WO2020143329A1 - 一种能够轴向让压的单层井筒及其施工方法 - Google Patents

一种能够轴向让压的单层井筒及其施工方法 Download PDF

Info

Publication number
WO2020143329A1
WO2020143329A1 PCT/CN2019/118647 CN2019118647W WO2020143329A1 WO 2020143329 A1 WO2020143329 A1 WO 2020143329A1 CN 2019118647 W CN2019118647 W CN 2019118647W WO 2020143329 A1 WO2020143329 A1 WO 2020143329A1
Authority
WO
WIPO (PCT)
Prior art keywords
wellbore
layer
telescopic unit
plate
pressure relief
Prior art date
Application number
PCT/CN2019/118647
Other languages
English (en)
French (fr)
Inventor
杨志江
杨维好
张涛
张驰
韩涛
黄家会
邹久群
韩继欢
胡琛琛
杨权威
王宝生
宋芳年
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2020143329A1 publication Critical patent/WO2020143329A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D5/00Lining shafts; Linings therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D5/00Lining shafts; Linings therefor
    • E21D5/04Lining shafts; Linings therefor with brick, concrete, stone, or similar building materials

Definitions

  • the invention relates to the technical field of mine construction engineering, in particular to a single-layer wellbore capable of axial pressure relief and a construction method thereof.
  • the outer shaft walls bear the temporary supporting structure during the freezing method construction process, and because of the construction process Characteristics, after the freezing wall is melted, the outer wall of the segmented masonry does not play a role in blocking water, while the inner wall serves as a permanent support and water blocking structure, and its thickness increases with the depth of the wellbore. Therefore, The double-layer shaft wall will cause a waste of structural bearing capacity.
  • the technical problem to be solved by the present invention is to provide a single-layer wellbore that satisfies both load bearing and waterproof requirements.
  • a single-layer wellbore capable of withdrawing axially includes at least two single-layer well walls arranged in the vertical direction, a telescopic unit arranged between adjacent upper and lower well walls in the axial direction, and a connection phase outside the well wall
  • An annular waterproof plate adjacent to the well wall, the telescopic unit includes a connecting plate abutting the end surfaces of the upper and lower well walls and supporting plates provided on both sides of the connecting plate to connect the upper and lower connecting plates.
  • the inside of the telescopic unit allows at least the outer support plate to bend and deform inward.
  • the telescopic unit is further provided with an annular tube fixedly connected to the upper and lower connecting plates and having a gap with at least the outer supporting plate.
  • At least two reinforcing plates respectively fixedly connected to the upper and lower connecting plates and cross-fixed are also provided in the telescopic unit.
  • the telescopic unit is filled with wood or engineering plastic.
  • two ends of the waterproof board along the axial direction are respectively fixed with stubble embedded in the upper and lower shaft walls.
  • the stubble in any section passing through the axis of the wellbore, includes a fixing plate that is in the same plane as the waterproof plate and is fixedly connected to the end surface of the waterproof plate and a pin that is fixedly connected to the fixed plate at one end and the other end toward the inside of the wellbore Rod.
  • the pin rod and the fixing plate form a T-shaped stubble
  • the end face of the waterproof plate and the end face of the fixing plate are welded and fixed
  • the waterproof plate is embedded in the well wall and the outer surface substantially coincides with the outer surface of the well wall.
  • the telescopic unit, the waterproof plate and the stubble are all segmented along the circumferential direction, and the outer side of the connecting plate in the radial direction is fixedly connected to the inner side of the waterproof plate.
  • the invention also provides a construction method of the single-layer wellbore capable of axial pressure letting, including the following steps:
  • Step A Lay the outer shaft wall reinforcement from the upper end of the wellbore to form a reinforced cage, fix a ring-shaped T-shaped stubble at the lower end of the reinforced cage, and cast the section of the shaft wall with a formwork;
  • Step B Weld below the upper shaft wall to obtain a telescopic unit, bind the shaft wall reinforcement under the telescopic unit to obtain a lower steel bar cage, fix a ring-shaped stubble on the upper end of the lower steel bar cage, and weld an arc baffle between the upper and lower layers
  • An arc-shaped baffle is welded in the circumferential direction to obtain an annular waterproof plate, and the supporting mold is used to cast the lower shaft wall;
  • Step C Repeat steps A and B to complete the entire wellbore.
  • the advantage of the single-layer wellbore capable of axial pressure relief provided by the present invention is that when the axial load of the wellbore is too large, the axial deformation of the telescopic unit allows pressure relief, releases strain energy, and avoids damage to the wellbore.
  • the waterproof effect is ensured by installing waterproof board, and the single-layer shaft wall structure can reduce the project cost, simplify the construction process, and has a good promotion prospect.
  • Embodiment 1 is a cross-sectional view of a single-layer wellbore capable of axial pressure relief provided by Embodiment 1 of the present invention
  • Embodiment 2 is a cross-sectional view of a single-layer wellbore capable of axial pressure relief provided by Embodiment 2 of the present invention
  • Fig. 3 is a schematic diagram of the waterproof board at the outer wall section.
  • a single-layer wellbore capable of axial pressure relief includes at least two well walls 1 arranged vertically, and a telescopic unit 2 arranged between adjacent upper and lower well walls 1 in the axial direction. And an annular waterproof plate 3 connecting the adjacent well walls 1 in the axial direction on the outside of the wellbore;
  • the abutting connecting plate 21 and the supporting plate 22 provided on both sides of the connecting plate 21 to connect the upper and lower connecting plates 21; when the shaft is subjected to a large axial force, the supporting plate 22 can be deformed to compress the telescopic unit 2 in the axial direction, thereby releasing Strain energy to prevent damage to the well wall 1.
  • the support plate 22 can automatically return to extend the telescopic unit 2 to the original position in the axial direction.
  • the support plate 22 can be a straight plate as shown in FIG. 1, or can be selected as shown in FIG. Inwardly curved plate.
  • annular tube 4 fixedly connected to the upper and lower connecting plates 21 and the arc-shaped plates 22 on both sides is also provided inside the telescopic unit 2.
  • the telescopic unit 2 it is also possible to form a mesh-like structure inside the telescopic unit 2 by providing two reinforcing plates 5 fixedly connected and cross-fixed to the upper and lower connecting plates 21 respectively inside the telescopic unit 2, which can increase the axial strength , And can allow radial deformation.
  • the strength of the telescopic unit 2 can also be directly increased by means of fillers, for example, the interior of the telescopic unit 2 is filled with wooden strips or engineering plastics. It should be noted that the filler needs to be made of deformable or fluffy materials.
  • the two ends of the waterproof plate 3 in the axial direction are also fixedly connected with an annular stub 31 embedded in the inside of the well wall 1.
  • the stub 31 includes A fixing plate 32 that is welded and fixed to the end surface of the waterproof plate 3 in the same plane and one end is fixedly connected to the fixing plate 32, and the other end faces the pin rod 33 inside the wellbore; the pin rod 33 and the fixing plate 32 form a T-shaped stubble 31,
  • the waterproof board 3 is embedded in the well wall 1 and the outer surface substantially coincides with the outer surface of the well wall 1.
  • the outer side of the connecting plate 21 is fixedly connected to the waterproof plate 3 in the radial direction, thereby improving the fixing strength of the waterproof plate 3 and improving the waterproof effect.
  • the telescopic unit 2 and its internal annular tube 4 or reinforcing plate 5 and waterproof plate 3 and stubble 31 are made of steel.
  • the telescopic unit 2, the waterproof board 3 and the stubble 31 are all obtained by multi-segment welding in the circumferential direction.
  • Step A From the upper end of the wellbore, the outer wall of the shaft wall is bound to form a reinforced cage, and the lower end of the reinforced cage is fixed with a ring-shaped T-shaped stub 31, and the section of the shaft wall 1 is cast with a form;
  • Step B Welding below the upper shaft wall 1 to obtain the telescopic unit 2, tying the shaft wall reinforcement under the telescopic unit 2 to obtain the lower steel cage, fixing the ring joint 31 on the upper end of the lower steel cage, and welding the arc stop between the upper and lower layers 31 Plate, and weld multiple arc-shaped baffles along the circumferential direction to obtain an annular waterproof plate 3, and cast the lower shaft wall 1 with a formwork;
  • Step C Repeat steps A and B to complete the entire wellbore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Barrages (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种能够轴向让压的单层井筒,包括沿竖直方向设置的至少两个单层井壁(1)、沿轴向设置于相邻上下井壁之间的伸缩单元(2)、以及在井壁外侧连接相邻井壁的环形防水板(3),所述伸缩单元(2)包括与上下井壁的端面抵接的连接板(21)和设置于连接板两侧连接上下连接板的支撑板(22)。还公开了所述单层井筒的施工方法。本能够轴向让压的单层井筒的优点在于:井筒轴向负载过大时,通过伸缩单元的轴向变形让压,释放应变能,避免井筒发生破裂损坏,在井壁连接处通过设置防水板确保防水效果,采用单层井壁结构能够降低工程造价,简化施工工艺,具有良好的推广前景。

Description

一种能够轴向让压的单层井筒及其施工方法 技术领域
本发明涉及矿山建设工程技术领域,尤其涉及一种能够轴向让压的单层井筒及其施工方法。
背景技术
随着浅部资源开采枯竭,矿产开采深度日益增加,特别是在我国中东部地区,往往面对巨厚的表土层厚度,且在开采活动等因素影响下发生较大的土体固结沉降,致使井筒在轴向上负载过大,诱发井壁损坏破裂,给后期生产带来巨大安全隐患。目前,针对厚表土地层的矿山井筒建设往往采用双层井壁及增加井壁设计厚度来解决问题,此时,外层井壁承担冻结法施工过程中的临时支护结构,且因为施工工艺特点,在冻结壁融化后,分段砌筑的外层井壁起不到堵水的作用,而内层井壁作为永久的支护挡水结构,其厚度随井筒深度而增大,因此,双层井壁会造成结构承载力的浪费。
发明内容
本发明所要解决的技术问题在于提供一种同时满足承载和防水要求的单层井筒。
本发明是通过以下技术方案解决上述技术问题的:
一种能够轴向让压的单层井筒,包括沿竖直方向设置的至少两个单层井壁、沿轴向设置于相邻上下井壁之间的伸缩单元、以及在井壁外侧连接相邻井壁的环形防水板,所述伸缩单元包括与上下井壁的端面抵接的连接板和设置于连接板两侧连接上下连接板的支撑板。
优选地,所述伸缩单元内部至少允许外侧的支撑板向内弯曲变形。
优选地,所述伸缩单元内部还设置有与上下连接板固定连接且至少与外侧的支撑板具有间隙的环形管。
优选地,所述伸缩单元内还设置有至少两个分别与上下连接板固定连接并交叉固定的加强板。
优选地,所述伸缩单元内部填充有木材或工程塑料。
优选地,所述防水板沿轴向的两端还分别固定有嵌入上下井壁内部的接茬。
优选地,在经过井筒轴线的任一剖面中,所述接茬包括与防水板处于同一平面内且与防水板的端面固定连接的固定板和一端与固定板固定连接,另一端朝向井筒内部的销杆。
优选地,所述销杆与固定板构成T形接茬,防水板的端面与固定板的端面焊接固定,防水板嵌入井壁内且外表面与井壁的外表面基本重合。
优选地,所述伸缩单元、防水板和接茬均沿周向分段拼合,连接板沿径向的外侧与防水板的内侧固定连接。
本发明还提供了所述能够轴向让压的单层井筒的施工方法,包括以下步骤:
步骤A:从井筒上端开始绑扎外层井壁钢筋形成钢筋笼,钢筋笼下端固定一个呈环 形的T形接茬,支模浇筑该段井壁;
步骤B:在上层井壁下方焊接得到伸缩单元,在伸缩单元下方绑扎井壁钢筋得到下层钢筋笼,在下层钢筋笼上端固定环形接茬,在上下层接茬之间焊接弧形挡板,并将多个弧形挡板沿周向焊接得到环形防水板,支模浇筑下层井壁;
步骤C:重复步骤A和B,浇筑完成整个井筒。
本发明提供的能够轴向让压的单层井筒的优点在于:井筒轴向负载过大时,通过伸缩单元的轴向变形让压,释放应变能,避免井筒发生破裂损坏,在井壁连接处通过设置防水板确保防水效果,采用单层井壁结构能够降低工程造价,简化施工工艺,具有良好的推广前景。
附图说明
图1是本发明的实施例一所提供的能够轴向让压的单层井筒的剖面图;
图2是本发明的实施例二所提供的能够轴向让压的单层井筒的剖面图;
图3是外层井壁分段处的防水板的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
如图1所示,一种能够轴向让压的单层井筒,包括沿竖直方向设置的至少两个井壁1、沿轴向设置于相邻上下井壁1之间的伸缩单元2、以及在井筒外侧沿轴向连接相邻井壁1的环形防水板3;所述防水板3与上下两个井壁1固定配合,所述伸缩单元2包括与相邻两个井壁1的端面抵接的连接板21和设置于连接板21两侧连接上下连接板21的支撑板22;井筒沿轴向受力较大时,支撑板22能够变形使伸缩单元2沿轴向压缩,从而释放应变能,防止井壁1发生破损。在井筒轴向受力撤去后,支撑板22能够自动回位使伸缩单元2沿轴向伸长到原始位置。
井筒在使用时其径向也会受到压力,因此外侧的支撑板22仅能向支撑单元2内部弯曲变形,所述支撑板22可以采用图1所示的直板,也可以选用图2所示的向内弯曲的弧形板。
为了加强伸缩单元2的强度,伸缩单元2内部还设置有与上下连接板21和两侧的弧形板22固定连接的环形管4。
参考图2,也可以通过在伸缩单元2内部设置两个分别与上下连接板21固定连接并交叉固定的加强板5,从而在伸缩单元2内部构成类似网状的结构,既能提高轴向强度,又能允许径向变形。当然也可以直接通过填料的方式来提高伸缩单元2的强度,例如在伸缩单元2内部填充木条或工程塑料,需要注意的是填料需要选用能够变形或蓬松的物料。
为了提高防水效果,所述防水板3沿轴向的两端还分别固定连接有嵌入井壁1内部的环形接茬31,在经过井筒轴线的剖面中看,所述接茬31包括与防水板3处于同一平面内且与防水板3的端面焊接固定的固定板32和一端与固定板32固定连接,另一端朝向井筒内部的销杆33;所述销杆33与固定板32构成T形接茬31,防水板3嵌入井壁1内且外表面与井壁1的外表面基本重合。
所述连接板21沿径向的外侧与防水板3固定连接,从而提高防水板3的固定强度,提高防水效果。优选实施例中,所述伸缩单元2及其内部的环形管4或加强板5和防水板3及接茬31均采用钢材制作。为了便于加工,伸缩单元2、防水板3和接茬31均沿周向由多段拼合焊接得到。
本实施例提供的能够轴向让压的单层井筒的施工方法包括以下步骤:
步骤A:从井筒上端开始绑扎外层井壁钢筋形成钢筋笼,钢筋笼下端固定一个呈环形的T形接茬31,支模浇筑该段井壁1;
步骤B:在上层井壁1下方焊接得到伸缩单元2,在伸缩单元2下方绑扎井壁钢筋得到下层钢筋笼,在下层钢筋笼上端固定环形接茬31,在上下层接茬31之间焊接弧形挡板,并将多个弧形挡板沿周向焊接得到环形防水板3,支模浇筑下层井壁1;
步骤C:重复步骤A和B,浇筑完成整个井筒。
参考图3,由于施工工艺问题,在冻结地层施工时,开挖一定深度后就需要及时支护,所以单层井壁需要分段开挖和浇筑,故各分段之间就会存在新老混凝土接茬,而在新旧井壁1连接处会出现渗水的情况,可以通过防水板3和接茬31的配合在连接处实现防水,在不需要设置伸缩单元2的连接处的施工方法如下:
按步骤A方法浇筑上层井壁1,然后绑扎下层井壁钢筋,固定接茬31,焊接连接固定板3和上下段的接茬31,然后浇筑下层井壁即可。
需要注意的时,在浇筑过程中,如果下层井壁1本身还需要向下继续浇筑,则在其钢筋笼的下端同样需要固定接茬31。

Claims (10)

  1. 一种能够轴向让压的单层井筒,其特征在于:包括沿竖直方向设置的至少两个单层井壁、沿轴向设置于相邻上下井壁之间的伸缩单元、以及在井壁外侧连接相邻井壁的环形防水板,所述伸缩单元包括与上下井壁的端面抵接的连接板和设置于连接板两侧连接上下连接板的支撑板。
  2. 根据权利要求1所述的一种能够轴向让压的单层井筒,其特征在于:所述伸缩单元内部至少允许外侧的支撑板向内弯曲变形。
  3. 根据权利要求2所述的一种能够轴向让压的单层井筒,其特征在于:所述伸缩单元内部还设置有与上下连接板固定连接且至少与外侧的支撑板具有间隙的环形管。
  4. 根据权利要求2所述的一种能够轴向让压的单层井筒,其特征在于:所述伸缩单元内还设置有至少两个分别与上下连接板固定连接并交叉固定的加强板。
  5. 根据权利要求2所述的一种能够轴向让压的单层井筒,其特征在于:所述伸缩单元内部填充有木材或工程塑料。
  6. 根据权利要求1所述的一种能够轴向让压的单层井筒,其特征在于:所述防水板沿轴向的两端还分别固定有嵌入上下井壁内部的接茬。
  7. 根据权利要求6所述的一种能够轴向让压的单层井筒,其特征在于:在经过井筒轴线的任一剖面中,所述接茬包括与防水板处于同一平面内且与防水板的端面固定连接的固定板和一端与固定板固定连接,另一端朝向井筒内部的销杆。
  8. 根据权利要求7所述的一种能够轴向让压的单层井筒,其特征在于:所述销杆与固定板构成T形接茬,防水板的端面与固定板的端面焊接固定,防水板嵌入井壁内且外表面与井壁的外表面基本重合。
  9. 根据权利要求6所述的一种能够轴向让压的单层井筒,其特征在于:所述伸缩单元、防水板和接茬均沿周向分段拼合,连接板沿径向的外侧与防水板的内侧固定连接。
  10. 权利要求1-9任一项所述的能够轴向让压的单层井筒的施工方法,其特征在于:包括以下步骤:
    步骤A:从井筒上端开始绑扎外层井壁钢筋形成钢筋笼,钢筋笼下端固定一个呈环形的T形接茬,支模浇筑该段井壁;
    步骤B:在上层井壁下方焊接得到伸缩单元,在伸缩单元下方绑扎井壁钢筋得到下层钢筋笼,在下层钢筋笼上端固定环形接茬,在上下层接茬之间焊接弧形挡板,并将多个弧形挡板沿周向焊接得到环形防水板,支模浇筑下层井壁;
    步骤C:重复步骤A和B,浇筑完成整个井筒。
PCT/CN2019/118647 2019-01-07 2019-11-15 一种能够轴向让压的单层井筒及其施工方法 WO2020143329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910010552.3 2019-01-07
CN201910010552.3A CN109695452B (zh) 2019-01-07 2019-01-07 一种能够轴向让压的单层井筒及其施工方法

Publications (1)

Publication Number Publication Date
WO2020143329A1 true WO2020143329A1 (zh) 2020-07-16

Family

ID=66233173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118647 WO2020143329A1 (zh) 2019-01-07 2019-11-15 一种能够轴向让压的单层井筒及其施工方法

Country Status (2)

Country Link
CN (1) CN109695452B (zh)
WO (1) WO2020143329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113356887A (zh) * 2021-07-09 2021-09-07 中国矿业大学 一种带注浆止水连接件的单层井壁及其施工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695452B (zh) * 2019-01-07 2021-04-27 中国矿业大学 一种能够轴向让压的单层井筒及其施工方法
CN110145313A (zh) * 2019-05-27 2019-08-20 中国恩菲工程技术有限公司 适应于矿山深部地层及高应力区域的竖井复合支护结构
CN110470085B (zh) * 2019-07-30 2020-05-26 中国矿业大学 一种三轴有压冻结制冰方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2367768Y (zh) * 1999-05-08 2000-03-08 中国矿业大学 曲面弧板式井壁可缩装置
JP2000204875A (ja) * 1999-01-14 2000-07-25 Seibu Polymer Corp トンネル中空接続体等接続用可撓継手
CN1900484A (zh) * 2006-06-27 2007-01-24 中国矿业大学 带接茬板的单层井壁及其施工方法
CN1916361A (zh) * 2006-08-23 2007-02-21 淮南矿业(集团)有限责任公司 冻结井可缩性井壁接头及其施工方法
CN200958394Y (zh) * 2006-09-30 2007-10-10 中国矿业大学 曲面弧板式可缩井壁封水装置
CN201059192Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 双环管式可缩井壁装置
CN201059193Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 多筋弧板式可缩井壁t形肋板装置
CN201059194Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 多筋弧板式可缩井壁装置
CN102913247A (zh) * 2012-07-23 2013-02-06 中煤矿山建设集团有限责任公司 一种钻井法凿井井壁及其制造方法
CN104612695A (zh) * 2015-01-29 2015-05-13 湖南科技大学 一种剧烈垮塌立井井壁修复加固方法
CN106894820A (zh) * 2017-01-17 2017-06-27 中国矿业大学 一种防水井壁可缩装置及其施工工艺
CN109695452A (zh) * 2019-01-07 2019-04-30 中国矿业大学 一种能够轴向让压的单层井筒及其施工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130301A (en) * 1975-01-27 1978-12-19 General Electric Company Double-walled well casing structure
CN2585977Y (zh) * 2002-12-02 2003-11-12 中国矿业大学 一种可缩井壁装置
CN1320255C (zh) * 2003-08-21 2007-06-06 中国矿业大学 一种轴向可伸缩井壁
CN2782930Y (zh) * 2005-04-08 2006-05-24 中国矿业大学 一种曲面弧板式井壁可缩结构的焊缝连接装置
CN201059195Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 双腹弧板式可缩井壁支柱固定座装置
CN201059191Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 双环管式可缩井壁压缩缝装置
CN201059196Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 双腹弧板式可缩井壁支柱装置
CN105697019B (zh) * 2016-03-07 2018-04-24 马钢(集团)控股有限公司 立井井壁现浇混凝土接茬及其支模装置和施工方法
CN105823546B (zh) * 2016-03-22 2018-11-23 中国矿业大学(北京) 一种大直径冻结立井***振动监测、减振方法及***
CN106522959B (zh) * 2016-12-12 2017-10-17 中国矿业大学 一种井壁钢结构防水接茬板及其施工工艺

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204875A (ja) * 1999-01-14 2000-07-25 Seibu Polymer Corp トンネル中空接続体等接続用可撓継手
CN2367768Y (zh) * 1999-05-08 2000-03-08 中国矿业大学 曲面弧板式井壁可缩装置
CN1900484A (zh) * 2006-06-27 2007-01-24 中国矿业大学 带接茬板的单层井壁及其施工方法
CN1916361A (zh) * 2006-08-23 2007-02-21 淮南矿业(集团)有限责任公司 冻结井可缩性井壁接头及其施工方法
CN200958394Y (zh) * 2006-09-30 2007-10-10 中国矿业大学 曲面弧板式可缩井壁封水装置
CN201059192Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 双环管式可缩井壁装置
CN201059193Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 多筋弧板式可缩井壁t形肋板装置
CN201059194Y (zh) * 2007-07-10 2008-05-14 中国矿业大学 多筋弧板式可缩井壁装置
CN102913247A (zh) * 2012-07-23 2013-02-06 中煤矿山建设集团有限责任公司 一种钻井法凿井井壁及其制造方法
CN104612695A (zh) * 2015-01-29 2015-05-13 湖南科技大学 一种剧烈垮塌立井井壁修复加固方法
CN106894820A (zh) * 2017-01-17 2017-06-27 中国矿业大学 一种防水井壁可缩装置及其施工工艺
CN109695452A (zh) * 2019-01-07 2019-04-30 中国矿业大学 一种能够轴向让压的单层井筒及其施工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113356887A (zh) * 2021-07-09 2021-09-07 中国矿业大学 一种带注浆止水连接件的单层井壁及其施工方法
CN113356887B (zh) * 2021-07-09 2023-12-22 中国矿业大学 一种带注浆止水连接件的单层井壁及其施工方法

Also Published As

Publication number Publication date
CN109695452B (zh) 2021-04-27
CN109695452A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2020143329A1 (zh) 一种能够轴向让压的单层井筒及其施工方法
CN108301561B (zh) 一种装配式钢管混凝土柱身的连接结构
JP6538184B2 (ja) 箱型管路
WO2018219024A1 (zh) 一种外包钢板的装配式混凝土柱脚节点及其施工方法
KR100838736B1 (ko) 버팀보용 강관 이음장치 및 접합장치
US10030792B2 (en) Underground steel-concrete structure pipeline with spiral composite reinforcement ring on inner wall and manufacturing method thereof
KR101322122B1 (ko) 버팀보용 강관 이음장치, 이를 이용한 흙막이 벽체 지지용 강관 버팀보 및 그 버팀보의 시공방법
CN105114105A (zh) 钢-混凝土复合式隧道衬砌支护结构及其制作与施工方法
CN210712908U (zh) 第一底板构件、第二底板构件、底板和塔筒基础
CN103485548B (zh) 装配式空心混凝土叠合剪力墙竖向钢筋连接方法
CN110029599A (zh) 预制涵洞钢制连接构造及施工方法
CN110043278B (zh) 一种穿越活动断裂带的分级抗断型山岭隧道结构及其施工方法
CN106121658B (zh) 冻结法凿井井筒井壁支护结构及其施工方法
CN110872846A (zh) 一种装配式钢波纹综合管廊
CN103696443A (zh) 预制拼装式检查井
CN111305627B (zh) 混凝土罐室施工方法
CN107905368A (zh) 一种装配式梁与装配式柱连接结构及施工方法
CN111022080A (zh) 轨道梁与盾构隧道的连接结构及其施工方法、盾构隧道
CN211692489U (zh) 轨道梁与盾构隧道的连接结构及盾构隧道
JP4798203B2 (ja) 既設基礎の補強構造および補強方法
CN211948373U (zh) 一种预制地下连续墙接头结构
CN210033452U (zh) 一种穿越活动断裂带的分级抗断型山岭隧道结构
CN106351234A (zh) 装配式三根组合圆钢管混凝土内支撑结构及制作方法
CN113832871A (zh) 基于褶皱钢板的拱桥加固方法
JP2021143576A (ja) コンクリート部材及びセグメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908448

Country of ref document: EP

Kind code of ref document: A1