WO2020144945A1 - 遠心式送風機 - Google Patents

遠心式送風機 Download PDF

Info

Publication number
WO2020144945A1
WO2020144945A1 PCT/JP2019/045465 JP2019045465W WO2020144945A1 WO 2020144945 A1 WO2020144945 A1 WO 2020144945A1 JP 2019045465 W JP2019045465 W JP 2019045465W WO 2020144945 A1 WO2020144945 A1 WO 2020144945A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
overlapping
suction port
air
fan
Prior art date
Application number
PCT/JP2019/045465
Other languages
English (en)
French (fr)
Inventor
善博 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980088010.6A priority Critical patent/CN113286715B/zh
Publication of WO2020144945A1 publication Critical patent/WO2020144945A1/ja
Priority to US17/362,332 priority patent/US11713770B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/73Shape asymmetric

Definitions

  • the present disclosure relates to a centrifugal blower.
  • Patent Document 1 describes a centrifugal blower that is applied to an inside/outside air two-layer flow type air conditioner for a vehicle.
  • This centrifugal blower is capable of dividing two air streams and simultaneously sucking them from one side in the axial direction.
  • This centrifugal blower includes a centrifugal fan that has a plurality of blades and rotates around a fan axis, and a separating cylinder that is arranged radially inside the centrifugal fan with respect to the plurality of blades.
  • the centrifugal blower has a scroll casing that accommodates the centrifugal fan, and the scroll casing has a suction port through which air sucked into the centrifugal fan passes.
  • the separation cylinder separates the air passing through the suction port into outer air flowing radially outside the separation cylinder and inner air flowing radially inside the separation cylinder.
  • the present disclosure provides a centrifugal blower that separates the air passing through the suction port into a radially outer side and a radially inner side of the separation cylinder, and in the centrifugal blower, outer air flowing at the radially outer side of the separation cylinder.
  • the purpose is to reduce the pressure loss when is sucked into the suction port.
  • a centrifugal blower includes: A centrifugal fan having a plurality of blades arranged around the fan axis and rotating around the fan axis to blow out air taken in from one side in the axial direction of the fan axis toward the outside in the radial direction; , A fan casing that accommodates the centrifugal fan, is formed on one side in the axial direction with respect to the centrifugal fan, and has a suction port through which air sucked into the centrifugal fan passes, Arranged inside the radial direction of the centrifugal fan with respect to the plurality of blades, and a separation cylinder having a cylindrical shape that extends in the axial direction through the suction port, An upstream space forming portion, which is provided upstream of the air flow with respect to the suction port and in which an upstream space through which air flowing toward the suction port flows is formed, The separation cylinder separates the air passing through the suction port toward
  • the upstream space forming portion has a space dividing portion that divides the upstream space into an inner connecting space in which inner air flows and an outer connecting space in which outer air flows,
  • the inner connection space is arranged so as to be biased to one side in one radial direction which is one of the radial directions in the upstream space
  • the outer connection space is an overlapping space that overlaps with the other side of the space division portion on the side opposite to the one side in the axial direction, and is a space excluding the overlapping space of the outer connection space that is the inner connection space and the overlapping space.
  • the suction port is located outside the separation cylinder that overlaps the space dividing portion on the other side in the axial direction with respect to the axial division and is located outside the separation cylinder in the radial direction, and outside from the part located outside the separation cylinder in the radial direction.
  • the non-overlapping space is connected to the outer non-overlapping portion, and is connected to the outer overlapping portion via the overlapping space, If the first area obtained by projecting the boundary between the overlapping space and the non-overlapping space in one radial direction is S1 and the second area obtained by projecting the outer overlapping portion of the suction port in the axial direction is S2, “S1/ The relationship of “S2 ⁇ 0.5” is established.
  • the boundary has the flow passage cross-sectional area of the outside overlapping portion.
  • the channel cross-sectional area does not become extremely small. That is, when the outside air flows from the non-overlapping space through the overlapping space to the outside overlapping portion of the suction port, the air flow of the outside air is not so narrowed at the boundary. Therefore, the outside air flowing into the overlapping space from the non-overlapping space is easily evenly distributed to the part of the overlapping space that is distant from the non-overlapping space, and the outside overlapping portion can appropriately exert the role of sucking the outside air. .. As a result, it is possible to reduce the pressure loss when the outside air is sucked into the suction port and to smoothly flow the outside air.
  • a centrifugal blower includes: A centrifugal fan having a plurality of blades arranged around the fan axis and rotating around the fan axis to blow out air taken in from one side in the axial direction of the fan axis toward the outside in the radial direction; , A fan casing that accommodates the centrifugal fan, is formed on one side in the axial direction with respect to the centrifugal fan, and has a suction port through which air sucked into the centrifugal fan passes, Arranged inside the radial direction of the centrifugal fan with respect to the plurality of blades, and a separation cylinder having a cylindrical shape that extends in the axial direction through the suction port, An upstream space forming portion, which is provided upstream of the air flow with respect to the suction port and in which an upstream space through which air flowing toward the suction port flows is formed, The separation cylinder separates the air passing through the suction port toward the blades from each other
  • the upstream space forming portion has a space dividing portion that divides the upstream space into an inner connecting space in which inner air flows and an outer connecting space in which outer air flows,
  • the inner connection space is arranged so as to be biased to one side in one radial direction which is one of the radial directions in the upstream space
  • the outer connection space is an overlapping space that overlaps with the other side of the space division portion on the side opposite to the one side in the axial direction, and is a space excluding the overlapping space of the outer connection space that is the inner connection space and the overlapping space.
  • the suction port is located outside the separation cylinder that overlaps the space dividing portion on the other side in the axial direction with respect to the axial division and is located outside the separation cylinder in the radial direction, and outside from the part located outside the separation cylinder in the radial direction.
  • the non-overlapping space is connected to the outer non-overlapping portion, and is connected to the outer overlapping portion via the overlapping space,
  • the connection width of the connecting part connecting to the suction port in the above boundary occupies in the orthogonal direction orthogonal to the one radial direction and the axial direction, It is smaller than the non-connection width obtained by subtracting the connection width from the width occupied by the projected shape in the orthogonal direction.
  • the outside air flowing from the non-overlapping space to the overlapping space through the region having the connection width in the orthogonal direction in the above-mentioned boundary is immediately sucked into the suction port when entering the overlapping space from the above-mentioned boundary.
  • the outside air flowing from the non-overlapping space to the overlapping space after passing through the region having the non-connecting width in the orthogonal direction in the boundary is likely to reach the portion of the overlapping space away from the non-overlapping space.
  • connection width and the non-connection width as described above, it is possible to mitigate that the outside air sucked into the outer overlapping portion of the suction port is biased toward the outer non-overlapping portion side. As a result, it is possible to reduce the pressure loss when the outside air is sucked into the suction port and to smoothly flow the outside air.
  • FIG. 2 is a sectional view showing a II-II section of FIG. 1. It is the elements on larger scale which expanded and displayed the III section of FIG.
  • FIG. 4 is a sectional view showing a section taken along line IV-IV in FIG. 1.
  • 1st Embodiment it is a graph which shows the relationship between the area ratio S1/S2 and the cylinder outer side pressure loss obtained as the experimental result of the ventilation experiment of a centrifugal blower.
  • FIG. 4 is a cross-sectional view showing a cross section taken along the line IV-IV of FIG. 1 in the second embodiment and is a view corresponding to FIG. 4.
  • 3rd Embodiment it is a partially expanded view which expanded and displayed the III part of FIG. 2, and is a figure equivalent to FIG.
  • 4th Embodiment it is sectional drawing which showed the IV-IV cross section of FIG. 1, Comprising: It is a figure corresponded to FIG.
  • the centrifugal blower 10 of the present embodiment shown in FIG. 1 is applied to an inside/outside air two-layer flow type vehicle air conditioner.
  • This vehicular air conditioner can separate air into the vehicle compartment (that is, the inside air) and air outside the vehicle compartment (that is, the outside air) and simultaneously suck the air.
  • the centrifugal blower 10 will be simply referred to as the blower 10.
  • the blower 10 includes a centrifugal fan 12, a fan casing 14, a motor 16, a separation cylinder 18, an upstream casing 20, a filter 22, and an inside/outside air door 24. ing.
  • the centrifugal fan 12 rotates around the fan axis CL. Then, the centrifugal fan 12 rotates around the fan axis CL to blow the air sucked from one side in the axial direction DRa of the fan axis CL toward the outside in the radial direction DRr of the centrifugal fan 12.
  • FIG 1 and 2 are vertical cross-sections of the centrifugal fan 12, the fan casing 14, the separation cylinder 18 and the upstream casing 20 taken along a plane including the fan axis CL, that is, the plane including the fan axis CL indicates the blower 10. A cut vertical section is shown.
  • the axial direction DRa of the fan axis CL that is, the axial direction DRa of the centrifugal fan 12 is called the fan axial direction DRa.
  • the radial direction DRr of the fan axis CL that is, the radial direction DRr of the centrifugal fan 12 is referred to as a fan radial direction DRr.
  • the fan radial direction DRr is a direction perpendicular to the fan axis direction DRa.
  • the centrifugal fan 12 has a plurality of blades 121, a main plate 122, and a separation plate 123.
  • the plurality of blades 121 are arranged side by side around the fan axis CL.
  • Each of the plurality of blades 121 has one end 121a which is one end on the fan axis direction DRa and the other end 121b which is the other end on the other side in the fan axis direction DRa.
  • the main plate 122 has a plate shape extending in the fan radial direction DRr.
  • the main plate 122 has a disk shape centered on the fan axis CL.
  • the main plate 122 is arranged on the other side of the separation cylinder 18 in the fan axis direction DRa.
  • a rotating shaft 161 of the motor 16 is connected to the center of the main plate 122 so as not to rotate relative to it.
  • the other ends 121b of the plurality of blades 121 are fixed to the outer portion of the main plate 122 in the fan radial direction DRr.
  • the main plate 122 has a main plate guide surface 122a on one side of the fan axial direction DRa.
  • the main plate guide surface 122a faces one side of the fan axial direction DRa and extends in the fan radial direction DRr.
  • the separating plate 123 separates the air flowing between the plurality of blades 121 into air flowing in one side of the separating plate 123 in the fan axial direction DRa and air flowing in the other side of the separating plate 123 in the fan axial direction DRa. To do.
  • the separation plate 123 intersects with each of the plurality of blades 121 and extends annularly around the fan axis CL.
  • the separating plate 123 has a plate shape extending in the fan radial direction DRr.
  • the separation plate 123 has a flat plate shape with the fan axis direction DRa as the normal direction.
  • Each of the plurality of blades 121 and the separating plate 123 are fixed to each other at a portion where the blade 121 and the separating plate 123 intersect.
  • the plurality of blades 121, the main plate 122, and the separating plate 123 are configured as an integrally molded product that is integrally resin-molded.
  • each of the blades 121 includes a blade one side portion 121c provided on one side of the separation plate 123 in the fan axis direction DRa and a blade other side portion 121d provided on the other side of the separation plate 123 in the fan axis direction DRa. have.
  • the blade shape of the blade one side portion 121c and the blade other side portion 121d are both sirocco fan blade types.
  • the fan casing 14 and the upstream casing 20 function as a casing that constitutes the outer shell of the blower 10.
  • the fan casing 14 accommodates the centrifugal fan 12 inside the fan casing 14.
  • the fan casing 14 is formed with a suction port 14 a through which air sucked into the centrifugal fan 12 passes.
  • the suction port 14a is arranged on one side of the centrifugal fan 12 in the fan axis direction DRa.
  • the suction port 14a is, for example, a circular opening whose center is the fan axis CL.
  • the fan casing 14 has a bell mouth 141 as a peripheral portion of the suction port around the suction port 14a.
  • the bell mouth 141 surrounds the suction port 14a, and the suction port 14a is formed inside the bell mouth 141.
  • the bell mouth 141 has an arc-shaped cross section so that air can smoothly flow into the suction port 14a. Further, the bell mouth 141 has the other end 141a on the other side in the fan axis direction DRa.
  • the fan casing 14 also has an air passage forming portion 142 and a partition plate 143.
  • a blowout air passage 142a is formed outside the centrifugal fan 12 in the fan radial direction DRr.
  • the air blown from the centrifugal fan 12 gathers and flows in the blowout air passage 142a.
  • the blowout air passage 142a is formed in a spiral shape around the centrifugal fan 12.
  • the fan casing 14 is also called a scroll casing.
  • the partition plate 143 is provided inside the blowout air passage 142a. That is, the partition plate 143 is arranged outside the centrifugal fan 12 in the fan radial direction DRr.
  • the partition plate 143 has a first air passage 142b arranged on one side of the partition plate 143 in the fan axis direction DRa and a second air passage 142c arranged on the other side of the partition plate 143 in the fan axis direction DRa.
  • the outlet air passage 142a is partitioned.
  • the partition plate 143 is a flat plate extending in the fan radial direction DRr with the fan axial direction DRa as the normal direction.
  • the partition plate 143 is connected to the air passage forming portion 142 at the radially outer end of the partition plate 143. Further, in the fan axis direction DRa, the partition plate 143 is arranged such that the position of the partition plate 143 and the position of the separation plate 123 are aligned with each other.
  • the air passage forming portion 142 and the partition plate 143 are configured as an integrally molded product that is integrally resin-molded.
  • the plate thickness of the partition plate 143, the plate thickness of the separation plate 123, and the plate thickness of the separation cylinder 18 are, for example, the same or substantially the same.
  • the motor 16 is an electric drive device that rotates the centrifugal fan 12.
  • the motor 16 has a rotating shaft 161 and a main body 162.
  • the rotating shaft 161 extends from the main body 162 toward one side in the fan axis direction DRa.
  • the rotation of the rotating shaft 161 causes the centrifugal fan 12 to rotate.
  • the body 162 is fixed to the fan casing 14.
  • the main body 162, the fan casing 14, the separating cylinder 18, and the upstream casing 20 are non-rotating members that do not rotate.
  • the separation cylinder 18 is arranged inside the bell mouth 141 and the plurality of blades 121 of the centrifugal fan 12 in the fan radial direction DRr.
  • the separation cylinder 18 has a cylindrical shape that extends in the fan axis direction DRa through the inside of the suction port 14a (that is, the inside in the radial direction with respect to the bell mouth 141).
  • the separation cylinder 18 has a cylindrical shape whose cross section cut along a virtual plane orthogonal to the fan axis CL is circular on the other side in the fan axis direction DRa with respect to the suction port 14a.
  • the separation cylinder 18 is arranged such that a part of the separation cylinder 18 is inserted into the fan casing 14 through the suction port 14a.
  • the separation cylinder 18 is fixed to the space dividing portion 202 of the upstream casing 20, for example.
  • the separation cylinder 18 separates the air flow passing through the suction port 14a toward the centrifugal fan 12 into two air flows.
  • the separation cylinder 18 separates the fan suction air, which passes through the suction port 14a and goes toward between the blades 121 of the centrifugal fan 12, into the inside air and the outside air, and separates the fan suction air between the blades 121. invite.
  • the inside air is the air that flows inside the separation cylinder 18 in the fan radial direction DRr among the fan suction air.
  • the outside air is, of the fan suction air, the air flowing outside the separation cylinder 18 in the fan radial direction DRr.
  • the flow of the outside air is represented by the arrow Fo and the flow of the inside air is represented by the arrow Fi.
  • the separation cylinder 18 has a shape that expands in the fan radial direction DRr toward the other side in the fan axial direction DRa in order to guide the inner air and the outer air between the blades 121. That is, on the other side of the separation cylinder 18 in the fan axis direction DRa, the diameter of the separation cylinder 18 increases from one side of the fan axis direction DRa toward the other end. For example, at the position of the other end of the separation cylinder 18 in the fan axis direction DRa, the separation cylinder 18 has a shape that extends outward in the oblique fan radial direction DRr with respect to the fan axis direction DRa.
  • the position of the other end of the separating cylinder 18 is aligned with the position of the radially inner end of the separating plate 123.
  • the other end of the separation cylinder 18 in the fan axis direction DRa is arranged close to the plurality of blades 121 of the centrifugal fan 12 in a range that does not contact the blades 121.
  • the separation cylinder 18 Since the separation cylinder 18 has the cylindrical shape as described above, it has the separation cylinder outer surface 181 configured as the cylindrical outer wall surface and the separation cylinder inner side surface 182 configured as the cylindrical inner wall surface. doing.
  • the main plate guide surface 122a guides the inner air so that the inner air flows toward the outer side in the fan radial direction DRr on the upstream side of the air flow with respect to the plurality of blades 121, as indicated by the arrow Fi.
  • the separation plate 123 of the centrifugal fan 12 distributes the outer air flow indicated by the arrow Fo and the inner air flow indicated by the arrow Fi to the fan shaft on the downstream side of the air flow with respect to the separation cylinder 18. It is arranged so as to be separated in the direction DRa. That is, in the separation plate 123, the outer air flows between the plurality of blades 121 on one side of the separation plate 123 in the fan axis direction DRa and the inner air flows on the other side of the separation plate 123 in the fan axis direction DRa. It is arranged.
  • the partition plate 143 of the fan casing 14 separates the outer air flow indicated by the arrow Fo and the inner air flow indicated by the arrow Fi in the fan axial direction DRa on the downstream side of the air flow with respect to the centrifugal fan 12.
  • the partition plate 143 is arranged so that the outer air flows from the centrifugal fan 12 into the first air passage 142b as indicated by the arrow Fo and the inner air flows into the second air passage 142c as indicated by the arrow Fi.
  • the separation plate 123 and the partition plate 143 are arranged so as to prevent the outer air and the inner air from being mixed with each other on the downstream side of the air flow with respect to the separation cylinder 18.
  • the upstream casing 20 is connected to one side of the fan casing 14 in the fan axial direction DRa with respect to the fan casing 14, and is connected to one side of the upstream space forming portion 201 in the fan axial direction DRa. It has a filter housing portion 204.
  • the upstream space forming portion 201 and the filter housing portion 204 are integrally configured, for example.
  • the upstream space forming portion 201 is provided on the upstream side of the air flow with respect to the suction port 14 a of the fan casing 14. Inside the upstream space forming portion 201, an upstream space 201a in which air flowing toward the suction port 14a flows is formed.
  • the upstream space forming unit 201 has a space dividing unit 202 that partitions the upstream space 201a.
  • the space division part 202 divides the upstream space 201a into an outer connection space 201b in which outer air flows and an inner connection space 201c in which inner air flows.
  • the inner connection space 201c is arranged on one side of the upstream space 201a in one radial direction DR1 which is one of the fan radial directions DRr. Further, focusing on the fan axis direction DRa, the inner connection space 201c is arranged so as to be biased to one side of the upstream space 201a in the fan axis direction DRa.
  • the one radial direction DR1 may be referred to as the first radial direction DR1.
  • an orthogonal direction orthogonal to the first radial direction DR1 and the fan axis direction DRa is referred to as a second radial direction DR2.
  • the inner connection space 201c is formed in the upstream space formation portion 201 over the entire width in the radial second direction DR2.
  • the outer connection space 201b has an overlapping space 201d and a non-overlapping space 201e that are connected to each other.
  • the overlapping space 201d and the non-overlapping space 201e are connected to each other at the boundary 201f between the overlapping space 201d and the non-overlapping space 201e to form one outer connection space 201b.
  • the overlapping space 201d is a space of the outer connection space 201b that overlaps the space dividing portion 202 on the other side in the fan axis direction DRa.
  • the non-overlapping space 201e is a space in the outer connecting space 201b excluding the overlapping space 201d, and is a space arranged on the other side in the radial first direction DR1 with respect to the inner connecting space 201c and the overlapping space 201d. is there.
  • the space division unit 202 includes a first partition wall portion 202a arranged between the non-overlapping space 201e and the inner connection space 201c, and a second partition wall portion arranged between the overlap space 201d and the inner connection space 201c. And 202b.
  • the first partition wall portion 202a separates the non-overlapping space 201e and the inner connection space 201c in the radial first direction DR1.
  • the second partition wall portion 202b separates the overlapping space 201d and the inner connection space 201c in the fan axis direction DRa.
  • the first partition wall portion 202a has one end 202c provided on one side of the fan axis direction DRa.
  • the space dividing portion 202 faces one side 202d of the dividing portion facing the inner connection space 201c facing one side in the fan axis direction DRa, and faces the other space 201d facing the other side in the fan axis direction DRa. It has a split portion other surface 202e. The one surface 202d of the divided portion and the other surface 202e of the divided portion are both included in the second partition portion 202b of the space dividing portion 202.
  • the suction port 14a of the fan casing 14 has an outer overlapping portion 14b and an outer non-overlapping portion 14c.
  • the outer overlapping portion 14b is a portion of the suction port 14a that overlaps with the space dividing portion 202 on the other side in the fan axis direction DRa and is located outside the separation cylinder 18 in the fan radial direction DRr.
  • the outer non-overlapping portion 14c is a portion of the suction port 14a that is formed by removing the outer overlapping portion 14b from the annular outer portion of the cylinder located outside the separation cylinder 18 in the fan radial direction DRr.
  • the outer overlapping portion 14b occupies approximately half of the cylinder outer portion of the suction port 14a.
  • the non-overlapping space 201e of the outer connection space 201b is directly connected to the outer non-overlap portion 14c of the suction port 14a, and the overlap space 201d is the suction port 14a. Is directly connected to the outer overlapping portion 14b. Therefore, the non-overlapping space 201e is connected to the outer overlapping portion 14b of the suction port 14a via the overlapping space 201d.
  • the filter housing portion 204 of the upstream casing 20 is provided upstream of the air flow with respect to the upstream space forming portion 201.
  • a filter 22 configured to be ventilated and for filtering air sucked into the centrifugal fan 12 is housed inside the filter housing portion 204. Therefore, the filter 22 is arranged on the upstream side of the air flow with respect to the upstream space 201a of the upstream space forming portion 201.
  • the filter 22 has, for example, a rectangular parallelepiped shape, and has a filter downstream surface 221 as an outflow surface through which the air passing through the filter 22 flows out.
  • the filter downstream surface 221 faces the other side in the fan axis direction DRa.
  • the filter downstream surface 221 faces the non-overlapping space 201e and the inner connection space 201c from one side of the fan axis direction DRa.
  • one side of the filter 22 in the fan axis direction DRa is an air flow upstream side, and one side of the filter 22 in the fan axis direction DRa is formed with a filter upstream space 204a. There is.
  • the inside/outside air door 24 is arranged in the filter upstream space 204a, and the inside/outside air door 24 rotates in the filter upstream space 204a. Further, an outer airflow inlet 204b and an inner airflow inlet 204c formed as through holes are formed in a portion of the filter housing portion 204 facing the filter upstream space 204a.
  • the outside airflow inlet 204b is an inlet for introducing outside air into the filter upstream space 204a, communicates with the outside of the vehicle compartment, and is arranged on the other side in the first radial direction DR1 with respect to the center of rotation of the inside/outside air door 24. ing.
  • the internal airflow inlet 204c is an inlet for introducing the internal air into the filter upstream space 204a, communicates with the vehicle interior, and is arranged on one side of the radial first direction DR1 with respect to the center of rotation of the internal/external air door 24. Has been done.
  • the inside/outside air door 24 opens and closes the outside airflow inlet 204b and the inside airflow inlet 204c in accordance with the rotation operation of the inside/outside air door 24.
  • the inside/outside air door 24 is positioned at an outside air introducing position that opens the outside air inlet 204b and closes the inside air inlet 204c, and an inside air introducing position that closes the outside air inlet 204b and opens the inside air inlet 204c. It
  • the inside/outside air door 24 is also positioned at an inside/outside air introduction position where both the outside air inlet 204b and the inside air inlet 204c are opened.
  • FIG. 1 shows a state in which the inside/outside air door 24 is positioned at the inside/outside air introduction position.
  • the inside/outside air door 24 is arranged such that the door tip 241 of the inside/outside air door 24 on the side opposite to the rotation center is sandwiched between the one end 202c of the first partition wall 202a and the filter 22 in the fan axial direction. Face DRa.
  • the inside/outside air door 24 partitions the filter upstream space 204a into two spaces. One of the two spaces communicates exclusively with the outer airflow inlet 204b of the outer airflow inlet 204b and the inner airflow inlet 204c, and the other of the two spaces exclusively communicates with the inner airflow inlet 204c.
  • the inside/outside air door 24 is positioned at the inside/outside air introduction position, when the centrifugal fan 12 rotates, the outside air flows as indicated by the arrow Fo and the inside air flows as indicated by the arrow Fi. That is, the outside air flows in from the outside airflow inlet 204b, and most of the outside air flows to the non-overlapping space 201e of the outside connection space 201b via the filter 22. At the same time, the inside air flows in from the inside airflow inlet 204c, and most of the inside air flows to the inside connection space 201c via the filter 22.
  • the outside air of the non-overlapping space 201e flows from the non-overlapping space 201e through the overlapping space 201d or directly to the suction port 14a as the outside air, passes between the plurality of blades 121, and passes through the first to the first of the fan casing 14. It flows to the air passage 142b.
  • the inside air of the inner connection space 201c flows from the inner connection space 201c to the suction port 14a as inner air and then flows between the plurality of blades 121 to the second air passage 142c of the fan casing 14.
  • the inside air and the outside air door 24 are used to indicate the outside air and the arrow indicated by the arrow Fo.
  • the inner air represented by Fi flows in a separated state.
  • the air passage forming portion 142 of the blower 10 is connected to an air conditioning casing of a vehicle air conditioner (not shown), and the air blown from the blower 10 flows through the air conditioning casing.
  • a temperature controller that adjusts the air temperature is arranged inside the air conditioning casing.
  • the air blown from the blower 10 has its temperature adjusted by a temperature adjuster, and is then blown into the vehicle interior. Even inside the air conditioning casing, the state in which the outside air flow and the inside air flow are separated is maintained. Then, the two air streams are respectively temperature-adjusted and then blown into the vehicle compartment from, for example, different outlets.
  • the inside/outside air door 24 When the inside/outside air door 24 is positioned at the inside air introduction position, when the centrifugal fan 12 rotates, the inside air flows into the filter upstream space 204a from the inside airflow inlet 204c. At this time, the outside airflow inlet 204b is closed. The air (specifically, the inside air) flowing into the filter upstream space 204a flows through the filter 22 to the inner connection space 201c and the non-overlapping space 201e of the outer connection space 201b. The subsequent air flow is the same as when the inside/outside air door 24 is positioned at the inside/outside air introduction position.
  • FIG. 5 is a graph showing the relationship between the cylinder outside pressure loss ⁇ P and the area ratio S1/S2 obtained by dividing the first area S1 by the second area S2 in the blower 10.
  • the relationship of FIG. 5, that is, the relationship between the area ratio S1/S2 indicated by the curve Lp and the cylinder outside pressure loss ⁇ P is as follows: the centrifugal fan 12 is rotated at a predetermined rotation speed with the inside/outside air door 24 positioned at the inside/outside air introduction position. The experimental result obtained by the rotating ventilation experiment is shown. Further, even if the rotation speed of the centrifugal fan 12 was changed up and down with respect to the predetermined rotation speed, the tendency indicated by the curve Lp in FIG. 5 did not change.
  • the above-mentioned first area S1 is the total area of the hatched areas in FIG. More specifically, the area hatched by broken lines is divided into two areas, but the first area S1 is the total area of the two areas. That is, the first area S1 is a projected area obtained by projecting the boundary 201f between the overlapping space 201d and the non-overlapping space 201e in the radial first direction DR1. More specifically, the first area S1 is a projected area obtained by projecting the boundary 201f in the radial first direction DR1 on a virtual plane whose normal direction is the radial first direction DR1. As shown in FIG. 3, the broken line hatched region indicating the first area S1 extends to the position of the other end 141a of the bell mouth 141 in the fan axis direction DRa.
  • the second area S2 is the area of the region hatched with broken lines in FIG. That is, the second area S2 is a projected area obtained by projecting the outer overlapping portion 14b of the suction port 14a in the fan axis direction DRa. More specifically, the second area S2 is a projected area obtained by projecting the outer overlapping portion 14b in the fan axis direction DRa with respect to a virtual plane having the fan axis direction DRa as the normal direction.
  • the cylinder outside pressure loss ⁇ P is calculated from the average air pressure P1a of air at the inlet of the two inlets 204b and 204c connected to the non-overlapping space 201e to the average air pressure P2a of air at the outside of the inlet 14a. It is the pressure difference obtained by subtraction.
  • the inlet connected to the non-overlapping space 201e is, for example, the outside air inlet 204b when the inside/outside air door 24 is positioned at the outside air introduction position, and the inside/outside air door 24 is positioned at the inside air introduction position. In the closed state, it is the inner airflow inlet 204c.
  • the experiment result of FIG. 5 is for the case where the blower 10 blows air in the inside/outside air two-layer mode in which the inside/outside air door 24 is positioned at the inside/outside air introduction position, but even when the blower 10 blows in the inside air mode. Even when the blower 10 blows air in the outside air mode, the same result as in FIG. 5 is obtained.
  • the inside air mode is a suction mode in which the inside/outside air door 24 is positioned at the inside air introduction position
  • the outside air mode is a suction mode in which the inside/outside air door 24 is positioned at the outside air introduction position.
  • connection width L1 is the non-connection width. It is smaller than L2.
  • the connection width L1 is a width occupied by the connection portion 201g of the boundary 201f, which is connected to the suction port 14a, in the radial second direction DR2 in the boundary projected shape.
  • the non-connection width L2 is the width obtained by subtracting the connection width L1 from the width L3 occupied by the boundary projection shape in the radial second direction DR2.
  • the boundary projection shape is shown in FIG. 3 as the shape of the hatched area. That is, in detail, the boundary projection shape projects the boundary 201f between the overlapping space 201d and the non-overlapping space 201e in the first radial direction DR1 with respect to a virtual plane whose normal direction is the first radial direction DR1. It is a projected shape.
  • connection width L1 is shown divided into two, but the size of the connection width L1 is the total of the two divided widths. This also applies to the sizes of the widths L2 and L3.
  • the outer overlapping portion 14b which occupies approximately half of the cylinder outer side portion of the suction port 14a, is a space dividing portion. Covered by 202. Therefore, the outer overlapping portion 14b is in a state in which the outside air is less likely to flow in than the outer non-overlapping portion 14c of the suction port 14a.
  • S1 is a first area obtained by projecting the boundary 201f between the overlapping space 201d and the non-overlapping space 201e in the radial first direction DR1
  • S2 is the suction It is a second area obtained by projecting the outer overlapping portion 14b of the opening 14a in the fan axis direction DRa.
  • the boundary is larger than the flow passage cross-sectional area of the outside overlapping portion 14b.
  • the flow path cross-sectional area of 201f does not become extremely small. That is, when the outside air flows from the non-overlapping space 201e through the overlapping space 201d into the outside overlapping portion 14b of the suction port 14a, the air flow of the outside air is not so narrowed at the boundary 201f.
  • the outside air flowing into the overlapping space 201d from the non-overlapping space 201e is easily evenly distributed to the part of the overlapping space 201d which is distant from the non-overlapping space 201e, so that the outside overlapping portion 14b can properly absorb the outside air. Can be demonstrated. As a result, it is possible to reduce the pressure loss when the outside air is sucked into the suction port 14a and smoothly flow the outside air.
  • FIG. 5 described above shows that the pressure loss when the outside air is sucked into the suction port 14a is reduced by the establishment of the relationship “S1/S2 ⁇ 0.5”.
  • the outside air flowing into the filter upstream space 204a flows to the first air passage 142b as outside air as indicated by an arrow Fo.
  • the inside air that has flowed into the filter upstream space 204a flows into the second air passage 142c as inner air as indicated by the arrow Fi.
  • the inside air passes through the gap between the separation cylinder 18 and the separation plate 123 of the centrifugal fan 12 as shown by an arrow LK. It is possible to prevent the air from leaking into the distribution path. That is, in the inside/outside air two-layer mode, it is possible to prevent the inside air from being mixed with the outside air flowing through the first air passage 142b.
  • connection width L1 is not It is smaller than the connection width L2.
  • the connection width L1 is the width occupied by the connection portion 201g of the boundary 201f, which is connected to the suction port 14a, in the radial second direction DR2 in the boundary projection shape.
  • the non-connection width L2 is the width obtained by subtracting the connection width L1 from the width L3 occupied by the boundary projection shape in the radial second direction DR2.
  • the outside air that passes through the region having the connection width L1 in the radial second direction DR2 of the boundary 201f and flows from the non-overlapping space 201e to the overlapping space 201d is immediately sucked when entering the overlapping space 201d from the boundary 201f. It is sucked into the mouth 14a.
  • the outside air flowing from the non-overlapping space 201e to the overlapping space 201d after passing through the region having the non-connecting width L2 in the radial second direction DR2 of the boundary 201f is separated from the non-overlapping space 201e in the overlapping space 201d. Easy to reach to distant parts.
  • connection width L1 and the non-connection width L2 are “L1 ⁇ L2” as described above, the outside air sucked into the outer overlapping portion 14b of the suction port 14a moves to the outer non-overlapping portion 14c side. Bias can be mitigated. As a result, it is possible to reduce the pressure loss when the outside air is sucked into the suction port 14a and smoothly flow the outside air.
  • the first partition wall portion 202a included in the space dividing portion 202 is displaced to one side of the radial first direction DR1 as compared with that in the first embodiment. Therefore, the relationship "S3>S2" is established between the second area S2 and the third area S3.
  • the second area S2 is a projected area in which the outer overlapping portion 14b of the suction port 14a is projected in the fan axis direction DRa, as in the first embodiment.
  • the third area S3 is the area of the region hatched with dots in FIG. That is, the third area S3 is a projected area obtained by projecting the outer non-overlapping portion 14c of the suction port 14a in the fan axis direction DRa.
  • the third area S3 is a projected area obtained by projecting the outer non-overlapping portion 14c in the fan axis direction DRa with respect to a virtual plane having the fan axis direction DRa as the normal direction.
  • the second area is S2 and the third non-overlapping portion 14c of the suction port 14a is projected in the fan axis direction DRa as S3, “S3>S2”
  • the relationship is established. Therefore, as compared with the case where the relationship of “S3 ⁇ S2” is established, on the contrary, in the outer overlapping portion 14b and the outer non-overlapping portion 14c of the suction port 14a, the space dividing portion 202 overlaps with the space dividing portion 202 when viewed in the fan axis direction DRa.
  • the ratio of the non-overlapping outer portion 14c that does not become large increases.
  • the outer overlapping portion 14b and the outer non-overlapping portion 14c are viewed as a whole, the outer air easily flows into the suction port 14a, so that the pressure loss when the outer air is sucked into the suction port 14a can be reduced.
  • the present embodiment is the same as the first embodiment except that described above. Then, in the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is achieved by the configuration common to the first embodiment.
  • the second partition wall portion 202b included in the space dividing portion 202 is displaced to one side in the fan axis direction DRa as compared with that in the first embodiment.
  • the distance H2 from the other end 141a of the bell mouth 141 to the split portion other surface 202e in the fan axis direction DRa is greater than the distance H1 from the filter downstream surface 221 to the split portion one surface 202d in the fan axis direction DRa. Is also big.
  • the upstream space 201a in the fan axis direction DRa it is possible to facilitate the flow of the outside air from the non-overlapping space 201e through the overlapping space 201d to the outside overlapping portion 14b of the suction port 14a. Even if the distance H1 from the filter downstream surface 221 to the divided portion one surface 202d in the fan axis direction DRa is made small, the inner air circulation path is only narrowed toward the end of the filter 22, so It has almost no effect on the air volume.
  • the present embodiment is the same as the first embodiment except that described above. Then, in the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is achieved by the configuration common to the first embodiment.
  • the present embodiment is a modification based on the first embodiment, but the present embodiment can be combined with the above-described second embodiment.
  • the cross-sectional shape of the separation cylinder 18 taken along a virtual plane orthogonal to the fan axis CL, that is, the cross-sectional shape of the separation cylinder 18 is different from that of the first embodiment.
  • the cross-sectional shape obtained by cutting the separation cylinder 18 along a virtual plane orthogonal to the fan axis CL at a portion 183 (see FIG. 3) of the separation cylinder 18 that crosses the suction port 14a is compared with a circular shape. It has a shape extending in the first radial direction DR1.
  • the cross-sectional shape is an elliptical shape having the first radial direction DR1 as the major axis direction.
  • the present embodiment is the same as the first embodiment except that described above. Then, in the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is achieved by the configuration common to the first embodiment.
  • the present embodiment is a modification based on the first embodiment, but the present embodiment can be combined with the above-described second embodiment or third embodiment.
  • the centrifugal fan 12 is a sirocco fan, but is not limited to this, and may be a turbo fan, for example. Further, the airfoils of the blade one side portion 121c and the blade other side portion 121d do not have to be the same, and the airfoils may be different from each other.
  • the blower 10 is applied to an inside/outside air two-layer flow type vehicle air conditioner, but the use of the blower 10 is not limited thereto.
  • the blower 10 may be used for purposes other than the vehicle air conditioner.
  • the blower 10 has the filter 22 as shown in FIG. 1, but the filter 22 is not essential.
  • the inside/outside air door 24 is provided in the filter upstream space 204a, but there may be a plurality of doors.
  • the inside/outside air door 24 is a flat plate door, but the door shape is not limited, and the inside/outside air door 24 is a rotary door or a butterfly door. It may be.
  • the separation cylinder 18 is fixed to, for example, the space dividing portion 202 of the upstream casing 20, but may be fixed to the fan casing 14. Absent.
  • the separation cylinder separates the air passing through the suction port toward the blades from each other into inner air that flows inside the separation cylinder in the radial direction and outer air that flows outside the separation cylinder in the radial direction. I will guide you to the room.
  • the upstream space forming portion has a space dividing portion that divides the upstream space into an inner connection space in which inner air flows and an outer connection space in which outer air flows.
  • the inner connection space is arranged so as to be biased to one side in one radial direction, which is one of the radial directions, of the upstream space.
  • the outer connection space is an overlapping space that overlaps with the other side of the space division portion on the side opposite to the one side in the axial direction, and is a space excluding the overlapping space of the outer connection space that is the inner connection space and the overlapping space.
  • it has a non-overlapping space arranged on the other side opposite to the one side in the one radial direction.
  • the connection width of the boundary that is connected to the suction port in the orthogonal direction orthogonal to the one radial direction and the axial direction is the projected shape. It is smaller than the non-connection width obtained by subtracting the connection width from the width occupied in the orthogonal direction.
  • the third viewpoint is the same as the second viewpoint.
  • the second area is S2 and the third area obtained by projecting the outside non-overlapping portion of the suction port in the axial direction is S3, the relation “S3>S2” is obtained.
  • the outer non-overlapping portion which does not overlap with the space dividing portion in the axial direction, of the outer overlapping portion and the outer non-overlapping portion of the suction port is The ratio will increase. Therefore, when the entire outer overlapping portion and the outer non-overlapping portion are viewed as a whole, the outer air easily flows into the suction port, so that the pressure loss when the outer air is sucked into the suction port can be reduced.
  • the fifth viewpoint is the same as the fourth viewpoint.
  • the filter is arranged upstream of the air flow with respect to the upstream space.
  • the filter has a filter downstream surface facing the non-overlapping space and the inner connection space from one side in the axial direction.
  • the space division portion has one surface of the division portion that faces the one side in the axial direction with respect to the inner connection space, and the other surface of the division portion that faces the other side in the axial direction with respect to the overlapping space.
  • the fan casing has a suction port peripheral portion that surrounds the suction port and forms the suction port inside.
  • the suction port peripheral portion has the other end on the other side in the axial direction.
  • the distance from the other end of the suction port peripheral edge portion to the other surface of the split portion in the axial direction is larger than the distance from the downstream surface of the filter to the one surface of the split portion in the axial direction. Therefore, the outer air can easily flow from the non-overlapping space to the outer overlapping portion of the suction port through the overlapping space within the limited height of the upstream space in the axial direction. Even if the distance from the downstream surface of the filter to the one surface of the split portion in the axial direction is made small, the flow path of the inner air is only narrowed toward the end of the filter, so there is almost no effect on the air volume of the inner air. ..
  • a cross-sectional shape of the separation cylinder cut along a virtual plane orthogonal to the fan axis at a portion of the separation cylinder that crosses the suction port has the above-described one radial direction as compared with a circular shape. It has an extended shape. As a result, it is possible to increase the first area while maintaining the second area. Therefore, it is easy to increase the above-mentioned area ratio "S1/S2" while the height of the upstream space is limited in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

内側接続空間(201c)は、上流側空間(201a)のうち一径方向(DR1)の一方側に偏って配置される。外側接続空間(201b)は、空間分割部(202)に対し軸方向(DRa)の他方側に重なる重複空間(201d)と、内側接続空間と重複空間とに対し一径方向の他方側に配置された非重複空間(201e)とを有する。吸込口は、空間分割部に対し軸方向の他方側に重なり径方向において分離筒の外側に位置する外側重複部分(14b)と、径方向において分離筒の外側に位置する部分から外側重複部分を除いた外側非重複部分(14c)とを有する。非重複空間は、外側非重複部分に接続し、外側重複部分に重複空間を介して接続している。重複空間と非重複空間との境目(201f)を一径方向に投影した第1面積をS1とし、且つ、吸込口の外側重複部分を軸方向に投影した第2面積をS2とした場合に、「S1/S2≧0.5」という関係が成立する。

Description

遠心式送風機 関連出願への相互参照
 本出願は、2019年1月7日に出願された日本特許出願番号2019-795号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、遠心式送風機に関するものである。
 特許文献1には、内外気二層流式の車両用空調装置に適用される遠心式送風機が記載されている。この遠心式送風機は、2つの空気流れを区分して軸方向の片方から同時に吸入することができる。この遠心式送風機は、複数のブレードを有しファン軸心を中心に回転する遠心ファンと、その複数のブレードに対して遠心ファンの径方向の内側に配置された分離筒とを備えている。
 また、遠心式送風機は、遠心ファンを収容するスクロールケーシングを有し、そのスクロールケーシングには、遠心ファンへ吸い込まれる空気が通過する吸込口が形成されている。分離筒は、その吸込口を通過する空気を、分離筒の径方向外側を流れる外側空気と、分離筒の径方向内側を流れる内側空気とに分離して流す。
特開2018-35791号公報
 特許文献1の遠心式送風機では、外側空気は吸込口のうち分離筒の径方向外側部分を通って遠心ファンへ吸い込まれ、その吸込口のうちの径方向外側部分は、分離筒周りの全周にわたって形成されている。そのため、その吸込口よりも空気流れ上流側において、外側空気のうちの一部の空気は、吸込口へ向かう内側空気が流通する空間と吸込口との間に介在する介在空間へ回り込むように流れ、その介在空間から吸込口に流れ込むことになる。
 しかしながら、このように外側空気のうちの一部の空気が介在空間へ回り込むように流れてから吸込口に流れ込む流通経路をたどる場合に、その流通経路で如何に空気を流れ易くするかについては、特許文献1に記載されていなかった。発明者の詳細な検討の結果、以上のようなことが見出された。
 本開示は上記点に鑑みて、吸込口を通過する空気を分離筒によって分離筒の径方向外側と径方向内側とに分離して流す遠心式送風機において、分離筒の径方向外側を流れる外側空気が吸込口へ吸い込まれる際の圧損を減らすことを目的とする。
 上記目的を達成するため、本開示の1つの観点によれば、遠心式送風機は、
 ファン軸心まわりに配置された複数のブレードを有し、ファン軸心まわりに回転することにより、ファン軸心の軸方向の一方側から吸入した空気を径方向の外側に向けて吹き出す遠心ファンと、
 遠心ファンを収容し、遠心ファンに対し軸方向の一方側に配置され遠心ファンへ吸い込まれる空気が通過する吸込口が形成されたファンケーシングと、
 複数のブレードに対して遠心ファンの径方向の内側に配置され、吸込口内を通って軸方向に延伸した筒状を成す分離筒と、
 吸込口に対し空気流れ上流側に設けられ、その吸込口へ向かう空気が流通する上流側空間が形成された上流側空間形成部とを備え、
 分離筒は、吸込口を通過してブレードの相互間へ向かう空気を、径方向において分離筒の内側を流れる内側空気と径方向において分離筒の外側を流れる外側空気とに分離しながらブレードの相互間へと案内し、
 上流側空間形成部は、内側空気が流通する内側接続空間と外側空気が流通する外側接続空間とに上流側空間を分割する空間分割部を有し、
 内側接続空間は、上流側空間のうち、径方向のうちの1つの方向である一径方向において一方側に偏って配置され、
 外側接続空間は、空間分割部に対し軸方向の一方側とは反対側の他方側に重なる重複空間と、外側接続空間のうち重複空間を除いた空間であって内側接続空間と重複空間とに対し一径方向における一方側とは反対側の他方側に配置された非重複空間とを有し、
 吸込口は、その吸込口のうち空間分割部に対し軸方向の他方側に重なり且つ径方向において分離筒の外側に位置する外側重複部分と、径方向において分離筒の外側に位置する部分から外側重複部分を除いた外側非重複部分とを有し、
 非重複空間は、外側非重複部分に接続し、且つ、外側重複部分に重複空間を介して接続しており、
 重複空間と非重複空間との境目を一径方向に投影した第1面積をS1とし、且つ、吸込口の外側重複部分を軸方向に投影した第2面積をS2とした場合に、「S1/S2≧0.5」という関係が成立する。
 このようにすれば、外側空気が非重複空間から重複空間を経て吸込口のうちの外側重複部分へ流入する空気流通経路において、外側重複部分が有する流路断面積に比して上記境目が有する流路断面積が極端に小さくはならない。すなわち、外側空気が非重複空間から重複空間を経て吸込口のうちの外側重複部分へ流入する際に、その外側空気の空気流れが上記境目であまり絞られなくなる。そのため、非重複空間から重複空間に流入する外側空気は、重複空間のうち非重複空間から離れた部位にまで満遍なく行き渡り易くなり、外側空気を吸い込む役割を外側重複部分に適切に発揮させることができる。その結果として、外側空気が吸込口へ吸い込まれる際の圧損を減らし、その外側空気を円滑に流すことが可能である。
 また、本開示の別の観点によれば、遠心式送風機は、
 ファン軸心まわりに配置された複数のブレードを有し、ファン軸心まわりに回転することにより、ファン軸心の軸方向の一方側から吸入した空気を径方向の外側に向けて吹き出す遠心ファンと、
 遠心ファンを収容し、遠心ファンに対し軸方向の一方側に配置され遠心ファンへ吸い込まれる空気が通過する吸込口が形成されたファンケーシングと、
 複数のブレードに対して遠心ファンの径方向の内側に配置され、吸込口内を通って軸方向に延伸した筒状を成す分離筒と、
 吸込口に対し空気流れ上流側に設けられ、その吸込口へ向かう空気が流通する上流側空間が形成された上流側空間形成部とを備え、
 分離筒は、吸込口を通過してブレードの相互間へ向かう空気を、径方向において分離筒の内側を流れる内側空気と径方向において分離筒の外側を流れる外側空気とに分離しながらブレードの相互間へと案内し、
 上流側空間形成部は、内側空気が流通する内側接続空間と外側空気が流通する外側接続空間とに上流側空間を分割する空間分割部を有し、
 内側接続空間は、上流側空間のうち、径方向のうちの1つの方向である一径方向において一方側に偏って配置され、
 外側接続空間は、空間分割部に対し軸方向の一方側とは反対側の他方側に重なる重複空間と、外側接続空間のうち重複空間を除いた空間であって内側接続空間と重複空間とに対し一径方向における一方側とは反対側の他方側に配置された非重複空間とを有し、
 吸込口は、その吸込口のうち空間分割部に対し軸方向の他方側に重なり且つ径方向において分離筒の外側に位置する外側重複部分と、径方向において分離筒の外側に位置する部分から外側重複部分を除いた外側非重複部分とを有し、
 非重複空間は、外側非重複部分に接続し、且つ、外側重複部分に重複空間を介して接続しており、
 重複空間と非重複空間との境目を一径方向に投影した投影形状において、上記境目のうち吸込口に接続する接続部分が一径方向と軸方向とに直交する直交方向に占める接続幅は、投影形状が直交方向に占める幅から接続幅を差し引いた非接続幅よりも小さい。
 ここで、上記境目のうち上記直交方向に接続幅を有する領域を通過して非重複空間から重複空間へ流れる外側空気は、上記境目から重複空間に入ると直ちに吸込口へ吸い込まれる。その一方で、上記境目のうち上記直交方向に非接続幅を有する領域を通過して非重複空間から重複空間へ流れる外側空気は、重複空間のうち非重複空間から離れた部位にまで行き渡りやすい。
 従って、接続幅と非接続幅との大小関係を上記のようにすることで、吸込口のうちの外側重複部分に吸い込まれる外側空気が外側非重複部分側へ偏ることを緩和することができる。その結果として、外側空気が吸込口へ吸い込まれる際の圧損を減らし、その外側空気を円滑に流すことが可能である。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態における遠心式送風機の概略構成を示した図であって、遠心式送風機のファン軸心を含む平面で遠心式送風機を切断した断面図である。 図1のII-II断面を示した断面図である。 図2のIII部分を拡大して表示した部分拡大図である。 図1のIV-IV断面を示した断面図である。 第1実施形態において、遠心式送風機の送風実験の実験結果として得られた面積比S1/S2と筒外側圧損との関係を示すグラフである。 第2実施形態において、図1のIV-IV断面を示した断面図であって、図4に相当する図である。 第3実施形態において、図2のIII部分を拡大して表示した部分拡大図であって、図3に相当する図である。 第4実施形態において、図1のIV-IV断面を示した断面図であって、図4に相当する図である。
 以下、図面を参照しながら、各実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す本実施形態の遠心式送風機10は、内外気二層流式の車両用空調装置に適用される。この車両用空調装置は、車室内空気(すなわち、内気)と車室外空気(すなわち、外気)とを区分して同時に吸入することができる。以下の説明では、遠心式送風機10を単に送風機10と呼ぶ。
 図1および図2に示すように、送風機10は、遠心ファン12と、ファンケーシング14と、モータ16と、分離筒18と、上流側ケーシング20と、フィルタ22と、内外気ドア24とを備えている。遠心ファン12は、ファン軸心CLまわりに回転する。そして、遠心ファン12は、ファン軸心CLまわりに回転することにより、ファン軸心CLの軸方向DRaの一方側から吸入した空気を遠心ファン12の径方向DRrの外側に向けて吹き出す。
 図1と図2は、ファン軸心CLを含む平面で遠心ファン12とファンケーシング14と分離筒18と上流側ケーシング20とを切断した縦断面、要するにファン軸心CLを含む平面で送風機10を切断した縦断面を示している。
 なお、本実施形態では、ファン軸心CLの軸方向DRaすなわち遠心ファン12の軸方向DRaをファン軸方向DRaと呼ぶ。また、ファン軸心CLの径方向DRrすなわち遠心ファン12の径方向DRrをファン径方向DRrと呼ぶ。ファン径方向DRrは、ファン軸方向DRaに対して垂直な方向である。
 遠心ファン12は、複数のブレード121と、主板122と、分離板123とを有している。複数のブレード121は、ファン軸心CLまわりに並んで配置されている。複数のブレード121のそれぞれは、ファン軸方向DRaの一方側の端である一方端121aと、ファン軸方向DRaの他方側の端である他方端121bとを有している。
 主板122は、ファン径方向DRrへ拡がる板状を成している。要するに、主板122は、ファン軸心CLを中心とした円盤状である。主板122は、分離筒18に対しファン軸方向DRaの他方側に配置されている。主板122の中心部には、モータ16の回転軸161が相対回転不能に連結されている。主板122のうちファン径方向DRrの外側の部分には、複数のブレード121の他方端121bが固定されている。
 また、主板122は、ファン軸方向DRaの一方側に、主板案内面122aを有している。この主板案内面122aは、ファン軸方向DRaの一方側を向いてファン径方向DRrに拡がっている。
 分離板123は、複数のブレード121の相互間に流れる空気を、分離板123に対するファン軸方向DRaの一方側を流れる空気と、分離板123に対するファン軸方向DRaの他方側を流れる空気とに分離する。
 具体的に、分離板123は、複数のブレード121のそれぞれと交差し且つファン軸心CLを中心として環状に延びている。そして、分離板123は、ファン径方向DRrに拡がる板状を成している。例えば、分離板123は、ファン軸方向DRaを法線方向とした平板状を成している。
 複数のブレード121のそれぞれと分離板123とは、ブレード121と分離板123とが交差している部分で、互いに固定されている。本実施形態では、複数のブレード121、主板122、および分離板123は、一体に樹脂成形された一体成形品として構成されている。
 この分離板123によって、複数のブレード121はそれぞれ、ファン軸方向DRaに並んだ2つの部分121c、121dに分けられている。すなわち、ブレード121はそれぞれ、分離板123に対するファン軸方向DRaの一方側に設けられたブレード一方側部分121cと、分離板123に対するファン軸方向DRaの他方側に設けられたブレード他方側部分121dとを有している。
 本実施形態では、ブレード一方側部分121cの翼型、および、ブレード他方側部分121dの翼型は何れも、シロッコファンの翼型である。
 ファンケーシング14と上流側ケーシング20は、送風機10の外殻を構成する筐体として機能する。ファンケーシング14は、ファンケーシング14の内部に遠心ファン12を収容している。図1および図3に示すように、ファンケーシング14には、遠心ファン12へ吸い込まれる空気が通過する吸込口14aが形成されている。この吸込口14aは、遠心ファン12に対しファン軸方向DRaの一方側に配置されている。吸込口14aは、例えばファン軸心CLを中心とした円形状の開口である。
 そして、ファンケーシング14は、吸込口14aまわりに、吸込口周縁部としてのベルマウス141を有している。このベルマウス141は吸込口14aを取り囲み、その吸込口14aをベルマウス141の内側に形成している。
 送風機10の縦断面において、そのベルマウス141の断面形状は、吸込口14aに空気が円滑に流れ込むように、円弧状となっている。また、ベルマウス141は、ファン軸方向DRaの他方側に他方端141aを有している。
 また、ファンケーシング14は、空気通路形成部142と仕切板143とを有している。この空気通路形成部142には、遠心ファン12に対するファン径方向DRrの外側に設けられた吹出空気通路142aが形成されている。この吹出空気通路142aには、遠心ファン12から吹き出された空気が集まって流れる。例えば、この吹出空気通路142aは、遠心ファン12のまわりに渦巻き状に形成されている。そして、ファンケーシング14はスクロールケーシングとも呼ばれる。
 仕切板143は、吹出空気通路142aの内部に設けられている。すなわち、仕切板143は、遠心ファン12に対しファン径方向DRrの外側に配置されている。仕切板143は、仕切板143に対するファン軸方向DRaの一方側に配置された第1空気通路142bと、仕切板143に対するファン軸方向DRaの他方側に配置された第2空気通路142cとに、吹出空気通路142aを仕切っている。
 仕切板143は、ファン軸方向DRaを法線方向としてファン径方向DRrに延伸する平板である。仕切板143は、その仕切板143の径方向外側端にて空気通路形成部142に接続している。また、ファン軸方向DRaにおいては、仕切板143は、その仕切板143の位置と分離板123の位置とが互いに揃うように配置されている。本実施形態では、空気通路形成部142と仕切板143とは、一体に樹脂成形された一体成形品として構成されている。仕切板143の板厚、分離板123の板厚、および分離筒18の板厚は、例えば同じまたは略同じになっている。
 モータ16は、遠心ファン12を回転させる電動式の駆動装置である。モータ16は、回転軸161と、本体部162とを有している。回転軸161は、本体部162からファン軸方向DRaの一方側に向かって延伸している。回転軸161が回転することで、遠心ファン12が回転する。本体部162は、ファンケーシング14に固定されている。この本体部162とファンケーシング14と分離筒18と上流側ケーシング20は、回転しない非回転部材である。
 分離筒18は、ベルマウス141と遠心ファン12の複数のブレード121とに対してファン径方向DRrの内側に配置されている。そして、分離筒18は、吸込口14a内(すなわち、ベルマウス141に対する径方向内側)を通ってファン軸方向DRaに延伸した筒状を成している。例えば、分離筒18は、ファン軸心CLに直交する仮想平面で切断した断面形状が吸込口14aに対するファン軸方向DRaの他方側では円形状を成す筒状となっている。分離筒18は、その分離筒18の一部が吸込口14aを通ってファンケーシング14内へ挿入された配置となっている。分離筒18は、例えば上流側ケーシング20のうちの空間分割部202に固定されている。
 このような形状および配置により、分離筒18は、吸込口14aを通過して遠心ファン12に向かう空気流れを2つの空気流れに分離する。詳細に言うと、分離筒18は、吸込口14aを通過して遠心ファン12のブレード121の相互間へ向かうファン吸込空気を、内側空気と外側空気とに分離しながらブレード121の相互間へと案内する。その内側空気とは、ファン吸込空気のうち、ファン径方向DRrにおいて分離筒18の内側を流れる空気である。また、外側空気とは、ファン吸込空気のうち、ファン径方向DRrにおいて分離筒18の外側を流れる空気である。図1では、その外側空気の流れが矢印Foで表され、その内側空気の流れが矢印Fiで表されている。
 また、分離筒18はその内側空気と外側空気とをブレード121の相互間へ導くために、ファン軸方向DRaの他方側ほどファン径方向DRrへ拡がった形状を成している。すなわち、分離筒18のうちファン軸方向DRaの他方側では、ファン軸方向DRaの一方側から他方側の端へ向かうにつれて分離筒18の直径が拡大している。例えば、分離筒18は、分離筒18のうちファン軸方向DRaの他方側の端の位置では、ファン軸方向DRaに対し斜めファン径方向DRrの外側を向いて拡がった形状を成している。
 また、ファン軸方向DRaにおいて、分離筒18の他方側の端の位置は、分離板123の径方向内側端の位置に揃えられている。そして、そのファン軸方向DRaにおける分離筒18の他方側の端は、遠心ファン12の複数のブレード121に対し接触しない範囲で近接して配置されている。
 分離筒18は、上述したように筒形状であるので、その筒形状の外側壁面として構成された分離筒外側面181と、その筒形状の内側壁面として構成された分離筒内側面182とを有している。
 主板案内面122aは、矢印Fiで示すように、複数のブレード121に対する空気流れ上流側で内側空気がファン径方向DRrの外側に向けて流れるように内側空気を案内する。
 図1に示すように、遠心ファン12の分離板123は、矢印Foで示される外側空気の流れと、矢印Fiで示される内側空気の流れとを、分離筒18に対する空気流れ下流側でファン軸方向DRaに分離するように配置されている。すなわち、分離板123は、複数のブレード121の相互間において分離板123に対するファン軸方向DRaの一方側に外側空気が流れ且つ分離板123に対するファン軸方向DRaの他方側に内側空気が流れるように配置されている。
 そして、ファンケーシング14の仕切板143は、矢印Foで示される外側空気の流れと、矢印Fiで示される内側空気の流れとを、遠心ファン12に対する空気流れ下流側でファン軸方向DRaに分離するように配置されている。すなわち、仕切板143は、遠心ファン12から第1空気通路142bに矢印Foのように外側空気が流れ込み且つ第2空気通路142cに矢印Fiのように内側空気が流れ込むように配置されている。
 要するに、分離板123と仕切板143はそれぞれ、外側空気と内側空気とが分離筒18に対する空気流れ下流側で混ざり合うことを抑制するように配置されている。
 なお、図1に示すように、分離板123と分離筒18との間、および分離板123と仕切板143との間にはそれぞれ、相対回転を許容するために隙間がある。従って、詳細には次のように言える。すなわち、複数のブレード121の相互間において、分離板123に対するファン軸方向DRaの一方側には外側空気の方が内側空気よりも格段に多く流れ、且つ分離板123に対するファン軸方向DRaの他方側には内側空気の方が外側空気よりも格段に多く流れる。そして、遠心ファン12から、第1空気通路142bには外側空気の方が内側空気よりも格段に多く流れ込み、且つ第2空気通路142cには内側空気の方が外側空気よりも格段に多く流れ込む。
 上流側ケーシング20は、ファンケーシング14に対しファン軸方向DRaの一方側に連結された上流側空間形成部201と、その上流側空間形成部201に対しファン軸方向DRaの一方側に連結されたフィルタ収容部204とを有している。この上流側空間形成部201とフィルタ収容部204は、例えば一体的に構成されている。
 図1および図3に示すように、上流側空間形成部201は、ファンケーシング14の吸込口14aに対し空気流れ上流側に設けられている。上流側空間形成部201の内側には、その吸込口14aへ向かう空気が流通する上流側空間201aが形成されている。
 上流側空間形成部201は、その上流側空間201aを仕切り分ける空間分割部202を有している。詳細には、その空間分割部202は、外側空気が流通する外側接続空間201bと、内側空気が流通する内側接続空間201cとに、上流側空間201aを分割している。
 内側接続空間201cは、上流側空間201aのうち、ファン径方向DRrのうちの1つの方向である一径方向DR1において一方側に偏って配置されている。更に、ファン軸方向DRaに着目すると、内側接続空間201cは、上流側空間201aのうち、ファン軸方向DRaの一方側に偏って配置されている。なお、以下の説明では、一径方向DR1を径第1方向DR1と称する場合がある。また、径第1方向DR1とファン軸方向DRaとに直交する直交方向を径第2方向DR2と称する。
 また、図3および図4に示すように、内側接続空間201cは、上流側空間形成部201内において径第2方向DR2の全幅にわたって形成されている。
 図1および図4に示すように、外側接続空間201bは、互いにつながった重複空間201dと非重複空間201eとを有している。言い換えると、重複空間201dと非重複空間201eは、その重複空間201dと非重複空間201eとの境目201fで互いにつながって一つの外側接続空間201bを構成している。
 その重複空間201dは、外側接続空間201bのうち、空間分割部202に対してファン軸方向DRaの他方側に重なる空間である。そして、非重複空間201eは、外側接続空間201bのうち重複空間201dを除いた空間であって、内側接続空間201cと重複空間201dとに対し径第1方向DR1における他方側に配置された空間である。
 また、空間分割部202は、非重複空間201eと内側接続空間201cとの間に配置された第1隔壁部202aと、重複空間201dと内側接続空間201cとの間に配置された第2隔壁部202bとを有している。その第1隔壁部202aは、非重複空間201eと内側接続空間201cとを径第1方向DR1に隔てている。また、第2隔壁部202bは、重複空間201dと内側接続空間201cとをファン軸方向DRaに隔てている。第1隔壁部202aは、ファン軸方向DRaの一方側に設けられた一端202cを有している。
 また、空間分割部202は、内側接続空間201cに対しファン軸方向DRaの一方側を向いて面する分割部一方面202dと、重複空間201dに対しファン軸方向DRaの他方側を向いて面する分割部他方面202eとを有している。その分割部一方面202dと分割部他方面202eは何れも、空間分割部202のうち第2隔壁部202bに含まれる。
 ファンケーシング14の吸込口14aは、外側重複部分14bと外側非重複部分14cとを有している。その外側重複部分14bは、吸込口14aのうち、空間分割部202に対しファン軸方向DRaの他方側に重なり且つファン径方向DRrにおいて分離筒18の外側に位置する部分である。そして、外側非重複部分14cは、吸込口14aのうち、ファン径方向DRrにおいて分離筒18の外側に位置する環状の筒外側部分から外側重複部分14bを除いた部分である。例えば本実施形態では、外側重複部分14bは、吸込口14aの筒外側部分のうちの略半分を占めている。
 このような吸込口14aおよび外側接続空間201bの構成から、外側接続空間201bのうちの非重複空間201eは、吸込口14aの外側非重複部分14cに直接接続し、重複空間201dは、吸込口14aの外側重複部分14bに直接接続している。従って、その非重複空間201eは、吸込口14aの外側重複部分14bに重複空間201dを介して接続している。
 図1および図3に示すように、上流側ケーシング20のフィルタ収容部204は、上流側空間形成部201に対し空気流れ上流側に設けられている。フィルタ収容部204の内側には、通気可能に構成され遠心ファン12に吸い込まれる空気を濾過するフィルタ22が収容されている。従って、フィルタ22は、上流側空間形成部201の上流側空間201aに対する空気流れ上流側に配置されている。
 また、フィルタ22は、例えば直方体形状を成しており、フィルタ22を通過した空気が流出する流出面としてフィルタ下流面221を有している。そのフィルタ下流面221は、ファン軸方向DRaの他方側に向いている。そして、そのフィルタ下流面221は、非重複空間201eと内側接続空間201cとにファン軸方向DRaの一方側から面している。
 また、フィルタ収容部204内において、フィルタ22に対するファン軸方向DRaの一方側が空気流れ上流側となっており、そのフィルタ22に対するファン軸方向DRaの一方側には、フィルタ上流空間204aが形成されている。
 そのフィルタ上流空間204aには内外気ドア24が配置されており、その内外気ドア24はフィルタ上流空間204a内で回動動作する。また、フィルタ収容部204のうちフィルタ上流空間204aに面する部分には、貫通孔として形成された外気流入口204bと内気流入口204cとが形成されている。この外気流入口204bは、外気をフィルタ上流空間204aへ導入するための流入口であり、車室外に連通し、内外気ドア24の回動中心に対し径第1方向DR1の他方側に配置されている。また、内気流入口204cは、内気をフィルタ上流空間204aへ導入するための流入口であり、車室内に連通し、内外気ドア24の回動中心に対し径第1方向DR1の一方側に配置されている。
 そして、内外気ドア24は、その内外気ドア24の回動動作に伴って、外気流入口204bと内気流入口204cとを開閉する。例えば、内外気ドア24は、外気流入口204bを開放し且つ内気流入口204cを閉塞する外気導入位置と、外気流入口204bを閉塞し且つ内気流入口204cを開放する内気導入位置とに位置決めされる。また、内外気ドア24は、外気流入口204bと内気流入口204cとを何れも開放する内外気導入位置にも位置決めされる。
 図1は、内外気ドア24が内外気導入位置に位置決めされた状態を表している。その内外気導入位置では、内外気ドア24は、内外気ドア24のうち回動中心とは反対側のドア先端241を、第1隔壁部202aの一端202cに対しフィルタ22を挟んでファン軸方向DRaに対向させる。それと共に、内外気ドア24は、フィルタ上流空間204aを2つの空間に仕切る。その2つの空間のうちの一方は、外気流入口204bと内気流入口204cとのうち専ら外気流入口204bに連通し、その2つの空間のうちの他方は、専ら内気流入口204cに連通する。
 そのため、内外気ドア24が内外気導入位置に位置決めされた場合には、遠心ファン12が回転すると、外気が矢印Foのように流れると共に、内気が矢印Fiのように流れる。すなわち、外気流入口204bから外気が流入し、その外気の殆どは、フィルタ22を介して外側接続空間201bのうち非重複空間201eへと流れる。それと共に、内気流入口204cからは内気が流入し、その内気の殆どは、フィルタ22を介して内側接続空間201cへと流れる。
 そして、非重複空間201eの外気は、非重複空間201eから重複空間201dを介して又は直接に、外側空気として吸込口14aへ流れ、複数のブレード121の相互間を通ってファンケーシング14の第1空気通路142bへと流れる。内側接続空間201cの内気は、内側接続空間201cから内側空気として吸込口14aへ流れ、複数のブレード121の相互間を通ってファンケーシング14の第2空気通路142cへと流れる。
 このとき、図1に示すように、送風機10の内部では、内外気ドア24、空間分割部202、分離筒18、分離板123、および仕切板143によって、矢印Foで表される外側空気と矢印Fiで表される内側空気とが分離した状態で流れる。
 送風機10の空気通路形成部142は、図示しない車両用空調装置の空調ケーシングに連結されており、送風機10から吹出された空気は、その空調ケーシング内を流れる。空調ケーシングの内部には、空気温度を調整する温度調整器が配置されている。送風機10から吹出された空気は、温度調整器によって温度が調整された後、車室内に吹出される。空調ケーシングの内部でも、外側空気の流れと内側空気の流れとが分離された状態は維持される。そして、2つの空気流れはそれぞれ温度調整された後、例えば互いに異なる吹出口から車室内へ吹出される。
 また、内外気ドア24が外気導入位置に位置決めされた場合には、遠心ファン12が回転すると、フィルタ上流空間204aには外気流入口204bから外気が流入する。このとき、内気流入口204cは閉塞されている。フィルタ上流空間204aに流入した空気(具体的には、外気)は、フィルタ22を介して、内側接続空間201cと、外側接続空間201bのうち非重複空間201eとへそれぞれ流れる。これ以降の空気流れは、上述の内外気ドア24が内外気導入位置に位置決めされた場合と同様である。
 また、内外気ドア24が内気導入位置に位置決めされた場合には、遠心ファン12が回転すると、フィルタ上流空間204aには内気流入口204cから内気が流入する。このとき、外気流入口204bは閉塞されている。フィルタ上流空間204aに流入した空気(具体的には、内気)は、フィルタ22を介して、内側接続空間201cと、外側接続空間201bのうち非重複空間201eとへそれぞれ流れる。これ以降の空気流れは、上述の内外気ドア24が内外気導入位置に位置決めされた場合と同様である。
 図5は、送風機10において、第1面積S1を第2面積S2で除した面積比S1/S2と、筒外側圧損ΔPとの関係を示したグラフである。この図5の関係、すなわち、曲線Lpが示す面積比S1/S2と筒外側圧損ΔPとの関係は、内外気ドア24が内外気導入位置に位置決めされた状態で遠心ファン12を所定回転数で回転させた送風実験により得られた実験結果を示している。また、その遠心ファン12の回転数を所定回転数に対し上下に変動させても、図5の曲線Lpが示す傾向に変わりはなかった。
 ここで、上記した第1面積S1は、図3にて破線ハッチングを施した領域の合計面積である。詳細に言えば、破線ハッチングを施した領域は2つに分かれているが、第1面積S1は、その2つの領域を合計した面積である。すなわち、第1面積S1は、重複空間201dと非重複空間201eとの境目201fを径第1方向DR1に投影した投影面積である。詳細に言えば、その第1面積S1は、径第1方向DR1を法線方向とした仮想平面に対して上記境目201fを径第1方向DR1に投影した投影面積である。その第1面積S1を示す破線ハッチング領域は、図3に示すように、ファン軸方向DRaでは、ベルマウス141の他方端141aの位置にまで及んでいる。
 また、第2面積S2は、図4にて破線ハッチングを施した領域の面積である。すなわち、第2面積S2は、吸込口14aの外側重複部分14bをファン軸方向DRaに投影した投影面積である。詳細に言えば、その第2面積S2は、ファン軸方向DRaを法線方向とした仮想平面に対して外側重複部分14bをファン軸方向DRaに投影した投影面積である。
 また、筒外側圧損ΔPは、2つの流入口204b、204cのうち非重複空間201eに接続する流入口における空気の平均気圧P1aから、吸込口14aのうちの筒外側部分における空気の平均気圧P2aを差し引いて得られる圧力差である。要するに、筒外側圧損ΔPは、「ΔP=P1a-P2a」という式から算出される。具体的に、上記2つの流入口204b、204cのうち非重複空間201eに接続する流入口は、内外気ドア24が内外気導入位置に位置決めされた状態であるので、外気流入口204bである。また、その非重複空間201eに接続する流入口は、例えば、内外気ドア24が外気導入位置に位置決めされた状態であれば外気流入口204bであり、内外気ドア24が内気導入位置に位置決めされた状態であれば内気流入口204cである。
 図5に示すように、曲線Lpの関係から、「S1/S2≧0.5」という関係が成立する場合には筒外側圧損ΔPが小さく抑えられるということが判る。そのため、本実施形態の送風機10では、「S1/S2≧0.5」という関係が成立している。
 なお、図5の実験結果は、内外気ドア24が内外気導入位置に位置決めされた内外気二層モードで送風機10が送風した場合のものであるが、内気モードで送風機10が送風した場合でも、外気モードで送風機10が送風した場合でも、図5と同様の結果になる。その内気モードとは、内外気ドア24が内気導入位置に位置決めされた吸込モードであり、外気モードとは、内外気ドア24が外気導入位置に位置決めされた吸込モードである。
 また、図3に示すように、本実施形態の送風機10では、重複空間201dと非重複空間201eとの境目201fを径第1方向DR1に投影した境目投影形状において、接続幅L1は非接続幅L2よりも小さい。その接続幅L1は、境目投影形状において、境目201fのうち吸込口14aに接続する接続部分201gが径第2方向DR2に占める幅である。また、非接続幅L2は、境目投影形状が径第2方向DR2に占める幅L3から接続幅L1を差し引いた幅である。
 また、境目投影形状は、図3では、破線ハッチングを施した領域の形状として示されている。すなわち、その境目投影形状とは、詳しく言えば、径第1方向DR1を法線方向とした仮想平面に対して重複空間201dと非重複空間201eとの境目201fを径第1方向DR1に投影した投影形状である。
 なお、図3では、接続幅L1は2つに分かれて示されているが、接続幅L1の大きさは、その2つに分かれた幅を合計した大きさになる。このことは、幅L2、L3の大きさについても同様である。
 図4に示すように、吸込口14aおよび上流側空間201aをファン軸方向DRaの一方側から見ると、吸込口14aの筒外側部分のうちの略半分を占める外側重複部分14bは、空間分割部202によって覆われている。そのため、吸込口14aの外側非重複部分14cと比較して外側重複部分14bは、外側空気が流入しにくい状態になっている。
 これに対し、「S1/S2≧0.5」という関係が成立する。但し、図1、図3、図4に示すように、そのS1は、重複空間201dと非重複空間201eとの境目201fを径第1方向DR1に投影した第1面積であり、S2は、吸込口14aの外側重複部分14bをファン軸方向DRaに投影した第2面積である。
 従って、上記外側空気が非重複空間201eから重複空間201dを経て吸込口14aのうちの外側重複部分14bへ流入する空気流通経路において、外側重複部分14bが有する流路断面積に比して上記境目201fが有する流路断面積が極端に小さくはならない。すなわち、外側空気が非重複空間201eから重複空間201dを経て吸込口14aのうちの外側重複部分14bへ流入する際に、その外側空気の空気流れが上記境目201fであまり絞られなくなる。そのため、非重複空間201eから重複空間201dに流入する外側空気は、重複空間201dのうち非重複空間201eから離れた部位にまで満遍なく行き渡り易くなり、外側空気を吸い込む役割を外側重複部分14bに適切に発揮させることができる。その結果として、外側空気が吸込口14aへ吸い込まれる際の圧損を減らし、その外側空気を円滑に流すことが可能である。
 また、上述した図5は、「S1/S2≧0.5」という関係が成立することにより、外側空気が吸込口14aへ吸い込まれる際の圧損が低減されるということを示している。
 このように外側空気が吸込口14aへ吸い込まれる際の圧損が低減されると、それに応じて、より多くの外側空気を遠心ファン12に吸い込ませることが可能である。
 ここで、図1に示すように、内外気二層モードにおいては、フィルタ上流空間204aに流入した外気は、矢印Foのように外側空気として第1空気通路142bへ流れる。それと同時に、フィルタ上流空間204aに流入した内気は、矢印Fiのように内側空気として第2空気通路142cへ流れる。本実施形態では、圧損低減によって多くの外気を遠心ファン12に吸い込ませることが可能であるので、例えば分離筒18と遠心ファン12の分離板123との隙間等を経て内気が矢印LKのように外気の流通経路に漏れ出ることを抑制することができる。すなわち、内外気二層モードにおいて、第1空気通路142bに流通する外気に内気が混ざることを抑制することが可能である。
 その結果、例えば車両用空調装置のデフロスタモード時において、低湿度の外気に比較的高湿度の内気が混ざることに起因して窓の曇りが取れにくくなるという事態を回避することが可能である。
 また、本実施形態によれば、図1および図3に示すように、重複空間201dと非重複空間201eとの境目201fを径第1方向DR1に投影した境目投影形状において、接続幅L1は非接続幅L2よりも小さい。これに関し、接続幅L1は、境目投影形状において、境目201fのうち吸込口14aに接続する接続部分201gが径第2方向DR2に占める幅である。また、非接続幅L2は、境目投影形状が径第2方向DR2に占める幅L3から接続幅L1を差し引いた幅である。
 ここで、上記境目201fのうち径第2方向DR2に接続幅L1を有する領域を通過して非重複空間201eから重複空間201dへ流れる外側空気は、上記境目201fから重複空間201dに入ると直ちに吸込口14aへ吸い込まれる。その一方で、上記境目201fのうち径第2方向DR2に非接続幅L2を有する領域を通過して非重複空間201eから重複空間201dへ流れる外側空気は、重複空間201dのうち非重複空間201eから離れた部位にまで行き渡りやすい。従って、接続幅L1と非接続幅L2との大小関係を上記のように「L1<L2」とすることで、吸込口14aの外側重複部分14bに吸い込まれる外側空気が外側非重複部分14c側へ偏ることを緩和することができる。その結果として、外側空気が吸込口14aへ吸い込まれる際の圧損を減らし、その外側空気を円滑に流すことが可能である。
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の実施形態の説明においても同様である。
 図6に示すように、本実施形態では、空間分割部202に含まれる第1隔壁部202aが、第1実施形態のそれと比較して径第1方向DR1の一方側にずれている。そのため、第2面積S2と第3面積S3とについて、「S3>S2」という関係が成立する。
 但し、第2面積S2は、第1実施形態と同様に、吸込口14aの外側重複部分14bをファン軸方向DRaに投影した投影面積である。そして、第3面積S3は、図6にて点ハッチングを施した領域の面積である。すなわち、第3面積S3は、吸込口14aの外側非重複部分14cをファン軸方向DRaに投影した投影面積である。詳細に言えば、その第3面積S3は、ファン軸方向DRaを法線方向とした仮想平面に対して外側非重複部分14cをファン軸方向DRaに投影した投影面積である。
 このように本実施形態によれば、第2面積をS2とし、且つ、吸込口14aの外側非重複部分14cをファン軸方向DRaに投影した第3面積をS3とした場合に、「S3>S2」という関係が成立する。従って、逆に「S3<S2」という関係が成立する場合と比較して、吸込口14aの外側重複部分14bおよび外側非重複部分14cのうち、ファン軸方向DRaに見て空間分割部202と重ならない外側非重複部分14cが占める割合が大きくなる。
 そのため、外側重複部分14bと外側非重複部分14cとの全体を見れば外側空気が吸込口14aに流入しやすくなるので、外側空気が吸込口14aへ吸い込まれる際の圧損を減らすことができる。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
 図7に示すように、本実施形態では、空間分割部202に含まれる第2隔壁部202bが、第1実施形態のそれと比較してファン軸方向DRaの一方側にずれている。具体的に言うと、ファン軸方向DRaにおけるベルマウス141の他方端141aから分割部他方面202eまでの距離H2は、ファン軸方向DRaにおけるフィルタ下流面221から分割部一方面202dまでの距離H1よりも大きい。
 従って、ファン軸方向DRaにおける上流側空間201aの限られた高さの中で、非重複空間201eから重複空間201dを経て吸込口14aの外側重複部分14bへ外側空気を流れやすくすることができる。なお、ファン軸方向DRaにおけるフィルタ下流面221から分割部一方面202dまでの距離H1が小さくされても、フィルタ22の端の方において内側空気の流通経路が狭められるに過ぎないので、内側空気の風量には殆ど影響しない。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態と組み合わせることも可能である。
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
 図8に示すように、本実施形態では、ファン軸心CLに直交する仮想平面で分離筒18を切断した断面形状、すなわち分離筒18の横断面形状が、第1実施形態と異なっている。
 具体的には、分離筒18のうち吸込口14aを横切る部位183(図3参照)にて分離筒18をファン軸心CLに直交する仮想平面で切断した断面形状は、円形状と比較して径第1方向DR1に延びた形状を成している。例えば、その断面形状は、径第1方向DR1を長軸方向とした長円形状である。
 これにより、図8の第2面積S2を維持したまま、図3の第1面積S1の拡大を図ることが可能である。従って、上流側空間201aがファン軸方向DRaに有する高さに制約がある中で、第2面積S2に対する第1面積S1の面積比である「S1/S2」を大きくしやすい。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態または第3実施形態と組み合わせることも可能である。
 (他の実施形態)
 (1)上述の各実施形態では例えば図1に示すように、遠心ファン12はシロッコファンであるが、これに限らず、例えばターボファンであってもよい。また、ブレード一方側部分121cの翼型とブレード他方側部分121dの翼型は互いに同じである必要はなく、それらの翼型は互いに異なっていてもよい。
 (2)上述の各実施形態では、送風機10は、内外気二層流式の車両用空調装置に適用されるが、その送風機10の用途は、それに限定されるわけではない。例えば送風機10は、車両用空調装置以外の用途に用いられても差し支えない。
 (3)上述の各実施形態では図1に示すように、送風機10はフィルタ22を有しているが、そのフィルタ22は必須ではない。
 (4)上述の各実施形態では図1に示すように、フィルタ上流空間204aに設けられている内外気ドア24は1枚であるが、複数枚あっても差し支えない。
 (5)上述の各実施形態では図1に示すように、内外気ドア24は平板状の板ドアであるが、そのドア形状に限定はなく、内外気ドア24は、ロータリドアまたはバタフライドアであってもよい。
 (6)上述の各実施形態では図1に示すように、分離筒18は、例えば上流側ケーシング20のうちの空間分割部202に固定されているが、ファンケーシング14に固定されていても差し支えない。
 (7)なお、本開示は、上述の実施形態に限定されることなく、種々変形して実施することができる。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、次のとおりである。分離筒は、吸込口を通過してブレードの相互間へ向かう空気を、径方向において分離筒の内側を流れる内側空気と径方向において分離筒の外側を流れる外側空気とに分離しながらブレードの相互間へと案内する。上流側空間形成部は、内側空気が流通する内側接続空間と外側空気が流通する外側接続空間とに上流側空間を分割する空間分割部を有する。内側接続空間は、上流側空間のうち、径方向のうちの1つの方向である一径方向において一方側に偏って配置される。外側接続空間は、空間分割部に対し軸方向の一方側とは反対側の他方側に重なる重複空間と、外側接続空間のうち重複空間を除いた空間であって内側接続空間と重複空間とに対し上記一径方向における一方側とは反対側の他方側に配置された非重複空間とを有する。そして、重複空間と非重複空間との境目を上記一径方向に投影した第1面積をS1とし、且つ、吸込口の外側重複部分を軸方向に投影した第2面積をS2とした場合に、「S1/S2≧0.5」という関係が成立する。
 また、第2の観点によれば、次のとおりである。上記境目を上記一径方向に投影した投影形状において、上記境目のうち吸込口に接続する接続部分が上記一径方向と軸方向とに直交する直交方向に占める接続幅は、その投影形状が上記直交方向に占める幅から接続幅を差し引いた非接続幅よりも小さい。
 また、第3の観点は、この第2の観点と同様である。
 また、第4の観点によれば、第2面積をS2とし、且つ、吸込口の外側非重複部分を軸方向に投影した第3面積をS3とした場合に、「S3>S2」という関係が成立する。従って、逆に「S3<S2」という関係が成立する場合と比較して、吸込口の外側重複部分および外側非重複部分のうち、軸方向に見て空間分割部と重ならない外側非重複部分が占める割合が大きくなる。そのため、外側重複部分と外側非重複部分との全体を見れば外側空気が吸込口に流入しやすくなるので、外側空気が吸込口へ吸い込まれる際の圧損を減らすことができる。
 また、第5の観点は、この第4の観点と同様である。
 また、第6の観点によれば、フィルタは、上流側空間に対する空気流れ上流側に配置される。そして、フィルタは、非重複空間と内側接続空間とに軸方向の一方側から面するフィルタ下流面を有する。空間分割部は、内側接続空間に対し軸方向の一方側を向いて面する分割部一方面と、重複空間に対し軸方向の他方側を向いて面する分割部他方面とを有する。ファンケーシングは、吸込口を取り囲みその吸込口を内側に形成する吸込口周縁部を有する。吸込口周縁部は、軸方向の他方側に他方端を有する。更に、軸方向における吸込口周縁部の他方端から分割部他方面までの距離は、軸方向におけるフィルタ下流面から分割部一方面までの距離よりも大きい。従って、軸方向における上流側空間の限られた高さの中で、非重複空間から重複空間を経て吸込口の外側重複部分へ外側空気を流れやすくすることができる。なお、軸方向におけるフィルタ下流面から分割部一方面までの距離が小さくされても、フィルタの端の方において内側空気の流通経路が狭められるの過ぎないので、内側空気の風量には殆ど影響しない。
 また、第7の観点によれば、分離筒のうち吸込口を横切る部位にてその分離筒をファン軸心に直交する仮想平面で切断した断面形状は、円形状と比較して上記一径方向に延びた形状を成している。これにより、上記第2面積を維持したまま、上記第1面積の拡大を図ることが可能である。従って、上流側空間が軸方向に有する高さに制約がある中で、上記した面積比である「S1/S2」を大きくしやすい。
 

Claims (7)

  1.  遠心式送風機であって、
     ファン軸心(CL)まわりに配置された複数のブレード(121)を有し、前記ファン軸心まわりに回転することにより、前記ファン軸心の軸方向(DRa)の一方側から吸入した空気を径方向(DRr)の外側に向けて吹き出す遠心ファン(12)と、
     前記遠心ファンを収容し、前記遠心ファンに対し前記軸方向の前記一方側に配置され前記遠心ファンへ吸い込まれる空気が通過する吸込口(14a)が形成されたファンケーシング(14)と、
     前記複数のブレードに対して前記遠心ファンの前記径方向の内側に配置され、前記吸込口内を通って前記軸方向に延伸した筒状を成す分離筒(18)と、
     前記吸込口に対し空気流れ上流側に設けられ、該吸込口へ向かう空気が流通する上流側空間(201a)が形成された上流側空間形成部(201)とを備え、
     前記分離筒は、前記吸込口を通過して前記ブレードの相互間へ向かう空気を、前記径方向において前記分離筒の内側を流れる内側空気と前記径方向において前記分離筒の外側を流れる外側空気とに分離しながら前記ブレードの相互間へと案内し、
     前記上流側空間形成部は、前記内側空気が流通する内側接続空間(201c)と前記外側空気が流通する外側接続空間(201b)とに前記上流側空間を分割する空間分割部(202)を有し、
     前記内側接続空間は、前記上流側空間のうち、前記径方向のうちの1つの方向である一径方向(DR1)において一方側に偏って配置され、
     前記外側接続空間は、前記空間分割部に対し前記軸方向の前記一方側とは反対側の他方側に重なる重複空間(201d)と、前記外側接続空間のうち前記重複空間を除いた空間であって前記内側接続空間と前記重複空間とに対し前記一径方向における前記一方側とは反対側の他方側に配置された非重複空間(201e)とを有し、
     前記吸込口は、該吸込口のうち前記空間分割部に対し前記軸方向の前記他方側に重なり且つ前記径方向において前記分離筒の外側に位置する外側重複部分(14b)と、前記径方向において前記分離筒の外側に位置する部分から前記外側重複部分を除いた外側非重複部分(14c)とを有し、
     前記非重複空間は、前記外側非重複部分に接続し、且つ、前記外側重複部分に前記重複空間を介して接続しており、
     前記重複空間と前記非重複空間との境目(201f)を前記一径方向に投影した第1面積をS1とし、且つ、前記吸込口の前記外側重複部分を前記軸方向に投影した第2面積をS2とした場合に、「S1/S2≧0.5」という関係が成立する、遠心式送風機。
  2.  前記境目を前記一径方向に投影した投影形状において、前記境目のうち前記吸込口に接続する接続部分(201g)が前記一径方向と前記軸方向とに直交する直交方向(DR2)に占める接続幅(L1)は、前記投影形状が前記直交方向に占める幅(L3)から前記接続幅を差し引いた非接続幅(L2)よりも小さい、請求項1に記載の遠心式送風機。
  3.  遠心式送風機であって、
     ファン軸心(CL)まわりに配置された複数のブレード(121)を有し、前記ファン軸心まわりに回転することにより、前記ファン軸心の軸方向(DRa)の一方側から吸入した空気を径方向(DRr)の外側に向けて吹き出す遠心ファン(12)と、
     前記遠心ファンを収容し、前記遠心ファンに対し前記軸方向の前記一方側に配置され前記遠心ファンへ吸い込まれる空気が通過する吸込口(14a)が形成されたファンケーシング(14)と、
     前記複数のブレードに対して前記遠心ファンの前記径方向の内側に配置され、前記吸込口内を通って前記軸方向に延伸した筒状を成す分離筒(18)と、
     前記吸込口に対し空気流れ上流側に設けられ、該吸込口へ向かう空気が流通する上流側空間(201a)が形成された上流側空間形成部(201)とを備え、
     前記分離筒は、前記吸込口を通過して前記ブレードの相互間へ向かう空気を、前記径方向において前記分離筒の内側を流れる内側空気と前記径方向において前記分離筒の外側を流れる外側空気とに分離しながら前記ブレードの相互間へと案内し、
     前記上流側空間形成部は、前記内側空気が流通する内側接続空間(201c)と前記外側空気が流通する外側接続空間(201b)とに前記上流側空間を分割する空間分割部(202)を有し、
     前記内側接続空間は、前記上流側空間のうち、前記径方向のうちの1つの方向である一径方向(DR1)において一方側に偏って配置され、
     前記外側接続空間は、前記空間分割部に対し前記軸方向の前記一方側とは反対側の他方側に重なる重複空間(201d)と、前記外側接続空間のうち前記重複空間を除いた空間であって前記内側接続空間と前記重複空間とに対し前記一径方向における前記一方側とは反対側の他方側に配置された非重複空間(201e)とを有し、
     前記吸込口は、該吸込口のうち前記空間分割部に対し前記軸方向の前記他方側に重なり且つ前記径方向において前記分離筒の外側に位置する外側重複部分(14b)と、前記径方向において前記分離筒の外側に位置する部分から前記外側重複部分を除いた外側非重複部分(14c)とを有し、
     前記非重複空間は、前記外側非重複部分に接続し、且つ、前記外側重複部分に前記重複空間を介して接続しており、
     前記重複空間と前記非重複空間との境目(201f)を前記一径方向に投影した投影形状において、前記境目のうち前記吸込口に接続する接続部分(201g)が前記一径方向と前記軸方向とに直交する直交方向(DR2)に占める接続幅(L1)は、前記投影形状が前記直交方向に占める幅(L3)から前記接続幅を差し引いた非接続幅(L2)よりも小さい、遠心式送風機。
  4.  前記第2面積をS2とし、且つ、前記吸込口の前記外側非重複部分を前記軸方向に投影した第3面積をS3とした場合に、「S3>S2」という関係が成立する、請求項1または2に記載の遠心式送風機。
  5.  前記吸込口の前記外側重複部分を前記軸方向に投影した第2面積をS2とし、且つ、前記吸込口の前記外側非重複部分を前記軸方向に投影した第3面積をS3とした場合に、「S3>S2」という関係が成立する、請求項3に記載の遠心式送風機。
  6.  前記上流側空間に対する空気流れ上流側に配置され、前記非重複空間と前記内側接続空間とに前記軸方向の前記一方側から面するフィルタ下流面(221)を有するフィルタ(22)を備え、
     前記空間分割部は、前記内側接続空間に対し前記軸方向の前記一方側を向いて面する分割部一方面(202d)と、前記重複空間に対し前記軸方向の前記他方側を向いて面する分割部他方面(202e)とを有し、
     前記ファンケーシングは、前記吸込口を取り囲み該吸込口を内側に形成する吸込口周縁部(141)を有し、
     前記吸込口周縁部は、前記軸方向の前記他方側に他方端(141a)を有し、
     前記軸方向における前記吸込口周縁部の前記他方端から前記分割部他方面までの距離(H2)は、前記軸方向における前記フィルタ下流面から前記分割部一方面までの距離(H1)よりも大きい、請求項1ないし5のいずれか1つに記載の遠心式送風機。
  7.  前記分離筒のうち前記吸込口を横切る部位(183)にて該分離筒を前記ファン軸心に直交する仮想平面で切断した断面形状は、円形状と比較して前記一径方向に延びた形状を成している、請求項1ないし6のいずれか1つに記載の遠心式送風機。
PCT/JP2019/045465 2019-01-07 2019-11-20 遠心式送風機 WO2020144945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980088010.6A CN113286715B (zh) 2019-01-07 2019-11-20 离心式送风机
US17/362,332 US11713770B2 (en) 2019-01-07 2021-06-29 Centrifugal blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-000795 2019-01-07
JP2019000795A JP6973417B2 (ja) 2019-01-07 2019-01-07 遠心式送風機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/362,332 Continuation US11713770B2 (en) 2019-01-07 2021-06-29 Centrifugal blower

Publications (1)

Publication Number Publication Date
WO2020144945A1 true WO2020144945A1 (ja) 2020-07-16

Family

ID=71521218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045465 WO2020144945A1 (ja) 2019-01-07 2019-11-20 遠心式送風機

Country Status (4)

Country Link
US (1) US11713770B2 (ja)
JP (1) JP6973417B2 (ja)
CN (1) CN113286715B (ja)
WO (1) WO2020144945A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025510A (ja) * 2019-08-08 2021-02-22 株式会社Soken 遠心式送風機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108454A (ko) * 2003-06-17 2004-12-24 한라공조주식회사 2층류 공기조화장치의 송풍유니트
JP2018035792A (ja) * 2016-09-02 2018-03-08 株式会社ヴァレオジャパン 車両用空調装置のための遠心送風機
WO2018074339A1 (ja) * 2016-10-18 2018-04-26 株式会社ヴァレオジャパン 遠心送風機
JP2018091274A (ja) * 2016-12-06 2018-06-14 株式会社ヴァレオジャパン 遠心送風機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029149A (ja) * 2012-06-26 2014-02-13 Denso Corp 遠心式多翼送風機
JP6143596B2 (ja) * 2013-07-30 2017-06-07 サンデンホールディングス株式会社 遠心送風機及び該遠心送風機を備えた車両用空調装置
JP6409440B2 (ja) * 2013-11-20 2018-10-24 株式会社デンソー 空調装置
CN108713101B (zh) * 2016-02-24 2019-10-18 株式会社电装 离心送风机
JP6576891B2 (ja) 2016-09-02 2019-09-18 株式会社ヴァレオジャパン 車両用空調装置のための遠心送風機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108454A (ko) * 2003-06-17 2004-12-24 한라공조주식회사 2층류 공기조화장치의 송풍유니트
JP2018035792A (ja) * 2016-09-02 2018-03-08 株式会社ヴァレオジャパン 車両用空調装置のための遠心送風機
WO2018074339A1 (ja) * 2016-10-18 2018-04-26 株式会社ヴァレオジャパン 遠心送風機
JP2018091274A (ja) * 2016-12-06 2018-06-14 株式会社ヴァレオジャパン 遠心送風機

Also Published As

Publication number Publication date
US11713770B2 (en) 2023-08-01
CN113286715B (zh) 2024-01-23
CN113286715A (zh) 2021-08-20
JP6973417B2 (ja) 2021-11-24
US20210324872A1 (en) 2021-10-21
JP2020109286A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
JP3858744B2 (ja) 遠心式送風機
JP7200824B2 (ja) 遠心送風機
US20190293081A1 (en) Centrifugal Blower
WO2023020557A1 (zh) 供暖、通风和空气调节模块和车辆
TW202129157A (zh) 離心風扇以及空調裝置
US20190293082A1 (en) Centrifugal blower
WO2020144945A1 (ja) 遠心式送風機
US20220282735A1 (en) Blower
US11746799B2 (en) Centrifugal blower
US20210239128A1 (en) Single suction centrifugal blower
US11852362B2 (en) Blower
JP2002005091A (ja) 多翼ファン
JP7255448B2 (ja) 送風機
WO2020121729A1 (ja) 遠心ファン、遠心送風機
WO2021187175A1 (ja) 遠心送風機
WO2021090648A1 (ja) 送風機
WO2021085086A1 (ja) 送風機
JP2023136587A (ja) 送風装置、取込口ダクトフランジ、及び、梱包方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909614

Country of ref document: EP

Kind code of ref document: A1