WO2020141244A1 - Resistive heat source for thin film deposition by means of vacuum evaporation - Google Patents

Resistive heat source for thin film deposition by means of vacuum evaporation Download PDF

Info

Publication number
WO2020141244A1
WO2020141244A1 PCT/ES2019/070896 ES2019070896W WO2020141244A1 WO 2020141244 A1 WO2020141244 A1 WO 2020141244A1 ES 2019070896 W ES2019070896 W ES 2019070896W WO 2020141244 A1 WO2020141244 A1 WO 2020141244A1
Authority
WO
WIPO (PCT)
Prior art keywords
wires
grill
thermal source
threads
straight
Prior art date
Application number
PCT/ES2019/070896
Other languages
Spanish (es)
French (fr)
Inventor
José Antonio AZNÁREZ CANDAO
José Antonio MÉNDEZ MORALES
José María SÁNCHEZ OREJUELA
Juan Ignacio Larruquert Goicoechea
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2020141244A1 publication Critical patent/WO2020141244A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the invention is framed in the Condensed Matter Physics sector, and in particular in the Vacuum Thin Sheet Preparation subsector, with applications in multiple areas, from Optics to Metallurgy.
  • evaporation sources have been designed and manufactured, such as furnaces, crucibles and filaments.
  • sources known as resistive sources which are made of resistive materials formed by metals with a high melting point and non-negligible electrical resistance, acquired a rapid development, which allows their heating through the passage of an electric current.
  • resistive sources the material to be evaporated, called evaporating material, is in direct contact with the resistive material.
  • boats and “filaments”, depending on whether they are manufactured respectively with sheets or with wires of the resistive material.
  • the boats emit the vapor of the evaporating material at most in a hemisphere, while the Filaments do this in practically the entire solid angle.
  • the boats can be more efficient in taking advantage of the load of the evaporating material, however, their reduced thickness makes them sensitive to the corrosion that can result from reaction with certain molten evaporators, for example, aluminum, which significantly reduces its useful life.
  • resistive evaporation sources are tungsten, molybdenum and tantalum, which constitute the so-called refractory metals, which combine a high melting point, a low vapor pressure, even at high temperatures, and are relatively inert to the reaction with the materials to evaporate. Obviously, they must be compatible with the process to be carried out, that is, they must be able to withstand the current that passes through them in order to evaporate the selected evaporating material, and must not undergo corrosion phenomena caused by the evaporating material in a molten state.
  • the filaments made with these refractory metals have acquired great development, as they are effective in transmitting heat to the material to be evaporated; they are cheap and easy to manufacture, as well as simple to install and put into operation.
  • the most widespread models are those with a helical shape and conical baskets, with different dimensions and wire diameters, and all of them made with single wires or braided wires.
  • the attached Figure 1 describes an example of a helical type model.
  • the most common list of materials that can be evaporated through filaments includes: Aluminum; Antimony; Cobalt; Chrome; Strontium; Iron; Manganese; Nickel; Ni / Cr nichrome; Niobium; Palladium; Platinum; Platinum / Palladium (alloy); Titanium; Yttrium-Aluminum oxide (Y3AI15012); Zirconium.
  • the helical filaments (1) as shown in Figure 1 constitute a very widely used resistive thermal source configuration, although the use of the helical filaments (1) as evaporation sources for the production of thin sheets in vacuum presents certain limitations. They are mainly the following: 1. Limitation on the mass of evaporator that can be loaded on the helical filament
  • the limitation of charge may require a multiplication of the number of evaporation sources and / or a frequent replacement of said evaporation sources, in order to have helical filaments (1) in optimal conditions.
  • a quotient between the mass of the evaporating material and the mass of the material (for example, tungsten) that constitutes the helical filament (1) we have that, if the referred quotient is lower, it means that the mass of the filament helical (1) that is necessary to evaporate a unit of mass of evaporator is higher, so it is desirable to have sources with a higher ratio, which would result in a lower economic cost.
  • the emission of steam from a helical filament (1) occurs in the practically complete solid angle around it, with less emission in the axial direction of the helical filament (1).
  • This distribution allows evaporations to be carried out on substrates placed both above and below the helical filaments (1), as for example in the case of some telescope mirrors.
  • the substrate on which the material is deposited occupies only a small part of a hemisphere, the consequence is that a not insignificant part of the evaporated material is wasted, since it ends up the walls of the evaporation chamber or to equivalent protective or masking surfaces.
  • US2009038541A1 refers to a deposition process in which heating is carried out by at least one filament, which can be several filaments, generally called an "array" of filaments, which can be connected both in series and in parallel, where in the case of parallel connection, the voltage is reduced by increasing the current.
  • document US6582780B1 describes an array of parallel filaments for heating by passing an electric current.
  • the array can be vertical and / or horizontal and consist of tungsten, tantalum, molybdenum, rhenium filaments (tungsten being the preferred) that are connected at their ends to two electrodes.
  • document W02011106624A1 refers to the use of an array of filaments, both tantalum and tungsten, which are forming a grid that on the sides has two electrical contact elements through which current reaches the filament array.
  • This publication therefore collects that the heating device is a set of first parallel filaments connected at their ends and that they are also forming a weft with other second filaments intersected in another direction with the first.
  • the heating device consists of at least two parallel filaments (tungsten or tantalum) with contact elements at their ends.
  • the present invention introduces a resistive type thermal source, suitable for deposition of thin sheets by vacuum evaporation (both in high vacuum and ultra high vacuum), by means of physical vapor phase deposition (PVD), where the thermal source presents improved characteristics with respect to the known evaporative resistive sources present in the usual supply for industries and laboratories.
  • a "thin sheet” is understood to mean a flat layer of material whose thickness is between a fraction of nanometer (monolayer) and several micrometers.
  • the Invention a multi-wire type evaporation source, improves the characteristics of the filaments and the boats, thus improving the efficiency of the evaporation processes.
  • the thermal source of the invention comprises a grill formed by a set of wires, preferably single wires, of metal to refract it, which are juxtaposed side by side in parallel.
  • the threads thus arranged are capable of supporting a certain amount of evaporating material, before and after being melted, which is intended to be evaporated in a vacuum to form a deposit in the form of a thin sheet.
  • the evaporation source additionally comprises two connection bushes located at its ends. These connection bushes have a double function: on the one hand, they mechanically hold the wires that make up the grill together, connecting the wires and therefore preserving the configuration of the grill. On the other hand, they ensure the electrical connection of the wires to each other and to the whole of the wires with a power source intended to feed the evaporation source, for example, with clamping jaws associated with the cable gland electrodes that provide the electric current. necessary for the operation of the source. In this way, an electrical current is circulated through all the wires of the grill, preferably by Equal, and thus raise, if necessary uniformly, the temperature of said wires to the temperature necessary for evaporation.
  • connection sleeves are preferably formed by a thin sheet of good conductive and moldable metal (copper, molybdenum, tantalum, etc.) that surrounds the set of wires at each end.
  • the length of the thin sheet used must be enough to give between one and two turns to all the threads.
  • the width of the thin sheet, or what is the same, that of the connection bushing, does not need to protrude from the clamping jaw associated with a corresponding electric current electrode.
  • the multi-wire grill thermal source described above is totally suitable for the production of thin sheets by evaporation in both high-vacuum and ultra-high-vacuum systems.
  • suitable evaporating materials to be evaporated using the source of the invention are those previously mentioned: Aluminum; Antimony; Cobalt; Chrome; Strontium; Iron; Manganese; Nickel; Ni / Cr nichrome; Niobium; Palladium; Platinum; Platinum / Palladium (alloy); Titanium; Yttrium-Aluminum oxide (Y3AI15012); Zirconium.
  • the concept of using a grill or filament in the present invention bears no relation to the use of grills or filaments in the coating deposition technique called "chemical vapor phase deposition” (CVD).
  • Chemical vapor deposition in some of whose variants a filament is used.
  • the documents cited in the background belong to the CVD field, in which the filament is used to dissociate the precursor gas from the deposit, so that the product of dissociation is what gives rise to the deposit.
  • the present invention is applied to the evaporative deposition technique under vacuum conditions, which is within the group of physical vapor deposition (PVD) techniques.
  • PVD physical vapor deposition
  • the objective of the filament is, on the one hand, to support the solid to be evaporated and, on the other hand, to transmit heat to that solid by contact to evaporate it.
  • the differences between the present invention and the cited documents can be summarized in: 1)
  • the invention refers to the PVD field, while the cited documents are applied in CVD; 2)
  • there is an interaction of the filament with the evaporating material while in the cited documents there is an interaction with a gas; 3)
  • there is a physical process of evaporation of molecules, and subsequent deposition (without chemical reaction) while, in the cited documents, a chemical process of molecular dissociation and a subsequent chemical reaction take place.
  • This invention proposes a simple design in its configuration and materials that allows the possibilities of evaporation sources to be increased by providing them with improved performance compared to current sources.
  • the advantageous aspects of the present invention are set out below. 1. Greater load capacity of evaporating material with respect to that of the classic helical filaments.
  • the mass of the load supported by a grill is more than twice that of a helical filament of similar length and electrical power.
  • the difference in favor of the new source, called the grill, is that its emission in the zenith direction to the source, that is, in the direction perpendicular to the plane of the threads through its center, is greater than the emission of the helical filaments in a percentage that varies between 30% and 60% per unit of evaporated mass. Emission from the new source maintains the same possibility for helical filaments to evaporate on substrates placed both above and below the filament.
  • the simple geometry of the new sources means a simplification of the production process, a reduction in the necessary resistive material and / or a reduction in the execution time of the source, all of which can mean a reduction in the manufacturing costs of the new source. 4. Reliability and simplicity in the placement of the evaporator charge.
  • the grill has, at its lowest part, an orientation surface close to horizontal to rest the evaporator, which is more extensive and compact than that of helical filaments of similar dimensions. Therefore, the load is easily placed in its position of use and the possibility of the load falling, both in its placement and during the fusion process, is greatly reduced. This makes easier and safer handling during this phase of the material evaporation process.
  • the new design grills maintain the ease of regulating the working temperature of resistive sources, an operation that is performed by controlling the applied electrical voltage and current. This objective is easily achieved with the usual power supplies for resistive evaporative sources.
  • the design of the proposed grills is fully scalable. This allows its dimensions to be easily adapted to the dimensions of any vacuum chamber in which they are to be installed and / or to the thickness of the thin sheets to be obtained.
  • Figure 1. Shows a helical filament commonly used for thermal sources according to the state of the art.
  • Figure 2. Shows an example of a straight grill in accordance with a preferred embodiment of the present invention, formed by nine tungsten strands 1 mm in diameter and 85 mm in length, and loaded with 2 grams of pre-shaped aluminum.
  • Figure 3. Shows a schematic drawing of a curved grill in which the dimensions of length (L), span (V) and unevenness (R) can be seen.
  • Figure 4. Shows an example of a curved grill according to another preferred embodiment of the present invention, formed by nine tungsten wires of 1 mm diameter, and a length of 96 mm, loaded with partially evaporated aluminum, showing preferential accumulation. of the aluminum load in the lower area.
  • Form factor FF 0.15.
  • the invention relates to a thermal source of the resistive type, for depositing sheets of material, by means of vacuum vaporization.
  • the source comprises a grill (10, 11) formed by a set of metal wires (12) to refract it that are juxtaposed side by side in parallel.
  • the threads (12) serve to support a quantity of molten evaporating material (13) destined to be evaporated in vacuum to form a deposit in the form of a thin sheet.
  • the evaporation source additionally comprises two connection bushes (14), located at the two ends of the wires (12) to hold all the wires (12) together.
  • the connection bushings (14) also facilitate the electrical connection of the assembly of the wires (12) with an electricity source, to allow an electric current to flow through the wires (12) and heat said wires (12) in order to evaporate the evaporating material (13).
  • the connecting sleeves (14) wrap the set of wires (12) at each of the two ends of the wires (12).
  • the connection sleeves (14) are preferably made of metallic material or materials, as well as preferably have a moldable character, a sufficiently high melting point and a sufficiently low vapor pressure, such as copper, molybdenum or tantalum, among others.
  • the connection bushings (14) can be configured as plates.
  • connection bushing and the clamping jaw In order to facilitate keeping the wires together by means of the connection bushing and the clamping jaw, as well as to facilitate the circulation of the same current intensity through each wire, it is preferred that all the wires of the same grill have the same diameter.
  • each wire is in contact with the wire or wires that are in an adjacent position, to facilitate the connection by means of the connection bushings.
  • the straight grills (10), as shown in figure 2, are formed by a set of straight threads (12). Consequently, the straight racks (10) show a flat configuration.
  • the straight grates (10) are preferably used when it is foreseen that in the evaporation process the entire quantity of evaporating material (13) loaded on the threads (12) will be consumed.
  • the straight racks (10) are identified by the number of threads (12), the diameter of the thread (12) and the length of the threads
  • the curved racks (11) are shown in Figures 3 and 4.
  • the curved racks (11) can be formed from a straight grill (10) when the set of wires (12) curves at the same time as it does. the plane containing the threads (12), in such a way that the threads (12) continue to remain juxtaposed and become contained in the new curved surface.
  • the ends of the wires (12), wrapped in the connection sleeves (14), are kept straight, located in the original plane of the grill.
  • the threads (12) are preferably curved, although they can also have some additional straight section.
  • the curved portion is placed with the concavity up, so that a level difference is formed, also called “height" (R) between the plane of the ends and the part of the threads (12) that occupies the lowest level , also called Bottom (15).
  • the evaporating material (13) deposited in the threads (12) is confined, by the effect of gravity, in the Lower part (15) of the threads (12) of the curved grill (11).
  • the Identification of a curved grill (11) can be done, in addition to indicating the number of threads (12), its diameter, and its length, by means of a "form factor” (FF) that is obtained by dividing the height R by the horizontal distance between the innermost points of the ends, that is, the length, in horizontal projection, of the curved part, called the “span” (V).
  • FF R / V
  • the curved grill (11) has better application when the mass of evaporating material (13) loaded on the threads (12) is going to be used in several successive processes that involve heating and cooling of the threads (12).
  • the confinement of the evaporating material (13) in the Lower area of the curved grill (11) is improved, thus contributing to a better use of the charge of evaporating material (13).
  • the evaporating materials (13) once melted, migrate when they are thrown, so that, on straight grills (10), part of the evaporating material (13) can move towards the ends, which are colder, with which that said evaporating material (13) is disabled to evaporate when it does not reach a sufficient temperature.
  • FIG. 10 shows a straight grill with 9 threads (12) of tungsten of 1 mm in diameter and 85 mm in length, loaded with 2 grams of pre-cast aluminum as evaporating material (13).
  • FIG. 10 shows a straight grill with 9 threads (12) of tungsten of 1 mm in diameter and 85 mm in length, loaded with 2 grams of pre-cast aluminum as evaporating material (13).
  • FIG. 10 shows a straight grill with 8 threads (12) of tungsten of 0.7 mm in diameter and 60 mm in length.
  • Figure 4 shows a curved grill (11), with 9 threads (12) of tungsten of 1 mm in diameter, and a length of 96 mm, loaded with partially evaporated aluminum, as evaporating material (13), showing accumulation of the load of evaporating material (13) in the lower area (15).
  • Other examples not represented, refer respectively to curved grills (11) with: a) seven tungsten wires (12) of 0.7 mm diameter and 70 mmm length loaded with 1 g of pre-cast and partially evaporated aluminum; b) nine tungsten wires (12) 1 mm in diameter and 107 mm in length.
  • the tests have also contemplated various grid configurations (10, 11), varying between shapes that can be assimilated to a V with a rounded corner and others closer to an arc of circumference.
  • Form factors (FF) of between 0.15 and 0.40 have been considered.
  • the use of curved grids (11) with form factors (FF) within this range has shown similar efficiency in the confining effect of the melted evaporating material (13), which is what is sought in curved grids (11).
  • the interval indicated for the form factor (FF) should be considered as a sample of satisfactory achievements and, in no case, as absolute limits.
  • the choice of a specific form factor (FF) when designing a curved grill (11) for a given process must take into account some basic considerations apart from the electrical parameters and their power supplies.
  • a high form factor (FF) will help to better confine the molten evaporating material (13) in the lower area of the curved grill (11).
  • a high form factor (FF) may imply an excessive accumulation of evaporating material (13) melted in the lower area (15), with the consequent risk that it may a part of the evaporating material (13) in the form of a large drop come off the curved grill (11).
  • the combination of wire diameter (12) of the refractory metal used, the number of wires (12) configuring the grill (10,11), and the length of the grill (10, 11), allow to manufacture a considerable variety of grills ( 10, 11) with geometries adapted to a wide number of applications.
  • tungsten wires (12) of 0.7 mm diameter and lengths of 60 and 70 mm. They have been manufactured in the two modalities of straight grill (10) and curved grill (11). It has been used with a voltage of 1.30 volts, and a current intensity of approximately 180 amps, to reach a temperature of 1200-1300 ° C, with a load of evaporating material (13) of aluminum for evaporation of between 0, 6 and 0.8 grams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a resistive heat source comprising: an array (10, 11) formed by a plurality of wires (12) of refractory metal that are juxtaposed side by side in parallel, the array (10, 11) being intended to support an amount of molten evaporating material (13) to be vacuum evaporated to form a thin film deposit, wherein the wires (12) comprise two ends; and two connection caps (14) located at the ends, which keep all the wires (12) joined together and facilitate the connection of the wires (12) to an electricity source. A straight array (10) with straight wires (12) or a curved array (11) with wires (12) having a curved part forming a difference of level (R) can be used.

Description

FUENTE TÉRMICA DE TIPO RESISTIVO PARA DEPOSICIÓN DE LÁMINAS RESISTIVE TYPE THERMAL SOURCE FOR DEPOSITION OF SHEETS
DELGADAS MEDIANTE EVAPORACIÓN EN VACÍO THIN THROUGH VACUUM EVAPORATION
D E S C R I P C I Ó N D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención se encuadra en el sector de la Física de la Materia Condensada, y en particular en el subsector de Preparación de Láminas Delgadas en Vacío, con aplicaciones en múltiples áreas, desde la Óptica a la Metalurgia. The invention is framed in the Condensed Matter Physics sector, and in particular in the Vacuum Thin Sheet Preparation subsector, with applications in multiple areas, from Optics to Metallurgy.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La preparación de láminas delgadas de diversos materiales por deposición en vacío se inicia a finales del siglo XIX y adquiere importancia creciente según avanza el siglo XX. Entre otros muchos trabajos, podemos citar los de J.Strong en la década de los años 30 por su contribución a la preparación de espejos para telescopios mediante la evaporación de aluminio desde fuentes resistivas. También, los trabajos de Hass, Hunter, Tousey, Osantowski y otros, publicados a lo largo de más de una década alrededor de los años 60 del siglo XX. The preparation of thin sheets of various materials by vacuum deposition begins in the late nineteenth century and becomes increasingly important as the twentieth century progresses. Among many other works, we can cite those of J.Strong in the 1930s for his contribution to the preparation of mirrors for telescopes by evaporating aluminum from resistive sources. Also, the works of Hass, Hunter, Tousey, Osantowski and others, published over the course of more than a decade around the 1960s.
Para la realización de estas deposiciones en vacío se vienen diseñando y fabricando distintos tipos de fuentes de evaporación, como hornos, crisoles y filamentos. En particular, adquirieron un rápido desarrollo las fuentes denominadas fuentes resistivas, que están fabricadas con materiales resistivos formados por metales de alto punto de fusión y resistencia eléctrica no despreciable, lo cual permite su calentamiento mediante el paso de una corriente eléctrica. En las fuentes resistivas, el material a evaporar, denominado material evaporante, está en contacto directo con el material resistivo. De este tipo de fuentes, las más usuales son las denominadas“navecillas" y “filamentos”, según se fabriquen respectivamente con chapas o con hilos del material resistivo. Las navecillas emiten el vapor del material evaporante como máximo en una semiesfera, mientras que los filamentos lo hacen prácticamente en todo el ángulo sólido. Las navecillas pueden resultar más eficientes en el aprovechamiento de la carga del material evaporante; sin embargo, su reducido espesor las hace sensibles a la corrosión que puede derivarse de la reacción con ciertos evaporantes fundidos, por ejemplo, el aluminio, lo cual reduce significativamente su vida útil. To carry out these vacuum depositions, different types of evaporation sources have been designed and manufactured, such as furnaces, crucibles and filaments. In particular, sources known as resistive sources, which are made of resistive materials formed by metals with a high melting point and non-negligible electrical resistance, acquired a rapid development, which allows their heating through the passage of an electric current. In resistive sources, the material to be evaporated, called evaporating material, is in direct contact with the resistive material. Of these types of sources, the most common are the so-called "boats" and "filaments", depending on whether they are manufactured respectively with sheets or with wires of the resistive material. The boats emit the vapor of the evaporating material at most in a hemisphere, while the Filaments do this in practically the entire solid angle.The boats can be more efficient in taking advantage of the load of the evaporating material, however, their reduced thickness makes them sensitive to the corrosion that can result from reaction with certain molten evaporators, for example, aluminum, which significantly reduces its useful life.
Los materiales más comúnmente utilizados para la fabricación de fuentes de evaporación resistivas son wolframio, molibdeno y tántalo, los cuales constituyen los denominados metales refractarios, que aúnan un elevado punto de fusión, una baja presión de vapor, incluso a temperaturas elevadas, y ser relativamente inertes a la reacción con los materiales a evaporar. Obviamente, han de ser compatibles con el proceso a realizar, es decir que han de poder soportar la corriente que los atraviese para evaporar el material evaporante seleccionado, y no deben sufrir fenómenos de corrosión causados por el material evaporante en estado fundido. The most commonly used materials for the manufacture of resistive evaporation sources are tungsten, molybdenum and tantalum, which constitute the so-called refractory metals, which combine a high melting point, a low vapor pressure, even at high temperatures, and are relatively inert to the reaction with the materials to evaporate. Obviously, they must be compatible with the process to be carried out, that is, they must be able to withstand the current that passes through them in order to evaporate the selected evaporating material, and must not undergo corrosion phenomena caused by the evaporating material in a molten state.
Los filamentos fabricados con estos metales refractarios han adquirido gran desarrollo, pues son eficaces en la transmisión de calor al material a evaporar; son baratos y fáciles de fabricar, así como sencillos de instalar y poner en funcionamiento. Los modelos más extendidos son los de forma helicoidal y las cestillas cónicas, con distintas dimensiones y diámetros de hilo, y todos ellos fabricados con hilos simples o hilos trenzados. La figura 1 adjunta describe un ejemplo de un modelo de tipo helicoidal. The filaments made with these refractory metals have acquired great development, as they are effective in transmitting heat to the material to be evaporated; they are cheap and easy to manufacture, as well as simple to install and put into operation. The most widespread models are those with a helical shape and conical baskets, with different dimensions and wire diameters, and all of them made with single wires or braided wires. The attached Figure 1 describes an example of a helical type model.
Los distintos modelos de estas fuentes de evaporación resistivas se hallan descritos con detalle en los catálogos de productos de las principales empresas relacionadas con el ámbito de la tecnología de vacío y la preparación de láminas delgadas. The different models of these resistive evaporation sources are described in detail in the product catalogs of the main companies related to the field of vacuum technology and the preparation of thin sheets.
La lista de materiales más comunes que pueden ser evaporados mediante filamentos incluye: Aluminio; Antimonio; Cobalto; Cromo; Estroncio; Hierro; Manganeso; Níquel; Nichrome Ni/Cr; Niobio; Paladio; Platino; Platino/Paladio (aleación); Titanio; Ytrio- Aluminio óxido (Y3AI15012); Zirconio. The most common list of materials that can be evaporated through filaments includes: Aluminum; Antimony; Cobalt; Chrome; Strontium; Iron; Manganese; Nickel; Ni / Cr nichrome; Niobium; Palladium; Platinum; Platinum / Palladium (alloy); Titanium; Yttrium-Aluminum oxide (Y3AI15012); Zirconium.
Los filamentos helicoidales (1) como el mostrado en la figura 1 constituyen una configuración de fuente térmica resistiva de muy amplio uso, si bien la utilización de los filamentos helicoidales (1) como fuentes de evaporación para la producción de láminas delgadas en vacío presenta ciertas limitaciones. Son, principalmente, las siguientes: 1. Limitación en la masa de evaporante que se puede cargar en el filamento helicoidalThe helical filaments (1) as shown in Figure 1 constitute a very widely used resistive thermal source configuration, although the use of the helical filaments (1) as evaporation sources for the production of thin sheets in vacuum presents certain limitations. They are mainly the following: 1. Limitation on the mass of evaporator that can be loaded on the helical filament
(1). (one).
Eso se debe en primer término a que la cantidad máxima de evaporante viene determinada por el hueco (2) cilindrico de la hélice, donde los estándares más habituales apenas exceden de 10 mm de diámetro para dicho hueco (2). This is primarily due to the fact that the maximum amount of evaporator is determined by the cylindrical hole (2) of the propeller, where the most common standards hardly exceed 10 mm in diameter for said hole (2).
Este límite máximo se reduce necesariamente pues, si la carga de evaporante es grande, pueden producirse dos situaciones problemáticas: 1) Que, en el momento de fundirse el evaporante, denominado también“carga”, una parte de la carga se caiga del filamento helicoidal (1) porque el peso de la masa fundida sea mayor que la adherencia de la carga al filamento helicoidal (1); y 2) Que el evaporante fundido forme puentes entre las espiras (3) del filamento helicoidal (1). Estos puentes, debido a su menor resistencia eléctrica y mayor masa, se encuentran a una temperatura más baja que la de las otras partes del filamento helicoidal (1) simplemente impregnadas, y por tanto, dan lugar a una evaporación ineficiente. Además, se crea una transición brusca de alta a baja temperatura en el punto de unión filamento helicoidal (1)-puente. En la zona de alta temperatura se puede producir un desgaste rápido y consiguiente rotura del filamento helicoidal (1) por autoevaporación. Además, en el caso de que el evaporante fundido reaccione con el material refractario del filamento, se incrementa la velocidad de desgaste del filamento helicoidal (1) en el punto de inserción y con ello su rápida ruptura. This maximum limit is necessarily reduced because, if the evaporator load is large, two problematic situations can occur: 1) That, at the time of evaporation melting, also called "charge", part of the charge falls off the helical filament (1) because the weight of the melt is greater than the adhesion of the load to the helical filament (1); and 2) That the molten evaporator forms bridges between the turns (3) of the helical filament (1). These bridges, due to their lower electrical resistance and higher mass, are at a lower temperature than that of the other parts of the helical filament (1), simply impregnated, and therefore, lead to inefficient evaporation. In addition, a sharp transition from high to low temperature is created at the helical filament (1) -bridge junction point. In the high temperature zone, rapid wear can occur and consequent breakage of the helical filament (1) by self-evaporation. Furthermore, in the event that the molten evaporator reacts with the refractory material of the filament, the wear rate of the helical filament (1) at the insertion point is increased, and with it its rapid rupture.
Si los puentes entre espiras (3) se forman cerca de los extremos del filamento helicoidal (1), el efecto negativo se incrementa. Los extremos son zonas más frías que el centro debido a la influencia de unas mordazas de conexión, no mostradas en la figura 1, que conectan el filamento helicoidal (1) a unos electrodos, y que actúan como sumideros de calor. En consecuencia, el material del puente queda inservible para la evaporación porque no es conveniente elevar la temperatura de esas zonas frías del filamento helicoidal (1) hasta alcanzar valores de evaporación. En muchos casos, esta elevación de temperatura no se podria conseguir, o requeriría un gran incremento de la potencia eléctrica suministrada. Y, por otro lado, al elevar la temperatura de las zonas que hemos denominado "frías", la temperatura de las zonas centrales del filamento se eleva considerablemente, acelerando la autoevaporación y posterior rotura del filamento helicoidal (1). 2. Influencia de la limitación de carga en el coste de la fuente de evaporación. If the bridges between turns (3) are formed near the ends of the helical filament (1), the negative effect increases. The ends are cooler areas than the center due to the influence of connecting jaws, not shown in Figure 1, which connect the helical filament (1) to electrodes, and which act as heat sinks. Consequently, the bridge material is unusable for evaporation because it is not convenient to raise the temperature of those cold zones of the helical filament (1) until reaching evaporation values. In many cases, this temperature rise could not be achieved, or would require a large increase in the electrical power supplied. And, on the other hand, by raising the temperature of the areas that we have called "cold", the temperature of the central areas of the filament rises considerably, accelerating self-evaporation and subsequent breakage of the helical filament (1). 2. Influence of the charge limitation on the cost of the evaporation source.
La limitación de carga, según se ha expuesto anteriormente, puede exigir una multiplicación del número de fuentes de evaporación y/o una frecuente sustitución de dichas fuentes de evaporación, para disponer de filamentos helicoidales (1) en óptimas condiciones. Cuantitativamente, considerando un cociente entre la masa del material evaporante y la masa del material (por ejemplo, wolframio) que constituye el filamento helicoidal (1), se tiene que, si el referido cociente es más bajo, quiere decir que la masa de filamento helicoidal (1) que es necesaria para evaporar una unidad de masa de evaporante es más elevada, por lo que es deseable disponer de fuentes con un cociente mayor, lo cual se traduciría en un menor coste económico. The limitation of charge, as explained above, may require a multiplication of the number of evaporation sources and / or a frequent replacement of said evaporation sources, in order to have helical filaments (1) in optimal conditions. Quantitatively, considering a quotient between the mass of the evaporating material and the mass of the material (for example, tungsten) that constitutes the helical filament (1), we have that, if the referred quotient is lower, it means that the mass of the filament helical (1) that is necessary to evaporate a unit of mass of evaporator is higher, so it is desirable to have sources with a higher ratio, which would result in a lower economic cost.
3. Baja fiabilidad en el confinamiento de la carga de evaporante. 3. Low reliability in the confinement of the evaporator charge.
La necesidad de manejar mayores cantidades de evaporante requiere incrementar el diámetro de las espiras (3). Asimismo, el interés en evitar la formación de puentes entre espiras (3) por el evaporante fundido, lleva a una separación entre espiras (3) que no puede ser pequeña, lo cual incrementa el riesgo de que una parte de la masa del evaporante fundido pueda caerse. En conjunto, todo esto supone una incertidumbre en la operación de fusión, extensión y confinamiento del evaporante en toda la dimensión del filamento helicoidal (1). The need to handle larger amounts of evaporator requires increasing the diameter of the coils (3). Also, the interest in avoiding the formation of bridges between turns (3) by the melted evaporator, leads to a separation between turns (3) that cannot be small, which increases the risk that a part of the mass of the melted evaporator may fall. Taken together, all this supposes an uncertainty in the operation of fusion, extension and confinement of the evaporator in the entire dimension of the helical filament (1).
4. Baja eficiencia de la emisión de vapor desde el filamento helicoidal (1). 4. Low efficiency of steam emission from the helical filament (1).
La emisión de vapor desde un filamento helicoidal (1) se produce en el ángulo sólido prácticamente completo a su alrededor, con una menor emisión en la dirección axial del filamento helicoidal (1). Esta distribución permite efectuar las evaporaciones sobre sustratos colocados tanto por encima como por debajo de los filamentos helicoidales (1), como por ejemplo en el caso de algunos espejos de telescopios. Sin embargo, dado que en la casi totalidad de los casos el sustrato sobre el que se deposita el material ocupa solamente una parte reducida de un hemisferio, la consecuencia es que una parte no despreciable del material evaporado se desaprovecha, puesto que va a parar a las paredes de la cámara de evaporación o a superficies equivalentes de protección o enmascaramiento. El documento US2009038541A1 hace referencia a un proceso de deposición en el que el calentamiento se realiza mediante al menos un filamento, que pueden ser varios filamentos, generalmente denominado un "array" de filamentos, que pueden estar conectados tanto en serie como en paralelo, donde en el caso de conexión en paralelo, se reduce el voltaje aumentándose la corriente. The emission of steam from a helical filament (1) occurs in the practically complete solid angle around it, with less emission in the axial direction of the helical filament (1). This distribution allows evaporations to be carried out on substrates placed both above and below the helical filaments (1), as for example in the case of some telescope mirrors. However, since in almost all cases the substrate on which the material is deposited occupies only a small part of a hemisphere, the consequence is that a not insignificant part of the evaporated material is wasted, since it ends up the walls of the evaporation chamber or to equivalent protective or masking surfaces. US2009038541A1 refers to a deposition process in which heating is carried out by at least one filament, which can be several filaments, generally called an "array" of filaments, which can be connected both in series and in parallel, where in the case of parallel connection, the voltage is reduced by increasing the current.
Por su parte, el documento US6582780B1 describe un array de filamentos paralelos para el calentamiento mediante el paso de una corriente eléctrica. El array puede ser vertical y/o horizontal y estar constituido por filamentos de wolframio, tántalo, molibdeno, renio, (siendo el wolframio el preferido) que están conectados en sus extremos a dos electrodos. For its part, document US6582780B1 describes an array of parallel filaments for heating by passing an electric current. The array can be vertical and / or horizontal and consist of tungsten, tantalum, molybdenum, rhenium filaments (tungsten being the preferred) that are connected at their ends to two electrodes.
Asimismo, el documento W02011106624A1 se refiere a la utilización de un array de filamentos, tanto de tántalo como de wolframio, que están formando una rejilla que a los lados tiene dos elementos de contacto eléctrico por los que le llega corriente al array de filamentos. Esta publicación recoge pues que el dispositivo de calentamiento es un conjunto de primeros filamentos paralelos conectados en sus extremos y que además están formando una trama con otros segundos filamentos entrecruzados en otra dirección con los primeros. Likewise, document W02011106624A1 refers to the use of an array of filaments, both tantalum and tungsten, which are forming a grid that on the sides has two electrical contact elements through which current reaches the filament array. This publication therefore collects that the heating device is a set of first parallel filaments connected at their ends and that they are also forming a weft with other second filaments intersected in another direction with the first.
Finalmente, en el documento US5160544A se proponen varias configuraciones para los filamentos calefactores de modo que se adapten a los resultados deseados en la deposición en vacío. En particular, el dispositivo calefactor está formado por al menos dos filamentos (de wolframio o tántalo) paralelos con elementos de contacto en sus extremos. Finally, in US5160544A various configurations are proposed for the heating filaments to suit the desired results in vacuum deposition. In particular, the heating device consists of at least two parallel filaments (tungsten or tantalum) with contact elements at their ends.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención introduce una fuente térmica de tipo resistivo, adecuada para deposición de láminas delgadas mediante evaporación en vacío (tanto en alto vacío como en ultra alto vacío), por medio de deposición física en fase vapor (PVD), donde la fuente térmica presenta características mejoradas con respecto a las fuentes resistivas de evaporación conocidas y presentes en el suministro habitual para industrias y laboratorios. Se entiende como“lámina delgada”, en el sector de la Invención, a una capa plana de materia cuyo espesor está comprendido entre una fracción de nanómetro (monocapa) y varios micrómetros. The present invention introduces a resistive type thermal source, suitable for deposition of thin sheets by vacuum evaporation (both in high vacuum and ultra high vacuum), by means of physical vapor phase deposition (PVD), where the thermal source presents improved characteristics with respect to the known evaporative resistive sources present in the usual supply for industries and laboratories. In the field of the invention, a "thin sheet" is understood to mean a flat layer of material whose thickness is between a fraction of nanometer (monolayer) and several micrometers.
La Invención, una fuente de evaporación de tipo multifilar, mejora las características de los filamentos y las navecillas, consiguiendo así mejorar la eficiencia de los procesos de evaporación. The Invention, a multi-wire type evaporation source, improves the characteristics of the filaments and the boats, thus improving the efficiency of the evaporation processes.
La fuente térmica de la Invención comprende una parrilla formada por un conjunto de hilos, preferentemente hilos simples, de metal refractarlo, que están yuxtapuestos uno al lado de otro en paralelo. Los hilos así dispuestos son capaces de soportar una cierta cantidad de material evaporante, antes y después de ser fundido, que está destinado a ser evaporado en vacío para formar un depósito en forma de lámina delgada. The thermal source of the invention comprises a grill formed by a set of wires, preferably single wires, of metal to refract it, which are juxtaposed side by side in parallel. The threads thus arranged are capable of supporting a certain amount of evaporating material, before and after being melted, which is intended to be evaporated in a vacuum to form a deposit in the form of a thin sheet.
La füente de evaporación comprende adicionalmente dos caequillos de conexión localizados en sus extremos. Estos caequillos de conexión tienen una doble función: por una parte, mantienen mecánicamente unidos los hilos que forman la parrilla, conectando los hilos y por tanto preservando así la configuración de la parrilla. Por otra parte, aseguran la conexión eléctrica de los hilos entre sí y del conjunto de los hilos con una fuente de alimentación destinada a alimentar la fuente de evaporación, por ejemplo, con unas mordazas de apriete asociadas con los electrodos pasamuros que proporcionan la corriente eléctrica necesaria para el funcionamiento de la fuente. De esta manera, se consigue que circule una corriente eléctrica por todos los hilos de la parrilla, preferentemente por Igual, y así elevar, en su caso de modo uniforme, la temperatura de dichos hilos hasta la temperatura necesaria para la evaporación. Los casqulllos de conexión están formados preferentemente por una chapa fina de metal buen conductor y moldeable (cobre, molibdeno, tántalo, etc) que envuelve el conjunto de los hilos en cada extremo. La longitud de la chapa fina usada debe bastar para dar entre una y dos vueltas al conjunto de los hilos. La anchura de la chapa fina, o lo que es lo mismo, la del caequillo de conexión no es necesario que sobresalga de la mordaza de apriete asociada a un electrodo de corriente eléctrica correspondiente. The evaporation source additionally comprises two connection bushes located at its ends. These connection bushes have a double function: on the one hand, they mechanically hold the wires that make up the grill together, connecting the wires and therefore preserving the configuration of the grill. On the other hand, they ensure the electrical connection of the wires to each other and to the whole of the wires with a power source intended to feed the evaporation source, for example, with clamping jaws associated with the cable gland electrodes that provide the electric current. necessary for the operation of the source. In this way, an electrical current is circulated through all the wires of the grill, preferably by Equal, and thus raise, if necessary uniformly, the temperature of said wires to the temperature necessary for evaporation. The connection sleeves are preferably formed by a thin sheet of good conductive and moldable metal (copper, molybdenum, tantalum, etc.) that surrounds the set of wires at each end. The length of the thin sheet used must be enough to give between one and two turns to all the threads. The width of the thin sheet, or what is the same, that of the connection bushing, does not need to protrude from the clamping jaw associated with a corresponding electric current electrode.
La fuente térmica con parrilla multifilar anteriormente descrita, debido a sus materiales, formación y empaquetado, resulta totalmente adecuada para la producción de láminas delgadas por evaporación en sistemas tanto de alto vacío como de ultra alto vacío. Entre los materiales evaporantes más idóneos para ser evaporados empleando la fuente de la Invención, se encuentran aquellos anteriormente mencionados: Aluminio; Antimonio; Cobalto; Cromo; Estroncio; Hierro; Manganeso; Níquel; Nichrome Ni/Cr; Niobio; Paladio; Platino; Platino/Paladio (aleación); Titanio; Ytrio-Aluminio óxido (Y3AI15012); Zirconio. Due to its materials, formation and packaging, the multi-wire grill thermal source described above is totally suitable for the production of thin sheets by evaporation in both high-vacuum and ultra-high-vacuum systems. Among the most suitable evaporating materials to be evaporated using the source of the invention are those previously mentioned: Aluminum; Antimony; Cobalt; Chrome; Strontium; Iron; Manganese; Nickel; Ni / Cr nichrome; Niobium; Palladium; Platinum; Platinum / Palladium (alloy); Titanium; Yttrium-Aluminum oxide (Y3AI15012); Zirconium.
Se desea destacar que el concepto de uso de una parrilla o un filamento en la presente invención no guarda ninguna relación con el uso de parrillas o filamentos en la técnica de deposición de recubrimientos denominada "deposición química de fase de vapor" (CVD, del inglés Chemical vapour deposition ), en algunas de cuyas variantes se emplea un filamento. Los documentos citados en los antecedentes pertenecen al campo de CVD, en el cual el filamento se emplea para disociar el gas precursor del depósito, de modo que el producto de la disociación es el que da lugar al depósito. En contraste con lo anterior, la presente invención se aplica a la técnica de deposición por evaporación en condiciones de vacío, que se encuentra dentro del grupo de técnicas de deposición física en fase vapor (PVD, del inglés physica! vapour deposition). En el presente caso, el objetivo del filamento es, por una parte, dar soporte al sólido que se va a evaporar y, por otra parte, transmitir calor a ese sólido por contacto para evaporarlo. It is desired to emphasize that the concept of using a grill or filament in the present invention bears no relation to the use of grills or filaments in the coating deposition technique called "chemical vapor phase deposition" (CVD). Chemical vapor deposition), in some of whose variants a filament is used. The documents cited in the background belong to the CVD field, in which the filament is used to dissociate the precursor gas from the deposit, so that the product of dissociation is what gives rise to the deposit. In contrast to the foregoing, the present invention is applied to the evaporative deposition technique under vacuum conditions, which is within the group of physical vapor deposition (PVD) techniques. In the present case, the objective of the filament is, on the one hand, to support the solid to be evaporated and, on the other hand, to transmit heat to that solid by contact to evaporate it.
Las diferencias existentes entre la presente invención y los documentos citados se pueden resumir en: 1) La invención se refiere al campo PVD, mientras que los documentos citados se aplican en CVD; 2) En la presente invención se produce una interacción del filamento con el material evaporante, mientras que en los documentos citados se produce interacción con un gas; 3) En la presente invención, se produce un proceso físico de evaporación de moléculas, y posterior deposición (sin reacción química), mientras que, en los documentos citados, se produce un proceso químico de disociación molecular y una posterior reacción química. The differences between the present invention and the cited documents can be summarized in: 1) The invention refers to the PVD field, while the cited documents are applied in CVD; 2) In the present invention there is an interaction of the filament with the evaporating material, while in the cited documents there is an interaction with a gas; 3) In the present invention, there is a physical process of evaporation of molecules, and subsequent deposition (without chemical reaction), while, in the cited documents, a chemical process of molecular dissociation and a subsequent chemical reaction take place.
Esta invención propone un diseño sencillo en su configuración y materiales que permite aumentar las posibilidades de las fuentes de evaporación al dotarlas de prestaciones mejoradas frente a las de las fuentes actuales. Seguidamente se exponen los aspectos ventajosos de la presente invención. 1. Mayor capacidad de carga de material evaporante con respecto a la de los filamentos helicoidales clásicos. This invention proposes a simple design in its configuration and materials that allows the possibilities of evaporation sources to be increased by providing them with improved performance compared to current sources. The advantageous aspects of the present invention are set out below. 1. Greater load capacity of evaporating material with respect to that of the classic helical filaments.
Tomamos como referencia de carga para un filamento helicoidal aquella con la cual no se producirán puentes importantes entre espiras ni habrá riesgo elevado de caída de la carga fundida. We take as a load reference for a helical filament that with which there will not be significant bridges between turns and there will be a high risk of falling molten load.
Al comparar las prestaciones de los dos tipos de filamentos (parrilla vs filamento helicoidal) en unidades fabricadas con dimensiones parecidas, podemos decir que: When comparing the benefits of the two types of filaments (grill vs. helical filament) in units manufactured with similar dimensions, we can say that:
- La masa de la carga que admite una parrilla es más de dos veces la de un filamento helicoidal de longitud y potencia eléctrica semejantes. - The mass of the load supported by a grill is more than twice that of a helical filament of similar length and electrical power.
- En términos relativos de masa de evaporante por unidad de masa del metal resistivo que constituye la fuente de evaporación, encontramos también un aumento en al menos un factor 2 de ese cociente para las parrillas frente a los filamentos helicoidales. Se obtiene así una característica mejorada para las parrillas en los términos mencionados anteriormente respecto de la Influencia de la limitación de carga en el coste de la fuente de evaporación. - In relative terms of evaporator mass per unit mass of the resistive metal that constitutes the evaporation source, we also found an increase in at least a factor 2 of this ratio for the grids versus the helical filaments. An improved characteristic for the grills is thus obtained in the terms mentioned above with respect to the influence of the load limitation on the cost of the evaporation source.
2. Mayor eficacia en la emisión de la nueva fuente en la dirección cenital a la fuente. 2. Greater efficiency in the emission of the new source in the zenith direction to the source.
La diferencia a favor de la nueva fuente, denominada parrilla, radica en que su emisión en la dirección cenital a la fuente, es decir, en la dirección perpendicular al plano de los hilos por su centro, es superior a la emisión de los filamentos helicoidales en un porcentaje que varía entre un 30% y un 60% por unidad de masa evaporada. La emisión de la nueva fuente mantiene la misma posibilidad de los filamentos helicoidales de evaporar sobre sustratos colocado tanto por encima como por debajo del filamento. The difference in favor of the new source, called the grill, is that its emission in the zenith direction to the source, that is, in the direction perpendicular to the plane of the threads through its center, is greater than the emission of the helical filaments in a percentage that varies between 30% and 60% per unit of evaporated mass. Emission from the new source maintains the same possibility for helical filaments to evaporate on substrates placed both above and below the filament.
3. Simplificación del proceso de fabricación. 3. Simplification of the manufacturing process.
La geometría sencilla de las nuevas fuentes: supone una simplificación del proceso de producción, una reducción del material resistivo necesario y/o una reducción del tiempo de ejecución de la fuente, todo lo cual puede significar una reducción en los costes de fabricación de la nueva fuente. 4. Fiabilidad y sencillez en la colocación de la carga del evaporante. The simple geometry of the new sources: it means a simplification of the production process, a reduction in the necessary resistive material and / or a reduction in the execution time of the source, all of which can mean a reduction in the manufacturing costs of the new source. 4. Reliability and simplicity in the placement of the evaporator charge.
La parrilla presenta, en su parte más baja, una superficie de orientación cercana a la horizontal para hacer descansar el evaporante, que es más extensa y compacta que la de los filamentos helicoidales de dimensiones semejantes. Por ello la carga se coloca fácilmente en su posición de uso y la posibilidad de caída de la carga, tanto en su colocación como durante el proceso de fusión se reducen notablemente. Se consigue así una manipulación más sencilla y segura durante esta fase del proceso de evaporación de materiales. The grill has, at its lowest part, an orientation surface close to horizontal to rest the evaporator, which is more extensive and compact than that of helical filaments of similar dimensions. Therefore, the load is easily placed in its position of use and the possibility of the load falling, both in its placement and during the fusion process, is greatly reduced. This makes easier and safer handling during this phase of the material evaporation process.
5. Facilidad en la regulación de la temperatura de evaporación de las nuevas fuentes. 5. Ease in regulating the evaporation temperature of new sources.
Las parrillas del nuevo diseño mantienen la facilidad de regulación de la temperatura de trabajo de las fuentes resistivas, operación que se realiza mediante el control de la tensión e Intensidad eléctricas aplicadas. Este objetivo se logra sin dificultad con las fuentes de alimentación habituales para las fuentes de evaporación resistivas. The new design grills maintain the ease of regulating the working temperature of resistive sources, an operation that is performed by controlling the applied electrical voltage and current. This objective is easily achieved with the usual power supplies for resistive evaporative sources.
6. Diseño escalable de la fuente de evaporación que se propone. 6. Scalable design of the proposed evaporation source.
El diseño de las parrillas propuestas es totalmente escalable. Esto permite adaptar fácilmente sus dimensiones a las dimensiones de cualquier cámara de vacío en la que se van a Instalar y/o al espesor de las láminas delgadas que se pretende obtener. The design of the proposed grills is fully scalable. This allows its dimensions to be easily adapted to the dimensions of any vacuum chamber in which they are to be installed and / or to the thickness of the thin sheets to be obtained.
7. Compatibilidad de la fuente de evaporación que se propone con procesos en ultra alto vacío (UHV). 7. Compatibility of the proposed evaporation source with ultra high vacuum (UHV) processes.
Las parrillas del nuevo diseño aquí presentadas, al Igual que las fuentes de evaporación convencionales, tales como los filamentos y navecillas, son totalmente adecuadas para la realización de deposiciones de una amplia gama de materiales tanto en alto vacío como en ultra alto vacío UHV. The new design grills presented here, as well as conventional evaporation sources, such as filaments and boats, are totally suitable for the deposition of a wide range of materials in both high vacuum and ultra high vacuum UHV.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la Invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the Invention, according to an example preferred practical implementation thereof, is accompanied as an integral part of said description, a set of drawings in which, by way of illustration and not limitation, the following has been represented:
Figura 1.- Muestra un filamento helicoidal de los comúnmente empleados para fuentes térmicas según el estado de la técnica. Figure 1.- Shows a helical filament commonly used for thermal sources according to the state of the art.
Figura 2.- Muestra un ejemplo de una parrilla recta de acuerdo con una realización preferente de la presente invención, formada por nueve hilos de wolframio de 1 mm de diámetro y 85 mm de longitud, y cargada con 2 gramos de aluminio prefondido. Figure 2.- Shows an example of a straight grill in accordance with a preferred embodiment of the present invention, formed by nine tungsten strands 1 mm in diameter and 85 mm in length, and loaded with 2 grams of pre-shaped aluminum.
Figura 3.- Muestra un dibujo esquemático de una parrilla curvada en la que se aprecian las dimensiones de longitud (L), vano (V) y desnivel (R). Figure 3.- Shows a schematic drawing of a curved grill in which the dimensions of length (L), span (V) and unevenness (R) can be seen.
Figura 4.- Muestra un ejemplo de una parrilla curvada de acuerdo con otra realización preferente de la presente Invención, formada por nueve hilos de wolframio de 1 mm de diámetro, y una longitud de 96 mm, cargada con aluminio parcialmente evaporado, mostrando acumulación preferente de la carga de aluminio en la zona inferior. Factor de forma FF = 0,15. Figure 4.- Shows an example of a curved grill according to another preferred embodiment of the present invention, formed by nine tungsten wires of 1 mm diameter, and a length of 96 mm, loaded with partially evaporated aluminum, showing preferential accumulation. of the aluminum load in the lower area. Form factor FF = 0.15.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
Seguidamente se ofrece, con ayuda de las figuras 1-4 adjuntas antes mencionadas, una descripción detallada de una realización preferente de la presente invención. La invención se refiere a una fuente térmica de tipo resistivo, para depositar láminas de material, por medio de vaporación en vacío. A detailed description of a preferred embodiment of the present invention is given below with the aid of the attached aforementioned Figures 1-4. The invention relates to a thermal source of the resistive type, for depositing sheets of material, by means of vacuum vaporization.
La fuente comprende una parrilla (10, 11) formada por un conjunto de hilos (12) de metal refractarlo que están yuxtapuestos uno al lado de otro en paralelo. Los hilos (12) sirven para soportar una cantidad de material evaporante (13) fundido destinado a ser evaporado en vacío para formar un depósito en forma de lámina delgada. The source comprises a grill (10, 11) formed by a set of metal wires (12) to refract it that are juxtaposed side by side in parallel. The threads (12) serve to support a quantity of molten evaporating material (13) destined to be evaporated in vacuum to form a deposit in the form of a thin sheet.
La fuente de evaporación comprende adicionalmente dos caequillos de conexión (14), localizados en los dos extremos de los hilos (12) para mantener unidos todos los hilos (12) entre sí. Los caequillos de conexión (14) facilitan también la conexión eléctrica del conjunto de los hilos (12) con una fuente de electricidad, para permitir que circule una corriente eléctrica por los hilos (12) y caliente dichos hilos (12) con el fin de evaporar el material evaporante (13). Preferentemente, los casquillos de conexión (14) envuelven el conjunto de hilos (12) en cada uno de los dos extremos de los hilos (12). Los casquillos de conexión (14) están fabricados preferentemente de material o materiales metálicos, así como preferentemente presentan carácter moldeable, de punto de fusión suficientemente alto y de presión de vapor suficientemente baja, tal como cobre, molibdeno o tántalo, entre otros. Asimismo, los casquillos de conexión (14) pueden estar configurados a modo de chapas. The evaporation source additionally comprises two connection bushes (14), located at the two ends of the wires (12) to hold all the wires (12) together. The connection bushings (14) also facilitate the electrical connection of the assembly of the wires (12) with an electricity source, to allow an electric current to flow through the wires (12) and heat said wires (12) in order to evaporate the evaporating material (13). Preferably, the connecting sleeves (14) wrap the set of wires (12) at each of the two ends of the wires (12). The connection sleeves (14) are preferably made of metallic material or materials, as well as preferably have a moldable character, a sufficiently high melting point and a sufficiently low vapor pressure, such as copper, molybdenum or tantalum, among others. Likewise, the connection bushings (14) can be configured as plates.
Para facilitar mantener los hilos unidos por medio del casquillo de conexión y la mordaza de apriete, así como para facilitar que por cada hilo circule una misma intensidad de corriente, se prefiere que todos los hilos de una misma parrilla presenten un mismo diámetro. In order to facilitate keeping the wires together by means of the connection bushing and the clamping jaw, as well as to facilitate the circulation of the same current intensity through each wire, it is preferred that all the wires of the same grill have the same diameter.
Asimismo, se prefiere que cada hilo se encuentre en contacto con el hilo o los hilos que están en posición contigua, para facilitar la unión por medio de los casquillos de conexión. Also, it is preferred that each wire is in contact with the wire or wires that are in an adjacent position, to facilitate the connection by means of the connection bushings.
Se describen seguidamente dos ejemplos preferentes de parrillas (10, 11) de acuerdo con la presente invención. Two preferred examples of grills (10, 11) according to the present invention are described below.
1. PARRILLAS RECTAS (10). 1. STRAIGHT GRILLS (10).
Las parrillas rectas (10), tal como se muestra en la figura 2, están formadas por un conjunto de hilos (12) rectos. En consecuencia, las parrillas rectas (10) muestran una configuración plana. Las parrillas rectas (10) preferentemente se emplean cuando está previsto que en el proceso de evaporación se vaya a consumir toda la cantidad de material evaporante (13) cargada sobre los hilos (12). Las parrillas rectas (10) se identifican por el número de hilos (12), el diámetro de hilo (12) y la longitud de los hilosThe straight grills (10), as shown in figure 2, are formed by a set of straight threads (12). Consequently, the straight racks (10) show a flat configuration. The straight grates (10) are preferably used when it is foreseen that in the evaporation process the entire quantity of evaporating material (13) loaded on the threads (12) will be consumed. The straight racks (10) are identified by the number of threads (12), the diameter of the thread (12) and the length of the threads
(12). (12).
2. PARRILLAS CURVADAS (11) Las parrillas curvadas (11) se han representado en las figuras 3 y 4. Las parrillas curvadas (11) se pueden formar a partir de una parrilla recta (10) cuando el conjunto de hilos (12) se curva al mismo tiempo que lo hace el plano que contiene los hilos (12), de tal manera que los hilos (12) siguen manteniéndose yuxtapuestos y pasan a estar contenidos en la nueva superficie curvada. De manera preferente, los extremos de los hilos (12), envueltos en los casquillos de conexión (14), se mantienen rectos, situados en el plano original de la parrilla. En el resto de su longitud, los hilos (12) están preferentemente curvados, aunque también pueden tener algún tramo recto adicional. La porción curvada se sitúa con la concavidad hacia arriba, de modo que se forma una diferencia de nivel, también denominada“altura” (R) entre el plano de los extremos y la parte de los hilos (12) que ocupa el nivel más bajo, también denominado parte Inferior (15). El material evaporante (13) depositado en los hilos (12) queda confinado, por efecto de la gravedad, en la parte Inferior (15) de los hilos (12) de la parrilla curvada (11). La Identificación de una parrilla curvada (11) puede hacerse, además de Indicando el número de hilos (12), su diámetro, y su longitud, mediante un“factor de forma" (FF) que se obtiene al dividir la altura R por la distancia horizontal existente entre los puntos más Internos de los extremos, es decir, la longitud, en proyección horizontal, de la parte curvada, denominada“vano” (V). De este modo, FF = R / V 2. CURVED GRILLS (11) The curved racks (11) are shown in Figures 3 and 4. The curved racks (11) can be formed from a straight grill (10) when the set of wires (12) curves at the same time as it does. the plane containing the threads (12), in such a way that the threads (12) continue to remain juxtaposed and become contained in the new curved surface. Preferably, the ends of the wires (12), wrapped in the connection sleeves (14), are kept straight, located in the original plane of the grill. In the rest of its length, the threads (12) are preferably curved, although they can also have some additional straight section. The curved portion is placed with the concavity up, so that a level difference is formed, also called "height" (R) between the plane of the ends and the part of the threads (12) that occupies the lowest level , also called Bottom (15). The evaporating material (13) deposited in the threads (12) is confined, by the effect of gravity, in the Lower part (15) of the threads (12) of the curved grill (11). The Identification of a curved grill (11) can be done, in addition to indicating the number of threads (12), its diameter, and its length, by means of a "form factor" (FF) that is obtained by dividing the height R by the horizontal distance between the innermost points of the ends, that is, the length, in horizontal projection, of the curved part, called the "span" (V). Thus, FF = R / V
La parrilla curvada (11) tiene mejor aplicación cuando la masa de material evaporante (13) cargada en los hilos (12) va a ser utilizada en varios procesos sucesivos que Implican calentamiento y enfriamiento de los hilos (12). En particular, en el caso de parrillas curvadas (11), mediante la acción de la gravedad, se mejora el confinamiento del material evaporante (13) en la zona Inferior de la parrilla curvada (11), contribuyendo así a un mejor aprovechamiento de la carga de material evaporante (13). En efecto, los materiales evaporantes (13), una vez fundidos, migran cuando se callentan, por lo que, en parrillas rectas (10), parte del material evaporante (13) puede desplazarse hacia los extremos, que están más fríos, con lo que dicho material evaporante (13) queda Inhabilitado para evaporarse al no alcanzar una temperatura suficiente. Por el contrario, con las parrillas curvadas (11), al concentrarse el material evaporante (13) fundido en la parte Inferior (15) de la parrilla curvada (11), mejora el aprovechamiento del material evaporante (13), Incrementándose en consecuencia la eficiencia de la fuente térmica. Se han llevado a cabo ensayos de laboratorio empleando parrillas (10, 11) fabricadas con distinto número de hilos (12), diámetros de hilo, longitudes y desnivel (R). Por ejemplo, la figura 2 muestra una parrilla recta con 9 hilos (12) de wolframio de 1 mm de diámetro y 85 mm de longitud, cargada con 2 gramos de aluminio prefundido como material evaporante (13). Otro ejemplo, no representado, se refiere a una parrilla recta (10) con 8 hilos (12) de wolframio de 0,7 mm de diámetro y 60 mm de longitud. Asimismo, la figura 4 muestra una parrilla curvada (11), con 9 hilos (12) de wolframio de 1 mm de diámetro, y una longitud de 96 mm, cargada con aluminio parcialmente evaporado, como material evaporante (13), mostrando acumulación de la carga de material evaporante (13) en la zona inferior (15). Otros ejemplos no representados, se refieren respectivamente a parrillas curvadas (11) con: a) siete hilos (12) de wolframio de 0,7 mm de diámetro y longitud de 70 mmm cargada con 1 g de aluminio prefundido y parcialmente evaporado; b) nueve hilos (12) de wolframio de 1 mm de diámetro y 107 mm de longitud. The curved grill (11) has better application when the mass of evaporating material (13) loaded on the threads (12) is going to be used in several successive processes that involve heating and cooling of the threads (12). In particular, in the case of curved grills (11), by means of the action of gravity, the confinement of the evaporating material (13) in the Lower area of the curved grill (11) is improved, thus contributing to a better use of the charge of evaporating material (13). In effect, the evaporating materials (13), once melted, migrate when they are thrown, so that, on straight grills (10), part of the evaporating material (13) can move towards the ends, which are colder, with which that said evaporating material (13) is disabled to evaporate when it does not reach a sufficient temperature. On the contrary, with the curved grills (11), by concentrating the melted evaporating material (13) in the Lower part (15) of the curved grill (11), the use of the evaporating material (13) improves, consequently increasing the heat source efficiency. Laboratory tests have been carried out using grills (10, 11) made with different numbers of threads (12), thread diameters, lengths and unevenness (R). For example, Figure 2 shows a straight grill with 9 threads (12) of tungsten of 1 mm in diameter and 85 mm in length, loaded with 2 grams of pre-cast aluminum as evaporating material (13). Another example, not shown, refers to a straight grill (10) with 8 threads (12) of tungsten of 0.7 mm in diameter and 60 mm in length. Likewise, Figure 4 shows a curved grill (11), with 9 threads (12) of tungsten of 1 mm in diameter, and a length of 96 mm, loaded with partially evaporated aluminum, as evaporating material (13), showing accumulation of the load of evaporating material (13) in the lower area (15). Other examples not represented, refer respectively to curved grills (11) with: a) seven tungsten wires (12) of 0.7 mm diameter and 70 mmm length loaded with 1 g of pre-cast and partially evaporated aluminum; b) nine tungsten wires (12) 1 mm in diameter and 107 mm in length.
Adicionalmente, los ensayos también han contemplado diversas configuraciones de parrilla (10, 11), variando entre formas asimilables a una V con vértice redondeado y otras más próximas a un arco de circunferencia. Se han contemplado factores de forma (FF) de entre 0,15 y 0,40. El uso de parrillas curvadas (11) con factores de forma (FF) dentro de este intervalo ha mostrado una eficiencia similar en el efecto confinador del material evaporante (13) fundido, que es lo que se busca en las parrillas curvadas (11). El intervalo indicado para el factor de forma (FF) debe considerarse como una muestra de realizaciones satisfactorias y, en ningún caso, como límites absolutos. La elección de un factor de forma (FF) concreto a la hora de diseñar una parrilla curvada (11) para un proceso determinado debe tener presente algunas consideraciones básicas aparte de los parámetros eléctricos y sus fuentes de alimentación. En particular, un factor de forma (FF) elevado ayudará a un mejor confinamiento del material evaporante (13) fundido en la zona inferior de la parrilla curvada (11). No obstante, si la carga de material evaporante (13) es elevada, un factor de forma (FF) elevado puede implicar una excesiva acumulación de material evaporante (13) fundido en la zona inferior (15), con el consiguiente riesgo de que pueda desprenderse de la parrilla curvada (11) una parte del material evaporante (13) en forma de gran gota. La combinación de diámetro del hilo (12) del metal refractario usado, el número de hilos (12) configurando la parrilla (10,11), y la longitud de la parrilla (10, 11), permiten fabricar una considerable variedad de parrillas (10, 11) con geometrías adaptadas a un amplio número de aplicaciones. Additionally, the tests have also contemplated various grid configurations (10, 11), varying between shapes that can be assimilated to a V with a rounded corner and others closer to an arc of circumference. Form factors (FF) of between 0.15 and 0.40 have been considered. The use of curved grids (11) with form factors (FF) within this range has shown similar efficiency in the confining effect of the melted evaporating material (13), which is what is sought in curved grids (11). The interval indicated for the form factor (FF) should be considered as a sample of satisfactory achievements and, in no case, as absolute limits. The choice of a specific form factor (FF) when designing a curved grill (11) for a given process must take into account some basic considerations apart from the electrical parameters and their power supplies. In particular, a high form factor (FF) will help to better confine the molten evaporating material (13) in the lower area of the curved grill (11). However, if the load of evaporating material (13) is high, a high form factor (FF) may imply an excessive accumulation of evaporating material (13) melted in the lower area (15), with the consequent risk that it may a part of the evaporating material (13) in the form of a large drop come off the curved grill (11). The combination of wire diameter (12) of the refractory metal used, the number of wires (12) configuring the grill (10,11), and the length of the grill (10, 11), allow to manufacture a considerable variety of grills ( 10, 11) with geometries adapted to a wide number of applications.
Concretaremos esta posibilidad ejemplificándola en dos tipos diferentes de parrillas (10, 11) que se han fabricado y empleado en los ensayos de laboratorio. We will make this possibility concrete by exemplifying it in two different types of grills (10, 11) that have been manufactured and used in laboratory tests.
Parrilla 1. Grill 1.
Formada por 7 hilos (12) de wolframio de 0,7 mm de diámetro y longitudes de 60 y 70 mm. Se han fabricado en las dos modalidades de parrilla recta (10) y parrilla curvada (11). Se ha empleado con un voltaje de 1,30 voltios, y una intensidad de comente de aproximadamente 180 amperios, para alcanzar una temperatura de 1200-1300°C, con una carga de material evaporante (13) de aluminio para evaporación de entre 0,6 y 0,8 gramos. Formed by 7 tungsten wires (12) of 0.7 mm diameter and lengths of 60 and 70 mm. They have been manufactured in the two modalities of straight grill (10) and curved grill (11). It has been used with a voltage of 1.30 volts, and a current intensity of approximately 180 amps, to reach a temperature of 1200-1300 ° C, with a load of evaporating material (13) of aluminum for evaporation of between 0, 6 and 0.8 grams.
Parrilla 2. Grill 2.
Formada por 9 hilos (12) de wolframio de 1 mm de diámetro y longitudes de 85 mm y 100 mm. Se han fabricado también en las dos modalidades de parrilla recta (10) y parrilla curvada (11). Se ha empleado con un voltaje de 0,8 a 0,9 voltios, y una intensidad de corriente igual o inferior a 340 amperios para alcanzar una temperatura de 1200-1300°C, con una carga de material evaporante (13) de aluminio para evaporación igual o inferior a 2 gramos. Formed by 9 threads (12) of tungsten of 1 mm in diameter and lengths of 85 mm and 100 mm. They have also been manufactured in the two modalities of straight grill (10) and curved grill (11). It has been used with a voltage of 0.8 to 0.9 volts, and a current intensity equal to or less than 340 amps to reach a temperature of 1200-1300 ° C, with a load of evaporating material (13) of aluminum to evaporation equal to or less than 2 grams.

Claims

REIVINDICACIONES
1.- Fuente térmica de tipo resistivo para deposición de láminas delgadas mediante evaporación en vacío, caracterizada por que comprende: 1.- Resistive type thermal source for deposition of thin sheets by vacuum evaporation, characterized by comprising:
- una parrilla (10, 11) que comprende una pluralidad de hilos (12) de metal refractario que están yuxtapuestos uno al lado de otro en paralelo, estando la parrilla (10, 11) destinada a soportar una cantidad de un material evaporante (13) fundido, para ser evaporado en vacío para formar un depósito en forma de lámina delgada, donde los hilos (12) comprenden dos extremos; y - a grill (10, 11) comprising a plurality of refractory metal threads (12) that are juxtaposed side by side in parallel, the grill (10, 11) being intended to support a quantity of an evaporating material (13 ) melted, to be evaporated in vacuum to form a deposit in the form of a thin sheet, where the threads (12) comprise two ends; and
- dos caequillos de conexión (14), localizados en los extremos, y que mantienen unidos todos los hilos (12) entre sí, para conectar los hilos (12) con una fuente de electricidad. - two connection bushes (14), located at the ends, and that hold all the wires (12) together, to connect the wires (12) with an electricity source.
2.- Fuente térmica, de acuerdo con la reivindicación 1, caracterizada por que la parrilla (10, 11) es una parrilla recta (10) en la que los hilos (12) son rectos, según una configuración plana. 2. Thermal source, according to claim 1, characterized in that the grill (10, 11) is a straight grill (10) in which the threads (12) are straight, according to a flat configuration.
3.- Fuente térmica, de acuerdo con la reivindicación 1, caracterizada por que la parrilla (10, 11) es una parrilla curvada (11), en la que el conjunto de hilos (12) comprende una parte curvada hacia abajo, existiendo una diferencia de nivel (R) entre los extremos y una parte Inferior (15) que ocupa el nivel más bajo, para confinar el material evaporante (13), por efecto de la gravedad, en la parte Inferior (15). 3. Thermal source, according to claim 1, characterized in that the grill (10, 11) is a curved grill (11), in which the set of wires (12) comprises a downward curved part, there being a level difference (R) between the ends and a Lower part (15) that occupies the lowest level, to confine the evaporating material (13), due to the effect of gravity, in the Lower part (15).
4.- Fuente térmica, de acuerdo con la reivindicación 3, caracterizada por que los extremos son rectos. 4.- Thermal source, according to claim 3, characterized in that the ends are straight.
5.- Fuente térmica, de acuerdo con una cualquiera de las reivindicaciones 1-4, caracterizada por que los caequillos de conexión (14) envuelven los hilos (12) en los extremos. 5. Thermal source, according to any one of claims 1-4, characterized in that the connection bushes (14) wrap the wires (12) at the ends.
6.- Fuente térmica, de acuerdo con una cualquiera de las reivindicaciones 1 y 5, caracterizada por que los caequillos de conexión (14) están configurados a modo de chapas. 6. Thermal source, according to any one of claims 1 and 5, characterized in that the connection bushes (14) are configured as sheets.
7.- Fuente térmica, de acuerdo con una cualquiera de las reivindicaciones 1-6, caracterizada por que cada hilo (12) se encuentra en contacto con el hilo (12) o los hilos (12) que le son adyacentes. 7. Thermal source, according to any one of claims 1-6, characterized in that each wire (12) is in contact with the wire (12) or the wires (12) that are adjacent to it.
8.- Fuente térmica, de acuerdo con una cualquiera de las reivindicaciones 1-7, caracterizada por que todos los hilos (12) presentan un mismo diámetro. 8. Thermal source, according to any one of claims 1-7, characterized in that all the wires (12) have the same diameter.
PCT/ES2019/070896 2018-12-31 2019-12-30 Resistive heat source for thin film deposition by means of vacuum evaporation WO2020141244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201831305A ES2770131B2 (en) 2018-12-31 2018-12-31 RESISTIVE TYPE THERMAL SOURCE FOR DEPOSITION OF THIN SHEETS THROUGH VACUUM EVAPORATION
ESP201831305 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020141244A1 true WO2020141244A1 (en) 2020-07-09

Family

ID=71121421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070896 WO2020141244A1 (en) 2018-12-31 2019-12-30 Resistive heat source for thin film deposition by means of vacuum evaporation

Country Status (2)

Country Link
ES (1) ES2770131B2 (en)
WO (1) WO2020141244A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB643494A (en) * 1946-09-26 1950-09-20 Polytechnic Inst Brooklyn Improvements relating to the formation of metallic films by thermal evaporation
JPH0647356U (en) * 1992-12-02 1994-06-28 三菱樹脂株式会社 Heating filament for vacuum deposition
KR20030080363A (en) * 2002-04-08 2003-10-17 주식회사 아벡테크 The boat for high speed evaporation and the fabrication method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB643494A (en) * 1946-09-26 1950-09-20 Polytechnic Inst Brooklyn Improvements relating to the formation of metallic films by thermal evaporation
JPH0647356U (en) * 1992-12-02 1994-06-28 三菱樹脂株式会社 Heating filament for vacuum deposition
KR20030080363A (en) * 2002-04-08 2003-10-17 주식회사 아벡테크 The boat for high speed evaporation and the fabrication method for the same

Also Published As

Publication number Publication date
ES2770131B2 (en) 2020-11-10
ES2770131A1 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
US6881271B2 (en) Fixing member for evaporation apparatus
US8336489B2 (en) Thermal evaporation apparatus, use and method of depositing a material
JP4711882B2 (en) Evaporator
CN101960553B (en) Ion source
BRPI0820495B1 (en) spark plug of an internal combustion engine
JP2004353083A (en) Evaporation apparatus
ES2770131B2 (en) RESISTIVE TYPE THERMAL SOURCE FOR DEPOSITION OF THIN SHEETS THROUGH VACUUM EVAPORATION
US3514575A (en) Metal-evaporating source
KR100572640B1 (en) Evaporation apparatus
KR100831532B1 (en) Light Source Device
KR100315982B1 (en) Side instantaneous evaporator
WO2019208568A1 (en) Light irradiation-type heating device and filament lamp
JP2004353085A (en) Evaporation apparatus
KR20020021937A (en) Effusion Cell of Resistance Heating Type
US4767684A (en) Method of chargeability improvement and reduced corrosion for sodium-sulfur cells
US6229956B1 (en) Flash evaporator vessel
KR200333995Y1 (en) Boride source and its use
CN106191786A (en) Tungsten filament adds heater
US6509570B1 (en) Gallium ion source
JP5329302B2 (en) Heating apparatus and vapor deposition method
WO2021024837A1 (en) Temperature sensor and heater unit
JPH02225659A (en) Vacuum depositing device
JP2003096558A (en) Evaporation boat
WO2008016247A1 (en) Linear deposition sources for deposition processes
WO2000046418A1 (en) Device for coating substrates with a vaporized material under low pressure or in a vacuum using a vaporized material source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906777

Country of ref document: EP

Kind code of ref document: A1