WO2019213977A1 - 资源配置方法及装置 - Google Patents

资源配置方法及装置 Download PDF

Info

Publication number
WO2019213977A1
WO2019213977A1 PCT/CN2018/086620 CN2018086620W WO2019213977A1 WO 2019213977 A1 WO2019213977 A1 WO 2019213977A1 CN 2018086620 W CN2018086620 W CN 2018086620W WO 2019213977 A1 WO2019213977 A1 WO 2019213977A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
configuration information
random access
resource
frequency resource
Prior art date
Application number
PCT/CN2018/086620
Other languages
English (en)
French (fr)
Inventor
罗之虎
铁晓磊
金哲
李军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880092913.7A priority Critical patent/CN112136350B/zh
Priority to PCT/CN2018/086620 priority patent/WO2019213977A1/zh
Publication of WO2019213977A1 publication Critical patent/WO2019213977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for resource configuration.
  • the Internet of Things extends the Internet's client to any item and item, that is, any item can communicate with each other. IoT has special requirements for coverage enhancement, support for a large number of low-rate devices, and low power consumption of devices.
  • 3GPP 3rd Generation Partnership Project
  • NB-IoT Narrowband Internet of Things
  • the uplink resource may be applied through the random access procedure, and the uplink data is used to transmit the uplink data.
  • the terminal device can wait for the second message of the random access procedure to transmit the uplink data, which causes the service delay of the terminal device and also increases the power consumption of the terminal device.
  • the embodiments of the present application provide a resource configuration method and device, which reduce service delay and power consumption of a terminal device.
  • the embodiment of the present application provides the following technical solutions:
  • the embodiment of the present application provides a resource configuration method, which is applied to a network device, where the method includes: the network device determines configuration information, and sends configuration information to the terminal device.
  • the configuration information is used to indicate the scheduling request SR time-frequency resource of the terminal device, and the configuration information includes the first configuration information and the second configuration information, where the first configuration information is used to indicate the time domain offset of the SR time-frequency resource, and the second configuration The information is used to indicate the duration of the SR time-frequency resource, where the time domain offset is an offset of the time domain start position of the SR time-frequency resource relative to the time domain start position of the random access time-frequency resource.
  • the network device determines the configuration information, and sends the configuration information to the terminal device, where the configuration information is used to indicate the SR time-frequency resource of the terminal device, and the terminal device occupies the SR time-frequency resource indicated by the configuration information.
  • the terminal device may apply for the uplink resource to the network device by using the sending SR to send the uplink data, without applying to the network device by performing a random access procedure. Uplink resources, the signaling process is simplified, thereby reducing the power consumption and delay of the terminal device.
  • the random access time-frequency resource can be flexibly divided into at least one SR time-frequency corresponding to different time domain offsets and durations.
  • the resource that is, the random access time-frequency resource can be used by at least one terminal device, thereby improving the SR capacity.
  • the embodiment of the present application provides a resource configuration method, which is applied to a terminal device, where the method includes: the terminal device receives configuration information, and subsequently, when there is uplink data and no uplink resource is available, the terminal device occupies configuration information.
  • the indicated SR time-frequency resource sends an SR to the network device.
  • the configuration information is used to indicate the scheduling request SR time-frequency resource of the terminal device, and the configuration information includes the first configuration information and the second configuration information, where the first configuration information is used to indicate the time domain offset of the SR time-frequency resource, and the second configuration The information is used to indicate the duration of the SR time-frequency resource, where the time domain offset is an offset of the time domain start position of the SR time-frequency resource relative to the time domain start position of the random access time-frequency resource.
  • the embodiment of the present application provides a resource configuration method, which is applied to a network device, where the method includes: the network device determines configuration information, and sends configuration information to the terminal device.
  • the configuration information includes an SR time-frequency resource bitmap of the terminal device, and the bit value in the bitmap is used to indicate the corresponding symbol group.
  • the embodiment of the present application provides a resource configuration method, which is applied to a terminal device, where the method includes: the terminal device receives configuration information, and subsequently, when there is uplink data and no uplink resource is available, the terminal device occupies configuration information.
  • the indicated SR time-frequency resource sends an SR to the network device.
  • the configuration information includes an SR time-frequency resource bitmap of the terminal device, and the bit value in the bitmap is used to indicate the corresponding symbol group.
  • the random access resource is a time-frequency resource that can be used for the random access preamble transmission configured by the network device by using the system message, where the random access resource includes a contention-based random access resource, and the SR time-frequency.
  • the resource is a subset of the random access time-frequency resource; or the random access resource is a time-frequency resource configured by the network device through the system message and can be used for random access preamble transmission, where the random access resource includes a contention-based random connection.
  • the SR time-frequency resource is a subset of the time-frequency resources except the contention-based random access time-frequency resource.
  • NPUSCH Narrowband Physical Uplink Shared CHannel
  • the NPUSCH transmission is delayed. Therefore, if a part of the NPRACH resource is configured as an SR time-frequency resource, the NPUSCH transmission and the SR transmission may be delayed, and the NPUSCH deferred transmission mechanism may be used, and the scheduling of the NPUSCH is not restricted.
  • the base station since the non-competitive time-frequency resources are scheduled and allocated through the Narrowband Physical Downlink Control Channel (NPDCCH), the base station can avoid collision between the SR and the NPRACH through scheduling.
  • NPDCCH Narrowband Physical Downlink Control Channel
  • the frequency domain resources of the SR time-frequency resource are the same as the frequency domain resources of the random access time-frequency resource.
  • the duration is an integer multiple of the first time length, where the first time length is the duration of a single transmission of the random access preamble; or the duration is a symbol group of the random access preamble An integer multiple of the duration.
  • the time domain offset is an integer multiple of the first time length, wherein the first time length is the duration of a single transmission of the random access preamble; or the duration is one of the random access preambles.
  • the SR time-frequency resource indication mode can be used to flexibly configure the duration of the SR time-frequency resource of each terminal device, and then flexibly allocate the random access time-frequency resource to the multi-terminal device to increase the SR capacity.
  • the configuration information further includes carrier configuration information, subcarrier configuration information, and enhanced coverage level configuration information, where the carrier configuration information is used to indicate a carrier occupied by the SR time-frequency resource, and the subcarrier configuration information is used to indicate The subcarrier occupied by the SR time-frequency resource, and the enhanced coverage level configuration information is used to indicate information of the enhanced coverage level of the SR time-frequency resource.
  • the format used to indicate that the terminal device transmits the SR is format 2; the sub-carrier configuration information indicates the sub-carrier.
  • the format used to indicate that the terminal device transmits the SR is format 0 or format 1.
  • the configuration information further includes format configuration information, where the format configuration information is one of a format index, a cyclic prefix CP length, and a subcarrier bandwidth; and the format configuration information is used by the terminal device to determine the transmission SR.
  • the format is one of a format index, a cyclic prefix CP length, and a subcarrier bandwidth; and the format configuration information is used by the terminal device to determine the transmission SR.
  • the format is one of a format index, a cyclic prefix CP length, and a subcarrier bandwidth
  • the terminal device may determine which format subcarrier to transmit the SR, so that the station transmits the SR in the frequency domain using the subcarriers of the corresponding format.
  • a network device having the function of implementing the method of any of the first aspect and the third aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a network device including: a processor and a memory; the memory is configured to store a computer execution instruction, and when the network device is running, the processor executes the computer execution instruction stored by the memory to enable the network
  • the device performs the resource configuration method of any of the above first aspects.
  • a network device comprising: a processor; the processor is configured to be coupled to the memory, and after reading the instruction in the memory, perform resource configuration according to any one of the foregoing first or third aspects according to the instruction method.
  • a computer readable storage medium storing instructions that, when run on a computer, cause the computer to perform the resources of any of the above first or third aspects Configuration method.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the resource configuration method of any of the above first or third aspects.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the first aspect or the third aspect described above.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a terminal device having the function of implementing the method of any of the above second or fourth aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a terminal device includes: a processor and a memory; the memory is configured to store a computer execution instruction, and when the terminal device is running, the processor executes the computer execution instruction stored in the memory to enable the The terminal device performs the resource configuration method according to any one of the above second or fourth aspects.
  • a terminal device comprising: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the resource according to any one of the foregoing second aspect or the fourth aspect according to the instruction Configuration method.
  • a fourteenth aspect a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the second aspect or the fourth aspect Resource configuration method.
  • a computer program product comprising instructions, when run on a computer, causes the computer to perform the resource configuration method of any of the above second or fourth aspect.
  • a chip system comprising a processor for supporting a terminal device to implement the functions involved in the second aspect or the fourth aspect described above.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a prior art SR resource configuration
  • FIG. 4 is an interaction flowchart of a method for resource configuration according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram 1 of resource configuration according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic diagram of resource configuration according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram 3 of resource configuration according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram 4 of resource configuration according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of determining a format used for SR transmission according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a network device, and a plurality of terminal device devices (e.g., terminal device 1 to terminal device 6 in FIG. 1) in communication with the network device.
  • the communication system can also include subsystems.
  • the terminal device 4, the terminal device 5, and the terminal device 6 may constitute a subsystem in which the terminal device 4, the terminal device 5, and the terminal device 6 can communicate with each other.
  • the network device may be an access network device, and the access network device is a device deployed in the wireless access network to provide a wireless communication function.
  • the terminal device is mainly used to receive or send data.
  • the above communication system can be applied to the current Long Term Evolution (LTE) or advanced Long Term Evolution (LTE-A) system, and can also be applied to a 5G network currently being developed or other networks in the future.
  • LTE Long Term Evolution
  • LTE-A advanced Long Term Evolution
  • 5G Fifth Generation
  • the network device and the terminal device in the foregoing communication system may correspond to different names in different networks. It can be understood by those skilled in the art that the name does not limit the device itself.
  • the terminal involved in the embodiment of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem; It may include a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, and a handheld device.
  • PDA personal digital assistant
  • MTC machine type communication
  • UE user equipment
  • terminal devices are collectively referred to as terminal devices. It should be noted that the terminal and the terminal device mentioned in the embodiments of the present application belong to the same concept.
  • a network device for example, an access network device related to an embodiment of the present application may include various forms of a macro base station, a micro base station (also referred to as a small station), a relay station, a Transmission Reception Point (TRP), and a next generation.
  • the network node g Node B, gNB
  • the evolved Node B ng-eNB
  • WLAN wireless local area network
  • the terminal device and the network device in the embodiment of the present application may be implemented by multiple devices, for example, the terminal device is a device, the network device is a device, and the terminal device function and the network device function may be integrated into one device.
  • the device in this application does not specifically limit this. It can be understood that the above functions can be either a network component in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • FIG. 2 is a schematic diagram showing the hardware structure of a communication device according to an embodiment of the present application.
  • the communication device 200 includes at least one processor 201, a communication line 202, a memory 203, and at least one transceiver 204.
  • the processor 201 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 202 can include a path for communicating information between the components described above.
  • the transceiver 204 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 203 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory may be stand-alone and connected to the processor via communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 201 for execution.
  • the processor 201 is configured to execute the computer execution instructions stored in the memory 203, thereby implementing the resource configuration method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as an application code, which is not specifically limited in this embodiment of the present application.
  • processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 200 can include multiple processors, such as processor 201 and processor 207 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 200 can also include an output device 205 and an input device 206.
  • Output device 205 is in communication with processor 201 and can display information in a variety of ways.
  • the output device 205 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 206 is in communication with processor 201 and can receive user input in a variety of ways.
  • input device 206 can be a mouse, keyboard, touch screen device or sensing device, and the like.
  • the communication device 200 described above may be a general purpose device or a dedicated device.
  • the communication device 200 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or the like in FIG. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the terminal device establishes a connection with the base station through a random access procedure and obtains uplink synchronization.
  • the base station can configure the random access time-frequency resource for the terminal device.
  • the terminal device needs to obtain the random access time-frequency resource sent by the base station, so that the subsequent terminal device occupies the random access time-frequency resource to initiate random access.
  • the random access procedure includes a process in which the terminal device sends a random access preamble (for convenience of description, hereinafter referred to as a preamble) to the base station.
  • the terminal device when the base station configures a random access time-frequency resource for the terminal device, the terminal device can be configured with the number of repetitions of the preamble. Then, for a certain terminal, the random access time-frequency resource includes a sum of time-frequency resources used for transmitting the preamble multiple times in the random access procedure, and referring to FIG. 3, for the terminal device 1, at a certain terminal
  • the time-frequency resources in a random access process include the first-time repeated transmission (the repetition number #1 in FIG.
  • the network device in order to avoid waste of resources, if the terminal device device does not need uplink data to be transmitted, the network device does not allocate uplink resources for the terminal device device.
  • the terminal device needs to transmit uplink resources, it should first inform the network device that the terminal device needs to transmit uplink resources, and requests the network device to allocate uplink resources for the terminal device.
  • the terminal device when the terminal device needs to send uplink data to the network device, it needs to re-initiate random access, and then send uplink data.
  • the terminal device needs to wait for a long time and perform more operations before sending uplink data, which increases power consumption and delay of the terminal device.
  • the terminal device may retreat or even fail, further increasing the power consumption and delay of the terminal device.
  • the present application is based on the above problem, and provides a resource configuration method, in which the network device sends configuration information to the terminal device in advance.
  • the terminal device needs to send uplink data
  • the terminal device sends the SR to the network device on the specific resource indicated by the configuration information. That is, the network device terminal device is required to send data, and then directly send the uplink data without performing a random access process, thereby reducing power consumption and delay of the terminal device.
  • An embodiment of the present application provides a resource configuration method. As shown in FIG. 4, the method includes the following steps:
  • the network device determines configuration information, where the configuration information is used to indicate a scheduling request SR time-frequency resource of the terminal device.
  • the configuration information includes the first configuration information and the second configuration information, where the first configuration information is used to indicate the time domain offset of the SR time-frequency resource, and the second configuration information is used to indicate the duration of the SR time-frequency resource, where
  • the domain offset is the offset of the time domain start position of the SR time-frequency resource with respect to the time domain start position of the random access time-frequency resource.
  • the network device sends configuration information to the terminal device.
  • the terminal device receives configuration information.
  • the terminal device sends the SR on the SR time-frequency resource indicated by the configuration information.
  • configuration information may be carried in Radio Resource Control (RRC) signaling, Media Access Control (MAC) control element (Control Element, CE) or physical layer signaling, such as downlink. Control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE Control element
  • DCI Downlink Control Information
  • the terminal device after receiving the configuration information sent by the network device, the terminal device does not immediately send the SR to the network device, but in the case that the uplink data arrives at the terminal device and the terminal device does not have available uplink resources. Sending an SR to the network device to request the network device to allocate available uplink resources to the terminal device.
  • the time-frequency resource of the random access mentioned above is a time-frequency resource that can be used for the random access preamble transmission configured by the network device by using the system message, where the random access resource includes a contention-based random access resource.
  • the SR time-frequency resource is a subset of the random access time-frequency resource, or the SR time-frequency resource is a subset of the time-frequency resource except the contention-based random access time-frequency resource.
  • NPUSCH Narrowband Physical Uplink Shared CHannel
  • the NPUSCH transmission and the SR transmission may be delayed, and the NPUSCH deferred transmission mechanism may be used, and the scheduling of the NPUSCH is not restricted.
  • the time-frequency resources except the contention-based random access time-frequency resources in the random access time-frequency resources are referred to as non-competitive time-frequency resources.
  • the base station can avoid collision between the SR and the NPRACH through scheduling.
  • the frequency domain resource of the SR time-frequency resource is the same as the frequency domain resource of the random access time-frequency resource.
  • the frequency domain resources of the random access time-frequency resources are the sub-carriers of the sequence numbers #0 to #11, and the frequency domain resources of the configured SR time-frequency resources are also the sub-carriers of the sequence numbers #0 to #11.
  • the network device determines the configuration information, and sends the configuration information to the terminal device, where the configuration information is used to indicate the SR time-frequency resource of the terminal device, and the terminal device occupies the SR time-frequency resource indicated by the configuration information.
  • the terminal device may apply for the uplink resource to the network device by using the sending SR to send the uplink data, without applying to the network device by performing a random access procedure. Uplink resources, the signaling process is simplified, thereby reducing the power consumption and delay of the terminal device.
  • the network device can flexibly divide the random access time-frequency resource into corresponding time domain offsets and durations.
  • At least one SR time-frequency resource that is, the random access time-frequency resource can be used by at least one terminal device, thereby improving the SR capacity.
  • FIG. 5 shows a case where the random access time-frequency resource is multiplexed by three terminal devices, and the time-frequency resource of the random access includes a sum of time-frequency resources for which the preamble is repeatedly transmitted four times.
  • the time-frequency resource used for the first retransmission of the preamble is configured as the SR time-frequency resource of the terminal device 1
  • the time-frequency resource used for the second retransmission of the preamble is configured as the SR time-frequency of the terminal device 2.
  • the resource, the time-frequency resource for the third and fourth repeated transmission preambles is configured as the SR time-frequency resource of the terminal device 3.
  • the random access time-frequency resource can be allocated to multiple terminals, the idle random access time-frequency resource can be reduced, and the utilization rate of the random access time-frequency resource is improved.
  • the action of the base station in the foregoing steps S401-S404 can be performed by the processor 201 in the communication device 200 shown in FIG. 2 by calling the application code stored in the memory 203.
  • This embodiment of the present application does not impose any limitation.
  • the action of the terminal device in the above steps S403 and S404 can be performed by the processor 201 in the communication device 200 shown in FIG. 2, and the application code stored in the memory 203 is called, which is not limited in this embodiment.
  • the time domain offset is an integer multiple of the first time length, where the first time length is a duration of a single transmission of the random access preamble.
  • the duration is an integer multiple of the first time length, or the duration is an integer multiple of a symbol group duration of the random access preamble.
  • the random access preamble is composed of a plurality of symbol groups, and each symbol group includes at least one symbol and a Cyclic Prefix (CP).
  • the total duration of at least one symbol is Tseq, and the duration of the CP is Tcp.
  • the number of symbol groups may be different, and the structure of the symbol groups may be different, that is, the number of symbols in the symbol group is different, and/or the CP length (in the time domain) is different, and / Or the length of the symbol (in the time domain) is different.
  • the random access preamble format includes but is not limited to format 0, format 1, and format 2.
  • the format of the random access preamble includes format 0, format 1 and format 2.
  • the comparison data of the above various formats is as shown in Table 1 below.
  • the configuration information of the terminal device 1 includes: first configuration information and second configuration information, where the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 1 is 0 (when the time frequency resource is randomly accessed) The second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 1 is T.
  • the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 2 is T, that is, the offset from the time domain start position (0) of the random access time-frequency resource.
  • the second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 2 is T.
  • the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 3 is 2T
  • the second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 3 is 2T.
  • the foregoing time domain offset may also be an offset of a time domain start position of the SR time-frequency resource with respect to a time domain end position of the random access time-frequency resource. This embodiment of the present application does not limit this.
  • the duration is an integer multiple of the length of one symbol group of the random access preamble and the time domain offset is not an integer multiple of the first time length.
  • the configuration information of the terminal device 1 is used.
  • the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 1 is 0, and the second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 1 is In the configuration information of the terminal device 2, the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 2 is The second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 2 is In the configuration information of the terminal device 3, the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 3 is The second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 3 is
  • time domain offset and duration of the SR time-frequency resources of each terminal device are not limited to the foregoing examples, and the time domain offset of the SR time-frequency resources of each terminal device may be configured according to actual conditions. The embodiment of the present application does not limit this.
  • the number of symbol groups occupied by the SR transmission may be different, and the SR time-frequency resources indicated by the first configuration information and the second configuration information may be consecutive in the time domain.
  • discontinuous means that a terminal device can transmit an SR once in a continuous period of time.
  • the discontinuity means that the terminal device can transmit the SR once using a plurality of symbol groups across time slots.
  • the SR transmission occupies 4 symbol groups at a time, if the SR time-frequency resource of the terminal device includes at least 4 consecutive symbol groups in the time domain, the SR time-frequency resource of the terminal device is in the time domain. The above is continuous. As shown in FIG.
  • the SR time-frequency resource of the terminal device 1 includes four consecutive symbol groups in the time domain, which can be used to transmit the SR once. Then, the SR time-frequency resource of the terminal device 1 is a continuous resource. If the SR time-frequency resource of the terminal device does not include at least 4 consecutive symbol groups in the time domain, the SR time-frequency resources of the terminal device are discontinuous in the time domain. As shown in (b) of FIG. 6, the first SR time-frequency resource of the terminal device 1 includes three consecutive symbol groups in the time domain, which is insufficient to transmit the SR once. Therefore, in order to enable the terminal 1 to transmit the SR at least once, The network device can configure the second SR time-frequency resource of the terminal 1. Referring to FIG.
  • the first configuration information indicates that the time domain offset of the second SR time-frequency resource is
  • the second configuration information indicates that the duration of the second SR time-frequency resource is
  • the first SR time-frequency resource and the second SR time-frequency resource of the terminal 1 are not consecutive in the time domain, but the two SR time-frequency resources can support the SR transmission of the terminal 1 across the time period.
  • the above description is only taken as an example in which the SR transmission takes up four symbol groups at a time.
  • the number of the symbol groups occupied by the SR transmission in the time domain may be different, which is not limited in this embodiment of the present application.
  • the duration of the SR time-frequency resource of each terminal device can be flexibly configured by using the foregoing SR time-frequency resource indication mode.
  • the duration of the SR time-frequency resource of the different terminal devices may be the same or different, which is not limited in this embodiment. .
  • the time interval between each transmission of the preamble is not shown. It can be understood that in a single random access procedure, the terminal device There may be a time interval between several transmission preambles. Referring to FIG. 7, in a single random access procedure, the time interval between the first transmission preamble and the second transmission preamble is In this case, in the configuration information of the terminal device 1, the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 1 is 0, and the second configuration information is used to indicate the SR time-frequency resource of the terminal device 1. The duration is T.
  • the first configuration information indicates that the time domain offset of the SR time domain resource of the terminal device 2 is
  • the second configuration information is used to indicate that the duration of the SR time-frequency resource of the terminal device 2 is T. That is, when determining the time domain offset and duration of the SR time-frequency resource of the terminal device, the network device needs to refer to the time interval between the two preamble transmissions.
  • the corresponding terminal device can learn the time domain location of the SR time-frequency resource in the single random access time-frequency resource.
  • the configuration information is an SR time-frequency resource bitmap of the terminal device, and the bit value in the bitmap is used to indicate the corresponding symbol group.
  • the bitmap can be granular in size for a single transmission of the preamble.
  • a random access preamble with a subcarrier bandwidth of 3.75 kHz is used.
  • the value of the bit in the bitmap is used to indicate the corresponding symbol group in the duration T.
  • the number of bits in the bitmap is the number of symbol groups included in a random access preamble. For example, in Release 13 and Release 14, one preamble contains 4 symbol groups.
  • the number of bits in the bitmap is 4.
  • the Nth bit in the bitmap of a terminal device takes a value of 1, indicating that the Nth symbol group is configured to the terminal device
  • the Mth bit in the bitmap of the terminal device A value of 0 indicates that the Mth symbol group is not configured for the terminal device.
  • the Nth bit in the bitmap of a terminal device is 0, indicating that the Nth symbol group is configured for the terminal device, if the Mth bit in the bitmap of the terminal device takes a value If the value is 1, it indicates that the Mth symbol group is not configured to the terminal device, and the content of the bit value in the bitmap is specifically limited.
  • the Nth bit in the bitmap of the terminal device takes a value of 1, indicating that the Nth symbol group is configured to the terminal device.
  • the configuration information of the terminal device 1 includes 1000, the bitmap included in the configuration information of the terminal device 2 is 0100, and the bitmap included in the configuration information of the terminal device 3 is 0010, and the configuration information of the terminal device 4 is The included bitmap is 0001.
  • the bitmap indicates that in each preamble transmission time length T, the first symbol group of one preamble is configured to the terminal device 1, the second symbol group is configured to the terminal device 2, and the third symbol group is Configured for the terminal device 3, the fourth symbol group is configured for the terminal device 4.
  • the terminal device 1 occupies the first symbol group transmission SR within the preamble transmission duration, the terminal device 2 occupies the second symbol group transmission SR, and the terminal device 3 occupies the third symbol group.
  • the SR is transmitted, and the terminal device 4 occupies the fourth symbol group transmission SR.
  • the number of times of SR repeated transmission may be determined by the number of repetitions of preamble transmission and the length of the bitmap in a single random access.
  • the SR repeats The number of times is the number of repetitions of the preamble (4) divided by the length of the bitmap (4), that is, 1, that is, as shown in FIG. 8 (a) the number of SR repetition transmissions of the terminal device 1 is 1, and the terminal device 2 The SR repeated transmission times is 1.
  • the number of SR repeated transmissions of the terminal device 3 is 1, that is, the single random access time-frequency resource can multiplex four terminal devices, so that the four terminal devices can transmit the SR once.
  • the terminal device 1 can occupy not only one symbol group. Referring to (b) of FIG. 8, the terminal device 1 can occupy the first and third symbol groups within the transmission time length T of each preamble. At this time, the bitmap of the terminal device 1 is 1010, the bitmap of the terminal device 2 is 0100, and the bitmap of the terminal device 4 is 0001.
  • the SR time-frequency resource of each terminal device may be discontinuous.
  • the terminal can occupy the first symbol group and the third symbol in the first transmission duration T of the preamble.
  • the group and the first symbol group and the third symbol group in the second transmission duration T of the preamble are used to transmit the SR.
  • the symbol group occupied by the terminal device is discontinuous in the time domain.
  • the SR time-frequency resource of each terminal device may also be continuous.
  • the number or duration of SR repetition transmissions may be determined by a single random access preamble repetition number and a bitmap length, and the bitmap length represents the number of bits included in the bitmap. For example, the number of repeated transmissions of a single random access preamble is R, and the length of the bitmap is L, then the number of repeated transmissions of the SR is R/L. Or the number of repeated transmissions of the single random access preamble is R, the length of the bitmap is L, and the duration of one transmission of one preamble is T, then the duration of the SR transmission is RT/L.
  • the resource in which the single random access preamble is repeatedly transmitted R times is divided into L parts, and the bits of the bitmap are in one-to-one correspondence with the respective partial resources.
  • a bit of 1 indicates that the terminal device can transmit the SR using the corresponding partial resource. If the bit is 0, the terminal device cannot transmit the SR using the corresponding partial resource, or the bit is 0, indicating that the terminal device can transmit the SR by using the corresponding partial resource, and the bit is 1 indicates that the terminal device cannot transmit the SR using the corresponding partial resources.
  • the resource in which the single random access preamble is repeatedly transmitted 4 times is divided into 2 parts, and the bitmap allocated to the terminal device 1 is 10, indicating that the terminal device 1 can use the first part of the resource to send the SR, that is, the terminal device 1 can
  • the SR is transmitted by using the resource of the first and second retransmissions of the random access preamble, and the bitmap allocated to the terminal device 2 is 01, indicating that the terminal device 2 can use the second part of the resource to send the SR, that is, the terminal device 2 can use
  • the resource of the third and fourth repeated transmissions of the random access preamble transmits the SR.
  • the configuration information further includes carrier configuration information, subcarrier configuration information, and enhanced coverage level configuration information, where the carrier configuration information is used to indicate the carrier occupied by the SR time-frequency resource, and the subcarrier configuration information is used to indicate the SR time-frequency resource.
  • the occupied subcarriers, the enhanced coverage level configuration information is used to indicate information of the enhanced coverage level of the SR time-frequency resource, and the information of the enhanced coverage level includes enhanced coverage level index information or the number of repeated transmissions of the preamble.
  • the bandwidth of one carrier is 180 kHz, and usually one preamble occupies one subcarrier.
  • the bandwidth of the NB-IoT subcarrier is different.
  • the NB-IoT subcarrier bandwidth is 3.75 kHz
  • the NB-IoT subcarrier bandwidth is 1.25 kHz. Therefore, in Release 13 and Release 14, one NB-IoT carrier contains 48 subcarriers, that is, one NB-IoT carrier can support configuration of 48 preambles.
  • one NB-IoT carrier contains 144 subcarriers.
  • the enhanced coverage level reflects the distance between the terminal device and the network device, or reflects the cell coverage quality (ie, the signal quality of the link), and the number of repeated transmissions of the preamble in the time domain and the random access procedure. Related. Generally, the greater the number of times the preamble is repeatedly transmitted, the higher the enhanced coverage level. Taking version 13 as an example, the enhanced coverage level is divided into three types: level 0, level 1, level 2, level 0 repetition number is 2, level 1 repetition number is 8, and level 2 repetition number is 32.
  • the terminal device obtains the random access resource configuration indication information through the system message before acquiring the configuration information.
  • the terminal device needs the configuration information and the random access resource configuration indication information mentioned above to be combined in determining the carrier position, the subcarrier position within the specified carrier, and enhancing the coverage level.
  • the random access resource configuration indication information includes carrier configuration indication information that can be used for random access
  • the carrier configuration indication information includes a carrier index
  • the terminal device determines, according to the acquired carrier index and the carrier configuration indication information, that the information can be used for the SR transmission.
  • the carrier location includes the subcarrier configuration indication information that can be used for random access in the specified carrier, and includes a subcarrier index in the configuration information, and the terminal device uses the obtained subcarrier index and the subcarrier according to the obtained carrier identifier.
  • the configuration indication information is used to determine a subcarrier position that can be used for the SR transmission; the resource allocation indication information of the coverage level is included in the random access resource configuration indication information, and the resource configuration indication information of each coverage level includes a random access preamble.
  • the code start position, the period, the number of repetitions, and the like include the enhanced coverage level index information or the number of repeated transmissions of the preamble in the configuration information, and the terminal device repeats the transmission times and 1 to 3 according to the obtained enhanced coverage level index information or preamble.
  • Resource allocation indication information of the coverage level is determined Starting position of the random access resource for SR transmission corresponding to the period and the number of repetitions.
  • the terminal learns that the carrier to be occupied is the second NB-IoT carrier, and the subcarriers occupied in the frequency domain are the subcarriers with the sequence numbers #0 to #11 shown in FIG.
  • the enhanced coverage level configuration information indicates that the number of repetitions of the preamble is four times.
  • Mode 1 The format of the molecular carrier of the numerical size region of the subcarrier index can be utilized.
  • the network device sends the configuration information to the terminal. After the terminal receives the configuration information, if the terminal determines that the subcarrier index indicated by the subcarrier configuration information in the configuration information is in the first value interval, the terminal transmits the SR in the first format. 0 or format 1 transmits the SR. If the terminal determines that the subcarrier index indicated by the subcarrier configuration information included in the configuration information is in the second value interval, the terminal transmits the SR in the format 2 in the subsequent process.
  • the first format may be format 2
  • the second format may be format 0 or format 1.
  • the terminal transmits the SR by using a subcarrier of 3.75 kHz, that is, the terminal adopts format 0 or format.
  • the subcarriers of 1 are configured with SR time-frequency resources for transmitting SRs.
  • the terminal configures SR time-frequency resources by using subcarriers of format 2.
  • the terminal configures the SR time-frequency resource by using the subcarrier of the format 2, when the subcarrier index is 144 to 191, and the terminal configures the SR by using the subcarrier of the format 0 or the format 1 Frequency resources.
  • the subcarrier index corresponding to the other value interval may be defined in the format 2, and the format of the subcarrier index of the value interval is not limited.
  • the 192 states of 0 to 191 need an 8-bit bit indication. As such, the signaling overhead is less.
  • the foregoing subcarrier index may also be indicated according to the same granularity, and the subcarrier index of the same granularity is used to indicate the format to which the subcarrier belongs.
  • the network device sends configuration information to the terminal, and the terminal receives the configuration information, where the configuration information includes subcarrier configuration information, and the subcarrier configuration information is used to indicate an index of the subcarrier.
  • a 1.25 kHz subcarrier index can be used as a granularity to indicate a 3.75 kHz subcarrier.
  • a subcarrier with a bandwidth of 90 kHz is taken as an example for description.
  • subcarriers with a bandwidth of 3.75 kHz from 0 to 11 occupy a total of 45 kHz
  • subcarriers with a bandwidth of 1.25 kHz from 0 to 35 occupy a total of 45 kHz.
  • the subcarrier index is set according to the index of the 1.25 kHz subcarrier, that is, one 3.75 kHz subcarrier corresponds to three subcarrier index numbers, and one 1.25 kHz subcarrier corresponds to one subcarrier index number.
  • the actual index number is The 3.75 kHz subcarrier of 0 may correspond to the three subcarrier index numbers of 0, 1, and 2.
  • the 1.25 kHz subcarrier with the actual index number of 34 corresponds to the subcarrier index number of 70.
  • the subcarrier index number indicated by the subcarrier configuration information in the configuration information determined by the network device is 0 to 71 shown in FIG. After receiving the configuration information, the terminal determines the format used for transmitting the SR according to the subcarrier index number (0 to 71) indicated by the subcarrier configuration information.
  • the terminal determines that the subcarrier configuration information indicates that the value of the subcarrier index ranges from 0 to 35, the terminal learns that the subcarrier of the format 0 or the format 1 is required, if the value range of the subcarrier index is Between 36 and 71, the terminal transmits the SR using the subcarrier of format 2.
  • the number of subcarrier indexes to be set is 72 in the bandwidth of 90 kHz, and correspondingly, the number of subcarrier indexes to be set is 144 in the bandwidth of 180 kHz.
  • indicating 144 states may save some signaling overhead compared to indicating 192 states.
  • the embodiment of the present application is not limited to the indication manner shown in FIG. 9 above, as long as the indexes of all subcarriers are uniformly set according to the 1.25 kHz subcarrier index.
  • the frequency division method can be used to distinguish the subcarriers of 1.25 kHz and the subcarriers of 3.75 kHz in the frequency domain.
  • the SR time domain resource corresponding to the 1.25 kHz subcarrier and the SR time domain resource corresponding to the 3.75 kHz subcarrier can be distinguished in the time domain by different enhanced coverage levels. See Table 4:
  • the number of repetitions of the preamble of the same enhanced coverage level is different.
  • the number of repetitions of the preamble of different enhanced coverage levels is also different. Therefore, SR time-frequency resources of different formats can be distinguished from the time domain.
  • the configuration information of the terminal may further include format configuration information, where the format configuration information is used to determine a format used by the terminal to transmit the SR.
  • the network device sends configuration information to the terminal, where the configuration information includes format configuration information.
  • the format configuration information is one of a format index, a CP length, and a subcarrier bandwidth.
  • the terminal determines the format used to transmit the SR according to the format configuration information in the configuration information.
  • the terminal uses the format index to learn the format adopted by the transmission SR.
  • the format index may use 2 bits to indicate the format used by the terminal to transmit the SR.
  • the 2-bit format index may be any three of 00, 01, 10, and 11.
  • the format index is 00, 01, and 10, where 00 indicates that the terminal transmits the SR by using the subcarrier of format 0 or 1, 01 also indicates that the terminal uses the format 0 or the format 1 subcarrier to transmit the SR, and 10 indicates that the terminal adopts the format 2 sub Carrier transmission SR.
  • 00 may be used to indicate that the terminal transmits the SR by using the format 2 subcarrier
  • 01 indicates that the terminal transmits the SR by using the format 0 subcarrier
  • 10 indicates that the terminal transmits the SR by using the format 1 subcarrier.
  • 00 may indicate that the terminal uses the format 2 subcarrier to transmit the SR
  • 01 indicates that the terminal transmits the SR by using the format 0 or 1 subcarrier
  • 10 indicates that the terminal transmits the SR by using the format 0 or 1 subcarrier. This embodiment of the present application does not limit this.
  • the format index may use 1 bit to indicate the format used by the terminal to transmit the SR.
  • the 1 bit format index may be 0 or 1, and 0 indicates that the terminal transmits the SR by using the format 2 subcarrier, and 1 indicates that the terminal transmits the SR by using the subcarrier of format 0 or 1.
  • the terminal may indicate that the terminal transmits the SR by using the sub-carrier of the format 1 or 0, and the indication that the terminal uses the sub-carrier of the format 2 to transmit the SR, which is not limited in this embodiment of the present application.
  • bit 0 can indicate format 0 or format 2
  • bit 00 can indicate format 0 or format 2
  • the SR is transmitted by using the format 0 subcarrier.
  • the SR is transmitted by using the format 1 subcarrier.
  • the method is adopted.
  • the format 2 subcarrier transmits the SR.
  • the bit can also be used to indicate the CP length.
  • 2 bits are used to indicate the length of the CP, and 2 bits can be any three of 00, 01, 10, and 11, for example, three 2 bits of 00, 01, and 11 are used.
  • the 00 can indicate that the length of the CP is 66.7, that is, the terminal is configured to transmit the SR by using the format 0 subcarrier
  • the 01 can indicate that the length of the CP is 266.7, that is, the terminal can be used to transmit the SR by using the format 1 subcarrier
  • 11 can indicate that the CP length is 800, that is, The terminal may be instructed to transmit the SR using the format 2 subcarrier.
  • the format configuration information is a subcarrier bandwidth
  • 1 bit is used to indicate the subcarrier bandwidth. For example, 0 indicates 3.75 kHz, indicating that the terminal transmits the SR in format 2, and 1 indicates 1.25 kHz, that is, the terminal is instructed to transmit the SR using format 0 or 1.
  • the format configuration information may also be other characteristic information of each format, for example, may be the number of symbol groups occupied by one preamble in the format 2, and may be the total duration information of a preamble occupying the symbol group in the format 2, Applications are not listed here.
  • the embodiment of the present application introduces a subcarrier of the format 2, and the subcarrier of the format 2 can be used for transmitting the SR. Since the subcarrier bandwidth of format 2 is relatively narrow, in the same frequency domain resource, such as 180 kHz, the number of subcarriers is large, which means that a larger number of preamble transmissions can be supported, that is, more SR transmissions can be supported. Therefore, using the subcarrier of the partial format 2, the SR capacity can be improved compared to the subcarrier using only format 0 or format 1. On the other hand, it is possible to distinguish which format subcarrier transmission SR is used by the terminal, thereby transmitting the SR in the frequency domain using the subcarriers of the corresponding format.
  • format mentioned herein is the format of the random access preamble, and is in format 0, format 1, and format 2.
  • the number of symbol groups may be different, and the structure of the symbol group may also be different.
  • the specific symbol group composition of format 0, format 1, and format 2 refer to the above description, and details are not described herein again.
  • the signal format of the SR and the format of the random access preamble are the same, or the signal format of the symbol group of the SR is the same as the signal format of the random access preamble.
  • the frequency hopping rule of the SR in the frequency domain is the same as the frequency hopping rule of the random access preamble.
  • the foregoing indication manner of determining the format used for transmitting the SR may be applied to an existing scenario, that is, a scenario in which a single random access time-frequency resource is occupied by only one terminal. It can also be applied to a multi-terminal multiplexing scenario, that is, a scenario in which a single random access time-frequency resource of the foregoing embodiment of the present application can be multiplexed by multiple terminals, which is not limited in this embodiment of the present application.
  • power control may be provided for SR transmissions.
  • the first SR transmission is performed by using the target receiving power corresponding to the preamble when the random access succeeds, and the final SR transmission power is determined according to the path loss compensation manner.
  • the process of the road loss compensation can be referred to the prior art, and details are not described herein again.
  • the SR transmission power is increased by the power climbing method based on the target received power.
  • the power climbing step size can be set, and each SR transmission increases the target receiving power to increase the power step size.
  • a power climbing step is added based on the target receiving power, and The transmission power of the second SR, in the third SR transmission, adding a power climbing step based on the second SR transmission power, obtaining the transmission power of the third SR, and so on, to gradually increase the SR The effectiveness and reliability of the transmission.
  • the initial reception power of the random access is no longer used, and in the subsequent SR transmissions, the power is increased by a large target receiving power, and the power is increased. More significant, saving the terminal for power climbing time, reducing the delay, and reducing the power consumption of the terminal for power climbing.
  • the method for controlling the SR transmission power provided by the embodiment of the present application can be applied to an existing scenario, or can also be applied to a multi-terminal multiplexing scenario.
  • existing scenarios and multi-terminal multiplexing scenarios refer to the above, and no further details are provided here.
  • the embodiment of the present application may perform the division of the function module or the function unit on the communication device (the communication device may be the terminal or the network device) according to the foregoing method example.
  • each function module or function unit may be divided according to each function, or may be Two or more functions are integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules or functional units.
  • the division of modules or units in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 10 is a schematic diagram showing a possible structure of a resource configuration apparatus involved in the foregoing embodiment.
  • the device as the terminal 1000 includes a storage unit 1001, a processing unit 1002, and a communication unit 1003.
  • the storage unit 1001 can be used, for example, to store configuration information and related instructions for indicating the SR time-frequency resource of the terminal.
  • the processing unit 1002 is configured to perform control and management on the action of the terminal 1000 to perform the technical steps of the embodiment of the present application.
  • the communication unit 1003 is configured to support the terminal 1000 to communicate with other devices in the communication system shown in FIG. 1. For example, the support terminal 1000 executes S403, S404 in FIG.
  • FIG. 2 is a schematic structural diagram of the terminal
  • the storage unit 1001 may be implemented as the memory 203 of the terminal in FIG. 2 .
  • the processing unit 1002 can be implemented as the processor 201 of the terminal in FIG. 2, and the communication unit 1003 can be implemented as the transceiver 204 of the terminal in FIG.
  • the embodiment of the present application further provides a resource configuration apparatus, where the apparatus includes, as a network device (for example, a base station), a storage unit 1101, a processing unit 1102, and a communication unit 1103.
  • a network device for example, a base station
  • storage unit 1101 for example, a hard disk drive
  • processing unit 1102 for example, a graphics processing unit
  • the storage unit 1101 is configured to store configuration information of the SR time-frequency resource and related instructions.
  • the processing unit 1102 is configured to perform control management on the operation of the network device 1100. For example, processing unit 1102 is for supporting network device 1100 to perform S401 in FIG. 4, and/or other steps for the technical solutions described herein.
  • the communication unit 1103 is configured to support the network device 1100 to communicate with other devices in the communication system shown in FIG. 1. For example, the support network device 1100 performs S402 in FIG.
  • FIG. 2 is a schematic structural diagram of a network device
  • the storage unit 1101 can be implemented as the memory 203 of the network device in FIG. 2 .
  • the processing unit 1102 can be implemented as the processor 201 of the network device in FIG. 2, and the communication unit 1103 can be implemented as the transceiver 204 of the network device in FIG.
  • the network device and the terminal provided by the embodiment of the present application can perform the foregoing resource configuration method. Therefore, the technical effects of the foregoing may be referred to the foregoing method embodiments, and details are not described herein.
  • the embodiment of the present application further provides a computer readable storage medium.
  • the computer readable storage medium stores instructions.
  • the terminal executes the instruction, the terminal executes the steps performed by the terminal in the method flow shown in the foregoing method embodiment.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when the network device executes the instruction, the network device executes the method performed by the network device in the method flow shown in the foregoing method embodiment. Each step.
  • the computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive lists) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read-Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), Register, Hard Disk, Optical Fiber, Portable Compact Disk Read-Only Memory (CD-ROM) An optical storage device, a magnetic storage device, or any suitable combination of the foregoing, or any other form of computer readable storage medium known in the art.
  • RAM random access memory
  • ROM read only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Portable Compact Disk Read-Only Memory
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • the computer readable storage medium may be any tangible medium containing or storing a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • the embodiment of the present application further provides a chip system, which is applied to a terminal, where the chip system includes a processor, and is configured to support the terminal to implement the foregoing resource configuration method, for example, determining a configuration of the SR time-frequency resource for indicating the terminal. information.
  • the chip system also includes a memory. This memory is used to store the necessary program instructions and data for the terminal. Of course, the memory may not be in the chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.
  • the embodiment of the present application further provides another chip system, which is applied to a network device, where the chip system includes a processor, and is configured to support the network device to implement the foregoing resource configuration method.
  • the chip system also includes a memory. This memory is used to store the necessary program instructions and data for the network device. Of course, the memory may not be in the chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源配置的方法及装置,涉及通信技术领域,可以应用于物联网,例如loT、NB-loT、MTC等。该方法包括:网络设备确定配置信息,向终端发送配置信息。其中,配置信息用于指示终端的调度请求SR时频资源,配置信息包括第一配置信息和第二配置信息,第一配置信息用于指示SR时频资源的时域偏置,第二配置信息用于指示SR时频资源的持续时长,其中,时域偏置为SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置。

Description

资源配置方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置的方法及装置。
背景技术
物联网(Internet of Things,IoT)将互联网的用户端拓展到任何物品与物品之间,也就是任何物品之间均可以实现相互通信。IoT具有覆盖增强、支持大量低速率设备、设备低功耗等特殊需求。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)通过了窄带物联网(Narrowband Internet of Things,NB-IoT)课题,试图通过NB-IoT满足上述的特殊需求。
在NB-IoT中,当终端设备有上行数据到达时,可通过随机接入过程申请上行资源,并使用获取的上行资源传输上行数据。但是,在这种方式中,终端设备需等到随机接入过程的第二条消息之后才能传输上行数据,导致终端设备的业务时延,同时也增加终端设备的功耗。
发明内容
本申请实施例提供资源配置方法及装置,降低终端设备的业务时延和功耗。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种资源配置方法,应用于网络设备,该方法包括:网络设备确定配置信息,向终端设备发送配置信息。
其中,配置信息用于指示终端设备的调度请求SR时频资源,配置信息包括第一配置信息和第二配置信息,第一配置信息用于指示SR时频资源的时域偏置,第二配置信息用于指示SR时频资源的持续时长,其中,时域偏置为SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置。
本申请实施例中,网络设备确定配置信息,并向终端设备发送配置信息,该配置信息用于指示终端设备的SR时频资源,一方面,使得终端设备占用配置信息所指示的SR时频资源向网络设备申请上行资源,用以终端设备传输上行数据,这里,终端设备可以通过发送SR向网络设备申请上行资源以用于发送上行数据,而无需通过执行随机接入过程的方式向网络设备申请上行资源,信令流程简化,从而减少终端设备的功耗和时延。
另一方面,由于配置信息可指示SR时频资源的时域偏置和持续时长,从而可灵活的将随机接入时频资源划分为对应不同时域偏置和持续时长的至少一个SR时频资源,也就是,随机接入时频资源可被至少一个终端设备使用,进而提升了SR容量。
第二方面,本申请实施例提供一种资源配置方法,应用于终端设备,该方法包括:终端设备接收配置信息,后续,当存在上行数据且无可用上行资源的情况下,终端设备占用配置信息所指示的SR时频资源向网络设备发送SR。
其中,配置信息用于指示终端设备的调度请求SR时频资源,配置信息包括第一配置信息和第二配置信息,第一配置信息用于指示SR时频资源的时域偏置,第二配 置信息用于指示SR时频资源的持续时长,其中,时域偏置为SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置。
第三方面,本申请实施例提供一种资源配置方法,应用于网络设备,该方法包括:网络设备确定配置信息,向终端设备发送配置信息。
其中,配置信息包括终端设备的SR时频资源位图,位图中的比特取值用于指示对应的符号组。
第四方面,本申请实施例提供一种资源配置方法,应用于终端设备,该方法包括:终端设备接收配置信息,后续,当存在上行数据且无可用上行资源的情况下,终端设备占用配置信息所指示的SR时频资源向网络设备发送SR。
其中,配置信息包括终端设备的SR时频资源位图,位图中的比特取值用于指示对应的符号组。
以下结合上述第一方面、第二方面、第三方面、第四方面,对可能的设计方式进行说明:
在一种可能的设计中,随机接入资源为网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中随机接入资源包括基于竞争的随机接入资源,SR时频资源为随机接入时频资源的子集;或者,随机接入资源为网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中随机接入资源包括基于竞争的随机接入资源,SR时频资源为随机接入的时频资源中除去基于竞争的随机接入时频资源以外的时频资源的子集。
一方面,当窄带物理上行共享信道(Narrowband Physical Uplink Shared CHannel,NPUSCH)传输与NPRACH传输冲突时,NPUSCH传输会推迟。因此,若将部分NPRACH资源配置为SR时频资源,则NPUSCH传输与SR传输冲突时可以沿用上述的NPUSCH推迟传输机制,不会对NPUSCH的调度增加限制。另一方面,由于非竞争时频资源是通过窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)调度分配的,所以基站可通过调度避免SR和NPRACH的冲突。
在一种可能的设计中,SR时频资源的频域资源与随机接入时频资源的频域资源相同。
在一种可能的设计中,持续时长为第一时间长度的整数倍,其中第一时间长度为随机接入前导码单次传输的时长;或者,持续时长为随机接入前导码的一个符号组时长的整数倍。
在一种可能的设计中,时域偏置为第一时间长度的整数倍,其中第一时间长度为随机接入前导码单次传输的时长;或者,持续时长为随机接入前导码的一个符号组时长的整数倍。
通过上述的SR时频资源指示方式,可灵活的配置每一终端设备的SR时频资源的时长,进而灵活的将随机接入时频资源分配给多终端设备使用,增加SR容量。
在一种可能的设计中,配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,载波配置信息用于指示SR时频资源占用的载波,子载波配置信息用于指示SR时频资源占用的子载波,增强覆盖等级配置信息用于指示SR时频资源的增强覆盖等级的信息。
在一种可能的设计中,子载波配置信息所指示的子载波索引处于第一数值区间的情况下,用于指示终端设备传输SR所采用的格式为格式2;子载波配置信息所指示的子载波索引处于第二数值区间的情况下,用于指示终端设备传输SR所采用的格式为格式0或格式1。
在一种可能的设计中,配置信息还包括格式配置信息,其中,格式配置信息为格式索引、循环前缀CP长度、子载波带宽中的一种;格式配置信息用于终端设备确定传输SR所采用的格式。
采用上述指示传输SR所采用格式的方式,终端设备可确定采用哪种格式子载波传输SR,从而站点在频域上使用相应格式的子载波传输SR。
第五方面,提供一种网络设备,该网络设备具有实现上述第一方面、第三方面任一项的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,提供一种网络设备,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该网络设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该网络设备执行如上述第一方面中任一项的资源配置方法。
第七方面,提供一种网络设备,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述第一方面或第三方面中任一项的资源配置方法。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第三方面中任一项的资源配置方法。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第三方面中任一项的资源配置方法。
第十方面,提供一种芯片***,该芯片***包括处理器,用于支持网络设备实现上述第一方面或第三方面中所涉及的功能。在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至十方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供一种终端设备,该终端设备具有实现上述第二方面或第四方面任一项的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十二方面,提供一种终端设备,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该终端设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该终端设备执行如上述第二或第四方面中任一项的资源配置方法。
第十三方面,提供一种终端设备,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述第二方面或第四方面中任一项的资源配置方法。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指 令,当其在计算机上运行时,使得计算机可以执行上述第二方面或第四方面中任一项的资源配置方法。
第十五方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面或第四方面中任一项的资源配置方法。
第十六方面,提供一种芯片***,该芯片***包括处理器,用于支持终端设备实现上述第二方面或第四方面中所涉及的功能。在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例提供的通信***的架构示意图;
图2为本申请实施例提供的通信设备的结构示意图;
图3为现有技术的SR资源配置示意图;
图4为本申请实施例提供的资源配置的方法的交互流程图;
图5为本申请实施例提供的资源配置的示意图一;
图6为本申请实施例提供的资源配置的示意图二;
图7为本申请实施例提供的资源配置的示意图三;
图8为本申请实施例提供的资源配置的示意图四;
图9为本申请实施例提供的确定SR传输所采用格式的示意图;
图10为本申请实施例提供的终端设备的结构示意图;
图11为本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或多于两个。第一、第二仅仅是为了区分不同对象,并不表示特定顺序或具有其他含义。
图1为本申请实施例提供的通信***的架构示意图。如图1所示,该通信***包括网络设备、以及与该网络设备通信的多个终端设备设备(例如图1中的终端设备1至终端设备6)。该通信***还可以包括子***。例如,终端设备4、终端设备5、终端设备6可以组成一个子***,在该子***中,终端设备4、终端设备5、终端设备6之间可相互通信。
其中,网络设备可以为接入网设备,接入网设备是一种部署在无线接入网用以提供无线通信功能的装置。终端设备设备主要用于接收或者发送数据。
上述通信***可以应用于目前的长期演进(Long Term Evolution,LTE)或者高级的长期演进(LTE Advanced,LTE-A)***中,也可以应用于目前正在制定的5G网络或者未来的其它网络中,本申请实施例对此不作具体限定。其中,在不同的网络中,上述通信***中的网络设备和终端设备可能对应不同的名字,本领域技术人员可以理解的是,名字对设备本身不构成限定。
可选的,本申请实施例中所涉及到的终端设备(terminal)可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端(terminal)、用户设备(user equipment,UE),终端设备(terminal device)等。为方便描述,本申请中,上面提到的设备统称为终端设备。需要说明的是,本申请实施例中提到的终端、终端设备属于相同的概念。
本申请实施例涉及到的网络设备(例如接入网设备)可包括各种形式的宏基站,微基站(也称为小站),中继站,发送接收点(Transmission Reception Point,TRP),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等,还可以包括无线局域网(wireless local area network,WLAN)接入设备等非3GPP***的无线接入网设备。
可选的,本申请实施例中的终端设备、网络设备可以分别由多个设备实现,例如,终端设备为一个设备,网络设备为一个设备,还可以将终端设备功能和网络设备功能集成在一个设备内,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端设备、网络设备可通过图2中的通信设备来实现。图2所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备200包括至少一个处理器201,通信线路202,存储器203以及至少一个收发器204。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息。
收发器204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201 来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的资源配置方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备200可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图2中类似结构的设备。本申请实施例不限定通信设备200的类型。
以网络设备为基站为例,终端设备通过随机接入过程与基站建立连接并取得上行同步。基站可为终端设备配置随机接入时频资源,终端设备发起随机接入之前,需获取基站下发的随机接入时频资源,以便于后续终端设备占用随机接入时频资源发起随机接入。其中,随机接入过程包括终端设备向基站发送随机接入前导码(为便于描述,下文称之为前导码)的流程。通常,在基站为终端设备配置随机接入时频资源时,可为终端设备配置前导码的重复次数。那么,对于某一终端来说,随机接入时频资源包括在该次随机接入过程中传输多次前导码使用的时频资源之和,参见图3,对于终端设备1来说,在某一次随机接入过程中的时频资源包括第一次重复传输(图3中的重复次数#1)前导码时使用的时频资源、第二次重复传输前导码时使用的时频资源、第三次重复传输前导码时使用的时频资源与第四次重复传输前导码时使用的时频资源之和。
在各种通信***中,为避免资源浪费,如果终端设备设备没有上行数据需要传输,网络设备就不会为该终端设备设备分配上行资源。当终端设备设备有上行资源需要传输时,首先应该告知网络设备终端设备设备需要传输上行资源,请求网络设备为该终端设备设备分配上行资源。
在现有的NB-IoT***中,当终端设备需要向网络设备发送上行数据时,需要重新发起随机接入,之后再发送上行数据。现有技术中,终端设备需要等待较长时间、执行较多操作后才能发送上行数据,这会增加终端设备的功耗和时延。并且,当有多个终端设备发生接入冲突时,终端设备可能会发生退避甚至失败,进一步加剧终端设 备的功耗和时延。
本申请基于上述问题,提出一种资源配置方法,由网络设备预先向终端设备发送配置信息,当终端设备有上行数据需要发送时,终端设备在配置信息所指示的特定资源上向网络设备发送SR,即告知网络设备终端设备需要发送数据,进而直接发送上行数据,而不需要执行随机接入过程,从而减少终端设备的功耗和时延。
本申请实施例提供一种资源配置方法,如图4所示,该方法包括如下步骤:
S401、网络设备确定配置信息,配置信息用于指示终端设备的调度请求SR时频资源。
其中,配置信息包括第一配置信息和第二配置信息,第一配置信息用于指示SR时频资源的时域偏置,第二配置信息用于指示SR时频资源的持续时长,其中,时域偏置为SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置。
S402、网络设备向终端设备发送配置信息。
S403、终端设备接收配置信息。
S404、终端设备在配置信息所指示的SR时频资源上发送SR。
需要说明的是配置信息可以承载在无线链路控制(Radio Resource Control,RRC)信令,媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)或者物理层信令,例如下行控制信息(Downlink Control Information,DCI)中。
需要说明的是,可选地,终端设备在接收网络设备发送的配置信息后,并不立即向网络设备发送SR,而是在有上行数据到达终端设备且终端设备没有可用的上行资源的情况下,向网络设备发送SR,以请求网络设备为终端设备分配可用的上行资源。
下文主要以网络设备为基站为例来说明本申请实施例的技术方案,这里统一说明,下文不再赘述。
需要说明的是,上文所指随机接入的时频资源为网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中随机接入资源包括基于竞争的随机接入资源,SR时频资源为随机接入时频资源的子集,或者,SR时频资源为随机接入的时频资源中除去基于竞争的随机接入时频资源以外的时频资源的子集。需要说明的是,当窄带物理上行共享信道(Narrowband Physical Uplink Shared CHannel,NPUSCH)传输与NPRACH传输冲突时,NPUSCH传输会推迟。因此,若将部分NPRACH资源配置为SR时频资源,则NPUSCH传输与SR传输冲突时可以沿用上述的NPUSCH推迟传输机制,不会对NPUSCH的调度增加限制。为便于描述,本文中将随机接入的时频资源中除去基于竞争的随机接入时频资源以外的时频资源称为非竞争时频资源。这样,由于非竞争时频资源是通过窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)调度分配的,所以基站可通过调度避免SR和NPRACH的冲突。
另外,可选的,SR时频资源的频域资源与随机接入时频资源的频域资源相同。如图5所示,随机接入时频资源的频域资源为序号#0至#11的子载波,则配置的SR时频资源的频域资源也为序号#0至#11的子载波。
本申请实施例中,网络设备确定配置信息,并向终端设备发送配置信息,该配置信息用于指示终端设备的SR时频资源,一方面,使得终端设备占用配置信息所指示的SR时频资源向网络设备申请上行资源,用以终端设备传输上行数据,这里,终端设备 可以通过发送SR向网络设备申请上行资源以用于发送上行数据,而无需通过执行随机接入过程的方式向网络设备申请上行资源,信令流程简化,从而减少终端设备的功耗和时延。另一方面,由于配置信息可指示SR时频资源的时域偏置和持续时长,这种情况下网络设备可以灵活的将随机接入时频资源划分为对应不同时域偏置和持续时长的至少一个SR时频资源,也就是,随机接入时频资源可被至少一个终端设备使用,进而提升了SR容量。
图5示出了随机接入时频资源被3个终端设备复用的情况,随机接入的时频资源包括前导码重复传输四次使用的时频资源之和。其中,用于第一次重复传输前导码的时频资源被配置为终端设备1的SR时频资源,用于第二次重复传输前导码的时频资源被配置为终端设备2的SR时频资源,用于第三、四次重复传输前导码的时频资源被配置为终端设备3的SR时频资源。
当然,由于可将随机接入时频资源分配给多个终端使用,可以减少闲置的随机接入时频资源,提高随机接入时频资源的利用率。
其中,上述步骤S401-S404中基站的动作可以由图2所示的通信设备200中的处理器201调用存储器203中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述步骤S403与S404中终端设备的动作可以由图2所示的通信设备200中的处理器201调用存储器203中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,上述时域偏置为第一时间长度的整数倍,其中第一时间长度为随机接入前导码单次传输的时长。
可选的,持续时长为第一时间长度的整数倍,或者,持续时长为随机接入前导码的一个符号组时长的整数倍。
其中,随机接入前导码由若干个符号组组成,每个符号组包括至少一个符号和循环前缀(Cyclic Prefix,CP)。其中,至少一个符号的总时长为Tseq,CP的时长为Tcp。在不同格式的随机接入前导码中,符号组的个数可能不同,符号组的结构可能不同,即符号组中符号的数目不同、和/或CP长度(在时域上)不同、和/或符号的长度(在时域上)不同。这里,随机接入前导码格式包括但不限于格式0、格式1、格式2。示例性的,在频分双工(Frequency Division Duplex,FDD)NB-IoT中,随机接入前导码的格式包括格式0,格式1和格式2,上述各种格式的对比数据如下表1所示。其中Ts为时间单元,作为一种可能的取值,Ts=1/(15000*2048)。
表1
格式 Tcp Tseq 每个符号组中符号数 子载波带宽
格式0 2048Ts 8192Ts 5 3.75kHz
格式1 8192Ts 8192Ts 5 3.75kHz
格式2 24576Ts 24576Ts 3 1.25kHz
以持续时长为第一时间长度的整数倍,且时域偏置为第一时间长度的整数倍为例, 如图5所示,假定以子载波带宽为3.75kHz的随机接入前导码为例,随机接入前导码单次传输的时长为T,前导码重复传输次数为4,且随机接入时频资源的时域起始位置为0。终端设备1的配置信息包括:第一配置信息和第二配置信息,其中,第一配置信息指示终端设备1的SR时域资源的时域偏置为0(与随机接入时频资源的时域起始位置重合),第二配置信息用于指示终端设备1的SR时频资源的持续时长为T。终端设备2的配置信息中:第一配置信息指示终端设备2的SR时域资源的时域偏置为T,即相对于随机接入时频资源的时域起始位置(0)的偏置为T,第二配置信息用于指示终端设备2的SR时频资源的持续时长为T。终端设备3的配置信息中:第一配置信息指示终端设备3的SR时域资源的时域偏置为2T,第二配置信息用于指示终端设备3的SR时频资源的持续时长为2T。
当然,上述的时域偏置还可以是SR时频资源的时域起始位置相对于随机接入时频资源的时域结束位置的偏置。本申请实施例对此不做限制。
以持续时长为随机接入前导码的一个符号组时长的整数倍且时域偏置非第一时间长度的整数倍为例,如图6中(a)所示,终端设备1的配置信息中:第一配置信息指示终端设备1的SR时域资源的时域偏置为0,第二配置信息用于指示终端设备1的SR时频资源的持续时长为
Figure PCTCN2018086620-appb-000001
终端设备2的配置信息中:第一配置信息指示终端设备2的SR时域资源的时域偏置为
Figure PCTCN2018086620-appb-000002
第二配置信息用于指示终端设备2的SR时频资源的持续时长为
Figure PCTCN2018086620-appb-000003
终端设备3的配置信息中:第一配置信息指示终端设备3的SR时域资源的时域偏置为
Figure PCTCN2018086620-appb-000004
第二配置信息用于指示终端设备3的SR时频资源的持续时长为
Figure PCTCN2018086620-appb-000005
需要说明的是,每一终端设备的SR时频资源的时域偏置与持续时长并不局限于上述举例的情况,可根据实际情况配置每一终端设备的SR时频资源的时域偏置与持续时长,本申请实施例对此不进行限制。
可选的,在不同版本(Release)的通信标准中,SR传输一次占用的符号组数目可能不同,则通过第一配置信息和第二配置信息指示的SR时频资源在时域上可以是连续的或者非连续的。连续是指某一终端设备可在连续的时段内传输一次SR,非连续是指该终端设备可使用数个跨时段的符号组传输一次SR。示例性的,在SR传输一次占用4个符号组的情况下,若终端设备的SR时频资源在时域上包括至少4个且连续的符号组,则终端设备的SR时频资源在时域上是连续的。如图5中,终端设备1的SR时频资源在时域上包括4个且连续的符号组,可用于传输一次SR,那么,终端设备1的SR时频资源为连续资源。若终端设备的SR时频资源在时域上不包括至少4个且连续的符号组,则终端设备的SR时频资源在时域上是非连续的。如图6中(b)所示,终端设备1的第一SR时频资源在时域上包括3个且连续的符号组,不足以传输一次SR,那么,为了使终端1至少传输一次SR,网络设备可配置终端1的第二SR时频资源。参见图6中(b),第二SR时频资源对应的配置信息中:第一配置信息指示该第二SR时频资源的时域偏置为
Figure PCTCN2018086620-appb-000006
第二配置信息指示该第二SR时频资源持续时长为
Figure PCTCN2018086620-appb-000007
如此,终端1的第一SR时频资源和第二SR时频资源在时域并不连续,但是,这两个SR时频资源可跨时段支持终端1的SR传输。
当然,上述仅以SR传输一次占用4个符号组为例进行说明,在实际应用场景中,SR传输一次在时域上占用符号组的数目可能不同,本申请实施例对此不进行限制。
通过上述的SR时频资源指示方式,可灵活的配置每一终端设备的SR时频资源的时长,不同终端设备的SR时频资源的时长可以相同或者不同,本申请实施例对此不进行限制。
另外,上述图5、图6中(a)、图6中(b)并未示出前导码每次传输之间的时间间隔,可以理解的是,在单次随机接入过程中,终端设备的数次传输前导码之间可能存在时间间隔。参见图7,在单次随机接入过程中,第一次传输前导码与第二次传输前导码之间的时间间隔为
Figure PCTCN2018086620-appb-000008
在这种情况下,终端设备1的配置信息中:第一配置信息指示终端设备1的SR时域资源的时域偏置为0,第二配置信息用于指示终端设备1的SR时频资源的持续时长为T。终端设备2的配置信息中:第一配置信息指示终端设备2的SR时域资源的时域偏置为
Figure PCTCN2018086620-appb-000009
第二配置信息用于指示终端设备2的SR时频资源的持续时长为T。也就是,网络设备在确定终端设备的SR时频资源的时域偏置和持续时长时,需参考两次前导码传输之间的时间间隔。
基于该第一配置信息和第二配置信息,相应的终端设备可获知自身SR时频资源在单次随机接入时频资源中的时域位置。
在本申请的另一些实施例中,还提供另一种资源配置的方法,该方法的流程与图4流程中的步骤相同,因此,本实施例的方法流程图可参考图4,该实施例与图4实施例的区别是:本实施例中的配置信息与图4对应实施例中的配置信息不同。
其中,在本实施例中,配置信息为终端设备的SR时频资源位图,位图中的比特取值用于指示对应的符号组。
示例性的,位图可以以前导码单次传输的时长为粒度。以子载波带宽为3.75kHz的随机接入前导码为例,一个前导码单次传输时长为T,则位图中的比特取值用于指示在时长T内对应的符号组。
可选的,位图中比特的位数为一个随机接入前导码包含的符号组数目。例如,在Release 13和Release 14中,一个前导码包含4个符号组,相应的,在配置SR时频资源时,位图中比特位数为4。可选的,若某一终端设备的位图中的第N个比特取值为1,则指示第N个符号组配置给该终端设备,若某一终端设备的位图中的第M个比特取值为0,则指示第M个符号组未被配置给该终端设备。或者,若某一终端设备的位图中的第N个比特取值为0,则指示第N个符号组配置给该终端设备,若某一终端设备的位图中的第M个比特取值为1,则指示第M个符号组未被配置给该终端设备,对于位图中的比特取值具体指示的内容,本申请实施例不做限制。
参见图8中(a),假定终端设备的位图中的第N个比特取值为1,指示第N个符号组被配置给终端设备。则终端设备1的配置信息所包含的位图为1000,终端设备2的配置信息所包含的位图为0100,终端设备3的配置信息所包含的位图为0010,终端设备4的配置信息所包含的位图为0001。这里,位图表示在每一个前导码传输时长T 中,一个前导码中的第一个符号组被配置给终端设备1,第二个符号组被配置给终端设备2,第三个符号组被配置给终端设备3,第四个符号组被配置给终端设备4。进而,在每一前导码传输时长内,终端设备1占用该前导码传输时长内第一个符号组传输SR,终端设备2占用第二个符号组传输SR,终端设备3占用第三个符号组传输SR,终端设备4占用第四个符号组传输SR。
可选的,SR重复传输的次数可由单次随机接入中前导码重复传输次数与位图长度确定。示例性的,参考图8中(a),若单次随机接入中前导码重复传输次数为4,且位图长度为4比特位(说明一个前导码包含4个符号组),则SR重复次数为前导码重复次数(4)除以位图长度(4)后得到的数值,即1,也就是,如图8中(a)终端设备1的SR重复传输次数为1、终端设备2的SR重复传输次数为1、终端设备3的SR重复传输次数为1,即该单次随机接入时频资源可复用4个终端设备,使得4个终端设备可分别传输一次SR。
当然,在每次前导码的传输时长T内,终端设备1可占用不仅一个符号组。参见图8中(b),在每一前导码的传输时长T内,终端设备1可占用第一、三个符号组。此时,终端设备1的位图为1010,终端设备2的位图为0100,终端设备4的位图为0001。
在位图指示SR时频资源位置的方式中,每一终端设备的SR时频资源可以是不连续的。例如,假定传输一次SR在时域上需占用4个符号组,如图8中(b)所示,终端可占用前导码第一次传输时长T中的第一个符号组、第三个符号组以及占用前导码第二次传输时长T中的第一个符号组、第三个符号组,用以传输一次SR。这里,终端设备占用的符号组在时域非连续。
在位图指示SR时频资源位置的方式中,每一终端设备的SR时频资源也可以是连续的。SR重复传输次数或者持续时间可以通过单次随机接入前导码重复次数和位图长度确定,位图长度表示位图中包含的比特数。例如单次随机接入前导码重复传输次数为R,位图长度为L,则SR重复传输次数为R/L。或者单次随机接入前导码重复传输次数为R,位图长度为L,一个前导码单次传输时长为T,则SR传输持续时长为RT/L。在该示例中单次随机接入前导码重复传输R次的资源分成L部分,位图的比特位与各部分资源一一对应。比特位为1表示终端设备可以使用对应部分资源传输SR,比特位为0表示终端设备不可以使用对应部分资源传输SR,或者比特位为0表示终端设备可以使用对应部分资源传输SR,比特位为1表示终端设备不可以使用对应部分资源传输SR。以具体数值为例,单次随机接入前导码重复传输次数为R=4,位图长度为L=2,则SR重复传输次数为R/L=4/2=2。在该示例中,单次随机接入前导码重复传输4次的资源分成2部分,配置给终端设备1的位图为10,表示终端设备1可以使用第一部分资源发送SR,即终端设备1可以使用随机接入前导码第一次和第二次重复传输的资源发送SR,配置给终端设备2的位图为01,表示终端设备2可以使用第二部分资源发送SR,即终端设备2可以使用随机接入前导码第三次和第四次重复传输的资源发送SR。
可选的,配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,载波配置信息用于指示SR时频资源占用的载波,子载波配置信息用于指 示SR时频资源占用的子载波,增强覆盖等级配置信息用于指示SR时频资源的增强覆盖等级的信息,增强覆盖等级的信息包括增强覆盖等级索引信息或前导码重复传输次数。
需要说明的是,在NB-IoT中,一个载波的带宽为180kHz,通常一个前导码占用一个子载波。在不同版本的通信标准中,NB-IoT子载波的带宽不同。例如,在版本13和版本14中,NB-IoT子载波带宽均为3.75kHz,在版本15中,NB-IoT子载波带宽为1.25kHz。因此,在版本13和版本14中,一个NB-IoT载波包含48个子载波,即一个NB-IoT载波可支持配置48个前导码。在版本15中,一个NB-IoT载波包含144个子载波。
其中,增强覆盖等级反映了终端设备与网络设备之间距离的远近,或者,反映小区覆盖质量(即链路的信号质量),其在时域上与随机接入过程中前导码的重复传输次数相关。通常,前导码重复传输次数越大,增强覆盖等级越高。以版本13为例,增强覆盖等级分为三种,等级0、等级1、等级2,等级0的重复次数为2,等级1的重复次数为8,等级2的重复次数为32。
需要说明的是终端设备在获取配置信息之前,会通过***消息获取随机接入资源配置指示信息。终端设备需要上文提及的配置信息和随机接入资源配置指示信息在确定载波位置,在指定载波内的子载波位置,以及增强覆盖等级时需要结合。例如在随机接入资源配置指示信息中包括可用于随机接入的载波配置指示信息,在载波配置指示信息中包括载波索引,终端设备根据获取到的载波索引和载波配置指示信息确定可用于SR传输的载波位置;在随机接入资源配置指示信息中包括上述指定载波内可用于随机接入的子载波配置指示信息,在配置信息中包括子载波索引,终端设备根据获取到的子载波索引和子载波配置指示信息确定可用于SR传输的子载波位置;在随机接入资源配置指示信息中包括1至3个覆盖等级的资源配置指示信息,每个覆盖等级的资源配置指示信息中包括随机接入前导码起始位置,周期,重复次数等,在配置信息中包括增强覆盖等级索引信息或前导码重复传输次数,终端设备根据获取到的增强覆盖等级索引信息或前导码重复传输次数和1至3个覆盖等级的资源配置指示信息确定可用于SR传输的随机接入资源对应的起始位置,周期和重复次数。
如图3所示,通过配置信息,终端获知需占用的载波为第2个NB-IoT载波,在频域上占用的子载波为图3所示的序号为#0至#11的子载波,且增强覆盖等级配置信息指示前导码的重复次数为4次。
本申请实施例还提供如下至少三种确定传输SR所采用格式的方式:
方式1:可利用子载波索引的数值大小区分子载波的格式。
网络设备向终端发送配置信息,终端接收到该配置信息后,若终端确定配置信息中包含子载波配置信息所指示的子载波索引处于第一数值区间的情况下,则终端传输SR采用第一格式0或格式1传输SR。若终端确定配置信息包含的子载波配置信息所指示的子载波索引处于第二数值区间的情况下,则后续流程中终端采用格式2传输SR。第一格式可以为格式2,第二格式可以为格式0或格式1。示例性的,如表2,当终端接收的配置信息中的子载波配置信息指示的子载波索引处于0至47范围内时,终端采用3.75kHz的子载波传输SR,即终端采用格式0或者格式1的子载波配置SR时频资 源,用以传输SR,当终端的子载波索引为48至191,终端采用格式2的子载波配置SR时频资源。或者,如表3,当子载波索引为0至143,终端采用格式2的子载波配置SR时频资源,当子载波索引为144至191,终端采用格式0或者格式1的子载波配置SR时频资源。当然,也可以定义处于其他数值区间的子载波索引对应格式2,具体哪个数值区间的子载波索引对应哪种格式,本申请实施例不做限制。
表2
Figure PCTCN2018086620-appb-000010
表3
Figure PCTCN2018086620-appb-000011
可以理解的是,若用比特指示上述子载波索引,则0至191这192个状态需8比特位指示。如此,信令开销较少。
方式2:上述子载波索引还可以按照同一粒度进行指示,通过使用同一粒度的子载波索引指示子载波所属的格式。
网络设备向终端发送配置信息,终端接收该配置信息,配置信息中包括子载波配置信息,子载波配置信息用于指示子载波的索引。
示例性的,可将1.25kHz子载波索引作为粒度,来指示3.75kHz子载波。如图9所示,以配置带宽为90kHz的子载波为例进行说明。其中,0至11的带宽为3.75kHz的子载波共占45kHz,0至35的带宽为1.25kHz的子载波共占45kHz。这里,子载波索引按照1.25kHz子载波的索引设置,也就是,一个3.75kHz子载波对应3个子载波索引号,一个1.25kHz子载波对应1个子载波索引号,如图9中,实际索引号为0的3.75kHz子载波可对应0、1、2这三个子载波索引号,实际索引号为34的1.25kHz子载波对应70这一子载波索引号。网络设备确定的配置信息中子载波配置信息所指示的子载波索引号为图9所示0至71。终端在接收到配置信息后,根据子载波配置信息所指示的子载波索引号(0至71),确定传输SR所采用的格式。
作为一种可能的实现方式,若终端确定子载波配置信息指示子载波索引的数值范围在0至35之间,则终端获知需采用格式0或格式1的子载波,若子载波索引的数值范围在36至71之间,则终端采用格式2的子载波传输SR。
可见,在90kHz带宽范围内,需设置的子载波索引数目为72,相应的,在180kHz带宽范围内,需设置的子载波索引数目为144。如此,指示144个状态与指示192个状态相比,可以节约部分信令开销。
当然,本申请实施例并不局限于上述图9所示的指示方式,只要是按照1.25kHz子载波索引的方式统一设置全部子载波的索引即可。
可选的,考虑到格式2的1.25kHz与格式0或1的3.75kHz的兼容性,应该保证格式2的1.25kHz与格式1或0的3.75kHz的资源配置不能重叠。基于此,在本申请实施例中,可以采用频分方式,将1.25kHz的子载波和3.75kHz的子载波在频域上进行区分。
同理,还可以通过不同的增强覆盖等级在时域上将1.25kHz子载波对应的SR时域资源和3.75kHz子载波对应的SR时域资源进行区分。参见表4:
表4
Figure PCTCN2018086620-appb-000012
如表3所示,不同格式下,同一增强覆盖等级的前导码重复次数不同,同一格式下,不同增强覆盖等级的前导码重复次数也不同。因此,可从时域上将不同格式的SR时频资源加以区分。
方式3:终端的配置信息还可包括格式配置信息,格式配置信息用于确定终端传输SR所采用的的格式。
网络设备向终端发送配置信息,该配置信息中包括格式配置信息。其中,格式配置信息为格式索引、CP长度、子载波带宽中的一种。终端根据配置信息中的格式配置信息确定传输SR所采用的格式。
若终端接收的配置信息中的格式配置信息为格式索引,终端通过该格式索引获知传输SR采用的格式,示例性的,格式索引可采用2bit来指示终端传输SR所采用的格式。具体的,2bit格式索引可以为00、01、10、11中的任意三个。例如,格式索引为00、01、10,其中,00表示终端采用格式0或1的子载波传输SR,01也指示终端采用格式0或格式1子载波传输SR,10表示终端采用格式2的子载波传输SR。或者,可以用00指示终端采用格式2子载波传输SR,01指示终端采用格式0子载波传输SR,10指示终端采用格式1子载波传输SR。当然,也可以用00指示终端采用格式2子载波传输SR,01指示终端采用格式0或1子载波传输SR,10指示终端采用格式0或1子载波传输SR。本申请实施例对此不做限制。
或者,格式索引可采用1bit来指示终端传输SR所采用的格式。具体的,1bit格式索引可以为0或1,0指示终端采用格式2子载波传输SR,1指示终端采用格式0或1的子载波传输SR。或者,也可以0指示终端采用格式1或0的子载波传输SR,1指示终端采用格式2的子载波传输SR,本申请实施例对此不做限制。即同样的1bit(0)可用于指示不同内容(例如比特0可指示格式0,也可指示格式2),同样的2bit也可指示不同内容(例如比特00可指示格式0,也可指示格式2),这可拓展到N比特用于指示不同内容,这需要根据实际应用配置,本申请实施例不对此进行限制,且在此处进行同一说明,下文不再赘述。
若格式配置信息为CP长度,示例性的,当CP长度为66.7时,采用格式0子载波传输SR,当CP长度为266.7时,采用格式1子载波传输SR,当CP长度为800时,采用格式2子载波传输SR。
这里,同样可以采用bit来指示CP长度。可选的,采用2bit来指示CP长度,2bit可为00、01、10、11中的任意三个,例如,采用00、01、11这三个2bit。其中,00可指示CP长度为66.7,即指示终端采用格式0子载波传输SR,01可指示CP长度为266.7,即可指示终端采用格式1子载波传输SR,11可指示CP长度为800,即可指示终端采用格式2子载波传输SR。
若格式配置信息为子载波带宽,示例性的,采用1bit指示子载波带宽。例如,0指示3.75kHz,即指示终端采用格式2传输SR,1指示1.25kHz,即指示终端采用格式0或1传输SR。
当然,格式配置信息还可以是每一格式的其他特性信息,例如,可以是格式2中一个前导码占用的符号组数目信息,可以是格式2中一个前导码占用符号组的总时长信息,本申请在这里不再一一列举。
与现有技术相比,本申请实施例中,一方面,本申请实施例引入了格式2的子载波,可将格式2的子载波用于传输SR。由于格式2的子载波带宽比较窄,在相同的频域资源内,比如180kHz,子载波数量多,这意味着可支持更多数目的前导码传输,也 就是,能支持更多的SR传输。因此使用部分格式2的子载波,相比只使用格式0或者格式1的子载波,可以提升SR容量。另一方面,可区分出终端采用哪种格式子载波传输SR,从而在频域上使用相应格式的子载波传输SR。
需要说明的是,本文提及的格式为随机接入前导码的格式,于格式0、格式1、格式2。
其中,不同格式的随机接入前导码中,符号组的个数可能不同,符号组的结构也可能不同。关于格式0、格式1、格式2的具体符号组构成等描述可参见上文描述,这里不再赘述。
可选的,本文中SR的信号格式和随机接入前导码的格式相同,或者SR的符号组的信号格式和随机接入前导码的信号格式相同。SR在频域上的跳频规则和随机接入前导码的跳频规则相同。
另外,上述确定传输SR所采用格式的指示方式可应用在现有场景,即应用单次随机接入时频资源仅被一个终端占用的场景。还可以应用在多终端复用场景,即本申请上述实施例的单次随机接入时频资源可被多终端复用的场景,本申请实施例对此不加以限制。
在本申请的另一些实施例中,可以为SR传输提供功率控制。
可选的,采用随机接入成功时前导码对应的目标接收功率进行第一次SR传输,并基于路损补偿的方式确定最终的SR传输功率。其中,路损补偿的流程可参见现有技术,这里不再赘述。
之后,在第N次传输SR时,在上述目标接收功率的基础上,采用功率攀升的方式提高SR传输功率。可选的,可设置功率攀升步长,每次SR传输将目标接收功率提高功率攀升步长,例如,在第二次SR传输时,在目标接收功率的基础上增加一个功率攀升步长,得到第二次SR的传输功率,在第三次SR传输时,在第二次SR传输功率的基础上增加一个功率攀升步长,得到第三次SR的传输功率,以此类推,以逐步提高SR传输的有效性和可靠性。
这样,在进行第一次SR传输时,不再使用随机接入初始时的接收功率,进而在后续数次SR传输中,是以一个较大的目标接收功率开始向上攀升功率,功率攀升的效果较为显著,节约终端用于功率攀升的时间,降低时延,也降低终端用于功率攀升的功耗。
当然,本申请实施例提供的SR传输功率控制的方法,可应用于现有场景,或者,还可以应用于多终端复用场景。现有场景和多终端复用场景的描述可参见上文,这里不再赘述。
需要强调的是,本文中提及的各个信息的名称仅仅是其中的一种示例,在实际应用中,每一信息还可能是其他的名称,本申请实施例对此不做限制。
本申请实施例可以根据上述方法示例对上述通信设备(通信设备可以为上述终端或网络设备)进行功能模块或者功能单元的划分,例如,可以对应各个功能划分各个功能模块或者功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块或者功能单元的形式实现。其中,本申请实施例中对模块或者单元的划分是示意性的,仅仅为一种逻 辑功能划分,实际实现时可以有另外的划分方式。
图10示出了上述实施例中所涉及的资源配置装置的一种可能的结构示意图。如图6所示,该装置作为终端1000包括:存储单元1001、处理单元1002和通信单元1003。
其中,存储单元1001,例如可用于存储用于指示终端的SR时频资源的配置信息以及相关指令。处理单元1002,用于对终端1000的动作进行控制管理,以执行本申请实施例的技术方案步骤。通信单元1003,用于支持终端1000与图1所示通信***中的其他设备通信。例如,支持终端1000执行图4中S403、S404。
需要说明的是,当图2为终端的结构示意图时,所述存储单元1001可以实现为图2中的终端的存储器203。处理单元1002可以实现为图2中终端的处理器201,通信单元1003可以实现为图2中终端的收发器204。
如图7,本申请实施例还提供一种资源配置装置,该装置作为网络设备(例如基站)包括:存储单元1101、处理单元1102和通信单元1103。
其中,存储单元1101,用于存储SR时频资源的配置信息以及相关指令。处理单元1102,用于对网络设备1100的动作进行控制管理。例如,处理单元1102用于支持网络设备1100执行图4中的S401,和/或用于本文所描述的技术方案的其它步骤。通信单元1103,用于支持网络设备1100与图1所示通信***中的其他设备通信。例如,支持网络设备1100执行图4中S402。
需要说明的是,当图2为网络设备的结构示意图时,所述存储单元1101可以实现为图2中的网络设备的存储器203。处理单元1102可以实现为图2中网络设备的处理器201,通信单元1103可以实现为图2中网络设备的收发器204。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到图10、图11所示装置中对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备、终端可执行上述的资源配置方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当终端执行该指令时,该终端执行上述方法实施例所示的方法流程中终端执行的各个步骤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当网络设备执行该指令时,该网络设备执行上述方法实施例所示的方法流程中网络设备执行的各个步骤。
其中,计算机可读存储介质,例如可以是但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、寄存器、硬盘、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合、或者本领域熟知的任何其它形式的计算机可读存储介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然, 存储介质也可以是处理器的组成部分。处理器和存储介质可以位于特定用途集成电路(Application Specific Integrated Circuit,ASIC)中。在本申请实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
可选的,本申请实施例还提供了一种芯片***,应用于终端,该芯片***包括处理器,用于支持终端实现上述资源配置方法,例如确定用于指示终端的SR时频资源的配置信息。在一种可能的设计中,该芯片***还包括存储器。该存储器,用于保存终端必要的程序指令和数据。当然,存储器也可以不在芯片***中。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了另一种芯片***,应用于网络设备,该芯片***包括处理器,用于支持网络设备实现上述资源配置方法。在一种可能的设计中,该芯片***还包括存储器。该存储器,用于保存网络设备必要的程序指令和数据。当然,存储器也可以不在芯片***中。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种资源配置方法,其特征在于,包括
    网络设备确定配置信息,所述配置信息用于指示终端设备的调度请求SR时频资源,所述配置信息包括第一配置信息和第二配置信息,所述第一配置信息用于指示所述SR时频资源的时域偏置,所述第二配置信息用于指示所述SR时频资源的持续时长,其中,所述时域偏置为所述SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置;
    所述网络设备向所述终端设备发送所述配置信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入时频资源的子集;
    或者,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入的时频资源中除去所述基于竞争的随机接入时频资源以外的时频资源的子集。
  3. 根据权利要求1或2所述的方法,其特征在于,所述SR时频资源的频域资源与所述随机接入时频资源的频域资源相同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述持续时长为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述时域偏置为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,所述载波配置信息用于指示所述SR时频资源占用的载波,所述子载波配置信息用于指示所述SR时频资源占用的子载波,所述增强覆盖等级配置信息用于指示所述SR时频资源的增强覆盖等级的信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述子载波配置信息所指示的子载波索引处于第一数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式2;
    所述子载波配置信息所指示的子载波索引处于第二数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式0或格式1。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述配置信息还包括格式配置信息,其中,所述格式配置信息为格式索引、循环前缀CP长度、子载波带宽中的一种;
    所述格式配置信息用于所述终端设备确定传输SR所采用的格式。
  9. 一种资源配置方法,其特征在于,包括
    终端设备接收配置信息,所述配置信息用于指示所述终端设备的调度请求SR时频资源,所述配置信息包括第一配置信息和第二配置信息,所述第一配置信息用于指示所述SR时频资源的时域偏置,所述第二配置信息用于指示所述SR时频资源的持续时长,其中,所述时域偏置为所述SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置;
    所述终端设备在所述SR时频资源上向所述网络设备发送SR。
  10. 根据权利要求9所述的方法,其特征在于,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入时频资源的子集;
    或者,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入的时频资源中除去所述基于竞争的随机接入时频资源以外的时频资源的子集。
  11. 根据权利要求9或10所述的方法,其特征在于,所述SR时频资源的频域资源与所述随机接入时频资源的频域资源相同。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述持续时长为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述时域偏置为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,所述载波配置信息用于指示所述SR时频资源占用的载波,所述子载波配置信息用于指示所述SR时频资源占用的子载波,所述增强覆盖等级配置信息用于指示所述SR时频资源的增强覆盖等级的信息。
  15. 根据权利要求14所述的方法,其特征在于,
    所述子载波配置信息所指示的子载波索引处于第一数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式2;
    所述子载波配置信息所指示的子载波索引处于第二数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式0或格式1。
  16. 根据权利要求9-14任一项所述的方法,其特征在于,所述配置信息还包括格式配置信息,其中,所述格式配置信息为格式索引、循环前缀CP长度、子载波带宽中的一种;
    所述格式配置信息用于所述终端设备确定传输SR所采用的格式。
  17. 一种网络设备,其特征在于,所述网络设备设置有收发器、存储器和与所述 处理器耦合的处理器;
    所述存储器,用于存储包括程序指令的信息;
    所述处理器,用于确定配置信息,所述配置信息用于指示终端设备的调度请求SR时频资源,所述配置信息包括第一配置信息和第二配置信息,所述第一配置信息用于指示所述SR时频资源的时域偏置,所述第二配置信息用于指示所述SR时频资源的持续时长,其中,所述时域偏置为所述SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置;
    所述收发器,用于向所述终端设备发送所述配置信息。
  18. 根据权利要求17所述的网络设备,其特征在于,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入时频资源的子集;
    或者,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入的时频资源中除去所述基于竞争的随机接入时频资源以外的时频资源的子集。
  19. 根据权利要求17或18所述的网络设备,其特征在于,所述SR时频资源的频域资源与所述随机接入时频资源的频域资源相同。
  20. 根据权利要求17-19任一项所述的网络设备,其特征在于,所述持续时长为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  21. 根据权利要求17-20任一项所述的网络设备,其特征在于,所述时域偏置为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  22. 根据权利要求17-21任一项所述的网络设备,其特征在于,所述配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,所述载波配置信息用于指示所述SR时频资源占用的载波,所述子载波配置信息用于指示所述SR时频资源占用的子载波,所述增强覆盖等级配置信息用于指示所述SR时频资源的增强覆盖等级的信息。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述子载波配置信息所指示的子载波索引处于第一数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式2;
    所述子载波配置信息所指示的子载波索引处于第二数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式0或格式1。
  24. 根据权利要求17-22任一项所述的网络设备,其特征在于,所述配置信息还包括格式配置信息,其中,所述格式配置信息为格式索引、循环前缀CP长度、子载 波带宽中的一种;
    所述格式配置信息用于所述终端设备确定传输SR所采用的格式。
  25. 一种终端,其特征在于,所述终端设置有收发器、存储器、与所述处理器耦合的处理器;
    所述存储器,用于存储包括程序指令的信息;
    所述收发器,用于接收配置信息,所述配置信息用于指示所述终端设备的调度请求SR时频资源,所述配置信息包括第一配置信息和第二配置信息,所述第一配置信息用于指示所述SR时频资源的时域偏置,所述第二配置信息用于指示所述SR时频资源的持续时长,其中,所述时域偏置为所述SR时频资源的时域起始位置相对于随机接入时频资源的时域起始位置的偏置;
    所述处理器,用于确定是否存在上行数据;
    所述收发器,还用于在所述SR时频资源上向所述网络设备发送SR。
  26. 根据权利要求25所述的终端,其特征在于,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入时频资源的子集;
    或者,
    所述随机接入资源为所述网络设备通过***消息配置的可用于随机接入前导码传输的时频资源,其中所述随机接入资源包括基于竞争的随机接入资源,所述SR时频资源为所述随机接入的时频资源中除去所述基于竞争的随机接入时频资源以外的时频资源的子集。
  27. 根据权利要求25或26所述的终端,其特征在于,所述SR时频资源的频域资源与所述随机接入时频资源的频域资源相同。
  28. 根据权利要求25-27任一项所述的终端,其特征在于,所述持续时长为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  29. 根据权利要求25-28任一项所述的终端,其特征在于,所述时域偏置为第一时间长度的整数倍,其中所述第一时间长度为随机接入前导码单次传输的时长;或者,
    所述持续时长为随机接入前导码的一个符号组时长的整数倍。
  30. 根据权利要求25-29任一项所述的终端,其特征在于,所述配置信息还包括载波配置信息、子载波配置信息、增强覆盖等级配置信息,其中,所述载波配置信息用于指示所述SR时频资源占用的载波,所述子载波配置信息用于指示所述SR时频资源占用的子载波,所述增强覆盖等级配置信息用于指示所述SR时频资源的增强覆盖等级的信息。
  31. 根据权利要求30所述的终端,其特征在于,
    所述子载波配置信息所指示的子载波索引处于第一数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式2;
    所述子载波配置信息所指示的子载波索引处于第二数值区间的情况下,用于指示所述终端设备传输SR所采用的格式为格式0或格式1。
  32. 根据权利要求25-30任一项所述的终端,其特征在于,所述配置信息还包括格式配置信息,其中,所述格式配置信息为格式索引、循环前缀CP长度、子载波带宽中的一种;
    所述格式配置信息用于所述终端设备确定传输SR所采用的格式。
  33. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至8中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求9至16中任一项所述的方法被实现。
PCT/CN2018/086620 2018-05-11 2018-05-11 资源配置方法及装置 WO2019213977A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880092913.7A CN112136350B (zh) 2018-05-11 2018-05-11 资源配置方法及装置
PCT/CN2018/086620 WO2019213977A1 (zh) 2018-05-11 2018-05-11 资源配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086620 WO2019213977A1 (zh) 2018-05-11 2018-05-11 资源配置方法及装置

Publications (1)

Publication Number Publication Date
WO2019213977A1 true WO2019213977A1 (zh) 2019-11-14

Family

ID=68467727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086620 WO2019213977A1 (zh) 2018-05-11 2018-05-11 资源配置方法及装置

Country Status (2)

Country Link
CN (1) CN112136350B (zh)
WO (1) WO2019213977A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825243B (zh) * 2021-11-23 2022-02-08 成都爱瑞无线科技有限公司 上行数据处理方法、***、装置及存储介质
CN117676820A (zh) * 2022-08-16 2024-03-08 华为技术有限公司 资源单位的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002075A2 (en) * 2012-06-29 2014-01-03 Renesas Mobile Corporation Resource allocation
US20140161086A1 (en) * 2012-05-31 2014-06-12 Panasonic Corporation Wireless communication terminal, wireless communication device, wireless communication system, and processing method for requesting uplink resource
CN103906176A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种接入站点的方法、装置及***
CN105453684A (zh) * 2013-08-09 2016-03-30 三星电子株式会社 在蜂窝移动通信***中用于请求调度的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031725A1 (en) * 2015-08-26 2017-03-02 Panasonic Intellectual Property Corporation Of America Improved random access procedure for unlicensed cells
WO2017131459A1 (ko) * 2016-01-29 2017-08-03 성균관대학교 산학협력단 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법
CN108476539B (zh) * 2016-01-29 2022-08-19 成均馆大学校产学协力团 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161086A1 (en) * 2012-05-31 2014-06-12 Panasonic Corporation Wireless communication terminal, wireless communication device, wireless communication system, and processing method for requesting uplink resource
WO2014002075A2 (en) * 2012-06-29 2014-01-03 Renesas Mobile Corporation Resource allocation
CN103906176A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种接入站点的方法、装置及***
CN105453684A (zh) * 2013-08-09 2016-03-30 三星电子株式会社 在蜂窝移动通信***中用于请求调度的方法和设备

Also Published As

Publication number Publication date
CN112136350B (zh) 2023-03-24
CN112136350A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
EP3332593B1 (en) Allocating resources for wireless sidelink direct communications
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
US11968682B2 (en) Uplink dynamic grant-free transmission method and apparatus
JP2018152895A (ja) アップリンクおよびダウンリンク伝送のwlan・ofdma設計のためのシステムおよび方法
US11039448B2 (en) Resource scheduling method and apparatus
US11291037B2 (en) SR/BSR triggering method and device
CN111586793B (zh) 一种通信方法、设备及计算机可读存储介质
CN110521257B (zh) 传输控制方法及装置
JP7019914B2 (ja) 無線通信方法および装置
WO2020164639A1 (zh) 一种随机接入方法、设备及***
WO2019214523A1 (zh) 一种通信方法及装置
US11395317B2 (en) Information sending and receiving method, and information sending and receiving apparatus
WO2017215642A1 (zh) 一种资源分配方法、网络设备及终端设备
WO2019158039A1 (zh) 通信方法和通信装置
CN112449425B (zh) 一种通信方法和装置
WO2019213977A1 (zh) 资源配置方法及装置
WO2019154106A1 (en) Grant-based uplink transmission
US10966202B2 (en) Wireless communication device including memory de-allocator for efficient memory usage and method of operating the same
CN112188637B (zh) 无线通信方法、用户设备和网络设备
CN115134048B (zh) 上行传输方法及装置、终端及可读存储介质
US11425744B2 (en) Cascaded scheduling requests for resource-efficient 5G and 6G
US11627592B2 (en) Resource-efficient polling and scheduling of 5G/6G uplink messages
WO2021031778A1 (zh) 传输方法、配置pucch的方法和设备
RU2776779C2 (ru) Способ осуществления радиосвязи, пользовательское оборудование и сетевое устройство
WO2022104661A1 (zh) 一种资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918032

Country of ref document: EP

Kind code of ref document: A1