WO2020143495A1 - 混动商用车再生制动和缓速*** - Google Patents

混动商用车再生制动和缓速*** Download PDF

Info

Publication number
WO2020143495A1
WO2020143495A1 PCT/CN2019/129964 CN2019129964W WO2020143495A1 WO 2020143495 A1 WO2020143495 A1 WO 2020143495A1 CN 2019129964 W CN2019129964 W CN 2019129964W WO 2020143495 A1 WO2020143495 A1 WO 2020143495A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy truck
ace heavy
power
vehicle
epsd
Prior art date
Application number
PCT/CN2019/129964
Other languages
English (en)
French (fr)
Inventor
格桑旺杰
查为
Original Assignee
乾碳国际公司
格桑旺杰
查为
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乾碳国际公司, 格桑旺杰, 查为 filed Critical 乾碳国际公司
Priority to US17/422,063 priority Critical patent/US20220097676A1/en
Priority to EP19908316.3A priority patent/EP3909803A1/en
Publication of WO2020143495A1 publication Critical patent/WO2020143495A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • B60L3/0015Prevention of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/14Tractor-trailers, i.e. combinations of a towing vehicle and one or more towed vehicles, e.g. caravans; Road trains
    • B60W2300/147Road trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a regenerative braking and retarding system device and a control method of a large commercial vehicle gasoline-electric hybrid powertrain.
  • it involves heavy trucks in trunk line logistics application scenarios that are mainly based on long-distance highway driving, predictive vehicle power control based on artificial intelligence, to realize adaptive cruise, front collision warning, emergency braking assistance, long downhill slow speed and other functions, Achieve the beneficial effects of improving active driving safety, driving convenience, and fuel saving and emission reduction.
  • the US super truck project integrates all energy-saving and emission-reduction technologies that may be commercially mass-produced by 2025.
  • the main challenge in the future is to improve the comprehensive cost performance of various energy-saving technologies.
  • the current medium and long-term challenge for the US heavy truck industry is how to meet the mandatory requirements of GHG Phase II heavy truck fuel consumption by 2027, while effectively controlling the increase in the price of new heavy trucks. All stakeholders in China's heavy truck industry must respond to the severe test that the retail price of the new country's six-heavy truck in 2020 is expected to rise sharply compared to the current price of the country's five-heavy truck.
  • L3/L4 level autonomous driving commercial vehicles is to eliminate human factors and improve driving safety. To meet the requirements of the vehicle's functional safety level, L3/L4 level autonomous driving commercial vehicles must be equipped with redundant braking systems.
  • hybrid heavy truck compared with the traditional diesel heavy truck has a limited decrease in overall fuel consumption, its largest The overall fuel consumption reduction cannot exceed 10%.
  • hybrid heavy trucks According to the current international/domestic junior power (battery, motor, electronic control) technology and industry development status, hybrid heavy trucks have a significant increase in the cost of buying cars than traditional diesel heavy trucks, but the fuel saving effect is not significant, resulting in low cost performance of hybrid heavy trucks.
  • the current "consensus" of the global heavy truck industry believes that large-scale commercial use of trunk logistics mixed heavy trucks without subsidies will not be possible in the global market including the three core heavy truck markets of China, the United States and Europe by 2030.
  • trunk logistics hybrid heavy truck wants to realize large-scale commercialization at an early date, it must significantly increase its high cost performance.
  • the average selling price of the trunk logistics diesel heavy truck in the United States or China is three to ten times that of the ordinary internal combustion engine passenger car market in the country, but its annual fuel cost is 30 to six times that of the internal combustion engine passenger car. ten times.
  • the retail prices of gasoline or diesel in the United States and China are much lower than in Europe, and the ratio of European passenger car to heavy truck prices and annual fuel costs is similar to that of China and the United States.
  • An effective way to improve the cost-effectiveness of trunk logistics hybrid heavy trucks is to increase the fuel consumption reduction compared with traditional diesel vehicles, and secondly to reduce the difference between the sum of one-time car purchase cost plus the accumulated vehicle operation and maintenance costs of traditional diesel vehicles.
  • the core of the invention is the first time to disclose a brand-new 100-kilowatt power electronic three-port network "electrical domain power splitter” (ePSD--electrical Power Split Device; also known as “electric power splitter”), through effective integration and fusion of oil and electricity.
  • ePSD--electrical Power Split Device also known as “electric power splitter”
  • Mobile technology combined with satellite navigation (GNSS), 3D electronic maps, Internet of Things (IoT), big data (Big Data), artificial intelligence (AI) and many other emerging technologies, to create a new type of heavy truck: intelligent connected electric (ACE: Automated-Connected-Electrified) heavy truck, to achieve multiple beneficial effects of energy saving, emission reduction, and improved driving safety.
  • ACE heavy trucks can reduce the overall fuel consumption by more than 30% under the premise of maintaining vehicle dynamics at least under the premise of maintaining vehicle dynamics, and can also eliminate the "human factors" caused by drivers.
  • the actual comprehensive fuel consumption dispersion of heavy trucks is as high as 25 % The pain point of this industry; and ACE heavy truck can also significantly improve the braking performance, reduce the driver's labor intensity of long-distance driving, and improve the driving safety of the vehicle; thereby greatly improving the cost performance of ACE heavy truck.
  • efficiency and safety are two eternal themes. It is expected that in the world's three major heavy truck markets, the United States, China and the European Union, large-scale commercial use of ACE heavy trucks for trunk road logistics will be realized.
  • P v is vehicle power or road load power, and all power items are in kilowatts (KW).
  • Rolling power Pr refers to the power required to overcome the rolling frictional resistance of the tire when the vehicle is running, which can be expressed by the following formula (1):
  • the wind resistance power P d refers to the power required to overcome the air resistance (in windless weather) when the vehicle is running, which can be expressed by the following formula (2):
  • the slope power P g refers to the power required to overcome gravity when the vehicle travels uphill, and the slope power is negative when the vehicle is downhill, representing the driving power generated by the conversion of potential energy and kinetic energy.
  • the slope power P g can be obtained by the following formula (3) Means:
  • the acceleration power P a refers to the additional power required to reach a predetermined acceleration value when the vehicle is traveling on a flat road.
  • the acceleration is negative, it represents mechanical braking, which converts vehicle kinetic energy into thermal energy, or regenerative braking, which converts part of vehicle kinetic energy into electrical energy for recovery.
  • Accelerating power P a can (4) represented by the following formula:
  • the acceleration power is zero
  • the road section with a rolling power on a small longitudinal slope ie, a longitudinal slope within a few degrees
  • the wind resistance power can also be approximated as a constant, only the slope power is a time variable.
  • the magnitude of its change is proportional to the magnitude of the slope change of the highway section, the speed of the vehicle, and the total weight of the vehicle.
  • the total weight of China's trunk logistics heavy trucks is generally below 40 tons, and the maximum legal speed limit is 90 kilometers per hour. China's major highways are often congested.
  • the average speed of heavy trucks in the road logistics industry is about 65 kilometers per hour; The value is 36 tons (80,000 pounds), the maximum legal speed can be as high as 125 km/h, and the average speed of heavy trucks in the road logistics industry is greater than about 85 km/h.
  • Highway longitudinal slope is usually referred to as "longitudinal slope".
  • the other is the ratio of the elevation of the road surface to the horizontal projection distance of the road section, expressed in %.
  • the design and construction of highways in various countries limit their longitudinal slope to -7.0% to +7.0%, mainly based on the consideration of the safe and effective driving of full-load heavy trucks on highways.
  • the required slope power is up to 228 kW to overcome the gravitational force to maintain the vehicle uphill at a constant speed
  • the sum of the rolling friction power and the wind resistance power of the vehicle is only 71 kW. If the vehicle's total power success rate margin is insufficient at this time, the driver needs to shift down to continue uphill.
  • the slope power required by the vehicle at a constant speed is only 11.4 kilowatts, the sum of the rolling friction power and the wind resistance power is 3.6 kilowatts, and the peak power is nearly 100 kilowatts.
  • the power margin is sufficient, this slope is not a concern, and it is flat.
  • the heavy truck's road load power due to the change in slope power has a huge change of more than 100 kilowatts. .
  • the required deceleration power (also called braking power) during braking is proportional to the total mass, vehicle speed, and deceleration of the vehicle.
  • the vehicle When the vehicle is at a speed of 60 km/h, it is necessary to achieve a medium-intensity braking with a deceleration of 2 m/s2 (ie 0.2 g, g is the acceleration of gravity).
  • the braking power For a passenger car with a total weight of 2.0 tons, the braking power is 67 Kilowatts; but for a heavy truck with a total weight of 40 tons, the required braking power is as high as 1333 kilowatts.
  • the peak value of regenerative braking power of hybrid electric vehicles that recover energy through regenerative braking is basically below 500 kW.
  • the energy with a braking power higher than 500 kilowatts cannot be converted into electrical energy recovery through regenerative braking, but can only be completely wasted by mechanical braking to convert this part of the vehicle's kinetic energy into heat energy.
  • the world's largest commercial DC fast charging pile is 375 kilowatts.
  • hybrid vehicles light vehicles or heavy commercial vehicles
  • traditional internal combustion engine vehicles can work stably in its high-efficiency area for a long time.
  • the hybrid fuel-electric vehicle has less comprehensive fuel saving effect than the traditional internal combustion engine vehicle, and the fuel saving rate cannot be higher than 10%, sometimes even slightly increase fuel consumption.
  • the above-mentioned "consensus" in the automotive industry applies to all hybrid electric vehicles (total weight less than 3.5 tons) and parallel hybrids (large engines plus a medium-sized motor with a peak power of less than 150 kW).
  • the vehicle controller can accurately predict the road load changes within hundreds of kilometers in front of the vehicle in real time, especially the slope power P g (t) and Road load power P v (t) time-varying function with ten kilowatt accuracy.
  • the VCU forecast refresh frequency can be as high as 10.0 Hertz (Hz), which means that every time the vehicle travels 2 to 3 meters, the VCU can refresh its power forecast in time.
  • Electronic navigation three-dimensional map can provide vehicles with electronic horizon (Electronic) Horizon.
  • the so-called electronic horizon refers to all kinds of road information covered by a three-dimensional map within a specified range in front of the vehicle, especially the information about the longitude, latitude and longitudinal slope along the expressway.
  • the implementation of predictive control of traditional diesel heavy trucks is limited by the fact that their powertrains should not frequently change operating conditions frequently and there is no regenerative braking energy recovery function. Generally, they can only roughly use the 3D map electronic horizon within 10 kilometers.
  • the ACE heavy truck of the present invention can effectively use various electronic horizons from 10 kilometers to 1000 kilometers, and achieve predictable adaptive cruise control to achieve significantly lower fuel consumption than traditional diesel heavy trucks. Beneficial effect. See below for details.
  • the speed of the vehicle is basically constant, and the time change of the road load power of the vehicle is mainly derived from the gradient power change caused by the longitudinal slope change of the highway.
  • the highway longitudinal slope distribution function of the vehicle's driving path is fixed and known in advance, so the VCU of the ACE heavy truck can quickly update the time when the vehicle's road load power is within the electronic horizon of the vehicle according to the actual road conditions and vehicle dynamics equations within 0.1 seconds.
  • Variable function effectively predict the future demand of vehicle road load power.
  • the present invention transforms the fuel consumption optimization problem of ACE heavy truck highway driving in the same lane into the equivalent artificial intelligence (AI) problem of AlphaGo playing chess.
  • AI artificial intelligence
  • the fuel-saving artificial intelligence unit can achieve lower overall fuel consumption than human drivers.
  • the predictive power control system of the ACE heavy truck proposed by the present invention the vehicle controller VCU commands the electric power shunt ePSD, can be in the system response time of ten milliseconds, in the generator set driven by the engine, the battery pack, and the drive motor Accurately and dynamically allocate the magnitude and flow direction of hundreds of kilowatts of electrical power, and set the engine operating conditions to its high-efficiency conditions for a long time, and quickly charge or discharge through the battery pack hundreds of kilowatts to offset the slope in real time
  • the power term is a transient change of hundreds of kilowatts in sub-second time, which can meet the road load power balance required by the vehicle dynamic equation at any time.
  • ACE heavy trucks Under the premise of ensuring vehicle dynamics, cargo timeliness, and safety, ACE heavy trucks can reduce the overall fuel consumption of traditional diesel vehicle trunk logistics by up to 30%.
  • a first aspect of the present disclosure provides a hybrid vehicle including: a generator set for converting chemical energy of on-board fuel into electrical energy; and an electric power splitter (ePSD) configured as a power electronic network with three ports , Where the first port of ePSD is bidirectionally AC connected to the output of the generator set; the second port of ePSD is bidirectionally AC connected to at least one drive motor; the third port of ePSD is bidirectionally DC connected to at least one power battery pack; automatic transmission , A two-way mechanical connection with the drive shaft of the vehicle; a mapper, which pre-stores a three-dimensional map of electronic navigation, the three-dimensional map contains information such as the longitude, latitude and longitudinal slope of the longitudinal road of the vehicle driving section; at least one drive motor, and ePSD Two-port bidirectional electrical connection and its output shaft is bidirectionally mechanically connected to the automatic gearbox, where the drive motor can be operated to: convert electrical energy into mechanical energy for driving the vehicle, or convert the mechanical energy of the vehicle into electrical energy,
  • the architecture of the ACE heavy truck system of the present disclosure is an advanced, extended-program pure electric drive heavy truck, which realizes a fully digital software-defined powertrain centered on ePSD.
  • ePSD three-port power electronic network hardware
  • its hardware functions and performance are reserved.
  • OTA software remote update iteration
  • Relying on continuous software remote update (OTA) tailor-made and continuously modify and improve the actual performance of each ACE heavy truck powertrain, that is, to ensure that each ACE heavy truck is within the 700,000-kilometer warranty period mandated by the emission regulations, which guarantees that it is anytime, anywhere Satisfy the emission regulation limits, and realize the optimization of fuel saving effect of the heavy truck.
  • the ePSD is configured as a three-port power electronic network, which contains three unique functional modules of 100 kilowatt level: the first port is connected to a bidirectional AC-DC converter (also known as an inverter) ), at least one bidirectional AC-DC converter (also called inverter) is connected to the second port, and at least one bidirectional buck-boost DC-DC converter (also called chopper) is connected to the third port.
  • a bidirectional AC-DC converter also known as an inverter
  • at least one bidirectional AC-DC converter also called inverter
  • at least one bidirectional buck-boost DC-DC converter also called chopper
  • the present disclosure focuses on the main peripheral input/output characteristics of the ACE heavy truck ePSD and contains three major functional modules, and a collection of various power electronic circuit topologies that implement the above three major functional modules are all within the scope of the present invention.
  • the physical form of the ePSD is to package the three functional modules in a metal box, or to
  • the DC ports of the three major functional modules in the ePSD are bidirectionally electrically connected to the DC bus junction X.
  • P MG2 P v is an independent variable, which is equal to the road load power of the vehicle.
  • P MG1 is another independent variable, which can be set at several specific operating conditions of the fixed speed and specified torque of the internal combustion engine and motor MG1, to ensure that the combustion thermal efficiency of the internal combustion engine is the highest and the exhaust emission is optimized at these operating conditions.
  • the three major functional modules of ePSD work together under the command of the vehicle controller VCU to adjust the non-independent variable P BAT (t) in real time, cut peaks and fill valleys, and satisfy the power balance equation.
  • P BAT P MG2 -P MG1 .
  • P MG1 >0 which is the generated power
  • P MG1 ⁇ 0 which is the power consumption or driving power (taking the engine cylinder brake as the load)
  • P MG2 >0 is the driving power;
  • P MG2 ⁇ 0 is the regenerative braking power or generating power
  • the rated voltage V bus0 of the internal DC bus of the ePSD preferably ranges from 600V to 800V.
  • the third port of the ePSD can be bidirectionally electrically connected to at least one power battery pack, the rated voltage of each battery pack is V bat ⁇ V bus0 , and the third port can also be unidirectionally electrically connected to a 100-kilowatt brake with a radiator
  • the port III of the ePSD can bidirectionally electrically connect a plurality of battery packs with different rated voltages and even batteries with different electrochemical compositions, which brings multiple benefits to optimize the cost performance of the ACE heavy truck vehicle system, which will be described in detail later.
  • the hybrid vehicle further includes: a satellite navigation receiver, which is a dual-antenna carrier phase real-time dynamic difference (RTK) receiver, which can measure the longitude, latitude, and altitude of the longitudinal road during the vehicle's driving in real time , Longitudinal slope, and linear velocity; or it is a high-precision single-antenna satellite navigation receiver, which can measure the longitude, latitude, and linear velocity of the longitudinal road during vehicle driving in real time with meter-level positioning accuracy; plus one including Multiple acceleration sensors and a gyroscope's onboard inertial navigation unit (IMU), or a dynamic inclination sensor, can measure the road's longitudinal slope in real time, with an accuracy better than 0.1%.
  • RTK real-time dynamic difference
  • the VCU is configured to: based on the longitude and latitude of the vehicle in real time measured by the satellite navigation receiver during driving, combined with the latitude and longitude of the longitudinal road within the electronic horizon in front of the vehicle stored in the three-dimensional map , Longitudinal slope, for predictive control of the generator set and battery pack; and/or based on the longitude, latitude, longitudinal slope, and linear speed of the longitudinal road of the vehicle during the driving process measured by the RTK receiver, combined with storage Predictive control of the generator set and battery packs by the longitude, latitude, and longitudinal slope of the longitudinal road within the electronic horizon in front of the vehicle on the three-dimensional map.
  • the VCU is further configured to: during the driving of the vehicle, when it is detected that the difference between the longitudinal slope measured by the RTK receiver and the longitudinal slope at the same location stored in the three-dimensional map exceeds the allowable tolerance Next, select predictive control of the generator set and battery pack based on the longitudinal slope measured by the RTK receiver and the three-dimensional map electronic horizon.
  • the VCU is further configured to: based on the timing of the RTK receiver, calibrate the internal clocks of the microprocessors of the various subsystems including the internal clock of the VCU in real time, and mark the data with a unique time series; In the first dimension, the measurement parameters and/or operating condition parameters from at least two subsystems including RTK receiver, mapper, generator set, ePSD, drive motor, automatic transmission, and battery pack are assembled into data Group; and according to the time series provided by the calibrated clock, multiple data groups are arranged in the second dimension to form a proprietary structured big data, used to describe the dynamic operation of ACE heavy truck, called ACE heavy truck structure Big data.
  • the built-in clocks of the microprocessors of each subsystem including the built-in clock of the VCU are calibrated in real time, and the time is the only orderly data that is automatically marked.
  • the ACE heavy truck structured big data can be encrypted so that it can be uploaded to the cloud computing platform storage in real-time (sub-second delay) or timely (hour-level delay) through the mobile Internet in a more secure manner. For subsequent analysis and processing.
  • the generator set consists of an internal combustion engine and an alternator, where the internal combustion engine is mechanically coupled to the alternator bidirectionally, and the alternator is electrically coupled bidirectionally to the AC-DC converter module in the first port of the ePSD.
  • This combination can realize multiple working modes.
  • the 100-kilowatt-level MG1 can easily replace the multi-kilowatt-level starter motor configured by the traditional internal combustion engine to realize the automatic start-stop operation mode of the ACE heavy truck engine. When the operating conditions and the expressway are heavily congested, further fuel saving is achieved.
  • the main drive motor MG2 provides redundant long-term effective load for regenerative braking power generation in the ACE heavy truck long downhill slow speed working mode.
  • the VCU is further configured to be based on at least one of a digital model of the universal characteristic curve of the internal combustion engine, a digital model of the charge and discharge characteristics of the battery pack, a digital model of the characteristics of the automatic transmission, and a digital model of the characteristics of the drive motor To control at least one of the internal combustion engine, the battery pack, the automatic transmission, and the drive motor.
  • the digital model of the universal characteristic curve of the internal combustion engine includes: an idling operating point without road load and a number of efficient operating points with the lowest specific fuel consumption of the engine, and wherein the VCU is also configured to make the internal combustion engine basically only work at idle speed Working point or high-efficiency working point, so that the internal combustion engine can work stably at idle speed or high-efficiency working point for a long time, changing the surface working condition of the traditional heavy-duty internal combustion engine into the point working condition of the ACE heavy-duty internal combustion engine, and can realize its different working conditions Smooth transition between.
  • the VCU is further configured to: collect and locally store the structured big data of the ACE heavy truck in real time during the driving of the vehicle; and store the structured big data in the vehicle through the mobile Internet in real time (sub-seconds) Level delay) or timely (hour-level delay) to the cloud computing platform to send and store for subsequent analysis and processing of ACE heavy truck big data.
  • a second aspect of the present disclosure provides a cloud computing platform, including: at least one cloud server; each server includes: a processing unit; and a memory, coupled to the processing unit and containing computer program code, the computer program code should be When the processing unit executes, it causes the server to perform the following actions:
  • Each ACE heavy truck includes:
  • ePSD electrical power shunt
  • At least one battery pack which is bidirectionally electrically connected to the third port of the ePSD;
  • -A mapper which pre-stores a three-dimensional electronic navigation map, which contains three-dimensional information of the longitudinal road longitude, latitude and longitudinal slope of the road section of the vehicle;
  • At least one drive motor which is bidirectionally electrically connected to the second port of the ePSD and its output shaft is bidirectionally mechanically coupled to the transmission, wherein the drive motor can be operated to: convert electrical energy into mechanical energy for driving the vehicle, or convert the mechanical energy of the vehicle For electric energy, and to charge the battery pack through ePSD, there is no mechanical connection between the generator set and any of the drive motor and automatic transmission;
  • VCU vehicle's data bus
  • CAN bus vehicle's data bus
  • ePSD vehicle's data bus
  • At least one of the motor, automatic transmission, and battery pack is controlled in an independent manner;
  • the structured big data includes the generator set, ePSD, drive motor, automatic transmission, and battery. Operational data associated with at least one of the packages;
  • the cloud fuel-saving artificial intelligence brain will give a customized fuel-saving strategy as the default initial plan of the vehicle's VCU fuel-saving strategy.
  • the VCU of the vehicle corrects the default fuel-saving scheme in real time to achieve the best fuel-saving effect.
  • each of the plurality of vehicles further includes: a high-precision satellite navigation receiver, which is a dual-antenna carrier phase real-time dynamic differential (RTK) receiver, which is used for real-time measurement of longitudinal roads during vehicle driving Longitude, latitude, altitude, longitudinal slope, and vehicle linear velocity, where the measurement data received from multiple vehicles also includes: for multiple longitudinal road longitudes measured by multiple vehicles on the same road section of the driving route, The three-dimensional road data of latitude and longitudinal slope, and the actions include: timely transmission of multiple road three-dimensional data to the manufacturer of the electronic navigation three-dimensional map; and updating the three-dimensional map stored in the vehicle navigator.
  • RTK real-time dynamic differential
  • the accuracy of the three-dimensional map can be continuously improved in the form of crowdsourcing, keeping it fresh, and the three-dimensional map stored in the vehicle mapper can be continuously updated.
  • FIG. 1 shows a system block diagram of an ACE heavy truck according to an embodiment of the present disclosure
  • FIG. 2 shows a block diagram of an electrical power splitter (ePSD) subsystem of an ACE heavy truck according to an embodiment of the present disclosure
  • FIG. 3 shows a system block diagram of data exchange between an ACE heavy truck and a mobile Internet and cloud computing platform according to one embodiment of the present disclosure.
  • the term “comprising” and its variants are to be interpreted as open-ended terms meaning “including but not limited to.”
  • the term “based on” is to be interpreted as “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” are to be interpreted as “at least one embodiment”.
  • the term “another embodiment” is to be interpreted as “at least one other embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same objects. The following may also include other explicit and implicit definitions.
  • FIG. 1 shows a device of a hybrid heavy truck power assembly, a vehicle controller, a core sensor, etc. according to an embodiment of the present invention.
  • the system can be either a 4 ⁇ 2 powertrain system with only one driving shaft (connected to the rear wheel “RW”), or a system with one driving shaft and one driven shaft 6x2 powertrain system or 6x4 powertrain system with a main rotating shaft and an auxiliary drive shaft.
  • the heavy truck adopting the powertrain system in FIG. 1 can be called an intelligent networked electric (ACE-Automated, Connected, Electrified) heavy truck.
  • the heavy truck may be, for example, a hybrid heavy truck with a total vehicle weight greater than 15 tons that is mainly used for trunk freight transportation.
  • the ACE heavy truck includes: a generator set 100, an electric power shunt (ePSD) 123, at least one main battery pack 130a, an automatic transmission (Tran) 150, at least one main drive motor 140, and a vehicle Controller (VCU) 201.
  • the main battery pack 130a and the main drive motor 140 are standard equipment, while the auxiliary battery pack 130b and the auxiliary drive motor 170 are optional.
  • the generator set 100 includes an internal combustion engine 101 and an engine controller ECU 102.
  • the output shaft of the engine 101 is bidirectionally mechanically coupled to a generator (MG1) 110, which is mainly used to convert chemical energy of on-board fuels such as diesel or natural gas into mechanical energy, and then Convert to electrical energy.
  • MG1 110 which is mainly used to convert chemical energy of on-board fuels such as diesel or natural gas into mechanical energy, and then Convert to electrical energy.
  • ePSD 123 is a three-port Power Electronics Network, and its port I (also referred to as “first port”) is bidirectionally electrically connected to the three-phase AC output terminal of the generator set 100.
  • the battery packs 130a and/or 130b are bidirectionally electrically connected to the port III (also referred to as a "third port") of the ePSD 123.
  • the braking resistor 131 is unidirectionally DC-connected to the port III of the ePSD 123.
  • the driving motors 140 and/or 170 are bidirectionally AC-coupled with port II (also referred to as "second port") of the ePSD.
  • port II also referred to as "second port”
  • the output shaft of the automatic transmission 150 is bidirectionally mechanically coupled with the transmission shaft 160 of the vehicle, and is controlled by a transmission controller (TCU) 151.
  • TCU transmission controller
  • the main drive motor 140 is bidirectionally mechanically coupled to the input shaft of the gearbox 150 through a flexible mechanical coupler 152.
  • the main driving motor 140 may be operated to convert electrical energy into mechanical energy for driving the ACE heavy truck, or convert the mechanical energy of the ACE heavy truck into electrical energy to pass through the function module inverter 122a and chopping in the ePSD 123
  • the charger 132a charges the battery pack 130a.
  • the so-called “unidirectional” or “bidirectional” connection refers to whether the direction of electrical or mechanical power flow or energy flow from its power source to the load is reversible, and whether the roles of the power source and the load can be interchanged at any time.
  • the unidirectional connection the roles of the power source and the load are fixed, and the power flow flows from the power source to the load to a single, irreversible; when in the bidirectional connection, the roles of the power source and the load can be changed at any time, and the direction of the power flow is reversible.
  • the vehicle controller VCU 201 which is one of the key components of the present disclosure, passes through, for example, an in-vehicle data bus (not shown, such as a CAN bus) and is based on the three-dimensional data stored in the in-vehicle high-precision satellite navigation receiver 220 and the mapper 240. Analyze and calculate the a priori data of the electronic map to perform one or more of the above generator set 100, ePSD 123, drive motor 140, automatic transmission 150, and battery pack 130 in a "independent" manner, respectively or simultaneously control.
  • an in-vehicle data bus not shown, such as a CAN bus
  • VCU 201 may be an automotive-grade high-performance embedded microprocessor. It can be understood that, without limitation, VCU 201 may also be a hardware logic component, including: field programmable gate array (FPGA), application specific integrated circuit (ASIC), application specific standard product (ASSP), system on chip (SOC), complex Programming logic devices (CPLD), etc.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • ASSP application specific standard product
  • SOC system on chip
  • CPLD complex Programming logic devices
  • a vehicle-mounted generator set 100 composed of a plurality of subsystems can be converted into mechanical energy by a vehicle fuel under the control of VCU 201, and then converted into electrical energy.
  • the VCU 201 can also control the ePSD 123 in particular to achieve fast and smooth switching between various working modes of the hybrid powertrain (which will be described in detail later) to meet the requirements of road load power balance.
  • FIG. 1 A preferred embodiment of the generator set 100 is shown in FIG. 1, including an internal combustion engine (ICE) 101 and its engine controller (ECU) 102.
  • the internal combustion engine 101 and the alternator 110 are mechanically coupled in two directions.
  • the three-phase AC output terminal of the generator 110 is bidirectionally AC-connected to the port I of the ePSD.
  • the genset 100 may also use an onboard hydrogen fuel cell engine (FC Engine). At this time, the output of the hydrogen fuel cell of the generator set 100 is direct current, and is unidirectionally electrically connected to the port I of the ePSD.
  • FC Engine onboard hydrogen fuel cell engine
  • the internal function module of port I of the ePSD will change from a bidirectional AC-DC converter (also called an inverter) to a unidirectional DC-DC converter (also called a chopper).
  • a bidirectional AC-DC converter also called an inverter
  • a unidirectional DC-DC converter also called a chopper
  • the internal combustion engine 101 is a 6-cylinder heavy-duty diesel or natural gas engine with a displacement of 7 to 11 liters and a peak power of between 240 kW and 360 kW. Larger displacement (11 to 15 liters) internal combustion engines can also be used. The peak power is greater, leaving more power margin. When the highway is more than a few kilometers long uphill, the vehicle has better climbing power However, the fuel-saving effect will be slightly weaker than that of the preferred displacement engine, the system cost is higher, and the cost performance is sub-optimal. Small displacement (less than 7 liters) internal combustion engine, the peak power is small, although the fuel saving effect is obvious, the cost is low, but the power reserve of the generator set is insufficient.
  • the engine 101 may also select a vehicle gas turbine that meets the above power requirements. Gasoline engines are significantly lower than diesel engines in terms of combustion thermal efficiency, ruggedness, and longevity, and are not suitable for use in trunk logistics heavy trucks.
  • the ACE heavy truck of the present invention can designate its internal combustion engine to work stably at a high efficiency point of combustion for a long period of time, basically eliminating the cold start of the engine and the rapid change of the speed and torque, while reducing the specific fuel consumption and carbon emissions, but also reducing pollutants (NOx , PM) emissions to achieve a synergy effect of energy saving and emission reduction. Due to the low NOx in the exhaust gas of the ACE heavy truck, the SCR system can reduce the consumption of its consumable urea (g/100km), thereby further reducing operating costs.
  • the DPF of the hybrid heavy truck also works steadily in its high-efficiency area for a long time, basically eliminating DPF active regeneration through staged parking to eliminate the large amount of particles deposited in it, which is time-consuming and oil-consuming.
  • the user's pain points further reduce fleet operating expenses.
  • the generator 110 is a permanent magnet synchronous motor (PMSM) with a rated power between 150 kW and 280 kW, and an AC induction motor or a reluctance motor that meets the above rated power requirements may also be used.
  • the peak power of the engine 101 should match the peak power of the generator 110 (the former is slightly higher) in order to realize the maximum potential of each.
  • the controller 121 of the generator is a bidirectional AC-DC converter (also called an inverter) containing at least one insulated gate bipolar transistor (IGBT) module, and its rated power and peak power are slightly higher than those of the engine Corresponding power value.
  • the generator set only needs to provide the drive motor with a stable and long-term average electric power required for high-speed driving.
  • the battery pack provides the drive motor with ePSD to provide the fast-changing 100-kilowatt-level two-way electric power flow required by peak and valley filling to meet the vehicle's power in real time.
  • the generator 110 is often the load of the engine 101, and the peak power of the generator 110 and the inverter 121 only needs to be slightly higher than its rated power, for example, 15% higher.
  • the generator 110 can also replace the standard kW-class starter motor and generator of the traditional engine.
  • the inverter 121 is used to control the generator 110 to achieve the start or start and stop functions. It can also use the in-cylinder braking function of the engine 101 for the motor
  • the effective load of 110 in drive mode becomes part of the ACE heavy truck long downhill retarder system.
  • the electric power shunt ePSD shown in Figure 2 is a hundreds of kilowatt-level power electronic network with three ports, which contains at least one IGBT or silicon carbide (SiC) power module, but does not include any kilowatt-level power supply or kilowatt-hour power Energy storage device.
  • IGBT or silicon carbide (SiC) power module contains at least one IGBT or silicon carbide (SiC) power module, but does not include any kilowatt-level power supply or kilowatt-hour power Energy storage device.
  • IGBT or SiC silicon carbide
  • the core module inverters 121, 122a&b, soft switches 133, and choppers 132a&b inside the ePSD123 can be integrated in a metal box. It can also be dispersed in multiple metal boxes and distributed in packaging arrangements.
  • IGBT is the most cost-effective mainstream power electronic power module.
  • SiC module is a rising star with better performance but higher cost in the near future. As the SiC industry chain continues to mature, its application proportion will gradually increase.
  • the IGBT module mentioned in the present disclosure may refer to various industrialized power electronic power modules including IGBT and SiC.
  • the AC port of the inverter 121 in the port I of the ePSD is bidirectionally electrically connected to the three-phase AC power output of the generator 110; the AC port of the inverter 122a in the port II is connected to the main The three-phase AC input terminal of the driving motor 140 is bidirectionally connected, and the AC port of the inverter 122b is bidirectionally connected to the three-phase AC input terminal of the driving motor 170; the end of the chopper 132a in the port III is bidirectionally connected to the battery pack 130a Connected, one end of the chopper 132b is bidirectionally DC-connected to the battery pack 130b.
  • the DC terminals of all inverters are bidirectionally electrically connected to the DC bus junction X of ePSD.
  • the other end of all choppers (mostly the end with a high DC voltage) also passes through a high-power electronically controlled three-terminal switch (also known as soft The switch) 133 is bidirectionally connected to the DC bus junction X of the ePSD. If the rated voltage V bp of the battery packs 130a and/or 130b is increased to be equal to the rated voltage of the DC bus V bus0 of the ePSD, in order to reduce costs, the chopper 132a and/or 132b may be omitted, and the battery packs 130a and/or 130b A direct bidirectional direct current is coupled to one terminal of the soft switch 133.
  • the battery packs 130a and/or 130b will lose the function of actively and dynamically adjusting the charge and discharge power in the hundreds of kilowatts; and ePSD also loses the flexibility defined by the software application (on-site or OTA remote iteration) according to the actual application requirements of the ACE heavy truck.
  • the DC bus confluence point X in the ePSD of the present disclosure is the nerve center of the ACE heavy truck power assembly.
  • the only DC voltage time-varying function and the collection of DC current time-varying functions of each branch at this point are described mathematically completely and accurately
  • the core parameter set of ACE heavy truck's dynamic road load power balance and power assembly operating conditions is the key point of ACE heavy truck's operation energy saving, emission reduction, and safety control.
  • the main drive motor 140 and the battery packs 130a and 130b are never allowed to simultaneously input power to the ePSD through port II and port III.
  • ePSD can implement pulse width modulation (PWM) control by including three major functional modules (inverter 121, inverter 122a, and chopper 132a) to achieve a ten-millisecond response time between the three ports Hundred-kilowatt-level electric power distribution is accurately and continuously adjustable to meet the changing road load power P v (Raod Load Power) requirements in real time.
  • PWM pulse width modulation
  • the ePSD can also be equipped with several sensors and memories, which can record the dynamic DC voltage V bus (t) and the DC current I g (t at the DC bus junction X at a measurement frequency higher than 10 Hz ), I m (t), I b (t) and other data, as part of the ACE heavy truck dedicated structured big data, and through the vehicle-mounted wireless communication module 210, real-time or timely upload to the cloud computing platform 001 for storage Subsequent analysis and processing.
  • the implementation of the dedicated structured big data will be described in detail later.
  • P g +P b P m .
  • P gx is the peak power of the generator 110 (should be slightly smaller than the peak power of the internal combustion engine P ICEx )
  • P bx is the peak charge and discharge power of the battery pack 130a
  • P mx is the peak power of the drive motor 140
  • P g is the output power of the generator 110, the positive value is the generated power, and the negative value is the driving power.
  • P b battery power, positive value is discharge power, and negative value is charging power.
  • P m is the driving motor power, the positive value is the driving power, and the negative value is the regenerative power, which is used for regenerative braking to generate electricity and recover energy.
  • the battery pack may exhaust its power in the Charge Depleting working mode and temporarily lose its continued supply.
  • Uphill power assisting ability at this time, the vehicle can only be driven by the generator peak power P gx , and can not continue to reach the road load power P v of constant speed uphill. Instead , it shifts to the deceleration to continue uphill.
  • the power of the ACE heavy truck and the timeliness of freight transportation have temporarily declined.
  • Mainline logistics ACE heavy trucks do not often encounter large slopes in most work scenarios. For ACE heavy trucks that often travel on the highways of the Chongshan Mountains, consider adding one or two large-capacity power-type battery packs to improve the dynamics of the vehicle's frequent work on heavy loads, high speeds and long slopes.
  • the high-power soft switch 133 in the ePSD three-terminal power electronic network will switch the DC current generated by the regenerative braking of the drive motor to a 100-kilowatt-level braking resistor with a radiator to convert the electrical energy into heat energy to achieve ACE Heavy truck (non-mechanical brake) electric retarder function.
  • the inverter 121 can also drive the motor 110, using the in-cylinder braking function of the engine 101 as the effective load of the motor 110, consuming excess regenerative electric energy from the main drive motor 140, and providing redundant backup for the high-power brake resistor 131.
  • ACE heavy trucks need to use ultra-long life, low temperature resistance, high safety, high cost performance power battery pack, and its batteries must withstand continuous charge and discharge of 5C ⁇ 10C rate and peak charge and discharge of 15C ⁇ 30C rate (15 second pulse) And, the charge rate is often higher than its discharge rate, working environment temperature -30 °C ⁇ +55 °C, equivalent deep charge and discharge (DoD100%) cycle life exceeds 12,000 times.
  • DoD100% cycle life exceeds 12,000 times.
  • the battery cell When the internal temperature of the battery cell rises to 10°C, the full charge and discharge capacity will be restored. However, the battery cell cannot be damaged by low-temperature and high-rate charging, or even cause a major safety hazard of the thermal runaway of the battery cell.
  • Mainstream lithium-ion power cells such as lithium iron phosphate (LFP) and ternary lithium (NCM or NCA) are generally afraid of cold.
  • LFP lithium iron phosphate
  • NCM ternary lithium
  • the temperature of the cell is below zero degrees Celsius, its high-rate discharge capacity above 2C is significantly reduced.
  • low-temperature discharge does not damage the cell; but at this time, low-temperature discharge above 2C and high-rate charging, it is easy to cause lithium negative electrode plating (Lithium Plating) and seriously damage the life of the cell, the mechanism of damage is that the metal lithium dendrite of the negative electrode pierces the diaphragm, causing a hidden safety risk of thermal runaway caused by a short circuit in the cell.
  • the battery management system (BMS) will monitor the temperature of the battery cell in real time, and it is strictly forbidden to charge the battery at a high rate when the battery cell is cold.
  • LFP, NCM, or NCA mainstream power batteries can not bear the responsibility of ACE heavy truck battery pack alone.
  • Lithium titanate batteries (LTO; positive ternary lithium/negative lithium titanate) are currently the only mass production power batteries that can fully meet all technical requirements of ACE heavy trucks.
  • LTO has two major disadvantages: low specific energy (65wh/KG) and high cost ($/KWh is several times that of LFP).
  • the disadvantage of low specific energy of LTO is that ACE heavy trucks have no limit to the volume and weight of battery packs with a total capacity of tens of kilowatts, which is not a concern; however, their high cost disadvantages may seriously affect the large-scale commercial use of ACE heavy trucks.
  • the LTO main battery pack 130a it is preferable to mix and match the LTO main battery pack 130a with the low-cost LFP or NCM secondary battery pack 130b, and the system cost performance can be optimized according to the specific application scenario of the ACE heavy truck.
  • the LTO main battery pack 130a When the cold winter starts after a long winter outdoor vehicle stop, the LTO main battery pack 130a immediately participates in the work, and the LFP or ternary lithium secondary battery pack 130b is temporarily controlled by the chopper 132b. It does not participate in high-rate charging temporarily. After a minute, the battery cell is heated to above 10°C, and the secondary battery pack 130b is turned on by the chopper 132b to participate in the work.
  • the battery pack is the most expensive subsystem in the ACE heavy truck. Mixing two or more battery packs with different batteries is beneficial to reduce the total cost of the battery pack and is crucial to optimizing the comprehensive cost performance of the ACE heavy truck.
  • LTO single cell voltage is only 2.2V, which is lower than LFP single cell voltage 3.3V and NCM single cell voltage 3.7V.
  • a battery pack with the same capacity has a high rated voltage and a multi-cell series structure than a low-rated voltage.
  • a multi-cell parallel structure has a complicated design and high manufacturing cost.
  • the battery packs used in most new energy passenger vehicles have a rated voltage range of 200V to 400V.
  • the peak power of the ePSD of the present invention can be as high as 500 kilowatts, and its DC bus rated voltage is preferably in the range of 600V to 800V.
  • the battery pack used in the present disclosure preferably has a rated voltage value between 200V and 400V, which has a high degree of coincidence with the rated voltage range of a battery pack used in a new energy passenger vehicle with a huge annual production and sales volume, which is convenient to fully utilize the maturity of today's new energy passenger vehicles
  • the power battery supply chain reduces costs and guarantees quality and supply.
  • These battery packs can match the voltage of the DC bus of the ePSD through the bidirectional buck-boost DC-DC converter (Boost-Buck, also called chopper) 132a and/or 132b inside the ePSD port III.
  • Boost-Buck also called chopper
  • Another function of the chopper is to continuously and accurately adjust the charge and discharge current amplitude of the battery packs 130a and/or 130b through pulse width modulation (PWM) within the peak range of 0% to 100% charge and discharge current.
  • PWM pulse width modulation
  • the main battery pack 130a may use a lithium titanate battery (LTO) with a capacity of 10KWh ⁇ 30KWh, which can continuously charge and discharge 5C ⁇ 10C, 20 seconds pulse peak charge and discharge 15C ⁇ 30C, and equivalent deep charge and discharge (100% DoD)
  • LTO lithium titanate battery
  • the service life exceeds 12,000 times, and the outdoor working environment temperature is -30 ⁇ +55 degrees Celsius.
  • the cost per kilowatt-hour (KWh or degree) of batteries is more than three times the cost of other mainstream automotive-grade lithium-ion batteries (such as LFP, NCM, NCA).
  • the secondary battery pack 130b may use mainstream lithium-ion power batteries with a capacity of 30KWh-90KWh, such as lithium iron phosphate (LFP) and ternary lithium (NCM or NCA).
  • LFP lithium iron phosphate
  • NCM ternary lithium
  • the main/sub battery pack with a total capacity greater than 100KWh can also be selected, which is conducive to enhancing the power of the vehicle under various operating conditions, reducing the upper limit of the equivalent cycle life of the battery pack and the peak value of the charge and discharge rate, but the large battery The weight, volume, and cost of the bag will increase, and comprehensive consideration is required.
  • the battery pack functions like a high-power engine with a small fuel tank, which has strong explosive force but insufficient endurance.
  • the battery pack can continuously provide the rated power of 100 kilowatts of the drive motor for a long time (within 5-20 minutes), or can provide the peak power of the drive motor of more than 300 kilowatts in a short time (within 30 seconds). Assuming that the total capacity of the battery pack is 30 kWh, the rated power of the drive motor is 300 kW, and the battery pack (capacity of 30 kWh) in the fully charged state (100% SoC) can be used to drive the motor separately for 6 minutes at zero output of the generator set Continuous power supply (10C discharge) with 300 kW intensity, allowing full-load hybrid heavy trucks (40 tons) to run for nearly 10 kilometers at a legal speed limit of 90 kilometers per hour on a smooth highway without cars.
  • the regenerated electrical energy stored in the battery pack can be regarded as "near-zero-cost energy".
  • the electric energy in the battery pack needs to be charged and discharged as much as possible to increase the battery pack energy turnover rate or the throughput.
  • the driving motor is used to provide power to the vehicle.
  • the energy when the battery pack is charged is either the electrical energy recovered through the regenerative braking of the driving motor or the electrical energy of the generator set.
  • port I is connected to the inverter 121
  • port II is connected to the standard main inverter 122a and the optional auxiliary inverter 122b
  • Port III is connected with a high-power intelligent soft switch 133, a standard main chopper 132a and an optional auxiliary chopper 132b
  • OTA remote modification and/or upgrade
  • the peak power of the inverter 121 should be nearly 25% higher than the peak power P gx of the generator 110; the main inverter 122a has the highest cost, and its peak power should be nearly 15% higher than the peak power P pmx of the main drive motor 140, while paying peak power inverter 122b should be paid higher than the motor drive power P smx 170 peak of nearly 25%, wherein P pmx> P smx; main peak power of the sum of the chopper 132a and / or 132b should pay chopper It is nearly 15% higher than the peak power P pmx of the main drive motor 140.
  • the speed of cost-effective improvement of power semiconductor modules such as IGBT or SiC is significantly higher than that of battery packs, motors, and brake resistors.
  • the ePSD with hardware margin design is a software-defined power domain power shunt from the beginning, which can be continuously improved and evolved through remote software update iteration (OTA).
  • OTA remote software update iteration
  • the inverters (121, 122a, 122b) accurately control the AC motors (110, 140, 170) in the Vector Control mode, which can continuously and accurately adjust the amplitude and flow direction of 100 kilowatts of electric power in real time (millisecond level).
  • the choppers (132a, 132b) can be externally connected to battery packs with different rated voltages, and can also provide real-time and accurate adjustment of the battery pack charge/discharge current of 100 amps.
  • the standard main drive motor 140 is a permanent magnet synchronous motor (PMSM), with a rated power of 200 KW to 300 KW, a peak power of 300 KW to 500 KW, and a peak torque of 1800 NM to 2500 NM.
  • the drive motor can also be an AC induction motor or a switched reluctance motor that meets the power and torque requirements.
  • the peak power of the main inverter 122a must be higher than the peak power of the main drive motor.
  • the rated power of a single motor and inverter used in electric (including hybrid electric) passenger cars is usually less than 150 kilowatts.
  • a preferred solution is to use a nine-phase permanent magnet AC motor and a matching inverter with a nine-phase AC output.
  • the nine-phase permanent-magnet AC motor is actually a coaxial/same-shell integration of three smaller three-phase permanent-magnet alternating currents.
  • the corresponding nine-phase inverter consists of three independent smaller three-phase inverters integrated in the same shell .
  • this multi-phase motor + multi-phase controller has redundancy, which can reduce the overall cost of the entire system and improve the performance and reliability of the system.
  • the power parameters of the motor and controller are beyond the above range, and the hybrid heavy truck can also work. It's just that either too low a configuration leads to improved economic efficiency but reduced power, or too high a configuration leads to improved power and reduced economic efficiency.
  • a standard main drive motor 140 arranged in front of the gearbox 150 (P2 position) and a second transmission shaft (also called second A drive motor 170 (MG3) on the drive axle) 180 (P4 position).
  • the main drive motor MG2 may preferably be a permanent magnet synchronous motor (three-phase or six-phase AC) with a rated power between 150KW and 230KW.
  • the secondary driving motor MG3 may preferably be a high-torque permanent magnet synchronous motor with a rated power of 100 KW to 150 KW and a peak torque of not more than 1000 NM (Nm), which is driven by a single-stage speed reducer or the second rotating shaft 180 directly.
  • the inverter 122b can select a motor controller with a rated power of 150KW to 200KW.
  • the input shaft of the gearbox 150 is bidirectionally mechanically coupled with the output shaft of the main drive motor 140 through a flexible mechanical coupling 152, and the output shaft of the gearbox is bidirectionally mechanically coupled with the first rotating shaft (also referred to as a first drive axle) 160.
  • a heavy-duty 6 to 12-speed automatic mechanical transmission (AMT-6 to AMT-12) with a peak torque at the input of more than 2000 Nm is used, or a heavy-duty dual-clutch transmission (DCT) or hydraulic Torque converter automatic transmission (AT).
  • DCT heavy-duty dual-clutch transmission
  • AT hydraulic Torque converter automatic transmission
  • the drive motor has the highest torque at low speed, so the 6-8 forward speed gear of the automatic transmission is sufficient for ACE heavy trucks, and no more gears are needed.
  • the maximum power required by the gearbox in the present invention is not the traditional one-way mechanical power transfer, but the two-way mechanical power transfer. Therefore, the main bearings and gears in the automatic transmission of the ACE heavy truck need to be strengthened in design and manufacturing to ensure its Performance, durability and longevity are all up to standards.
  • ACE heavy truck system The above describes the engineering basis, system architecture, and hardware configuration of the ACE heavy truck system according to the present disclosure, which can achieve the beneficial effects of fuel economy and emission reduction of ACE heavy trucks in trunk logistics.
  • how to use especially Three-dimensional electronic maps, car navigation equipment, and ACE heavy truck storage structured big data stored on cloud computing platforms (for example, cloud servers), combined with machine learning algorithms and cloud platform computing power, training "fuel-saving artificial intelligence” to further Realize the predictive adaptive cruise of "fuel saving + artificial intelligence" in the same lane of the ACE heavy truck highway.
  • cloud computing platforms for example, cloud servers
  • the ACE heavy truck is equipped with a mapper 240 and a satellite navigation receiver 220.
  • a priori information such as the road gradient (such as the uphill angle ⁇ u and the downhill angle ⁇ d shown in FIG. 4 ).
  • the internal memory of the car navigation system 240 shown in FIG. 1 may include a three-dimensional map with road-level positioning accuracy (latitude and longitude) and longitudinal slope accuracy of 0.1 degrees.
  • ADAS advanced driver assistance system
  • the satellite navigation receiver 220 (or GNSS) is used for real-time measurement of longitude, latitude, altitude, longitudinal road slope, longitudinal linear velocity and other information at the vehicle's location (ie, current location).
  • a satellite navigation receiver with dual-antenna input (221 and 222) carrier phase dynamic real-time differential (RTK) technology (referred to as “RTK receiver” for short) can measure speeds of ten times per second (Measurement frequency 10 Hz) Real-time accurate positioning and attitude measurement of ACE heavy truck.
  • the International Satellite Navigation System currently has four independent systems, GPS in the United States, Glonass in Russia, Galileo in the European Union, and Beidou BD in China.
  • Beidou-3 can provide the latest satellite navigation services to the Asia- Pacific region with China as the core and the countries along the "Belt and Road". It is expected to complete global coverage in 2020.
  • China's Beidou system has signed a compatibility agreement with the other three systems.
  • the 3 RTK chip is used, which is matched with two satellite antennas 221 and 222 installed at the top of the heavy truck cab at least one meter apart, and real-time dynamic measurement of the vehicle's timing, speed, and position / Latitude), and longitudinal attitude (ie, the road's longitudinal slope angle).
  • the RTK chip can complete the satellite navigation positioning and attitude measurement based on the independent signals of the four navigation satellites in any combination of the four GNSS systems.
  • the timing accuracy is 50 nanoseconds
  • the speed measurement accuracy is 0.2 meters per second
  • the horizontal plane latitude and longitude positioning accuracy is less than 2.5 meters
  • the highway longitudinal slope accuracy is less than 0.15 degrees
  • the highest measurement frequency is 10 Hz.
  • the RTK navigator cannot accurately measure the vertical altitude of the road surface under the wheel of the vehicle in real time.
  • many countries in the world have strict control over the mapping and release of accurate altitude information.
  • the present invention does not have high requirements for the measurement accuracy of the absolute altitude of the road surface of the vehicle, and the sub-100-meter level accuracy is sufficient.
  • a single-antenna satellite navigation receiver plus a car-level inertial navigation (IMU) can also be used to complete the three-dimensional positioning and navigation of the vehicle.
  • the IMU based on multiple micro-electromechanical system (MEMS) acceleration sensors and gyroscopes (Gyro) can measure the longitudinal slope function of the road driven by the ACE heavy truck in real time with a measurement frequency higher than 10 Hz and a measurement accuracy of 0.1 degrees. It needs to be emphasized that because the slight 0.1-degree change in the longitudinal slope of the road when ACE heavy trucks are driving at high speed is the secret source of substantial fuel saving and emission reduction, dynamic and accurate measurement of the distribution function of the longitudinal slope along the highway is crucial to ACE heavy trucks to optimize energy management.
  • MEMS micro-electromechanical system
  • Gyroscopes gyroscopes
  • each ACE heavy truck is only consistent with the performance configuration parameter constants of the important subsystems of the heavy truck, the discrete variables of the total vehicle weight (towing head loading cargo trailer), the two continuous time variables of vehicle speed and vehicle acceleration, and the driving path Limited constants or variables such as the continuous-time variable of longitudinal slope distribution function are directly related, and are not directly related to the annual average fuel consumption of the transportation industry or vehicles.
  • an ACE heavy truck enters the starting and ending points of the current day's journey path before the freight departure, it can be structured from the brain of artificial intelligence (AI) in the cloud with the help of the historical experience of all ACE heavy trucks operating on the road segment.
  • AI artificial intelligence
  • the core of ACE heavy truck operation structured big data is its ePSD operation big data, including the following content: sampling frequency 10.0Hz, the clocks of all subsystem controllers are calibrated according to the timing of the satellite navigation receiver 220, and each sampling time t i , each microcontroller of the ACE heavy truck directs the sensor to locally collect and store at least the following variable values: road longitude L lg (t i ), latitude L lat (t i ), longitudinal slope G (t i ), vehicle speed v (t i ), vehicle acceleration a(t i ), generator DC current I g (t i ), drive motor DC current I m (t i ), battery pack DC current I bat (t i ), DC bus voltage V bus ( t i ), battery pack state of charge C bat (t i ), brake resistor DC current I bk (t i ), ambient temperature T(t i ), ambient wind speed and wind direction v xyz (t i ), etc.
  • the VCU 201 may be configured as: latitude and longitude (equivalent meter-level positioning accuracy) along the entire journey road (meter-level interval density) based on the three-dimensional map pre-stored in the mapper 240, and longitudinal road gradient (Referred to as "longitudinal slope", 0.1 degree accuracy) and other data, and/or based on the longitude, latitude, altitude, longitudinal slope, vehicle speed and other data at the vehicle position dynamically measured by the RTK receiver 220, to ePSD 3.
  • the motor and battery pack perform predictive power control in an "independent" manner. On the premise of ensuring driving safety and cargo timeliness, the pursuit of ACE heavy trucks to minimize actual fuel consumption.
  • the VCU can first use the measured longitudinal slope data to control the transient power distribution between the three ports of the ePSD.
  • the VCU 201 can perform the combination of the vehicle dynamics equations according to the actual transient power distribution parameters of the ACE heavy truck ePSD three-port, vehicle longitudinal linear velocity and acceleration, and the vehicle dynamic equations The vehicle makes a quick judgment after the VIL calculation, and chooses to use the vehicle's three-dimensional electronic map as the standard to realize the automatic error correction function of the system.
  • a common single-antenna satellite navigation receiver 220 can also be selected, and a single-axis or multi-axis dynamic tilt sensor can be selected to measure the positioning (longitude/latitude) of the driving vehicle and the longitudinal slope of the road in real time.
  • a dynamic tilt sensor There are many ways to implement a dynamic tilt sensor.
  • One of the cost-effective implementations is the integration of the acceleration sensor of the car-level micro-electromechanical system (MEMS), the gyroscope and the dedicated chip.
  • MEMS micro-electromechanical system
  • VCU 201 uses vehicle dynamic three-dimensional navigation information (especially road longitudinal slope distribution function) to realize automatic predictive fuel saving control.
  • VCU 201 may direct internal combustion engine 101 to drive generator 110, increase the power generation in advance, and use most of the generated electrical energy to power drive motor 140 to Provide the power required for the vehicle to travel at a constant speed, and use the remaining electrical energy to charge the battery packs 130a & 130b, and try to fully charge the vehicle before starting the uphill slope. This is especially suitable for the scenario where the road ahead has a “long gentle slope”.
  • VCU 201 can direct the internal combustion engine to switch to the idling point. At this time, the output power of the generator is zero, and only the battery pack 130a and/or 130b is used to charge To supply power to the driving motor 140 to provide the power required for the vehicle to travel at a constant speed. This is particularly suitable for scenarios where the road ahead has a "short slope" (also called "small slope").
  • the slope length is short (for example, less than 2 kilometers)
  • the vehicle has climbed to the top of the slope, and it can be regeneratively braked by the drive motor in the subsequent downhill phase. Recharge the battery pack to recover energy.
  • the electric energy in the tens of kilowatt-hour power battery packs is fully utilized and charged and discharged multiple times to increase the power throughput turnover rate, compared with the use of large-capacity battery packs of hundreds of kilowatt-hours to store in advance A large amount of power is more cost-effective.
  • the traditional heavy truck predictive cruise strategy cannot be applied to those cases where the length of the slope section is short and the slope is small, that is, the "small slope" situation (such as the length of the slope section is less than 2 kilometers and the longitudinal slope is less than 2.0 degrees).
  • the VCU can dynamically consider the state of charge (SOC) of the battery pack. For example, when it is detected that the state of charge (SOC) of the battery pack is higher than the first charge threshold (for example, the SOC is higher than 80%), the output power P 1 of the generator set may be reduced, or even to zero, mainly through the battery pack
  • the discharge power P 2 is used to supply power to the drive motor and provide vehicle driving power.
  • the output power P 1 of the generator set can be adjusted up to its peak value P gx and the resulting
  • the main part of the electric energy is used to power the drive motor (140 and/or 170) to drive the vehicle, and the remaining part of the electric energy is used to charge the battery pack (130a and/or 130b). In this way, it is ensured that the power in the battery pack will not be exhausted, but a certain amount of power is always stored, which can provide the explosive power required when the vehicle needs to accelerate or go uphill at a constant speed.
  • the VCU can command the generator set to generate power at the maximum power P gx in advance, and use a part of the generated electrical energy to drive the motor to provide vehicle power, and basically use the rest of the generated electrical energy to give
  • the VCU directs the genset to drop to zero output in advance, as much as possible when the vehicle starts downhill, basically exhausting the power in the battery pack, and then using the number of long downhill
  • the negative slope power of 100 kilowatts can quickly charge the battery pack through regenerative braking, thereby achieving fuel saving.
  • the heavy truck may further include an automotive-grade millimeter-wave radar module 230 and a radar antenna 231 installed at the front of the heavy truck for real-time monitoring of the heavy truck and the vehicle directly in front of it The distance between them and the relative speed of the two cars.
  • the peak detection distance range of the millimeter wave radar is 100 meters to 300 meters. It can also use the car's forward-looking monocular or binocular camera plus a dedicated chip to merge with the forward millimeter-wave radar to enhance the performance and system robustness of the vehicle's front-end speed and distance measurement.
  • the heavy truck may further include a vehicle-mounted wireless communication module (T-box) 210, through, for example, WiFi, 3rd/4th/5th generation cellular mobile communication network (3G/4G/5G) 002 (see FIG. 4), let The heavy truck is connected to the cloud computing platform 001.
  • T-box vehicle-mounted wireless communication module
  • VCU 201 can receive signals from many onboard sensors including RTK receiver 220 and millimeter wave radar 230, and control engine 101, engine control module 102, generator 110, and electric power shunt ePSD 123 (including reverse Transformers 121, 122a&b, high-power soft switches 133, choppers 132a&b), battery packs 130a&b, drive motors 140&170, automatic gearbox 150 plus controller (TCU) 151, mappers 240 and many other modules or subsystems,
  • TCU automatic gearbox 150 plus controller
  • VCU can effectively use the electronic horizon 3D road information in the range of 50 kilometers or even 500 kilometers, and real-time predictive power control by cumulatively superimposing the particle size of the 50-meter road section to minimize the overall fuel consumption of the ACE heavy truck throughout the journey.
  • PAC predictive adaptive cruise
  • This function automatically controls the longitudinal driving of the vehicle in the same lane, frees the driver's feet, reduces the driving labor intensity, and realizes the automatic acceleration, deceleration, cruise, and taxi in the same lane of the ACE heavy truck highway.
  • the aforementioned predictive adaptive cruise may include the following three modes: normal mode, fuel-saving mode, and high-performance mode (also known as sports mode).
  • a mid-level passenger car has a total weight of two tons and a maximum driving power of 100KW
  • a full-load heavy truck has a total weight of up to 40 tons and a maximum driving power of only 350KW.
  • the driving power per unit tonnage of the heavy truck is far less than the multiplier
  • the dynamic driving characteristics of the two types of vehicles differ greatly.
  • a heavy truck is driving on an open highway, due to its huge inertia and insufficient driving power margin, it is difficult to maintain a constant speed up and down a long slope, and it is difficult to follow a passenger car directly ahead at a constant distance.
  • the cruising speed Vc selected by the driver is necessary to use the cruising speed Vc selected by the driver as the intermediate value, set the upper and lower cruising speed limits, determine the cruising speed band of the heavy truck, and control the vehicle within the cruising speed band.
  • the three PAC modes have different emphasis.
  • the ordinary mode takes into account both fuel consumption and power (ie, cargo timeliness); the fuel-saving mode focuses on fuel consumption and relaxes the power requirements; the high-performance mode emphasizes power and relaxes the fuel consumption requirements.
  • the following upper and lower limit values of cruising speed band can be selected.
  • the cruising speed (1.0-0.08)Vc ⁇ V(t) ⁇ (1.0+0.08)Vc and/or the legal maximum speed of the road segment; in the fuel-saving mode, cruising speed (1.0-0.15)Vc ⁇ V( t) ⁇ (1.0+0.05)Vc and/or legal maximum speed; in high performance mode, cruise speed (1.0-0.05)Vc ⁇ V(t) ⁇ (1.0+0.12)Vc and/or legal maximum speed of the road section .
  • VCU based on vehicle configuration and working condition information including total vehicle weight, speed, etc., combined with the current road longitudinal slope information of the vehicle and the three-dimensional information such as the longitudinal slope distribution function and curve curvature of the road of the tens of kilometers ahead of the vehicle stored by the mapper, dynamic Adjust the safety following distance L s of adaptive cruise.
  • Road longitudinal slope data (positive/negative/size) has a huge impact on the dynamics of heavy trucks and the effectiveness of braking. It is not necessary for passenger cars to dynamically adjust the safety following distance L s according to the road longitudinal slope distribution function, but this is very important for the safe driving of heavy trucks.
  • the safety following distance L s can be subdivided into three specific distances: L1 is the warning distance, L2 is the warning distance, and L3 is the dangerous distance, where L1>L2>L3.
  • the VCU When the distance L s between the ACE heavy truck and the vehicle in front is gradually smaller than L1, L2, and L3 and the relative speed v>0 (indicating that the vehicle interval is continuously shortened), the VCU is graded through various signals such as acoustic, visual, and tactile in the vehicle Raise warnings to remind drivers. At the same time, the VCU controls the generator set and the drive motor to gradually reduce their respective output power. When the output power of the drive motor drops to zero, then gradually increase the regenerative braking power, slow down the vehicle, and recharge the energy by charging the battery pack .
  • the maximum regenerative braking power of the drive motor 500KW can only meet the auxiliary braking requirements of deceleration of about 0.1g (g is the acceleration of gravity) for a full-load heavy truck traveling at high speed.
  • g is the acceleration of gravity
  • Driver's brake reaction time plus heavy truck mechanical brake (pneumatic brake) system response time is about 1.0 second delay.
  • the above operation of the VCU can be completed in 25.0 milliseconds, which is dozens of times faster than the response of the traditional heavy truck driver + mechanical braking system, and the regenerative braking system and the mechanical braking system are completely independent of each other.
  • the regenerative braking function of the drive motor of the ACE heavy truck improves the overall braking performance of the vehicle and provides safety redundancy.
  • ACE heavy truck predictive adaptive cruise can also improve driving safety and reduce vehicle rear-end accidents.
  • Predictive adaptive cruise (PAC) work is divided into two categories.
  • the first category is when there is no vehicle within a few hundred meters in front of the same lane, the vehicle controls the ACE heavy truck to drive within the specified speed band according to the fuel-saving control algorithm.
  • the second category is that when there are vehicles in front of the same lane within 200 meters, the ACE heavy truck needs to be controlled outside the safe following distance L s .
  • the mainline logistics heavy truck will encounter congested roads due to factors such as commuting traffic, road repairs, or traffic accidents from time to time (the average speed is less than 30 km/h; acceleration and deceleration are frequent).
  • the driver's driving intensity and fuel consumption of heavy trucks are both Skyrocket.
  • Congested highways are one of the "pain points" of the highway logistics industry in various countries around the world. China is more congested than the US highways on average.
  • the ACE heavy truck can turn on the "smart following" function at this time. This function can only be used when the closed road is driving at a low speed (the average speed is less than 30 km/h), and it cannot be used on open city or suburban roads.
  • the VCU commands the ACE heavy truck powertrain to accelerate and decelerate frequently.
  • the drive motor can maintain the maximum torque output from zero speed to rated speed.
  • the starting acceleration and braking deceleration of the ACE heavy truck are significantly higher than that of the traditional internal combustion engine heavy truck, which can be compared with the acceleration and deceleration of the traditional internal combustion engine passenger car.
  • the heavy trucks frequently brake at low speed, which is very conducive to the recovery of energy by the 100-kilowatt regenerative braking.
  • the ACE heavy truck is more fuel-efficient than the traditional internal combustion engine heavy truck in the "smart car following" mode of congested roads (fuel saving rate exceeds 30%), and can also significantly reduce the driving labor intensity of drivers.
  • the engine in-cylinder brake retarder has a multi-purpose benefit, but in-cylinder braking brings huge noise pollution, and the retarding effect decreases when the vehicle is at a low speed.
  • the ACE heavy truck power assembly of the present disclosure in addition to saving fuel, can also be used in one machine, and at the same time realize the slow function of the heavy truck without additional cost, which is more cost-effective than the several commercial products of heavy truck retarders that have been commercialized in batches. high.
  • VCU 201 instructs ePSD 123 to first shut down engine 101, and charge battery pack 130a and/or 130b through regenerative braking of driving motor 140 and/or 170.
  • the soft switch 133 switches to the braking resistor 131, disconnects the battery pack, and converts excess electric energy into heat energy consumption.
  • the inverter 110 can also be used to drive the generator 110, and the engine can be driven to consume excess electrical energy through its in-cylinder braking to provide retarder system redundancy.
  • regenerative braking can also significantly extend the life of mechanical brake pads, and significantly reduce the operation and maintenance costs of the ACE heavy truck brake system.
  • the ACE heavy truck system architecture of the present invention may include L1-L2 conditional automatic driving functions.
  • the powertrain architecture is a fully digital software-defined powertrain.
  • ACE heavy trucks can be upgraded to L4 or L5 driverless heavy trucks.
  • L1 to L5 level autonomous driving heavy trucks must comply with the road vehicle functional safety standard ISO 26262 and reach a specific safety level (ASIL safety level).
  • ACE heavy truck has regenerative braking function based on drive motor and ePSD, automatic emergency brake assist function (AEBA), and long downhill retarder function.
  • AEBA automatic emergency brake assist function
  • AEBA automatic emergency brake assist function
  • the ACE heavy truck system architecture of the present disclosure can simultaneously improve the three ultimate goals of automobiles: safety, energy saving, and environmental protection.
  • heavy truck array is to use a complete set of advanced driver assistance technology (ADAS) plus real-time and reliable communication (V2V, V2X) between the car and the car and the cloud, to safely follow the distance between the two high-speed heavy trucks. It is greatly reduced from more than 50 meters to less than 15 meters required by the regulations, which helps to significantly reduce the wind resistance power of the two vehicles in the front and rear.
  • ADAS advanced driver assistance technology
  • V2V, V2X real-time and reliable communication
  • the pilot heavy truck can save fuel by 4%, and the following heavy truck can save fuel by 10%.
  • the emergency braking performance of the heavy truck must be better than that of the pilot heavy truck to avoid rear-end collisions.
  • the high-speed emergency braking performance of ACE heavy trucks in the same lane is always better than that of traditional fuel heavy trucks with the same load. Therefore, ACE heavy trucks are always suitable for following heavy trucks in the entire train of heavy trucks, which can further save fuel. From the perspective of fuel economy, the distance between the heavy truck array and the vehicle is not as small as possible.
  • the effective wind speed of the water tank following the front of the heavy truck is reduced, and it is required to turn on the water tank fan with a power consumption of tens of kilowatts to meet the dynamic heat dissipation power required by the heavy truck diesel engine, resulting in the overall fuel consumption of the heavy truck following the increase.
  • the diesel engine displacement of the ACE heavy truck is reduced by about 30% compared to the engine displacement of the traditional heavy truck, which means that the area and heat dissipation power of the water tank are reduced by about 30%.
  • the ACE heavy truck brakes faster than the traditional heavy truck.
  • the total braking power High, short braking distance, ACE heavy truck as a follower vehicle, in the highway section without large ups and downs, the safe following distance of the truck array can be shortened to 6 meters.
  • the fuel saving rate may exceed 10%.
  • the ACE heavy truck achieves a 30% reduction in overall fuel consumption compared to the traditional fuel heavy truck through the predictive adaptive cruise in the same lane of the expressway according to the present invention, mainly relying on the powertrain technology of hybrid electric power, plus a proprietary structure Big data, three-dimensional map electronic horizon, and artificial intelligence fuel-saving algorithm.
  • the ACE heavy truck of the present invention uses mature and commercialized core components and system integration technology, and can be landed within five years to achieve large-scale commercial use.
  • ACE heavy truck with a battery pack capacity of only tens of kilowatt hours, its power consumption at a high speed of 800 kilometers for cargo transportation consumes more than 1,000 kilowatt hours (kWh).
  • Adding a plug-in hybrid function is technically feasible but has little commercial significance.
  • the invention is essentially an advanced extended range electric heavy truck without plug-in function.
  • ACE heavy trucks use the frequently occurring downhill negative values of tens of kilowatts to hundreds of kilowatts generated by the frequently occurring rapid changes in the road's longitudinal slope with 0.1-degree accuracy and subtle second-level changes when driving on loaded highways. The power of the slope can charge the battery pack.
  • VCU checks the situation to ensure that when the vehicle encounters a large uphill with a length of several kilometers or more, there is enough time to fully charge the battery pack in advance, to avoid the vehicle pack from running out of power on the way to the mountain.
  • the peak power of the generator set is not enough to support the vehicle's constant speed uphill, so it has to change gears and decelerate uphill.
  • the VCU can dynamically calculate and predict the time function of the vehicle's full-grade slope power in real time (sub-second level) with an accuracy of ten kilowatts, so as to dynamically and predictably adjust the internal combustion engine's
  • SoC state of charge
  • PAC predictive adaptive cruise
  • the optimal daily fuel consumption of an ACE heavy truck and the configuration and load of the vehicle, the time-space function of the longitudinal slope of the road along a specific journey (or route), the weather conditions along the day, and the traffic conditions along the way are closely related, but there is not much connection between the average fuel consumption value of the large number of heavy trucks with the same configuration and load in the whole province or even the whole country.
  • the daily average fuel consumption of each road section is the lowest, and the cumulative fuel consumption can ensure the best comprehensive fuel consumption of the ACE heavy truck throughout its life cycle. All the ACE heavy trucks with different configurations and different loads have accumulated special structured big data for a specific journey, which has a guiding significance for each ACE heavy truck operated by the journey.
  • the cloud platform uses machine learning specific algorithms, mobilizes enough computing power, utilizes increasingly accumulated proprietary structured big data, trains "fuel-saving artificial intelligence", concentrates collective wisdom, seeks the best fuel-saving strategies for specific journeys, and serves
  • Individual ACE heavy trucks are provided with fuel consumption benchmark values and default preferred fuel saving strategies for specific journeys, so that each ACE heavy truck can benefit from it.
  • Each heavy truck uses its VCU to perform "edge computing". Based on the environment and vehicle operating data at this time, it dynamically modifies the default fuel saving strategy in real time to minimize the overall fuel consumption of the journey.
  • the operating data from the main powertrain subsystems such as the above-mentioned generator set, ePSD, drive motor, automatic transmission, and battery pack can be composed of many sensors on the ACE heavy truck.
  • the “Internet of Things” real-time measurement and acquisition is stored in structured big data in the memory of a VCU, for example.
  • structured data refers to a plurality of data that are "associatedly” recorded in a certain "mapping relationship”.
  • the global navigation satellite system (GNSS) tens of nanoseconds ultra-high-precision time service can be used to dynamically calibrate the microprocessor clock of each on-board subsystem, including the VCU clock, and mark it with a unique time series Structured big data.
  • GNSS global navigation satellite system
  • the vehicle includes a VCU 201, an engine 101 of the genset, an engine control module 102, a generator 110, an electric domain power shunt (ePSD) 123 (including inverters 121, 122a&b; soft switching 133; chopper 132a&b), drive motor 140&170, battery pack 130a&b, gearbox 150, gearbox controller 151, millimeter wave radar 230, mobile communication module 210, mapper 240, RTK receiver 220 and other important subsystems are all There are dedicated microprocessors, memory and sensors.
  • ePSD electric domain power shunt
  • the engine control module 102 can measure and record operating data such as vehicle speed, engine speed, torque, and specific fuel consumption (BSFC) at a measuring frequency of 20 Hz;
  • the generator controller (inverter) 121 can measure at 20 Hz Frequency records the mechanical speed and torque of the input shaft of the generator 110, the internal temperature and the output DC voltage, current and internal temperature of the inverter 121 of the generator;
  • ePSD 123 can record the DC bus junction at a measurement frequency of 20 Hz
  • the battery management module (BMS) included in the battery pack 130a&b can record its output DC voltage, current, and its internal cells at a measurement frequency of 10.0 Hz And battery module level current, voltage, temperature, state of charge and other data;
  • the millimeter wave radar 230 can record the distance and relative speed between the vehicle and the vehicle directly ahead at a measurement frequency of 10 Hz.
  • the sensor measurement parameters of each subsystem may overlap with each other, and the data overlap and redundancy help to improve the fault tolerance and error correction of the entire system.
  • VCU 201 uses time stamps as the benchmark for all subsystem measurement data to summarize and assemble proprietary structured big data related to fuel economy of ACE heavy trucks generated during the operation of ACE heavy truck 010 , May be referred to as "fuel saving data package”.
  • the "fuel saving data package” will be uploaded to the cloud computing platform 001 centralized or distributed "real-time” (sub-second delay) or “timely” (hour-level delay) via the mobile Internet 002 or wired Internet Storage for subsequent analysis and processing.
  • the data package can be uploaded to the cloud computing platform 001 "quasi-real time" through the wireless communication module 210 (shown in FIG. 1) and the 3G/4G/5G cellular mobile communication network 002 (shown in FIG. 3). Server-side storage for subsequent data processing.
  • the so-called “quasi-real time” refers to the delay in uploading fuel-efficient data packets within a few hours.
  • the data packet can be encrypted before uploading to ensure the privacy and security of the data.
  • the cloud platform 001 will gather all the many ACE heavy truck fuel saving data packages that use the present invention.
  • the machine learning proprietary algorithm is used to train the artificial intelligence (AI) brain of the "fuel-saving robot", referred to as the "fuel-saving AI brain", in search of the ACE heavy truck.
  • AI artificial intelligence
  • the fuel-saving AI brain can perform hundreds of millions of calculations in sub-seconds according to the changing ACE heavy truck driving conditions, looking for the dynamics of every second and every minute time period (corresponding to the driving distance of 20 meters to thousands of kilometers)
  • the "fuel-saving robot" of the present invention will not completely replace human drivers, but is a good assistant for trunk truck heavy truck drivers.
  • the starting point and end point of the journey of trunk logistics heavy truck are known in advance.
  • the VCU 201 of ACE heavy truck 010 can automatically request the “fuel-saving AI brain” of cloud platform 001 to download the optimal fuel-saving control default plan and the best fuel consumption value for the journey (l/100km ), as a reference for the local real-time calculation (edge computing) of the vehicle fuel-saving AI brain included in the VCU.
  • edge computing edge computing
  • the driver When the driver opens the ACE heavy truck on the closed highway, he can select the mode (normal mode/fuel-saving mode/sports mode), enable predictive adaptive cruise function, and replace the part of the driver with the fuel-saving AI brain of VCU
  • the driving function realizes the automation of this heavy truck driving in the same lane (acceleration/cruising/coasting/deceleration), liberates the driver's feet, reduces the driver's driving labor intensity, and achieves the best effect of fuel saving.
  • the driver is still responsible for the vehicle's steering and emergency braking, and keeps a full range of monitoring of the heavy truck driving at all times.
  • Another beneficial effect of the present invention is the control of the fuel-saving AI brain, which eliminates the long-term pain point of the industry that the heavy truck driver's human factors cause the actual comprehensive fuel consumption of the vehicle to be discrete up to 25%, and ensures that each ACE heavy truck runs on the same road section.
  • the best fuel-saving effect can be achieved with a high degree of consistency. This highlight is also very important for transportation companies.
  • the essential difference between the ACE heavy truck with predictive adaptive cruise function and other hybrid vehicles with similar technical characteristics and the traditional diesel heavy truck in the present invention is that the former is highly focused on the comprehensive fuel saving under highway conditions, which can effectively solve
  • the beneficial effects of exhaust pollutants and carbon emissions can also achieve the beneficial effects of improving vehicle braking performance, providing long downhill retarder functions, and improving vehicle active safety.
  • the structural features, devices and methods of the ACE heavy truck described in the present invention are also applicable to long-distance passenger ACE buses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混动商用车的制动辅助和缓速***。该***主要针对大型商用车(卡车或客车)长途运输应用场景。根据车载三维电子地图,导航仪实测车辆三维定位数据,和前视毫米波雷达实测的本车辆与同车道前方车辆之间的相对速度和绝对距离等数据,通过车辆控制器(201)指挥电功率分流器(123),以十毫秒级响应时间,在发电机组(100)、动力电池包(130)和驱动电机(140)三者之间精准连续地动态调配百千瓦级电功率的流动方向和幅度,实时地满足车辆动力学方程所要求的道路负载瞬态功率平衡,通过预测性自适应巡航控制加节油AI算法达到车辆节能减排并降低司机长途驾驶劳动强度,实现紧急制动辅助功能,和车辆长下坡时的缓速功能,提高车辆的行驶安全性。

Description

混动商用车再生制动和缓速*** 技术领域
本发明涉及大型商用车油电混合动力总成的再生制动和缓速***装置和控制方法。尤其涉及重卡在以长途高速公路行驶为主的干线物流应用场景下,基于人工智能的预测性车辆功率控制,实现自适应巡航,前方碰撞预警,紧急制动辅助,长下坡缓速等功能,达到提高车辆行驶主动安全性、驾驶轻便性、和节油减排的有益效果。
背景技术
当今欧美针对包括公路重型卡车(简称“重卡”,车辆总重大于15吨)在内的大型商用车辆的强制性排放法规已从聚焦减少尾气污染物排放的欧六标准(2014年在欧洲全面实施)和美国EPA2010(2010年在美国全面实施)转向聚焦降低尾气中以二氧化碳(CO 2)为主的温室气体(GHG)碳排放的新兴排放法规。车辆的碳排放(克/公里)和其油耗(升/百公里)成正比,减少碳排放等同于降低油耗(或提高燃油经济性英里/加仑)。美国联邦政府2016年颁布的针对中/重型发动机和商用车的温室气体二阶段法规(GHG Phase II),明确规定了2021年到2027年期间,所有在美国销售的新中/重型发动机和商用车在维持EPA2010尾气污染物排放限值不变的前提下,逐年提高燃油经济性(英里/加仑),降低油耗(升/百公里)及碳排放(克/吨公里)的详尽标准。2018年11月,欧洲议会投票批准首个欧洲重卡碳排放强制性法规(即欧-7标准)。该法规以2019年柴油重卡为基准,要求到2025年,欧洲新重卡碳排放(克二氧化碳/公里)下降20%,到2030年,新重卡碳排放下降35%。中国2017年开始实施大型商用车辆国-5强制性排放法规,到2021年7月全国范围实施国-6强制性排放法规。国-6标准在尾气污染物排放限值方面与欧-6标准和美国EPA2010标准基本相同,个别限值甚至更严格。排放法规是世界各国车辆动力总成技术发展的主要推动力。中国国-6 重卡的动力总成将和目前北美和欧洲重卡的动力总成在历史上首次处于同一技术平台水平。根据近二十年中国国-1到国-6法规制定颁布都参照欧盟欧-1到欧-6法规的历史经验,中国将会很快追随欧盟,推出聚焦重卡碳排放强度和油耗的国-7法规。2020年以后,全球三大重卡市场(中国、美国、欧盟)的法规和行业聚焦都将从降低尾气污染物排放转向减少油耗和碳排放。一辆干线物流重卡在美国平均燃油费近六万美元/年,在中国和欧洲平均燃油费近四十万元人民币。通过技术创新,降低重卡油耗和排放,对主机厂、司机、车队、运货人、政府、社会等各利益攸关方都意义非凡。
美国在重卡排放和油耗法规和技术开发方面一直走在世界前列。由美国能源部牵头并资助的“超级卡车“项目,四支由北美各大重卡主机厂领衔的团队,通过五年研发,所创造的四辆超级重卡样车,2016年底都超额完成对标2009年重卡货运燃油经济性(加仑/吨英里)改善50%的目标。
美国的超级卡车项目,集成了全部2025年前可能商用量产的各种节能减排技术。今后主要挑战是提高各项节能技术实施的综合性价比。目前美国重卡行业中长期挑战是如何在有效地控制新重卡售价涨幅的前提下,达到GHG Phase II重卡油耗2027年的强制要求。而中国重卡行业各利益攸关方,都要对应2020年新国六重卡的零售价预计比当今国五重卡售价大幅上涨的严峻考验。
近十年来,在世界主要汽车市场,特别是世界最大的中国汽车市场,纯电或油电混合动力的乘用车和大型客车,在政府大力补贴之下,都有大规模商用的成功先例。但在中国/美国/欧盟这三个全球范围体量最大、技术最先进的干线物流重卡市场,国内外行业专家一致认为2030年以前,纯电重卡或深混重卡在无补贴的情况下,无法实现大规模干线物流商用。细节参见里卡多(Ricardo)公司2017年题为“重型车辆技术潜力和成本分析”的研究报告。Ricardo(2017),“Heavy Duty Vehicle Technology Potential and Cost Study”,Final Report for ICCT。
任何重卡节油技术,都有降低车辆尾气污染物排放和温室气体(或碳)排放的双重益处。重卡干线物流除节能,减排两大挑战外,还有驾驶安全这一重中之重。绝大多数重卡交通事故都源于司机分心,疲劳驾驶,操作失误等人为因素。开发干线物流L3/L4级自动驾驶商用车的主要目的之一便是消除人为因素,改善驾驶安全。要达到车辆功能安全等级要求,L3/L4级自动驾驶商用车必需配置有冗余的制动***。
发明内容
油电混动的车辆,在加速和制动频繁且平均车速低于60公里/小时的城市或近郊工况下,通过限制内燃机在高效区运行,及驱动电机通过再生制动给电池包充电,有效地回收能量,比传统内燃机车辆综合油耗大幅降低,节能/减排效果明显,性价比高,已经实现大规模商用。但对干线物流重卡而言,其产品生命周期内绝大部分(85%以上)的运行时间和里程为高速公路工况,即平均车速高于60公里/小时,且加速和制动不频繁。传统车辆高速公路工况时,内燃机长时间稳定地工作在其高效区,而混动车辆此时再生制动能量回收功能英雄无用武之地,同时混动车辆还背负化学能-机械能-电能-机械能之间多次能量转换的额外损耗,所以全球汽车及公路运输业界长期存在“共识”,干线物流混动重型卡车(简称为“混动重卡”)对比传统柴油重卡综合油耗下降幅度有限,其最大综合油耗降幅不可能超过10%。根据当前国际/国内大三电(电池、电机、电控)的技术及产业发展现状,混动重卡比传统柴油重卡购车成本增加显著,但节油效果不显著,导致混动重卡性价比低。全球重卡行业目前的“共识”认为,2030年前在包括中国、美国、欧洲这三大重卡核心市场的全球市场,无法实现干线物流混动重卡无补贴情况下大规模商用。
公路货运行业还面临另一大挑战是重卡司机缺失率及流失率常年居高不下。同样的重卡、载货和路段,不同经验和能力的司机开 车,实际综合油耗差异可高达25%,干线物流重卡实际油耗因人而异,为行业的另一大痛点。很多货运公司通过培训司机,节油奖惩,传感器加大数据分析司机驾驶行为加节油辅导等多种方法,来减少司机的人为因素所造成的实际油耗与最佳油耗之间的差异。
干线物流混动重卡要想早日实现大规模商用,必须大幅提其高性价比。干线物流柴油重卡在美国或中国的整车平均售价是该国市场普通内燃机乘用车车价的三到十倍,但其年燃油费则是内燃机乘用车年燃油费的三十到六十倍。美国和中国的汽油或柴油零售价都远低于欧洲,欧洲乘用车与重卡车价和年油费的比例类似中美。提高干线物流混动重卡性价比的有效方法一是增大其对比传统柴油车的油耗降幅,二是减小其与传统柴油车一次购车成本加累计车辆运维成本之和的差价。
全球汽车行业专家(特别是重卡行业专家)的“共识”,源于对所有混动乘用车高速工况下节油效果不明显这一客观事实的主观外延,推断干线物流混动重卡节油效果亦不明显,有其历史局限性。他们都忽略了干线物流混动重卡能够大幅降低油耗的秘密源泉:在封闭式高速公路载货重卡高速行驶时,由道路纵坡(简称“纵坡”)细微变化(1.0%)带来的数百千瓦级振幅的坡度功率的时变函数P g(t)和频繁出现的百千瓦级再生制动回收电能的机会。
本发明的核心就是首次公开一个崭新的百千瓦级电力电子三端口网络“电域功率分流器”(ePSD–electrical Power Split Device;又称“电功率分流器”),通过有效地集成融合油电混动技术,配合卫星导航(GNSS)、3D电子地图、物联网(IoT)、大数据(Big Data)、人工智能(AI)等多项新兴技术,创造一种新型重卡物种:智能网联电动(ACE:Automated-Connected-Electrified)重卡,实现节能、减排、和改善驾驶安全的多重有益效果。在干线物流应用场景下,ACE重卡比传统柴油重卡在至少保持车辆动力性的前提条件下,综合油耗降幅可高达30%以上,还可以消除司机“人为因素”导致重卡实际综合油耗离散性高达25%这一行业痛点;且ACE重卡还能明显地改 善刹车性能,减少司机长途驾驶的劳动强度,提升车辆行驶安全性;从而大幅提升ACE重卡的性价比。对于运输车队而言,效率和安全是两大永恒的主题。预计五年内,在美国、中国、欧盟这世界三大重卡市场,能够实现干线公路物流ACE重卡大批量商用。
干线物流ACE重卡节油技术的第一性原理便是汽车行业耳熟能详的车辆纵向动力学方程:
Figure PCTCN2019129964-appb-000001
其中,P v为车辆功率或称路载功率,所有功率项都是以千瓦(KW)为单位。
滚动功率P r指车辆行驶时,克服轮胎滚动摩擦阻力所需功率,其可通过如下公式(1)表示:
Figure PCTCN2019129964-appb-000002
风阻功率P d指车辆行驶时,克服空气阻力(无风天气时)所需功率,其可通过如下公式(2)表示:
Figure PCTCN2019129964-appb-000003
坡度功率P g指车辆行驶上坡时,克服重力所需功率,车辆下坡时坡度功率为负值,代表其势能与动能转换所产生的驱动功率,坡度功率P g可通过如下公式(3)表示:
Figure PCTCN2019129964-appb-000004
加速功率P a指车辆平路行驶时达到预定加速度值所需额外功率。当加速度为负值时,代表机械制动,将车辆动能转变成热能,或再生制动,将部分车辆动能转变成电能,回收。加速功率P a可通过如下公式(4)表示:
Figure PCTCN2019129964-appb-000005
在上述公式(1)-(4)中:V为车辆速度(米/秒);η为车辆转动***效率;M为车辆总质量(公斤);g为重力加速度,g=9.8(米/ 秒平方);f r为轮胎滚动摩擦系数;α为公路纵坡角度,正值为上坡,负值为下坡;ρ a为空气密度(公斤/立方米);C D为车辆风阻系数;A f为车辆正前方面积(平方米);δ为滚动质量转换系数;dV/dt为车辆加速度,正值为加速,负值为减速。
高速公路行驶工况,车辆很少制动或加速。当车辆基本恒速行驶时,加速功率为零,滚动功率在小纵坡(即几度以内的纵坡)的公路段基本不变,风阻功率亦可近似为常数,只有坡度功率为时间变量,其变化幅度与高速公路段的坡度变化幅度、车速、和车总重成正比。
中国干线物流重卡总重一般在40吨以下,最高法定限速为90公里/小时,中国主要高速公路时常拥堵,公路物流全行业重卡平均速度约65公里/小时;而美国干线物流重卡总重限值为36吨(8万磅),最高法定时速可高达125公里/小时,公路物流行业重卡平均时速大于约85公里/小时。多数美国运输公司,主要出于节油和安全的考虑,将重卡的最高时速限定在105公里/小时。
公路纵坡通常简称“纵坡”,其计量单位有两种,一个是路面与水平面的夹角的度数,另一个是路面海拔升高与该路段水平投影距离之比,以%表示。各国高速公路设计和建造多数将其纵坡限制在-7.0%~+7.0%范围内,主要是基于满载重卡在高速公路上安全有效地行驶方面的考量。
举例来说,一辆满载总重40吨、车速60公里/小时的重卡,遇到公路纵坡2.0度的小上坡时,所需坡度功率高达228千瓦来克服万有引力以保持车辆恒速上坡,而此时车辆的滚动摩擦功率与风阻功率之和仅为71千瓦。如果此时车辆动力总成功率余量不足,司机需换挡减速才能继续上坡。对比一辆2.0吨总重的乘用车,这时该车辆恒速上坡所需的坡度功率仅为11.4千瓦,滚动摩擦功率与风阻功率之和为3.6千瓦,对峰值功率近百千瓦的乘用车来讲,功率余量充足,此坡不足为虑,如履平地。换句话讲,对于每辆高速行驶的载货重卡而言,公路纵坡每变化肉眼难以察觉的1.0度时,该重卡源于坡度 功率变化的路载功率有超过一百千瓦级的巨大变化。
依据车辆动力学方程,刹车时所需减速度功率(又称制动功率)和车辆的总质量、车速、和减速度成正比。车辆在60公里/小时车速时,要实现减速度2米/秒平方(即0.2g,g为重力加速度)的中等强度制动,对总重2.0吨的乘用车,需要制动功率为67千瓦;但对总重40吨的重卡而言,所需制动功率则高达1333千瓦。受限于当前车载驱动电机和电机控制器(电力电子)的峰值功率值,油电混合车辆的通过再生制动来回收能量的再生制动功率峰值基本都在500千瓦以下。而制动功率高于500千瓦部分的能量,由于无法通过再生制动变成电能回收,只能通过机械制动,将这部分车辆动能转换成热能完全浪费掉。目前世界上已商用化的最大功率的直流快速充电桩为375千瓦。
所以在加速/减速频繁的城市或城郊混合的行驶工况下,油电混动车辆(轻型车或重型商用车)比传统内燃机车辆明显节油。但在加速和减速不频繁的封闭高速公路行驶工况,传统内燃机能长期稳定地工作在其高效区,油电混动车辆比传统内燃机车辆综合节油效果不明显,节油率不可能高于10%,有时甚至油耗略升。上述汽车行业的“共识”,对全部油电混合乘用车(总重小于3.5吨)和并联混动(大发动机加一个峰值功率小于150千瓦的中型电机)大型商用车都适用。但是,发明人发现该行业“共识”对干线物流应用场景下的串联油电混动重卡并不适用,为一种技术偏见。世界上没有完全水平的高速公路,即便是平原地域的高速公路也充满变化幅度1.0度级别的纵坡分布。1.0度的道路纵坡虽然肉眼难分辨,但对ACE重卡而言,却能产生百千瓦级的纵坡功率。高速公路工况下,ACE重卡能有效地利用道路沿途微小下坡重力所产生的百千瓦级纵坡功率的众多机会,通过驱动电机再生制动回收电能,积少成多,达到明显节能减排的有益效果。
近十年来,欧美部分中高端内燃机重卡,利用包含道路纵坡信息的车载三维地图,在丘陵或山区高速公路,通过预测性巡航控制, 实现节油。但传统重卡预测性巡航有其局限和不足:纯机械式动力总成不宜瞬间(亚秒级)大幅度变化内燃机输出功率及自动变速箱频繁换档,预测性巡航控制只适用于纵坡角度大于2.0度、坡长数公里以上的大坡,而且传统内燃机车辆没有再生制动功能,无法动态地回收车辆下大坡时产生的车辆剩余机械能,,真实世界综合油耗降幅不到3.0%。
如上所述,世界上没有绝对水平的高速公路。即便在平原地区,高速公路沿途各个米级路段的纵坡也会大部分在正负3.0度之间连续分布。对高速工况下恒速行驶的载货重卡,其车辆路载总功率P v时间变量最大的影响项就是坡度功率P g,变化振幅达正负数百千瓦。而其滚动功率P r与风阻功率P d之和则近似为常数。如果能利用高速公路纵向米级间隔密度、道路定位米级精度(经纬度)、纵坡测量精度达0.1度的车载电子导航三维地图,再加上车载物联网和米级高精度卫星导航及惯性导航,依据车辆动力学方程,车辆控制器(VCU)就可实时精准地预测车辆前方沿途数百公里内的道路负载变化,特别是车辆前方百公里级电子地平线范围内坡度功率P g(t)和路载功率P v(t)十千瓦级精度的时变函数。VCU预测刷新频率可高达10.0赫兹(Hz)以上,也就是说车辆每行驶2~3米,VCU就能够及时地刷新其功率预测。
电子导航三维地图(简称三维地图),能为车辆提供电子地平线(Electronic Horizon)。所谓电子地平线,是指车辆行驶前方指定范围内的三维地图所涵盖的各种道路信息,特别是高速公路沿途经度、纬度、纵坡的信息。传统柴油重卡实施预测性控制,受限于其动力总成不宜经常快速变换工况且无再生制动能量回收功能,一般只能粗略地使用10公里范围内的三维地图电子地平线。然而,本发明的ACE重卡,在干线物流场景下,则能够有效地利用从10公里到1000公里之间各种电子地平线,通过预测性自适应巡航控制方式,达到比传统柴油重卡油耗明显降低的有益效果。详情见下。
对于在封闭的高速公路上正常行驶的ACE重卡,很少主动刹车 或加速,其车速基本恒定,车辆道路负载功率的时间变化,主要来源于公路纵坡变化所带来的坡度功率变化。然而车辆行驶路径的公路纵坡分布函数固定且预先可知,所以ACE重卡的VCU可在0.1秒内,根据实际路况和车辆动力学方程,迅速刷新计算出车辆电子地平线范围内车辆路载功率的时变函数,有效地预测车辆路载功率未来需求。本发明将ACE重卡高速公路同车道行驶的油耗优化问题变换成AlphaGo下围棋的等价人工智能(AI)问题。通过专有结构化大数据加机器学习,节油人工智能单元能比人类司机开车实现更低的综合油耗。
本发明提出的ACE重卡预测性功率控制***,其车辆控制器VCU指挥电功率分流器ePSD,能够在十毫秒级***响应时间内,在由发动机驱动的发电机组、电池包、和驱动电机三者之间精准动态地调配数百千瓦级的电功率的幅度及其流向,将发动机工况长期稳定地设定在其高效工况点,通过电池包数百千瓦级快速充电或放电,来实时地抵消坡度功率项亚秒级时间内数百千瓦级瞬态变化,随时满足车辆动力学方程所要求的路载功率平衡。在保证车辆动力性、货运时效性、和安全性的前提条件下,ACE重卡比传统柴油车干线物流综合油耗降幅可达30%。
本公开的第一方面提供了一种混合动力车辆,包括:发电机组,用于将车载燃料的化学能转化为电能;电功率分流器(ePSD),其被配置为具有三个端口的电力电子网络,其中ePSD的第一端口与发电机组的输出端双向交流电联接;ePSD的第二端口与至少一个驱动电机双向交流电联接;ePSD的第三端口与至少一个功率型电池包双向直流电联接;自动变速箱,与车辆的传动轴双向机械联接;地图仪,其预先存储有电子导航三维地图,三维地图包含有车辆行驶路段的纵向道路的经度、纬度和纵坡等信息;至少一个驱动电机,与ePSD第二端口双向电联接并且其输出轴与自动变速箱双向机械联接,其中驱动电机可***作为:将电能转化为机械能以用于驱动车辆,或将车辆的机械能转化为电能,并通过ePSD对电池包进行充电, 其中,发电机组与驱动电机和自动变速箱中的任一者之间均没有机械联接,并且其中车辆还包括:车辆控制器(VCU),其通过车辆的数据总线,并基于车载卫星导航接收机和/或地图仪中的三维公路电子地图数据,来对发电机组、ePSD、驱动电机、自动变速箱、以及电池包中的至少一者以独立方式进行控制。
本公开的ACE重卡***架构为高级增程式纯电驱动重卡,实现了以ePSD为核心的全数字化软件定义动力总成,ePSD三端口电力电子网络硬件设计时,其硬件功能及性能预留余地,通过每辆ACE重卡在其全运营生命周期内软件远程更新迭代(OTA),实现产品的不断升级和进化。依靠持续软件远程更新(OTA),量身定制地不断修正改善每辆ACE重卡动力总成的实际性能,即保证每辆ACE重卡在排放法规强制要求的70万公里质保期内,既保证随时随地满足排放法规限值,又实现该重卡节油效果最优化。
在一些实施例中,ePSD被配置为三端口的电力电子网络,其内部包含三个百千瓦级的独特功能模块:内联接第一端口的是一个双向交流-直流转换器(又称逆变器),内联接第二端口的是至少一个双向交流-直流转换器(又称逆变器),内联接第三端口的是至少一个双向升降压直流-直流转换器(又称斩波器)。本公开聚焦ACE重卡ePSD的主要***输入/输出特性和内含三大功能模块,各种实现上述三大功能模块的电力电子电路拓扑结构之集合,都属于本发明范围。ePSD的物理形态,即可是将上述三大功能模块集中包装在一个金属盒中,也可将三大功能模块分别与发电机MG1,驱动电机MG2,和电池包分散包装布置。
ePSD内部三大功能模块的直流端口都双向电联接到直流母线汇流点X,该点处的直流电压和电流时变函数,时刻满足下列电功率平衡方程:P MG1(t)+P BAT(t)=P MG2(t)。其中P MG2=P v为独立变量,等于车辆的路载功率。P MG1为另一个独立变量,可设置在内燃机和电机MG1固定转速和指定扭矩的几个特定工况点,确保在这些工况点内燃机的燃烧热效率最高,尾气排放优化。
ePSD的三大功能模块在车辆控制器VCU的指挥下,协同工作,实时地调节非独立变量P BAT(t),削峰填谷,满足功率平衡方程,
P BAT=P MG2-P MG1
其中
P MG1>0,为发电功率;P MG1<0,为耗电功率或驱动功率(以发动机缸内制动为负载)
P MG2>0,为驱动功率;P MG2<0,为再生制动功率或发电功率
P BAT>0,为放电功率;P BAT<0,为充电功率
ePSD内部直流母线额定电压V bus0优选范围在600V至800V之间。ePSD的第三端口可双向电联接至少一个功率型电池包,每个电池包的额定电压V bat<V bus0,同时第三端口还可以单向电联接一个可带有散热器的百千瓦级刹车电阻R bk,作为ACE重卡长下坡时,驱动电机通过再生制动实现缓速器功能且电池包满电荷(SOC=100%)时的有效电负载。
在一些实施例中,ePSD的端口III可以双向电联接多个不同额定电压甚至不同电化学成分电芯的电池包,给优化ACE重卡整车***性价比带来多重益处,后续详述。在一些实施例中,混合动力车辆还包括:卫星导航接收机,其为双天线载波相位实时动态差分(RTK)接收机,能实时地测算车辆行驶过程中的纵向道路的经度、纬度、海拔高度、纵坡、以及线速度;或其为高精度单天线卫星导航接收机,能以米级定位精度实时地测算车辆行驶过程中的纵向道路的经度、纬度、以及线速度;再加上一个包含多个加速度传感器和陀螺仪的车载惯导单元(IMU),或者一个动态倾角传感器,能实时地测量道路纵坡,精度优于0.1%。
在一些实施例中,VCU被配置为:基于卫星导航接收机实时测算的车辆在行驶过程中的经度、纬度,并结合存储在三维地图中的车辆前方电子地平线范围内的纵向道路的经度、纬度、纵坡,来对发电机组和电池包进行预测性控制;和/或基于由RTK接收机所测算 的车辆在行驶过程中的纵向道路的经度、纬度、纵坡、和线速度,并结合存储在三维地图中的车辆前方电子地平线范围内的纵向道路的经度、纬度、纵坡,来对发电机组和电池包进行预测性控制。
在一些实施例中,VCU还被配置为:在车辆的行驶过程中,当检测到由RTK接收机所测算的纵坡与存储在三维地图中的同一位置点的纵坡差异超过允许公差的情况下,选择基于由RTK接收机所测算的纵坡以及三维地图电子地平线来对发发电机组和电池包进行预测性控制。
在一些实施例中,VCU还被配置为:基于RTK接收机的授时,实时地校准包括VCU的内置时钟在内的各个子***的微处理器的内置时钟,以唯一的时间序列来标注数据;在第一维度上,将来自包括RTK接收机、地图仪、发电机组、ePSD、驱动电机、自动变速箱、以及电池包的中至少两个子***的测量参数和/或工况参数,拼装成数据组;以及按照经校准的时钟所提供的时间序列,将多个数据组在第二维度上进行排列,以形成专有的结构化大数据,用于描述ACE重卡动态运行状况,称ACE重卡结构化大数据。
换言之,在VCU指挥下,基于RTK接收机的精准授时,实时地校准包括VCU的内置时钟在内的各个子***的微处理器的内置时钟,以时间为唯一有序数据自动标注,将来自包括RTK接收机、导航仪、发电机组、ePSD、驱动电机、自动变速箱、以及电池包的至少两个子***的测量参数和/或工况参数,拼装成描述混动车辆动态运行状况的ACE重卡结构化大数据。
可选地,可以对ACE重卡结构化大数据进行加密,以便随后以更安全的方式通过移动互联网,实时地(亚秒级时延)或及时地(小时级时延)上传云端计算平台存储,供后续分析处理。
在一些实施例中,发电机组由内燃机和交流发电机组成,其中内燃机双向地机械联接到交流发电机,交流发电机双向地电联接到ePSD第一端口内的交流-直流转换器模块。该组合可以实现多种工作模式。除了最基本的由内燃机驱动发电机MG1的发电模式外,百千 瓦级的MG1还可以轻松地取代传统内燃机所配置的数千瓦级的启动马达,实现ACE重卡发动机的自动启停运行模式,在城市工况和高速公路严重拥堵时,进一步节油。MG1还可以将具备缸内制动功能的内燃机作为负载,通过逆变器消耗直流电,为主驱动电机MG2在ACE重卡长下坡缓速工作模式下,再生制动发电提供冗余长期有效负载。
在一些实施例中,VCU还被配置为:基于内燃机的万有特性曲线数字模型、电池包的充放电特性数字模型、自动变速器特性的数字模型、以及驱动电机特性的数字模型中的至少一者,来对内燃机、电池包、自动变速箱、以及驱动电机中的相应的至少一者进行控制。
在一些实施例中,内燃机的万有特性曲线数字模型包括:无道路负载的怠速工作点和发动机的比油耗最小的若干高效工作点,并且其中VCU还被配置为:使内燃机基本只工作在怠速工作点或者高效工作点,由此使内燃机长期稳定地工作在怠速工作点或者高效工作点,将传统重卡内燃机的面工况变成ACE重卡内燃机的点工况,并能实现其不同工况点之间的平顺切换。
在一些实施例中,VCU还被配置为:在车辆行驶过程中,实时采集并本地存储ACE重卡的结构化大数据;并且将车载存储的结构化大数据,经由移动互联网,实时地(亚秒级时延)或及时地(小时级时延)向云端计算平台进行发送并存储,以供后续对ACE重卡大数据的分析和处理。本公开的第二方面提供了一种云计算平台,包括:至少一台云端服务器;每台服务器均包括:处理单元;以及存储器,耦合到处理单元并包含有计算机程序代码,计算机程序代码当被处理单元执行时,使得服务器执行如下动作:
经由移动互联网,从多辆ACE重卡接收并存储专用结构化大数据,其中每辆ACE重卡均包括:
-发电机组,用于将车载燃料的化学能转化为电能;
-电功率分流器(ePSD),其被配置为具有三个端口的电力电子网络,其中ePSD的第一端口与发电机组的输出端双向电联 接;
-至少一个电池包,与ePSD的第三端口双向电联接;
-;
-自动变速箱,与车辆的传动轴双向机械联接;
-地图仪,其预先存储有电子导航三维地图,三维地图包含有车辆行驶路段的纵向道路经度、纬度和纵坡的三维信息;
-至少一个驱动电机,与ePSD的第二端口双向电联接并且其输出轴与变速器双向机械联接,其中驱动电机可***作为:将电能转化为机械能以用于驱动车辆,或将车辆的机械能转化为电能,并通过ePSD对电池包进行充电,其中发电机组与驱动电机和自动变速箱中的任一者之间均没有机械联接;
-车辆控制器(VCU),其通过车辆的数据总线(例如CAN总线),并基于从车载卫星导航接收机和/或地图仪中的三维道路数据,来对地图仪、发电机组、ePSD、驱动电机、自动变速箱、以及电池包中的至少一者以独立方式进行控制;
基于从多辆ACE重卡接收到的车辆运行专有结构化大数据,形成专用机器学习算法;
基于所形成的专用机器学***台的计算能力,对云端节油人工智能(AI)大脑进行训练,其中结构化大数据包括与发电机组、ePSD、驱动电机、自动变速箱、以及电池包中至少一者相关联的运行数据;以及
响应于某一辆ACE重卡的请求,针对车辆特定旅程,云端节油人工智能大脑将给出定制的节油策略,作为该车辆的VCU的节油策略的默认初始方案。该车辆的VCU根据实时路况,对默认节油方案进行实时修正,达到最佳节油效果。
在一些实施例中,其中多个车辆中的每个还包括:高精度卫星导航接收机,其为双天线载波相位实时动态差分(RTK)接收机,用于实时地测算车辆行驶过程中纵向道路的经度、纬度、海拔高度、纵坡、以及车辆线速度,其中从多个车辆接收到的测量数据还包括: 针对由多个车辆在行驶途径相同路段所测量到的包含多个纵向道路经度、纬度和纵坡的道路三维数据,并且其中动作还包括:将多个道路三维数据及时地传输给电子导航三维地图制造商;以及更新车辆导航仪中存储的三维地图。
由此,可以以众包的形式不断改善所述三维地图的精准性,保持其新鲜性,并不断更新所述车辆地图仪中存储的所述三维地图。
附图说明
图1示出了根据本公开的一个实施例的ACE重卡的***框图;
图2示出了根据本公开的一个实施例的ACE重卡的电功率分流器(ePSD)子***框图;以及
图3示出了根据本公开的一个实施例的、ACE重卡与移动互联网和云计算平台之间的数据交换的***框图。
这些附图中,相同或相似参考符号用于表示相同或相似元素。
具体实施方式
现在将参照若干示例实施例来论述本公开。应当理解,论述了这些实施例仅是为了使得本领域普通技术人员能够更好地理解且因此实现本公开,而不是暗示对本公开的范围的任何限制。
如本文所使用的,术语“包括”及其变体要被解读为意味着“包括但不限于”的开放式术语。术语“基于”要被解读为“至少部分地基于”。术语“一个实施例”和“一种实施例”要被解读为“至少一个实施例”。术语“另一个实施例”要被解读为“至少一个其他实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
以下参考附图来说明本公开的基本原理和若干示例实施例。图1示出了根据本发明一个实施例的混动重卡动力总成、车辆控制器、核心传感器等装置。该***既可以是一套只有一根主动传动轴(连 接到后轮“RW”)的4×2动力总成***,也可以是一套含一根主动传动轴和一根从动传动轴的6x2动力总成***或含一根主转动轴和一根付传动轴的6x4动力总成***。采用图1中动力总成***的重卡可称为智能网联电动(ACE-Automated,Connected,Electrified)重卡。在一些实施例中,该重卡可以例如是车辆总重大于15吨的主要用于干线货运的混动重卡。
如图1所示,总体上,该ACE重卡包括:发电机组100、电功率分流器(ePSD)123、至少一个主电池包130a、自动变速箱(Tran)150、至少一个主驱动电机140、以及车辆控制器(VCU)201。主电池包130a和主驱动电机140为标配必装件,而付电池包130b和付驱动电机170为选装件。
具体来说,发电机组100包括内燃机101和发动机控制器ECU102,发动机101输出轴双向机械联接发电机(MG1)110,主要用于将柴油或天然气等车载燃料的化学能先转换成机械能,然后再转换为电能。参考图2,ePSD 123为三端口的电力电子网络(Power Electronics Network),其端口I(也称为“第一端口”)与发电机组100的三相交流电输出端双向电联接。电池包130a和/或130b与所述ePSD 123的端口III(也称为“第三端口”)双向直流电联接。刹车电阻131与所述ePSD 123的端口III单向直流电联接。驱动电机140和/或170与所述ePSD的端口II(也称为“第二端口”)双向交流电联接。返回参考图1,自动变速箱150的输出轴与车辆的传动轴160双向机械联接,并受控于变速箱控制器(TCU)151。主驱动电机140通过柔性机械耦合器152与变速箱150的输入轴双向机械联接。主驱动电机140可***作为:将电能转化为机械能以用于驱动该ACE重卡,或者将该ACE重卡的机械能转化为电能,以通过所述ePSD 123内部的功能模块逆变器122a和斩波器132a对电池包130a进行充电。
在本文中,所谓“单向”或“双向”联接,是指电或机械功率流或能量流从其动力源流向负载的方向是否可逆,动力源与负载两者角色是否可随时相互对换。单向联接时,动力源和负载的角色固定,功 率流从动力源向负载流向单一,不可逆;双向联接时,动力源和负载的角色可以随时转换,功率流方向可逆。
作为本公开关键部件之一的车辆控制器VCU 201通过例如车载数据总线(未示出,例如CAN总线)并基于对车载高精度卫星导航接收机220接收到的定位数据和地图仪240存储的三维电子地图先验数据进行分析计算,来对上述的发电机组100、ePSD 123、驱动电机140、自动变速箱150、以及电池包130中的一者或多者以“独立”的方式分别或同时进行控制。
在一些实施例中,VCU 201可以是汽车级高性能嵌入式微处理器。可以理解,非限制性地,VCU 201也可以是硬件逻辑部件,包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上***(SOC)、复杂可编程逻辑设备(CPLD)等等。
例如,由多个子***组合而成的车载的发电机组100可以在VCU 201的控制下,将车载燃料的化学能先转换成机械能,然后再转换成电能。又例如,通过VCU 201尤其还可以操控ePSD 123来实现油电混合动力总成的多种工作模式之间的快速平顺切换(在后面将进行详细描述),满足路载功率平衡的要求。
图1中显示了发电机组100的一个优选实施例,包括内燃机(ICE)101和其发动机控制器(ECU)102。内燃机101与交流发电机110双向机械联接。发电机110的三相交流输出端与ePSD的端口I双向交流电联接,。在另一备选实施例中,发电机组100也可选用车载氢燃料电池发动机(FC Engine)。此时发电机组100的氢燃料电池输出为直流电,与ePSD的端口I单向电联接。此时ePSD的端口I内接功能模块将从双向交流-直流转换器(又称逆变器)变成单向直流-直流转换器(又称斩波器)。为降低燃料电池的氢耗(克/公里)和延长寿命,需保持其长期稳定地工作在高效点,避免瞬态大幅度快速切换其工况。
优选地,内燃机101为7升到11升排量,峰值功率为240千瓦 到360千瓦之间的六缸重卡用柴油或天然气发动机。更大排量(11升~15升)的内燃机也能用,其峰值功率更大,留有更大功率余量,高速公路上遇超过数公里长上坡路况时,车辆爬坡动力性更好,但节油效果比优选排量发动机时将略减弱,***成本较高,性价比次优。小排量(低于7升)内燃机,峰值功率较小,虽然节油效果明显,成本较低,但发电机组的功率余量不足,高速公路上遇超过数公里长的大上坡路况时,如果电池包中的电能耗尽,无法继续向驱动电机提供补充电功率,则ACE重卡动力性明显不足,需要换低挡位减速才能继续上坡,***性价比次优。可以理解,备选地,发动机101还可选用满足上述功率要求的车用燃气轮机。汽油机在燃烧热效率、坚固耐用、和寿命等方面都明显低于柴油机,不适合干线物流重卡使用。
注意到,如图1所示,在本公开的各种实施例中,内燃机101与车辆的传动轴或驱动轮之间无任何机械联接,这将使其工况与车辆工况完全解耦,使得内燃机101能够长期稳定地工作在其万有特性曲线高效区(包括最佳燃油效率范围和/或最佳排放范围)内指定若干工况点。内燃机从面工况变为点工况,为其通过技术创新,突破当前内燃机热效率上限,最大限度地优化ACE重卡综合油耗和长期稳定地降低其综合排放开辟了新天地,同时也大幅降低了今后二十年伴随世界各国不断推出新汽车排放强制性法规,内燃机本体,ECU和尾气处理***设计,标定,和制造的复杂性和成本。此外,由于这种发动机与车辆动力传输机械上的完全解耦,消除了由于传统动力总成技术中的机械联接所造成的不可避免的“秒级”操控延迟。
对比点燃式汽油机(SI),压燃式柴油机(CI)以节油,低转速大扭矩,皮实耐用,超长寿命,高性价比等特点,为全球绝大多数重卡(超过97%)的发动机首选。但在污染物排放方面,特别是对大气环境和人体健康有害的氮氧化合物(NOx)和微颗粒(PM)等污染物排放方面,柴油机比汽油机逊色。减少重卡柴油机NOx和 PM排放的世界主流后处理技术路线分别为选择性催化还原(SCR)及柴油微粒捕捉器(DPF),SCR和DPF都需要在内部达到指定高温时,***才能正常高效地工作。柴油机在冷启动及瞬间大幅度输出功率调整时,其污染物排放和比油耗(克/千瓦时)都大幅增加;而在高速公路工况下,发动机稳定工作在燃烧高效工作区,此时污染物排放和比油耗都小。传统重卡,无法在发动机万有特性曲线全部转速/扭矩范围内,同时优化油耗和污染物排放。本发明的ACE重卡能指定其内燃机长期稳定地工作在燃烧高效点,基本消除发动机冷启动和转速及扭矩快速变化的工况,在降低比油耗和碳排放的同时,还能减少污染物(NOx,PM)排放,实现节能减排的协同效应。由于ACE重卡的尾气中NOx少,SCR***能减少其耗材尿素的用量(克/百公里),从而进一步降低运营费用。同时,混动重卡的DPF也长期稳定地工作在其高效区,基本消除通过阶段性停车进行DPF主动再生(Active Regeneration),以消除沉积在其内部的大量微粒这一即耗时又费油的用户痛点,进一步降低车队运营费用。
2021年中国开始全面强制执行的柴油重卡国六排放标准,对绝大部分技术积累不足的中国本土发动机和关键动力总成零部件供应商来说,是巨大的技术和商务挑战。在确保整车出厂时达到并持续满足国六排放标准,特别是70万公里排放***质保期的前提条件下,本发明的ACE重卡所使用的柴油机的技术性能要求从面工况降维为点工况,要比传统重卡的柴油机的技术要求下降或放松很多,有多种高性价比的技术路线可供选择,为广大中国的重卡动力总成供应商提供了在后国六时代生存发展的另一片新天地。
优选地,发电机110为永磁同步电机(PMSM),额定功率为150千瓦到280千瓦之间,也可选用满足上述额定功率要求的交流感应电机或磁阻电机。发动机101的峰值功率应与发电机110的峰值功率相匹配(前者略高),以发挥各自的最大潜力。优选地,发电机的控制器121为包含至少一个绝缘栅双极性晶体管(IGBT)模块的双向交流-直流转换器(又称逆变器),其额定功率和峰值功率都 略高于发动机的对应功率数值。发电机组只需长期稳定地向驱动电机提供车辆高速行驶所需的平均电功率,由电池包通过ePSD向驱动电机提供削峰填谷所需的速变百千瓦级双向电功率流,实时地满足车辆动力性方程所要求的功率平衡。此时发电机110经常是发动机101的负载,发电机110和逆变器121的峰值功率只需比其额定功率略高,例如高15%即可。发电机110还可以取代传统发动机标配的千瓦级启动马达和发电机,通过逆变器121来控制发电机110实现启动或启停功能,还能利用发动机101的缸内制动功能,为电机110在驱动模式下的有效负载,成为ACE重卡长下坡缓速器***的一部分。
图2所示的电功率分流器ePSD 123为具有三个端口的数百千瓦级电力电子网络,其中包含至少一个IGBT或碳化硅(SiC)功率模块,但不包含任何千瓦级电源或千瓦时级电储能装置。有多种可行的电力电子电路设计,可实现该三端网络的输入输出特性和各种***功能。需要指出,本公开并不旨在限制某种包括有IGBT或SiC模块的三端网络的具体电路拓扑实现,而是只要是能够实现(将要在下面举例具体描述的)ePSD的核心输入输出功能的各种电力电子电路设计,均应落入本公开的范围内。鉴于电力电子模块集成设计的灵活性,为提高***性能和/或降低成本,ePSD123内部的核心模块逆变器121、122a&b、软开关133、和斩波器132a&b即可集成在一个金属盒中,也可以分散在多个金属盒中,分散包装布置。目前IGBT为性价比最高的主流电力电子功率模块,SiC模块为后起之秀,性能更好但近期成本更高,随SiC产业链不断成熟,其应用占比会逐渐提升。本公开中提及的IGBT模块,可泛指包括IGBT和SiC在内的各种已产业化的电力电子功率模块。
在图2所示的实施例中,ePSD的端口I内的逆变器121的交流端口与发电机110的三相交流电输出端双向电联接;端口II内的逆变器122a的交流端口与主驱动电机140的三相交流电输入端双向电联接,逆变器122b的交流端口与付驱动电机170的三相交流电输入端 双向电联接;端口III内的斩波器132a一端与电池包130a双向直流电联接,斩波器132b的一端与电池包130b双向直流电联接。所有逆变器的直流端都双向电联接到ePSD的直流母线汇流点X,所有斩波器的另一端(多为直流电压高的一端)也都经过大功率电控三端开关(又称软开关)133双向直流电联接到ePSD的直流母线汇流点X。如果将电池包130a和/或130b的额定电压V bp提高到等于ePSD的直流母线额定电压V bus0时,为降成本可以考虑省略斩波器132a和/或132b,将电池包130a和/或130b直接双向直流电联接至软开关133的一端子。但这样做电池包130a和/或130b将失去主动动态调节百千瓦级充放电功率的功能;而且ePSD也失去了通过软件定义(现场或OTA远程迭代),根据ACE重卡实际应用需求,灵活地匹配不同额定电压和容量的电池包的能力。
本公开ePSD内部的直流母线汇流点X,是ACE重卡动力总成的神经中枢,该点的唯一直流电压时变函数和各个支路直流电流时变函数的集合,从数学上完整准确地描述了ACE重卡的动态路载功率平衡和动力总成工况的核心参数集,是ACE重卡运行节能、减排、及安全控制的关键点。主驱动电机140和电池包130a及130b,永远不允许通过端口II和端口III同时向ePSD输入电能。例如,ePSD可以通过内含三大功能模块(逆变器121,逆变器122a,斩波器132a)来进行脉宽调制(PWM)控制,实现三个端口之间十毫秒级响应时间内数百千瓦级电功率分配精准连续可调,以实时满足车辆行驶时不断变化的路载功率P v(Raod Load Power)要求。由此,通过VCU201操控ePSD123,可以实现油电混合动力总成的多种工作模式之间的快速平顺切换,在满足车辆行驶动力性、安全性和货运时效性的前提下,达到内燃机油耗及排放最优化(即最小化)。
可选地或附加地,ePSD还可以配置有若干传感器和存储器,可以以高于10赫兹的测量频率来记录直流母线汇流点X处的动态直流电压V bus(t)和直流电流I g(t),I m(t),I b(t)等数据,作为ACE重卡专用结构化大数据的一部分,并通过车载无线通信模块210,实时地或及 时地上传到云计算平台001存储,以供后续分析处理。关于专用结构化大数据的实施方式将在后面详细描述。
已知ePSD内部的电功率平衡方程为:P g+P b=P m。其中P g∈[-P gx,P gx],P b∈[-P bx,P bx],P m∈[-P mx,P mx]。P gx为发电机110峰值功率(应略小于内燃机的峰值功率P ICEx),P bx为主电池包130a峰值充放电功率,P mx为主驱动电机140峰值功率,P bx>P mx。P g为发电机110的输出功率,正值为发电功率,负值为驱动功率。P b为电池功率,正值是放电功率,负值是充电功率。P m为驱动电机功率,正值是驱动功率,负值是再生功率,用于再生制动发电,回收能量。本发明为纯电驱动车辆,所以驱动功率就等于路载功率(P m=P v)。本公开实施例描述时,重点讨论只有主驱动电机140和主电池包130a的情景。如果ACE重卡***还包含付驱动电机170和付电池包130b,本行业普通技术人士很容易扩展来描述。
-模式1:车辆静止,P g+P b=0,发电机110通过ePSD给电池包130a充电。
-模式2:车辆在平路或上坡行驶,P g+P b=P m。当P g>P m>0时,发电机首先给驱动电机供电,提供车辆所需的动力,多余功率给电池包充电。而当P g<P m时,发电机110和电池包130a需要同时给驱动电机140供电,才能保证车辆的动力性要求。要想最大限度地节油,内燃机101要长期稳定地工作在几个特定的高效工况点,或怠机甚至完全停机。通过ePSD动态调节,P b跟随P m实时地反相变化,削峰填谷,在时刻满足车辆动力性要求的前提下,维持P g为常数(Pg(t)=P m(t)-P b(t))。换句话讲,CVU可以将内燃机的工作点长期稳定地设置在其比油耗(克/千瓦时)最小的高效工况点,指挥电域功率分流器ePSD实时精准调节电池包的充放电功率方向和数值,来抵消掉驱动电机功率的百千瓦级瞬态变化,实现节油目标。如果遇到纵坡超过2.0度,坡长超过10公里的大上坡时,由于电池包总容量有限,电池包在荷电消耗 (Charge Depleting)工作模式下可能耗尽其电能,暂时失去继续提供上坡功率助力的能力,此时车辆只能靠发电机峰值功率P gx驱动,无法持续达到恒速上坡的路载功率P v,改为换挡减速继续上坡。此时ACE重卡的动力性和货运时效性都暂时下降。干线物流ACE重卡在大部分工作场景不常遇大长坡。对于经常在崇山峻岭区域公路行驶的ACE重卡,可考虑加装一个或两个大容量的功率型付电池包,以改善车辆经常工作在重负载高速上长坡情景下的动力性。
-模式3:当车辆行驶遇到下坡时,可关停发动机,发电机110电功率输出P g为零,此时坡度功率项P gd为负值,其超过P r+P d的坡度功率部分,通过驱动电机的再生制动功能对电池包充电。此时车辆下坡可达到法律允许的最高时速,抢回部分减速上坡损失的时间。如遇到大下坡,驱动电机140和/或170再生制动在车辆下坡途中就会将所有电池包(130a和/或130b)都充满(SoC=100%)。此时,ePSD三端电力电子网络内的大功率软开关133将驱动电机再生制动产生的直流电流,切换到带散热器的百千瓦级刹车电阻,将电能变成热能消耗掉,以实现ACE重卡(非机械制动)电缓速器功能。同时逆变器121还可驱动电机110,以发动机101的缸内制动功能作为电机110的有效负载,消耗来自主驱动电机140的过剩再生电能,为大功率刹车电阻131提供冗余备份。
ACE重卡需要采用超长寿命、耐低温、安全可高、高性价比的功率型电池包,其电芯必须承受5C~10C倍率的连续充放电和15C~30C倍率的峰值充放电(15秒脉冲),而且充电倍率经常要高于其放电倍率,工作环境温度-30℃~+55℃,等效深度充放电(DoD100%)循环寿命超过12000次。整车寒冬室外-30℃熄火停车24小时后,发动机冷启动后原地怠速热车二分钟以内,车辆启动行驶后,电池包应能正常工作。此时电池包充放电能力可暂时降低,等电芯内部温度上升到10℃时恢复全部充放电能力,但不能因低温 高倍率充电而损伤电芯,甚至造成电芯热失控的重大安全隐患。
主流的锂离子动力电芯例如磷酸铁锂(LFP)和三元锂(NCM或NCA)等都普遍怕冷。当电芯温度低于零摄氏度时,其2C以上高倍率放电能力明显下降,此时低温放电并不损伤电芯;但此时低温2C以上高倍率充电,则易造成电芯负极镀锂(Lithium Plating)而严重损伤电芯寿命,其损伤机理为负极的金属锂枝晶刺穿隔膜,造成电芯内短路引发热失控的安全隐患。电池管理***(BMS)会实时监控电芯的温度,严禁电芯低温时高倍率充电。LFP,NCM,或NCA主流动力电芯难以单独承担ACE重卡的电池包之重任。
钛酸锂电芯(LTO;正极三元锂/负极钛酸锂)是目前唯一能完全满足ACE重卡全部技术要求的量产动力电芯。对比上述几种主流锂离子电芯,LTO有比能量低(65wh/KG)和成本高($/KWh数倍于LFP)两大缺点。LTO比能量低的缺点因ACE重卡对总容量几十度电的电池包的体积和重量基本没有限制,不足为虑;但其价格高昂的缺点却可能严重影响ACE重卡大规模商用。优选地混搭LTO主电池包130a加上低成本LFP或NCM付电池包130b,可以根据ACE重卡具体应用场景,优化***性价比。当寒冬车辆室外久停后冷启动后,LTO主电池包130a立即参与工作,LFP或三元锂的付电池包130b则由斩波器132b控制暂时不参与高倍率充电,等付电池包十几分钟后将其电芯加热到10℃以上后,付电池包130b再由斩波器132b接通后参与工作。电池包是ACE重卡中最贵的子***,混搭不同电芯的两个甚至多个电池包,有益于降低电池包总成本,对优化ACE重卡综合性价比至关重要。
LTO单电芯电压仅2.2V,低于LFP单电芯电压3.3V和NCM单电芯电压3.7V。同样容量的电池包,高额定电压,多电芯串联结构比低额定电压,多电芯并联结构设计复杂,制造成本高。多数新能源乘用车所采用的电池包额定电压范围200V~400V。本发明ePSD的峰值功率可高达500千瓦,其直流母线额定电压优选范围:600V~800V。本公开所用电池包优选额定电压值在200V至400V之 间,与年产销总量巨大的新能源乘用车所用电池包的额定电压范围重合度较高,便于充分利用当今新能源乘用车成熟的动力电池供应链,降低成本,保质保供。这些电池包可通过ePSD端口III内部的双向升降压直流-直流转换器(Boost-Buck,又称斩波器)132a和/或132b与ePSD的直流母线匹配电压。该斩波器的另一功能是通过脉宽调制(PWM),在0%~100%充放电电流峰值范围内,连续精准地调节电池包130a和/或130b的充放电电流幅度。
优选地,主电池包130a可以采用容量10KWh~30KWh的钛酸锂电芯(LTO),可连续充放电5C~10C,20秒脉冲峰值充放电15C~30C,等效深度充放电(100%DoD)寿命超过1.2万次,室外工作环境温度-30~+55摄氏度。已知商业化的各种电化学配方的汽车规格动力电芯中,只有钛酸锂电芯一套就可以满足上述苛刻要求,但其每千瓦时(KWh或度)电芯的成本(元/瓦时)为其它主流汽车级锂离子电芯(例如LFP、NCM、NCA)成本的三倍以上。还可以选用适合恶劣工作环境下高倍率部分充放电(HRPSoC)应用的如下功率型电芯:镍氢电池(NiMH)、磷酸铁锂(LFP)、三元锂离子电池(NCM/NCA)、或碳铅电池(PbC)。这四种电芯都可能需要两套电芯,才能满足过1.2万次等效深度充放电(100%DoD)循环超长寿命的要求。可以考虑将上述几种电芯混合搭配,并将电池包总容量提升到50KWh~95KWh,以谋求电池包全生命周期内性价比最优。优选地,付电池包130b可以采用容量30KWh~90KWh的主流的锂离子功率型电芯例如磷酸铁锂(LFP)和三元锂(NCM或NCA)。当然还可选用总容量大于100KWh的主/付电池包,有利于增强整车在各种运行工况下的动力性,减少电池包等效循环寿命上限值和充放电倍率峰值,但大电池包的重量、体积、和成本都将升高,需综合考量。本发明中,电池包的作用像一个带有小号油箱的大功率发动机,其爆发力强但耐力不足。电池包即可以长时间(5~20分钟以内)连续提供驱动电机的百千瓦级额定功率,也可短时间(30秒以内)提供超过300千瓦以上的驱动电机峰值功率。假定电池包 总容量30千瓦时,驱动电机额定功率300千瓦,满荷电状态(100%SoC)的电池包(容量30千瓦时),在发电机组零输出时,可单独连续6分钟给驱动电机以300千瓦强度连续供电(10C放电),让满载混动重卡(40吨)在平缓无车的高速路上以90公里/小时的法定限速跑近10公里。电池包中存储的再生电能可视为“近零成本能量”。要想提升节油率,需要尽量将电池包中的电能量随放随充,提高电池包电能周转率或吞吐电量。电池包放电时通过驱动电机给车辆行驶提供动力,电池包充电时的能量,即可是通过驱动电机再生制动回收的电能,也可是发电机组的电能。但是,当电池包荷电状态(SoC)小于20%,而且车辆要持续加速或上长坡时,车辆道路负载功率大于发电机组的额定功率,此时电池包必须持续放电来弥补功率差额(P b=P v-P g)。这时如果电池包荷电耗尽(SoC=0%),则该ACE重卡只好换低挡,减速行驶,暂时降低此时车辆的动力性和货运时效性。一直要等到车辆前方出现平路或下坡时,发电机组和/或驱动电机才能有机会再给电池包充电。
继续参考图2,优先考虑在设计电域功率分流器ePSD的几大功率模块时(端口I内接逆变器121,端口II内接标配主逆变器122a和选配付逆变器122b,端口III内接大功率智能软开关133、标配主斩波器132a和选配付斩波器132b),应优选考虑在电力电子硬件的功能和性能方面留有余地(过设计,Over-design),以便于后续通过软件远程修改和/或升级(OTA)。逆变器121的峰值功率应比发电机110的峰值功率P gx高近25%;主逆变器122a的成本最高,其峰值功率应比主驱动电机140的峰值功率P pmx高近15%,而付逆变器122b的峰值功率应比付驱动电机170的峰值功率P smx高近25%,其中P pmx>P smx;主斩波器132a和/或付斩波器132b的峰值功率总和应比主驱动电机140的峰值功率P pmx高近15%。功率半导体模块例如IGBT或SiC的性价比改善的速度要明显高于电池包、电机、和刹车电阻性价比的改善速度。可以充分利用大功率半导体产业的不断创新和升级,采用多种电力电子拓扑结构来实现高性价比的 ePSD。具备硬件余量设计的ePSD从一开始就是软件定义的电域功率分流器,可通过远程软件更新迭代(OTA)不断改善和进化。采用上述模块化设计策略,ePSD的三个端口与外接的电机和电池包等电负载采用标准的机械和电气接口,方便适配多家优质供应商所提供的各种满足***技术性能要求的电机和电池包,分步骤可继续地提高ACE重卡整车性价比。
逆变器(121,122a,122b)以矢量控制(Vector Control)方式精准控制交流电机(110,140,170),可以实时(毫秒级)连续精准地调节百千瓦电功率的幅度和流向。斩波器(132a,132b)即可外接匹配各种不同额定电压的电池包,也可提供实时精准地调节电池包充/放电百安培级电流的功能。ePSD 123使ACE重卡能根据其节油控制策略和算法,实时精准地调节三个相互独立的百千瓦级电功率(独立变量的发电机功率P g(t),独立变量的驱动电机功率P m(t),非独立变量的电池包充放电功率P b(t)),随时满足车辆路载功率平衡方程:P v(t)=P m(t)=P g(t)+P b(t)。
优选地,标配的主驱动电机140为永磁同步电机(PMSM),额定功率200KW~300KW,峰值功率300KW~500KW,峰值扭矩1800NM~2500NM。驱动电机也可选用满足功率和扭矩要求的交流感应电机或开关磁阻电机。主逆变器122a的峰值功率必须高于主驱动电机的峰值功率。
因油电混合乘用车的年销量比油电混合商用车高近两个数量级,所以尽量选择与乘用车共用某些核心零部件,可有效地减低混动商用车的成本并保证批量供应。电动(包括油电混动)乘用车所用单个电机和逆变器的额定功率通常小于150千瓦。一种优选方案是采用九相永磁交流电机和与之匹配的有九相交流输出的逆变器。九相永磁交流电机实际上是三个较小三相永磁交流电的同轴/同壳集成,所对应的九相逆变器由三个相互独立的较小三相逆变器同壳集成。这种多相电机+多相控制器的结构有冗余度,能降低全***的综合成本,提高***的性能和可靠性。电机和控制器的功率参数超出 上述范围,混动重卡也能工作。只是要么过低配置导致经济性提升但动力性降低,要么过高配置导致动力性提高但经济性降低。
针对图1的6x2或6x4的重卡混动***,还可采用一个布置在变速箱150前(P2位置)的标配主驱动电机140(MG2)和一个布置在第二传动轴(又称第二驱动桥)180上(P4位置)的付驱动电机170(MG3)。此时主驱动电机MG2可优选额定功率在150KW~230KW之间的永磁同步电机(三相或六相交流)。付驱动电机MG3可优选额定功率在100KW~150KW,峰值扭矩不超过1000NM(牛米)的大扭矩永磁同步电机,经单级减速器或直驱第二转动轴180。此时付逆变器122b可选择额定功率150KW~200KW的电机控制器。
变速箱150的输入轴通过柔性机械联接器152与主驱动电机140的输出轴双向机械联接,变速箱的输出轴与第一转动轴(又称第一驱动桥)160双向机械联接。优选地,采用输入端峰值扭矩高于2000牛米的重型6速~12速的自动机械变速箱(AMT-6~AMT-12),也可选用重型双离合器变速箱(DCT)或带液力扭矩转换器的自动变速箱(AT)。与内燃机低转速时扭矩较小的动力特性不同,驱动电机低转速时扭矩最大,所以该自动变速箱6~8前进速度挡足够ACE重卡用,无需更多挡位。但本发明中的变速箱需承受的最大功率并非传统的单向机械功率传递,而是双向机械功率传递,所以ACE重卡的自动变速箱内的主要轴承和齿轮需要强化设计和制造,才能保证其性能、耐用性和寿命都能达标。
以上内容描述了根据本公开的ACE重卡***,能够实现干线物流ACE重卡节油减排有益效果的工程基础、***架构、以及硬件配置,在接下来的各个实施例中将进一步描述如何利用尤其是三维电子地图、车载导航设备、以及云计算平台上(例如,云端服务器)存储的ACE重卡运行结构化大数据,结合机器学***台算力,培训“节油人工智能”,来进一步实现ACE重卡高速公路上同车道内的“节油+人工智能”的预测性自适应巡航。
在某些实施例中,该ACE重卡上配置有地图仪240和卫星导航 接收机220。地图仪中预先存储有的覆盖全部高速公路和其它主要半封闭式道路的三维电子地图(或称三维地图),而该三维地图信息包括但不限于:全旅程公路的经度、纬度以及特别是纵向道路坡度(诸如图4中所示的上坡角度α u和下坡角度α d)等先验信息。例如,如图1所示的车载导航仪240内存中可以包含道路米级定位精度(经纬度)和纵坡0.1度精度的三维地图。包含上述道路三维信息的各种高级驾驶辅助***(ADAS)地图,在全球主要汽车市场,均已实现商业化批量应用。
卫星导航接收机220(或称卫星导航仪,GNSS)用于实时地测算车辆所处位置(也即,当前位置)处的经度、纬度、海拔高度、纵向道路坡度、纵向线速度等信息。在某些实施例中,可采用双天线输入(221和222)的载波相位动态实时差分(RTK)技术的卫星导航接收机(简称“RTK接收机”),能以每秒十次的测量速度(测量频率10赫兹)对ACE重卡进行实时精准定位和测姿。
国际卫星导航***(GNSS)目前有四大独立体系,美国的GPS、俄国的Glonass、欧盟的Galileo、和中国的北斗BD。目前北斗三号可对以中国为核心的亚太地区和“一带一路“沿线各国提供最新卫星导航服务,2020年预计完成全球覆盖。同时中国的北斗***已与其它三家***签署兼容协议。优选地,采用含最新北斗三号RTK芯片的卫星导航接收机220,匹配安装在重卡驾驶室顶部间隔至少一米的两个卫星天线221和222,实时动态测算车辆的授时、速度、位置(经/纬度)、和纵向姿态(即道路纵坡角度)。该RTK芯片可根据收到GNSS四大体系中任意组合的四颗导航卫星的相互独立的信号,完成卫星导航定位测姿的测算。授时精度50纳秒,测速精度0.2米/秒,水平面经纬度定位精度小于2.5米,公路纵坡精度小于0.15度,最高测算频率10赫兹。该RTK导航仪无法实时准确测算车辆轮下路面的垂直海拔高度。同时世界许多国家,对精准海拔高度信息的测绘和发布严格管控。所幸本发明对车辆路面绝对海拔高度的测量精准度要求不高,亚100-米级精度即可。在某些实施例中,也可以采 用单天线卫星导航接受机加车规级惯性导航仪(IMU)完成车辆三维定位和导航。基于多个微机电***(MEMS)加速度传感器和陀螺仪(Gyro)的IMU能以高于10Hz的测量频率和0.1度的测量精度实时测量ACE重卡所行驶的道路的纵坡函数。需要强调,因为ACE重卡高速行驶时道路纵坡瞬间微小0.1度级变化是大幅节油减排的秘密源泉,所以动态精确测量高速公路沿途纵坡分布函数对ACE重卡优化能量管理至关重要。
每辆ACE重卡的实际油耗,只和该重卡各重要子***的性能配置参数常量、总车重(牵引头加载货挂车)这一离散变量、车速和车加速度这二个连续时间变量、行驶路径纵坡分布函数这一连续时间变量等有限的常数或变量直接相关,与运输行业或车辆年宏观平均油耗没有直接关联。如果某辆ACE重卡,在货运出发前,输入其当日旅程路径的起点和终点,能从云端人工智能(AI)大脑处,借助在该路段运行的所有ACE重卡的汇集历史经验的运行结构化大数据,及时(秒级时延)计算并下载针对该车辆和特定路径的定制默认最佳节油控制策略,则每辆ACE重卡,无论其司机有无该路径的驾驶经验,都可以依靠ACE重卡群体智慧,一致性地实现最佳油耗。
ACE重卡运行结构化大数据的核心是其ePSD的运行大数据,包括如下内容:采样频率10.0Hz,根据卫星导航接收机220的授时来校准所有子***控制器的时钟,每个采样时刻点t i,ACE重卡的各个微控制器指挥传感器本地采集并存储至少下列变量值:道路的经度L lg(t i)、纬度L lat(t i)、纵坡G(t i)、车速v(t i)、车加速度a(t i)、发电机直流电流I g(t i)、驱动电机直流电流I m(t i)、电池包直流电流I bat(t i)、直流母线电压V bus(t i)、电池包荷电状态C bat(t i)、刹车电阻直流电流I bk(t i)、环境温度T(t i)、环境风速及风向v xyz(t i)等。还可以本地采样并存储(t i)时刻各个电机(MG1,MG2,MG3)、发动机101、自动变速箱150的主要时间变量类运行参数。需要强调,所有上述ACE重卡运行结构化大数据必须使用本公开图1,2,3所示***架构和装置动态实时地本地(随 车)采集、测算、并存储,无法分时、分路段、分子***在多辆重卡上分散采集或模拟后再拼接组成。后续培训云端和车载节油人工智能单元时,可采用多种开源或专用机器学***台算力。但ACE重卡运行结构化大数据为非公开专有数据,积累越多则价值越大,可以不断提高后续竞争者进入的壁垒。
在某些实施例中,VCU 201可以被配置为:基于预先存储在地图仪240中的三维地图的全旅程公路沿途(米级间隔密度)的经纬度(等效米级定位精度)、纵向道路坡度(简称“纵坡”,0.1度精度)等数据,和/或基于由RTK接收机220所动态测算的所述车辆位置处的经度、纬度、海拔高度、纵坡、车速等数据,来对ePSD、电机和电池包以“独立”方式进行预测性功率控制,在保障行驶安全和货运时效性的前提下,追求ACE重卡实际油耗最小化。
可选地或附加地,如果在预存在地图仪240内的三维地图中信息与由卫星导航接收机220实测的信息之间偏差超出允许公差范围的情况下,尤其是在车辆当前的纵坡数据(作为节油的关键信息)出现偏差超出允许公差范围的时候,则VCU可先采用实测的纵坡数据为准,来控制ePSD三端口之间的瞬态功率分布。如果实际情况是RTK接收机220出错,三维地图的先验数据正确,VCU 201则可根据ACE重卡ePSD三端口的实际瞬态功率分布参数、车辆纵向线速度和加速度,结合车辆动力学方程,进行车辆在环模拟(VIL)计算后迅速做出判断,改选以车载三维电子地图为准,实现***自动纠错功能。
当然,为降低***成本,也可选用普通单天线卫星导航接收机220,再选配单轴或多轴动态倾角传感器来实时测量行驶车辆的定位(经度/纬度)和道路纵坡。动态倾角传感器有多种实现方法。其中一种高性价比的实施方案为车规级微机电***(MEMS)的加速度传感器、陀螺仪(Gyroscope)再加专用芯片集成。在下面的若干实施例中,将以示例性方式阐释VCU 201是如何利用车辆动态三维导航信息(尤其是道路纵坡分布函数)来实现自动化预测性节油控制。 再次指出,下面具体示例并不应被理解为限制本公开的保护范围,而完全是出于为了本领域技术人员更好地理解本发明的目的。
例如,在一些实施例中,当根据车辆定位和车载三维地图推断前方将遇到斜坡路段的坡度小于预定义的第一纵坡阈值(例如,小于2.0°)并且斜坡路段的长度大于预定义的第一长度阈值(例如,大于10公里)的大坡时,VCU 201可指挥内燃机101驱动发电机110,提前增加发电功率,将所产生的电能中的大部分用来给驱动电机140供电,以提供车辆匀速行驶时所需动力,并将剩余的电能用于给电池包130a&130b充电,尽量在车辆开始上大坡前充满电。这尤其适于前方路段具有“长缓坡”的情景。
在一些实施例中,当车辆电子地平线范围内基本为平原公路,没有大坡,只有各种坡度小于预定义第二坡度阈(例如,小于2.0°)值并且坡度路段的长度小于预定义的第二长度阈值(例如,小于2公里)的小坡时,VCU 201可指挥内燃机切换到怠速点工作,此时发电机输出功率为零,仅通过电池包130a和/或130b以荷电消耗的方式来给驱动电机140供电,提供车辆匀速行驶所需的动力。这尤其适于前方路段具有“短坡”(也可以称为“小坡”)的情景。因为坡度长度较短(例如小于2公里),所以在电池包130a&b将其存储的电能释放完之前,车辆就已经爬上坡顶,在随后的下坡阶段很快又能通过驱动电机再生制动给电池包再次充电,回收能量。通过这种方式,使得几十千瓦时级的功率型电池包中的电能,被充分利用并多次充放,增加电能吞吐周转率,相比使用数百千瓦时的大容量电池包来预先存储大量电能的方案性价比更高。
如前面所提及的,发明人发现目前现有传统燃油重卡的“节油”策略虽然可以依赖于车载三维地图十公里级电子地平线,在丘陵或山区高速公路,通过预测性巡航控制,实现不足3%的节油效果。但传统重卡预测性巡航策略均无法应用到那些坡度路段长度较短且坡度较小的情形,也即“小坡”的情形(诸如坡度路段长度小于2公里、纵坡小于2.0度)。这主要是因为传统燃油重卡的内燃机与其传动轴 之间仍然保持机械联接,因此机械式动力总成不宜瞬间(亚秒级)大幅度变化内燃机输出功率及自动变速箱频繁换档(秒级)。由此,导致了传统的预测性巡航控制只适用于纵坡角度大于2.0度、坡长数公里级的所谓“大坡”,而忽略了数量更多的“小坡”。同时传统燃油重卡没有再生制动功能,车辆下坡行驶时无法回收能量。这样,传统燃油重卡在干线物流场景实施预测性功率控制,将错失许多能够积少成多的微节油的机会,其综合油耗降幅很难超3%。如上所述,传统燃油重卡只能有效地使用约10公里范围的电子地平线。小于1公里范围和大于10公里范围的电子地平线对传统燃油重通过预测性控制来节油没有实际意义。
在一些实施例中,当车辆前方路段在相当长的一段距离(例如,10公里)中的坡度基本为零(纵坡α在正负1.0度范围以内)或仅具有如上所述的“小坡”时,VCU可以动态地将电池包的荷电状态(SOC)考虑其中。例如,可以在检测到电池包的荷电状态(SOC)高于第一电荷阈值(例如,SOC高于80%)时,降低发电机组的输出功率P 1,甚至降为零,主要通过电池包的放电功率P 2来给驱动电机供电,提供车辆行驶动力。如果检测到电池包的荷电状态(SOC)低于第二电荷阈值(例如,SOC低于20%),可将发电机组的输出功率P 1调高,直到其峰值P gx,并将所产生的电能的主要部分用来给驱动电机(140和/或170)供电,以驱动车辆,并将其余部分的电能用于给电池包(130a和/或130b)充电。以这种方式,确保电池包里的电量不会被耗尽,而总是存储有一定的电量,可以提供需车辆加速或恒速上坡时所需的爆发力。
在一些实施例中,当距车辆当前位置预定距离处(例如,前方10公里以上位置)的前方路段出现坡度大于第一坡度阈值时(例如,大于2.0°)而且坡长大于10公里的所谓“长坡”,VCU可以提前指挥发电机组以最大功率P gx来发电,并将所产生的电能的一部分用来驱动电机以提供车辆动力,并将所产生的电能的其余部分基本上全部用于给电池包充电,以使得在车辆到达该“长陡坡”路段起点处时, 电池包达到满荷电(SOC=100%)。这样,电池包在车辆进入长坡路段之后,可以以电荷消耗(Charge Depleting)工作模式与发电机组合力通过ePSD给驱动电机供电,满足车辆行驶动力性和货运时效性的要求。当电池包的剩余电能足以将车辆驱动上坡顶时,VCU指挥发电机组提前降到零输出,尽可能在车辆开始下坡时,基本耗尽电池包内电能,然后利用长下坡时的数百千瓦幅度的负坡度功率,通过再生制动给电池包快速充电,从而实现节油。
返回参考图1,出于行驶安全性的考虑,在一些实施例中,重卡还可以包括安装在重卡前端的汽车级毫米波雷达模块230和雷达天线231,用于实时监测重卡与其正前方跟随车辆间的距离和两车的相对速度。所述毫米波雷达的前方探测距离峰值范围为100米~300米。还可采用车规前视单目或双目摄像头加专用芯片,与前向毫米波雷达融合,增强车辆前端测速和测距的性能和***鲁棒性。
在一些实施例中,重卡还可以包括车载无线通信模块(T-box)210,通过例如WiFi,三代/四代/五代蜂窝移动通信网(3G/4G/5G)002(参见图4),让重卡与云计算平台001联网。
这样,VCU 201可以从包括RTK接收机220、毫米波雷达230在内的众多车载传感器接受信号,实时地操控包括发动机101、发动机控制模块102、发电机110、电功率分流器ePSD 123(内含逆变器121、122a&b,大功率软开关133,斩波器132a&b)、电池包130a&b、驱动电机140&170、自动变速箱150加控制器(TCU)151、地图仪240在内的众多模块或子***,通过“交响乐队式”的多模块协同,实现车辆高速公路同车道内预测性自适应巡航功能,确保综合油耗最小化。
VCU可以有效地利用50公里范围,甚至500公里范围的电子地平线三维道路信息,通过累计叠加50米路段颗粒度的实时预测性功率控制,实现ACE重卡全旅程综合油耗最小化。
此外,ACE重卡在封闭的高速公路行驶时,还可人工开启或关闭附加的预测性自适应巡航(PAC:Predicative-Adaptive-Cruise)功 能,也可称为L1.5级自动驾驶功能。该功能(PAC)为车辆同车道纵向行驶自动控制,解放了司机的双脚,减轻其驾驶劳动强度,实现ACE重卡高速公路同车道内自动化加速、减速、巡航、滑行。
在一些实施例中,上述预测性自适应巡航(PAC)可包括下列三种模式:普通模式、节油模式、和高性能模式(又称运动模式)。
举例来说,一辆中级乘用车总重两吨,最大驱动功率可达100KW,而一辆满载重卡总重高达40吨,最大驱动功率只有350KW,重卡的单位吨位重量的驱动功率远小于乘用车,两种车辆的动态行驶特性差异巨大。重卡在空旷的高速公路行驶时,由于其惯性巨大且驱动功率余量不足,很难保持恒速上下长坡,也很难恒定距离地跟随正前方的乘用车。需要以司机选定的巡航速度Vc为中间值,设定巡航的速度上限和下限,确定重卡的巡航速度带,将车辆控制在巡航速度带内。三种PAC模式侧重点不同,普通模式兼顾油耗和动力性(即货运时效性);节油模式侧重油耗而放松动力性要求;高性能模式则强调动力性而放松油耗要求。优选地,可选择下列巡航速度带的上下限值。
普通模式下,巡航车速(1.0-0.08)Vc<V(t)<(1.0+0.08)Vc和/或该路段的法定最高车速;节油模式下,巡航车速(1.0-0.15)Vc<V(t)<(1.0+0.05)Vc和/或法定最高车速;高性能模式下,巡航车速(1.0-0.05)Vc<V(t)<(1.0+0.12)Vc和/或该路段的法定最高速度。
VCU根据包括总车重,车速等车辆的配置和工况信息,结合车辆当下的道路纵坡信息和地图仪存储的车辆前方数十公里道路的纵坡分布函数和弯道曲率等三维信息,动态调整自适应巡航的安全跟车距离L s。道路纵坡数据(正负/大小)对重卡的动力性和刹车有效性影响巨大。乘用车没有必要根据道路纵坡分布函数来动态调节安全跟车距离L s,但这点对重卡安全行驶十分重要。安全跟车距离L s可再细分为三个特定距离:L1为预警距离,L2为警告距离,L3为危险距离,其中L1>L2>L3。
当ACE重卡与正前方车辆间距L s逐渐小于L1、L2、和L3而且 相对速度v>0时(表示不断缩短辆车间隔),VCU通过车内声觉、视觉、触觉等多种信号逐级提升示警力度,提醒司机。同时VCU控制发电机组和驱动电机,先逐步减少各自的输出功率,当驱动电机的输出功率降至零点后,再逐步增加再生制动功率,给车辆减速,并通过给电池包充电,来回收能量。但驱动电机500KW的最大再生制动功率,对高速行驶的满载重卡,也只够满足减速度约0.1g(g为重力加速度)的辅助制动要求。遇紧急情况,必须依靠司机踩制动,启动重卡的机械制动***,才能实现减速度大于0.2g的紧急制动。司机刹车反应时间加上重卡机械制动(气动刹车)***响应时间约有1.0秒时延。而VCU上述操作可在25.0毫秒内完成,比传统重卡司机+机械制动***的反应速度快几十倍,并且再生制动***与机械刹车***完全相互独立。ACE重卡的驱动电机再生制动功能,即改善了车辆的综合刹车性能,又提供了安全冗余性。ACE重卡预测性自适应巡航除节油减排外,还可以提升驾驶安全,减少车辆追尾事故。
预测性自适应巡航(PAC)工作分为两类。第一类是当同车道前方数百米距离内无车辆时,车辆根据节油控制算法,将ACE重卡控制在指定的车速带内行驶。第二类是当同车道正前方200米内有前行车辆时,需将ACE重卡控制在安全跟车距离L s以外。
干线物流重卡不时会遇到因上下班交通高峰、修路、或交通事故等因素造成的拥堵道路(平均车速低于30公里/小时;加减速频繁),此时司机驾驶劳动强度和重卡油耗都猛增。拥堵的高速路是全球各国公路物流行业的“痛点“之一,中国比美国高速路平均拥堵程度更高。ACE重卡此时可开启“智能跟车”功能,该功能只能在封闭道路低速行驶时(平均车速低于30公里/小时)才能使用,不可以在开放的城市或郊区道路上使用。利用前视雷达加摄像头,在封闭的拥堵公路段,与同车道正前方领航车保持设定的安全距离L0,由VCU指挥ACE重卡动力总成频繁加速和减速来实现。驱动电机从零转速起到额定转速都能够保持最大扭矩输出,ACE重卡的启动 加速性和刹车减速性都明显高于传统内燃机重卡,可以和传统内燃机普通乘用车加减速相媲美。此时重卡低速频繁刹车,十分有利于百千瓦级再生制动回收能量。ACE重卡在拥堵道路“智能跟车“模式下,比传统内燃机重卡更节油(节油率超过30%),同时还可以大幅减轻司机的驾驶劳动强度。
载货重卡高速公路长下坡行驶时,机械刹车***因长时间制动发热而性能下降,甚至完全失效的风险不容忽略。欧洲重卡法规要求必须加装重卡缓速器,美国和中国的重卡虽无法规强制要求,但越来越多的重卡选装重卡缓速器。现有量产的缓速器,例如电涡流缓速器、液力缓速器、和发动机缸内制动缓速器等都各有优缺点。电涡流缓速器和液力缓速器都只有一项缓速功能,无助车辆驱动,增加车辆的重量和成本,且车辆低速时缓速效果下降。发动机缸内制动缓速器有一机多用的益处,但缸内制动带来巨大的噪声污染,且车辆低速时缓速效果下降。本公开的ACE重卡动力总成,除节油外,还能一机多用,同时实现重卡缓速功能,且无需额外成本,比上述已批量商用的几种重卡缓速器性产品的价比都高。ACE重卡遇到长下坡时,VCU201指挥ePSD123先关闭发动机101,通过驱动电机140和/或170的再生制动给电池包130a和/或130b充电。当电池包130a&b充满时(SoC为100%),软开关133切换到刹车电阻131,断开电池包,将多余的电能转换成热能消耗。如果此时发动机101带有缸内制动功能,还可以通过逆变器121来驱动发电机110,拖动发动机通过其缸内制动来消耗多余电能,提供缓速器***冗余。再生制动除能近零成本回收能量外,还可以大幅延长机械刹车片的寿命,明显降低ACE重卡刹车***的运维成本。
本发明的ACE重卡***架构可包含L1~L2级有条件自动驾驶功能,该动力总成架构为全数字化软件定义的动力总成。ACE重卡能够升级成L4或L5级无人驾驶重卡。L1到L5级的自动驾驶重卡都必须遵从道路车辆功能安全标准ISO 26262,达到特定的安全等级(ASIL安全等级)。ACE重卡具备基于驱动电机和ePSD的再生制 动功能、自动紧急刹车辅助功能(AEBA)、和长下坡缓速器功能,在车辆的传统机械刹车***之外,增加了一套完全独立冗余的主动安全***。本公开的ACE重卡***架构,能够同时改善汽车的三大终极目标:安全、节能、环保。
预计2019年开始,在欧美较为空旷的全封闭高速公路区域能实行重卡“阵列”(Truck Platooning)初步规模化商用。所谓重卡阵列,就是通过一整套高级驾驶辅助技术(ADAS)加上车与车和车与云端之间的实时可靠的通讯(V2V,V2X),将两辆高速行驶重卡之间的安全跟车距离从法规要求的50米以上大幅减小到15米以下,这样有助于明显降低前后两辆车辆的风阻功率,领航重卡可节油4%,跟随重卡可节油10%。从安全角度考虑,跟随重卡的紧急制动性能一定要优于领航重卡,以避免追尾事故。ACE重卡的高速同车道紧急制动性能永远优于同负荷的传统燃油重卡,所以ACE重卡总适合在重卡整列中做跟随重卡,能进一步节油。从节油角度考虑,重卡阵列的跟车间距并非越小越好。当跟车距离小于7米时,跟随重卡正面水箱的有效风速降低,要求开启功耗几十千瓦的水箱风扇,才能满足重卡柴油机所需动态散热功率,导致跟随重卡综合油耗不减反升。ACE重卡的柴油机排量比传统重卡的发动机排量减少约30%,这意味其水箱的将面积和散热功率都减少30%左右,同时ACE重卡比传统重卡制动反应速度快,制动总功率高,制动距离短,ACE重卡作为跟随车辆,在无大上下坡的高速公路段,可以将卡车阵列安全跟车距离缩短到6米,通过减少风阻功率,可能实现节油率超过10%。
需要强调的是,ACE重卡通过本发明所述高速公路同车道内预测性自适应巡航,达到综合油耗比传统燃油重卡减低30%主要依靠油电混合的动力总成技术,再加上专有结构化大数据、三维地图电子地平线、和人工智能节油算法。与还处在研发期的L4/L5级自动驾驶车辆不同,本发明的ACE重卡使用已成熟并商业化的核心零部件和***集成技术,能够在五年内落地,实现规模化商用。其它已 商业化的重卡节油技术,如低滚动摩擦轮胎、轻量化、降风阻空气动力学(牵引车头加挂车)等,都可以直接叠加应用到ACE重卡上,所以2021年前后批量商用化的全新ACE重卡比2015年版的传统燃油重卡基准线的综合油耗(升/百公里)降低幅度将超过30%。
此外,对电池包容量仅几十度电的ACE重卡,其载货高速行驶800公里耗电超过1000度(千瓦时),增加插电混合功能虽技术可行但商业意义不大。本发明实质上是一种不带插电功能的高级增程式电动重卡。如前面所讨论的,ACE重卡在有负载高速公路行驶时,通过巧妙地利用频繁出现的由道路纵坡0.1度精度细微秒级快变所产生的几十千瓦到数百千瓦的下坡负值的坡度功率给电池包充电,从每个几十米到几公里长度的下坡,可收获数千瓦时级的“零成本电能”,积少成多。从电池到主动轮的综合能量转换效率比从油箱到主动轮的综合能量转换效率高出两倍。换句话讲,电池包内的电能对比油箱内的燃料化学能,在驱动车辆方面,以一抵三。ACE重卡高速路工况节油的秘密,就是最大限度地利用电池包内的近零成本电能,提供部分车辆的快速变化的驱动功率,通过随充随放的快速周转方式,提高电池包全旅程充放电吞吐总电能,达到节油效果。
VCU实时地根据全旅程道路三维地图电子地平线,审时度势,保证当车辆遇到长度数公里以上的大上坡之前,有足够时间提前将电池包充满,避免车辆爬山途中,因电池包电能耗尽,发电机组峰值功率不足以单独支持车辆恒速上坡,只好换挡减速上坡的情形。根据车载三维地图,特别是全程道路纵坡高精度分布信息,VCU可以在十千瓦精度下实时(亚秒级)动态地计算并预测车辆全程坡度功率的时间函数,以便动态预测性地调整内燃机的工况点和电池包的荷电状态(SoC),在司机选定的预测性自适应巡航(PAC)模式下,追求ACE重卡节油效果、动力性、和货运时效之间的最佳平衡。需要强调的是,某一辆ACE重卡的日行驶综合油耗最优值和该车辆的配置和负载、特定旅程(或路线)沿途道路的纵坡时空函数、当日沿途气象条件、和沿途的交通状况等息息相关,而与类同配置和负载 的重卡在全省甚至全国范围内宏观大数平均油耗值没有多少联系。每日每路段平实现均油耗最低,日积月累,就能保证该ACE重卡全生命周期内综合油耗最优。所有不同配置和不同负载的ACE重卡,日积月累形成的在特定旅程的专用结构化大数据,对该旅程运营的每一辆ACE重卡,都有指导意义。
下面将描述如何利用由上述的众多ACE重卡在行驶期间所记录下来的结构化的专有大数据,加密后经车载无线网关通过移动互联网上传至云计算平台来存储,供后续分析处理。云平台通过机器学习特定算法,调集足够算力,利用日益累计的专有结构化大数据,训练“节油人工智能“,集中集体智慧,寻求针对特定旅程的节油最佳策略,并服务于个体ACE重卡,向其提供针对特定旅程的油耗标杆值和默认优选节油策略,使每辆ACE重卡都能从中受益。每辆重卡利用其VCU,进行“边缘计算”,根据此时此地的环境和车辆运行数据,实时动态地修改默认节油策略,实现该旅程的综合油耗最小化。
在一些实施例中,在车辆行驶过程中,来自上述发电机组、ePSD、驱动电机、自动变速箱、以及电池包等各个主要动力总成子***的运行数据可以被ACE重卡上的众多传感器组成的车载“物联网”实时测量采集,以结构化大数据存储在例如VCU的存储器中。当然,将测量数据分散式地存储在各个子***所对应的微处理器的存储器中也是可行的。所谓的“结构化数据”是指以某种“映射关系”而被“相关联地”记录的多个数据。
举例说明,可以利用全球导航卫星***(GNSS)的数十纳秒级超高精度授时,来动态校准包括VCU时钟在内的各车载子***的微处理器时钟,用唯一的时间序列,来标注结构化大数据。如图1~3所示,车辆上包括VCU 201、发电机组的发动机101、发动机控制模块102、发电机110、电域功率分流器(ePSD)123(内含逆变器121,122a&b;软开关133;斩波器132a&b)、驱动电机140&170、电池包130a&b、变速箱150、变速箱控制器151、毫米波雷达230、移动 通信模块210、地图仪240、RTK接收机220等重要的子***都有专用的微处理器、存储器和传感器。这些子***都能以在0.1赫兹<f m<50赫兹的测量频率(f m)范围内在本地实时测量计算并记录各子***以时间为标注的主要运行参数。例如:发动机控制模块102能以20赫兹的测量频率测算并记录车速、发动机101的转速、扭矩、比油耗(BSFC)等运行数据;发电机控制器(逆变器)121能以20赫兹的测量频率记录发电机110的输入轴的机械转速和扭矩、内部温度和发电机的逆变器121的输出直流电压、电流和内部温度等数据;ePSD 123可以20赫兹的测量频率记录其直流母线汇流点X处唯一的直流电压函数加上各个支电路的直流电流函数等数据;电池包130a&b所带电池管理模块(BMS)能以10.0赫兹的测量频率记录其输出直流电压、电流,和其内部电芯和电池模组级别的电流、电压、温度、荷电状态等数据;逆变器122a&b可以20赫兹测量频率记录驱动电机140、170的输出轴的机械转速和扭矩、内部温度和逆变器122a&b的输入直流电压、电流和内部温度等数据;变速箱控制器151能以1.0赫兹以上的测量频率记录变速箱挡位、输入轴转速、输出轴转速等数据;RTK导航仪220能以最高10赫兹的测量频率记录车辆的时速、经纬度、纵坡、授时等数据;毫米波雷达230能以10赫兹的测量频率记录本车辆与正前方车辆之间的距离和相对速度等数据。各个子***的传感器测量参数可能相互有重叠,数据重叠冗余有助提高全***的容错性和纠错性。
接下来,如图3所示,VCU 201以时间标注作为所有子***测量数据的基准,来汇总和拼装ACE重卡010运行过程中产生的与ACE重卡整车节油相关的专有结构化大数据,可简称“节油数据包”。
之后,该“节油数据包”将经由移动互联网002或有线互联网被“实时地”(亚秒级时延)或“及时地”(小时级时延)上传到云端计算平台001集中式或分布式存储,供后续分析处理。
例如,可以通过无线通信模块210(如图1所示)和3G/4G/5G蜂窝移动通信网002(如图3所示),将该数据包“准实时地”上传到 例如云端计算平台001的服务器端存储,供后续数据加工处理。所谓“准实时”,是指节油数据包上传的时延在数小时以内。可选地,该数据包在上传之前可以被加密,以确保数据的私密性和安全性。该云平台001将汇集所有使用本发明的众多ACE重卡节油数据包。利用这些日益累积增加的ACE重卡群体的结构化大数据,通过机器学习的专有算法,来训练“节油机器人”的人工智能(AI)大脑,简称“节油AI大脑”,寻求ACE重卡的最佳节油控制策略和效果。节油AI大脑能根据不断变化的ACE重卡行驶状况,在亚秒内可进行上亿次运算,寻找每一秒钟、每一分钟时间段(对应行车距离二十米到上千米)的动态最佳节油控制策略,指挥ePSD 123在几十毫秒***响应时间内以数百千瓦的幅度动态地调节电池包(130a&b)的充放电功率,削峰填谷,保持发电机组的内燃机长期稳定地工作在其高效工况点,实时地满足不断变化的车辆路载功率要求,P g+P b=P m=P v。通过每一分钟时段内取得微观最佳节油,不断叠加累积,最终达到全旅程宏观最佳节油效果。车载节油AI大脑指挥ACE重卡在高速路同车道通过预测性自适应巡航(PAC)来达到最佳节油效果这一问题与谷歌公司的AlphaGo下围棋为数学上的等价问题。本公开的ACE重卡“节油机器人”在重卡节油方面超越人类司机,应该毫无悬念。
同时还要强调,本发明的“节油机器人“不会完全取代人类司机,而是干线物流重卡司机的好助手。干线物流重卡的旅程起点和终点都是预先知道的。每次运货出发前,ACE重卡010的VCU 201能自动地向云平台001的“节油AI大脑”要求下载针对该旅程的最优节油控制默认方案及最佳油耗值(升/百公里),作为VCU所包含的车载节油AI大脑本地实时运算(边缘计算)的参考。这样,每辆ACE重卡,都能够将全行业ACE重卡在同路段运行的集体智慧为我享用,达到最佳节油效果。当司机将ACE重卡开上封闭式高速公路后,即可选定模式(普通模式/节油模式/运动模式),启用预测性自适应巡航功能,由VCU的节油AI大脑来替代司机的部分驾驶职能, 实现该重卡同车道内驾驶(加速/巡航/滑行/减速)自动化,解放司机的双脚,降低司机的驾驶劳动强度,实现节油最佳效果。司机仍然负责该车辆的转向和紧急制动,时刻保持对该重卡行驶的全方位监控。本发明的另一个有益效果是通节油AI大脑的控制,消除重卡司机人为因素导致车辆实际综合油耗离散性高达25%的这一行业长期痛点,保证每一辆ACE重卡在同路段运行时,都能高度一致性地达到最佳节油效果,该亮点对运输公司来讲,也非常重要。
总之,本发明中带预测性自适应巡航功能的ACE重卡与具备类似技术特征的其它混动车辆及传统柴油重卡的本质区别在于前者高度聚焦高速公路工况下的综合节油,能有效地解决汽车行业公认的高速公路工况下油电混动重卡与传统燃油重卡相比节油效果不明显这一世界性难题,可以达到实际干线物流综合油耗降低30%以上及大幅度长寿命地减少车辆尾气污染物和碳排放的有益效果,还可以达到改善车辆刹车性能,提供长下坡缓速器功能,提高车辆主动安全性的有益效果。本发明所描述的ACE重卡的结构特征、装置和方法同样适用于长途客运ACE大客车。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (19)

  1. 一种用于智能网联电动ACE重卡的电功率分流器ePSD,所述ePSD被配置为具有三个端口的电力电子网络,并且每个端口对外至少有一路单向或双向电联接,其中:
    所述ePSD的第一端口被配置为与所述ACE重卡的发电机组的输出端单向或双向电联接,所述发电机组用于将车载燃料的化学能转化为电能,所述发电机组能够被配置为包含内燃机双向机械联接发电机的交流发电机组、双向输出交流电,或者被配置为包含氢燃料电池的直流发电机组、单向输出直流电;
    所述ePSD的第三端口被配置为与所述ACE重卡的至少一个动力电池包双向直流电联接;以及
    所述ePSD的第二端口被配置为与所述ACE重卡的至少一个驱动电机双向交流电联接,所述至少一个驱动电机中的主驱动电机的输出轴与自动变速箱的输入轴双向机械联接,其中所述至少一个驱动电机可***作为:
    将电能转化为机械能,以通过所述自动变速箱来驱动所述ACE重卡,或者
    将所述ACE重卡的机械能转化为电能,并通过所述ePSD来对所述至少一个动力电池包进行充电,以实现再生制动和能量回收。
  2. 根据权利要求1所述的ePSD,其中:
    所述第一端口能够被配置为连接有一个双向交流AC-直流DC转换器,所述AC-DC转换器的一端与所述交流发电机组的输出端双向交流电联接以用于控制所述发电机组中的发电机,所述AC-DC转换器的另一端与所述ePSD的直流母线汇流点双向直流电联接,或者被配置为连接有一个单向直流DC-直流DC转换器,所述DC-DC转换器的一端与所述直流发电机组的输出端单向直流电联接以用于控 制所述直流发电机组,所述DC-DC转换器的另一端与所述ePSD的直流母线汇流点单向直流电联接;以及
    所述第二端口还被配置为连接有至少一个双向DC-AC转换器,所述至少一个DC-AC转换器的一端与所述至少一个驱动电机双向交流电联接以用于控制所述至少一个驱动电机,所述至少一个DC-AC转换器的另一端与所述直流母线汇流点双向直流电联接。
  3. 根据权利要求1所述的ePSD,其中:
    所述第三端口还被配置为连接有至少一个双向DC-DC转换器,所述至少一个DC-DC转换器与所述至少一个动力电池包双向直流电联接;以及
    所述第三端口还被配置为包括一个三端子软开关,所述三端子软开关的第一端子双向直流电联接所述直流母线汇流点,所述三端子软开关的第二端子双向直流电联接所述至少一个DC-DC转换器,所述三端子软开关的第三端子单向直流电联接到所述ACE重卡的刹车电阻;
    其中所述刹车电阻被配置为将再生电能转变为热能消耗,以实现所述ACE重卡的缓速器功能。
  4. 根据权利要求1-3中至少一项所述的ePSD,还配备有多个传感器,所述多个传感器被配置为实时地感测并输出所述直流母线汇流点处的唯一动态直流电压和多支动态直流电流。
  5. 一种智能网联电动ACE重卡,包括:
    发电机组,用于将车载燃料的化学能转化为电能,所述发电机组可以被配置为包含内燃机双向机械联接发电机的交流发电机组,双向输出交流电,或者被配置为包含氢燃料电池的直流发电机组,单向输出直流电;
    电功率分流器ePSD,被配置为具有三个端口的电力电子网络, 并且每个端口对外至少有一路单向或双向电联接,其中所述ePSD的第一端口与所述发电机组的输出端单向直流电联接或者双向交流电联接;
    至少一个动力电池包,与所述ePSD的第三端口双向直流电联接;
    自动变速箱,其输出轴与所述ACE重卡的标配主驱动桥双向机械联接;以及
    至少一个驱动电机,与所述ePSD的第二端口双向交流电联接,并且所述至少一个驱动电机中的标配主驱动电机的输出轴与所述自动变速箱的输入轴双向机械联接,选配付驱动电机的输出轴与所述ACE重卡的选配付驱动轴双向机械联接,其中所述至少一个驱动电机可***作为:
    将来自所述发电机组和/或所述电池包的电能转化为机械能,以通过所述自动变速箱来驱动所述ACE重卡,或者
    将所述ACE重卡的机械能转化为电能,并且通过所述ePSD来对所述至少一个动力电池包进行充电,以实现再生制动和能量回收功能;
    其中所述发电机组与所述至少一个驱动电机和所述自动变速箱中的任一者之间均没有直接的机械联接。
  6. 根据权利要求5所述的ACE重卡,其中:
    所述ePSD第一端口能够被配置为连接有一个双向交流AC-直流DC转换器,所述AC-DC转换器的一端与所述交流发电机组的输出端双向交流电联接,以用于控制所述交流发电机组中的发电机,所述AC-DC转换器的另一端与所述ePSD的直流母线汇流点双向直流电联接,或者被配置为连接有一个单向直流DC-直流DC转换器,所述DC-DC转换器的一端与所述直流发电机组的输出端单向直流电联接,以用于控制所述直流发电机组,所述DC-DC转换器的另一端与所述ePSD的直流母线汇流点单向直流电联接;以及
    所述ePSD第二端口还被配置为连接有至少一个双向DC-AC转换器,所述至少一个DC-AC转换器的一端与所述至少一个驱动电机双向交流电联接,以用于控制所述至少一个驱动电机,所述至少一个DC-AC转换器的另一端与所述直流母线汇流点双向直流电联接。
  7. 根据权利要求6所述的ACE重卡,其中:
    所述第三端口还被配置为连接有至少一个双向DC-DC转换器,所述至少一个DC-DC转换器的一端与所述至少一个动力电池包双向直流电联接,所述DC-DC转换器的另一端与所述直流母线汇流点双向直流电联接;以及
    所述第三端口还被配置为包括一个三端子软开关,所述三端子软开关的第一端子双向直流电联接所述直流母线汇流点,所述三端子软开关的第二端子双向直流电联接所述至少一个DC-DC转换器,所述三端子软开关的第三端子单向直流电联接到所述ACE重卡的刹车电阻;
    其中所述刹车电阻被配置为将再生电能转变为热能消耗,以实现所述ACE重卡的缓速器功能。
  8. 根据权利要求5-7中任一项所述的ACE重卡,还包括:
    地图仪,预先存储有三维电子导航地图,所述三维地图包含有所述ACE重卡行驶路径公路的经度、纬度和道路纵坡的三维信息;以及
    卫星导航仪,能够实时地检测所述ACE重卡的行驶过程中所在位置处的实时经度、实时纬度和实时道路纵坡。
  9. 根据权利要求5-7中任一项所述的ACE重卡,还包括:
    毫米波雷达、激光雷达、摄像头中的至少一种传感器,被配置为实时地检测所述ACE重卡与同车道前方领航车辆之间的距离和相对速度。
  10. 根据权利要求5-7中任一项所述的ACE重卡,还包括:
    车辆控制器VCU,被配置为通过所述ACE重卡的数据总线并且基于包含所述传感器所检测到的所述距离及所述相对速度、所述地图仪所含所述ACE重卡的行驶路径的所述三维公路信息、所述至少一个动力电池包的荷电状态、所述ACE重卡的***配置和运行参数,来对所述发电机组、所述ePSD、所述自动变速箱、所述至少一个动力电池包和所述至少一个驱动电机中的至少一者进行动态实时控制,以实现再生制动能量回收及紧急制动辅助、预测性自适应巡航和下长坡缓速等功能。
  11. 根据权利要求10所述的ACE重卡,其中所述VCU还被配置为:
    基于所述ACE重卡的***配置参数和动态行驶数据、当前道路三维信息和/或基于所述地图仪电子地平线的道路三维信息,来动态地计算并设定第一预警距离、第二警告距离和第三危险距离中的至少一者。
  12. 根据权利要求11所述的ACE重卡,其中所述VCU还被配置为:
    当所检测到的所述距离大于所述第一预警距离时,响应于司机的选项来开启对应的预测性自适应巡航模式和节油算法,并对所述至少一个电池包的荷电状态、所述ACE重卡的***状态和运行参数、所述发电机组、所述ePSD、所述自动变速箱和所述至少一个驱动电机进行动态实时控制,以保持所述ACE重卡的速度在指定的速度范围内,其中所述地图仪中存储有所述ACE重卡的行驶路径的道路三维信息;
    当所检测到的所述距离小于所述第一预警距离且所述相对速度大于零时,使所述发电机组的输出电功率下降,直到零点;
    当所检测到的所述距离进一步小于所述第二警告距离且所述相对速度大于零时,逐步降低所述至少一个驱动电机的输出功率;并且当所述至少一个驱动电机的所述输出驱动功率降低到零点之后,开始逐步增加其再生制动功率,以实现所述ACE重卡的刹车减速,并向司机发出第一警示信号,其中所述第二警告距离小于所述第一预警距离;以及
    当所检测到的所述距离进一步小于所述第三危险距离且所述相对速度大于零时,将所述驱动电机的再生制动功率增加到峰值并启用所述ACE重卡的机械刹车***,以进一步降低所述ACE重卡的速度,并向司机发出第二警示信号,所述第二警示信号不同于所述第一警示信号,其中所述第三危险距离小于所述第二警告距离。
  13. 根据权利要求10所述的ACE重卡,其中所述VCU还被配置为:
    在所述ACE重卡下长坡、从而需要通过长时间再生制动来实现缓速器功能的情况下:
    当所述至少一个动力电池包的荷电状态小于第一阈值时,将所述三端子软开关切换到第一位置,其中在所述第一位置处,建立所述至少一个驱动电机通过所述ePSD至所述至少一个动力电池包的电连接,以用于将所述ACE重卡通过再生制动所回收的电能给所述至少一个动力电池包进行充电。
  14. 根据权利要求13所述的ACE重卡,其中所述VCU还被配置为:
    当所述荷电状态大于或等于所述第一阈值时,将所述三端子软开关切换到第二位置,其中在所述第二位置处,切断所述至少一个驱动电机至所述至少一个动力电池包的所述电连接,并建立所述至少一个驱动电机通过所述ePSD至所述刹车电阻的电连接,以使所述刹车电阻作为再生制动发电的有效负载而稳定可靠地实现缓速器功 能。
  15. 一种计算机程序产品,所述计算机程序产品被有形地存储在根据权利要求5-14中任一项所述的ACE重卡的车辆控制器VCU上,并且包括机器可执行指令,所述机器可执行指令在被执行时使所述VCU:
    接收并本地存储与所述ACE重卡相关的***配置参数和动态运行数据;
    基于所述ACE重卡的卫星导航仪的精准授时,以唯一的时间序列来自动标注并拼装所述ACE重卡的动态运行数据集合,从而形成专用结构化数据组;以及
    指挥所述ACE重卡的无线通信单元,将所述结构化数据组及时地上传云平台存储,以供后续数据处理;
    其中所述运行数据至少包括:
    来自所述ePSD的直流母线汇流点处的唯一动态直流电压和多个动态直流电流;以及
    来自所述卫星导航仪的实时经度、实时纬度和实时道路纵坡。
  16. 根据权利要求15所述的计算机程序产品,其中所述运行数据还包括:
    来自所述ACE重卡的地图仪的经度、纬度和道路纵坡;以及
    来自所述发电机组、所述至少一个动力电池包、所述自动变速箱、所述至少一个驱动电机和刹车电阻的配置参数和动态工况数据。
  17. 一种用于根据权利要求5-14中任一项所述的ACE重卡的预测性自适应巡航方法,包括:
    实时地检测所述ACE重卡的行驶过程中所在位置处的实时经度、实时纬度和实时道路纵坡;
    实时地检测所述ACE重卡与同车道前方车辆之间的距离和相对速度;
    基于所述ACE重卡的***配置参数和动态行驶数据、当前道路三维信息和/或基于所述地图仪电子地平线的道路三维信息,通过所述VCU来动态地计算并设定第一预警距离、第二警告距离和第三危险距离中的至少一者;以及
    当所检测到的所述距离大于所述第一预警距离时,由所述VCU对所述至少一个动力电池包的荷电状态、所述ACE重卡的运行工况、所述发电机组、所述ePSD、所述自动变速箱和所述至少一个驱动电机进行动态实时控制,以保持所述ACE重卡的速度在指定的速度范围内,自动优化所述ACE重卡的油耗,其中所述地图仪中存储有所述ACE重卡的行驶路径的道路三维信息。
  18. 根据权利要求17所述的预测性自适应巡航方法,还包括:
    在所述ACE重卡下长坡、从而需要通过长时间再生制动来实现缓速器功能的情况下:
    当所述至少一个动力电池包的荷电状态小于第一阈值时,将所述三端子软开关切换到第一位置,其中在所述第一位置处,建立所述至少一个驱动电机通过所述ePSD至所述至少一个动力电池包的电连接,以用于将所述ACE重卡通过再生制动所产生的电能给所述至少一个动力电池包进行充电;以及
    当所述荷电状态大于或等于所述第一阈值时,将所述三端子软开关切换到第二位置,其中在所述第二位置处,切断所述至少一个驱动电机至所述至少一个动力电池包的所述电连接,并建立所述至少一个驱动电机通过所述ePSD至所述刹车电阻的电连接,以使所述刹车电阻作为再生制动发电的有效负载而稳定可靠地实现缓速器功能。
  19. 一种基于云计算平台的用于智能网联电动ACE重卡的预测 性自适应巡航方法,包括:
    基于云端存储的包含多个ACE重卡的专用结构化数据组集合而成的结构化大数据,生成专用机器学习算法,其中所述多个ACE重卡中的每个ACE重卡包括车辆控制器VCU,所述VCU上存储有根据权利要求15或16所述的计算机程序产品;
    基于所述专用机器学***台的计算能力对云端人工智能AI控制器进行节油控制训练;
    响应于来自所述多个ACE重卡中的任一个ACE重卡的自动控制请求,所述云端AI控制器,跟据所述ACE重卡的***配置和当日货运路径三维信息和天气预报,推理计算出为所述ACE重卡定制的最佳节油的默认控制方案;以及
    向所述ACE重卡无线传输来自云端AI控制器的默认控制方案,通过所述VCU根据实际路况和天气,在本地动态调整默认控制方案,自动和一致地实现所述ACE重卡的最佳节油效果。
PCT/CN2019/129964 2019-01-10 2019-12-30 混动商用车再生制动和缓速*** WO2020143495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/422,063 US20220097676A1 (en) 2019-01-10 2019-12-30 Regenerative Braking and Retarding System for Hybrid Commercial Vehicles
EP19908316.3A EP3909803A1 (en) 2019-01-10 2019-12-30 Regenerative brake and retarding system for hybrid commercial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910026280.6A CN109823188A (zh) 2019-01-10 2019-01-10 混动商用车再生制动和缓速***
CN201910026280.6 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143495A1 true WO2020143495A1 (zh) 2020-07-16

Family

ID=66860931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129964 WO2020143495A1 (zh) 2019-01-10 2019-12-30 混动商用车再生制动和缓速***

Country Status (4)

Country Link
US (1) US20220097676A1 (zh)
EP (1) EP3909803A1 (zh)
CN (1) CN109823188A (zh)
WO (1) WO2020143495A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959509A (zh) * 2020-08-19 2020-11-20 重庆交通大学 基于状态空间域电池能量均衡的q学习再生制动控制策略
CN112959992A (zh) * 2021-04-07 2021-06-15 吉林大学 基于能效分析与效率最优的混合动力汽车能量管理方法
CN114228718A (zh) * 2022-01-18 2022-03-25 潍柴动力股份有限公司 一种混合动力牵引车制动的控制方法及其控制***
WO2023006191A1 (en) * 2021-07-28 2023-02-02 Eaton Intelligent Power Ltd. An adaptively controllable vehicle inverter system and method
EP4324681A1 (en) * 2022-08-16 2024-02-21 Volvo Truck Corporation A method for energy management and an electric driveline system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152406A1 (en) * 2017-02-17 2018-08-23 Hyliion Inc. Tractor unit with on-board regenerative braking energy storage for stopover hvac operation without engine idle
US11094988B2 (en) * 2017-12-31 2021-08-17 Hyliion Inc. Regenerative electrical power system with state of charge management in view of predicted and-or scheduled stopover auxiliary power requirements
CN108973979B (zh) * 2018-07-18 2021-09-28 乾碳国际公司 混动车辆预测性功率控制***方案
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速***
CN110562237A (zh) * 2019-06-27 2019-12-13 张连钢 混合动力车辆控制方法和装置
CN113147731A (zh) * 2020-01-17 2021-07-23 乾碳国际公司 具有节油***的重卡及其节油控制方法
CN111196163B (zh) * 2020-01-21 2023-01-31 东南大学 一种智能网联电动汽车能量最优制动速度优化方法
CN113525340A (zh) * 2020-04-21 2021-10-22 乾碳国际公司 Ace重卡节油机器人***
CN111674263A (zh) * 2020-06-01 2020-09-18 浙江吉利新能源商用车集团有限公司 一种用于车辆的辅助制动方法及***
US20210380054A1 (en) * 2020-06-04 2021-12-09 Transportation Ip Holdings, Llc Electric supply system
US20220048405A1 (en) * 2020-08-17 2022-02-17 Christopher R. Ade System, apparatus, and method for powering a vehicle
CN114179623B (zh) * 2020-09-15 2023-07-07 宇通客车股份有限公司 一种车辆电制动方法及***
CN112693477B (zh) * 2020-10-09 2022-04-01 深圳技术大学 一种基于视觉力觉味觉融合的车辆自主驾驶***
CN112519802A (zh) * 2021-01-05 2021-03-19 蔚来汽车科技(安徽)有限公司 车辆控制方法和***、车辆以及存储介质
CN114872532A (zh) * 2021-02-05 2022-08-09 乾碳国际公司 软件定义混联动力总成及车辆
CN112895907A (zh) * 2021-02-26 2021-06-04 芜湖佳景科技有限公司 车辆的能量回收控制***及方法
CN113346559B (zh) * 2021-05-31 2022-09-27 合肥工业大学 极弱电网下直驱风电***低电压穿越功率切换控制方法
CN113815425B (zh) * 2021-10-28 2023-08-15 北京福田戴姆勒汽车有限公司 车辆制动控制方法、制动***和车辆
CN114274785A (zh) * 2021-12-15 2022-04-05 无锡江南智造科技股份有限公司 自动驾驶中长距离持续下坡制动的控制***及控制方法
CN116335796A (zh) * 2023-03-29 2023-06-27 中国第一汽车股份有限公司 车辆主动汽油颗粒捕集器gpf再生控制方法、装置和设备
CN116714443B (zh) * 2023-08-10 2024-01-23 宁德时代新能源科技股份有限公司 制动能量分配方法、***、装置、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743140A (zh) * 2007-07-17 2010-06-16 雷诺卡车公司 包括优化能量回收***的动力传动系
CN102957188A (zh) * 2011-08-24 2013-03-06 通用电气公司 用于对电动车辆充电的设备和方法
US20130106195A1 (en) * 2011-10-31 2013-05-02 Ruediger Soeren Kusch Apparatus and method for rapidly charging an electric vehicle
US20150183328A1 (en) * 2012-05-21 2015-07-02 General Electric Company Method and apparatus for charging multiple energy storage devices
CN108973979A (zh) * 2018-07-18 2018-12-11 乾碳国际公司 混动车辆预测性功率控制***方案
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速***

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295002A (ja) * 1997-04-18 1998-11-04 Hino Motors Ltd 内燃機関の制動および補助加速装置
CN201151352Y (zh) * 2007-12-21 2008-11-19 西安交通大学 一种带有能量回收功能缓速器的混合动力***
EP2423064A4 (en) * 2010-03-30 2018-04-11 Toyota Jidosha Kabushiki Kaisha Vehicle control unit and vehicle control method
ES2767082T3 (es) * 2010-11-05 2020-06-16 Toyota Motor Co Ltd Sistema de suministro de energía para vehículo, y vehículo equipado con dicho sistema de suministro de energía
CN103718453B (zh) * 2011-08-03 2015-11-25 丰田自动车株式会社 电动机驱动***
CN104093594B (zh) * 2012-01-23 2016-01-27 丰田自动车株式会社 车辆以及车辆用控制方法
JP5838875B2 (ja) * 2012-03-16 2016-01-06 トヨタ自動車株式会社 液圧制御装置および液圧ブレーキシステム
JP5960461B2 (ja) * 2012-03-21 2016-08-02 トヨタ自動車株式会社 ブレーキ装置
DE112012007041B4 (de) * 2012-10-23 2017-11-16 Toyota Jidosha Kabushiki Kaisha Fahrzeug und Fahrzeugsteuerungsverfahren für einen Katalysator
JP6065530B2 (ja) * 2012-11-09 2017-01-25 トヨタ自動車株式会社 車両の制御装置および車両
CN103847530B (zh) * 2012-12-03 2017-04-12 通用电气公司 电驱动***及其能量管理方法
US9643505B2 (en) * 2013-04-26 2017-05-09 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, power transfer system, and parking assisting device
JP5892182B2 (ja) * 2014-01-09 2016-03-23 トヨタ自動車株式会社 車両の電源装置
JP5967112B2 (ja) * 2014-01-21 2016-08-10 トヨタ自動車株式会社 車両
JP5900522B2 (ja) * 2014-01-22 2016-04-06 トヨタ自動車株式会社 車両の電源装置
JP6070591B2 (ja) * 2014-01-28 2017-02-01 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
US9789756B2 (en) * 2014-02-12 2017-10-17 Palo Alto Research Center Incorporated Hybrid vehicle with power boost
JP6149772B2 (ja) * 2014-03-24 2017-06-21 トヨタ自動車株式会社 ハイブリッド車両
JP5967125B2 (ja) * 2014-03-27 2016-08-10 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP6221917B2 (ja) * 2014-04-16 2017-11-01 トヨタ自動車株式会社 車両
JP6149806B2 (ja) * 2014-06-10 2017-06-21 トヨタ自動車株式会社 ハイブリッド車両
JP6245224B2 (ja) * 2015-06-09 2017-12-13 トヨタ自動車株式会社 ハイブリッド車両
JP2017043299A (ja) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 ハイブリッド車両
CN105599618A (zh) * 2016-02-05 2016-05-25 清华大学 一种利用辅助动力总成倒拖运行消耗回馈制动功率的方法
JP6515895B2 (ja) * 2016-08-30 2019-05-22 トヨタ自動車株式会社 充電システムおよび電動車両
JP6493371B2 (ja) * 2016-12-06 2019-04-03 トヨタ自動車株式会社 車両およびその充電方法
CN106828120B (zh) * 2017-02-22 2019-03-22 长安大学 一种并联式混合动力重型卡车的辅助制动***控制方法
JP7024448B2 (ja) * 2018-01-29 2022-02-24 トヨタ自動車株式会社 電動車両
CN207997769U (zh) * 2018-03-15 2018-10-23 西南交通大学 一种混合动力有轨电车制动能量回收***
JP7028132B2 (ja) * 2018-10-19 2022-03-02 トヨタ自動車株式会社 車両、二次電池の劣化評価装置および劣化評価方法
JP2020137156A (ja) * 2019-02-13 2020-08-31 トヨタ自動車株式会社 車両、情報端末および車両の制御方法
CN111746259A (zh) * 2019-03-29 2020-10-09 乾碳国际公司 重卡节油机器人装置和控制方法
JP2021038943A (ja) * 2019-08-30 2021-03-11 トヨタ自動車株式会社 表示システムおよびそれを備えた車両、ならびに、二次電池の状態表示方法
JP7167899B2 (ja) * 2019-11-05 2022-11-09 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP7215397B2 (ja) * 2019-11-15 2023-01-31 トヨタ自動車株式会社 推定システムおよび推定方法
CN113525340A (zh) * 2020-04-21 2021-10-22 乾碳国际公司 Ace重卡节油机器人***
JP7371596B2 (ja) * 2020-09-23 2023-10-31 トヨタ自動車株式会社 ハイブリッド車両
JP7371607B2 (ja) * 2020-11-06 2023-10-31 トヨタ自動車株式会社 ハイブリッド車両
JP2022108910A (ja) * 2021-01-14 2022-07-27 トヨタ自動車株式会社 ハイブリッド車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743140A (zh) * 2007-07-17 2010-06-16 雷诺卡车公司 包括优化能量回收***的动力传动系
CN102957188A (zh) * 2011-08-24 2013-03-06 通用电气公司 用于对电动车辆充电的设备和方法
US20130106195A1 (en) * 2011-10-31 2013-05-02 Ruediger Soeren Kusch Apparatus and method for rapidly charging an electric vehicle
US20150183328A1 (en) * 2012-05-21 2015-07-02 General Electric Company Method and apparatus for charging multiple energy storage devices
CN108973979A (zh) * 2018-07-18 2018-12-11 乾碳国际公司 混动车辆预测性功率控制***方案
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速***

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959509A (zh) * 2020-08-19 2020-11-20 重庆交通大学 基于状态空间域电池能量均衡的q学习再生制动控制策略
CN111959509B (zh) * 2020-08-19 2022-06-17 重庆交通大学 基于状态空间域电池能量均衡的q学习再生制动控制策略
CN112959992A (zh) * 2021-04-07 2021-06-15 吉林大学 基于能效分析与效率最优的混合动力汽车能量管理方法
CN112959992B (zh) * 2021-04-07 2022-04-19 吉林大学 基于能效分析与效率最优的混合动力汽车能量管理方法
WO2023006191A1 (en) * 2021-07-28 2023-02-02 Eaton Intelligent Power Ltd. An adaptively controllable vehicle inverter system and method
CN114228718A (zh) * 2022-01-18 2022-03-25 潍柴动力股份有限公司 一种混合动力牵引车制动的控制方法及其控制***
CN114228718B (zh) * 2022-01-18 2024-03-19 潍柴动力股份有限公司 一种混合动力牵引车制动的控制方法及其控制***
EP4324681A1 (en) * 2022-08-16 2024-02-21 Volvo Truck Corporation A method for energy management and an electric driveline system

Also Published As

Publication number Publication date
CN109823188A (zh) 2019-05-31
EP3909803A1 (en) 2021-11-17
US20220097676A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2020143495A1 (zh) 混动商用车再生制动和缓速***
WO2020199909A1 (zh) 重卡节油机器人装置和控制方法
WO2020015762A1 (zh) 混动车辆预测性功率控制***方案
WO2021143594A1 (zh) 具有节油***的重卡及其节油控制方法
WO2021213253A1 (zh) Ace重卡节油机器人***
US11745616B2 (en) Systems and methods of battery management and control for a vehicle
Gao et al. Evaluation of electric vehicle component performance over eco-driving cycles
Zhang et al. Charge-depleting control strategies and fuel optimization of blended-mode plug-in hybrid electric vehicles
Gao et al. Energy consumption and cost savings of truck electrification for heavy-duty vehicle applications
CN103236179B (zh) 一种计及交通信息与电网信息的电动汽车充电导航方法
CN111959490B (zh) 插电式混合动力汽车模型参考自适应最优能量管理方法
KR100949260B1 (ko) 전기자동차용 전지 충전 시스템
CN103197667B (zh) 一种混合动力汽车整车控制器的仿真与测试方法
WO2022166616A1 (zh) 软件定义混联动力总成及车辆
US20230150502A1 (en) Systems and methods for predictive engine off coasting and predictive cruise control for a vehicle
CN112046335A (zh) 一种基于行驶能耗模型的电动汽车剩余行驶里程计算方法
RU2733599C1 (ru) Система управления энергоустановкой беспилотного гибридного автомобиля
WO2024022141A1 (zh) 智能多模混动总成及智能网联电动重卡
Lu et al. Fuzzy logic control approach to the energy management of parallel hybrid electric vehicles
Al-Samari Impact of intelligent transportation systems on parallel hybrid electric heavy duty vehicles
Liang et al. Analysis of series and parallel hybrid bus fuel consumption on different edmonton transit system routes
Gao et al. Electric and conventional vehicle performance over eco-driving cycles: Energy benefits and component loss
Jele An eco-driving strategy for an electric bus: insert permanent magnet synchronous motor (IPMSM) drivetrain
Ni et al. Preliminary design, simulation and modeling of a series hybrid commuter vehicle with a minimal IC engine
Janulevičius et al. Intelligent plug-in hybrid electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908316

Country of ref document: EP

Effective date: 20210810