WO2020140337A1 - 一种高温高压垃圾焚烧锅炉 - Google Patents

一种高温高压垃圾焚烧锅炉 Download PDF

Info

Publication number
WO2020140337A1
WO2020140337A1 PCT/CN2019/080033 CN2019080033W WO2020140337A1 WO 2020140337 A1 WO2020140337 A1 WO 2020140337A1 CN 2019080033 W CN2019080033 W CN 2019080033W WO 2020140337 A1 WO2020140337 A1 WO 2020140337A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
channel
superheater
boiler
channels
Prior art date
Application number
PCT/CN2019/080033
Other languages
English (en)
French (fr)
Inventor
谢军
邓昌梅
黄兵
张心成
郑江龙
陈枫
郭孝武
瞿兆舟
张利军
王高尚
Original Assignee
上海康恒环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811646221.0A external-priority patent/CN110006043A/zh
Priority claimed from CN201811644026.4A external-priority patent/CN110186047A/zh
Priority claimed from CN201811648561.7A external-priority patent/CN110220198A/zh
Priority claimed from CN201811646698.9A external-priority patent/CN110360569A/zh
Application filed by 上海康恒环境股份有限公司 filed Critical 上海康恒环境股份有限公司
Publication of WO2020140337A1 publication Critical patent/WO2020140337A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/08Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/48Preventing corrosion

Definitions

  • the invention relates to the field of municipal solid waste incineration, in particular to a waste incineration boiler with a main steam temperature of 540°C and a main steam pressure of 9.8 MPa.
  • nickel-based or titanium-based surfacing anticorrosion processes are used, and when the main steam temperature exceeds 500 °C, the nickel-based and titanium-based surfacing layers will also corrode rapidly.
  • the invention is a garbage incineration vertical boiler with a main steam temperature of 540°C and a main steam pressure of 9.8MPa, which can increase the thermal efficiency of the turbo-generator set to more than 34%, and at the same time lay special high thermal conductivity castable or plastic insulation
  • the pipe is in direct contact with the flue gas, thereby effectively solving the problem of high temperature corrosion and ensuring the long-term safe and stable operation of the water-cooled wall and the superheater.
  • the purpose of the present invention is to overcome the defects of the prior art.
  • the specific technical solution of the present invention is:
  • a high-temperature and high-pressure waste incineration boiler with a main steam temperature of 540°C and a main steam pressure of 9.8 MPa A water-cooled combustion chamber is used, followed by a channel, a two-channel connection channel, a two-channel, and a three-channel in order of flue gas flow direction. Among them, the screen superheater is arranged on the upper part of the second channel.
  • combustion chamber adopts a fully water-cooled structure, refractory bricks are used in the area in contact with the garbage, the other areas are laid with high thermal conductivity silicon carbide castables, and one channel is entirely laid with high thermal conductivity silicon carbide castables, without using nickel-based anticorrosive coatings.
  • the screen-type superheater is made of TP347H, and the exterior is laid with high thermal conductivity plastic, which is arranged on the upper part of the two channels.
  • the front wall of the two-channel adopts nickel-based anti-corrosion coating, and the top of the two channels, the left and right walls of the screen-type superheater area, and the back wall are laid with high thermal conductivity refractory castable.
  • a three-layer furnace soot blower is arranged on the front wall of the second channel for dust cleaning, and a SNCR spray gun is arranged on the front wall and the left and right walls of the lower part of the second channel.
  • the lower part of the three channels is provided with a serpentine tube type evaporation protector I, which adopts a large lateral pitch and uses a steam soot blower for cleaning.
  • the three-channel arrangement of the upper and lower header type evaporation protector II adopts a large horizontal pitch and a steam soot blower.
  • the high-temperature superheater, the middle-temperature superheater, and the low-temperature superheater adopt a serpentine tube structure, a large lateral pitch, and a steam soot blower.
  • the economizer adopts a serpentine tube structure, a shock wave soot blower, and a siphonic hydrophobic device.
  • a trace water spray desuperheater is provided between the screen superheater and the high temperature superheater, and a secondary water spray desuperheater and a primary water spray desuperheater are respectively provided between the high temperature superheater, the intermediate temperature superheater and the low temperature superheater .
  • the flue gas recirculation process is used.
  • the flue gas recirculation and secondary air share nozzles which are arranged in the front and rear arch areas of the combustion chamber.
  • the invention also provides a high-temperature and high-pressure garbage incineration vertical boiler with a main steam temperature of 540°C and a main steam pressure of 9.8 MPa, which is a vertical suspension structure; it includes a water-cooled combustion chamber and presses flue gas
  • the flow direction is one channel, one two channel connection channel, two channel, three channel and four channel in sequence.
  • the screen superheater is arranged on the upper part of the two channels, the evaporation protector I, the evaporation protector II, the high temperature superheater, the middle temperature superheater, and the low temperature superheater are arranged in sequence in the three channels, and the economizer is arranged on the four channels; Water-cooled structure, refractory bricks are used in the area in contact with garbage, and the other areas are laid with high thermal conductivity silicon carbide castables, one channel is laid with high thermal conductivity silicon carbide castables, and no nickel-based anticorrosive coating is used; the screen superheater is made of TP347H , High-conductivity plastics are laid externally and are arranged on the upper part of the second channel; the front wall of the second channel adopts nickel-based anti-corrosion coating; the top of the second channel and the left and right walls of the screen superheater area and the rear wall are laid with high thermal conductivity refractory castable;
  • the lower front wall and the left and right walls of the second channel are equipped with SNCR spray guns; the lower part of the three channels is provided with a serpentine tube type evaporation protector I, which adopts a large horizontal pitch. At the same time, a steam soot blower is used for cleaning; the three-channel arrangement of the upper and lower header type evaporation protector II adopts a large horizontal pitch and a steam soot blower.
  • the high-temperature superheater, the middle-temperature superheater, and the low-temperature superheater have a serpentine tube structure, a large lateral pitch, and a steam soot blower.
  • the economizer adopts a serpentine tube structure, a shock wave soot blower, and a siphonic drain device is also provided.
  • a micro water spray desuperheater is provided between the screen superheater and the high temperature superheater, and a secondary water spray desuperheater and a primary water spray are respectively provided between the high temperature superheater, the intermediate temperature superheater and the low temperature superheater Desuperheater.
  • the invention also provides a high temperature and high pressure garbage incineration horizontal boiler, a garbage incineration horizontal boiler with a main steam pressure of 9.8 MPa, the main steam temperature of the garbage incineration boiler is 540 °C, a horizontal suspension structure, and water cooling combustion Chamber; one channel, one two channel connection channel, two channel, three channel and horizontal channel according to the direction of flue gas flow; the screen superheater is arranged on the upper part of the two channels, the outside is laid with special high thermal conductivity plastic, evaporation protector I Arranged in the lower part of the three channels, the evaporation protector II, high temperature superheater, medium temperature superheater, low temperature superheater and economizer are arranged in order in the horizontal channel.
  • the water-cooled combustion chamber 4 is composed of a membrane-type water-cooled wall around the grate, a refractory brick is laid in the area in contact with the garbage, and a high thermal conductivity silicon carbide castable is laid in the remaining area.
  • the flue gas recirculation and secondary air nozzles 23 are arranged in the front and rear arch area of the water-cooled combustion chamber 4, and when the recirculated flue gas is used, the nitrogen oxide concentration at the outlet of the incinerator can be reduced.
  • one channel 5 and one two channel connecting flue 21 are laid with high thermal conductivity silicon carbide castable, to isolate the tube from direct contact with the flue gas to avoid high temperature corrosion of the water wall.
  • the screen superheater 9 is arranged on the upper part of the second channel 6, and a special high thermal conductivity plastic can be laid outside the tube screen while being located in the high-temperature flue gas area.
  • the front wall of the second channel 6 is arranged with a three-layer furnace soot blower that can perform steam soot blowing on the front wall to keep the radiation heating surface clean.
  • the lower front wall and the left and right walls are equipped with SNCR spray guns.
  • the lower part of the three-channel 7 is provided with an evaporator protector I of a serpentine type.
  • the horizontal channel 8 is provided with an evaporative protector II 10, a high-temperature superheater 11, a medium-temperature superheater 12, a low-temperature superheater 13, and an economizer 17, and the convection heating surface is suspended from the boiler steel structure 2 by a boom;
  • the superheater 11, medium temperature superheater 12, and low temperature superheater 13 all adopt a large lateral pitch and use a steam soot blower 18 for cleaning;
  • the economizer 17 is located in a low temperature area; the high temperature superheater 11, the middle temperature superheater 12, and the low temperature superheat Both the device 13 and the economizer 17 use a serpentine tube structure.
  • the invention also provides a high-temperature and high-pressure waste incineration ⁇ -type boiler, which includes a water-cooled combustion chamber, followed by a channel, a two-channel connection channel, a two-channel, a three-channel, a horizontal channel and a four-channel in order according to the flow direction of flue gas;
  • the superheater is arranged on the upper part of the second channel, and a special high thermal conductivity plastic is laid on the outside.
  • the evaporation protector I is arranged on the lower part of the three channels. In the horizontal channel, the evaporation protector II, high temperature superheater, medium temperature superheater, low temperature superheater, four channels Layout economizer.
  • the main steam temperature of the garbage incineration boiler is 540°C, and the main steam pressure is 9.8 MPa.
  • the flue gas recirculation and secondary air are provided with a common nozzle that can adjust the oxygen content of the boiler outlet according to the operating conditions.
  • the material of the screen superheater is TP347H, and a special high thermal conductivity plastic is laid outside to isolate the tube from contact with the flue gas, and is arranged in the high temperature area of the two channels.
  • one channel and two channels are designed independently, and the two channels can be equipped with furnace soot blowers and furnace denitration devices.
  • a water spray desuperheater is provided between the screen superheater, the high temperature superheater, the middle temperature superheater and the low temperature superheater.
  • the convection heating surface in the high temperature area uses a steam soot blower
  • the convection heating surface in the low temperature area uses a shock wave soot blower
  • the high-temperature superheater, medium-temperature superheater, low-temperature superheater and economizer adopt a serpentine tube structure.
  • the economizer is provided with a siphonic hydrophobic device.
  • the combustion chamber of the present invention adopts a fully water-cooled structure, and flue gas recirculation and secondary air nozzles are provided in the front and rear arch areas, which can effectively solve the furnace coking, reduce the concentration of nitrogen oxides, and improve the efficiency of garbage incineration boilers.
  • All the channels are laid with high thermal conductivity silicon carbide casting materials to solve the high temperature corrosion of the water-cooled wall, and at the same time increase the channel to absorb heat.
  • the screen-type superheater is arranged in the high temperature area of the upper part of the two channels, and a high thermal conductivity plastic is laid outside to ensure that the steam is heated to 540 °C, while effectively solving the problem of high temperature corrosion of the superheater.
  • Three-layer furnace soot blowers are arranged on the front wall of the second channel, while SNCR spray guns are arranged on the lower front wall and the left and right walls.
  • the three-channel entrance is arranged with an evaporator protector I and an evaporator protector II in order to reduce the flue gas temperature at the inlet of the high-temperature superheater.
  • Nickel-based surfacing anticorrosive coating is used in the area where the steam temperature of the high-temperature superheater is higher than 450°C, and TP347H is used for the rest to prevent high-temperature corrosion.
  • the economizer uses a serpentine tube structure to reduce the risk of leakage, and a siphon drain device is installed.
  • the main steam parameters of the garbage incineration boiler of the present invention are 9.8 MPa and 540°C, so that the thermal efficiency of the turbine generator set system of the supporting garbage incineration power plant is increased to more than 34%.
  • Figure 1 is a schematic diagram of the structure of a high temperature and high pressure (9.8MPa, 540°C) garbage incineration vertical boiler.
  • Fig. 2 is a steam flow diagram of the superheating system of Fig. 1.
  • Figure 3 is a schematic diagram of the structure of a high temperature and high pressure (9.8MPa, 540°C) garbage incineration horizontal boiler.
  • Fig. 4 is a steam flow diagram of the superheating system of Fig. 3.
  • Figure 5 is a schematic diagram of the structure of a ⁇ -type boiler for high temperature and high pressure (9.8MPa, 540°C) garbage incineration.
  • Fig. 6 is a steam flow diagram of the superheating system of Fig. 5.
  • FIG. 1 Incinerator system, 2. Boiler steel structure, 3. Drum, 4. Water-cooled combustion chamber, 5. One channel, 6. Two channels, 7. Three channels, 8. Four channels, 9. Screen type Superheater, 10. Evaporation protector II, 11. High temperature superheater, 12. Medium temperature superheater, 13. Low temperature superheater, 14. Primary water spray desuperheater, 15. Secondary water spray desuperheater, 16. Micro water spray desuperheater, 17. Economizer, 18. Steam soot blower, 19. Shock wave soot blower, 20. Furnace soot blower, 21. One or two channels connected to flue, 22. Evaporation protector I , 23. Flue gas recirculation and secondary air nozzles.
  • FIG. 1 Incinerator system, 2. Boiler steel structure, 3. Boiler drum, 4. Water-cooled combustion chamber, 5. One channel, 6. Two channels, 7. Three channels, 8. Horizontal channel, 9. Screen type Superheater, 10. Evaporation protector II, 11. High temperature superheater, 12. Medium temperature superheater, 13. Low temperature superheater, 14. Primary water spray desuperheater, 15. Secondary water spray desuperheater, 16. Micro water spray desuperheater, 17. Economizer, 18. Steam soot blower, 19. Shock wave soot blower, 20. Furnace soot blower, 21. One or two channels connected to flue, 22. Evaporation protector I , 23. Flue gas recirculation and secondary air nozzles.
  • incinerator system 2. boiler steel structure, 3. boiler drum, 4. water-cooled combustion chamber, 5. one channel, 6. two channels, 7. three channels, 8. horizontal channel, 9. screen type Superheater, 10. Evaporation protector II, 11. High temperature superheater, 12. Medium temperature superheater, 13. Low temperature superheater, 14. Primary water spray desuperheater, 15. Secondary water spray desuperheater, 16. Micro water spray desuperheater, 17. Economizer, 18. Steam soot blower, 19. Shock wave soot blower, 20. Furnace soot blower, 21. One or two channels connected to flue, 22. Evaporation protector I , 23. Flue gas recirculation and secondary air nozzles, 24. Four channels.
  • garbage is burned in an incinerator system (1), and the high-temperature flue gas generated enters the waste incineration vertical boiler for waste heat recovery, and high-quality steam is generated and sent to the steam turbine generator set.
  • a high temperature and high pressure (9.8MPa, 540°C) garbage incineration boiler is a vertical suspension structure, and a steel channel (2) of the boiler is suspended in sequence from one channel (5), one and two channels to the flue (21), and two channels ( 6), three channels (7) and four channels (8).
  • the water-cooled combustion chamber (4) is composed of membrane-type water-cooled walls around the grate.
  • Refractory bricks are laid in the area in contact with the garbage, and high thermal conductivity silicon carbide castables are laid in the remaining areas to reduce the temperature of the combustion chamber and avoid coking.
  • the flue gas recirculation and secondary air nozzles (23) are arranged in the front and rear arch area of the water-cooled combustion chamber (4).
  • the nitrogen oxide concentration at the outlet of the incinerator can be reduced, the combustion chamber can be prevented from coking, and the efficiency of garbage incineration boiler can be improved.
  • the ratio of secondary air and recirculated flue gas can be adjusted according to the calorific value of the garbage and the heat load.
  • One channel (5) and one two channel connecting flue (21) are laid with high thermal conductivity silicon carbide castable to isolate the tube from direct contact with the flue gas to avoid high temperature corrosion of the water wall.
  • the screen-type superheater (9) is arranged on the upper part of the second channel (6), and a special high thermal conductivity plastic is laid outside the tube screen at the same time in the high-temperature flue gas area to obtain a higher heat transfer efficiency, and at the same time, the flue gas is directly contacted with the tube to completely Solve the problem of high temperature corrosion of superheater.
  • the two-channel (6) front wall is equipped with a three-layer furnace soot blower, which can perform steam soot blowing on the front wall to keep the radiation heating surface clean.
  • SNCR spray guns are arranged on the lower front wall and the left and right walls to ensure the denitrification efficiency in the furnace.
  • the lower part of the three channels (7) is equipped with a evaporator protector I of a serpentine tube type, with a horizontal pitch of 270 mm, and steam soot is used at the same time.
  • Evaporation protector II (10), high temperature superheater (11), medium temperature superheater (12), low temperature superheater (13), four channel (8) internal economizer (17) are arranged in the three channels (7), as mentioned above
  • the convection heating surface is suspended from the boiler steel structure (2) by a boom.
  • the high-temperature superheater (11), medium-temperature superheater (12), and low-temperature superheater (13) all adopt a large lateral pitch, while using a steam soot blower (18) for cleaning, to ensure that the tube bundle does not accumulate dust and coking, and then avoid High temperature molten salt corrosion of pipes in high temperature areas.
  • the economizer (17) is located in a low temperature area, and the shock wave soot blower (19) is used for cleaning to reduce the initial investment and operating cost of the equipment.
  • the high-temperature superheater (11), medium-temperature superheater (12), low-temperature superheater (13), economizer (17) all adopt a serpentine tube structure, which has lower manufacturing costs and no fillet welding than the previous upper and lower header structures There is a risk of gap leakage, and at the same time, the economizer is equipped with a siphon type hydrophobic device to solve the problem of hydrophobicity of the economizer tube bundle during the hydraulic test and furnace shutdown.
  • the saturated steam from the drum (25) passes through the low-temperature superheater (26), the first-level water spray desuperheater (27), the intermediate-temperature superheater (28), and the second-level water spray desuperheater (29) ), high temperature superheater (30), micro water spray desuperheater (31), screen superheater (32), the steam is heated to the design temperature of 540 °C through the above equipment.
  • the desuperheating water comes from the boiler water supply mother pipe.
  • the heat of flue gas is mainly transferred to the screen superheater by radiation, and then the steam in the tube is heated to 540 °C through special plastics and tubes.
  • garbage is burned in the incinerator system (1), the high-temperature flue gas generated enters the waste incineration boiler for waste heat recovery, and high-quality steam is generated and sent to the steam turbine generator set.
  • a high temperature and high pressure (9.8MPa, 540°C) garbage incineration boiler has a horizontal suspension structure, and a steel channel (2) of the boiler is suspended in sequence from one channel (5), one and two channels to the flue (21), and two channels ( 6), three channels (7) and horizontal channels (8).
  • the water-cooled combustion chamber (4) is composed of membrane-type water-cooled walls around the grate.
  • Refractory bricks are laid in the area in contact with the garbage, and high thermal conductivity silicon carbide castables are laid in the remaining areas to reduce the temperature of the combustion chamber and avoid coking.
  • the flue gas recirculation and secondary air nozzles (23) are arranged in the front and rear arch area of the water-cooled combustion chamber (4).
  • the nitrogen oxide concentration at the outlet of the incinerator can be reduced, the combustion chamber can be prevented from coking, and the efficiency of garbage incineration boiler can be improved.
  • the ratio of secondary air and recirculated flue gas can be adjusted according to the calorific value of the garbage and the heat load.
  • One channel (5) and one two channel connecting flue (21) are laid with high thermal conductivity silicon carbide castable to isolate the tube from direct contact with the flue gas to avoid high temperature corrosion of the water wall.
  • the screen-type superheater (9) is arranged on the upper part of the second channel (6), and a special high thermal conductivity plastic is laid outside the tube screen at the same time in the high-temperature flue gas area to obtain a higher heat transfer efficiency, and at the same time, the flue gas is directly contacted with the tube to completely Solve the problem of high temperature corrosion of superheater.
  • the two-channel (6) front wall is equipped with a three-layer furnace soot blower, which can perform steam soot blowing on the front wall to keep the radiation heating surface clean.
  • SNCR spray guns are arranged on the lower front wall and the left and right walls to ensure the denitrification efficiency in the furnace.
  • the lower part of the three channels (7) is equipped with a evaporator protector I of a serpentine tube type, with a horizontal pitch of 270 mm, and steam soot is used at the same time.
  • Evaporation protector II (10), high temperature superheater (11), medium temperature superheater (12), low temperature superheater (13), economizer (17) are arranged in order in the horizontal channel (8).
  • the boom is suspended from the boiler steel structure (2).
  • the high-temperature superheater (11), medium-temperature superheater (12), and low-temperature superheater (13) all adopt a large lateral pitch, while using a steam soot blower (18) for cleaning, to ensure that the tube bundle does not accumulate dust and coking, and then avoid High temperature molten salt corrosion of pipes in high temperature areas.
  • the economizer (17) is located in a low temperature area, and the shock wave soot blower (19) is used for cleaning to reduce the initial investment and operating cost of the equipment.
  • the high-temperature superheater (11), medium-temperature superheater (12), low-temperature superheater (13), economizer (17) all adopt a serpentine tube structure, which has lower manufacturing costs and no fillet welding than the previous upper and lower header structures There is a risk of gap leakage, and at the same time, the economizer is equipped with a siphon type hydrophobic device to solve the problem of hydrophobicity of the economizer tube bundle during the hydraulic test and furnace shutdown.
  • the saturated steam from the drum (25) passes through the low-temperature superheater (26), the first-stage water spray desuperheater (27), the intermediate-temperature superheater (28), and the second-stage water spray desuperheater (29) ), high temperature superheater (30), micro water spray desuperheater (31), screen superheater (32), the steam is heated to the design temperature of 540 °C through the above equipment.
  • the desuperheating water comes from the boiler water supply mother pipe.
  • the heat of the flue gas is mainly transferred to the screen superheater by radiation, and then the steam in the tube is heated to 540 °C through the plastic and the tube in turn.
  • garbage is burned in the incinerator system (1), the high-temperature flue gas generated enters the waste incineration boiler for waste heat recovery, and high-quality steam is generated and sent to the steam turbine generator set.
  • a high temperature and high pressure (9.8MPa, 540°C) garbage incineration boiler is a ⁇ -type suspension structure, and a channel (5), a two-channel connection flue (21), and a two-channel (one channel) are suspended on the boiler steel structure (2) in sequence. 6), three channels (7), horizontal channels (8) and four channels (24).
  • the water-cooled combustion chamber (4) is composed of membrane-type water-cooled walls around the grate.
  • Refractory bricks are laid in the area in contact with the garbage, and high thermal conductivity silicon carbide castables are laid in the remaining areas to reduce the temperature of the combustion chamber and avoid coking.
  • the flue gas recirculation and secondary air nozzles (23) are arranged in the front and rear arch area of the water-cooled combustion chamber (4).
  • the nitrogen oxide concentration at the outlet of the incinerator can be reduced, the combustion chamber can be prevented from coking, and the efficiency of garbage incineration boiler can be improved.
  • the ratio of secondary air and recirculated flue gas can be adjusted according to the calorific value of the garbage and the heat load.
  • One channel (5) and one two channel connecting flue (21) are laid with high thermal conductivity silicon carbide castable to isolate the tube from direct contact with the flue gas to avoid high temperature corrosion of the water wall.
  • the screen-type superheater (9) is arranged on the upper part of the second channel (6), and a special high thermal conductivity plastic is laid outside the tube screen at the same time in the high-temperature flue gas area to obtain a higher heat transfer efficiency, and at the same time, the flue gas is directly contacted with the tube to completely Solve the problem of high temperature corrosion of superheater.
  • the two-channel (6) front wall is equipped with a three-layer furnace soot blower, which can perform steam soot blowing on the front wall to keep the radiation heating surface clean.
  • SNCR spray guns are arranged on the lower front wall and the left and right walls to ensure the denitrification efficiency in the furnace.
  • the lower part of the three channels (7) is equipped with a evaporator protector I of a serpentine tube type, with a horizontal pitch of 270 mm, and steam soot is used at the same time.
  • an evaporative protector II (10), a high-temperature superheater (11), a medium-temperature superheater (12), and a low-temperature superheater (13) are arranged in sequence, and an economizer (17) is arranged in the four-channel (24).
  • the aforementioned convection heating surfaces are suspended from the boiler steel structure (2) by a boom.
  • the high-temperature superheater (11), medium-temperature superheater (12), and low-temperature superheater (13) all adopt a large lateral pitch, while using a steam soot blower (18) for cleaning, to ensure that the tube bundle does not accumulate dust and coking, and then avoid High temperature molten salt corrosion of pipes in high temperature areas.
  • the economizer (17) is located in a low temperature area, and the shock wave soot blower (19) is used for cleaning to reduce the initial investment and operating cost of the equipment.
  • the high-temperature superheater (11), medium-temperature superheater (12), low-temperature superheater (13), economizer (17) all adopt a serpentine tube structure, which has lower manufacturing costs and no fillet welding than the previous upper and lower header structures There is a risk of gap leakage, and at the same time, the economizer is equipped with a siphon type hydrophobic device to solve the problem of hydrophobicity of the economizer tube bundle during the hydraulic test and furnace shutdown.
  • the saturated steam from the drum (25) passes through the low-temperature superheater (26), the first-stage water spray desuperheater (27), the intermediate-temperature superheater (28), and the second-stage water spray desuperheater (29) ), high temperature superheater (30), micro water spray desuperheater (31), screen superheater (32), the steam is heated to the design temperature of 540 °C through the above equipment.
  • the desuperheating water comes from the boiler water supply mother pipe.
  • the heat of the flue gas is mainly transferred to the screen superheater by radiation, and then the steam in the tube is heated to 540 °C through the plastic and the tube in turn.
  • the invention adopts a screen superheater of a waste incineration waste heat boiler whose main steam temperature is 540°C.
  • the screen superheater is composed of a heated tube screen, pins, special plastics, pipe clamps, upper header, flexible sealing device, hanging device and maintenance manhole.
  • the screen-type superheater can be laid with plastic to isolate the tube from contact with the flue gas and completely solve the high temperature corrosion.
  • the screen superheater can heat the steam to 540 °C, so that the thermal efficiency of the turbine generator set system of the supporting garbage incineration power plant can be increased to 34%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

一种高温高压垃圾焚烧炉,主蒸汽温度为540℃,主蒸汽压力为9.8MPa,其采用水冷燃烧室(4),按照烟气流动方向依次是一通道(5)、一二通道连接通道(21)、二通道(6)和三通道(7)。二通道(6)上部布置屏式过热器(9),采用屏式过热器(9)可以将蒸汽加热到 540℃,使配套垃圾焚烧电厂汽轮发电机组***的热效率提高到34%。

Description

一种高温高压垃圾焚烧锅炉 技术领域
本发明涉及城市生活垃圾焚烧领域,尤其是主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧锅炉。
背景技术
目前国内外垃圾焚烧发电厂锅炉蒸汽多采用4MPa、400℃,由于蒸汽初参数低其全厂发电热效率也普遍低于常规燃料电厂。目前提高垃圾焚烧发电热效率主要通过提高蒸汽初压、提高蒸汽温度、中间再热三种方式,其中以提高蒸汽温度和压力为最理想最有效技术手段。但是由于生活垃圾中含有Cl、S以及碱金属等元素,提高蒸汽温度和压力后,过热器和水冷***面临高温腐蚀问题。目前为解决水冷***和过热器高温腐蚀,大多采用价格昂贵的镍基或钛基堆焊防腐工艺,并且在主蒸汽温度超过500℃时,镍基和钛基堆焊层也将快速腐蚀。
本发明是一种主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧立式锅炉,能将汽轮发电机组热效率提高至34%以上,同时采用敷设特殊高导热浇注料或可塑料隔绝管子与烟气直接接触,从而有效解决高温腐蚀问题,确保水冷壁和过热器长期安全、稳定运行。
发明内容
本发明的目的是克服现有技术的缺陷,本发明的具体技术方案是:
一种高温高压垃圾焚烧锅炉,主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧锅炉。采用水冷燃烧室,然后按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道。其中二通道上部布置屏式过热器。
进一步的,燃烧室采用全水冷结构,与垃圾接触区域采用耐火砖,其余区域敷设高导热碳化硅浇注料,一通道全部敷设高导热碳化硅浇注料,不采用镍基防腐涂层。
所述屏式过热器,材质为TP347H,外部敷设高导热可塑料,布置在二通道上部。
所述二通道前墙采用镍基防腐涂层,二通道顶部及屏式过热器区域左右墙、后墙敷设高导热耐火浇注料。
所述二通道前墙布置三层炉膛吹灰器进行清灰,二通道下部前墙及左右墙布置有SNCR喷枪。
所述三通道下部布置蛇形管型式的蒸发保护器Ⅰ,采用大横向节距,同时采用蒸汽吹灰 器进行清灰。
所述三通道布置上下集箱型式的蒸发保护器Ⅱ,采用大横向节距,同时采用蒸汽吹灰器。
所述高温过热器、中温过热器、低温过热器采用蛇形管结构,采用大横向节距,同时采用蒸汽吹灰器。
所述省煤器采用蛇形管结构,采用激波吹灰器,同时设置虹吸式疏水装置。
所述屏式过热器和高温过热器之间设置微量喷水减温器,高温过热器、中温过热器、低温过热器之间分别设置二级喷水减温器和一级喷水减温器。
所述采用烟气再循环工艺,烟气再循环和二次风共用喷嘴,设置在燃烧室前后拱区域。
本发明还提供了一种高温高压垃圾焚烧立式锅炉,主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧立式锅炉,为立式悬吊结构;包括水冷燃烧室,按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道和四通道。其中二通道上部布置屏式过热器,三通道内依次布置蒸发保护器Ⅰ、蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器,四通道布置省煤器;所述燃烧室采用全水冷结构,与垃圾接触区域采用耐火砖,其余区域敷设高导热碳化硅浇注料,一通道全部敷设高导热碳化硅浇注料,不采用镍基防腐涂层;所述屏式过热器,材质为TP347H,外部敷设高导热可塑料,布置在二通道上部;所述二通道前墙采用镍基防腐涂层,二通道顶部及屏式过热器区域左右墙、后墙敷设高导热耐火浇注料;所述二通道前墙布置三层炉膛吹灰器进行清灰,二通道下部前墙及左右墙布置有SNCR喷枪;所述三通道下部布置蛇形管型式的蒸发保护器Ⅰ,采用大横向节距,同时采用蒸汽吹灰器进行清灰;所述三通道布置上下集箱型式的蒸发保护器Ⅱ,采用大横向节距,同时采用蒸汽吹灰器。
进一步的,所述高温过热器、中温过热器、低温过热器采用蛇形管结构,采用大横向节距,同时采用蒸汽吹灰器。
进一步的,所述省煤器采用蛇形管结构,采用激波吹灰器,同时设置虹吸式疏水装置。
进一步的,所述屏式过热器和高温过热器之间设置微量喷水减温器,高温过热器、中温过热器、低温过热器之间分别设置二级喷水减温器和一级喷水减温器。
进一步的,烟气再循环和二次风共用喷嘴。
本发明还提供了一种高温高压垃圾焚烧卧式锅炉,主蒸汽压力为9.8MPa的垃圾焚烧卧式锅炉,所述垃圾焚烧锅炉主蒸汽温度为540℃,为卧式悬吊结构,采用水冷燃烧室;按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道和水平通道;其中屏式过热器布置在二通道上部,外部敷设特殊高导热可塑料,蒸发保护器Ⅰ布置在三通道下部,水平通道内依次布置蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器和省煤器。
进一步的,水冷燃烧室4由炉排四周膜式水冷壁构成,与垃圾接触区域敷设耐火砖,其余区域敷设高导热碳化硅浇注料。
进一步的,烟气再循环及二次风喷嘴23布置在水冷燃烧室4前后拱区域,采用再循环烟气时可降低焚烧炉出口氮氧化物浓度。
进一步的,一通道5和一二通道连接烟道21敷设高导热碳化硅浇注料,隔绝管子与烟气直接接触以避免水冷壁高温腐蚀。
进一步的,屏式过热器9布置在二通道6上部,管屏外部敷设特殊高导热可塑料同时位于高温烟气区域。
进一步的,二通道6前墙布置可对前墙进行蒸汽吹灰以保持辐射受热面清洁的三层炉膛吹灰器,下部前墙及左右墙布置有SNCR喷枪。
进一步的,三通道7下部布置蛇形管型式的蒸发保护器Ⅰ。
进一步的,水平通道8内依次布置蒸发保护器Ⅱ10、高温过热器11、中温过热器12、低温过热器13、省煤器17,对流受热面均通过吊杆悬吊在锅炉钢结构2;高温过热器11、中温过热器12、低温过热器13均采用大横向节距,采用蒸汽吹灰器18进行清灰;省煤器17位于低温区域;高温过热器11、中温过热器12、低温过热器13、省煤器17均采用蛇形管结构。
本发明还提供一种高温高压垃圾焚烧π式锅炉,包括水冷燃烧室、按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道、水平通道和四通道;其中屏式过热器布置在二通道上部,外部敷设特殊高导热可塑料,蒸发保护器Ⅰ布置在三通道下部,水平通道内依次布置蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器,四通道布置省煤器。
进一步的,垃圾焚烧锅炉主蒸汽温度为540℃、主蒸汽压力为9.8MPa。
进一步的,烟气再循环和二次风设有可根据运行情况调整锅炉出***氧量的共用喷嘴。
进一步的,一通道全部敷设高导热碳化硅浇注料。
进一步的,屏式过热器材质采用TP347H,外部敷设特殊高导热可塑料以隔绝管子与烟气接触,并布置在二通道高温区域。
进一步的,一通道和二通道独立设计,二通道可布置炉膛吹灰器和炉内脱硝装置。
进一步的,屏式过热器、高温过热器、中温过热器和低温过热器之间均设置喷水减温器。
进一步的,高温区对流受热面采用蒸汽吹灰器,低温区对流受热面采用激波吹灰器。
进一步的,高温过热器、中温过热器、低温过热器和省煤器采用蛇形管结构。
进一步的,省煤器设置虹吸式疏水装置。
本发明燃烧室采用全水冷结构,前后拱区域设置烟气再循环及二次风喷嘴,可有效解决 炉膛结焦、降低氮氧化物浓度和提高垃圾焚烧锅炉效率。一通道全部敷设高导热碳化硅浇注料,解决水冷壁高温腐蚀,同时增大一通道辐射吸热量。屏式过热器布置在二通道上部高温区域,外部敷设高导热可塑料,以保证将蒸汽加热到540℃,同时有效解决过热器高温腐蚀问题。二通道前墙布置三层炉膛吹灰器,同时下部前墙及左右墙布置有SNCR喷枪。三通道入口依次布置蒸发保护器Ⅰ和蒸发保护器Ⅱ,以降低高温过热器入口烟气温度。高温过热器蒸汽温度高于450℃区域采用镍基堆焊防腐涂层,其余部分采用TP347H,以防止高温腐蚀。省煤器采用蛇形管结构,降低泄漏风险,并设置虹吸疏水装置。本发明垃圾焚烧锅炉主蒸汽参数为9.8MPa、540℃,使配套垃圾焚烧发电厂汽轮发电机组***热效率提高到34%以上。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是高温高压(9.8MPa、540℃)垃圾焚烧立式锅炉结构示意图。
图2是图1过热***蒸汽流程图。
图3是高温高压(9.8MPa、540℃)垃圾焚烧卧式锅炉结构示意图。
图4是图3过热***蒸汽流程图。
图5是高温高压(9.8MPa、540℃)垃圾焚烧π式锅炉结构示意图.
图6是图5过热***蒸汽流程图。
图1中1.焚烧炉***,2.锅炉钢结构,3.锅筒,4.水冷燃烧室,5.一通道,6.二通道,7.三通道,8.四通道,9.屏式过热器,10.蒸发保护器Ⅱ,11.高温过热器,12.中温过热器,13.低温过热器,14.一级喷水减温器,15.二级喷水减温器,16.微量喷水减温器,17.省煤器,18.蒸汽吹灰器,19.激波吹灰器,20.炉膛吹灰器,21.一二通道连接烟道,22.蒸发保护器Ⅰ,23.烟气再循环及二次风喷嘴。
图2中25.锅筒,26.低温过热器,27.一级喷水减温器,28.中温过热器,29.二级喷水减温器,30.高温过热器,31.微量喷水减温器,32.屏式过热器,33.集汽集箱。
图3中1.焚烧炉***,2.锅炉钢结构,3.锅筒,4.水冷燃烧室,5.一通道,6.二通道,7.三通道,8.水平通道,9.屏式过热器,10.蒸发保护器Ⅱ,11.高温过热器,12.中温过热器,13.低温过热器,14.一级喷水减温器,15.二级喷水减温器,16.微量喷水减温器,17.省煤器,18.蒸汽吹灰器,19.激波吹灰器,20.炉膛吹灰器,21.一二通道连接烟道,22.蒸发保护器Ⅰ,23.烟气再循环及二次风喷嘴。
图4中25.锅筒,26.低温过热器,27.一级喷水减温器,28.中温过热器,29.二级喷水减温器,30.高温过热器,31.微量喷水减温器,32.屏式过热器,33.集汽集箱。
图5中1.焚烧炉***,2.锅炉钢结构,3.锅筒,4.水冷燃烧室,5.一通道,6.二通道,7.三通道,8.水平通道,9.屏式过热器,10.蒸发保护器Ⅱ,11.高温过热器,12.中温过热器,13.低温过热器,14.一级喷水减温器,15.二级喷水减温器,16.微量喷水减温器,17.省煤器,18.蒸汽吹灰器,19.激波吹灰器,20.炉膛吹灰器,21.一二通道连接烟道,22.蒸发保护器Ⅰ,23.烟气再循环及二次风喷嘴,24.四通道。
图6中25.锅筒,26.低温过热器,27.一级喷水减温器,28.中温过热器,29.二级喷水减温器,30.高温过热器,31.微量喷水减温器,32.屏式过热器,33.集汽集箱。
具体实施方式
实施例1
在图1中,垃圾在焚烧炉***(1)中燃烧,产生的高温烟气进入垃圾焚烧立式锅炉中进行余热回收,产生高品质蒸汽送入汽轮机发电机组。一种高温高压(9.8MPa、540℃)垃圾焚烧锅炉为立式悬吊结构,锅炉钢结构(2)上依次悬吊一通道(5)、一二通道连接烟道(21)、二通道(6)、三通道(7)和四通道(8)。水冷燃烧室(4)由炉排四周膜式水冷壁构成,与垃圾接触区域敷设耐火砖,其余区域敷设高导热碳化硅浇注料,以降低燃烧室温度避免结焦。烟气再循环及二次风喷嘴(23)布置在水冷燃烧室(4)前后拱区域,采用再循环烟气时可降低焚烧炉出口氮氧化物浓度、防止燃烧室结焦和提高垃圾焚烧锅炉效率,同时可根据垃圾热值和热负荷情况调整二次风和再循环烟气配比。一通道(5)和一二通道连接烟道(21)敷设高导热碳化硅浇注料,隔绝管子与烟气直接接触以避免水冷壁高温腐蚀。屏式过热器(9)布置在二通道(6)上部,管屏外部敷设特殊高导热可塑料同时位于高温烟气区域,以获得较高传热效率,同时隔绝烟气与管子直接接触以彻底解决过热器高温腐蚀问题。二通道(6)前墙布置三层炉膛吹灰器,可对前墙进行蒸汽吹灰以保持辐射受热面清洁,同时下部前墙及左右墙布置有SNCR喷枪,确保炉内脱硝效率。三通道(7)下部布置蛇形管型式的蒸发保护器Ⅰ,横向节距270mm,同时采用蒸汽吹灰。三通道(7)内布置蒸发保护器Ⅱ(10)、高温过热器(11)、中温过热器(12)、低温过热器(13),四通道(8)内省煤器(17),前述对流受热面均通过吊杆悬吊在锅炉钢结构(2)。高温过热器(11)、中温过热器(12)、低温过热器(13)均采用大横向节距,同时采用蒸汽吹灰器(18)进行清灰,确保管束不积灰、结焦,进而避免高温区域管子发生灰渣高温融盐腐蚀。省煤器(17)位于低温区域,采用激波吹灰器(19)进行清灰以降低设备初期投资和运行成本。高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17)均采用蛇形管结构,相比以前上下集箱结构具有制造成本低和不存在角焊缝泄漏风险,同时省煤器设置虹吸式疏水装置以解决水压试验和停炉时省煤器管束疏水问 题。
在图2中,来自锅筒(25)的饱和蒸汽依次通过低温过热器(26)、一级喷水减温器(27)、中温过热器(28)、二级喷水减温器(29)、高温过热器(30)、微量喷水减温器(31)、屏式过热器(32),通过以上设备将蒸汽加热到设计温度540℃。通过每两级过热器之间的喷水减温器,可灵活调整进入下级过热器的蒸汽温度及保证主蒸汽出口温度在要求范围内,减温水来自锅炉给水母管。烟气热量主要以辐射方式传递到屏式过热器,然后依次通过特殊可塑料及管子加热管内蒸汽至540℃。
实施例2
在图3中,垃圾在焚烧炉***(1)中燃烧,产生的高温烟气进入垃圾焚烧锅炉中进行余热回收,产生高品质蒸汽送入汽轮机发电机组。一种高温高压(9.8MPa、540℃)垃圾焚烧锅炉为卧式悬吊结构,锅炉钢结构(2)上依次悬吊一通道(5)、一二通道连接烟道(21)、二通道(6)、三通道(7)和水平通道(8)。水冷燃烧室(4)由炉排四周膜式水冷壁构成,与垃圾接触区域敷设耐火砖,其余区域敷设高导热碳化硅浇注料,以降低燃烧室温度避免结焦。烟气再循环及二次风喷嘴(23)布置在水冷燃烧室(4)前后拱区域,采用再循环烟气时可降低焚烧炉出口氮氧化物浓度、防止燃烧室结焦和提高垃圾焚烧锅炉效率,同时可根据垃圾热值和热负荷情况调整二次风和再循环烟气配比。一通道(5)和一二通道连接烟道(21)敷设高导热碳化硅浇注料,隔绝管子与烟气直接接触以避免水冷壁高温腐蚀。屏式过热器(9)布置在二通道(6)上部,管屏外部敷设特殊高导热可塑料同时位于高温烟气区域,以获得较高传热效率,同时隔绝烟气与管子直接接触以彻底解决过热器高温腐蚀问题。二通道(6)前墙布置三层炉膛吹灰器,可对前墙进行蒸汽吹灰以保持辐射受热面清洁,同时下部前墙及左右墙布置有SNCR喷枪,确保炉内脱硝效率。三通道(7)下部布置蛇形管型式的蒸发保护器Ⅰ,横向节距270mm,同时采用蒸汽吹灰。水平通道(8)内依次布置蒸发保护器Ⅱ(10)、高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17),前述对流受热面均通过吊杆悬吊在锅炉钢结构(2)。高温过热器(11)、中温过热器(12)、低温过热器(13)均采用大横向节距,同时采用蒸汽吹灰器(18)进行清灰,确保管束不积灰、结焦,进而避免高温区域管子发生灰渣高温融盐腐蚀。省煤器(17)位于低温区域,采用激波吹灰器(19)进行清灰以降低设备初期投资和运行成本。高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17)均采用蛇形管结构,相比以前上下集箱结构具有制造成本低和不存在角焊缝泄漏风险,同时省煤器设置虹吸式疏水装置以解决水压试验和停炉时省煤器管束疏水问题。
在图4中,来自锅筒(25)的饱和蒸汽依次通过低温过热器(26)、一级喷水减温器(27)、 中温过热器(28)、二级喷水减温器(29)、高温过热器(30)、微量喷水减温器(31)、屏式过热器(32),通过以上设备将蒸汽加热到设计温度540℃。通过每两级过热器之间的喷水减温器,可灵活调整进入下级过热器的蒸汽温度及保证主蒸汽出口温度在要求范围内,减温水来自锅炉给水母管。烟气热量主要以辐射方式传递到屏式过热器,然后依次通过可塑料及管子加热管内蒸汽至540℃。
实施例3
在图5中,垃圾在焚烧炉***(1)中燃烧,产生的高温烟气进入垃圾焚烧锅炉中进行余热回收,产生高品质蒸汽送入汽轮机发电机组。一种高温高压(9.8MPa、540℃)垃圾焚烧锅炉为π式悬吊结构,锅炉钢结构(2)上依次悬吊一通道(5)、一二通道连接烟道(21)、二通道(6)、三通道(7)、水平通道(8)和四通道(24)。水冷燃烧室(4)由炉排四周膜式水冷壁构成,与垃圾接触区域敷设耐火砖,其余区域敷设高导热碳化硅浇注料,以降低燃烧室温度避免结焦。烟气再循环及二次风喷嘴(23)布置在水冷燃烧室(4)前后拱区域,采用再循环烟气时可降低焚烧炉出口氮氧化物浓度、防止燃烧室结焦和提高垃圾焚烧锅炉效率,同时可根据垃圾热值和热负荷情况调整二次风和再循环烟气配比。一通道(5)和一二通道连接烟道(21)敷设高导热碳化硅浇注料,隔绝管子与烟气直接接触以避免水冷壁高温腐蚀。屏式过热器(9)布置在二通道(6)上部,管屏外部敷设特殊高导热可塑料同时位于高温烟气区域,以获得较高传热效率,同时隔绝烟气与管子直接接触以彻底解决过热器高温腐蚀问题。二通道(6)前墙布置三层炉膛吹灰器,可对前墙进行进行蒸汽吹灰以保持辐射受热面清洁,同时下部前墙及左右墙布置有SNCR喷枪,确保炉内脱硝效率。三通道(7)下部布置蛇形管型式的蒸发保护器Ⅰ,横向节距270mm,同时采用蒸汽吹灰。水平通道(8)内依次布置蒸发保护器Ⅱ(10)、高温过热器(11)、中温过热器(12)、低温过热器(13),四通道(24)布置省煤器(17),前述对流受热面均通过吊杆悬吊在锅炉钢结构(2)。高温过热器(11)、中温过热器(12)、低温过热器(13)均采用大横向节距,同时采用蒸汽吹灰器(18)进行清灰,确保管束不积灰、结焦,进而避免高温区域管子发生灰渣高温融盐腐蚀。省煤器(17)位于低温区域,采用激波吹灰器(19)进行清灰以降低设备初期投资和运行成本。高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17)均采用蛇形管结构,相比以前上下集箱结构具有制造成本低和不存在角焊缝泄漏风险,同时省煤器设置虹吸式疏水装置以解决水压试验和停炉时省煤器管束疏水问题。
在图6中,来自锅筒(25)的饱和蒸汽依次通过低温过热器(26)、一级喷水减温器(27)、中温过热器(28)、二级喷水减温器(29)、高温过热器(30)、微量喷水减温器(31)、屏式 过热器(32),通过以上设备将蒸汽加热到设计温度540℃。通过每两级过热器之间的喷水减温器,可灵活调整进入下级过热器的蒸汽温度及保证主蒸汽出口温度在要求范围内,减温水来自锅炉给水母管。烟气热量主要以辐射方式传递到屏式过热器,然后依次通过可塑料及管子加热管内蒸汽至540℃。
本发明采用主蒸汽温度为540℃的垃圾焚烧余热锅炉屏式过热器。屏式过热器由受热管屏、销钉、特殊可塑料、管夹、上联箱、柔性密封装置、吊挂装置和检修人孔组成。屏式过热器敷设可塑料,隔绝管子与烟气接触,彻底解决高温腐蚀。屏式过热器可将蒸汽加热到540℃,使配套垃圾焚烧发电厂汽轮发电机组***热效率提高到34%。

Claims (32)

  1. 一种高温高压垃圾焚烧锅炉,其特征在于,主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧锅炉;采用水冷燃烧室,然后按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道。其中二通道上部布置屏式过热器。
  2. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,燃烧室采用全水冷结构,与垃圾接触区域采用耐火砖,其余区域敷设高导热碳化硅浇注料,一通道全部敷设高导热碳化硅浇注料,不采用镍基防腐涂层。
  3. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述屏式过热器,材质为TP347H,外部敷设高导热可塑料,布置在二通道上部。
  4. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述二通道前墙采用镍基防腐涂层,二通道顶部及屏式过热器区域左右墙、后墙敷设高导热耐火浇注料;所述二通道前墙布置三层炉膛吹灰器进行清灰,二通道下部前墙及左右墙布置有SNCR喷枪。
  5. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述三通道下部布置蛇形管型式的蒸发保护器Ⅰ,采用大横向节距,同时采用蒸汽吹灰器进行清灰;所述三通道布置上下集箱型式的蒸发保护器Ⅱ,采用大横向节距,同时采用蒸汽吹灰器。
  6. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述高温过热器、中温过热器、低温过热器采用蛇形管结构,采用大横向节距,同时采用蒸汽吹灰器。
  7. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述省煤器采用蛇形管结构,采用激波吹灰器,同时设置虹吸式疏水装置。
  8. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述屏式过热器和高温过热器之间设置微量喷水减温器,高温过热器、中温过热器、低温过热器之间分别设置二级喷水减温器和一级喷水减温器。
  9. 根据权利要求1所述的一种高温高压垃圾焚烧锅炉,其特征在于,所述采用烟气再循环工艺,烟气再循环和二次风共用喷嘴,设置在燃烧室前后拱区域。
  10. 一种高温高压垃圾焚烧立式锅炉,其特征在于,主蒸汽温度为540℃、主蒸汽压力为9.8MPa的垃圾焚烧立式锅炉,为立式悬吊结构;包括水冷燃烧室,按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道和四通道。其中二通道上部布置屏式过热器,三通道内依次布置蒸发保护器Ⅰ、蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器,四通道布置省煤器;
    所述燃烧室采用全水冷结构,与垃圾接触区域采用耐火砖,其余区域敷设高导热碳化硅 浇注料,一通道全部敷设高导热碳化硅浇注料,不采用镍基防腐涂层;
    所述屏式过热器,材质为TP347H,外部敷设高导热可塑料,布置在二通道上部;
    所述二通道前墙采用镍基防腐涂层,二通道顶部及屏式过热器区域左右墙、后墙敷设高导热耐火浇注料;
    所述二通道前墙布置三层炉膛吹灰器进行清灰,二通道下部前墙及左右墙布置有SNCR喷枪;
    所述三通道下部布置蛇形管型式的蒸发保护器Ⅰ,采用大横向节距,同时采用蒸汽吹灰器进行清灰;
    所述三通道布置上下集箱型式的蒸发保护器Ⅱ,采用大横向节距,同时采用蒸汽吹灰器。
  11. 根据权利要求10所述的一种高温高压垃圾焚烧立式锅炉,其特征在于,所述高温过热器、中温过热器、低温过热器采用蛇形管结构,采用大横向节距,同时采用蒸汽吹灰器。
  12. 根据权利要求10所述的一种高温高压垃圾焚烧立式锅炉,其特征在于,所述省煤器采用蛇形管结构,采用激波吹灰器,同时设置虹吸式疏水装置。
  13. 根据权利要求10所述的一种高温高压垃圾焚烧立式锅炉,其特征在于,所述屏式过热器和高温过热器之间设置微量喷水减温器,高温过热器、中温过热器、低温过热器之间分别设置二级喷水减温器和一级喷水减温器。
  14. 根据权利要求10所述的一种高温高压垃圾焚烧立式锅炉,其特征在于,烟气再循环和二次风共用喷嘴。
  15. 一种高温高压垃圾焚烧卧式锅炉,其特征在于,主蒸汽压力为9.8MPa的垃圾焚烧卧式锅炉,所述垃圾焚烧锅炉主蒸汽温度为540℃,为卧式悬吊结构,采用水冷燃烧室;按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道和水平通道;其中屏式过热器布置在二通道上部,外部敷设特殊高导热可塑料,蒸发保护器Ⅰ布置在三通道下部,水平通道内依次布置蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器和省煤器。
  16. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:水冷燃烧室(4)由炉排四周膜式水冷壁构成,与垃圾接触区域敷设耐火砖,其余区域敷设高导热碳化硅浇注料。
  17. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:所述烟气再循环及二次风喷嘴(23)布置在水冷燃烧室(4)前后拱区域,采用再循环烟气时可降低焚烧炉出口氮氧化物浓度。
  18. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:一通道(5)和一二通道连接烟道(21)敷设高导热碳化硅浇注料,隔绝管子与烟气直接接触以避免水冷 壁高温腐蚀。
  19. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:屏式过热器(9)布置在二通道(6)上部,管屏外部敷设特殊高导热可塑料同时位于高温烟气区域。
  20. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:二通道(6)前墙布置可对前墙进行蒸汽吹灰以保持辐射受热面清洁的三层炉膛吹灰器,下部前墙及左右墙布置有SNCR喷枪。
  21. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:三通道(7)下部布置蛇形管型式的蒸发保护器Ⅰ。
  22. 根据权利要求15所述的一种高温高压垃圾焚烧卧式锅炉,其特征在于:水平通道(8)内依次布置蒸发保护器Ⅱ(10)、高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17),对流受热面均通过吊杆悬吊在锅炉钢结构(2);
    高温过热器(11)、中温过热器(12)、低温过热器(13)均采用大横向节距,采用蒸汽吹灰器(18)进行清灰;
    省煤器(17)位于低温区域;高温过热器(11)、中温过热器(12)、低温过热器(13)、省煤器(17)均采用蛇形管结构。
  23. 一种高温高压垃圾焚烧π式锅炉,其特征在于,包括水冷燃烧室、按烟气流动方向依次是一通道、一二通道连接通道、二通道、三通道、水平通道和四通道;其中屏式过热器布置在二通道上部,外部敷设特殊高导热可塑料,蒸发保护器Ⅰ布置在三通道下部,水平通道内依次布置蒸发保护器Ⅱ、高温过热器、中温过热器、低温过热器,四通道布置省煤器。
  24. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:垃圾焚烧锅炉主蒸汽温度为540℃、主蒸汽压力为9.8MPa。
  25. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:烟气再循环和二次风设有可根据运行情况调整锅炉出***氧量的共用喷嘴。
  26. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:一通道全部敷设高导热碳化硅浇注料。
  27. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:屏式过热器材质采用TP347H,外部敷设特殊高导热可塑料以隔绝管子与烟气接触,并布置在二通道高温区域。
  28. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:一通道和二通道独立设计,二通道可布置炉膛吹灰器和炉内脱硝装置。
  29. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:屏式过热器、 高温过热器、中温过热器和低温过热器之间均设置喷水减温器。
  30. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:高温区对流受热面采用蒸汽吹灰器,低温区对流受热面采用激波吹灰器。
  31. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:高温过热器、中温过热器、低温过热器和省煤器采用蛇形管结构。
  32. 根据权利要求23所述的一种高温高压垃圾焚烧π式锅炉,其特征在于:省煤器设置虹吸式疏水装置。
PCT/CN2019/080033 2018-12-30 2019-03-28 一种高温高压垃圾焚烧锅炉 WO2020140337A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811646698.9 2018-12-30
CN201811646221.0A CN110006043A (zh) 2018-12-30 2018-12-30 一种高温高压垃圾焚烧立式锅炉
CN201811644026.4A CN110186047A (zh) 2018-12-30 2018-12-30 一种高温高压垃圾焚烧π式锅炉
CN201811644026.4 2018-12-30
CN201811648561.7A CN110220198A (zh) 2018-12-30 2018-12-30 一种高温高压垃圾焚烧卧式锅炉
CN201811648561.7 2018-12-30
CN201811646221.0 2018-12-30
CN201811646698.9A CN110360569A (zh) 2018-12-30 2018-12-30 一种高温高压垃圾焚烧锅炉

Publications (1)

Publication Number Publication Date
WO2020140337A1 true WO2020140337A1 (zh) 2020-07-09

Family

ID=71406709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080033 WO2020140337A1 (zh) 2018-12-30 2019-03-28 一种高温高压垃圾焚烧锅炉

Country Status (1)

Country Link
WO (1) WO2020140337A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671587A1 (en) * 1993-12-31 1995-09-13 CONSIT S.r.l. Waste destructor combined with a second thermal source for the production of electric or mechanical energy
US20090050076A1 (en) * 2005-09-30 2009-02-26 Kim Allan Dam-Johansen Boiler producing steam from flue gases with high electrical efficiency and improved slag quality
JP2014129914A (ja) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd 腐食抑制装置付きボイラ及びボイラの腐食抑制方法
CN107990303A (zh) * 2017-12-28 2018-05-04 华西能源工业股份有限公司 一种垃圾焚烧电厂用双烟道布置的超高压带再热器的锅炉
CN108006664A (zh) * 2017-12-30 2018-05-08 上海康恒环境股份有限公司 一种可转换式垃圾焚烧余热锅炉过热器
CN108006659A (zh) * 2017-12-18 2018-05-08 上海康恒环境股份有限公司 一种垃圾焚烧锅炉的组合式清灰布置结构和布置方法
CN108036298A (zh) * 2017-12-21 2018-05-15 深圳市能源环保有限公司 一种垃圾焚烧锅炉蒸汽再热***
CN207674421U (zh) * 2017-12-29 2018-07-31 上海康恒环境股份有限公司 一种垃圾焚烧余热锅炉屏式过热器
CN108775573A (zh) * 2018-06-20 2018-11-09 江西四冶钢结构有限责任公司 一种新型焚烧垃圾发电锅炉
CN208222820U (zh) * 2017-12-28 2018-12-11 上海四方无锡锅炉工程有限公司 一种新型非对称旗面管结构锅炉

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671587A1 (en) * 1993-12-31 1995-09-13 CONSIT S.r.l. Waste destructor combined with a second thermal source for the production of electric or mechanical energy
US20090050076A1 (en) * 2005-09-30 2009-02-26 Kim Allan Dam-Johansen Boiler producing steam from flue gases with high electrical efficiency and improved slag quality
JP2014129914A (ja) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd 腐食抑制装置付きボイラ及びボイラの腐食抑制方法
CN108006659A (zh) * 2017-12-18 2018-05-08 上海康恒环境股份有限公司 一种垃圾焚烧锅炉的组合式清灰布置结构和布置方法
CN108036298A (zh) * 2017-12-21 2018-05-15 深圳市能源环保有限公司 一种垃圾焚烧锅炉蒸汽再热***
CN107990303A (zh) * 2017-12-28 2018-05-04 华西能源工业股份有限公司 一种垃圾焚烧电厂用双烟道布置的超高压带再热器的锅炉
CN208222820U (zh) * 2017-12-28 2018-12-11 上海四方无锡锅炉工程有限公司 一种新型非对称旗面管结构锅炉
CN207674421U (zh) * 2017-12-29 2018-07-31 上海康恒环境股份有限公司 一种垃圾焚烧余热锅炉屏式过热器
CN108006664A (zh) * 2017-12-30 2018-05-08 上海康恒环境股份有限公司 一种可转换式垃圾焚烧余热锅炉过热器
CN108775573A (zh) * 2018-06-20 2018-11-09 江西四冶钢结构有限责任公司 一种新型焚烧垃圾发电锅炉

Similar Documents

Publication Publication Date Title
WO2014040491A1 (zh) 一种具有两次再热器的塔式锅炉
CN110220198A (zh) 一种高温高压垃圾焚烧卧式锅炉
WO2021258647A1 (zh) 自然循环硅铁余热锅炉箱体结构
CN207688100U (zh) 一种垃圾焚烧锅炉蒸汽再热***
CN108036298A (zh) 一种垃圾焚烧锅炉蒸汽再热***
CN209978041U (zh) 一种高温高压垃圾焚烧锅炉
CN110360569A (zh) 一种高温高压垃圾焚烧锅炉
WO2021244033A1 (zh) 一种高效处理高热值垃圾的焚烧锅炉一体化***
CN214406091U (zh) 一种适用于高热值危险废液的环保焚烧锅炉
CN108167816B (zh) 水冷夹持型防晃动u形屏式过热器
CN214406092U (zh) 一种适用于低热值危险废液的环保焚烧锅炉
CN209763080U (zh) 一种高温高压垃圾焚烧π式锅炉
CN111059546A (zh) 一种高参数垃圾余热锅炉
WO2020140337A1 (zh) 一种高温高压垃圾焚烧锅炉
CN110822402A (zh) 一种卧式燃气角管锅炉
CN203203010U (zh) 一种黄磷尾气燃烧用锅炉
CN208139238U (zh) 高温高压烟气余热利用***
CN207674421U (zh) 一种垃圾焚烧余热锅炉屏式过热器
CN209763081U (zh) 一种高温高压垃圾焚烧立式锅炉
CN209978040U (zh) 一种高温高压垃圾焚烧卧式锅炉
CN206001919U (zh) 超低NOx排放环保节能管式加热炉
CN103759239B (zh) 一种可拆式蒸汽发生器
CN110006043A (zh) 一种高温高压垃圾焚烧立式锅炉
CN209371203U (zh) 一种适用于垃圾焚烧炉排炉的高参数余热锅炉
CN103574584B (zh) 一种余热锅炉煮炉工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907602

Country of ref document: EP

Kind code of ref document: A1