始时域位置(即预配置的上行时频资源的第0个时隙位置)就开始发送上行数据,UE2可以在预配置的上行时频资源的第16个时隙位置开始发送上行数据。在第16个时隙位置上,UE1和UE2对应的Gold序列c(n)均为c(16),UE1对应的Hadamard序列w(n)为w u1(0),UE2对应的Hadamard序列w(n)为w u2(0),UE1根据c(16)和w u1(0)生成的DMRS序列为r u1(16),UE2根据c(16)和w u2(0)生成的DMRS序列为r u2(16),在之后的时隙位置上,UE1和UE2生成DMRS序列同理。在第16个时隙位置到第31个时隙位置构成的RU上,由于UE1和UE2对应的Gold序列均为c(16)至c(31),因此,Gold序列相同。UE1对应的Hadamard序列为w u1(0)至w u1(15),UE2对应的Hadamard序列为w u2(0)至w u2(15),因此,Hadamard序列正交。从而UE1和UE2在同一个RU上,通过相同的Gold序列和正交的Hadamard序列的线性运算(类似公式(1))得到正交的DMRS序列。在之后的RU上,同理。
为了保证在预配置的上行时频资源的开始位置之后、下一个预配置的上行时频资源之前传输上行数据时,在相同的时频资源上,不同终端设备对应的Gold序列c(n)相同,首先要在相同的位置初始化Gold序列c(n),本申请实施例选择在参考时域位置初始化Gold序列c(n)。进一步的,本申请实施例提供了两种方式来选择具体的Gold序列c(n),一种是直接从DMRS信号传输的起始时域位置开始选取对应的Gold序列,然后生成DMRS序列,使得不同终端设备对应的Gold序列c(n)相同;另一种方式是生成DMRS序列后,从DMRS信号传输的起始时域位置开始选择对应DMRS序列,隐式地使得不同终端设备对应的Gold序列c(n)相同。
如图6所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤:
S601、第一终端设备根据预配置的上行时频资源确定参考时域位置。
其中,该参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同。
也就是说,本申请实施例中,能够在相同的上行时频资源上传输上行数据的多个终端设备对应相同的参考时域位置。
一种可能的实现方式中,本申请实施例中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
示例性的,如图7所示,假设预配置的上行时频资源为上行时频资源1,则参考时域位置可以为预配置的上行时频资源1所在的周期内,预配置的上行时频资源1的起始时域位置与预配置的上行时频资源1所在的周期的起始位置之间的一个位置。
或者,示例性的,如图8所示,假设预配置的上行时频资源为上行时频资源1,则参考时域位置可以为预配置的上行时频资源所在的周期的起始位置。
另一种可能的实现方式中,本申请实施例中,参考时域位置为预配置的上行时频资源的起始时域位置,如图9所示。
可选的,这里预配置的上行时频资源可以是周期性的,也可以是非周期性的,在此不作具体限定。
对于上述两种可能的实现方式:
可选的,第一终端设备根据预配置的上行时频资源确定参考时域位置,可以包括:第一终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;第一终端设备根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
示例性的,结合上述图7进行说明,第一指示信息可以用于指示参考时域位置相对于预配置的上行时频资源1所在的周期的起始位置的第一偏移时长P1,进而,第一终端设备根据第一指示信息和预配置的上行时频资源1所在的周期的起始位置,可以确定参考时域位置,如图10所示。
或者,可选的,第一终端设备根据预配置的上行时频资源确定参考时域位置,可以包括:第一终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;第一终端设备根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
示例性的,结合上述图8进行说明,第二指示信息可以用于指示预配置的上行时频资源1的起始时域位置相对于参考时域位置的第二偏移时长P2,进而,第一终端设备根据第二指示信息和预配置的上行时频资源2的起始时域位置,可以确定参考时域位置,如图11所示。
再一种可能的实现方式中,若预配置的上行时频资源为周期性资源,则可以每N个预配置的上行资源对应一个参考时域位置,该参考时域位置为每N个预配置的上行时频资源中的第一个预配置的上行时频资源所在的周期内,第一个预配置的上行时频资源的起始时域位置前的一个时域位置,N为大于1的正整数。
可选的,该实现方式中,终端设备也可以根据网络设备发送的指示信息确定参考时域位置,该指示信息用于指示每个参考时域位置相对于每N个预配置的上行时频资 源中的第一个预配置的上行时频资源所在的周期的起始位置的第三偏移时长,或者,该指示信息用于指示每N个预配置的上行时频资源中的第一个预配置的上行时频资源的起始位置相对于每个参考时域位置的第四偏移时长,相关示例可参考上述图10或图11,在此不再赘述。
再一种可能的实现方式中,若预配置的上行时频资源为周期性资源,则可以每N个预配置的上行资源对应一个参考时域位置,该参考时域位置为每N个预配置的上行时频资源中的第一个预配置的上行时频资源的起始位置,N为大于1的正整数。
示例性的,假设N=2,即每2个预配置的上行资源对应一个参考时域位置,则如图12所示,假设预配置的上行时频资源5在第5个周期内,预配置的上行时频资源6在第6个周期内,预配置的上行时频资源7在第7个周期内,预配置的上行时频资源8在第8个周期内,则预配置的上行时频资源5和预配置的上行时频资源6可以对应参考时域位置3,预配置的上行时频资源7和预配置的上行时频资源8可以对应参考时域位置4。也就是说,假设步骤S601中的预配置的上行时频资源为图12中所示的预配置的上行时频资源8,则根据该预配置的上行时频资源8确定出的参考时域位置应该为图12所示的参考时域位置4,即预配置的上行时频资源7所在的周期内,预配置的上行时频资源7的起始时域位置前的一个时域位置;或者,假设步骤S601中的预配置的上行时频资源为图12中所示的预配置的上行时频资源5,则根据该预配置的上行时频资源5确定出的参考时域位置应该为图12所示的参考时域位置3,即预配置的上行时频资源5所在的周期内,预配置的上行时频资源5的起始时域位置前的一个时域位置。
需要说明的是,图12中示意出的参考时域位置为每N个预配置的上行时频资源中,第一个预配置的上行时频资源所在的周期内,第一个预配置的上行时频资源的起始时域位置与第一个预配置的上行时频资源所在的周期的起始位置之间的一个位置,当然,该参考时域位置也可以是每N个预配置的上行时频资源中,第一个预配置的上行时频资源所在的周期的起始位置;或者,该参考时域位置也可以是每N个预配置的上行时频资源中,第一个预配置的上行时频资源的起始位置,在此不再一一画图示意。
可选的,本申请实施例中,预配置的上行时频资源所在的周期的起始位置满足:
(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
其中,若通过预配置的上行时频资源所在的周期的起始位置对应的子帧号计算,示例性的,若预配置的上行时频资源的周期的单位为毫秒(ms),则这里的第一设定值可以为1;或者,示例性的,若预配置的上行时频资源的周期的单位为(10ms),则这里的第一设定值可以为10。
或者,若通过预配置的上行时频资源所在的周期的起始位置对应的帧号计算,示例性的,若预配置的上行时频资源的周期的单位为ms,则这里的第二设定值可以为10;或者,示例性的,若预配置的上行时频资源的周期的单位为10ms,则这里的第二设定值可以为1。
可选的,本申请实施例中,参考时域位置也可能和预配置的上行时频资源没有关 系,即第一终端设备可以直接确定参考时域位置。比如,如图13所示,参考时域位置可以为一个绝对时域位置,该绝对时域位置可以是网络设备配置给终端设备的,也可以是提前预配置在终端设备上或者协议规定的,本申请实施例对此不作具体限定。
参考时域位置用于初始化第一序列。示例性的,第一序列可以为Gold序列c(n),在参考时域位置初始化Gold序列c(n),初始化种子为C init=35。由于在相同的上行时频资源上传输上行数据的多个终端设备的参考时域位置相同,所以不同终端设备在相同参考时域位置初始化得到的第一序列也相同。或者说,在相同时频资源上,不同终端设备对应的第一序列相同。
示例性的,第一序列为Gold序列c(n)为例进行说明。如图14所示,假设两个终端设备(UE1和UE2)在相同的预配置的上行时频资源上向网络设备发送上行数据,UE1在预配置的上行时频资源的起始时域位置(即预配置的上行时频资源的第0个时隙位置)就开始发送上行数据,UE2可以在预配置的上行时频资源的第16个时隙位置开始发送上行数据。在第16个时隙位置上,UE1和UE2对应的Gold序列c(n)均为c(16),在第31个时隙位置上,UE1和UE2对应的Gold序列c(n)均为c(31)。
S602、第一终端设备根据第一序列和时间间隔生成第一参考信号。
其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。时间间隔可以指时隙数,示例性的,假设参考时域位置为第4时隙,第一参考信号传输的起始时域位置为第12时隙,则时间间隔为12-4=8。特别地,当第一参考信号传输的起始时域位置与参考时域位置相同时,时间间隔为0。
具体的,第一终端设备根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
在一种可能的实施方式中,如图15所示,步骤S602可以包括步骤S6021和S6022。其中,如图16所示,在步骤S6021,第一终端设备根据第一序列c(n)生成长度为
Figure PCTCN2019074721-appb-000113
的第二序列X(n);在步骤S6022,第一终端设备在第二序列X(n)中截取从时间间隔offset位置之后的、长度为
Figure PCTCN2019074721-appb-000114
的序列作为第一参考信号r u(n)。
S6021、第一终端设备根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列。
根据公式(1),可以将n的取值范围增加至
Figure PCTCN2019074721-appb-000115
其中,
Figure PCTCN2019074721-appb-000116
为第一参考信号的传输时长,offset为时间间隔。即时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000117
其中,X(n)为第二序列,该第二序列可以为DMRS序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000118
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000119
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000120
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
S6022、第一终端设备确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号。
其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
第一终端设备在第二序列中截取从时间间隔offset位置之后的、长度为
Figure PCTCN2019074721-appb-000121
的序列作为第一参考信号。即第一参考信号为r u(n),其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000122
结合步骤S6021和S6022,第一序列为Gold序列,最终得到第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000123
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000124
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000125
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000126
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
结合图5和图16的相关论述,在该实施方式中,由于不同终端设备均在参考时域位置初始化Gold序列c(n),则在相同的时频资源上,不同终端设备对应的Gold序列c(n)是相同的,在此基础上,与不同终端设备对应的正交的Hadamard序列w(n)进行线性运算后,在相同的时频资源上,不同终端设备对应的DMRS序列是正交的。
在另一种可能的实施方式中,如图17所示,步骤S602可以包括S6023和S6024。其中,如图18所示,在步骤S6023,第一序列c(n)长度为
Figure PCTCN2019074721-appb-000127
第一终端设备确定第一序列c(n)中从时间间隔offset位置之后的、长度为
Figure PCTCN2019074721-appb-000128
的序列为第三序列c(n+offset);在步骤S6024,第一终端设备根据第三序列c(n+offset)生成第一参考信号r u(n)。
S6023、第一终端设备确定第一序列中长度为第一参考信号传输时长的序列为第三序列。
其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值。第一序列的长度为时间间隔与第一参考信号的传输时长之和。
第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000129
offset为时间间隔,
Figure PCTCN2019074721-appb-000130
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000131
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000132
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
则第三序列为c(n+offset),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000133
S6024、第一终端设备根据第三序列生成第一参考信号。
时间间隔、第一参考信号的传输时长、第三序列以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000134
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000135
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000136
为窄带物理上行共享信道传输的 重复次数,
Figure PCTCN2019074721-appb-000137
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
结合步骤S6023和S6024,第一序列为Gold序列,最终得到第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000138
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000139
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000140
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000141
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
结合图5和图18的相关论述,在该实施方式中,由于不同终端设备均在参考时域位置初始化Gold序列c(n),则在相同的时频资源上,不同终端设备对应的初始Gold序列c(n)是相同的,在此基础上,终端设备在与第一参考信号传输的起始时域位置对应的位置处开始截取Gold序列,使得从该起始时域位置之后,在相同的时频资源上不同终端设备对应的Gold序列是相同的。与不同终端设备对应的正交的Hadamard序列w(n)进行线性运算后,在相同的时频资源上,不同终端设备对应的DMRS序列是正交的。因此,使得不同终端设备在预配置的上行时频资源的同一时频资源上的第一参考信号仍是正交的。
S603、网络设备根据预配置的上行时频资源确定参考时域位置。
其中,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同。参考时域位置用于初始化第一序列。
与步骤S601类似的,可选的,本申请实施例中,参考时域位置也可能和预配置的上行时频资源没有关系,即网络设备可以直接确定参考时域位置。比如,如图13所示,参考时域位置可以为一个绝对时域位置,该绝对时域位置可以是网络设备确定的,也可以是提前预配置在网络设备上或者协议规定的,本申请实施例对此不作具体限定。
S604、网络设备根据第一序列和时间间隔生成第一参考信号。
其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。
其中,步骤S603-S604的相关描述可参考上述步骤S601-S602,在此不再赘述。
S605、第一终端设备向网络设备发送第一参考信号。
相应地,网络设备从第一终端设备接收第二参考信号。
需要说明的是,第一终端设备发送的第一参考信号在空间信道中传输的过程中,受到干扰等影响,网络设备最终从第一终端设备接收第二参考信号,该第二参考信号是第一参考信号受空间干扰得到的第一参考信号。
可选的,本申请实施例中,第一终端设备可以在预配置的上行时频资源上向网络设备发送第一参考信号。该预配置的上行时频资源可以为专用资源(dedicated resource),也可以为共享资源(shared resource),还可以包括一部分专用资源(dedicated resource),一部分共享资源(shared resource),在此不作具体限定。
第一参考信号可以携带在上行数据帧(例如PUSCH)中,上行数据帧中还包括上行数据。
S606、网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
具体的,网络设备根据第一参考信号和第二参考信号进行信道估计、信道均衡,并根据估计、均衡后的信道对来自第一终端设备的上行数据进行解调,即对步骤S605中接收的上行数据帧中的上行数据进行解调。
其中,本申请实施例中,步骤S601-S602与步骤S603-S604之间没有必然的执行先后顺序,可以是先执行步骤S601-S602,再执行步骤S603-S604;也可以是先执行步骤S603-S604,再执行步骤S601-S602;还可以是同时执行步骤S601-S602与步骤S603-S604,本申请实施例对此不作具体限定。
本申请实施例提供的通信方法,第一终端设备和网络设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。第一终端设备和网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。第一终端设备向网络设备发送第一参考信号。网络设备从所述第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。由于在参考时域位置初始化第一序列,在相同时频资源上,不同终端设备对应的第一序列相同。第一参考信号是根据第一序列以及上述时间间隔生成的,上述时间间隔使得从第一参考信号传输的起始时域位置开始,在相同时频资源上,不同终端设备对应的第一序列相同,第一序列与正交的Hadamard序列进行线性运算得到第一参考信号后,保证了在相同时频资源上,不同终端设备对应的第一参考信号始终是正交的。因此即使在预配置的上行时频资源起始位置之后有上行数据需要传输,仍能在预配置的上行时频资源进行发送,实现了终端设备在预配置的上行时频资源起始位置后有上行数据需要传输时,能够在下一个预配置的上行时频资源起始位置之前,进行上行数据传输。
可以理解的是,以上各个实施例中,由第一终端设备实现的方法和/或步骤,也可以由可用于第一终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一终端设备,或者包含上述第一终端设备的装置,或者为可用于第一终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如, 可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一终端设备为例。图19示出了一种第一终端设备190的结构示意图。该第一终端设备190包括处理模块1901和收发模块1902。所述收发模块1902,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
处理模块1901,用于确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。
处理模块1901,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。
收发模块1902,用于向网络设备发送第一参考信号。
进一步地:
处理模块1901,用于根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。
处理模块1901,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。
收发模块1902,用于向网络设备发送第一参考信号。
可选的,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
可选的,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
可选的,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
可选的,参考时域位置为预配置的上行时频资源的起始时域位置。
可选的,处理模块1901,用于根据预配置的上行时频资源确定参考时域位置,包括:收发模块1902,用于接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;处理模块1901,用于根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
可选的,处理模块1901,用于根据预配置的上行时频资源确定参考时域位置,包括:收发模块1902,用于接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;处理模块1901,用于根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
可选的,处理模块1901,用于根据第一序列和时间间隔生成第一参考信号,包括: 处理模块1901,用于根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000142
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000143
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000144
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000145
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,处理模块1901,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块1901,用于根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;处理模块1901,用于确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000146
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000147
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000148
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000149
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,第一参考信号为r u(n),其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000150
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000151
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000152
为参考信号的传输时长,
Figure PCTCN2019074721-appb-000153
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000154
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,第一序列的长度为时间间隔与第一参考信号的传输时长之和,处理模块1901,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块1901,用于确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;处理模块1901,用于根据第三序列生成第一参考信号。
可选的,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000155
offset为时间间隔,
Figure PCTCN2019074721-appb-000156
为第一参考信号的 传输时长,
Figure PCTCN2019074721-appb-000157
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000158
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
可选的,时间间隔、第一参考信号的传输时长、第三序列以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000159
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000160
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000161
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000162
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一终端设备190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一终端设备190可以采用图3所示的终端设备40的形式。
比如,图3所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的通信方法。
具体的,图19中的处理模块1901和收发模块1902的功能/实现过程可以通过图3所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图19中的处理模块1901的功能/实现过程可以通过图3所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图19中的收发模块1902的功能/实现过程可以通过图3中所示的终端设备40中的收发器403来实现。
由于本实施例提供的第一终端设备190可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图20示出了一种网络设备200的结构示意图。该网络设备200包括处理模块2001和收发模块2002。所述收发模块2002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
处理模块2001,用于确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列。
处理模块2001,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。
收发模块2002,用于从第一终端设备接收第二参考信号。
处理模块2001,用于根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
进一步地:
处理模块2001,用于根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初 始化第一序列。
处理模块2001,用于根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔。
收发模块2002,用于从第一终端设备接收第二参考信号。
处理模块2001,用于根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
可选的,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
可选的,参考时域位置为预配置的上行时频资源所在的周期的起始位置。
可选的,预配置的上行时频资源所在的周期的起始位置满足:(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
可选的,参考时域位置为预配置的上行时频资源的起始时域位置。
可选的,处理模块2001,用于根据预配置的上行时频资源确定参考时域位置,包括:处理模块2001,用于确定第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;处理模块2001,用于根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
可选的,处理模块2001,用于根据预配置的上行时频资源确定参考时域位置,包括:处理模块2001,用于确定第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;处理模块2001,用于根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
可选的,处理模块2001,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块2001,用于根据第一序列和时间间隔生成长度为第一参考信号的传输时长的第一参考信号。
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000163
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000164
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000165
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000166
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,处理模块2001,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块2001,用于根据第一序列生成时间长度为时间间隔与第一参考信号的传输时长之和的第二序列;处理模块2001,用于确定第二序列中长度为第一参考信号的传输时长的序列为第一参考信号,其中,第一参考信号的第一个数值为与第二序列的第一个数值距离时间间隔的数值。
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第二序列满足如下公式:
Figure PCTCN2019074721-appb-000167
其中,X(n)为第二序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000168
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000169
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000170
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,第一参考信号为r u(n),其中,r u(n-offset)=X(n),n的取值范围满足:
Figure PCTCN2019074721-appb-000171
可选的,第一序列为Gold序列,第一序列、时间间隔、第一参考信号的传输时长以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000172
其中,r u(n)为第一参考信号,offset为时间间隔,
Figure PCTCN2019074721-appb-000173
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000174
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000175
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
可选的,第一序列的长度为时间间隔与第一参考信号的传输时长之和,处理模块2001,用于根据第一序列和时间间隔生成第一参考信号,包括:处理模块2001,用于确定第一序列中长度为第一参考信号传输时长的序列为第三序列,其中,第三序列的第一个数值为与第一序列的第一个数值距离时间间隔的数值;处理模块2001,用于根据第三序列生成第一参考信号。
可选的,第一序列为Gold序列c(n),其中,n的取值范围满足
Figure PCTCN2019074721-appb-000176
offset为时间间隔,
Figure PCTCN2019074721-appb-000177
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000178
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000179
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
可选的,时间间隔、第一参考信号的传输时长、第三序列以及第一参考信号满足如下公式:
Figure PCTCN2019074721-appb-000180
其中,r u(n)为第一参考信号,c(n+offset)为第三序列,offset为时间间隔,
Figure PCTCN2019074721-appb-000181
为第一参考信号的传输时长,
Figure PCTCN2019074721-appb-000182
为窄带物理上行共享信道传输的重复次数,
Figure PCTCN2019074721-appb-000183
为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备200以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施 例中,本领域的技术人员可以想到该网络设备200可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的通信方法。
具体的,图20中的处理模块2001和收发模块2002的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图20中的处理模块2001的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图20中的收发模块2002的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的网络设备200可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图6、15、17中的网络设备的通信方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行图6、15、17中终端设备或网络设备的通信方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行图6、15、17中的终端设备或网络设备的通信方法。
本申请实施例提供了一种芯片***,该芯片***包括处理器,用于通信装置执行图6、15、17中的终端设备的通信方法。例如,第一终端设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;第一终端设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;第一终端设备向网络设备发送第一参考信号。
在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片***,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例提供了一种芯片***,该芯片***包括处理器,用于通信装置执行图6、15、17中的网络设备的通信方法。例如,网络设备根据预配置的上行时频资源确定参考时域位置,参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同,参考时域位置用于初始化第一序列;网络设备根据第一序列和时间间隔生成第一参考信号,其中,时间间隔为参考时域位置与第一参考信号传输的起始时域位置之间的间隔;网络设备从第一终端设备接收第二参考信号;网络设备根据第一参考信号和第二参考信号解调来自第一终端设备的上行数据。
在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片***,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、计算机存储介质、计算机程序产品或芯片***均用于执行上文所述的通信方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,其特征在于,所述方法适用于无线通信***,所述无线通信***包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备,所述方法包括:
    所述第一终端设备根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同,所述参考时域位置用于初始化第一序列;
    所述第一终端设备根据所述第一序列和时间间隔生成第一参考信号,其中,所述时间间隔为所述参考时域位置与所述第一参考信号传输的起始时域位置之间的间隔;
    所述第一终端设备向网络设备发送所述第一参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  3. 根据权利要求2所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  4. 根据权利要求3所述的方法,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  5. 根据权利要求1所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述第一终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述第一终端设备根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述第一终端设备根据所述第二指示信息和所述预配置的上行时频资源的起始时域位置,确定所述参考时域位置。
  8. 根据权利要求1所述的方法,其特征在于,所述第一终端设备根据所述第一序列和时间间隔生成第一参考信号,包括:
    所述第一终端设备根据所述第一序列和所述时间间隔生成长度为所述第一参考信号的传输时长的所述第一参考信号。
  9. 一种通信方法,其特征在于,所述方法适用于无线通信***,所述无线通信***包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备,所述方法包括:
    网络设备根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同,所述参考时域位置用于初始化第一序列;
    所述网络设备根据所述第一序列和时间间隔生成第一参考信号,其中,所述时间间隔为所述参考时域位置与所述第一参考信号传输的起始时域位置之间的间隔;
    所述网络设备从所述第一终端设备接收第二参考信号;
    所述网络设备根据所述第一参考信号和所述第二参考信号解调来自所述第一终端设备的上行数据。
  10. 根据权利要求9所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  11. 根据权利要求10所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  12. 根据权利要求11所述的方法,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  13. 根据权利要求9所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述网络设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述网络设备确定第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述网络设备根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  15. 根据权利要求9-13任一项所述的方法,其特征在于,所述网络设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述网络设备确定第二指示信息,所述第二指示信息用于指示所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述网络设备根据所述第二指示信息和所述预配置的上行时频资源的起始时域位置,确定所述参考时域位置。
  16. 根据权利要求9所述的方法,其特征在于,所述网络设备根据所述第一序列 和时间间隔生成第一参考信号,包括:
    所述网络设备根据所述第一序列和所述时间间隔生成长度为所述第一参考信号的传输时长的所述第一参考信号。
  17. 一种第一终端设备,其特征在于,所述第一终端设备适用于无线通信***,所述无线通信***包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括所述第一终端设备;
    其中,所述第一终端设备包括收发模块和处理模块;
    所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同,所述参考时域位置用于初始化第一序列;
    所述处理模块,用于根据所述第一序列和时间间隔生成第一参考信号,其中,所述时间间隔为所述参考时域位置与所述第一参考信号传输的起始时域位置之间的间隔;
    所述收发模块,用于向网络设备发送所述第一参考信号。
  18. 根据权利要求17所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  19. 根据权利要求18所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  20. 根据权利要求19所述的第一终端设备,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  21. 根据权利要求17所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  22. 根据权利要求17-21任一项所述的第一终端设备,其特征在于,所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:
    所述收发模块,用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述处理模块,用于根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  23. 根据权利要求17-21任一项所述的第一终端设备,其特征在于,所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:
    所述收发模块,用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述处理模块,用于根据所述第二指示信息和所述预配置的上行时频资源的起始 时域位置,确定所述参考时域位置。
  24. 根据权利要求17所述的第一终端设备,其特征在于,所述处理模块,用于根据所述第一序列和时间间隔生成第一参考信号,包括:
    所述处理模块,用于根据所述第一序列和所述时间间隔生成长度为所述第一参考信号的传输时长的所述第一参考信号。
  25. 一种网络设备,其特征在于,所述网络设备适用于无线通信***,所述无线通信***包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备;
    其中,所述网络设备包括处理模块和收发模块;
    所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同,所述参考时域位置用于初始化第一序列;
    所述处理模块,用于根据所述第一序列和时间间隔生成第一参考信号,其中,所述时间间隔为所述参考时域位置与所述第一参考信号传输的起始时域位置之间的间隔;
    所述收发模块,用于从所述第一终端设备接收第二参考信号;
    所述处理模块,用于根据所述第一参考信号和所述第二参考信号解调来自所述第一终端设备的上行数据。
  26. 根据权利要求25所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  27. 根据权利要求26所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  28. 根据权利要求27所述的网络设备,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  29. 根据权利要求25所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  30. 根据权利要求25-29任一项所述的网络设备,其特征在于,所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:
    所述处理模块,用于确定第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述处理模块,用于根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  31. 根据权利要求25-29任一项所述的网络设备,其特征在于,所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,包括:
    所述处理模块,用于确定第二指示信息,所述第二指示信息用于指示所述预配置 的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述处理模块,用于根据所述第二指示信息和所述预配置的上行时频资源的起始时域位置,确定所述参考时域位置。
  32. 根据权利要求25所述的网络设备,其特征在于,所述处理模块,用于根据所述第一序列和时间间隔生成第一参考信号,包括:
    所述处理模块,用于根据所述第一序列和所述时间间隔生成长度为所述第一参考信号的传输时长的所述第一参考信号。
  33. 根据权利要求8、16、24、32任一项所述的方法或第一终端设备或网络设备,其特征在于,所述第一序列为Gold序列,所述第一序列、所述时间间隔、所述第一参考信号的传输时长以及所述第一参考信号满足如下公式:
    Figure PCTCN2019074721-appb-100001
    其中,r u(n)为所述第一参考信号,offset为所述时间间隔,
    Figure PCTCN2019074721-appb-100002
    为所述第一参考信号的传输时长,
    Figure PCTCN2019074721-appb-100003
    为窄带物理上行共享信道传输的重复次数,
    Figure PCTCN2019074721-appb-100004
    为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
  34. 根据权利要求8、16、24、32任一项所述的方法或第一终端设备或网络设备,其特征在于,所述第一序列为Gold序列,所述第一序列、所述时间间隔、所述第一参考信号的传输时长以及所述第一参考信号满足如下公式:
    Figure PCTCN2019074721-appb-100005
    其中,r u(n)为所述第一参考信号,offset为所述时间间隔,
    Figure PCTCN2019074721-appb-100006
    为所述第一参考信号的传输时长,
    Figure PCTCN2019074721-appb-100007
    为窄带物理上行共享信道传输的重复次数,
    Figure PCTCN2019074721-appb-100008
    为一个资源单元占用的时隙数目,N RU为一个数据块占用的资源单元的数目,c(n)为Gold序列,w(n)为Hadamard序列。
PCT/CN2019/074721 2019-02-03 2019-02-03 通信方法、装置及*** WO2020155188A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980091181.4A CN113383593B (zh) 2019-02-03 2019-02-03 通信方法、终端设备及网络设备
PCT/CN2019/074721 WO2020155188A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及***
EP19913216.8A EP3897054B1 (en) 2019-02-03 2019-02-03 Communication method and apparatus
US17/390,646 US11997671B2 (en) 2019-02-03 2021-07-30 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074721 WO2020155188A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/390,646 Continuation US11997671B2 (en) 2019-02-03 2021-07-30 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2020155188A1 true WO2020155188A1 (zh) 2020-08-06

Family

ID=71840783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074721 WO2020155188A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及***

Country Status (4)

Country Link
US (1) US11997671B2 (zh)
EP (1) EP3897054B1 (zh)
CN (1) CN113383593B (zh)
WO (1) WO2020155188A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155934A1 (zh) * 2021-01-22 2022-07-28 华为技术有限公司 Pusch传输方法及通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3897054B1 (en) * 2019-02-03 2022-12-28 Huawei Technologies Co., Ltd. Communication method and apparatus
US11432291B2 (en) * 2019-06-21 2022-08-30 Huawei Technologies Co., Ltd. System and scheme on group based identity and scrambling for UE cooperation transmission
CN118119020A (zh) * 2022-11-30 2024-05-31 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150541A1 (en) * 2014-11-25 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for configuring resources of random access channel in wireless communication system
CN108023705A (zh) * 2016-11-04 2018-05-11 维沃移动通信有限公司 一种半静态参考信号配置、收发方法、基站及终端
CN109152026A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种上行免授权传输的配置方法及设备
CN109302739A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种同步信号的发送方法、接收方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425980A4 (en) * 2016-03-16 2019-09-25 HFI Innovation Inc. METHOD FOR PLANNING UPLINK CONTROL INFORMATION AND WIRELESS COMMUNICATION APPARATUS
WO2017173660A1 (zh) * 2016-04-08 2017-10-12 富士通株式会社 传输资源的传输方向的配置方法、装置和通信***
CN108024310B (zh) * 2016-11-04 2020-09-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备
CN108282876B (zh) * 2017-01-06 2022-03-25 华为技术有限公司 一种上行传输方法、终端、网络侧设备
CN113302981A (zh) * 2018-09-27 2021-08-24 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
US20220007391A1 (en) * 2018-09-27 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Support for Transmission in Preconfigured UL Resources
US20210385834A1 (en) * 2018-09-28 2021-12-09 Apple Inc. Preconfigured shared resources for uplink transmission
TWI766190B (zh) * 2018-09-28 2022-06-01 新加坡商聯發科技(新加坡)私人有限公司 定時提前驗證方法及裝置
CN113228544B (zh) * 2018-10-31 2024-04-23 瑞典爱立信有限公司 用于预配置的上行链路资源的重传方案和优化
CA3118385A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling transmissions over preconfigured uplink resources
WO2020093392A1 (en) * 2018-11-09 2020-05-14 Qualcomm Incorporated Uplink transmission techniques using preconfigured resources in wireless communications
US20220104225A1 (en) * 2019-01-25 2022-03-31 Lenovo (Beijing) Limited Resource configuration
EP3897054B1 (en) * 2019-02-03 2022-12-28 Huawei Technologies Co., Ltd. Communication method and apparatus
CN113383509B (zh) * 2019-02-03 2023-03-03 华为技术有限公司 通信方法、装置及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150541A1 (en) * 2014-11-25 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for configuring resources of random access channel in wireless communication system
CN108023705A (zh) * 2016-11-04 2018-05-11 维沃移动通信有限公司 一种半静态参考信号配置、收发方法、基站及终端
CN109152026A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种上行免授权传输的配置方法及设备
CN109302739A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种同步信号的发送方法、接收方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3897054A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155934A1 (zh) * 2021-01-22 2022-07-28 华为技术有限公司 Pusch传输方法及通信装置

Also Published As

Publication number Publication date
EP3897054A4 (en) 2022-01-05
CN113383593B (zh) 2023-04-11
EP3897054B1 (en) 2022-12-28
EP3897054A1 (en) 2021-10-20
US11997671B2 (en) 2024-05-28
US20210360662A1 (en) 2021-11-18
CN113383593A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
WO2020155188A1 (zh) 通信方法、装置及***
CN109392122B (zh) 数据传输方法、终端和基站
CN113261320B (zh) 通信方法、装置及***
JP7142721B2 (ja) 通信方法および通信装置
WO2020164616A1 (zh) 随机接入的方法、装置及***
CN113711556B (zh) 生成参考信号的方法、检测参考信号的方法和通信装置
CN112020145A (zh) 一种通信方法及装置
US20220224478A1 (en) Communication method, device, and system
CN111867096B (zh) 通信方法、设备及***
CN111181887B (zh) 一种序列的生成及处理方法和装置
US20210360637A1 (en) Communication method, apparatus, and system
WO2020215994A1 (zh) 通信方法、设备及***
WO2020253597A1 (zh) 调度请求信息的传输方法、装置及***
CN113330796B (zh) 数据调度方法、装置及***
CN113366896B (zh) 参考信号接收与发送方法、装置及***
WO2021007809A1 (zh) 信道质量上报方法、装置及***
WO2022206271A1 (zh) 一种确定资源的方法和装置
WO2023051738A1 (zh) 参考信号的传输方法和通信装置
WO2024061236A1 (zh) 发送和接收参考信号的方法、通信装置
WO2020155660A1 (zh) 数据调度方法、装置及***
CN116566772A (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019913216

Country of ref document: EP

Effective date: 20210715

NENP Non-entry into the national phase

Ref country code: DE