WO2020143808A1 - 免授权传输的方法及装置 - Google Patents

免授权传输的方法及装置 Download PDF

Info

Publication number
WO2020143808A1
WO2020143808A1 PCT/CN2020/071538 CN2020071538W WO2020143808A1 WO 2020143808 A1 WO2020143808 A1 WO 2020143808A1 CN 2020071538 W CN2020071538 W CN 2020071538W WO 2020143808 A1 WO2020143808 A1 WO 2020143808A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
symbol
pusch
dmrs
Prior art date
Application number
PCT/CN2020/071538
Other languages
English (en)
French (fr)
Inventor
徐修强
陈雁
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143808A1 publication Critical patent/WO2020143808A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for unauthorized transmission.
  • Unauthorized transmission is a "come and go" data sending method, that is, when the terminal needs to send data to the base station, the terminal directly uses the pre-configured transmission resources and transmission parameters of the base station to send data to the base station without first Send a scheduling request to the base station and wait for the dynamic authorization sent by the base station.
  • unlicensed transmission has the beneficial effects of reducing signaling overhead, reducing transmission delay, and reducing terminal power consumption.
  • OFDM orthogonal frequency division multiplexing
  • PUSCHs sent by different terminals may start from different OFDM symbols, resulting in OFDM symbols used to carry data in one PUSCH and demodulation carried in another PUSCH
  • the OFDM symbols of the reference signal (demodulation, reference, DMRS) are the same OFDM symbol, which causes the data sent by one terminal to interfere with the DMRS sent by another terminal, thereby affecting the demodulation performance of the data and the detection performance of DMRS.
  • the present application provides a method and device for unauthorized transmission to solve the problem of mutual interference between data sent by one terminal and DMRS sent by another terminal during the unauthorized transmission process.
  • a method for unlicensed transmission including: a terminal receives a time domain resource configuration and a DMRS configuration for unlicensed transmission, the time domain resource configuration for unlicensed transmission is used to determine the configured time domain resource, and the DMRS configuration is used to Determine the location of multiple OFDM symbols used to carry DMRS in the configured time domain resources; the terminal determines the PUSCH time domain resources according to the unauthorized transmission time domain resource configuration and DMRS configuration, where the PUSCH time domain resources are configured A non-zero subset of time-domain resources.
  • the starting symbol of the PUSCH time-domain resource is one of the multiple OFDM symbols used to carry DMRS in the configured time-domain resource; the terminal sends the PUSCH on the PUSCH time-domain resource .
  • the present application stipulates that the starting symbol of the PUSCH time domain resource is one OFDM symbol among the multiple OFDM symbols used to carry DMRS in the configured time domain resource, thereby increasing the use of PUSCH sent by different terminals The probability that the OFDM symbols carrying the DMRS are aligned to avoid mutual interference between the data sent by one terminal and the DMRS sent by another terminal.
  • the starting symbol of the PUSCH time-domain resource is one OFDM symbol among multiple OFDM symbols used to carry additional DMRS in the configured time-domain resource.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration and DMRS configuration of unlicensed transmission, including: in the time slot where the start symbol is located, the first X numbers from the start symbol The OFDM symbols located in the same time slot and located in the configured time domain resource are determined as the PUSCH time domain resource; where X is determined according to the time domain resource configuration of unlicensed transmission, and X is a positive integer.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration and DMRS configuration of unlicensed transmission, including: in the time slot where the start symbol is located, if there is less than X after the start symbol -1 OFDM symbol located in the configured time domain resource, then all OFDM symbols located in the configured time domain resource in the time slot from the starting symbol are determined as the PUSCH time domain resource; wherein, X is transmitted according to the unlicensed The time domain resource configuration is determined.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration and DMRS configuration of the unlicensed transmission, including: in the time slot where the start symbol is located, multiple terminals from the start symbol are located OFDM symbols in the same time slot and located in the same unlicensed transmission period in the configured time domain resource are determined as the PUSCH time domain resource.
  • the terminal sending the PUSCH on the PUSCH time-domain resource includes: sending the DMRS on at least one first symbol in the PUSCH time-domain resource, where the first symbol is more of the configured time-domain resource Non-zero subsets of OFDM symbols used to carry DMRS; data is sent on the second symbol in the PUSCH time-domain resource, where the second symbol is other than at least one first symbol in the PUSCH time-domain resource OFDM symbol.
  • the technical solution of the present application can ensure that multiple terminals carry DMRS with the same OFDM symbol in the multiplexed time-frequency resources, thereby avoiding multiple The data sent by any one of the terminals interferes with the DMRS sent by other terminals to ensure the demodulation performance of the data sent by each terminal.
  • the terminal sends the PUSCH on the PUSCH time domain resource, including: If the cutoff symbol of the PUSCH time domain resource is the first symbol and the last OFDM symbol in the time slot where the starting symbol is located, then No information is sent on the cut-off symbol, or data is sent on the cut-off symbol. In this way, the overhead of DMRS can be reduced and the utilization of time-domain resources can be improved.
  • the terminal sending the DMRS on at least one first symbol in the PUSCH time domain resource includes: sending the first DMRS on the first first symbol of the at least one first symbol; on at least one The second DMRS is transmitted on the first symbol other than the first symbol.
  • the network device can determine which OFDM symbol in the time slot is the starting symbol of the PUSCH time domain resource, thereby ensuring that the network device can correctly demodulate the PUSCH.
  • the method further includes: the terminal receives indication information, which is used to indicate that one of the multiple OFDM symbols used to carry the DMRS in the configured time domain resource can be used as the time domain resource of the PUSCH Start symbol. Therefore, one of the multiple OFDM symbols used to carry the DMRS in the time domain resources that the terminal can configure can be used as the starting symbol of the PUSCH time domain resources, thereby reducing the waiting delay of the data packet.
  • one of the multiple OFDM symbols used to carry the DMRS in the configured time-domain resource may be used as the starting symbol of the PUSCH time-domain resource. Therefore, one of the multiple OFDM symbols used to carry the DMRS in the time domain resources that can be configured by the terminal can be used as the starting symbol of the PUSCH time domain resources, thereby reducing the waiting delay of the data packet.
  • a method for unlicensed transmission including: a terminal receiving a time domain resource configuration and a DMRS configuration for unlicensed transmission; wherein the time domain resource configuration for unlicensed transmission is used to determine the configured time domain resource and configuration The location of multiple third symbols in the time-domain resource of the third symbol, which can be used as the starting symbol of the PUSCH time-domain resource; the DMRS configuration is used to determine the position of the first resource particle (RE) in the third symbol, The first RE is used to carry DMRS.
  • the time domain resource configuration for unlicensed transmission is used to determine the configured time domain resource and configuration
  • the location of multiple third symbols in the time-domain resource of the third symbol which can be used as the starting symbol of the PUSCH time-domain resource
  • the DMRS configuration is used to determine the position of the first resource particle (RE) in the third symbol
  • the first RE is used to carry DMRS.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration of unlicensed transmission, where the starting symbol of the time domain resource of the PUSCH is one of a plurality of third symbols in the configured time domain resource.
  • the terminal sends data on the second RE that is not the first third symbol in the time domain resource of the PUSCH.
  • the multiple third symbols included in the PUSCH time domain resource are non-zero subsets of the multiple third symbols included in the configured time domain resource.
  • the second RE is other REs than the first RE in the third symbol.
  • the terminal since the terminal sends data on the second RE that is not the first third symbol in the PUSCH time domain resource, it does not send data on the first RE on the third symbol, so that On the third symbol, the data sent by the terminal and the DMRS sent by other terminals are frequency-division, to ensure that the data sent by the terminal and the DMRS sent by other terminals will not interfere with each other, to ensure the demodulation performance of the data sent by the terminal and other terminals Demodulation performance of transmitted DMRS.
  • the method further includes: the terminal sending a DMRS on the first RE of the first third symbol in the time domain resource of the PUSCH.
  • the method further includes: the terminal sending data on the fourth symbol in the PUSCH time-domain resource, where the fourth symbol is another OFDM symbol in the PUSCH time-domain resource except the third symbol .
  • a method for unlicensed transmission including: a terminal receives a time domain resource configuration and a DMRS configuration for unlicensed transmission, and the time domain resource configuration for unlicensed transmission is used to determine multiple transmission opportunities in the configured time domain resources
  • the DMRS configuration is used to determine the positions of multiple first transmission opportunities among the multiple transmission opportunities, and the first transmission opportunities are used to carry the PUSCH carrying the DMRS.
  • the terminal determines the initial transmission timing according to the time domain resource configuration of unauthorized transmission and the DMRS configuration, and the initial transmission timing is one of the plurality of first transmission timings.
  • the terminal transmits PUSCH at the initial transmission timing.
  • the terminal selects one of the multiple first transmission opportunities as the initial transmission opportunity.
  • the terminal since the PUSCH sent by the other terminal on the first transmission timing also carries DMRS, the terminal sends the PUSCH on the initial transmission timing.
  • the DMRS carried by the PUSCH will not affect the data sent by other terminals, thus avoiding a The DMRS sent by the terminal interferes with the data sent by another terminal.
  • the terminal sending the PUSCH at the initial transmission opportunity includes: the terminal repeatedly sending the PUSCH at K transmission opportunities from the initial transmission opportunity.
  • the value of K is equal to the configured number of repeated transmissions.
  • the value of K is less than the configured number of repeated transmissions, and the value of K is the number of all transmission opportunities since the initial transmission opportunity in the unauthorized transmission cycle where the initial transmission opportunity is located.
  • a communication device including: a receiving module for receiving time domain resource configuration and DMRS configuration of unlicensed transmission, time domain resource configuration of unlicensed transmission is used to determine the configured time domain resource, and the DMRS configuration is used To determine the positions of multiple OFDM symbols used to carry DMRS in the configured time domain resources.
  • the processing module is used to determine the PUSCH time domain resource according to the unauthorized transmission time domain resource configuration and DMRS configuration, where the PUSCH time domain resource is a non-zero subset of the configured time domain resource, and the PUSCH time domain resource
  • the starting symbol is one OFDM symbol among multiple OFDM symbols used to carry DMRS in the configured time domain resource.
  • the sending module is used for sending the PUSCH on the PUSCH time domain resource.
  • the starting symbol of the PUSCH time domain resource is one OFDM symbol among the multiple OFDM symbols used to carry DMRS in the configured time domain resource, including:
  • the starting symbol of the PUSCH time domain resource is One OFDM symbol among multiple OFDM symbols used to carry additional DMRS in the configured time domain resource.
  • the processing module is used to determine the time domain resource of the PUSCH according to the time domain resource configuration and DMRS configuration of unlicensed transmission, including: in the time slot where the start symbol is located, it will start from the start symbol
  • the first X OFDM symbols located in the same time slot and located in the configured time domain resource are determined as PUSCH time domain resources; where X is determined according to the time domain resource configuration of unlicensed transmission, and X is a positive integer.
  • the processing module is used to determine the time domain resource of PUSCH according to the time domain resource configuration and DMRS configuration of unlicensed transmission, including: in the time slot where the start symbol is located, if it is after the start symbol There are less than X-1 OFDM symbols located in the configured time domain resource, then all OFDM symbols located in the configured time domain resource in the slot from the starting symbol are determined as PUSCH time domain resources; where, X According to the time domain resource configuration of unauthorized transmission, X is a positive integer.
  • the processing module is used to determine the time domain resource of the PUSCH according to the time domain resource configuration and DMRS configuration of unlicensed transmission, including: in the time slot where the start symbol is located, it will start from the start symbol A plurality of OFDM symbols located in the same time slot and located in the same unlicensed transmission period in the configured time domain resource are determined as the PUSCH time domain resource.
  • the sending module is configured to send the PUSCH on the PUSCH time-domain resource, including: sending the DMRS on at least one first symbol in the PUSCH time-domain resource, where the first symbol is the configured time Multiple non-zero subsets of OFDM symbols used to carry DMRS in the domain resource; data is sent on the second symbol in the PUSCH time domain resource, where the second symbol is at least one first in the PUSCH time domain resource OFDM symbols other than symbols.
  • the sending module is used to send the PUSCH on the PUSCH time domain resource, including: if the cutoff symbol of the PUSCH time domain resource is the first symbol and the last OFDM in the time slot where the starting symbol is located Symbol, no information is sent on the cut-off symbol, or data is sent on the cut-off symbol.
  • the sending module configured to send the DMRS on at least one first symbol in the PUSCH time domain resource, includes: sending the first DMRS on the first first symbol of the at least one first symbol ; Send the second DMRS on the non-first first symbol of at least one first symbol.
  • the receiving module is also used to receive indication information, which is used to indicate that one of the multiple OFDM symbols used to carry the DMRS in the configured time domain resource can be used as the time domain resource of the PUSCH Start symbol.
  • one of the multiple OFDM symbols used to carry the DMRS in the configured time-domain resource may be used as the starting symbol of the PUSCH time-domain resource.
  • a communication device including: a receiving module configured to receive time domain resource configuration and DMRS configuration of unlicensed transmission; wherein the time domain resource configuration of unlicensed transmission is used to determine the configured time domain resource, and The location of multiple third symbols in the configured time domain resources.
  • the third symbol can be used as the starting symbol of the PUSCH time domain resources;
  • the DMRS configuration is used to determine the position of the first resource particle (RE) in the third symbol ,
  • the first RE is used to carry DMRS.
  • the processing module is configured to determine the time domain resource of the PUSCH according to the time domain resource configuration of the unlicensed transmission, where the starting symbol of the time domain resource of the PUSCH is one of a plurality of third symbols in the configured time domain resource.
  • the sending module is configured to send data on the second RE that is not the first third symbol in the time domain resource of the PUSCH.
  • the multiple third symbols included in the PUSCH time domain resource are non-zero subsets of the multiple third symbols included in the configured time domain resource.
  • the second RE is other REs than the first RE in the third symbol.
  • the sending module is further used for the terminal to send the DMRS on the first RE of the first third symbol in the time domain resource of the PUSCH.
  • the sending module is also used to send data on the fourth symbol in the PUSCH time-domain resource, where the fourth symbol is other OFDM symbols than the third symbol in the PUSCH time-domain resource .
  • a communication device including: a receiving module configured to receive a time domain resource configuration of unlicensed transmission and a DMRS configuration, and a time domain resource configuration of unlicensed transmission is used to determine a plurality of transmissions in the configured time domain resource The location of the timing, the DMRS configuration is used to determine the location of the plurality of first transmission opportunities among the plurality of transmission opportunities.
  • the processing module is configured to determine an initial transmission timing according to the time domain resource configuration of unauthorized transmission and the DMRS configuration, and the initial transmission timing is one of a plurality of first transmission timings.
  • the sending module is used to send PUSCH at the initial transmission timing.
  • the sending module is configured to send the PUSCH at the initial transmission timing, including: repeatedly sending the PUSCH at K transmission timings from the initial transmission timing.
  • the value of K is equal to the configured number of repeated transmissions.
  • the value of K is less than the configured number of repeated transmissions, and the value of K is the number of all transmission opportunities since the initial transmission opportunity in the unauthorized transmission cycle where the initial transmission opportunity is located.
  • a communication device including: a processor, configured to couple with a memory, read an instruction in the memory, and implement any one of the foregoing first to third aspects according to the instruction The method of unauthorized transmission described in the aspect.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, which when executed on a communication device, enables the communication device to perform any of the first to third aspects above The method of unauthorized transmission.
  • a computer program product containing instructions which, when run on a communication device, enable the communication device to perform the method of unauthorized transmission according to any one of the first to third aspects.
  • a chip includes a processing module and a communication interface.
  • the communication interface is used to provide an input signal to the processing module and/or to output a signal generated by the processing module.
  • the processing module is used to Performing the method of unlicensed transmission according to any one of the first aspect to the third aspect to generate the PUSCH.
  • the processing module may execute code instructions to perform the method of unlicensed transmission described in any one of the first aspect to the third aspect to generate the PUSCH.
  • the code instruction can come from the internal memory of the chip or from the external memory of the chip.
  • the processing module may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the communication interface may be an input/output circuit or a transceiver pin on the chip.
  • FIG. 1 is a schematic diagram of a flexible start scenario provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram 1 of a configured time domain resource provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram 2 of a configured time domain resource provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram 3 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram 4 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram 5 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram 6 of a configured time domain resource provided by an embodiment of this application.
  • 11 is a schematic diagram 7 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram 8 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram 9 of a configured time domain resource provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram 10 of a configured time domain resource provided by an embodiment of this application.
  • 15 is a flowchart of another method for unauthorized transmission provided by an embodiment of the present application.
  • 16 is a schematic diagram 11 of a configured time domain resource provided by an embodiment of this application.
  • 17 is a schematic diagram 12 of a configured time domain resource provided by an embodiment of the present application.
  • 18 is a schematic diagram 13 of a configured time domain resource provided by an embodiment of the present application.
  • FIG. 19 is a flowchart of another method for unauthorized transmission provided by an embodiment of the present application.
  • 20 is a time-domain diagram 14 of a configured time-domain resource provided by an embodiment of the present application.
  • 21 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • NR for a normal (cyclic prefix) (CP), one slot contains 14 OFDM symbols.
  • CP cyclic prefix
  • 1 slot For an extended CP, 1 slot contains 12 OFDM symbols.
  • one slot includes 14 OFDM symbols.
  • the symbol is an OFDM symbol, for example, the start symbol is the first OFDM symbol in the PUSCH, and the cutoff symbol is the last OFDM symbol in the PUSCH.
  • one slot contains OFDM symbol #0 to OFDM symbol #13.
  • Unauthorized transmission means that the uplink transmission of the terminal does not need to be completed by the scheduling of the network equipment. Specifically, when uplink data arrives, the terminal does not need to send a scheduling request (SR) to the network device and wait for the dynamic grant of the network device, but can directly use the transmission resources and designations pre-allocated by the network device Of the transmission parameters to send upstream data to the network device.
  • SR scheduling request
  • Unauthorized transmission is divided into two types: PUSCH transmission based on the first type of configuration authorization (type 1 PUSCH transmission with with a configured grant, or type 1 configured configured grant, or type 1 configured PUSCH transmission), and authorization based on the second type of configuration
  • the type of PUSCH transmission type 2 PUSCH transmission with with a configured grant, or type 2 configured with grant, or type 2 configured with grant PUSCH transmission).
  • the configuration method of PUSCH transmission based on the first type of configuration authorization the network device configures all transmission resources and transmission parameters for the terminal through high-level parameters (such as ConfiguredGrantConfig), such as the time domain resource period, open-loop power control related parameters, waveform, Redundant version sequence, number of repetitions, frequency hopping pattern, resource allocation type, hybrid automatic repeat request (HARQ) process number, DMRS related parameters, modulation and coding scheme (modulation and coding scheme, MCS) table, resources Block group (Resource, Block, Group, RBG) size, and all transmission resources and transmission parameters including time domain resources, frequency domain resources, MCS, etc.
  • high-level parameters such as ConfiguredGrantConfig
  • the network device configures all transmission resources and transmission parameters for the terminal through high-level parameters (such as ConfiguredGrantConfig), such as the time domain resource period, open-loop power control related parameters, waveform, Redundant version sequence, number of repetitions, frequency hopping pattern, resource allocation type, hybrid automatic repeat request (HARQ) process number
  • the configuration method of PUSCH transmission based on the second type of configuration authorization is divided into the following two steps: First, the network device configures some transmission resources and transmission parameters to the terminal through high-level parameters (such as ConfiguredGrantConfig), for example: the time domain resource period, open loop power Control related parameters, waveforms, redundant version sequences, repetition times, frequency hopping mode, resource allocation type, number of HARQ processes, DMRS related parameters, modulation and coding strategy table, RBG size; after that, the network device sends downlink control information to the terminal ( downlink control information (DCI) (for example, configuration-specific DCI), so that the terminal activates PUSCH transmission based on the second type of configuration authorization, and configures transmission including time domain resources, frequency domain resources, DMRS related parameters, MCS, etc. Resources and transmission parameters.
  • DCI downlink control information
  • the PUSCH transmission authorized by the second type of configuration can be used only after being activated.
  • Flexible start is a concept defined in the examples of this application. If the terminal is enabled to start flexibly, in an unlicensed transmission period, multiple OFDM symbols in the time domain resource of unlicensed transmission can be used as the starting symbol of the PUSCH time domain resource. If the terminal is not enabled for flexible start, in a period of unlicensed transmission, the first OFDM symbol in the time-domain resource of unlicensed transmission is used as the start symbol of the time-domain resource of PUSCH.
  • the terminal when the terminal is enabled to start flexibly, if the arrival time of the terminal's data packet misses the first OFDM symbol of the unlicensed transmission time domain resource in the current unlicensed transmission cycle, the terminal's data The packet does not need to wait until the first OFDM symbol of the unauthorized transmission time domain resource in the next unlicensed transmission cycle, but can start sending the data on other OFDM symbols of the unlicensed transmission time domain resource in the current unlicensed transmission cycle .
  • the time domain resource of the unlicensed transmission includes the OFDM symbol #2 to the OFDM symbol #9 in the time slot 1.
  • the time domain resources of the unlicensed transmission include OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • the OFDM symbol #2, OFDM symbol #4, and OFDM symbol #7 in the unlicensed transmission period 1 can be used as the start symbol of the PUSCH time domain resource. If the terminal's data packet arrives at OFDM symbol #4, the terminal may start to transmit the data packet at OFDM symbol #5, instead of waiting until OFDM symbol #10 to send the data packet. In this way, the latency of the data packet is reduced from 6 OFDM symbols to 1 OFDM symbol. It can be seen that the terminal enables flexible start, which can effectively reduce the waiting delay of data packets.
  • DMRS is used to demodulate PUSCH.
  • DMRS is carried on some OFDM symbols in PUSCH.
  • the network device will configure the PUSCH to carry the front-load DMRS with the OFDM symbol in the front position, so that the network device can perform user detection and channel estimation operations as soon as possible, reducing the delay of demodulation.
  • Front-load DMRS can be divided into two types according to the mapping type of PUSCH, namely Mapping Type A and Mapping Type B.
  • Front-load DMRS is located in the third OFDM symbol in the time slot, or in the third OFDM symbol and the fourth OFDM symbol in the time slot.
  • Front-load DMRS is located in the first OFDM symbol in PUSCH, or the first and second OFDM symbols in PUSCH. For example, if the PUSCH time-domain resource includes OFDM symbol #5 to OFDM symbol #12 in the time slot, Front-load DMRS is located in OFDM symbol #5 in the time slot, or OFDM symbol #5 and OFDM symbol # in the time slot 6.
  • Front-load DMRS can support multiple orthogonal DMRS ports by means of comb frequency division, time domain code division, frequency domain code division, cyclic shift (CS), etc.
  • 3GPP R15 protocol can support up to 4 , 8, 6, or 12 orthogonal DMRS ports. It can be understood that, for multiple terminals sharing the same time-frequency resource, the network device may configure orthogonal DMRS (eg, configure different orthogonal DMRS ports) for these terminals, so that the network device recognizes different terminals by detecting the DMRS.
  • Additional DMRS is generated in the same way as Front-load DMRS. Additional DMRS is generally located behind Front-load DMRS and can be used to improve the performance of channel estimation. For example, in R15, when Front-load DMRS is a single symbol, you can configure 1 to 3 symbols of Additional DMRS; when Front-load DMRS is two symbols, you can configure 2 symbols of Additional DMRS. Additional which DMRS is located on which symbol of the time slot or PUSCH, can be configured by the network device or agreed by the protocol.
  • the transmission timing is the time domain resource for transmitting PUSCH once.
  • One transmission opportunity includes multiple OFDM symbols.
  • Unlicensed transmission supports repeated transmission.
  • the network device can configure the number of repeated transmissions for the terminal through high-level signaling. Taking the number of repeated transmissions as K for example, the terminal will repeatedly send K PUSCHs on K transmission occasions. Among them, one PUSCH among the K PUSCHs may be called a repetition. K is a positive integer.
  • the unauthorized transmission period is used to characterize the regularity of unauthorized transmission time domain resources recurring in the time domain.
  • the length of the unlicensed transmission cycle is in units of OFDM symbols or time slots.
  • the length of time of an unlicensed transmission period refers to the number of OFDM symbols included in an unlicensed transmission period, or the number of time slots included in an unlicensed transmission period.
  • the unauthorized transmission cycle may include one or more transmission opportunities.
  • an unlicensed transmission cycle includes the first OFDM symbol (including the OFDM symbol) in a transmission timing to the first OFDM symbol (excluding the OFDM symbol) in the next transmission timing ) Between OFDM symbols.
  • transmission timing #1 includes OFDM symbol #3 to OFDM symbol #10 in slot 1
  • transmission timing #2 includes OFDM symbol #2 to OFDM symbol #9 in slot 2
  • an unauthorized transmission period It includes 13 OFDM symbols
  • the unauthorized transmission period where transmission timing 1 is located includes OFDM symbol #3 to OFDM symbol ⁇ 13 in slot 1 and OFDM symbol #0 to OFDM symbol #1 in slot 2.
  • the unauthorized transmission time domain resource in an unauthorized transmission cycle specifically refers to the time domain resource of one or more transmission opportunities included in the unauthorized transmission cycle.
  • network devices configure up to 16 combinations for terminals through RRC signaling, and one set of time domain resources for unlicensed transmission uses one combination.
  • Each combination includes the following parameter configurations: PUSCH mapping type, K 2 , start and length indicator value (SLIV).
  • PUSCH mapping type is mapping typeA or mapping typeB.
  • K 2 is used to configure the offset of the time slot where the PUSCH is located compared to the time slot where the DCI scheduling the PUSCH is located. For example, if the time slot where the DCI scheduling the PUSCH is located is n, the time slot where the PUSCH transmission is n+K 2 .
  • SLIV is used to configure the start symbol S and length L of the PUSCH, and S and L satisfy the restrictions in Table 1 below.
  • the terminal uses the default 16 combinations shown in Table 2 below.
  • the value of j in Table 2 is 1, 2, or 3.
  • Type 1 configured grant that is, PUSCH transmission based on the first type of configuration authorization
  • the network device uses RRC signaling (for example, in RRC signaling Time domain resource allocation (timeDomainAllocation) parameter) indicates one of the 16 combinations to the terminal.
  • RRC signaling for example, in RRC signaling Time domain resource allocation (timeDomainAllocation) parameter
  • timeDomainAllocation Time domain resource allocation
  • the terminal timeDomainOffset determines the starting time slot of the unauthorized transmission resource. For example, when the value indicated by timeDomainOffset is 100, the terminal determines that the unauthorized transmission resource starts at time slot #100. Therefore, for Type 1 configured grant, the terminal does not use K 2 in the combination.
  • the network device For Type 2 configured grant (that is, PUSCH transmission based on the second type of configuration authorization), the network device indicates one of 16 combinations to the terminal through DCI (for example, the time domain resource assignment (Time domain resource assignment) field in DCI) Combination, in this case, the terminal determines the starting time slot of the unlicensed transmission resource according to K 2 in the combination. Specifically, the terminal determines that the unauthorized transmission resource starts in time slot #(n+K 2 ), where n is the time slot index at which the terminal receives DCI.
  • DCI for example, the time domain resource assignment (Time domain resource assignment) field in DCI) Combination
  • the time domain resource configuration of the unlicensed transmission also includes configuration parameters of the unlicensed transmission cycle (for example, the periodic parameter in the Configured Grant GrantConfig element (information) element in RRC signaling).
  • the configuration parameter of the unlicensed transmission cycle is used for Indicates the length of an unlicensed transmission cycle.
  • the configuration parameter of the unlicensed transmission period indicates that the length of the unlicensed transmission period is 10 OFDM symbols
  • the unlicensed transmission period 1 includes the OFDM symbol #0 ⁇ OFDM in slot 1 Symbol #9
  • unlicensed transmission period 2 includes OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #5 in slot 2.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems, for example, a Long Term Evolution (LTE) communication system, and a new radio (NR) using the 5th generation (5G) communication technology ) Communication system, future evolution system or multiple communication fusion systems, etc.
  • LTE Long Term Evolution
  • NR new radio
  • 5G 5th generation
  • the technical solutions provided in this application can be applied to a variety of application scenarios, such as machine-to-machine (M2M), macro-micro communications, enhanced mobile Internet (enhanced mobile (eMBB), ultra-high reliability and ultra-low latency Communication (ultra-reliable & low latency communication, uRLLC) and massive IoT communication (massive machine type communication, mMTC) and other scenarios.
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • ultra-high reliability and ultra-low latency Communication ultra-reliable & low latency communication
  • uRLLC ultra-reliable & low latency
  • These scenarios may include but are not limited to: communication scenarios between communication devices and communication devices, communication scenarios between network devices and network devices, communication scenarios between network devices and communication devices, and so on.
  • the following descriptions are based on the application of the communication scenario between the network device and the terminal as an example.
  • FIG. 2 shows a schematic diagram of a communication system applicable to the technical solution provided by the present application.
  • the communication system may include one or more network devices (only one is shown in FIG. 2) and one connected to each network device. Or multiple terminals (only one is shown in FIG. 2).
  • FIG. 2 is only a schematic diagram, and does not constitute a limitation on the applicable scenario of the technical solution provided by the present application.
  • the network device may be a base station or a base station controller for wireless communication and the like.
  • the base station may include various types of base stations, such as micro base stations (also called small base stations), macro base stations, relay stations, and access points, which are not specifically limited in the embodiments of the present application.
  • the base station may be a global mobile communication system (global system for mobile communication, GSM), code division multiple access (code division multiple access, CDMA) base station (base transceiver station, BTS), broadband Base station (node B) in wideband code division multiple access (WCDMA), evolutionary base station (eNodeB B, eNB or e-NodeB) in LTE, Internet of Things (IoT) or narrowband
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS broadband Base station
  • node B in wideband code division multiple access
  • WCDMA wideband code division multiple access
  • eNodeB B, eNB or e-NodeB in LTE
  • IoT Internet of Things
  • the base station in the future 5G mobile communication network or the future evolved public land mobile network (PLMN)
  • PLMN public land mobile network
  • the terminal is used to provide users with voice and/or data connectivity services.
  • the terminal may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal agent Or terminal devices, etc.
  • the terminal may be various handheld devices with communication functions, vehicle-mounted devices, wearable devices, and computers, which are not limited in this embodiment of the present application.
  • the handheld device may be a smartphone.
  • the vehicle-mounted device may be a vehicle-mounted navigation system.
  • the wearable device may be a smart bracelet or a virtual reality (VR) device.
  • the computer can be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
  • PDA personal digital assistant
  • the network device or terminal in FIG. 2 may be implemented by the communication device in FIG. 3.
  • the communication device includes: at least one processor 101, a communication line 102, a memory 103, and at least one communication interface 104.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more used to control the execution of the program program of the present application integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 102 may include a path to transfer information between the aforementioned components.
  • the communication interface 104 uses any transceiver-like device to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • Ethernet Ethernet
  • RAN wireless local area networks
  • WLAN wireless local area networks
  • the memory 103 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs
  • the memory may exist independently, and is connected to the processor through the communication line 102.
  • the memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application may generally be non-volatile.
  • the memory 103 is used to store computer execution instructions for executing the solution of the present application, and the processor 101 controls the execution.
  • the processor 101 is used to execute computer-executed instructions stored in the memory 103, thereby implementing the method provided by the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the communication device may include multiple processors, such as the processor 101 and the processor 107 in FIG. 3. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus may further include an output device 105 and an input device 106.
  • the output device 105 communicates with the processor 101 and can display information in various ways.
  • the output device 105 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 106 communicates with the processor 101 and can receive user input in a variety of ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • FIG. 4 it is a method for unauthorized transmission provided by an embodiment of the present application.
  • the method includes the following steps:
  • the terminal receives time domain resource configuration and DMRS configuration of unauthorized transmission.
  • the time domain resource configuration of the unauthorized transmission is used to determine the configured time domain resource. It can be understood that the configured time-domain resources include unlicensed transmission time-frequency resources in multiple unlicensed transmission cycles.
  • the time domain resource configuration of the unauthorized transmission may refer to the foregoing, and will not be repeated here.
  • the unlicensed transmission period 1 includes OFDM symbol #0 to OFDM symbol #9 in slot 1.
  • the time domain resource of the unlicensed transmission in the unlicensed transmission cycle 1 includes the OFDM symbol #0 to the OFDM symbol #7 in the time slot 1.
  • Unlicensed transmission period 2 includes OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #5 in slot 2.
  • the time-domain resource of unlicensed transmission in unlicensed transmission period 2 includes OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • the DMRS configuration is used to determine the positions of multiple OFDM symbols used to carry DMRS in the configured time domain resources.
  • DMRS configuration includes Front-loaded DMRS configuration information.
  • Front-loaded DMRS configuration information is used to determine the number of Front-loaded DMRS symbols (that is, whether Front-loaded DMRS is a single symbol or two symbols).
  • the DMRS configuration may also include Additional DMRS configuration information, which is used to determine the number of Additional DMRS symbols and the position of the Additional DMRS on the PUSCH time-domain resource.
  • the DMRS configuration also includes the following parameters: DMRS port number, DMRS type, and so on.
  • the position of Front-loaded DMRS in the time domain is determined by the PUSCH mapping type, and the PUSCH mapping type is determined according to the time domain resource configuration of unlicensed transmission.
  • the configured time domain resource includes at least OFDM symbol #0 to OFDM symbol #7 in slot 1 and OFDM symbol #10 in slot 1 ⁇ OFDM symbol #13, and OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • the time-domain resource configuration indication for unauthorized transmission indicates that the mapping type is mapping type B
  • the Front-loaded DMRS configuration information in the DMRS configuration indicates that the number of Front-loaded DMRS symbols is 1. Therefore, for the unauthorized transmission period 1, time slot 1
  • the OFDM symbol #0 in is used to carry Front-loaded DMRS; for the unlicensed transmission period 2, the OFDM symbol #10 in slot 1 is used to carry Front-loaded DMRS.
  • the Additional DMRS configuration information in the DMRS configuration is used to indicate that the number of Additional DMRS symbols is 2, and the additional DMRS is located in the fourth OFDM symbol and the seventh OFDM symbol in the PUSCH time domain resource, so as to prevent unauthorized transmission
  • OFDM symbol #3 and OFDM symbol #6 in slot 1 are used to carry additional DMRS
  • OFDM symbol #13 in slot 1 and OFDM in slot 2 Symbol #2 is used to carry Additional DMRS.
  • OFDM symbol #0, OFDM symbol #3, OFDM symbol #6, OFDM symbol #10, and OFDM symbol #13 in slot 1 are all OFDM symbols used to carry DMRS, and OFDM symbol #2 in slot 2 are all OFDM symbols used to carry DMRS.
  • the terminal obtains the time domain resource configuration and the DMRS configuration of the unlicensed transmission by receiving high-level parameters sent by the network device. If the unlicensed transmission is a PUSCH transmission based on the authorization of the second type of configuration, the terminal obtains the time domain resource configuration and the DMRS configuration of the unlicensed transmission by receiving high-level parameters and DCI sent by the network device.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration of unlicensed transmission and the DMRS configuration.
  • the starting symbol of the time domain resource of the PUSCH is one OFDM symbol among a plurality of OFDM symbols used to carry DMRS in the configured time domain resource.
  • the terminal does not use the last OFDM symbol in the time slot as the starting symbol of the PUSCH time-domain resource.
  • the configured time domain resource includes OFDM symbol #2 to OFDM symbol #13 in slot 1.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, and OFDM symbol #10 can all be used as starting symbols of PUSCH time-domain resources.
  • the terminal device specifically selects which of the multiple OFDM symbols used to carry DMRS in the configured time domain resource as the starting symbol of the PUSCH time domain resource, which can be determined by the terminal's needs .
  • the data to be sent by the terminal arrives at OFDM symbol #4, then the terminal can select OFDM symbol #5 as the starting symbol of the PUSCH time-domain resource, so as to transmit data as soon as possible and reduce the time of data transmission Delay.
  • the starting symbol of the time domain resource of the PUSCH is one OFDM symbol in the plurality of OFDM symbols used to carry additional DMRS in the configured time domain resource.
  • OFDM symbol #5, OFDM symbol #8, and OFDM symbol #13 in slot 1 are all OFDM symbols used to carry additional DMRS in the configured time domain resources.
  • both OFDM symbol #5 and OFDM symbol #8 can be used as the starting symbol of the PUSCH time domain resource.
  • the starting symbol of the PUSCH time-domain resource is the first of a set of OFDM symbols among the multiple groups of OFDM symbols in the configured time-domain resource OFDM symbols, each group of OFDM symbols contains two consecutive OFDM symbols used to carry DMRS.
  • the OFDM symbols included in the configured time domain resource are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #3, OFDM symbol #6, OFDM symbol #7, OFDM symbol #10, and OFDM symbol #11 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • OFDM symbol #2, OFDM symbol #6, and OFDM symbol #10 are two consecutive OFDM symbols used to carry the first OFDM symbol. Therefore, OFDM symbol #2, OFDM symbol #6, and OFDM symbol #10 can all be used as starting symbols of PUSCH time-domain resources.
  • the terminal if the terminal is enabled to start flexibly, one of the multiple OFDM symbols used to carry DMRS in the configured time domain resource can be used as the start of the PUSCH time domain resource symbol. If the terminal does not enable flexible start, the first OFDM symbol of the configured time domain resource in each unlicensed transmission period may be used as the starting symbol of the PUSCH time domain resource.
  • OFDM symbols occupied by the configured time-domain resources in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • OFDM symbol #2 is the first OFDM symbol in the unlicensed transmission period 1 of the configured time domain resource.
  • OFDM symbol #10 is the first OFDM symbol in the unlicensed transmission period 2 of the configured time domain resource. In this way, if the terminal enables flexible start, OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, and OFDM symbol #10 can all be used as the start symbol of the PUSCH time domain resource. If the terminal does not enable flexible start, only OFDM symbol #2 and OFDM symbol #10 can be used as the start symbol of the PUSCH time domain resource.
  • the network device may trigger the terminal to enable flexible start in any one of the following ways: (1), the network device sends indication information to the terminal, where the indication information is used to indicate the configured time domain resource One of the multiple OFDM symbols used to carry the DMRS can be used as the starting symbol of the PUSCH time domain resource.
  • the indication information may be carried in RRC signaling, MAC-CE signaling or DCI.
  • the DMRS configuration delivered by the network device includes additional DMRS configuration information.
  • the network device may also use other methods to trigger the terminal to enable flexible start, which is not limited in this embodiment of the present application.
  • the following describes how the terminal determines the PUSCH time-domain resources in conjunction with specific examples.
  • the first X OFDM symbols located in the same time slot and located in the configured time domain resource from the start symbol are determined as all
  • the PUSCH time domain resource will be described.
  • X is determined according to the time domain resource configuration of the unauthorized transmission, and X is a positive integer.
  • X may be determined according to SLIV in the time domain resource configuration of unauthorized transmission. Further, X is determined according to the length indication value (L) in SLIV. In one embodiment, X may be equal to the length indicator in SLIV. In another embodiment, X is a preset integer value less than L and greater than 0.
  • X may be a parameter independent of L in the time domain resource configuration.
  • the OFDM symbols occupied by the configured time domain resource in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • the PUSCH time domain resource includes OFDM symbol #2 to OFDM symbol #9.
  • the PUSCH time domain resource includes OFDM symbol #5 to OFDM symbol #12.
  • the PUSCH time domain resource includes OFDM symbol #8 to OFDM symbol #13.
  • the PUSCH time domain resource includes OFDM symbol #10 to OFDM symbol #13.
  • the OFDM symbol is determined as the time domain resource of the PUSCH.
  • the unlicensed transmission cycle 1 includes OFDM symbol #0 to OFDM symbol #9 in slot 1.
  • the time-domain resource of unlicensed transmission in unlicensed transmission period 1 includes OFDM symbol #0 to OFDM symbol #7 in slot 1.
  • the unlicensed transmission period 2 includes OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #5 in slot 2.
  • the time domain resources of unlicensed transmission in unlicensed transmission period 2 include OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • the time-domain resources configured include OFDM symbol #0 to OFDM symbol #7, and OFDM symbol #10 to OFDM symbol #13.
  • OFDM symbol #0, OFDM symbol #3, OFDM symbol #6, OFDM symbol #10, and OFDM symbol #13 in time slot 1 are all OFDM symbols used to carry DMRS.
  • the terminal uses OFDM symbol #3 in slot 1 as the starting symbol of the PUSCH time domain resource, since OFDM symbol #3 to OFDM symbol #7 are located in the same slot and are located in all
  • the time-domain resource in the configuration is the same unlicensed transmission period, so the time-domain resource of PUSCH includes OFDM symbol #3 to OFDM symbol #7 in slot 1.
  • Case 2 in FIG. 10 shows that the terminal uses OFDM symbol #3 in slot 1 as the starting symbol of the PUSCH time domain resource, since OFDM symbol #3 to OFDM symbol #7 are located in the same slot and are located in all
  • the time-domain resource in the configuration is the same unlicensed transmission period, so the time-domain resource of PUSCH includes OFDM symbol #3 to OFDM symbol #7 in slot 1.
  • the terminal uses OFDM symbol #10 in slot 1 as the starting symbol of the PUSCH time domain resource, since OFDM symbol #10 to OFDM symbol #13 are located in the same slot and are located in all
  • the time-domain resources in the configuration are the same unlicensed transmission period, so the time-domain resources of PUSCH include OFDM symbol #10 to OFDM symbol #13 in slot 1.
  • the terminal sends the PUSCH on the PUSCH time domain resource.
  • the terminal sends DMRS on at least one first symbol in the PUSCH time domain resource, and sends data on the second symbol in the PUSCH time domain resource.
  • the first symbol is a non-zero subset of multiple OFDM symbols used to carry DMRS in the configured time domain resource.
  • the second symbol is an OFDM symbol other than the at least one first symbol in the time domain resource of the PUSCH.
  • the terminal determines the time of the PUSCH according to the positions of multiple OFDM symbols used to carry the DMRS in the configured time domain resources indicated by the DMRS configuration, and the positions of the OFDM symbols included in the PUSCH time domain resources The first OFDM symbol contained in the domain resource.
  • OFDM symbols occupied by the configured time-domain resources in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • the value of X configured by the network device is 8.
  • the PUSCH time domain resource of the first terminal includes OFDM symbol #2 to OFDM symbol #9 .
  • OFDM symbol #2, OFDM symbol #5 and OFDM symbol #8 are the first symbols in the time domain resources of the PUSCH of the first terminal, correspondingly, OFDM symbol #3, OFDM symbol #4, OFDM symbol #6 , OFDM#7 and OFDM symbol #9 are the second symbols in the time domain resources of the PUSCH of the first terminal. Therefore, the first terminal transmits DMRS on OFDM symbol #2, OFDM symbol #5, and OFDM symbol #8, and transmits data on OFDM symbol #3, OFDM symbol #4, OFDM symbol #6, OFDM#7, and OFDM symbol #9 .
  • the PUSCH time domain resource of the second terminal includes OFDM symbol #5 to OFDM symbol #12 .
  • OFDM symbol #5, OFDM symbol #8 and OFDM symbol #10 are all the first symbols in the time domain resources of the PUSCH of the second terminal.
  • OFDM symbol #6, OFDM symbol #7, OFDM symbol #9, OFDM symbol #11 and OFDM symbol #12 are the second symbols in the time domain resources of the PUSCH of the second terminal. Therefore, the second terminal transmits DMRS on OFDM symbol #5, OFDM symbol #8, and OFDM symbol #10, on OFDM symbol #6, OFDM symbol #7, OFDM symbol #9, OFDM symbol #11, and OFDM symbol #12 send data.
  • the PUSCH of the first terminal and the PUSCH of the second terminal jointly multiplex the OFDM symbol #5 to the OFDM symbol #8 in the time slot 1, however, since the first terminal and the second terminal are both in the OFDM symbol #5 and OFDM DMRS is transmitted on symbol #8, and data is transmitted on OFDM symbol #6 and OFDM symbol #7.
  • the data sent by the first terminal and the DMRS sent by the second terminal are not on the same OFDM symbol, and the DMRS sent by the first terminal and the data sent by the second terminal are also not on the same OFDM symbol, so the first terminal sends And the DMRS sent by the second terminal will not interfere with each other.
  • the DMRS sent by the first terminal and the data sent by the second terminal will not interfere with each other. This ensures the demodulation performance of the data.
  • the technical solution of the present application can ensure that multiple terminals carry DMRS with the same OFDM symbol in the multiplexed time-frequency resources, thereby avoiding multiple The data sent by any one of the terminals interferes with the DMRS sent by other terminals to ensure the demodulation performance of the data sent by each terminal.
  • the application scenario of the example shown in FIG. 11 is: the number of OFDM symbols included in the unlicensed transmission period is greater than or equal to the number of OFDM included in the time domain resource of PUSCH.
  • the technical solution of the present application will be described below in a scenario where the number of OFDM symbols included in an unauthorized transmission period is less than the number of OFDM included in the time domain resource of PUSCH. It can be understood that, when the number of OFDM symbols included in the unlicensed transmission period is smaller than the number of OFDMs included in the PUSCH time-domain resource, for the terminal, all OFDM symbols included in the unlicensed transmission period can be used for Unauthorized transmission.
  • the unlicensed transmission period 1 includes OFDM symbol #0 and OFDM symbol #1 in slot 1
  • Unlicensed transmission period 2 contains OFDM symbol #2 and OFDM symbol #3 in slot 1
  • Unlicensed transmission period 3 contains OFDM symbol #4 and OFDM symbol #5 in slot 1
  • Unlicensed transmission period 4 contains time OFDM symbol #6 and OFDM symbol #7 in slot 1
  • unlicensed transmission period 5 includes OFDM symbol #8 and OFDM symbol #9 in slot 1
  • unlicensed transmission period 6 includes OFDM symbol #10 in slot 1
  • the unlicensed transmission period 7 includes OFDM symbol #12 and OFDM symbol #13 in slot 1.
  • OFDM symbol #0, OFDM symbol #4, OFDM symbol #8, and OFDM symbol #12 in time slot 1 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • the terminal uses the OFDM symbol #0 in slot 1 as the starting symbol of the PUSCH time domain resource, the PUSCH time domain resource includes the OFDM symbol #0 ⁇ OFDM symbol#7.
  • OFDM symbol #0 and OFDM symbol #4 in slot 1 are both first symbols. Therefore, the terminal transmits DMRS on OFDM symbol #0 and OFDM symbol #4 in slot 1, OFDM symbol #1, OFDM symbol #2, OFDM symbol #3, OFDM symbol #5, OFDM symbol in slot 1 Data is transmitted on #6 and OFDM symbol #7.
  • the terminal uses OFDM symbol #4 in slot 1 as the starting symbol of the PUSCH time-domain resource, the PUSCH time-domain resource includes the OFDM symbol #4 ⁇ OFDM symbol#11.
  • OFDM symbol #4 and OFDM symbol #8 in slot 1 are both first symbols. Therefore, the terminal transmits DMRS on OFDM symbol #4 and OFDM symbol #8 in slot 1, OFDM symbol #5, OFDM symbol #6, OFDM symbol #7, OFDM symbol #9, OFDM symbol in slot 1 Data is transmitted on #10 and OFDM symbol #11.
  • the terminal uses the OFDM symbol #8 in slot 1 as the starting symbol of the PUSCH time domain resource, then the OFDM symbol # in slot 1
  • the multiple OFDM symbols located in slot 1 and located in the configured time domain resource starting from 8 are OFDM symbol #8 to OFDM symbol #13, so that the time domain resource of PUSCH includes OFDM symbol #8 to OFDM symbol #13.
  • OFDM symbol #8 and OFDM symbol #12 in slot 1 are both first symbols. Therefore, the terminal transmits DMRS on OFDM symbol #8 and OFDM symbol #12 in slot 1, and transmits data on OFDM symbol #9, OFDM symbol #10, OFDM symbol #11, and OFDM symbol #13 in slot 1. .
  • the terminal sends a DMRS on the cut-off symbol to resolve the boosted data
  • the terminal sends data on the cut-off symbol, which is beneficial to reduce the overhead of DMRS and improve the utilization of time-domain resources.
  • the terminal uses OFDM symbol #8 as the starting symbol of the PUSCH time domain resource
  • the PUSCH time domain resource includes OFDM symbol #8 ⁇ OFDM# 13, where OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all the first symbols in the PUSCH time domain resource.
  • OFDM symbol #13 is the cut-off symbol of the PUSCH time domain resource and is the last OFDM symbol in the time slot where the starting symbol is located, the terminal does not send any information on OFDM symbol #13, Or send data on OFDM symbol #13.
  • the terminal sending the DMRS on at least one first symbol in the time domain resource of the PUSCH further includes: sending the first DMRS on the first first symbol of the at least one first symbol; The second DMRS is sent on the non-first first symbol of the at least one first symbol.
  • the first DMRS is different from the second DMRS.
  • the first DMRS is different from the second DMRS includes one of the following situations: (1) The sequence of the first DMRS is different from the sequence of the second DMRS. For example, the cyclic shift of the sequence of the first DMRS is different from the cyclic shift of the sequence of the second DMRS. Or, an orthogonal cover code (orthogonal cover code, OCC) of the sequence of the first DMRS. (2) The frequency domain resources occupied by the first DMRS are different from the frequency domain resources occupied by the second DMRS.
  • the configured time domain resource includes the OFDM symbols in slot 1 as OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time-frequency resources.
  • the time domain resources of the PUSCH of the terminal include OFDM symbol #2 to OFDM symbol #9, where OFDM symbol #2, OFDM symbol #5, and OFDM symbol #8 are all of the PUSCH
  • OFDM symbol #2 is the first symbol in the PUSCH time domain resource.
  • the terminal transmits the first DMRS on OFDM symbol #2, and transmits the second DMRS on OFDM symbol #5 and OFDM symbol #8.
  • the time domain resource of the PUSCH of the terminal includes OFDM symbol #5 to OFDM symbol #12, where OFDM symbol #5, OFDM symbol #8, and OFDM symbol #10 are all of the PUSCH
  • OFDM symbol #5 is the first symbol in the PUSCH time domain resource.
  • the terminal transmits the first DMRS on OFDM symbol #5, and transmits the second DMRS on OFDM symbol #8 and OFDM symbol #10.
  • the network device can determine that the OFDM symbol is the PUSCH The starting symbol of the domain resource, so that the network device can correctly receive the PUSCH and correctly demodulate the data carried on the PUSCH.
  • the terminal may send the PUSCH again in the next slot for sending the PUSCH again
  • the number of OFDM symbols included in the time domain resource may be greater than or equal to XM.
  • the data carried by the two PUSCHs comes from the same part of the same transport block (TB), thereby improving the reliability of data transmission. Or, the data carried by the two PUSCHs come from different parts of the same TB. Or alternatively, the data carried by the two PUSCHs comes from different TBs.
  • the terminal can use the first OFDM symbol in the time slot as the starting symbol of the PUSCH time-domain resource, which is beneficial to improve the utilization rate of the time-frequency resource.
  • the configured time-domain resources include at least OFDM symbol #2 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • OFDM symbol #2 to OFDM symbol #9 in slot 1 belong to unlicensed transmission period 1
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #13 are all OFDM symbols used to carry DMRS in the configured time domain resources.
  • OFDM symbol #2 is an OFDM symbol used to carry DMRS in the configured time-frequency resources.
  • the terminal uses the OFDM symbol #10 in slot 1 as the time domain resource of PUSCH#1, then the time domain resource of PUSCH#1 includes the OFDM symbols #10 to OFDM #13.
  • the number of OFDM symbols included in PUSCH#1 is 4, which means that the number of OFDM symbols included in PUSCH#1 is less than X.
  • the terminal sends PUSCH#2 in the next time slot. It can be understood that, in slot 2, OFDM symbol #0 will not be an OFDM symbol used by other terminals to carry data. Therefore, the starting symbol of the time domain resource of PUSCH #2 may be the OFDM symbol in slot 2 #0.
  • the number of OFDM symbols included in the time domain resource of PUSCH#2 is set to 4.
  • the time domain resource of PUSCH#2 includes OFDM symbol #0 to OFDM symbol #3 in slot 2.
  • the terminal may treat the PUSCH time domain resource as an invalid resource, that is, not on the PUSCH PUSCH is sent on time domain resources.
  • the preset value may be specified in a protocol or may be pre-configured. If the preset value is pre-configured, the corresponding configuration information may be carried in RRC signaling, MAC-CE signaling, or DCI, and the embodiments of the present application are not limited thereto.
  • the OFDM symbols occupied by the configured time-domain resources in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #5, OFDM symbol #8, OFDM symbol #10, OFDM symbol #13 are all OFDM symbols used to carry DMRS.
  • the PUSCH time domain resource includes only OFDM symbol #13, that is, the number of OFDM symbols included in the PUSCH time domain resource is 1.
  • the preset value is 2, the number of OFDM symbols included in the PUSCH time domain resource is less than the preset value, so the terminal does not send the PUSCH on the PUSCH time domain resource.
  • the terminal uses a plurality of OFDM symbols for carrying DMRS in the configured time domain resource as the starting symbol of the PUSCH time domain resource, and on at least one first OFDM symbol in the PUSCH time domain Send DMRS to ensure that the OFDM symbols used to carry DMRS in multiple PUSCHs sent by different terminals are aligned in the time domain to avoid the situation where the DMRS sent by one terminal and the data sent by another terminal interfere with each other, thereby ensuring the detection performance of DMRS And data demodulation performance.
  • FIG. 15 it is another method for unauthorized transmission provided by an embodiment of the present application.
  • the method includes the following steps:
  • the terminal receives time domain resource configuration and DMRS configuration of unauthorized transmission.
  • the time domain resource configuration of the unlicensed transmission is used to determine the configured time domain resource, and the positions of multiple third symbols in the configured time domain resource.
  • the third symbol can be used as the starting point of the PUSCH time domain resource.
  • the first symbol, the DMRS configuration is used to determine the position of the first resource element (resource, element) in the third symbol, and the first RE is used to carry the DMRS.
  • the terminal determines the time domain resource of the PUSCH according to the time domain resource configuration of unlicensed transmission.
  • the starting symbol of the time domain resource of PUSCH is one of the multiple third symbols in the configured time domain resource.
  • the configured time domain resources include OFDM symbol #2 to OFDM symbol #9 in slot 1.
  • OFDM symbol #2, OFDM symbol #4, OFDM symbol #6, OFDM symbol #8 are all third symbols, then OFDM symbol #2, OFDM symbol #4, OFDM symbol #6, OFDM Symbol #8 can be used as the starting symbol of PUSCH time-domain resources.
  • X is determined according to the time domain resource configuration of the unauthorized transmission, and X is a positive integer.
  • X may be determined according to SLIV in the time domain resource configuration of unauthorized transmission.
  • X is determined according to the length indication value (L) in SLIV. In one embodiment, X may be equal to the length indicator (L) in SLIV.
  • the OFDM symbols occupied by the configured time domain resource in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #4, OFDM symbol #6, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #12 are all third symbols in the configured time domain resources.
  • the PUSCH time domain resource includes OFDM symbol #2 to OFDM symbol #9.
  • the PUSCH time domain resource includes OFDM symbol #4 to OFDM symbol #11.
  • the PUSCH time domain resource includes OFDM symbol #8 to OFDM symbol #13.
  • the PUSCH time domain resource includes OFDM symbol #10 to OFDM symbol #13.
  • the OFDM symbol is determined as the time domain resource of the PUSCH.
  • the unlicensed transmission cycle 1 includes OFDM symbol #0 to OFDM symbol #9 in slot 1.
  • the time-domain resource of unlicensed transmission in unlicensed transmission period 1 includes OFDM symbol #0 to OFDM symbol #7 in slot 1.
  • the unlicensed transmission period 2 includes OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #5 in slot 2.
  • the time domain resources of unlicensed transmission in unlicensed transmission period 2 include OFDM symbol #10 to OFDM symbol #13 in slot 1 and OFDM symbol #0 to OFDM symbol #3 in slot 2. That is, in slot 1, the time-domain resources configured include OFDM symbol #0 to OFDM symbol #7, and OFDM symbol #10 to OFDM symbol #13. Among them, in slot 1, OFDM symbol #0, OFDM symbol #2, OFDM symbol #4, OFDM symbol #6, OFDM symbol #10, and OFDM symbol #12 are all third symbols.
  • the terminal uses OFDM symbol #4 in slot 1 as the starting symbol of the PUSCH time domain resource, since OFDM symbol #4 to OFDM symbol #7 are located in the same slot and are located in The time-domain resource in the configuration is the same unlicensed transmission period, so the time-domain resource of PUSCH includes OFDM symbol #4 to OFDM symbol #7 in slot 1.
  • the time-domain resource of PUSCH includes OFDM symbol #4 to OFDM symbol #7 in slot 1.
  • the terminal uses OFDM symbol #10 in slot 1 as the starting symbol of the PUSCH time domain resource, since OFDM symbol #10 to OFDM symbol #13 are located in the same slot and are located in all
  • the time-domain resources in the configuration are the same unlicensed transmission period, so the time-domain resources of PUSCH include OFDM symbol #10 to OFDM symbol #13 in slot 1.
  • the terminal sends data on the second RE that is not the first third symbol in the time domain resource of the PUSCH.
  • the multiple third symbols included in the PUSCH time domain resource are non-zero subsets of the multiple third symbols included in the configured time domain resource.
  • the second RE is other REs than the first RE in the third symbol.
  • the terminal transmits data on the second RE that is not the first third symbol
  • the terminal increases the transmission power on the second RE that is used to transmit data, so that the transmission of the non-first third symbol
  • the power is almost the same as the transmission power of other symbols (that is, the fourth symbol described below).
  • the terminal sends the DMRS on the first RE of the first third symbol in the time domain resource of the PUSCH.
  • the terminal sends data on the fourth symbol in the time domain resource of the PUSCH, where the fourth symbol is an OFDM symbol other than the third symbol in the time domain resource of the PUSCH.
  • the OFDM symbols occupied by the configured time-domain resources in slot 1 are OFDM symbol #2 to OFDM symbol #13.
  • OFDM symbol #2, OFDM symbol #4, OFDM symbol #6, OFDM symbol #8, OFDM symbol #10, and OFDM symbol #12 are all third symbols in the configured time domain resources.
  • the PUSCH time domain resources include OFDM symbol #4 to OFDM symbol #11, OFDM symbol #4, OFDM symbol #6, OFDM symbol #8, and OFDM symbol #10 are all included in the PUSCH time domain resource Third symbol.
  • OFDM symbol #4 is the first third symbol in the PUSCH time domain resource
  • OFDM symbol #6, OFDM symbol #8, OFDM symbol #10 are the non-first third symbol in the PUSCH time domain resource . Therefore, the terminal transmits DMRS on OFDM symbol #4, and transmits data on the second RE in OFDM symbol #6, OFDM symbol #8, and OFDM symbol #10.
  • the terminal since the terminal sends data on the second RE that is not the first third symbol in the PUSCH time domain resource, it does not send data on the first RE on the third symbol Data, so that the data sent by the terminal and the DMRS sent by other terminals are frequency-divided on the third symbol, to ensure that the data sent by the terminal and the DMRS sent by other terminals will not interfere with each other, and to ensure the demodulation performance of the data sent by the terminal And the detection performance of DMRS sent by other terminals.
  • unlicensed transmission supports repeated transmission, which means that the terminal can repeatedly send the PUSCH on multiple transmission occasions (transmission occasions, TO).
  • An unlicensed transmission cycle includes at least one transmission opportunity, and each transmission opportunity can be understood as a time domain resource used to carry a PUSCH once.
  • the PUSCH corresponding to each transmission opportunity does not necessarily carry the DMRS.
  • the PUSCH corresponding to the first transmission opportunity among the multiple transmission occasions needs to carry the DMRS. This results in that at the same transmission timing, PUSCHs sent by some terminals carry DMRS, and PUSCHs sent by other terminals do not carry DMRS. That is to say, on an OFDM symbol in the same transmission opportunity, some terminals send DMRS, while others send data. This causes the data sent by some terminals to interfere with the DMRS sent by other terminals, affecting the detection performance of the DMRS and the demodulation performance of the data.
  • an embodiment of the present application provides a method for unauthorized transmission.
  • the method includes the following steps:
  • the terminal receives time domain resource configuration and DMRS configuration of unauthorized transmission.
  • the unauthorized transmission time domain resource configuration is used to determine the positions of multiple transmission opportunities in the configured time domain resource
  • the DMRS configuration is used to determine the multiple first transmission opportunities in the configured time domain resource. position.
  • the plurality of first transmission opportunities are non-zero subsets of the plurality of transmission opportunities.
  • the first transmission timing is used to carry a PUSCH carrying DMRS, and the non-first transmission timing is used to carry a PUSCH not carrying DMRS.
  • the non-first transmission timing may also be referred to as the second transmission timing.
  • the first transmission timing is a transmission timing corresponding to redundancy version (RV) 0.
  • the number of OFDM symbols included in each of the multiple transmission occasions may be the same or different, which is not limited in the embodiment of the present application.
  • the number of OFDM symbols included in each transmission opportunity of the plurality of transmission opportunities may be configured by a network device or defined in a standard.
  • the terminal sends the PUSCH on the first transmission opportunity, and the PUSCH carries the DMRS.
  • the terminal sends a PUSCH on a transmission opportunity that does not carry DMRS, and the PUSCH does not carry the DMRS.
  • the terminal determines the initial transmission timing according to the time domain resource configuration of unauthorized transmission and the DMRS configuration.
  • the initial transmission timing is one of the plurality of first transmission timings.
  • the unauthorized transmission cycle 1 includes transmission timing #1, transmission timing #2, transmission timing #3, and transmission timing #4
  • the unauthorized transmission cycle 2 includes transmission timing #5, transmission timing #6, transmission Opportunity #7 and transmission timing #8.
  • transmission timing #1, transmission timing #3, transmission timing #5, transmission timing #7 are all the first transmission timing. Therefore, the terminal can select one of the transmission timing #1, transmission timing #3, transmission timing #5, and transmission timing #7 as the initial transmission timing.
  • the terminal sends the PUSCH on the initial transmission timing.
  • the terminal if the terminal is configured for repeated transmission, the terminal repeatedly sends the PUSCH from the K transmission opportunities from the initial transmission opportunity to ensure the reliability of data transmission.
  • the K transmission opportunities are non-zero subsets of the above multiple transmission opportunities.
  • the K transmission opportunities may be located in the same time slot or in different time slots.
  • the K is the configured number of repeated transmissions.
  • the configured number of repeated transmissions may be configured by the network device, or may be defined in the standard.
  • the K transmission opportunities may belong to the same unlicensed transmission period, or may belong to different unauthorized transmission periods.
  • the terminal is transmitting timing #3, transmission timing #4, transmission timing #5 And the transmission timing #6 repeatedly sends the PUSCH.
  • the K is less than the configured number of repeated transmissions, and the K is the number of all transmission opportunities since the initial transmission opportunity in the unlicensed transmission cycle where the initial transmission opportunity is located . That is to say, the K transmission timings are all transmission timings from the initial transmission timing in the unauthorized transmission period where the initial transmission timing is located. In this case, the K transmission opportunities belong to the same unauthorized transmission cycle.
  • the terminal selects one of the multiple first transmission opportunities as the first transmission opportunity.
  • the terminal since the PUSCH sent by the other terminal on the first transmission timing also carries DMRS, the terminal sends the PUSCH on the initial transmission timing.
  • the DMRS carried by the PUSCH will not affect the data sent by other terminals, thus avoiding a The DMRS sent by the terminal interferes with the data sent by another terminal.
  • the terminal includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in hardware, or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses an example of dividing each function module corresponding to each function as an example:
  • the communication device includes a receiving module 201, a processing module 202, and a sending module 203.
  • the receiving module 201 is used to support the communication device to execute step S101 in FIG. 4, step S201 in FIG. 15, step S301 in FIG. 19, and/or other processes for the technical solutions described herein.
  • the processing module 202 is used to support the communication device to perform step S102 in FIG. 4, step S202 in FIG. 15, step S302 in FIG. 19, and/or other processes for the technical solutions described herein.
  • the sending module 203 is used to support the communication device to perform step S103 in FIG. 4, step S203 in FIG. 15, step S303 in FIG. 19, and/or other processes for the technical solutions described herein. All relevant content of the steps involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the sending module 203 and the receiving module 201 in FIG. 21 may be implemented by the communication interface 104 in FIG. 3, and the processing module 202 in FIG. 21 may be implemented by the processor in FIG. 101 to achieve, the embodiment of the present application does not make any limitation on this.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer instructions; when the computer-readable storage medium runs on the terminal shown in FIG. 3, the terminal is allowed to execute The method of unauthorized transmission as shown in FIG. 4, FIG. 15 or FIG. 19.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • An embodiment of the present application further provides a chip including a processing module and a communication interface, where the communication interface is used to receive an input signal and provide it to the processing module, and/or to process and output the signal generated by the processing module.
  • the processing is used to support the terminal to perform the method of unauthorized transmission as shown in FIG. 4, FIG. 15 or FIG. 19.
  • the processing module may execute code instructions to perform the method of unlicensed transmission as shown in FIG. 4, FIG. 15 or FIG. 19 to generate the PUSCH.
  • the code instruction can come from the internal memory of the chip or from the external memory of the chip.
  • the processing module is a processor or microprocessor or integrated circuit integrated on the chip.
  • the communication interface may be an input/output circuit or a transceiver pin.
  • Embodiments of the present application also provide a computer program product containing computer instructions, which when run on the terminal shown in FIG. 3, enables the terminal to perform the method of unauthorized transmission shown in FIG. 4, FIG. 15, or FIG. 19.
  • the terminal, computer storage medium, chip, and computer program product provided in the above embodiments of the present application are all used to perform the unauthorized transmission method provided above. Therefore, for the beneficial effects that can be achieved, refer to the method provided above The corresponding beneficial effects will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种免授权传输的方法及装置,涉及通信技术领域,用于避免上行免授权传输的过程中,DMRS与数据之间互相干扰的问题。该方法包括:终端接收免授权传输的时域资源配置和DMRS配置,免授权传输的时域资源配置用于确定配置的时域资源,DMRS配置用于确定配置的时域资源中多个用于承载DMRS的OFDM符号的位置;终端根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,其中,PUSCH的时域资源为配置的时域资源的非零子集,PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号;终端在PUSCH的时域资源上发送PUSCH。

Description

免授权传输的方法及装置
本申请要求于2019年01月11日提交国家知识产权局、申请号为201910028868.5、申请名称为“免授权传输的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种免授权传输的方法及装置。
背景技术
免授权传输是一种“即来即走”的数据发送方法,也即,当终端需要向基站发送数据时,终端直接使用基站预先配置的传输资源以及传输参数向基站发送数据,而不需要先向基站发送调度请求以及等待基站发送的动态授权。相比于传统的基于“请求-授权”的上行传输方法,免授权传输具有降低信令开销、降低传输时延以及降低终端功耗等有益效果。
当前,一方面,为了降低数据包的等待时延,在一个免授权传输周期中,免授权传输的时域资源中的多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号均可以作为物理上行共享信道(physical uplink shared channel,PUSCH)的时域资源的起始符号。另一方面,为了提高时频资源利用率,免授权传输支持多个终端共享相同的时频资源。这样一来,在同一免授权传输的时域资源上,不同终端发送的PUSCH可能起始于不同的OFDM符号,导致一个PUSCH中用于承载数据的OFDM符号与另一个PUSCH中用于承载解调参考信号(demodulation reference signal,DMRS)的OFDM符号是同一OFDM符号,从而导致一个终端发送的数据与另一个终端发送的DMRS相互干扰,进而影响数据的解调性能以及DMRS的检测性能。
发明内容
本申请提供一种免授权传输的方法及装置,用于解决在免授权传输过程中,一个终端发送的数据与另一个终端发送的DMRS之间相互干扰的问题。
第一方面,提供一种免授权传输的方法,包括:终端接收免授权传输的时域资源配置和DMRS配置,免授权传输的时域资源配置用于确定配置的时域资源,DMRS配置用于确定配置的时域资源中多个用于承载DMRS的OFDM符号的位置;终端根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,其中,PUSCH的时域资源为配置的时域资源的非零子集,PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号;终端在PUSCH的时域资源上发送PUSCH。
基于上述技术方案,本申请通过规定PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号,从而增大不同终端发送的PUSCH中用于承载DMRS的OFDM符号对齐的概率,以避免一个终端发送的数据与另一个终端发送的DMRS之间互相干扰。
一种可能的设计中,PUSCH的时域资源的起始符号为配置的时域资源中多个用于 承载额外的(additional)DMRS的OFDM符号中的一个OFDM符号。
一种可能的设计中,终端根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,将自起始符号起的前X个位于同一时隙且位于配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据免授权传输的时域资源配置确定,X为正整数。
一种可能的设计中,终端根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,若在起始符号之后存在少于X-1个位于配置的时域资源中的OFDM符号,则将时隙中自起始符号起所有位于配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据免授权传输的时域资源配置确定。
一种可能的设计中,终端根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,将自起始符号起的多个位于同一时隙且位于配置的时域资源中同一免授权传输周期的OFDM符号确定为PUSCH的时域资源。
一种可能的设计中,终端在PUSCH的时域资源上发送PUSCH,包括:在PUSCH的时域资源中的至少一个第一符号上发送DMRS,其中,第一符号是配置的时域资源中多个用于承载DMRS的OFDM符号的非零子集;在PUSCH的时域资源中的第二符号上发送数据,其中,第二符号为PUSCH的时域资源中除至少一个第一符号之外的OFDM符号。也就是说,在多个终端发送的PUSCH复用时频资源的情况下,本申请的技术方案能够保证多个终端在被复用的时频资源中以相同的OFDM符号承载DMRS,从而避免多个终端中任一终端发送的数据与其他终端发送的DMRS互相干扰,保证各个终端发送的数据的解调性能。
一种可能的设计中,终端在PUSCH的时域资源上发送PUSCH,包括:若PUSCH的时域资源的截止符号为第一符号且为起始符号所在时隙中的最后一个OFDM符号,则在截止符号上不发送任何信息,或者,在截止符号上发送数据。这样一来,可以降低DMRS的开销,提高时域资源的利用率。
一种可能的设计中,终端在PUSCH的时域资源中的至少一个第一符号上发送DMRS,包括:在至少一个第一符号中的第一个第一符号上发送第一DMRS;在至少一个第一符号中的非第一个第一符号上发送第二DMRS。这样一来,使得网络设备可以确定时隙中的哪一个OFDM符号为PUSCH的时域资源的起始符号,从而保证网络设备能够正确解调PUSCH。
一种可能的设计中,该方法还包括:终端接收指示信息,指示信息用于指示配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。从而,终端可以配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号,从而降低数据包的等待时延。
一种可能的设计中,若DMRS配置包含additional DMRS配置信息,则配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。从而,终端可以配置的时域资源中多个用于承载DMRS的OFDM 符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号,从而降低数据包的等待时延。
第二方面,提供一种免授权传输的方法,包括:终端接收免授权传输的时域资源配置以及DMRS配置;其中,免授权传输的时域资源配置用于确定配置的时域资源,以及配置的时域资源中多个第三符号的位置,第三符号可作为PUSCH的时域资源的起始符号;DMRS配置用于确定第三符号中第一资源粒子(resource element,RE)的位置,第一RE用于承载DMRS。之后,终端根据免授权传输的时域资源配置,确定PUSCH的时域资源,其中,PUSCH的时域资源的起始符号为配置的时域资源中多个第三符号中的一个。终端在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据。其中,PUSCH的时域资源所包含的多个第三符号是配置的时域资源所包含的多个第三符号的非零子集。第二RE是第三符号中除第一RE之外的其他RE。
基于上述技术方案,由于终端在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据,而不会在第三符号上的第一RE上发送数据,从而在第三符号上,终端发送的数据与其他终端发送的DMRS是频分的,保证终端发送的数据与其他终端发送的DMRS之间不会互相干扰,保证终端发送的数据的解调性能和其他终端发送的DMRS的解调性能。
一种可能的设计中,该方法还包括:终端在所述PUSCH的时域资源中的第一个第三符号的第一RE上发送DMRS。
一种可能的设计中,该方法还包括:终端在所述PUSCH的时域资源中的第四符号上发送数据,第四符号为PUSCH的时域资源中除第三符号之外的其他OFDM符号。
第三方面,提供一种免授权传输的方法,包括:终端接收免授权传输的时域资源配置以及DMRS配置,免授权传输的时域资源配置用于确定配置的时域资源中多个传输时机的位置,所述DMRS配置用于确定所述多个传输时机中多个第一传输时机的位置,第一传输时机用于承载携带DMRS的PUSCH。之后,终端根据免授权传输的时域资源配置以及DMRS配置,确定起始传输时机,该起始传输时机为多个第一传输时机中的一个。终端在起始传输时机发送PUSCH。
基于上述技术方案,终端选择多个第一传输时机中的一个传输时机作为起始传输时机。这样一来,由于其他终端在第一传输时机上发送的PUSCH同样携带DMRS,因此终端在该起始传输时机上发送PUSCH,该PUSCH携带的DMRS不会影响到其他终端发送的数据,从而避免一个终端发送的DMRS与另一个终端发送的数据互相干扰。
一种可能的设计中,终端在起始传输时机发送PUSCH,包括:终端在自起始传输时机起的K个传输时机重复发送PUSCH。
可选的,K的取值等于配置的重复传输次数。或者,K的取值小于配置的重复传输次数,K的取值为在起始传输时机所在的免授权传输周期中,自起始传输时机起的所有传输时机的个数。
第四方面,提供一种通信装置,包括:接收模块,用于接收免授权传输的时域资源配置和DMRS配置,免授权传输的时域资源配置用于确定配置的时域资源,DMRS配置用于确定配置的时域资源中多个用于承载DMRS的OFDM符号的位置。处理模块,用于根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源, 其中,PUSCH的时域资源为配置的时域资源的非零子集,PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号。发送模块,用于在PUSCH的时域资源上发送PUSCH。
一种可能的设计中,PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号,包括:PUSCH的时域资源的起始符号为配置的时域资源中多个用于承载additional DMRS的OFDM符号中的一个OFDM符号。
一种可能的设计中,处理模块,用于根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,将自起始符号起的前X个位于同一时隙且位于配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据免授权传输的时域资源配置确定,X为正整数。
一种可能的设计中,处理模块,用于根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,若在起始符号之后存在少于X-1个位于配置的时域资源中的OFDM符号,则将时隙中自起始符号起所有位于配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据免授权传输的时域资源配置确定,X为正整数。
一种可能的设计中,处理模块,用于根据免授权传输的时域资源配置和DMRS配置,确定PUSCH的时域资源,包括:在起始符号所在的时隙中,将自起始符号起的多个位于同一时隙且位于配置的时域资源中同一免授权传输周期的OFDM符号确定为PUSCH的时域资源。
一种可能的设计中,发送模块,用于在PUSCH的时域资源上发送PUSCH,包括:在PUSCH的时域资源中的至少一个第一符号上发送DMRS,其中,第一符号是配置的时域资源中多个用于承载DMRS的OFDM符号的非零子集;在PUSCH的时域资源中的第二符号上发送数据,其中,第二符号为PUSCH的时域资源中除至少一个第一符号之外的OFDM符号。
一种可能的设计中,发送模块,用于在PUSCH的时域资源上发送PUSCH,包括:若PUSCH的时域资源的截止符号为第一符号且为起始符号所在时隙中的最后一个OFDM符号,则在截止符号上不发送任何信息,或者,在截止符号上发送数据。
一种可能的设计中,发送模块,用于在PUSCH的时域资源中的至少一个第一符号上发送DMRS,包括:在至少一个第一符号中的第一个第一符号上发送第一DMRS;在至少一个第一符号中的非第一个第一符号上发送第二DMRS。
一种可能的设计中,接收模块,还用于接收指示信息,指示信息用于指示配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
一种可能的设计中,若DMRS配置包含additional DMRS配置信息,则配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
第五方面,提供一种通信装置,包括:接收模块,用于接收免授权传输的时域资源配置以及DMRS配置;其中,免授权传输的时域资源配置用于确定配置的时域资源, 以及配置的时域资源中多个第三符号的位置,第三符号可作为PUSCH的时域资源的起始符号;DMRS配置用于确定第三符号中第一资源粒子(resource element,RE)的位置,第一RE用于承载DMRS。处理模块,用于根据免授权传输的时域资源配置,确定PUSCH的时域资源,其中,PUSCH的时域资源的起始符号为配置的时域资源中多个第三符号中的一个。发送模块,用于在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据。其中,PUSCH的时域资源所包含的多个第三符号是配置的时域资源所包含的多个第三符号的非零子集。第二RE是第三符号中除第一RE之外的其他RE。
一种可能的设计中,发送模块,还用于终端在所述PUSCH的时域资源中的第一个第三符号的第一RE上发送DMRS。
一种可能的设计中,发送模块,还用于在所述PUSCH的时域资源中的第四符号上发送数据,第四符号为PUSCH的时域资源中除第三符号之外的其他OFDM符号。
第六方面,提供一种通信装置,包括:接收模块,用于接收免授权传输的时域资源配置以及DMRS配置,免授权传输的时域资源配置用于确定配置的时域资源中多个传输时机的位置,所述DMRS配置用于确定所述多个传输时机中多个第一传输时机的位置。处理模块,用于根据免授权传输的时域资源配置以及DMRS配置,确定起始传输时机,该起始传输时机为多个第一传输时机中的一个。发送模块,用于在起始传输时机发送PUSCH。
一种可能的设计中,发送模块,用于在起始传输时机发送PUSCH,包括:在自起始传输时机起的K个传输时机重复发送PUSCH。
可选的,K的取值等于配置的重复传输次数。或者,K的取值小于配置的重复传输次数,K的取值为在起始传输时机所在的免授权传输周期中,自起始传输时机起的所有传输时机的个数。
第七方面,提供一种通信装置,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面至第三方面中任一方面所述的免授权传输的方法。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述第一方面至第三方面中任一方面所述的免授权传输的方法。
第九方面,提供一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述第一方面至第三方面中任一方面所述的免授权传输的方法。
第十方面,提供一种芯片,该芯片包括处理模块和通信接口,通信接口用于将接收输入的信号并提供给处理模块,和/或用于将处理模块生成的信号输出,处理模块用于执行上述第一方面至第三方面任一项所述的免授权传输的方法以生成所述PUSCH。在一实施方式中,处理模块可以运行代码指令以执行上述第一方面至第三方面中任一方面所述的免授权传输的方法来生成所述PUSCH。该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,处理模块可以为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为芯片上的输入输出电路或者收发管脚。
其中,第四方面至第十方面中任一种设计方式所带来的技术效果可参见上文所提 供的对应的方法中的有益效果同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种灵活起始的场景示意图;
图2为本申请实施例提供的一种通信***的架构示意图;
图3为本申请实施例提供的一种终端的硬件结构示意图;
图4为本申请实施例提供的一种免授权传输的方法的流程图;
图5为本申请实施例提供的一种配置的时域资源的示意图一;
图6为本申请实施例提供的一种配置的时域资源的示意图二;
图7为本申请实施例提供的一种配置的时域资源的示意图三;
图8为本申请实施例提供的一种配置的时域资源的示意图四;
图9为本申请实施例提供的一种配置的时域资源的示意图五;
图10为本申请实施例提供的一种配置的时域资源的示意图六;
图11为本申请实施例提供的一种配置的时域资源的示意图七;
图12为本申请实施例提供的一种配置的时域资源的示意图八;
图13为本申请实施例提供的一种配置的时域资源的示意图九;
图14为本申请实施例提供的一种配置的时域资源的示意图十;
图15为本申请实施例提供的另一种免授权传输的方法的流程图;
图16为本申请实施例提供的一种配置的时域资源的示意图十一;
图17为本申请实施例提供的一种配置的时域资源的示意图十二;
图18为本申请实施例提供的一种配置的时域资源的示意图十三;
图19为本申请实施例提供的另一种免授权传输的方法的流程图;
图20为本申请实施例提供的一种配置的时域资源的时域图十四;
图21为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了便于理解本申请的技术方案,下面先对本申请实施例涉及的一些术语进行简单介绍。
1、时隙
在NR中,对于常规(normal)循环前缀(cyclic prefix,CP),1个时隙包含14个OFDM符号。对于扩展(extended)CP,1个时隙包含12个OFDM符号。
为了便于描述,在本申请实施例中,若未作出特别说明,1个时隙包含14个OFDM符号。符号即为OFDM符号,例如起始符号即为PUSCH中第一个OFDM符号,截止符号即为PUSCH中最后一个OFDM符号。
另外,在时隙中,14个OFDM符号按照从小到大的顺序依次编号,最小的编号为0,最大的编号为13。也就是说,一个时隙包含OFDM符号#0~OFDM符号#13。
2、免授权传输
免授权传输是指:终端的上行传输不需要通过网络设备的调度完成。具体地,当上行数据到达时,终端不需要向网络设备发送调度请求(scheduling request,SR)并等待网络设备的动态授权(dynamic grant),而是可以直接使用网络设备预先分配的传输资源和指定的传输参数向网络设备发送上行数据。
免授权传输分为两类:基于第一类配置授权的PUSCH传输(type 1 PUSCH transmission with a configured grant,或type 1 configured grant configuration,或type 1 configured grant PUSCH transmission),和基于第二类配置授权的PUSCH传输(type 2 PUSCH transmission with a configured grant,或type 2 configured grant configuration,或type 2 configured grant PUSCH transmission)。
基于第一类配置授权的PUSCH传输的配置方式:网络设备通过高层参数(例如ConfiguredGrantConfig)为终端配置全部的传输资源和传输参数,例如:时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数、DMRS相关参数、调制编码方案(modulation and coding scheme,MCS)表格、资源块组(Resource Block Group,RBG)大小、以及时域资源、频域资源、MCS等在内的全部传输资源和传输参数。
基于第二类配置授权的PUSCH传输的配置方式分为以下两步:首先,网络设备通过高层参数(例如ConfiguredGrantConfig)向终端配置部分传输资源和传输参数,例如:时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、DMRS相关参数、调制与编码策略表格、RBG大小;之后,网络设备向终端发送下行控制信息(downlink control information,DCI)(例如configuration-specific DCI),以使得终端激活基于第二类配置授权的PUSCH传输,并同时配置包括时域资源、频域资源、DMRS相关参数、MCS等在内的传输资源和传输参数。需要说明的是,该第二类配置授权的PUSCH传输在被激活后才能使用。
在一实施方式中,上述第一类配置授权的PUSCH传输和第二类配置授权的PUSCH传输的具体配置参数可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)技术标准(technical specification,TS)38.331中的相关描述。
3、灵活起始
灵活起始是本申请实施例定义的一个概念。若终端被使能灵活起始,则在一个免授权传输周期中,免授权传输的时域资源中的多个OFDM符号可以作为PUSCH的时域资源的起始符号。若终端未被使能灵活起始,则在一个免授权传输周期中,免授权传输的时域资源中的第一个OFDM符号作为PUSCH的时域资源的起始符号。
可以理解的是,在终端被使能灵活起始的情况下,若终端的数据包的到达时刻错过当前免授权传输周期中免授权传输的时域资源的第一个OFDM符号,则终端的数据包无需等到下一个免授权传输周期中免授权传输的时域资源的第一个OFDM符号,而是可以在当前免授权传输周期中免授权传输的时域资源的其他OFDM符号上开始发送该数据。
以图1为例进行说明,假设在免授权传输周期1中,免授权传输的时域资源包含时隙1中的OFDM符号#2~OFDM符号#9。在免授权传输周期2中,免授权传输的时域资源包含时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#3。在终端使能灵活起始的情况下,免授权传输周期1中OFDM符号#2、OFDM符号#4以及OFDM符号#7可作为PUSCH的时域资源的起始符号。若终端的数据包在OFDM符号#4到达,则终端可以在OFDM符号#5开始发送该数据包,而不是等待到OFDM符号#10再发送该数据包。这样一来,数据包的等待时延从6个OFDM符号减少到1个OFDM符号。可见,终端使能灵活起始,可以有效降低数据包的等待时延。
4、DMRS
DMRS用于实现PUSCH的解调。DMRS承载于PUSCH中的部分OFDM符号上。另外,网络设备会配置PUSCH以靠前位置的OFDM符号承载前置的(Front-load)DMRS,以便于网络设备能够尽快进行用户检测和信道估计等操作,减少解调的时延。
Front-load DMRS根据PUSCH的映射类型(mapping type),即Mapping Type A和Mapping Type B,可以分为两类。
其中,对于Mapping Type A,Front-load DMRS位于时隙中第三个OFDM符号,或者位于时隙中第三个OFDM符号和第四个OFDM符号。
对于Mapping Type B,Front-load DMRS位于PUSCH中的第一个OFDM符号,或者PUSCH中的第一个OFDM符号和第二个OFDM符号。例如,PUSCH的时域资源包含时隙中的OFDM符号#5~OFDM符号#12,则Front-load DMRS位于时隙中的OFDM符号#5,或者时隙中的OFDM符号#5和OFDM符号#6。
Front-load DMRS可以借助梳状频分、时域码分、频域码分,循环移位(Cyclic Shift,CS)等方式,支持多个正交DMRS端口,例如3GPP R15协议中最多可以支持4个、8个、6个或12个正交DMRS端口。可以理解的是,对于共用相同时频资源的多个终端,网络设备可以为这些终端配置正交的DMRS(例如配置不同的正交DMRS端口),从而网络设备通过检测DMRS来识别不同的终端。
另外,为了支持高速场景,还可以在Front-load DMRS基础上配置Additional DMRS。Additional DMRS的生成方式与Front-load DMRS相同。Additional DMRS一般位于Front-load DMRS的后面,可以用来提高信道估计的性能。例如,R15中,当Front-load DMRS为单符号,可以配置1~3个符号的Additional DMRS;当Front-load DMRS为两符号时,可以配置2个符号的Additional DMRS。Additional DMRS具***于时隙或PUSCH的哪些符号上,可以由网络设备配置或协议约定。
5、传输时机(transmission occasion,TO)
传输时机是传输一次PUSCH的时域资源。一个传输时机包括多个OFDM符号。
免授权传输支持重复传输,网络设备可以通过高层信令为终端配置重复传输次数。以重复传输次数为K为例,终端会在K个传输时机上重复发送K次PUSCH。其中,K次PUSCH中的一次PUSCH可以称为一次重复(repetition)。K为正整数。
6、免授权传输周期
免授权传输周期用于表征免授权传输时域资源在时域上重复出现的规律。免授权传输周期的时间长度以OFDM符号或者时隙为单位。其中,一个免授权传输周期的时间长度是指一个免授权传输周期包括的OFDM符号的数目,或者一个免授权传输周期包括的时隙的数目。
免授权传输周期可以包括一个或多个传输时机。以免授权传输周期包括一个传输时机为例,一个免授权传输周期包括一个传输时机中的第一个OFDM符号(包含该OFDM符号)到下一个传输时机的第一个OFDM符号(不包含该OFDM符号)之间的OFDM符号。举例来说,传输时机#1包括时隙1中的OFDM符号#3~OFDM符号#10,传输时机#2包括时隙2中的OFDM符号#2~OFDM符号#9,则一个免授权传输周期包括13个OFDM符号,传输时机1所在的免授权传输周期包括时隙1中的OFDM符号#3~OFDM符号~13,以及 时隙2中的OFDM符号#0~OFDM符号#1。
可选的,一个免授权传输周期中的免授权传输时域资源具体是指该免授权传输周期所包括的一个或多个传输时机的时域资源。
7、免授权传输的时域资源配置
目前,网络设备通过RRC信令为终端配置至多16种组合,一套免授权传输的时域资源使用其中一种组合。每种组合包括如下参数配置:PUSCH mapping type、K 2、起始和长度指示值(start and length indicator value,SLIV)。
其中,PUSCH mapping type为mapping typeA或者mapping typeB。K 2用于配置PUSCH所在的时隙相比调度该PUSCH的DCI所在时隙的偏置,例如,调度PUSCH的DCI所在的时隙为n,则PUSCH传输的时隙为n+K 2。SLIV用于配置PUSCH的起始符号S和长度L,S和L满足如下表1的限定。
表1
Figure PCTCN2020071538-appb-000001
如果网络设备没有通过RRC信令配置任何组合,则终端使用如下表2所示的默认的16种组合。表2中的j的值为1、2或3。
表2
Figure PCTCN2020071538-appb-000002
在终端获知通过RRC信令配置的或默认的16种组合的基础上,对于Type 1 configured grant(即基于第一类配置授权的PUSCH传输),网络设备通过RRC信令(例如,RRC信 令中的时域资源分配(timeDomainAllocation)参数)向终端指示16种组合中的一种组合,由于Type 1 configured grant有专门的RRC参数(例如,timeDomainOffset)指示时隙偏置,这种情况下,终端根据timeDomainOffset确定免授权传输资源的起始时隙,例如,当timeDomainOffset所指示的值为100时,终端确定免授权传输资源起始于时隙#100。因此,对于Type 1 configured grant,终端不使用组合中的K 2。对于Type 2 configured grant(即基于第二类配置授权的PUSCH传输),网络设备通过DCI(例如,DCI中的时域资源分配(Time domain resource assignment)字段)向终端指示16种组合中的一种组合,这种情况下,终端根据组合中的K 2确定免授权传输资源的起始时隙。具体的,终端确定免授权传输资源起始于时隙#(n+K 2),其中,n为终端收到DCI的时隙索引。
示例性的,假设时隙1为起始时隙,若网络设备通过SLIV向终端指示S=0、L=8时,如图5所示,传输时机起始于时隙1的OFDM符号#0,终止于时隙1的OFDM符号#8。
免授权传输的时域资源配置还包括免授权传输周期的配置参数(例如,RRC信令中ConfiguredGrantConfig信元(information element)中的周期(periodicity)参数),该免授权传输周期的配置参数用于指示一个免授权传输周期的时间长度。
示例性的,结合图5进行举例说明,假设免授权传输周期的配置参数指示免授权传输周期的时间长度为10个OFDM符号,免授权传输周期1包含时隙1中的OFDM符号#0~OFDM符号#9;免授权传输周期2包含时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#5。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可以应用于各种通信***,例如,长期演进(Long Term Evolution,LTE)通信***,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信***,未来演进***或者多种通信融合***等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable & low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与通信设备之间的通信场景 等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
图2给出了本申请提供的技术方案所适用的一种通信***示意图,通信***可以包括一个或多个网络设备(图2中仅示出了1个)以及与每一网络设备连接的一个或多个终端(图2中仅示出了一个)。图2仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信***(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),LTE中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。
终端用于向用户提供语音和/或数据连通***。所述终端可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航***。可穿戴设备可以是智能手环,或者虚拟现实(virtual reality,VR)设备。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
图2中的网络设备或者终端可以通过图3中的通信装置来实现。如图3所示,该通信装置包括:至少一个处理器101,通信线路102,存储器103以及至少一个通信接口104。
处理器101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路102可包括一通路,在上述组件之间传送信息。
通信接口104,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路102与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器103用于存储执行本申请方案的计算机执行指令,并由处理器101来控制执行。处理器101用于执 行存储器103中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图3中的处理器101和处理器107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置还可以包括输出设备105和输入设备106。输出设备105和处理器101通信,可以以多种方式来显示信息。例如,输出设备105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备106和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备106可以是鼠标、键盘、触摸屏设备或传感设备等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图4所示,为本申请实施例提供的一种免授权传输的方法,该方法包括以下步骤:
S101、终端接收免授权传输的时域资源配置以及DMRS配置。
其中,所述免授权传输的时域资源配置用于确定配置的时域资源。可以理解的是,所述配置的时域资源包含多个免授权传输周期中的免授权传输时频资源。
所述免授权传输的时域资源配置可以参考前文,在此不再赘述。
示例性的,如图5所示,免授权传输周期1包含时隙1中的OFDM符号#0~OFDM符号#9。免授权传输周期1中免授权传输的时域资源包含时隙1中的OFDM符号#0~OFDM符号#7。免授权传输周期2包含时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#5。免授权传输周期2中免授权传输的时域资源包含时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#3。因此,时隙1中的OFDM符号#0~OFDM符号#7、时隙1中的OFDM符号#10~OFDM符号#13、以及时隙2中的OFDM符号#0~OFDM符号#3均属于配置的时域资源。DMRS配置用于确定所述配置的时域资源中多个用于承载DMRS的OFDM符号的位置。其中,DMRS配置包括Front-loaded DMRS配置信息。Front-loaded DMRS配置信息用于确定Front-loaded DMRS的符号数目(也即Front-loaded DMRS是单符号的还是两符号的)。可选的,DMRS配置还可以包括Additional DMRS配置信息,Additional DMRS配置信息用于确定Additional DMRS的符号数目,以及Additional DMRS在PUSCH的时域资源上的位置。可选的,DMRS配置还包括以下参数:DMRS端口号、DMRS类型等。
需要说明的是,Front-loaded DMRS在时域上的位置由PUSCH的mapping type确定,而PUSCH的mapping type根据免授权传输的时域资源配置确定。
示例性的,在图5所示的基础上,如图6所示,配置的时域资源至少包含时隙1中的OFDM符号#0~OFDM符号#7、时隙1中的OFDM符号#10~OFDM符号#13、以及时隙2中的OFDM符号#0~OFDM符号#3。假设免授权传输的时域资源配置指示mapping type为 mapping type B,DMRS配置中Front-loaded DMRS配置信息指示Front-loaded DMRS的符号数目为1,从而对于免授权传输周期1来说,时隙1中的OFDM符号#0用于承载Front-loaded DMRS;对于免授权传输周期2来说,时隙1中的OFDM符号#10用于承载Front-loaded DMRS。可选的,DMRS配置中Additional DMRS配置信息用于指示Additional DMRS的符号数目为2,以及Additional DMRS位于PUSCH的时域资源中的第4个OFDM符号以及第7个OFDM符号,从而对于免授权传输周期1来说,时隙1中的OFDM符号#3和OFDM符号#6用于承载Additional DMRS;对于免授权传输周期1来说,时隙1中的OFDM符号#13以及时隙2中的OFDM符号#2均用于承载Additional DMRS。
综上,基于图6所示的示例,对于配置的时域资源来说,时隙1中OFDM符号#0、OFDM符号#3、OFDM符号#6、OFDM符号#10、OFDM符号#13均为用于承载DMRS的OFDM符号,时隙2中的OFDM符号#2均为用于承载DMRS的OFDM符号。
作为一种实现方式,若免授权传输为基于第一类配置授权的PUSCH传输,则终端通过接收网络设备发送的高层参数,来获取免授权传输的时域资源配置以及DMRS配置。若免授权传输为基于第二类配置授权的PUSCH传输,则终端通过接收网络设备发送的高层参数和DCI,来获取免授权传输的时域资源配置以及DMRS配置。
S102、终端根据免授权传输的时域资源配置以及DMRS配置,确定PUSCH的时域资源。
其中,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号。
可选的,在PUSCH不能跨时隙传输的情况下,终端不以时隙中的最后一个OFDM符号作为PUSCH的时域资源的起始符号。
结合图7进行举例说明,配置的时域资源包含时隙1中的OFDM符号#2~OFDM符号#13。其中,在时隙1中,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、OFDM符号#13均为配置的时域资源中用于承载DMRS的OFDM符号。这种情况下,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10均可以作为PUSCH的时域资源的起始符号。可以理解的是,终端设备具体选择所述配置的时域资源中多个用于承载DMRS的OFDM符号中的哪一个OFDM符号作为PUSCH的时域资源的起始符号,可以由终端的需求来确定。例如,在时隙1中,终端待发送的数据在OFDM符号#4到达,则终端可以选择OFDM符号#5作为PUSCH的时域资源的起始符号,以便于尽快发送数据,减少数据的发送时延。
可选的,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载additional DMRS的OFDM符号中的一个OFDM符号。
结合图7进行举例说明,时隙1中的OFDM符号#5、OFDM符号#8、以及OFDM符号#13均为配置的时域资源中用于承载additional DMRS的OFDM符号。在这种情况下,OFDM符号#5、以及OFDM符号#8均可以作为PUSCH的时域资源的起始符号。
可选的,若DMRS配置指示front-load DMRS为双符号,则所述PUSCH的时域资源的起始符号为所述配置的时域资源中多组OFDM符号中一组OFDM符号中的首个OFDM符号,每一组OFDM符号包含连续两个用于承载DMRS的OFDM符号。
结合图8进行举例说明,对于时隙1来说,配置的时域资源所包括的OFDM符号为 OFDM符号#2~OFDM符号#13。其中,OFDM符号#2、OFDM符号#3、OFDM符号#6、OFDM符号#7、OFDM符号#10、以及OFDM符号#11均为配置的时域资源中用于承载DMRS的OFDM符号。并且,OFDM符号#2、OFDM符号#6、以及OFDM符号#10均为连续两个用于承载DMRS符号中的首个OFDM符号。因此,OFDM符号#2、OFDM符号#6、以及OFDM符号#10均可以作为PUSCH的时域资源的起始符号。
在本申请实施例中,若终端被使能灵活起始,则所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号均可作为PUSCH的时域资源的起始符号。若终端未使能灵活起始,则所述配置的时域资源在每一个免授权传输周期中的第一个OFDM符号可以作为PUSCH的时域资源的起始符号。
结合图7进行举例说明,配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、以及OFDM符号#13均为配置的时域资源中用于承载DMRS的OFDM符号。其中,OFDM符号#2为所述配置的时域资源在免授权传输周期1中的第一个OFDM符号。OFDM符号#10为所述配置的时域资源在免授权传输周期2中的第一个OFDM符号。这样一来,若终端使能灵活起始,则OFDM符号#2、OFDM符号#5、OFDM符号#8、以及OFDM符号#10均可以作为PUSCH的时域资源的起始符号。若终端未使能灵活起始,则仅OFDM符号#2和OFDM符号#10可以作为PUSCH的时域资源的起始符号。
可以理解的是,终端是否使能灵活起始可以根据协议来确定,或者根据网络设备的配置来确定。可选的,网络设备可以通过以下方式中的任意一种来触发终端使能灵活起始:(1)、网络设备向终端发送指示信息,该指示信息用于指示所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。可选的,该指示信息可承载于RRC信令、MAC-CE信令或者DCI中。(2)、网络设备下发的DMRS配置包括additional DMRS配置信息。当然,网络设备还可以采用其他方式来触发终端使能灵活起始,本申请实施例对此不作任何限定。
下面结合具体示例来介绍终端如何确定PUSCH的时域资源。
作为一种实现方式,在所述起始符号所在的时隙中,将自所述起始符号起的前X个位于同一时隙且位于所述配置的时域资源中的OFDM符号确定为所述PUSCH的时域资源。其中,X根据所述免授权传输的时域资源配置确定,X为正整数。
在本申请实施例中,X可以根据免授权传输的时域资源配置中的SLIV来确定。进一步的,X根据SLIV中的长度指示值(L)来确定。在一种实施方式中,X可以等于SLIV中的长度指示值。在另一种实施方式中,X为小于L大于0的预设整数值。
在另一实施例中,X可以是时域资源配置中独立于L的一个参数。
结合图9进行举例说明,假设X的取值为8,以及配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、以及OFDM符号#13均为配置的时域资源中用于承载DMRS的OFDM符号。如图9中的情形一所示,若终端以OFDM符号#2为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#2~OFDM符号#9。如图9中的情形二所示,若终端以OFDM符号#5为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#5~OFDM符号#12。
作为另一种实现方式,在所述起始符号所在的时隙中,若在所述起始符号之后存在少于X-1个位于所述配置的时域资源中的OFDM符号,则将所述时隙中自所述起始符号起所有位于所述配置的时域资源中的OFDM符号确定为PUSCH的时域资源。
结合图9进行举例说明,假设X的取值为8,如图9中的情形三所示,若终端以OFDM符号#8为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#8~OFDM符号#13。如图9中的情形四所示,若终端以OFDM符号#10为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#10~OFDM符号#13。
作为另一种实现方式,在所述起始符号所在的时隙中,将自所述起始符号起的多个位于同一时隙且位于所述配置的时域资源中同一免授权传输周期的OFDM符号确定为所述PUSCH的时域资源。
结合图10进行举例说明,假设一个免授权传输周期包括的OFDM符号的数目为10个,一个免授权传输周期中免授权传输的时域资源包括的OFDM符号的数目为8个。例如,免授权传输周期1包括时隙1中的OFDM符号#0~OFDM符号#9。免授权传输周期1中免授权传输的时域资源包括时隙1中的OFDM符号#0~OFDM符号#7。免授权传输周期2包括时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#5。免授权传输周期2中免授权传输的时域资源包括时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#3。也就是说,在时隙1中,配置的时域资源包含OFDM符号#0~OFDM符号#7,以及OFDM符号#10~OFDM符号#13。其中,在时隙1中,时隙1中OFDM符号#0、OFDM符号#3、OFDM符号#6、OFDM符号#10、以及OFDM符号#13均为用于承载DMRS的OFDM符号。
如图10中的情形一所示,若终端以时隙1中的OFDM符号#3作为PUSCH的时域资源的起始符号,由于OFDM符号#3~OFDM符号#7位于同一时隙且位于所述配置的时域资源中同一免授权传输周期,因此PUSCH的时域资源包含时隙1中的OFDM符号#3~OFDM符号#7。如图10中的情形二所示,若终端以时隙1中的OFDM符号#10作为PUSCH的时域资源的起始符号,由于OFDM符号#10~OFDM符号#13位于同一时隙且位于所述配置的时域资源中同一免授权传输周期,因此PUSCH的时域资源包含时隙1中的OFDM符号#10~OFDM符号#13。
S103、终端在PUSCH的时域资源上发送PUSCH。
作为一种实现方式,终端在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,在所述PUSCH的时域资源中的第二符号上发送数据。其中,所述第一符号是所述配置的时域资源中多个用于承载DMRS的OFDM符号的非零子集。所述第二符号为所述PUSCH的时域资源中除所述至少一个第一符号之外的OFDM符号。
可以理解的是,终端根据DMRS配置所指示的所述配置的时域资源中多个用于承载DMRS的OFDM符号的位置,以及PUSCH的时域资源所包括的OFDM符号的位置,确定PUSCH的时域资源所包含的第一OFDM符号。
下面结合图11进行举例说明,假设配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。其中,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、OFDM符号#13均为配置的时域资源中用于承载DMRS的OFDM符号。并且,网络设备配置的X的取值为8。
如图11中的情形一所示,若第一终端以OFDM符号#2作为PUSCH的时域资源的起始符号,则第一终端的PUSCH的时域资源包含OFDM符号#2~OFDM符号#9。其中,OFDM符号#2、OFDM符号#5以及OFDM符号#8均为第一终端的PUSCH的时域资源中的第一符号,相应的,OFDM符号#3、OFDM符号#4、OFDM符号#6、OFDM#7以及OFDM符号#9为第一终端的PUSCH的时域资源中的第二符号。因此,第一终端在OFDM符号#2、OFDM符号#5以及OFDM符号#8上发送DMRS,在OFDM符号#3、OFDM符号#4、OFDM符号#6、OFDM#7以及OFDM符号#9发送数据。
如图11中的情形二所示,若第二终端以OFDM符号#5作为PUSCH的时域资源的起始符号,则第二终端的PUSCH的时域资源包含OFDM符号#5~OFDM符号#12。其中,OFDM符号#5、OFDM符号#8以及OFDM符号#10均为第二终端的PUSCH的时域资源中的第一符号。相应的,OFDM符号#6、OFDM符号#7、OFDM符号#9、OFDM符号#11以及OFDM符号#12为第二终端的PUSCH的时域资源中的第二符号。因此,第二终端在OFDM符号#5、OFDM符号#8以及OFDM符号#10上发送DMRS,在OFDM符号#6、OFDM符号#7、OFDM符号#9、OFDM符号#11以及OFDM符号#12上发送数据。
可见,第一终端的PUSCH与第二终端的PUSCH的共同复用时隙1中的OFDM符号#5~OFDM符号#8,但是,由于第一终端和第二终端均在OFDM符号#5和OFDM符号#8上发送DMRS,在OFDM符号#6和OFDM符号#7上发送数据。这样一来,第一终端发送的数据与第二终端发送的DMRS不在同一个OFDM符号上,第一终端发送的DMRS与第二终端发送的数据同样不在同一个OFDM符号上,因此第一终端发送的数据与第二终端发送的DMRS不会互相干扰,同样的,第一终端发送的DMRS与第二终端发送的数据也不会互相干扰。这就保证了数据的解调性能。
也就是说,在多个终端发送的PUSCH复用时频资源的情况下,本申请的技术方案能够保证多个终端在被复用的时频资源中以相同的OFDM符号承载DMRS,从而避免多个终端中任一终端发送的数据与其他终端发送的DMRS互相干扰,保证各个终端发送的数据的解调性能。
图11所示示例的应用场景为:免授权传输周期所包含的OFDM符号的数目大于等于PUSCH的时域资源所包含的OFDM的数目。下面以免授权传输周期所包含的OFDM符号的数目小于PUSCH的时域资源所包含的OFDM的数目的场景介绍本申请的技术方案。可以理解的是,当免授权传输周期所包含的OFDM符号的数目小于PUSCH的时域资源所包含的OFDM的数目,则对于终端来说,免授权传输周期所包含的所有OFDM符号均可以用于免授权传输。
结合图12进行举例说明,以配置的时域资源至少包含免授权传输周期1~免授权传输周期7为例,其中免授权传输周期1包含时隙1中的OFDM符号#0和OFDM符号#1,免授权传输周期2包含时隙1中的OFDM符号#2和OFDM符号#3,免授权传输周期3包含时隙1中的OFDM符号#4和OFDM符号#5,免授权传输周期4包含时隙1中的OFDM符号#6和OFDM符号#7,免授权传输周期5包含时隙1中的OFDM符号#8和OFDM符号#9,免授权传输周期6包含时隙1中的OFDM符号#10和OFDM符号#11,免授权传输周期7包含时隙1中的OFDM符号#12和OFDM符号#13。其中,时隙1中的OFDM符号#0、OFDM符号#4、OFDM符号#8、OFDM符号#12均为配置的时域资源中用于承载DMRS 的OFDM符号。
如图12中的情形一所示,假设X的取值为8,若终端以时隙1中的OFDM符号#0作为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#0~OFDM符号#7。对于该PUSCH的时域资源来说,时隙1中的OFDM符号#0和OFDM符号#4均为第一符号。因此,终端在时隙1中的OFDM符号#0和OFDM符号#4上发送DMRS,在时隙1中的OFDM符号#1、OFDM符号#2、OFDM符号#3、OFDM符号#5、OFDM符号#6以及OFDM符号#7上发送数据。
如图12中的情形二所示,假设X的取值为8,若终端以时隙1中的OFDM符号#4作为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#4~OFDM符号#11。对于该PUSCH的时域资源来说,时隙1中的OFDM符号#4和OFDM符号#8均为第一符号。因此,终端在时隙1中的OFDM符号#4和OFDM符号#8上发送DMRS,在时隙1中的OFDM符号#5、OFDM符号#6、OFDM符号#7、OFDM符号#9、OFDM符号#10以及OFDM符号#11上发送数据。
如图12中的情形三所示,假设X的取值为8,若终端以时隙1中的OFDM符号#8作为PUSCH的时域资源的起始符号,则时隙1中自OFDM符号#8起的位于时隙1中且位于配置的时域资源中的多个OFDM符号为OFDM符号#8~OFDM符号#13,从而PUSCH的时域资源包含OFDM符号#8~OFDM符号#13。对于该PUSCH的时域资源来说,时隙1中的OFDM符号#8和OFDM符号#12均为第一符号。因此,终端在时隙1中的OFDM符号#8和OFDM符号#12上发送DMRS,在时隙1中的OFDM符号#9、OFDM符号#10、OFDM符号#11以及OFDM符号#13上发送数据。
另外,若所述PUSCH的时域资源的截止符号为第一符号且为所述起始符号所在时隙中的最后一个OFDM符号,则在所述截止符号上不发送任何信息,或者,在所述截止符号上发送数据。需要说明的是,若PUSCH的时域资源的截止符号为第一符号且为所述起始符号所在的时隙中的最后一个OFDM符号,则终端在该截止符号上发送DMRS,对提升数据解调性能的贡献是有限的。在这种情况下,终端在该截止符号上发送数据,有利于降低DMRS的开销,提高时域资源的利用率。
结合图11进行举例说明,如图11中的情形三所示,若终端以OFDM符号#8作为PUSCH的时域资源的起始符号,则该PUSCH的时域资源包括OFDM符号#8~OFDM#13,其中,OFDM符号#8、OFDM符号#10、OFDM符号#13均为该PUSCH的时域资源中的第一符号。在这种情况下,由于OFDM符号#13为PUSCH的时域资源的截止符号且为所述起始符号所在时隙中的最后一个OFDM符号,因此终端在OFDM符号#13上不发送任何信息,或者在OFDM符号#13上发送数据。
可选的,终端在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,还包括:在所述至少一个第一符号中的第一个第一符号上发送第一DMRS;在所述至少一个第一符号中的非第一个第一符号上发送第二DMRS。
其中,第一DMRS不同于第二DMRS。可选的,第一DMRS不同于第二DMRS包括以下情形之一:(1)第一DMRS的序列不同于第二DMRS的序列。例如,第一DMRS的序列的循环移位不同于第二DMRS的序列的循环移位。或者,第一DMRS的序列的正交覆盖码(orthogonal cover code,OCC)。(2)第一DMRS所占用的频域资源不同于第二DMRS 所占用的频域资源。
结合图13举例说明,假设配置的时域资源包含时隙1中的OFDM符号为OFDM符号#2~OFDM符号#13。其中,在时隙1中,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、OFDM符号#13均为配置的时频资源中用于承载DMRS的OFDM符号。
如图13中的情形一所示,若终端的PUSCH的时域资源包括OFDM符号#2~OFDM符号#9,其中,OFDM符号#2、OFDM符号#5、OFDM符号#8均为该PUSCH的时域资源中的第一符号。OFDM符号#2为该PUSCH的时域资源中的第一个第一符号。在这种情况下,终端在OFDM符号#2上发送第一DMRS,在OFDM符号#5和OFDM符号#8上发送第二DMRS。
如图13中的情形二所示,若终端的PUSCH的时域资源包括OFDM符号#5~OFDM符号#12,其中,OFDM符号#5、OFDM符号#8、OFDM符号#10均为该PUSCH的时域资源中的第一符号。OFDM符号#5为该PUSCH的时域资源中的第一个第一符号。在这种情况下,终端在OFDM符号#5上发送第一DMRS,在OFDM符号#8和OFDM符号#10上发送第二DMRS。
可见,由于PUSCH中的第一个第一符号为PUSCH的时域资源的起始符号,因此当网络设备在某个OFDM符号上接收到第一DMRS,网络设备可以确定这个OFDM符号为PUSCH的时域资源的起始符号,从而网络设备能够正确接收PUSCH,并正确解调PUSCH上承载的数据。
另外,若终端在一个时隙中发送的PUSCH的时域资源所包含的OFDM符号的数目为M,M为小于X的整数,则终端可以在下一个时隙中再次发送PUSCH,用于再次发送PUSCH的时域资源所包含的OFDM符号的数目可以大于等于X-M。两次PUSCH所承载的数据来自于同一传输块(transport block,TB)的相同部分,从而提高数据传输的可靠性。或者,两次PUSCH所承载的数据来自于同一TB的不同部分。又或者,两次PUSCH所承载的数据来自于不同的TB。
可选的,若时隙中的第一个OFDM符号属于配置的时域资源且不是用于承载DMRS的OFDM符号,但由于其他终端不会在时隙中的第一个OFDM符号上发送数据,因此终端能够以时隙中的第一个OFDM符号作为PUSCH的时域资源的起始符号,有利于提高时频资源的利用率。
结合图14进行举例说明,配置的时域资源至少包含时隙1中的OFDM符号#2~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#3。其中,时隙1中的OFDM符号#2~OFDM符号#9属于免授权传输周期1,时隙1中的OFDM符号#10~OFDM符号#13以及时隙2中的OFDM符号#0~OFDM符号#3属于免授权传输周期2。在时隙1中,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、OFDM符号#13均为配置的时域资源中用于承载DMRS的OFDM符号。在时隙2中,OFDM符号#2为配置的时频资源中用于承载DMRS的OFDM符号。
如图14所示,假设X的取值为8,终端以时隙1中的OFDM符号#10作为PUSCH#1的时域资源,则PUSCH#1的时域资源包含的OFDM符号#10~OFDM#13。PUSCH#1包含的OFDM符号的数目为4,也就是说PUSCH#1包含的OFDM符号的数目小于X。在这种情况下,为了保证数据传输的可靠性,终端在下一时隙发送PUSCH#2。可以理解的是,在 时隙2中,OFDM符号#0不会是其他终端用于承载数据的OFDM符号,因此,PUSCH#2的时域资源的起始符号可以为时隙2中的OFDM符号#0。另外,为了使PUSCH#1和PUSCH#2的时域资源所包含的OFDM符号的总数大于等于X,可选的,设置PUSCH#2的时域资源包含的OFDM符号的数目为4。这种一来,PUSCH#2的时域资源包含时隙2中的OFDM符号#0~OFDM符号#3。
可选的,若按照上述实施例的方法所确定的PUSCH的时域资源包含的OFDM符号的数目小于预设值,则终端可将PUSCH的时域资源视为无效资源,也即不在该PUSCH的时域资源上发送PUSCH。可选的,所述预设值可以是协议规定的,也可以是预先配置的。若预设值是预先配置的,则相应的配置信息可以承载于RRC信令、MAC-CE信令或者DCI中,本申请实施例不限于此。
结合图7举例说明,配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。其中,OFDM符号#2、OFDM符号#5、OFDM符号#8、OFDM符号#10、OFDM符号#13均为用于承载DMRS的OFDM符号。若终端确定以OFDM符号#13作为PUSCH的时域资源的起始符号,则PUSCH的时域资源仅包括OFDM符号#13,也即PUSCH的时域资源包含的OFDM符号的数目为1。若预设值为2,则该PUSCH的时域资源包含的OFDM符号的数目小于预设值,因此终端不在该PUSCH的时域资源上发送PUSCH。
基于图4所示的技术方案,终端以配置的时域资源中多个用于承载DMRS的OFDM符号作为PUSCH时域资源的起始符号,以及在PUSCH时域中的至少一个第一OFDM符号上发送DMRS,保证不同终端发送的多个PUSCH中用于承载DMRS的OFDM符号在时域上对齐,避免出现一个终端发送的DMRS和另一个终端发送的数据相互干扰的情况,从而保证DMRS的检测性能和数据的解调性能。
如图15所示,为本申请实施例提供的另一种免授权传输的方法,该方法包括以下步骤:
S201、终端接收免授权传输的时域资源配置以及DMRS配置。
其中,所述免授权传输的时域资源配置用于确定配置的时域资源,以及配置的时域资源中多个第三符号的位置,所述第三符号可作为PUSCH的时域资源的起始符号,所述DMRS配置用于确定第三符号中第一资源粒子(resource element,RE)的位置,所述第一RE用于承载DMRS。
S202、终端根据免授权传输的时域资源配置,确定PUSCH的时域资源。
其中,PUSCH的时域资源的起始符号为配置的时域资源中多个第三符号中的一个。
举例来说,配置的时域资源包含时隙1中的OFDM符号#2~OFDM符号#9。其中,在时隙1中,OFDM符号#2、OFDM符号#4、OFDM符号#6、OFDM符号#8均为第三符号,则OFDM符号#2、OFDM符号#4、OFDM符号#6、OFDM符号#8均可以作为PUSCH的时域资源的起始符号。
作为一种实现方式,在所述起始符号所在的时隙中,将自所述起始符号起的前X个位于同一时隙且位于所述配置的时域资源中的OFDM符号确定为所述PUSCH的时域资源。其中,X根据所述免授权传输的时域资源配置确定,X为正整数。在本申请实施例中,X可以根据免授权传输的时域资源配置中的SLIV来确定。进一步的,X根据SLIV中的长度 指示值(L)来确定。在一中实施方式中,X可以等于SLIV中的长度指示值(L)。
结合图16进行举例说明,假设X的取值为8,以及配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。OFDM符号#2、OFDM符号#4、OFDM符号#6、OFDM符号#8、OFDM符号#10、以及OFDM符号#12均为配置的时域资源中的第三符号。如图16中的情形一所示,若终端以OFDM符号#2为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#2~OFDM符号#9。如图16中的情形二所示,若终端以OFDM符号#4为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#4~OFDM符号#11。
作为另一种实现方式,在所述起始符号所在的时隙中,若在所述起始符号之后存在少于X-1个位于所述配置的时域资源中的OFDM符号,则将所述时隙中自所述起始符号起所有位于所述配置的时域资源中的OFDM符号确定为PUSCH的时域资源。
结合图16进行举例说明,假设X的取值为8,如图16中的情形三所示,若终端以OFDM符号#8为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#8~OFDM符号#13。如图16中的情形四所示,若终端以OFDM符号#10为PUSCH的时域资源的起始符号,则PUSCH的时域资源包含OFDM符号#10~OFDM符号#13。
作为另一种实现方式,在所述起始符号所在的时隙中,将自所述起始符号起的多个位于同一时隙且位于所述配置的时域资源中同一免授权传输周期的OFDM符号确定为所述PUSCH的时域资源。
结合图17进行举例说明,假设一个免授权传输周期所包括的OFDM符号的数目为10个,一个免授权传输周期中免授权传输的时域资源包括的OFDM符号的数目为8个。例如,免授权传输周期1包括时隙1中的OFDM符号#0~OFDM符号#9。免授权传输周期1中免授权传输的时域资源包括时隙1中的OFDM符号#0~OFDM符号#7。免授权传输周期2包括时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#5。免授权传输周期2中免授权传输的时域资源包括时隙1中的OFDM符号#10~OFDM符号#13,以及时隙2中的OFDM符号#0~OFDM符号#3。也就是说,在时隙1中,配置的时域资源包含OFDM符号#0~OFDM符号#7,以及OFDM符号#10~OFDM符号#13。其中,在时隙1中,OFDM符号#0、OFDM符号#2、OFDM符号#4、OFDM符号#6、OFDM符号#10以及OFDM符号#12均为第三符号。
如图17中的情形一所示,若终端以时隙1中的OFDM符号#4作为PUSCH的时域资源的起始符号,由于OFDM符号#4~OFDM符号#7位于同一时隙且位于所述配置的时域资源中同一免授权传输周期,因此PUSCH的时域资源包含时隙1中的OFDM符号#4~OFDM符号#7。如图17中的情形二所示,若终端以时隙1中的OFDM符号#10作为PUSCH的时域资源的起始符号,由于OFDM符号#10~OFDM符号#13位于同一时隙且位于所述配置的时域资源中同一免授权传输周期,因此PUSCH的时域资源包含时隙1中的OFDM符号#10~OFDM符号#13。
S203、终端在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据。
其中,PUSCH的时域资源所包含的多个第三符号是配置的时域资源所包含的多个第三符号的非零子集。第二RE是第三符号中除第一RE之外的其他RE。
需要说明的是,当终端在非第一个第三符号的第二RE上发送数据时,终端增强用于 发送数据的第二RE上的发送功率,以使得非第一个第三符号的发送功率与其他符号(也即下述的第四符号)的发送功率大致相同。
另外,终端在所述PUSCH的时域资源中的第一个第三符号的第一RE上发送DMRS。
另外,终端在所述PUSCH的时域资源中的第四符号上发送数据,所述第四符号为PUSCH的时域资源中除第三符号之外的其他OFDM符号。
结合图18进行举例说明,配置的时域资源在时隙1中占有的OFDM符号为OFDM符号#2~OFDM符号#13。OFDM符号#2、OFDM符号#4、OFDM符号#6、OFDM符号#8、OFDM符号#10、以及OFDM符号#12均为配置的时域资源中的第三符号。如图18所示,PUSCH的时域资源包含OFDM符号#4~OFDM符号#11,OFDM符号#4、OFDM符号#6、OFDM符号#8、OFDM符号#10均为PUSCH的时域资源所包含的第三符号。其中,OFDM符号#4为PUSCH的时域资源中的第一个第三符号,OFDM符号#6、OFDM符号#8、OFDM符号#10为PUSCH的时域资源中的非第一个第三符号。因此,终端在OFDM符号#4上发送DMRS,在OFDM符号#6、OFDM符号#8以及OFDM符号#10中的第二RE上发送数据。
基于图15所示的技术方案,由于终端在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据,而不会在第三符号上的第一RE上发送数据,从而终端发送的数据与其他终端发送的DMRS在第三符号上是频分的,保证终端发送的数据与其他终端发送的DMRS之间不会互相干扰,保证终端发送的数据的解调性能和其他终端发送的DMRS的检测性能。
为了提高数据传输的可靠性,免授权传输支持重复传输,也就是说终端可以在多个传输时机(transmission occasion,TO)上重复发送PUSCH。一个免授权传输周期包括至少一个传输时机,每一个传输时机可以理解为用于承载一次PUSCH的时域资源。
当前,一方面,为了降低DMRS的开销,在重复发送PUSCH的过程中,每一个传输时机对应的PUSCH不一定携带DMRS。另一方面,为了减少解调的时延,在重复发送PUSCH的过程中,多个传输时机中的第一个传输时机对应的PUSCH要求携带DMRS。这就导致在同一传输时机,一些终端发送的PUSCH携带了DMRS,另一些终端发送的PUSCH未携带DMRS。也就是说,在同一传输时机中的某个OFDM符号上,一些终端发送的DMRS,另一些终端发送了数据。这就导致一些终端发送的数据会与另一些终端发送的DMRS互相干扰,影响DMRS的检测性能和数据的解调性能。
为了解决上述技术问题,如图19所示,为本申请实施例提供一种免授权传输的方法,该方法包括以下步骤:
S301、终端接收免授权传输的时域资源配置以及DMRS配置。
其中,所述免授权传输的时域资源配置用于确定配置的时域资源中多个传输时机的位置,所述DMRS配置用于确定所述配置的时域资源中多个第一传输时机的位置。
可以理解的是,所述多个第一传输时机为所述多个传输时机的非零子集。所述第一传输时机用于承载携带DMRS的PUSCH,非第一传输时机用于承载不携带DMRS的PUSCH。其中,非第一传输时机也可以称为第二传输时机。可选的,第一传输时机为冗余版本(redundancy version,RV)0对应的传输时机。
需要说明的是,所述多个传输时机中每一个传输时机所包含的OFDM符号的数目可以 是相同的,也可以是不相同的,本申请实施例对此不作限制。另外,所述多个传输时机中每一个传输时机所包含的OFDM符号的数目可以是网络设备配置的,或者标准中定义的。
需要说明的是,终端在第一传输时机上发送PUSCH,该PUSCH携带DMRS。终端在未承载DMRS的传输时机上发送PUSCH,该PUSCH不携带DMRS。
S302、终端根据免授权传输的时域资源配置以及DMRS配置,确定起始传输时机。
其中,所述起始传输时机为所述多个第一传输时机中的一个。
结合图20举例来说,免授权传输周期1包含传输时机#1、传输时机#2、传输时机#3以及传输时机#4,免授权传输周期2包含传输时机#5、传输时机#6、传输时机#7以及传输时机#8。其中,传输时机#1、传输时机#3、传输时机#5、传输时机#7均为第一传输时机。因此,终端可以从传输时机#1、传输时机#3、传输时机#5、传输时机#7中选择一个传输时机作为起始传输时机。
S303、终端在起始传输时机上发送PUSCH。
作为一种实现方式,若终端被配置重复传输,则终端从所述起始传输时机起的K个传输时机重复发送PUSCH,以保证数据传输的可靠性。其中,所述K个传输时机为上述多个传输时机的非零子集。所述K个传输时机可以位于同一时隙,也可以位于不同时隙。
可选的,所述K为配置的重复传输次数。其中,所述配置的重复传输次数可以是网络设备配置的,也可以是标准中定义的。在这种情况下,所述K个传输时机可以属于同一免授权传输周期,也可以属于不同免授权传输周期。
如图20中的情形一所示,假设所述配置的重复传输次数为4,终端以传输时机#1为起始传输时机,则终端在传输时机#1、传输时机#2、传输时机#3以及传输时机#4上重复发送PUSCH。
如图20中的情形二所示,假设所述配置的重复传输次数为4,终端以传输时机#3为起始传输时机,则终端在传输时机#3、传输时机#4、传输时机#5以及传输时机#6上重复发送PUSCH。
可选的,所述K小于所述配置的重复传输次数,所述K为在所述起始传输时机所在的免授权传输周期中,自所述起始传输时机起的所有传输时机的个数。也就是说,所述K个传输时机为在所述起始传输时机所在的免授权传输周期中,自所述起始传输时机起的所有传输时机。在这种情况下,所述K个传输时机属于同一免授权传输周期。
如图20中的情形三所示,假设所述配置的重复传输次数为4,终端以传输时机#3为起始传输时机,则在免授权传输周期1中,自传输时机#3起的所有传输时机包括传输时机#3和传输时机#4。因此,终端在传输时机#3和传输时机#4上重复发生PUSCH。
基于图19所示的技术方案,终端选择多个第一传输时机中的一个第一传输时机作为起始传输时机。这样一来,由于其他终端在第一传输时机上发送的PUSCH同样携带DMRS,因此终端在该起始传输时机上发送PUSCH,该PUSCH携带的DMRS不会影响到其他终端发送的数据,从而避免一个终端发送的DMRS与另一个终端发送的数据互相干扰。
可以理解的是,为了实现上述功能,终端包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件来实现,或者以硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特 定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图21所示,为本申请实施例提供的一种通信装置的结构示意图。该通信装置包括接收模块201、处理模块202和发送模块203。其中,所述接收模块201用于支持通信装置执行图4中的步骤S101,图15中的步骤S201,图19中的步骤S301,和/或用于本文描述的技术方案的其他过程。所述处理模块202用于支持通信装置执行图4中的步骤S102,图15中的步骤S202,图19中的步骤S302,和/或用于本文描述的技术方案的其他过程。发送模块203用于支持通信装置执行图4中的步骤S103,图15中的步骤S203,图19中的步骤S303,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
作为一个示例,结合图3所示的终端,图21中的发送模块203和接收模块201可以由图3中的通信接口104来实现,图21中的处理模块202可以由图3中的处理器101来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图3所示的终端上运行时,使得该终端执行如图4、图15或图19所示的免授权传输的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种芯片,该芯片包括处理模块和通信接口,所述通信接口用于接收输入的信号并提供给处理模块,和/或用于处理将处理模块生成的信号输出。所述处理用于支持终端执行如图4、图15或图19所示的免授权传输的方法。在一实施方式中,处理模块可以运行代码指令以执行如图4、图15或图19所示的免授权传输的方法来生成所述PUSCH。该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。其中,处理模块为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在图3所示的终端上运行时,使得终端可以执行图4、图15或图19所示的免授权传输的方法。
上述本申请实施例提供的终端、计算机存储介质、芯片以及计算机程序产品均用于执 行上文所提供的免授权传输的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种免授权传输的方法,其特征在于,所述方法包括:
    接收免授权传输的时域资源配置和解调参考信号DMRS配置,所述免授权传输的时域资源配置用于确定配置的时域资源,所述DMRS配置用于确定所述配置的时域资源中多个用于承载DMRS的正交频分复用OFDM符号的位置;
    根据所述免授权传输的时域资源配置和所述DMRS配置,确定物理上行共享信道PUSCH的时域资源,其中,所述PUSCH的时域资源为所述配置的时域资源的非零子集,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号;
    在所述PUSCH的时域资源上发送PUSCH。
  2. 根据权利要求1所述的免授权传输的方法,其特征在于,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载additional DMRS的OFDM符号中的一个OFDM符号。
  3. 根据权利要求1或2所述的免授权传输的方法,其特征在于,根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,将自所述起始符号起的前X个位于同一时隙且位于所述配置的时域资源中的OFDM符号确定为所述PUSCH的时域资源;其中,X根据所述免授权传输的时域资源配置确定,X为正整数。
  4. 根据权利要求1至3任一项所述的免授权传输的方法,其特征在于,根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,若在所述起始符号之后存在少于X-1个位于所述配置的时域资源中的OFDM符号,则将所述时隙中自所述起始符号起所有位于所述配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据所述免授权传输的时域资源配置确定,X为正整数。
  5. 根据权利要求1至4任一项所述的免授权传输的方法,其特征在于,根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,将自所述起始符号起的多个位于同一时隙且位于所述配置的时域资源中同一免授权传输周期的OFDM符号确定为所述PUSCH的时域资源。
  6. 根据权利要求1至5任一项所述的免授权传输的方法,其特征在于,所述在所述PUSCH的时域资源上发送PUSCH,包括:
    在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,其中,所述第一符号是所述配置的时域资源中多个用于承载DMRS的OFDM符号的非零子集。
  7. 根据权利要求6所述的免授权传输的方法,其特征在于,所述在所述PUSCH的时域资源上发送PUSCH,包括:
    在所述PUSCH的时域资源中的第二符号上发送数据,其中,所述第二符号为所述PUSCH的时域资源中除所述至少一个第一符号之外的OFDM符号。
  8. 根据权利要求6所述的免授权传输的方法,其特征在于,所述在所述PUSCH的时域资源上发送PUSCH,包括:
    若所述PUSCH的时域资源的截止符号为第一符号且为所述起始符号所在时隙中的最后一个OFDM符号,则在所述截止符号上不发送任何信息,或者,在所述截止符号上发送数据。
  9. 根据权利要求6至8任一项所述的免授权传输的方法,其特征在于,所述在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,包括:
    在所述至少一个第一符号中的第一个第一符号上发送第一DMRS;
    在所述至少一个第一符号中的非第一个第一符号上发送第二DMRS。
  10. 根据权利要求1至9任一项所述的免授权传输的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述配置的时域资源中多个用于承载
    DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
  11. 根据权利要求1至9任一项所述的免授权传输的方法,其特征在于,若所述DMRS配置包含additional DMRS的配置信息,则所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
  12. 一种免授权传输的方法,其特征在于,包括:
    接收免授权传输的时域资源配置以及DMRS配置;其中,所述免授权传输的时域资源配置用于确定配置的时域资源,以及配置的时域资源中多个第三符号的位置,所述第三符号可作为PUSCH的时域资源的起始符号;所述DMRS配置用于确定第三符号中第一资源粒子RE的位置,所述第一RE用于承载DMRS;
    根据免授权传输的时域资源配置,确定PUSCH的时域资源,所述PUSCH的时域资源的起始符号为配置的时域资源中多个第三符号中的一个;
    在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据;所述PUSCH的时域资源所包含的多个第三符号是配置的时域资源所包含的多个第三符号的非零子集,第二RE是第三符号中除第一RE之外的其他RE。
  13. 根据权利要求12所述的免授权传输的方法,其特征在于,所述方法还包括:
    在所述PUSCH的时域资源中的第一个第三符号的第一RE上发送DMRS。
  14. 根据权利要求12或13所述的免授权传输的方法,其特征在于,所述方法还包括:
    在所述PUSCH的时域资源中的第四符号上发送数据,所述第四符号为PUSCH的时域资源中除第三符号之外的其他OFDM符号。
  15. 一种免授权传输的方法,其特征在于,包括:
    接收免授权传输的时域资源配置以及DMRS配置,所述免授权传输的时域资源配置用于确定配置的时域资源中多个传输时机的位置,所述DMRS配置用于确定所述多个传输时机中多个第一传输时机的位置,所述第一传输时机用于承载携带DMRS的PUSCH;
    根据所述免授权传输的时域资源配置以及所述DMRS配置,确定起始传输时机,该起始传输时机为多个第一传输时机中的一个;
    在起始传输时机发送PUSCH。
  16. 根据权利要求15所述的免授权传输的方法,其特征在于,所述在起始传输时 机发送PUSCH,包括:
    在自起始传输时机起的K个传输时机重复发送PUSCH。
  17. 根据权利要求16所述的免授权传输的方法,其特征在于,K的取值等于配置的重复传输次数;或者,K的取值小于配置的重复传输次数,K的取值为在起始传输时机所在的免授权传输周期中,自起始传输时机起的所有传输时机的个数。
  18. 一种通信装置,其特征在于,包括:
    接收模块,用于接收免授权传输的时域资源配置和解调参考信号DMRS配置,所述免授权传输的时域资源配置用于确定配置的时域资源,所述DMRS配置用于确定所述配置的时域资源中多个用于承载DMRS的正交频分复用OFDM符号的位置;
    处理模块,用于根据所述免授权传输的时域资源配置和所述DMRS配置,确定物理上行共享信道PUSCH的时域资源,其中,所述PUSCH的时域资源为所述配置的时域资源的非零子集,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号;
    发送模块,用于在所述PUSCH的时域资源上发送PUSCH。
  19. 根据权利要求18所述的通信装置,其特征在于,所述PUSCH的时域资源的起始符号为所述配置的时域资源中多个用于承载additional DMRS的OFDM符号中的一个OFDM符号。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述处理模块,用于根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,将自所述起始符号起的前X个位于同一时隙且位于所述配置的时域资源中的OFDM符号确定为所述PUSCH的时域资源;其中,X根据所述免授权传输的时域资源配置确定,X为正整数。
  21. 根据权利要求18至20任一项所述的通信装置,其特征在于,所述处理模块,用于根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,若在所述起始符号之后存在少于X-1个位于所述配置的时域资源中的OFDM符号,则将所述时隙中自所述起始符号起所有位于所述配置的时域资源中的OFDM符号确定为PUSCH的时域资源;其中,X根据所述免授权传输的时域资源配置确定,X为正整数。
  22. 根据权利要求18至21任一项所述的通信装置,其特征在于,所述处理模块,用于根据所述免授权传输的时域资源配置和所述DMRS配置,确定PUSCH的时域资源,包括:
    在所述起始符号所在的时隙中,将自所述起始符号起的多个位于同一时隙且位于所述配置的时域资源中同一免授权传输周期的OFDM符号确定为所述PUSCH的时域资源。
  23. 根据权利要求18至22任一项所述的通信装置,其特征在于,所述发送模块,用于在所述PUSCH的时域资源上发送PUSCH,包括:
    在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,其中,所述第 一符号是所述配置的时域资源中多个用于承载DMRS的OFDM符号的非零子集。
  24. 根据权利要求23所述的通信装置,其特征在于,所述发送模块,用于在所述PUSCH的时域资源上发送PUSCH,包括:
    在所述PUSCH的时域资源中的第二符号上发送数据,其中,所述第二符号为所述PUSCH的时域资源中除所述至少一个第一符号之外的OFDM符号。
  25. 根据权利要求23所述的通信装置,其特征在于,所述发送模块,用于在所述PUSCH的时域资源上发送PUSCH,包括:
    若所述PUSCH的时域资源的截止符号为第一符号且为所述起始符号所在时隙中的最后一个OFDM符号,则在所述截止符号上不发送任何信息,或者,在所述截止符号上发送数据。
  26. 根据权利要求23至25任一项所述的通信装置,其特征在于,所述发送模块,用于在所述PUSCH的时域资源中的至少一个第一符号上发送DMRS,包括:
    在所述至少一个第一符号中的第一个第一符号上发送第一DMRS;
    在所述至少一个第一符号中的非第一个第一符号上发送第二DMRS。
  27. 根据权利要求18至26任一项所述的通信装置,其特征在于,
    所述接收模块,还用于接收指示信息,所述指示信息用于指示所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
  28. 根据权利要求18至26任一项所述的通信装置,其特征在于,若所述DMRS配置包含additional DMRS的配置信息,则所述配置的时域资源中多个用于承载DMRS的OFDM符号中的一个OFDM符号可作为PUSCH的时域资源的起始符号。
  29. 一种通信装置,其特征在于,包括:
    接收模块,用于接收免授权传输的时域资源配置以及DMRS配置;其中,所述免授权传输的时域资源配置用于确定配置的时域资源,以及配置的时域资源中多个第三符号的位置,所述第三符号可作为PUSCH的时域资源的起始符号;所述DMRS配置用于确定第三符号中第一资源粒子RE的位置,所述第一RE用于承载DMRS;
    处理模块,用于根据免授权传输的时域资源配置,确定PUSCH的时域资源,所述PUSCH的时域资源的起始符号为配置的时域资源中多个第三符号中的一个;
    发送模块,用于在所述PUSCH的时域资源中的非第一个第三符号的第二RE上发送数据;所述PUSCH的时域资源所包含的多个第三符号是配置的时域资源所包含的多个第三符号的非零子集,第二RE是第三符号中除第一RE之外的其他RE。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述发送模块,还用于在所述PUSCH的时域资源中的第一个第三符号的第一RE上发送DMRS。
  31. 根据权利要求29或30所述的通信装置,其特征在于,
    所述发送模块,还用于在所述PUSCH的时域资源中的第四符号上发送数据,所述第四符号为PUSCH的时域资源中除第三符号之外的其他OFDM符号。
  32. 一种通信装置,其特征在于,包括:
    接收模块,用于接收免授权传输的时域资源配置以及DMRS配置,所述免授权传 输的时域资源配置用于确定配置的时域资源中多个传输时机的位置,所述DMRS配置用于确定所述多个传输时机中多个第一传输时机的位置,所述第一传输时机用于承载携带DMRS的PUSCH;
    处理模块,用于根据所述免授权传输的时域资源配置以及所述DMRS配置,确定起始传输时机,该起始传输时机为多个第一传输时机中的一个;
    发送模块,用于在起始传输时机发送PUSCH。
  33. 根据权利要求32所述的通信装置,其特征在于,
    所述发送模块,具体用于在自起始传输时机起的K个传输时机重复发送PUSCH。
  34. 根据权利要求33所述的通信装置,其特征在于,K的取值等于配置的重复传输次数;或者,K的取值小于配置的重复传输次数,K的取值为在起始传输时机所在的免授权传输周期中,自起始传输时机起的所有传输时机的个数。
  35. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器存储有程序指令,所述程序指令被处理器执行时使得所述处理器实现如权利要求1至17任一项所述的免授权传输的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得所述处理器实现如权利要求1至17任一项所述的免授权传输的方法。
  37. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被处理器执行时,使得所述处理器实现如权利要求1至17任一项所述的免授权传输的方法。
  38. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行程序指令时,所述处理器用于执行权利要求1至17任一项所述的免授权传输的方法。
PCT/CN2020/071538 2019-01-11 2020-01-10 免授权传输的方法及装置 WO2020143808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028868.5 2019-01-11
CN201910028868.5A CN111436136B (zh) 2019-01-11 2019-01-11 免授权传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2020143808A1 true WO2020143808A1 (zh) 2020-07-16

Family

ID=71520451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071538 WO2020143808A1 (zh) 2019-01-11 2020-01-10 免授权传输的方法及装置

Country Status (2)

Country Link
CN (1) CN111436136B (zh)
WO (1) WO2020143808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285534A (zh) * 2020-09-28 2022-04-05 维沃移动通信有限公司 传输信息确定方法、装置和终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337955A (zh) * 2020-09-30 2022-04-12 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
CN114390694A (zh) * 2020-10-22 2022-04-22 维沃移动通信有限公司 数据传输方法、装置、终端、网络侧设备及存储介质
CN114765863A (zh) * 2021-01-13 2022-07-19 维沃移动通信有限公司 传输处理方法及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173633A (zh) * 2016-12-07 2018-06-15 华为技术有限公司 接收上行参考信号的方法和装置
CN109005596A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 一种调整竞争窗长度的方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9872313B2 (en) * 2014-10-02 2018-01-16 Qualcomm Incorporated Contention based uplink transmissions for latency reduction
WO2018075963A1 (en) * 2016-10-21 2018-04-26 Intel IP Corporation Demodulation reference signal structure and contention-based physical uplink shared channel
CN109152026B (zh) * 2017-06-16 2020-07-17 维沃移动通信有限公司 一种上行免授权传输的配置方法及设备
CN108112078B (zh) * 2017-06-20 2023-08-29 中兴通讯股份有限公司 上行数据信道起始符号位置的配置方法、装置及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173633A (zh) * 2016-12-07 2018-06-15 华为技术有限公司 接收上行参考信号的方法和装置
CN109005596A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 一种调整竞争窗长度的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER IIS: "Support for Enhanced UL Grant Free Transmission", 3GPP TSG RAN WG1 MEETING #95, R1-1813517, 16 November 2018 (2018-11-16), XP051555572, DOI: 20200323153858A *
HUAWEI ET AL.: "Enhanced UL configured grant transmissions", 3GPP TSG RAN WG1 MEETING #95, R1-1812226, 16 November 2018 (2018-11-16), XP051554098, DOI: 20200323154028A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285534A (zh) * 2020-09-28 2022-04-05 维沃移动通信有限公司 传输信息确定方法、装置和终端

Also Published As

Publication number Publication date
CN111436136B (zh) 2022-03-25
CN111436136A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2020143808A1 (zh) 免授权传输的方法及装置
US11968682B2 (en) Uplink dynamic grant-free transmission method and apparatus
US11039448B2 (en) Resource scheduling method and apparatus
WO2019120303A1 (zh) 通信方法和装置
CN111770577B (zh) 确定传输资源的方法及装置
WO2019223615A1 (zh) 上行控制信息的传输方法及设备
US20200213997A1 (en) Resource configuration method, base station, terminal, and computer readable storage medium
WO2020199854A1 (zh) 确定传输资源的方法及装置
WO2020216340A1 (zh) 侧行链路控制信息的发送方法及设备
WO2020030025A1 (zh) 用于上报csi的方法和装置
WO2021204094A1 (zh) 一种通信方法、装置及***
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2020173448A1 (zh) 搜索空间的盲检方法及通信装置
WO2020063266A1 (zh) 一种harq进程id的确定方法、装置、终端及介质
WO2021031906A1 (zh) 配置时域资源的方法和装置
KR102434932B1 (ko) 자원 위치 결정 방법 및 장치, 그리고 자원 결정 방법 및 장치
WO2021026931A1 (zh) 一种确定随机接入资源的方法及装置
WO2021036375A1 (zh) 一种通信方法和装置
WO2020143723A1 (zh) 数据传输方法及装置
WO2019191971A1 (zh) 数据传输方法、终端设备及网络设备
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2019029367A1 (zh) 一种通信方法及设备
WO2020034740A1 (zh) 一种调度请求资源确定及配置方法、设备及存储介质
WO2019213977A1 (zh) 资源配置方法及装置
WO2022028604A1 (zh) 上行传输方法、装置及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738976

Country of ref document: EP

Kind code of ref document: A1