WO2020140443A1 - 终端定位方法及装置、存储介质 - Google Patents

终端定位方法及装置、存储介质 Download PDF

Info

Publication number
WO2020140443A1
WO2020140443A1 PCT/CN2019/101756 CN2019101756W WO2020140443A1 WO 2020140443 A1 WO2020140443 A1 WO 2020140443A1 CN 2019101756 W CN2019101756 W CN 2019101756W WO 2020140443 A1 WO2020140443 A1 WO 2020140443A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
communication node
positioning
reflector
Prior art date
Application number
PCT/CN2019/101756
Other languages
English (en)
French (fr)
Inventor
毕程
陈诗军
徐万夫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/254,983 priority Critical patent/US11435432B2/en
Priority to EP19907517.7A priority patent/EP3793277B1/en
Publication of WO2020140443A1 publication Critical patent/WO2020140443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of communications.
  • GNSS Global Navigation Satellite System
  • the embodiments of the present disclosure provide a terminal positioning method and device, and a storage medium.
  • a terminal positioning method including: determining that there is no line-of-sight (Line of OfSight, LOS for short) path between a first communication node and a terminal, wherein the first communication node and the terminal There is a reflector between the terminals; the first position information of the reflector is determined according to the first beam of the first communication node, wherein the first beam is among multiple beams of the first communication node, The beam with the strongest signal detected by the terminal; determining the position of the terminal according to the first position information.
  • Line of OfSight Line of OfSight
  • a terminal positioning apparatus including: a first determining module configured to determine that there is no line-of-sight path between a first communication node and a terminal, wherein the first communication node is There is a reflector between the terminals; a second determination module configured to determine the first position information of the reflector according to the first beam of the first communication node, wherein the first beam is the first communication Among the multiple beams of the node, the beam with the strongest signal detected by the terminal; the third determining module is configured to determine the position of the terminal according to the first position information.
  • a storage medium in which a computer program is stored, wherein the computer program is set to execute any one of the above terminal positioning methods during runtime.
  • FIG. 1 is a flowchart of a terminal positioning method according to an embodiment of the present disclosure.
  • FIG. 2 is a structural block diagram of a terminal positioning apparatus according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a line-of-sight diameter according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the absence of line-of-sight diameter according to an embodiment of the present disclosure.
  • 5G uses new coding methods, beam forming, large-scale antenna arrays, millimeter wave spectrum, etc. from key technologies. It has a large bandwidth, which is conducive to parameter estimation, supports high-precision distance measurement, and introduces large-scale antenna technology. It is equipped with 128 antenna units, which provides the basis for high-precision angle measurement. 5G will achieve dense networking, the density of base stations will be significantly improved, and user signals can be received by multiple base stations at the same time, which will help multiple base stations cooperate to achieve high-precision positioning.
  • FIG. 1 is a flowchart of a terminal positioning method according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes step S102, step S104, and step S106.
  • step S102 it is determined that there is no line-of-sight path (LOS path) between the first communication node and the terminal, where a reflector exists between the first communication node and the terminal.
  • LOS path line-of-sight path
  • Step S104 Determine the first position information of the reflector according to the first beam of the first communication node, where the first beam is a plurality of beams of the first communication node, and the terminal detects Beam with the strongest signal.
  • Step S106 Determine the location of the terminal according to the first location information.
  • the first position information of the reflector between the first communication node and the terminal is determined according to the first beam of the first communication node, where the first beam is a plurality of the first communication node Among the beams, the beam with the strongest signal detected by the terminal; the position of the terminal is determined according to the first position information, and the above technical solution is adopted to at least solve the positioning error caused by NLOS that cannot be corrected in the related art, etc.
  • the problem further corrected the positioning error caused by NLOS and improved the terminal positioning accuracy.
  • the first communication node in the embodiment of the present disclosure refers to a node that sends a positioning reference signal.
  • the terminal accesses multiple communication nodes, the multiple communication nodes include the first communication node, and before the determining that there is no line-of-sight path between the first communication node and the terminal, the method further includes: Each of the plurality of communication nodes determines whether there is a line-of-sight path between the terminal and each of the communication nodes according to the angle between the beam direction of each of the communication nodes and the first direction
  • the beam direction of each communication node is the beam direction of the beam with the strongest signal detected by the terminal among the multiple beams of each communication node, and the first direction is the communication between the terminal and the each The connection direction between nodes.
  • the determining whether there is a line-of-sight path between the terminal and each of the communication nodes according to the angle between the beam direction of each of the communication nodes and the first direction can be achieved by the following technique Solution implementation: when the included angle is less than a preset threshold, it is determined that there is a line of sight between the terminal and each of the communication nodes; when the included angle is greater than or equal to a preset threshold, the terminal and the There is no line-of-sight path for each communication node.
  • the preset threshold value is configured by the positioning server according to the requirements of the positioning service; the method further includes adding the preset threshold value to auxiliary information, and passing the auxiliary information through positioning The interface between the server and the terminal (UE) is sent to the terminal.
  • Step S104 can be implemented in various ways.
  • the following technical solution may be used: obtaining the following parameter information: the exit angle information (Angle Of Of Departure, AOD for short) or ZOD of the first beam Information (Zenith Of Departure, referred to as ZOD information); the first initial position of the terminal; time difference information; wherein, the time difference information includes: the beam of the first communication node where there is no line-of-sight path reaches the terminal of the terminal. The time difference between a time and the second time when the beam of the second communication node with the line-of-sight path reaches the terminal; the first position information of the reflector is determined according to the parameter information.
  • the exit angle information Angle Of Of Departure, AOD for short
  • ZOD information ZOD of the first beam Information
  • the AOD information or ZOD information is carried by: first carrying the AOD information or ZOD information in the information transmitted by the first communication node to the positioning server, for example, in the first
  • the OTDOA cell information in the interface between the communication node and the positioning server carries the AOD information or ZOD information; then the AOD information or ZOD information is carried in the auxiliary information sent by the positioning server to the terminal, for example, the auxiliary Information is added to the interface between the terminal and the positioning server; further, the AOD information or ZOD information is the angle between the first beam and the plane where the X-axis and Z-axis are in a unified three-dimensional coordinate system; in some implementations In the example, the X axis and Y axis of the three-dimensional coordinate system are perpendicular to each other and are parallel to the horizontal direction (such as the ground), and the Z axis is perpendicular to the ground. For example, the 0 point of the Z axis can be the location of the ground.
  • the first initial position of the terminal is obtained at least in the following manner: a positioning reference signal is sent in a beam polling mode to obtain the first initial position of the terminal.
  • the method further includes: using the first position according to time difference of arrival positioning (OTDOA) The information determines the second initial position of the terminal.
  • OTDA time difference of arrival positioning
  • the method further includes: according to the second initial position, The AOD information or ZOD information, and the time difference information determine the second position information of the reflector.
  • the method further includes: carrying the second position information in the auxiliary information through an interface between the positioning server and the terminal Send to the terminal.
  • the method further includes: receiving reflector position information reported by the terminal, wherein the reflector position information It is the position of the reflector corresponding to the first beam corresponding to the terminal (that is, the reflector reflecting the first beam) transmitted in the interface of the terminal and the positioning server during the reporting of the positioning information by the terminal.
  • Step S106 may be implemented by the following technical solution: determining the position of the terminal according to the first position information according to the arrival time difference positioning method, wherein the position of the reflector indicated by the first position information is used as the arrival time difference Positioning of a transmitting node.
  • An embodiment of the present disclosure also provides a terminal positioning device, which is configured to implement the method of the foregoing embodiment, and the description has not been repeated.
  • the term "module” is a combination of software and/or hardware that can realize a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 2 is a structural block diagram of a terminal positioning apparatus according to an embodiment of the present disclosure. As shown in FIG. 2, the apparatus includes a first determination module 20, a second determination module 22, and a third determination module 24.
  • the first determining module 20 is configured to determine that there is no line-of-sight path between the first communication node and the terminal, where a reflector exists between the first communication node and the terminal.
  • the second determining module 22 is configured to determine the first position information of the reflector according to the first beam of the first communication node, where the first beam is among multiple beams of the first communication node, The beam with the strongest signal detected by the terminal.
  • the third determining module 24 is configured to determine the location of the terminal according to the first location information.
  • the first position information of the reflector between the first communication node and the terminal is determined according to the first beam of the first communication node, where the first beam is a plurality of the first communication node Among the beams, the beam with the strongest signal detected by the terminal; the position of the terminal is determined according to the first position information, and the above technical solution is adopted to at least solve the positioning error caused by NLOS that cannot be corrected in the related art, etc.
  • the problem further corrected the positioning error caused by NLOS and improved the terminal positioning accuracy.
  • the second determination module 22 is further configured to: obtain the following parameter information: AOD information or ZOD information of the first beam; the first initial position of the terminal; time difference information; Wherein, the time difference information includes: a time difference between the first time when the beam of the first communication node without line-of-sight path reaches the terminal and the second time when the beam of the second communication node with line-of-sight path reaches the terminal ; Determine the first position information of the reflector according to the parameter information.
  • the AOD information or ZOD information is carried in one of the following ways: carried in the information transmitted by the first communication node to the positioning server, for example, in the interface between the first communication node and the positioning server
  • the OTDOA cell information carries the AOD information or ZOD information; it is carried in the auxiliary information sent by the positioning server to the terminal, for example, the auxiliary information is added to the interface between the terminal and the positioning server; further, the AOD
  • the information or ZOD information is the angle between the first beam and the plane where the X axis and the Z axis are in the unified three-dimensional coordinate system.
  • the first communication node in the embodiment of the present disclosure refers to a node that sends a positioning reference signal.
  • the terminal accesses a plurality of communication nodes, the plurality of communication nodes including the first communication node; the first determination module 20 is further configured for each communication node of the plurality of communication nodes, according to the The angle between the beam direction of each communication node and the first direction determines whether there is a line-of-sight path between the terminal and each communication node, where the beam direction of each communication node is that of each communication node Among multiple beams, the beam direction of the beam with the strongest signal detected by the terminal, and the first direction is the connection direction between the terminal and each communication node.
  • determining whether there is a line-of-sight path between the terminal and each communication node according to the angle between the beam direction of each communication node and the first direction can be achieved by the following technical solutions :
  • the first determining module 20 is further configured to determine that there is a line-of-sight diameter between the terminal and each communication node when the included angle is less than a preset threshold; when the included angle is greater than or equal to a preset threshold When it is determined that there is no line-of-sight path between the terminal and each of the communication nodes.
  • the preset threshold value is configured by the positioning server according to the requirements of the positioning service; the positioning server is further configured to add the preset threshold value to auxiliary information and add the auxiliary information Send to the terminal through the interface between the positioning server and the terminal.
  • the first determining module 20 is further configured to: send a positioning reference signal in a beam polling mode to obtain the first initial position of the terminal.
  • the third determining module 24 is further configured to determine the second initial position of the terminal using the first position information according to a time difference of arrival positioning method.
  • the third determining module 24 is further configured to determine the second position of the reflector according to the second initial position, the AOD information or ZOD information, and the time difference information information.
  • the third determining module 24 is further configured to: carry the second location information in the auxiliary information and send it to the terminal through the interface between the positioning server and the terminal.
  • the third determining module 24 is further configured to receive the reflector position information reported by the terminal, wherein the reflector position information is the process of reporting positioning information by the terminal, in The position of the reflector corresponding to the first beam corresponding to the terminal transmitted in the interface of the terminal and the positioning server.
  • the third determining module 24 is further configured to determine the location of the terminal according to the first location information according to a time difference of arrival positioning method, wherein the first location information is The position of the indicated reflector is used as the position of a transmitting node of the time difference of arrival positioning method.
  • An embodiment of the present disclosure provides a high-precision positioning method, including the following steps 1 to 8.
  • Step 1 Send a positioning reference signal (Positioning Reference Signals, abbreviated as PRS signal) in the form of beam polling, and record the beam number of the positioning reference signal sent by each communication node as 0-prsbeam max , which is transmitted to the positioning server information by the communication node Add the AOD/ZOD information of the PRS beam, and add the AOD/ZOD information of the PRS beam to the auxiliary information sent to the UE by the positioning server.
  • PRS signal Positioning Reference Signals
  • the AOD/ZOD information of the PRS beam is defined as the angle between the direction of the strongest transmitted beam energy and the plane where the X axis and the Z axis are located in a unified three-dimensional coordinate system.
  • the auxiliary information sent by the positioning server to the UE is added to the interface between the UE and the positioning server, and may be added to the OTDOA auxiliary information to be sent together with the OTDOA auxiliary information, or may be added in a New independent variable set.
  • the AOD/ZOD information of the PRS beam transmitted by the communication node to the positioning server is added to the OTDOA communication node information (OTDOA cell information) in the interface between the positioning server and the communication node.
  • Step 2 When the communication node sends the positioning reference signal in the beam polling mode, the initial basic OTDOA positioning is completed to obtain the UE's initial basic positioning result X U [1] (equivalent to the first initial position in the above embodiment) .
  • the UE side (UE-based mode) or the positioning server (UE-assisted mode), according to the AOD/ZOD information corresponding to the beam ID used by the UE for OTDOA positioning, the communication node (Signal transmitting node) geographic coordinate information, current OTDOA positioning result X U [k] (namely the terminal position at time k) to perform line-of-sight verification.
  • the communication node (Signal transmitting node) geographic coordinate information
  • current OTDOA positioning result X U [k] (namely the terminal position at time k) to perform line-of-sight verification.
  • the beam used by the OTDOA positioning is a beam selected by the UE among all received beams, for example, a beam with the strongest signal is selected.
  • the line-of-sight verification method is that if the beam detected by the UE of a communication node points in the geographical direction consistent with the current UE positioning result, it is considered that the communication node and the UE There is a line of sight.
  • that the pointing direction is consistent with the current UE positioning result means that the angle error between the connection direction of the UE and the corresponding communication node and the direction of the corresponding beam is within a threshold.
  • the threshold value is configured by the positioning server according to the positioning service requirements, and is sent as auxiliary information to the UE through the interface between the positioning server and the UE.
  • the geographical pointing direction of a communication node beam detected by the UE is inconsistent with the current positioning result of the UE, that is, the above angle error exceeds the threshold, it is considered that there is no apparent gap between the communication node and the UE Pitch.
  • the initial stage of the algorithm requires that the current position of the UE has at least a line-of-sight distance with a detected communication node, which is denoted as communication node n 0 .
  • Step 4 Substitute the updated position of the reflector, and use OTDOA to solve the new UE position X U [k+1] again.
  • the position of the reflector is substituted into the calculation as known information, and the reflector can be regarded as a transmitting node of OTDOA, which is a line-of-sight distance from the UE (the UE does not have In the case of switching the detected beam).
  • Step 5 Substitute the position obtained in Step 4 into Step 2 again and repeat.
  • the repetitive execution means substituting X U [k+1] and the AOD/ZOD information of the beam into the position of the reflector again.
  • Step 6 When the movement of the UE causes the strongest beam from a certain communication node detected by the UE to change, or the communication node changes, the above process is repeated.
  • Step 7 When the position calculation of the reflector occurs on the UE side (UE-based mode), the UE needs to transmit the reflection corresponding to the corresponding beam of the corresponding communication node calculated by itself on the interface between the UE and the positioning server during the reporting of the positioning information ⁇ Object location.
  • the positioning server stores the data, and as the data is updated, the position of the reflector corresponding to the beam of the corresponding communication node is continuously updated in conjunction with the positioning data.
  • Step 8 Calculating the position of the stable reflector can be sent as auxiliary information to the UE through the interface between the positioning server and the UE.
  • the OTDOA algorithm is used to calculate the positioning result, and the positioning reference signal is transmitted in a beam polling manner and has a beam ID, and the assumed reflector position is introduced.
  • the above technical solution can also use the downlink narrow beam to determine the line-of-sight diameter, and introduce the concept of AOD/ZOD information of the beam, use the characteristics of the narrow beam to estimate the position of the corresponding reflector, and further substitute the position of the reflector into the OTDOA algorithm.
  • the position of the UE is continuously iterated, in addition, the transmission process of configuration information and auxiliary information related to the technical solution of the embodiments of the present disclosure is added, and the positioning server adds functions of storage and continuous optimization of the position of the reflector.
  • the two-dimensional position of the UE is obtained, and the positioning service request outputs a position for 1 s.
  • the position of the UE can detect the PRS beam 6 signal of the base station (communication node) n 0 at most. Strong, the PRS beam 1 signal from the base station n 1 is the strongest, and the PRS beam 2 signal from the base station n 2 is the strongest.
  • the time difference between the signal from the other two base stations and the other two base stations to the UE is ⁇ 01 , ⁇ 02 .
  • the coordinates of the three base stations in the unified coordinate system are (x b0 , y b0 ), (x b1 , y b1 ), (x b2 , y b2 ), which can be considered that the z coordinates are all 0, according to their arrival
  • the time difference and the beam transmission time difference are used to solve the UE position X U [1] using the OTDOA algorithm.
  • the beam of the base station n 2 is NLOS (no line-of-sight), which is reflected by the reflector and reaches the UE, resulting in an inaccurate OTDOA positioning result.
  • the angle between the connection of X U [1] and n 1 and the beam 1 of n 1 ⁇ un1, 1 [k] is less than the set threshold ⁇ thresh It is considered that there is a line-of-sight path between n 1 and the UE at this time, and there is no need to solve for the reflector correction.
  • the line-of-sight path is checked in the same way.
  • X U [1] and n are checked. 2 and a connection beam angle ⁇ n 2 2 un2,2 [k] is greater than the set threshold value ⁇ thresh.
  • the relationship between the position of the AOD and a beam reflector n 2 2, the position is set reflector (x Rn2,2, x Rn2,2 tan ⁇ n2AOD, 2) [k].
  • the equation can be obtained by listing equations: Find the position of the reflector corresponding to beam 2 of the current base station n 2 Furthermore, the distance between the reflector and the base station can be obtained Get the average of all the distances obtained before the previous moment As the position of the reflector corresponding to the updated beam, the updated position of the reflector is used as a known quantity. Assuming that the beam only reflects this time, the next OTDOA positioning result calculation is performed.
  • the position of the reflector can be regarded as the position of a reflecting node, and the difference in arrival time from the base station n 0 After substitution, X U [k+1] can be calculated, where c is the speed of light.
  • An embodiment of the present disclosure takes the two-dimensional position of the UE as an example, and the positioning service request outputs a position for 1 s. As shown in FIG. 4, it is assumed that the position of the UE can detect the PRS beam 2 of the base station (communication node) n 0 The signal is the strongest, the PRS beam 5 signal from the base station n 1 is the strongest, and the PRS beam 2 signal from the base station n 2 is the strongest.
  • the time difference between the beams of the other base stations and the other two base stations is ⁇ 01 , ⁇ 02
  • the coordinates of the three base stations under the unified coordinate system are (x b0 , y b0 ), (x b1 , y b1 ), (x b2 , y b2 ), where the z coordinates are all 0, according to
  • the time difference between its arrival time and beam emission time is used to solve the UE position X U [1] using the OTDOA algorithm.
  • the positioning server can substitute the position of the reflector as a known quantity into the calculation.
  • An embodiment of the present disclosure further provides a storage medium, the storage medium includes a stored program, wherein the method according to any one of the above is executed when the above program runs.
  • the above-mentioned storage medium may be set to store program codes S1 to S3 for performing the following steps.
  • the above storage medium may include, but is not limited to: a USB flash drive, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), Various media that can store program codes, such as removable hard disks, magnetic disks, or optical disks.
  • modules or steps of the present disclosure can be implemented by a general-purpose computing device, they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices Above, optionally, they can be implemented with program code executable by the computing device, so that they can be stored in the storage device to be executed by the computing device, and in some cases, can be in a different order than here
  • the steps shown or described are performed, or they are made into individual integrated circuit modules respectively, or multiple modules or steps among them are made into a single integrated circuit module for implementation. In this way, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种终端定位方法及装置、存储介质,上述方法包括:确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物;根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;根据所述第一位置信息确定所述终端的位置。

Description

终端定位方法及装置、存储介质 技术领域
本公开实施例涉及但不限于通信领域。
背景技术
自release 9标准开始,定位被引入3GPP标准,定位参考信号(Positioning Reference Signals,简称为PRS)也被引入来实现下行定位,一种典型的方法是到达时间差定位法(Observed Time Difference Of Arrival,简称为OTDOA)定位,通常,接收节点需要测量从一个或者几个通信节点发射的下行信号,测量结果进一步会用来计算位置,非视距(Non-Line Of Sight,简称为NLOS)一直是OTDOA定位中一个非常重要的误差来源,始终无法有效解决这个问题。
随着时代的发展,来自各个产业的对定位服务的精度要求越来越高。基于全球导航卫星***(Global Navigation Satellites System,简称为GNSS)的信号由于自身缺陷,无法满足以室内场景为代表的接收不到卫星信号场景下的高精度定位要求,基于通信网的定位仍然有着不可替代的作用。
针对相关技术中,无法纠正由于NLOS带来的定位误差等问题,尚未提出有效的技术方案。
发明内容
本公开实施例提供了一种终端定位方法及装置、存储介质。
根据本公开的一个实施例,提供了一种终端定位方法,包括:确定第一通信节点与终端不存在视距(Line Of Sight,简称为LOS)径,其中,所述第一通信节点与所述终端之间存在反射物;根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;根据所述第一位置信息确定所述终端的位置。
根据本公开的另一个实施例,还提供了一种终端定位装置,包括:第一确定模块,配置为确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物;第二确定模块,配置为根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;第三确定模块,配置为根据所述第一位置信息确定所述终端的位置。
根据本公开的另一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行以上任一项终端定位方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为根据本公开实施例的终端定位方法的流程图。
图2是根据本公开实施例的终端定位装置的结构框图。
图3是根据本公开实施例的存在视距径示意图。
图4是根据本公开实施例的不存在视距径示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
5G从关键技术上使用新的编码方式、波束赋形、大规模天线阵列、毫米波频谱等,具有大带宽,有利于参数估计,为高精度距离测量提供支持,引入大规模天线技术,基站可装配128个天线单元,为 高精度角度测量提供基础。5G将实现密集组网,基站密度显著提高,用户信号可被多个基站同时接收到,这将有利于多基站协作实现高精度定位。
当前标准SI进度,几乎所有参与者都认为应该支持波束轮询的发送定位参考信号(复用已有信号)且研究上下行角度给定位带来的增益,在5G中,由于具有窄波束和高精度的角度测量方式,这就给识别NLOS提供了可能,本公开以下实施例为这种实现方式提供了以下技术方案。
本公开的一实施例提供了一种终端定位方法,图1为根据本公开实施例的终端定位方法的流程图,如图1所示,包括步骤S102、步骤S104、步骤S106。
步骤S102,确定第一通信节点与终端不存在视距径(LOS径),其中,所述第一通信节点与所述终端之间存在反射物。
步骤S104,根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束。
步骤S106,根据所述第一位置信息确定所述终端的位置。
通过上述步骤,根据所述第一通信节点的第一波束确定第一通信节点和终端之间的反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;根据所述第一位置信息确定所述终端的位置,采用上述技术方案,以至少解决相关技术中无法纠正由于NLOS带来的定位误差等问题,进而纠正了NLOS带来的定位误差,提高了终端定位精度。
需要说明的是,本公开实施例的第一通信节点指的是发送定位参考信号的节点。
所述终端接入多个通信节点,所述多个通信节点包括所述第一通信节点,并且,在所述确定第一通信节点与终端不存在视距径之前,所述方法还包括:针对多个通信节点中的每一个通信节点,根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所 述每一个通信节点是否存在视距径,其中,所述每一个通信节点的波束方向为所述每一个通信节点的多个波束中,所述终端检测到的信号最强的波束的波束方向,所述第一方向为所述终端与所述每一个通信节点间的连接方向。
在本公开的一实施例中,所述根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,可以通过以下技术方案实现:在所述夹角小于预设阈值时,确定所述终端与所述每一个通信节点存在视距径;在所述夹角大于或等于预设阈值时,确定所述终端与所述每一个通信节点不存在视距径。
在本公开的一实施例中,所述预设阈值为定位服务器根据定位服务的要求进行配置;所述方法还包括将所述预设阈值添加到辅助信息中,并将所述辅助信息通过定位服务器和终端(UE)之间的接口发送给终端。
步骤S104有多种实现方式,在一个可选的实施例中,可以通过以下技术方案实现:获取以下参数信息:所述第一波束的出射角信息(Angle Of Departure,简称为AOD信息)或ZOD信息(Zenith Of Departure,简称为ZOD信息);所述终端的第一初始位置;时间差信息;其中,所述时间差信息包括:不存在视距径的第一通信节点的波束达到所述终端的第一时间和存在视距径的第二通信节点的波束达到所述终端的第二时间的时间差;根据所述参数信息确定所述反射物的第一位置信息。
在本公开的一实施例中,所述AOD信息或ZOD信息通过以下方式携带:先将AOD信息或ZOD信息携带在所述第一通信节点传送给定位服务器的信息中,例如在所述第一通信节点与所述定位服务器之间的接口中的OTDOA小区信息中携带所述AOD信息或ZOD信息;然后将AOD信息或ZOD信息携带在定位服务器发送给终端的辅助信息中,例如将所述辅助信息添加到终端与定位服务器之间的接口中;进一步地,所述AOD信息或ZOD信息为所述第一波束与统一的三维坐标系中X轴和Z轴所在平面的夹角;在一些实施例中,三维坐标系的X轴和 Y轴相互垂直,且均平行于水平方向(如地面),而Z轴则垂直于地面,例如,Z轴的0点即可为地面所在位置。
在本公开的一实施例中,至少通过以下方式获取所述终端的第一初始位置:以波束轮询的模式发送定位参考信号,获取所述终端的第一初始位置。
在本公开的一实施例中,在所述根据所述参数信息确定所述反射物的第一位置信息之后,所述方法还包括:根据到达时间差定位法(OTDOA),利用所述第一位置信息确定所述终端的第二初始位置。
在本公开的一实施例中,在所述根据到达时间差定位法,利用所述第一位置信息确定所述终端的第二初始位置之后,所述方法还包括:根据所述第二初始位置,所述AOD信息或ZOD信息,以及所述时间差信息确定所述反射物的第二位置信息。
在本公开的一实施例中,在所述确定所述反射物的第二位置信息之后,所述方法还包括:将所述第二位置信息携带在辅助信息中,通过定位服务器和终端的接口发送给终端。
在本公开的一实施例中,在所述根据所述第一位置信息确定所述终端的位置之后,所述方法还包括:接收终端上报的反射物位置信息,其中,所述反射物位置信息为所述终端在上报定位信息的过程中,在终端和定位服务器的接口中传输的所述终端对应的第一波束对应的反射物(即反射了该第一波束的反射物)位置。
步骤S106可以通过以下技术方案实现:根据到达时间差定位法,根据所述第一位置信息确定所述终端的位置,其中,将所述第一位置信息所指示的反射物的位置作为所述到达时间差定位法的一个发射节点的位置。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得 一台设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例的方法。
本公开的一实施例中还提供了一种终端定位装置,该装置配置为实现上述实施例的方法,已经进行过说明的不再赘述。如以下所使用的,术语“模块”是可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本公开实施例的终端定位装置的结构框图,如图2所示,该装置包括第一确定模块20、第二确定模块22、第三确定模块24。
第一确定模块20,配置为确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物。
第二确定模块22,配置为根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束。
第三确定模块24,配置为根据所述第一位置信息确定所述终端的位置。
通过本公开,根据所述第一通信节点的第一波束确定第一通信节点和终端之间的反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;根据所述第一位置信息确定所述终端的位置,采用上述技术方案,以至少解决相关技术中无法纠正由于NLOS带来的定位误差等问题,进而纠正了NLOS带来的定位误差,提高了终端定位精度。
在本公开的一实施例中,所述第二确定模块22,还配置为:获取以下参数信息:所述第一波束的AOD信息或ZOD信息;所述终端的第一初始位置;时间差信息;其中,所述时间差信息包括:不存在视距径的第一通信节点的波束达到所述终端的第一时间和存在视距径的第二通信节点的波束达到所述终端的第二时间的时间差;根据所述参数信息确定所述反射物的第一位置信息。
其中,所述AOD信息或ZOD信息通过以下之一方式携带:携带在所述第一通信节点传送给定位服务器的信息中,例如在所述第一通信节点与所述定位服务器之间的接口中的OTDOA小区信息中携带所述AOD信息或ZOD信息;携带在定位服务器发送给终端的辅助信息中,例如将所述辅助信息添加到终端与定位服务器之间的接口中;进一步地,所述AOD信息或ZOD信息为所述第一波束与统一的三维坐标系中X轴和Z轴所在平面的夹角。
需要说明的是,本公开实施例的第一通信节点指的是发送定位参考信号的节点。
所述终端接入多个通信节点,所述多个通信节点包括所述第一通信节点;所述第一确定模块20,还配置为针对多个通信节点中的每一个通信节点,根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,其中,所述每一个通信节点的波束方向为所述每一个通信节点的多个波束中,所述终端检测到的信号最强的波束的波束方向,所述第一方向为所述终端与所述每一个通信节点间的连接方向。
在本公开的一实施例中,根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,可以通过以下技术方案实现:所述第一确定模块20,还配置为在所述夹角小于预设阈值时,确定所述终端与所述每一个通信节点存在视距径;在所述夹角大于或等于预设阈值时,确定所述终端与所述每一个通信节点不存在视距径。
在本公开的一实施例中,所述预设阈值为定位服务器根据定位服务的要求进行配置;所述定位服务器还配置为将所述预设阈值添加到辅助信息中,并将所述辅助信息通过定位服务器和终端之间的接口发送给终端。
在本公开的一实施例中,所述第一确定模块20,还配置为:以波束轮询的模式发送定位参考信号,获取所述终端的第一初始位置。
在本公开的一实施例中,所述第三确定模块24还配置为:根据到达时间差定位法,利用所述第一位置信息确定所述终端的第二初始 位置。
在本公开的一实施例中,所述第三确定模块24还配置为:根据所述第二初始位置,所述AOD信息或ZOD信息,以及所述时间差信息确定所述反射物的第二位置信息。
在本公开的一实施例中,所述第三确定模块24还配置为:将所述第二位置信息携带在辅助信息中,通过定位服务器和终端的接口发送给终端。
在本公开的一实施例中,所述第三确定模块24还配置为:接收终端上报的反射物位置信息,其中,所述反射物位置信息为所述终端在上报定位信息的过程中,在终端和定位服务器的接口中传输的所述终端对应的第一波束对应的反射物位置。
在本公开的一实施例中,所述第三确定模块24还配置为:根据到达时间差定位法,根据所述第一位置信息确定所述终端的位置,其中,将所述第一位置信息所指示的反射物的位置作为所述到达时间差定位法的一个发射节点的位置。
需要说明的是,上述各实施例的技术方案可以结合使用,也可以单独使用,本公开实施例对此不作限定。
以下结合实施例对上述技术方案进行说明,但不用于限定本公开实施例的技术方案。
本公开的一实施例提供了一种高精度的定位方法,包括以下步骤1至步骤8。
步骤1,以波束轮询的方式发送定位参考信号(Positioning Reference Signals,简称为PRS信号),记各通信节点发送定位参考信号的波束编号为0-prsbeam max,在通信节点传送给定位服务器信息中加入PRS波束的AOD/ZOD信息,在定位服务器发送给UE的辅助信息中加入PRS波束的AOD/ZOD信息。
在本公开的一实施例中,上述PRS波束的AOD/ZOD信息的定义为发射波束能量最强的方向与统一的三维坐标系中X轴和Z轴所在平面的夹角。
在本公开的一实施例中,所述定位服务器发送给UE的辅助信息添加到UE与定位服务器之间的接口中,可以添加到OTDOA辅助信息中与OTDOA辅助信息一起发送,也可以添加在一个新的独立变量集合中。
在本公开的一实施例中,通信节点传送给定位服务器的PRS波束的AOD/ZOD信息添加到定位服务器与通信节点之间的接口中的OTDOA通信节点信息(OTDOA小区信息)中。
步骤2,通信节点以波束轮询的模式发送定位参考信号的情况下,完成初次基本OTDOA定位,得到UE的初次基本定位结果X U[1](相当于上述实施例中的第一初始位置)。
在本公开的一实施例中,在k时刻,UE侧(UE-based模式)或者定位服务器(UE-assisted模式),根据UE进行OTDOA定位所使用的波束ID对应的AOD/ZOD信息,通信节点(信号发射节点)地理坐标信息,当前OTDOA定位结果X U[k](即k时刻的终端位置)来进行视距径验证。
在本公开的一实施例中,所述OTDOA定位使用的波束为UE在所有接收到的波束中所选择的波束,例如选择信号最强的波束。
在本公开的一实施例中,所述视距径验证方式为,如果UE所检测到的某通信节点的波束在地理上指向方向与当前UE定位结果一致,则认为该通信节点与UE之间存在视距径。
在本公开的一实施例中,所述指向方向与当前UE定位结果一致意义为UE与对应通信节点的连线方向与对应波束的方向的角度误差在阈值之内。
在本公开的一实施例中,所述阈值为定位服务器根据定位服务要求配置,并作为辅助信息通过定位服务器和UE之间的接口发送给UE。
在本公开的一实施例中,如果UE检测到的某通信节点波束在地理上的指向方向与UE当前定位结果不一致,即以上角度误差超过阈值,则认为该通信节点与UE之间不存在视距径。
在本公开的一实施例中,本算法初始阶段要求UE当前位置至少 与所检测的一个通信节点存在视距径,记为通信节点n 0
步骤3,记与UE不存在视距径的通信节点为n i,测量得到n i和n 0的波束的到达时间差τ i0=τ 0i,以及之前计算得到的UE位置X U[k],n 0与n i的地理位置,以及所检测到的各个通信节点的波束j(0≤j≤prsbeam max)的
Figure PCTCN2019101756-appb-000001
假设该波束到UE只经历过一个反射物,且通信节点的每一个波束对应自己独立的反射物,可以求得此波束对应的反射物位置
Figure PCTCN2019101756-appb-000002
从而可以得到当前时刻该反射物到通信节点(基站)的距离
Figure PCTCN2019101756-appb-000003
从开始时刻到当前k时刻对此距离取平均
Figure PCTCN2019101756-appb-000004
进一步可根据ZOD/AOD信息更新反射物位置为
Figure PCTCN2019101756-appb-000005
其中,上述i,k,X U[k],
Figure PCTCN2019101756-appb-000006
Figure PCTCN2019101756-appb-000007
均大于0。
步骤4,将更新后的反射物的位置代入,再次利用OTDOA求解新的UE位置X U[k+1]。
在本公开的一实施例中,再次进行OTDOA计算过程中将反射物的位置作为已知信息代入计算,可以将反射物视为一个OTDOA的发射节点,其到UE为视距径(在UE没有切换所检测到波束的情况下)。
步骤5,将步骤4求得的位置再次代入步骤2中重复执行。
在本公开的一实施例中,所述重复执行意思为将X U[k+1]和波束的AOD/ZOD信息,代入再次计算反射物位置
Figure PCTCN2019101756-appb-000008
步骤6,当UE的移动使得UE检测到的来自某一通信节点的最强波束发生变化,或者通信节点发生变化,则重复上述过程。
步骤7,当反射物位置计算发生在UE侧(UE-based模式),UE需要在上报定位信息的过程中在UE和定位服务器的接口中传输自己计算得到的对应通信节点的对应波束对应的反射物位置。当反射物位置计算发生在定位服务器(UE-assisted模式),定位服务器存储该数据,且随着数据更新,结合定位数据不断更新对应通信节点的波束对应的反射物位置。
步骤8,计算稳定的反射物位置可以作为辅助信息通过定位服务器和UE的接口发送给UE。
通过上述技术方案,利用OTDOA算法计算定位结果,且以波束轮询的方式发送定位参考信号并且具有波束ID,引入假设的反射物位置。
此外,上述技术方案还能够利用下行窄波束进行视距径判断,且引入波束的AOD/ZOD信息的概念,利用窄波束的特性估计对应反射物位置,进一步将反射物位置代入重新用OTDOA算法计算UE位置,并不断迭代,此外,还增加与本公开实施例的技术方案相关的配置信息及辅助信息的传输过程,定位服务器增加存储及不断优化反射物位置的功能。
采用本公开的上述技术方案,不需要额外的反馈,取得了对不存在视距径的场景(NLOS)进行了有效的判断和纠正,提高了定位精度的效果;克服了无法纠正由NLOS带来的定位误差的问题和缺陷。
本公开的一实施例中求UE的二维位置,定位服务请求为1s输出一次定位,如图3所示,假设UE所处位置可以检测到基站(通信节点)n 0的PRS波束6信号最强,来自基站n 1的PRS波束1信号最强,来自基站n 2的PRS波束2信号最强,以n 0为参考基站,它与另外两基站的信号到达UE的时间差为τ 01,τ 02,在统一坐标系下三个基站的坐标分别为(x b0,y b0),(x b1,y b1),(x b2,y b2),其中可认为z坐标均为0,可根据其到达时间差和波束发射时间差用OTDOA算法求解UE位置X U[1]。但是基站n 2的波束是NLOS(无视距径),经过反射物反射到达UE,造成OTDOA定位结果的不准确。在UE-based模式下完成一次定位后进行视距径检验,X U[1]与n 1的连线和n 1的波束1的夹角α un1,1[k]小于设定的阈值α thresh,认为此时n 1和UE存在视距径,无需求解反射物校正,对于来自n 0的波束6,经同样方式检验存在视距径,对于基站n 2,经检验X U[1]与n 2的连线和n 2的波束2的夹角α un2,2[k]大于设定的阈值α thresh。根据反射物位置和n 2的波束2的AOD的关系,设反射物的位置为(x Rn2,2,x Rn2,2tan θ n2AOD,2)[k]。根据X U[1],(x b0,y b0),θ n2AOD,2,(x b2,y b2),τ 01,可以列方程得到等式:
Figure PCTCN2019101756-appb-000009
求解得当前基站n 2的波束2对应的反射物位置
Figure PCTCN2019101756-appb-000010
进而可以求得该反射物 到基站的距离
Figure PCTCN2019101756-appb-000011
对此前时刻之前所有求得的该距离取平均得到
Figure PCTCN2019101756-appb-000012
作为更新的该波束对应的反射物的位置,将更新后的反射物位置作为已知量,假设该波束只进行这一次反射,进行下一次OTDOA定位结果计算,在此过程中,对于已知为NLOS(无视距径)的基站,可以将反射物位置认为是一个反射节点的位置,其与基站n 0的到达时间差为
Figure PCTCN2019101756-appb-000013
代入之后可以计算X U[k+1],其中,c为光速。
本公开的一实施例以求UE的二维位置为例,定位服务请求为1s输出一次定位,如图4所示,假设UE所处位置可以检测到基站(通信节点)n 0的PRS波束2信号最强,来自基站n 1的PRS波束5信号最强,来自基站n 2的PRS波束2信号最强,以n 0为参考基站,它与另外两基站的波束到达UE的时间差为τ 01,τ 02,在统一坐标系下三个基站的坐标分别为(x b0,y b0),(x b1,y b1),(x b2,y b2),其中可认为z坐标均为0,可根据其到达时间差和波束发射时间差用OTDOA算法求解UE位置X U[1]。进行视距径验证,发现UE初始计算得到的位置与三个基站的波束指向的误差都在阈值以上,判定为和三个基站都无视距径(NLOS)。如果此时定位服务器端计算的来自基站n 0的波束2对应的反射物已经稳定,且反射物到基站的距离小于当前计算的UE位置到本基站的距离。所以定位服务器可以将此反射物位置作为已知量代入计算,具体方式可参考以上实施例的技术方案,本实施例对此不再赘述,其中,c为光速。
本公开的一实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码S1至S3。
S1,确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物。
S2,根据所述第一通信节点的第一波束确定所述反射物的第一 位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束。
S3,根据所述第一位置信息确定所述终端的位置。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (29)

  1. 一种终端定位方法,包括:
    确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物;
    根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;
    根据所述第一位置信息确定所述终端的位置。
  2. 根据权利要求1所述的方法,其中,所述终端接入多个通信节点,所述多个通信节点包括所述第一通信节点,并且,在所述确定第一通信节点与终端不存在视距径之前,所述方法还包括:
    针对多个通信节点中的每一个通信节点,根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,其中,所述每一个通信节点的波束方向为所述每一个通信节点的多个波束中,所述终端检测到的信号最强的波束的波束方向,所述第一方向为所述终端与所述每一个通信节点间的连接方向。
  3. 根据权利要求2所述的方法,其中,所述根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,包括:
    在所述夹角小于预设阈值时,确定所述终端与所述每一个通信节点存在视距径;
    在所述夹角大于或等于预设阈值时,确定所述终端与所述每一个通信节点不存在视距径。
  4. 根据权利要求3所述的方法,其中,所述预设阈值为定位服务器根据定位服务的要求进行配置;所述方法还包括将所述预设阈值 添加到辅助信息中,并将所述辅助信息通过定位服务器和终端之间的接口发送给终端。
  5. 根据权利要求1所述的方法,其中,所述根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,包括:
    获取以下参数信息:所述第一波束的AOD信息或ZOD信息;所述终端的第一初始位置;时间差信息;其中,所述时间差信息包括:不存在视距径的第一通信节点的波束达到所述终端的第一时间和存在视距径的第二通信节点的波束达到所述终端的第二时间的时间差;
    根据所述参数信息确定所述反射物的第一位置信息。
  6. 根据权利要求5所述的方法,其中,所述AOD信息或ZOD信息通过以下方式携带:
    在所述第一通信节点传送给定位服务器的信息中携带所述AOD信息或ZOD信息,然后将AOD信息或ZOD信息携带在定位服务器发送给终端的辅助信息中。
  7. 根据权利要求6所述的方法,其中,在所述第一通信节点与所述定位服务器之间的接口中的到达时间差定位法小区信息中携带所述AOD信息或ZOD信息。
  8. 根据权利要求6所述的方法,其中,将所述辅助信息添加到终端与定位服务器之间的接口中。
  9. 根据权利要求5所述的方法,其中,至少通过以下方式获取所述终端的第一初始位置:
    以波束轮询的模式发送定位参考信号,获取所述终端的第一初始位置。
  10. 根据权利要求5所述的方法,其中,在所述根据所述参数信 息确定所述反射物的第一位置信息之后,所述方法还包括:
    根据到达时间差定位法,利用所述第一位置信息确定所述终端的第二初始位置。
  11. 根据权利要求10所述的方法,其中,在所述根据到达时间差定位法,利用所述第一位置信息确定所述终端的第二初始位置之后,所述方法还包括:
    根据所述第二初始位置,所述AOD信息或ZOD信息,以及所述时间差信息确定所述反射物的第二位置信息。
  12. 根据权利要求11所述的方法,其中,在所述确定所述反射物的第二位置信息之后,所述方法还包括:
    将所述第二位置信息携带在辅助信息中,通过定位服务器和终端的接口发送给终端。
  13. 根据权利要求1所述的方法,其中,在所述根据所述第一位置信息确定所述终端的位置之后,所述方法还包括:
    接收终端上报的反射物位置信息,其中,所述反射物位置信息为所述终端在上报定位信息的过程中,在终端和定位服务器的接口中传输的所述终端对应的第一波束对应的反射物位置。
  14. 根据权利要求1所述的方法,其中,所述根据所述第一位置信息确定所述终端的位置包括:
    根据到达时间差定位法,根据所述第一位置信息确定所述终端的位置,其中,将所述第一位置信息所指示的反射物的位置作为所述到达时间差定位法的一个发射节点的位置。
  15. 一种终端定位装置,包括:
    第一确定模块,配置为确定第一通信节点与终端不存在视距径,其中,所述第一通信节点与所述终端之间存在反射物;
    第二确定模块,配置为根据所述第一通信节点的第一波束确定所述反射物的第一位置信息,其中,所述第一波束为所述第一通信节点的多个波束中,所述终端检测到的信号最强的波束;
    第三确定模块,配置为根据所述第一位置信息确定所述终端的位置。
  16. 根据权利要求15所述的装置,其中,所述终端接入多个通信节点,所述多个通信节点包括所述第一通信节点;
    所述第一确定模块,还配置为针对多个通信节点中的每一个通信节点,根据所述每一个通信节点的波束方向与第一方向的夹角来确定所述终端与所述每一个通信节点是否存在视距径,其中,所述每一个通信节点的波束方向为所述每一个通信节点的多个波束中,所述终端检测到的信号最强的波束的波束方向,所述第一方向为所述终端与所述每一个通信节点间的连接方向。
  17. 根据权利要求16所述的装置,其中,
    所述第一确定模块,还配置为在所述夹角小于预设阈值时,确定所述终端与所述每一个通信节点存在视距径;在所述夹角大于或等于预设阈值时,确定所述终端与所述每一个通信节点不存在视距径。
  18. 根据权利要求17所述的装置,其中,所述预设阈值为定位服务器根据定位服务的要求进行配置;所述定位服务器还配置为将所述预设阈值添加到辅助信息中,并将所述辅助信息通过定位服务器和终端之间的接口发送给终端。
  19. 根据权利要求15所述的装置,其中,所述第二确定模块,还配置为:
    获取以下参数信息:所述第一波束的AOD信息或ZOD信息;所述终端的第一初始位置;时间差信息;其中,所述时间差信息为:不存在视距径的第一通信节点的波束达到所述终端的第一时间和存在 视距径的第二通信节点的波束达到所述终端的第二时间的时间差;
    根据所述参数信息确定所述反射物的第一位置信息。
  20. 根据权利要求19所述的装置,其中,所述AOD信息或ZOD信息通过以下方式携带:
    在所述第一通信节点传送给定位服务器的信息中携带所述AOD信息或ZOD信息,然后将AOD信息或ZOD信息携带在定位服务器发送给终端的辅助信息中。
  21. 根据权利要求20所述的装置,其中,在所述第一通信节点与所述定位服务器之间的接口中的到达时间差定位法小区信息中携带所述AOD信息或ZOD信息。
  22. 根据权利要求20所述的装置,其中,将所述辅助信息添加到终端与定位服务器之间的接口中。
  23. 根据权利要求19所述的装置,其中,所述第一确定模块,还配置为:
    以波束轮询的模式发送定位参考信号,获取所述终端的第一初始位置。
  24. 根据权利要求19所述的装置,其中,所述第三确定模块还配置为:
    根据到达时间差定位法,利用所述第一位置信息确定所述终端的第二初始位置。
  25. 根据权利要求24所述的装置,其中,所述第三确定模块还配置为:
    根据所述第二初始位置,所述AOD信息或ZOD信息,以及所述时间差信息确定所述反射物的第二位置信息。
  26. 根据权利要求25所述的装置,其中,所述第三确定模块还配置为:
    将所述第二位置信息携带在辅助信息中,通过定位服务器和终端的接口发送给终端。
  27. 根据权利要求15所述的装置,其中,所述第三确定模块还配置为:
    接收终端上报的反射物位置信息,其中,所述反射物位置信息为所述终端在上报定位信息的过程中,在终端和定位服务器的接口中传输的所述终端对应的第一波束对应的反射物位置。
  28. 根据权利要求15所述的装置,其中,所述第三确定模块还配置为:
    根据到达时间差定位法,根据所述第一位置信息确定所述终端的位置,其中,将所述第一位置信息所指示的反射物的位置作为所述到达时间差定位法的一个发射节点的位置。
  29. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至14任一项中所述的方法。
PCT/CN2019/101756 2019-01-04 2019-08-21 终端定位方法及装置、存储介质 WO2020140443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/254,983 US11435432B2 (en) 2019-01-04 2019-08-21 Terminal positioning method and apparatus, and storage medium
EP19907517.7A EP3793277B1 (en) 2019-01-04 2019-08-21 Terminal positioning method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910008845.8A CN111417188B (zh) 2019-01-04 2019-01-04 终端定位方法及装置、存储介质
CN201910008845.8 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140443A1 true WO2020140443A1 (zh) 2020-07-09

Family

ID=71406561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101756 WO2020140443A1 (zh) 2019-01-04 2019-08-21 终端定位方法及装置、存储介质

Country Status (5)

Country Link
US (1) US11435432B2 (zh)
EP (1) EP3793277B1 (zh)
CN (1) CN111417188B (zh)
HU (1) HUE060936T2 (zh)
WO (1) WO2020140443A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521012A (zh) * 2020-11-18 2022-05-20 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
WO2022173525A1 (en) * 2021-02-09 2022-08-18 Qualcomm Incorporated Ue passive rf sensing with cellular-based bistatic/multistatic radar
WO2023066399A1 (zh) * 2021-10-22 2023-04-27 华为技术有限公司 通信方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4014607A1 (en) * 2019-08-16 2022-06-22 Nokia Technologies Oy Non-line-of-sight path detection for user equipment positioning in wireless networks
CN114125697B (zh) * 2020-08-29 2022-11-11 华为技术有限公司 一种协作定位方法及装置
CN115767413A (zh) * 2020-08-29 2023-03-07 华为技术有限公司 一种协作定位方法及装置
CN112346009B (zh) * 2021-01-06 2021-04-16 广东省新一代通信与网络创新研究院 一种基于智能反射面的定位方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582116A (zh) * 2012-07-31 2014-02-12 北京三星通信技术研究有限公司 一种定位方法、基站和终端
CN103874190A (zh) * 2012-12-10 2014-06-18 北京三星通信技术研究有限公司 一种用户终端的定位方法
WO2017164925A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems
CN107923964A (zh) * 2015-09-14 2018-04-17 红点定位公司 用于估计和补偿到达时间差估计中的nlos偏差的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009295A1 (en) * 2006-07-07 2008-01-10 Nicole Brousseau Method for the high accuracy geolocation of outdoor mobile emitters of CDMA cellular systems
WO2015179704A2 (en) * 2014-05-21 2015-11-26 Isaac Thomas Miller Positioning using non-line-of-sight signals
WO2016099546A1 (en) * 2014-12-19 2016-06-23 Nokia Solutions And Networks Oy Virtual cell based prs transmission for indoor vertical positioning
US10736074B2 (en) * 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582116A (zh) * 2012-07-31 2014-02-12 北京三星通信技术研究有限公司 一种定位方法、基站和终端
CN103874190A (zh) * 2012-12-10 2014-06-18 北京三星通信技术研究有限公司 一种用户终端的定位方法
CN107923964A (zh) * 2015-09-14 2018-04-17 红点定位公司 用于估计和补偿到达时间差估计中的nlos偏差的方法
WO2017164925A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793277A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521012A (zh) * 2020-11-18 2022-05-20 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
CN114521012B (zh) * 2020-11-18 2023-10-24 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
WO2022173525A1 (en) * 2021-02-09 2022-08-18 Qualcomm Incorporated Ue passive rf sensing with cellular-based bistatic/multistatic radar
US11635505B2 (en) 2021-02-09 2023-04-25 Qualcomm Incorporated UE passive RF sensing with cellular-based bistatic/multistatic radar
WO2023066399A1 (zh) * 2021-10-22 2023-04-27 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN111417188B (zh) 2023-02-21
CN111417188A (zh) 2020-07-14
EP3793277A1 (en) 2021-03-17
US11435432B2 (en) 2022-09-06
EP3793277A4 (en) 2021-11-03
US20210270932A1 (en) 2021-09-02
EP3793277B1 (en) 2022-10-12
HUE060936T2 (hu) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2020140443A1 (zh) 终端定位方法及装置、存储介质
TWI345641B (en) A method and system for locating a mobile radio receiver in a radio system with multiple transmitters
JP4297786B2 (ja) 無線通信網において移動端末の位置を計算するシステムと方法
KR100876800B1 (ko) 이동 단말기의 위치 추정 장치 및 방법
US20070063897A1 (en) Terminal location specification method and system of the same
CN111447543B (zh) 定位方法及装置
US8576122B2 (en) Method for measuring location of mobile terminal
JP5450081B2 (ja) ユーザ装置の位置を判定する方法、ソフトウエア及びシステム
US20100323723A1 (en) Base Station Mapping with Angle-of-Arrival and Timing Advance Measurements
US20140302870A1 (en) Method for positioning user equipment and positioning server
CN102547570B (zh) 一种伪距差值定位方法及装置
US7868826B1 (en) Method and system for determining locations of mobile stations using directional corrections
JP2006094538A (ja) Cdma通信システムにおける移動加入者局の位置特定方法およびシステム
US20220099785A1 (en) Method and device for positioning utilizing beam information
WO2022000523A1 (zh) 三维无线光定位***及方法
US20230180040A1 (en) Information reporting method, apparatus and device, and readable storage medium
JP2012029304A (ja) 1つ以上の基地局に関して無線移動装置の位置を推定すること
US20180329023A1 (en) System and method for wireless time-of-arrival localization
KR20200079733A (ko) 무선 통신 시스템에서 단말의 위치추정 방법 및 장치
KR20210047072A (ko) 기지국 신호를 이용한 위치 측정 방법 및 이를 위한 장치
KR100625431B1 (ko) 무선통신망에서의 단말기 위치결정장치 및 그 방법
CN113029147B (zh) 一种直达波空中传播时延的估计方法
US7456788B2 (en) Method and apparatus for reducing geolocation ambiguity in signal tracking
KR20210017303A (ko) 이동통신 시스템에서 단말의 위치추정 방법 및 장치
KR101186066B1 (ko) 단일 기준국을 이용한 위치 측위 방법, 그 시스템 및 이를 기록한 기록매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019907517

Country of ref document: EP

Effective date: 20201211

NENP Non-entry into the national phase

Ref country code: DE