WO2020138144A1 - 化粧料 - Google Patents

化粧料 Download PDF

Info

Publication number
WO2020138144A1
WO2020138144A1 PCT/JP2019/050767 JP2019050767W WO2020138144A1 WO 2020138144 A1 WO2020138144 A1 WO 2020138144A1 JP 2019050767 W JP2019050767 W JP 2019050767W WO 2020138144 A1 WO2020138144 A1 WO 2020138144A1
Authority
WO
WIPO (PCT)
Prior art keywords
cosmetic
cellulose nanofibers
cellulose
film
skin
Prior art date
Application number
PCT/JP2019/050767
Other languages
English (en)
French (fr)
Inventor
則夫 佐野
佐々木 寛人
綾 藤田
大樹 吉原
Original Assignee
株式会社佐野商会
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社佐野商会, 大王製紙株式会社 filed Critical 株式会社佐野商会
Priority to EP19904222.7A priority Critical patent/EP3903886A4/en
Priority to KR1020217013173A priority patent/KR20210124176A/ko
Priority to US17/289,437 priority patent/US20210393502A1/en
Priority to CN201980071455.3A priority patent/CN113056306B/zh
Publication of WO2020138144A1 publication Critical patent/WO2020138144A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Definitions

  • the present invention relates to cosmetics.
  • Patent Document 1 JP-A 2007-269723 discloses that a water-soluble film forming agent such as polyvinyl alcohol, a water-soluble humectant and a specific ester oil are blended to provide good spreadability and glossiness. A cosmetic that is high and has excellent elasticity is disclosed.
  • Patent Document 2 JP 2010-235472A
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-136546 describes that a quick-acting firmness can be imparted by using an oil-soluble film forming agent and an oil agent having high volatility together.
  • Patent Document 4 Japanese Patent Laid-Open No. 11-180817 provides a firming agent capable of producing visually radiant and firm skin by using powder having both strong regular reflection light and diffuse reflection light. However, this does not impart a physical firmness to the cosmetic film.
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2011-57567
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2011-57567
  • the present invention has been completed under such a background art, and an object thereof is to form a skin-free, soft, and tear-free cosmetic film on the skin to provide a physical firmness to the skin. And to provide a cosmetic product that visually gives fine skin.
  • the present invention that solves the above problems is as follows.
  • the cellulose nanofibers have a variation coefficient of fiber diameter distribution of 1.1 or less, The cosmetic material according to claim 1.
  • the cellulose nanofibers have a peak value of a pseudo particle size distribution curve of 1 to 100 ⁇ m and an integrated volume ratio of 100 ⁇ m or less in particle size of 90% or more.
  • the cellulose nanofibers are included in an amount of 0.01 to 3% by mass and an oil content of 1 to 50% by mass.
  • the present invention is a cosmetic which gives a physical firmness to the skin and makes the skin visually fine.
  • the present embodiment is an example of the present invention.
  • the scope of the present invention is not limited to the scope of this embodiment.
  • the cosmetic of this embodiment contains at least a predetermined cellulose nanofiber in addition to the thickening and stabilizing agent.
  • cellulose nanofibers have been used as a thickening stabilizer.
  • cellulose nanofibers are used as a film-forming component, for example. That is, in the present embodiment, a thickening stabilizer is also separately blended, and the conventional cellulose nanofibers correspond to (are associated with) one kind of the thickening stabilizer in the present embodiment.
  • cellulose nanofibers As will be described in detail below, when using cellulose nanofibers as a film-forming component, it is not possible to use all cellulose nanofibers that can be used as a thickening stabilizer, and given conditions Exists. In addition, in the present embodiment, although the cellulose nanofibers are not used as the thickening and stabilizing agent, it is not denied that the cellulose nanofibers are separately used as the thickening and stabilizing agent.
  • a predetermined cellulose nanofiber functions as a film-forming component.
  • the predetermined cellulose nanofiber is also a kind of cellulose nanofiber, it has a function of suppressing the sticky feeling.
  • cellulose nanofibers form a cosmetic film on the skin together with other non-volatile components in cosmetics, giving the skin a physical firmness and providing a visually fine skin. It has a function to show.
  • the predetermined cellulose nanofiber in the present embodiment can be obtained by defibrating (refining) the raw material pulp.
  • raw material pulp of cellulose nanofibers examples include wood pulp made from hardwood, softwood, etc., non-wood pulp made from straw, bagasse, cotton, linen, bark fiber, etc., recovered waste paper, spoiled paper, etc. It is possible to select and use one kind or two or more kinds from used paper pulp (DIP) and the like.
  • DIP used paper pulp
  • wood pulp rather than non-wood pulp or waste paper pulp because it is possible to avoid contamination of impurities as much as possible and obtain a high content of alkali-insoluble ⁇ -cellulose among the cellulose components.
  • alkali By treating with alkali, components soluble in alkali can be removed and the purity of cellulose can be increased.
  • wood pulp for example, one kind or two or more kinds can be selected from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), and mechanical pulp (TMP).
  • LRP hardwood kraft pulp
  • NDP softwood kraft pulp
  • TMP mechanical pulp
  • the hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp.
  • the softwood kraft pulp may be bleached softwood kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.
  • thermomechanical pulp examples include stone ground pulp (SGP), pressure stone ground pulp (PGW), refiner ground pulp (RGP), chemi ground pulp (CGP), thermo ground pulp (TGP), ground pulp (GP),
  • thermomechanical pulp chemithermomechanical pulp (CTMP), refiner mechanical pulp (RMP), and bleached thermomechanical pulp (BTMP)
  • TGP thermo ground pulp
  • GP ground pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP).
  • cellulose nanofibers Prior to the defibration of cellulose nanofibers, it can be pretreated by a chemical method.
  • a chemical method include hydrolysis of a polysaccharide with an acid (acid treatment), hydrolysis of a polysaccharide with an enzyme (enzyme treatment), swelling of a polysaccharide with an alkali (alkali treatment), and oxidation of a polysaccharide with an oxidizing agent ( Examples thereof include oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like.
  • Alkali treatment prior to defibration partially dissociates the hemicellulose and cellulose hydroxyl groups possessed by the pulp, weakens intramolecular and intermolecular hydrogen bonds by anionizing the molecule, and promotes dispersion of the cellulose fibers during defibration.
  • alkali used for the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like.
  • Organic alkali etc. can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
  • the water retention of the cellulose nanofibers can be lowered, the crystallinity can be increased, and the homogeneity can be increased.
  • the dehydration property of the dispersion liquid of cellulose nanofibers (hereinafter, also referred to as “slurry”) is improved.
  • the amorphous region of hemicellulose or cellulose contained in the pulp is decomposed, and as a result, the energy of the micronization treatment can be reduced, and the uniformity and dispersibility of the cellulose fiber can be reduced. Can be improved.
  • the dispersibility of the cellulose fibers contributes to, for example, improving the homogeneity of the cellulose nanofibers.
  • improvement of homogeneity is an important factor.
  • the pretreatment lowers the aspect ratio of the cellulose nanofibers, it is preferable to avoid excessive pretreatment especially when it is used as a film-forming component.
  • the defibration of the raw material pulp includes, for example, a beater, a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a grinder, a stone mill type friction machine such as a grinder, a single-screw kneader, a multi-screw kneader, a kneader refiner, and a jet mill. It can be carried out by beating the raw material pulp. However, it is preferable to use a refiner or a jet mill.
  • the defibration of the raw material pulp is carried out by averaging the fiber diameter, average fiber length, water retention, crystallinity, coefficient of variation of fiber diameter distribution, peak value in pseudo-particle size distribution curve, pulp viscosity, dispersion (slurry) of the obtained cellulose nanofibers. It is preferable that the B-type viscosity of (1) is set to a desired value or evaluation as shown below.
  • the average fiber diameter of cellulose nanofibers is preferably 10 to 1000 nm, more preferably 10 to 100 nm, and particularly preferably 10 to 80 nm. If the average fiber diameter of the cellulose nanofibers is less than 10 nm, the function as a film-forming component may be impaired. In other words, the flexibility of the makeup film formed on the skin becomes poor, and the movement of the skin after application may cause tearing or cracking of the makeup film. Further, when the average fiber diameter of the cellulose nanofibers is less than 10 nm, the viscosity of the cosmetic composition is increased, so that the elongation of the cosmetic composition is reduced, and a desired amount of cellulose nanofibers is added to the cosmetic composition. You may not be able to. In addition, if the average fiber diameter of the cellulose nanofibers is less than 10 nm, the dehydration property of the slurry containing the cellulose nanofibers may be deteriorated.
  • the cosmetic material when the average fiber diameter of cellulose nanofibers exceeds 1000 nm, the cosmetic material may have a rough, sticky or firm feeling. From the viewpoint of stickiness and firmness, it is particularly preferable that the average fiber diameter of the cellulose nanofibers is 100 nm or less.
  • the average fiber diameter of cellulose nanofibers can be adjusted, for example, by selecting the raw material pulp, pretreatment, and defibration.
  • the method for measuring the average fiber diameter of cellulose nanofibers is as follows. First, 100 ml of an aqueous dispersion (slurry) of cellulose nanofibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a Teflon (registered trademark) membrane filter, and once with 100 ml of ethanol and 20 ml of t-butanol. Replace the solvent three times. Next, it is freeze-dried and coated with osmium to obtain a sample. This sample is observed with an electron microscope SEM image at a magnification of 3000 to 30,000 depending on the width of the constituent fibers.
  • the average fiber length of cellulose nanofibers (average length of single fibers) is preferably 0.3 to 200 ⁇ m, more preferably 0.4 to 200 ⁇ m, and particularly preferably 0.5 to 200 ⁇ m. If the average fiber length of the cellulose nanofibers is less than 0.3 ⁇ m, it may not function as a film-forming component. Further, if the average fiber length of the cellulose nanofibers is less than 0.3 ⁇ m, the firmness may be deteriorated.
  • the average fiber length of the cellulose nanofibers exceeds 200 ⁇ m, the fibers are easily entangled with each other, which may cause a problem of aggregation.
  • the aggregation of cellulose nanofibers may lead to a rough feeling of the cosmetic, and may cause the generation of eraser-like lumps (twisting).
  • the average fiber length of cellulose nanofibers can be adjusted, for example, by selecting the raw material pulp, pretreatment, and defibration.
  • the method for measuring the average fiber length of cellulose nanofibers is the same as for the average fiber diameter, and the length of each fiber is measured visually.
  • the median length of the measured values is the average fiber length.
  • the coefficient of variation of the fiber diameter distribution of cellulose nanofibers is preferably 0.1 or more and 1.5 or less, more preferably 0.3 or 1.1 or less.
  • the coefficient of variation of the fiber diameter distribution exceeds 1.1, the fiber diameter distribution becomes wider, and not only nano-sized cellulose fibers but also micro-sized fibers are included, which lowers the fluidity of the cosmetic material itself. In addition, it may cause discomfort such as roughness when applied to the skin.
  • the variation coefficient is 0.3 or less, the nano-sized fiber diameters tend to be uniform, but adjustment by pretreatment, defibration, etc. tends to be difficult.
  • the coefficient of variation of the fiber diameter distribution is a value obtained by calculating the standard deviation value/the average value using the average value and the standard deviation value of the fiber diameters collected in the above-mentioned aggregation of the average fiber diameters.
  • the water retention of the cellulose nanofibers is preferably 500% or less, more preferably 300 to 480%. If the water retention of the cellulose nanofibers is less than 300%, the dispersibility of the cellulose nanofibers may be deteriorated. If the water retention of the cellulose nanofibers is less than 300%, the cosmetic material may be rough.
  • the water retention capacity of the cellulose nanofibers exceeds 500%, the water retention capacity of the cellulose nanofibers itself becomes high, which may deteriorate the dehydration property of the cellulose nanofibers.
  • the water retention of cellulose nanofibers can be adjusted, for example, by selecting the raw material pulp, pretreatment, and defibration.
  • the water retention of cellulose nanofibers is based on JAPAN TAPPI No. 26 (2000).
  • the pulp viscosity of cellulose nanofibers is preferably 1 to 10 cps, more preferably 2 to 9 cps, and particularly preferably 3 to 8 cps.
  • the pulp viscosity is the viscosity of the solution after the cellulose is dissolved in the copper ethylenediamine solution, and the higher the pulp viscosity, the higher the degree of polymerization of cellulose. It is related to the strength and rigidity of cellulose fibers. If the degree of polymerization is too high, the feeling of firmness is inferior and the affinity with the skin is likely to be lost. If the degree of polymerization is low, the strength of the fiber itself is lost and the film tends to crack.
  • the degree of polymerization of the cellulose nanofibers can be adjusted, for example, by selecting the raw material pulp, pretreatment, and defibration.
  • the pulp viscosity is within the above range, it is possible to prevent the occurrence of roughness while functioning as a film-forming component.
  • the peak value (hereinafter, also simply referred to as “peak value”) in the pseudo-particle size distribution curve of cellulose nanofiber is preferably one peak.
  • the cellulose nanofibers have high uniformity in fiber length and fiber diameter and are suitable for use as a raw material for cosmetics.
  • the peak value of cellulose nanofiber is, for example, 1 to 100 ⁇ m, preferably 3 to 80 ⁇ m, and more preferably 5 to 60 ⁇ m.
  • the peak value of the cellulose nanofibers is less than 1 ⁇ m, the fineness of the cellulose progresses.
  • the peak value of the cellulose nanofibers is more than 100 ⁇ m, the fibers may not be defibrated to the nano size.
  • the peak value of cellulose nanofibers can be adjusted, for example, by selecting the raw material pulp, pretreatment, and defibration.
  • the peak value of cellulose nanofiber is a value measured according to ISO-13320 (2009). More specifically, first, a volume-based particle size distribution of an aqueous dispersion of cellulose nanofibers is examined using a particle size distribution measuring device (laser diffraction/scattering type particle size distribution measuring device manufactured by Seishin Co., Ltd.). Next, the median diameter of cellulose nanofibers is measured from this distribution. This median diameter is used as the peak value.
  • a particle size distribution measuring device laser diffraction/scattering type particle size distribution measuring device manufactured by Seishin Co., Ltd.
  • cellulose nanofibers preferably have an integrated volume ratio of 100 ⁇ m or less in particle size of 70% or more, more preferably 90% or more. If the cumulative volume ratio of the particles having a particle size of 100 ⁇ m or less is less than 70%, for example, the sticky feeling and the firmness are impaired and the function as a film-forming component is not sufficiently exhibited, as can be inferred from the test examples described later. There is a risk.
  • Cellulose nanofibers obtained by defibration can be dispersed in an aqueous medium as a dispersion (slurry) if necessary. It is particularly preferable that the entire amount of the aqueous medium is water (aqueous solution). However, the aqueous medium may be some other liquid that is partially compatible with water. As the other liquid, for example, lower alcohols having 3 or less carbon atoms can be used.
  • the B-type viscosity of the dispersion liquid of cellulose nanofibers is preferably 1,000 cps to 20,000 cps, more preferably 1,000 to 10,000 cps, and particularly preferably 1,000 to 5,000 cps. Is.
  • the B-type viscosity of the dispersion liquid is in the above range, mixing with other components constituting the cosmetic material is facilitated, and the dehydration property of the slurry (dispersion liquid) is improved.
  • the B-type viscosity of the dispersion liquid of cellulose nanofibers (solid content concentration: 1.5%) is a value measured in accordance with “liquid viscosity measurement method” of JIS-Z8803 (2011).
  • the B-type viscosity is a resistance torque when the dispersion liquid is stirred, and means that the higher the viscosity, the greater the energy required for stirring.
  • the solid content concentration of the cellulose nanofibers is preferably 0.1% to 5.0%, more preferably 0.3 to 4.0%, and particularly preferably 0.5 to 3.0%.
  • the solid content concentration of the cellulose nanofibers is less than 0.1%, the fluidity becomes too high, which may make it difficult to mix with other components. Further, even if the solid content concentration of the cellulose nanofibers exceeds 5.0% by mass, the fluidity is remarkably reduced, which may make it difficult to mix with other components.
  • Cellulose nanofibers may be dispersed in either the water phase or the oil phase in the cosmetic. However, it is preferable to disperse it in the aqueous phase from the viewpoints of storage stability of the cosmetic and ease of spreading to the skin.
  • the content of cellulose nanofibers in the cosmetic is preferably 0.01 to 3% by mass, more preferably 0.05 to 2% by mass, and particularly preferably 0.1 to 1% by mass. If the content of the cellulose nanofibers is excessively low, the feeling of firmness becomes poor, and the function as a film-forming component may not be exhibited. On the other hand, when the content of cellulose nanofibers is excessively high, the elongation of the cosmetic material is deteriorated and the flexibility of the cosmetic film is deteriorated.
  • oil is present as a dispersed phase.
  • the oil has a function of forming a cosmetic film with the cellulose nanofibers and the like after being applied to the skin and giving the skin a firm feeling.
  • oil content for example, any of the origins of animal oil, vegetable oil, synthetic oil, etc. and the properties of solid oil, semi-solid oil, liquid oil, volatile oil, etc. can be used.
  • oil component examples include hydrocarbons, oils and fats, waxes, hardened oils, ester oils, fatty acids, silicone oils, fluorine-based oils, lanolin derivatives, oil-soluble ultraviolet absorbers, and the like. One kind or a combination of two or more kinds can be used.
  • hydrocarbons such as liquid paraffin, squalane, petrolatum, paraffin wax, ceresin wax, microcrystalline wax, wax, montan wax and the like; Oils and fats such as olive oil, castor oil, jojoba oil, mink oil, macadamian nut oil; Waxes such as beeswax, lanolin, carnauba wax, candelilla wax, and gallow.
  • Esters such as cetyl isooctanoate, isopropyl myristate, isopropyl palmitate, octyldodecyl myristate, glyceryl trioctanoate, glyceryl tribehenate, pentaerythritol rosinate, neopentyl glycol dioctanoate; Silicones such as low polymerization degree dimethylpolysiloxane, high polymerization degree dimethylpolysiloxane, methylphenylpolysiloxane, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, and fluorine-modified silicone; Fluorine-based oil agents such as perfluoropolyether, perfluorodecane and perfluorooctane; Lanolin derivatives such as lanolin, lanolin acetate, lanolin fatty acid isopropyl, and
  • the oil content in the cosmetic is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and particularly preferably 5 to 25% by mass. If the oil content is less than 1% by mass, the flexibility of the cosmetic film may be poor. On the other hand, if the oil content is more than 50% by mass, the firmness may be reduced and the sticky feeling may not be removed.
  • Powders can be added to the cosmetic of this embodiment.
  • the cosmetic material contains powder
  • the sticky feeling of the cosmetic film can be further suppressed.
  • the cosmetic of the present embodiment is used as a base makeup cosmetic, the covering power and the feeling of finishing can be made desired.
  • the powder is not limited by, for example, a spherical shape, a plate shape, a spindle shape, a needle shape, etc., a particle diameter, a particle structure such as a porosity, and a non-porous shape. Further, it may be any of inorganic powders, glittering powders, organic powders, pigments, and composite powders.
  • surface-treating agents such as alumina, silica, inorganic compounds such as iron oxide, fluorine compounds, silicone compounds, phospholipids, phospholipid derivatives, metal soaps, waxes, surfactants, oils and fats, It can also be used after being surface-treated with a hydrocarbon or the like.
  • spherical organic powder for example, polystyrene, nylon, polymethylmethacrylate, polymethylsilsesquioxane powder, organopolysiloxane elastomer powder, cellulose, crystalline cellulose, cellulose acetate, etc. are used, resulting in pores, fine wrinkles, etc. It is possible to effectively conceal the irregularities of the above, so that a preferable finish is obtained.
  • one or more inorganic powders such as titanium oxide, red iron oxide, yellow iron oxide, and black iron oxide are selected as powders. It is preferably used in combination. Further, in particular, inorganic powders coated with a metal oxide such as silica are excellent in dispersion stability and color change prevention because they are well dispersed in the continuous aqueous phase.
  • silica-coated red iron oxide for example, SYMPHOLIGHT RW manufactured by JGC Catalysts & Chemicals Co., Ltd. can be used.
  • silica-coated iron oxide yellow for example, SYMPHOLIGHT Y10 can be used.
  • the content of the powder is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and particularly preferably 5 to 25% by mass based on the total amount of the cosmetic. If the content of the powder is less than 1% by mass, the cosmetic film tends to be sticky. On the other hand, if the powdery cosmetic exceeds 40% by mass, the flexibility of the cosmetic film may be deteriorated.
  • the ultraviolet protective agent means a component that protects the skin and the cosmetic itself from ultraviolet rays by absorbing or scattering ultraviolet rays (ultraviolet absorbent).
  • a general ultraviolet scattering agent used in cosmetics has an ability to absorb ultraviolet rays.
  • the ultraviolet absorber there are water-soluble ultraviolet absorbers and oil-soluble ultraviolet absorbers classified into oils.
  • the water-soluble ultraviolet absorber include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4 ,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonate, 4-phenylbenzophenone , 2-ethylhexyl-4′-phenyl-benzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone, 4-hydroxy-3-carboxybenzophenone and other benzophenone-based UV absorbers; Benzimidazole-based UV absorbers such as phenylbenzimidazole-5-sulfonic acid and
  • oil-soluble UV absorbers examples include cinnamic acid-based UV absorbers such as benzyl paramethoxycinnamate, 2-ethylhexyl paramethoxycinnamate, and glyceryl mono-2-ethylhexanoate diparamethoxycinnamate; Benzophenone-based UV absorbers such as hydroxymethoxybenzophenone, dihydroxymethoxybenzophenone, dihydroxybenzophenone and tetrahydroxybenzophenone; Paraaminobenzoic acid, ethyl paraaminobenzoate, glyceryl paraaminobenzoate, amyl paradimethylaminobenzoate, octyl paradimethylaminobenzoate, ethyl 4-[N,N-di(2-hydroxypropyl)amino]benzoate, diethylaminohydroxy Benzoyl benzoate-based UV absorbers such as hexyl benzoyl;
  • UV scattering agents are fine particle powders and are classified as the above-mentioned powders.
  • the ultraviolet scattering agent is preferably a metal oxide having an average particle diameter of 100 nm or less.
  • a metal oxide having an average particle diameter of 100 nm or less.
  • one kind or a combination of two or more kinds selected from titanium oxide, zinc oxide, cerium oxide and the like having an average particle diameter of 100 nm or less can be used.
  • the UV scattering agent those that have been subjected to hydrophobic treatment from the viewpoint of water resistance are preferable.
  • an ordinary surface treatment method can be adopted. Specifically, for example, an oil and fat treatment method for adsorbing oils and fats on the surface of powder or utilizing functional groups such as hydroxyl groups to cause esterification or etherification to make the powder lipophilic, zinc of fatty acid Metal soap treatment using salt, magnesium salt or aluminum salt, silicone treatment using silicone compound such as dimethylsiloxane or hydrogendimethicone, treatment with fluorine compound having perfluoroalkyl group, treatment with alkylalkoxysilane It is possible to adopt a method of doing so.
  • the content of the ultraviolet protective agent is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and particularly preferably 5 to 25% by mass, based on the whole cosmetic. If the content of the ultraviolet protective agent is less than 1% by mass, the ultraviolet protective effect is insufficient. On the other hand, when the content of the ultraviolet protective agent exceeds 40% by mass, ease of spreading the cosmetic on the skin may decrease.
  • the cosmetics of this embodiment include oil-in-water emulsion cosmetics, and include one or more film components selected from water-soluble film forming agents, oil-soluble film forming agents, and film forming polymer emulsions. It is suitable. By containing these film components, the firmness of the skin can be further enhanced.
  • the water-soluble film forming agent dissolves in the aqueous component to form a cosmetic film.
  • the water-soluble film forming agent for example, one or more of polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, vinyl acetate/vinylpyrrolidone copolymer, modified corn starch, hydrolyzed hydrogenated starch and the like are used in combination. can do.
  • the oil-soluble film forming agent dissolves or disperses in an oily component to form a cosmetic film.
  • the oil-soluble film forming agent include trimethylsiloxysilicic acid, partially crosslinked organopolysiloxane, trimethylsiloxysilylpropylcarbamic acid, fluorine-modified silicone, acrylic-modified silicone, silicone-based resin such as silicone dendrimer-modified resin compound, pentarosin acid.
  • rosin acid-based resins such as erythritol and glyceryl rosinate
  • candelilla resins polyvinyl acetate-based resins
  • polyvinyl isobutyl ether polyisobutylene and the like.
  • the partially crosslinked organopolysiloxane is particularly preferable because it can form a water-resistant decorative film with little stickiness.
  • Partially crosslinked organopolysiloxanes are available in the form of gels dispersed in liquid oil. Examples of commercially available partially crosslinked organopolysiloxanes include KSG-15 (dimethicone/vinyl dimethicone) crosspolymer and cyclopentasiloxane manufactured by Shin-Etsu Chemical Co., Ltd., (dimethicone/vinyl dimethicone) crosspolymer and methyltrimethicone.
  • KSG-1510 consisting of (dimethicone/vinyl dimethicone) crosspolymer and KSG-16 consisting of (dimethicone)
  • KSG-18A consisting of (dimethicone/phenylvinyldimethicone) crosspolymer and diphenylsiloxyphenyltrimethicone
  • (vinyldimethicone/lauryldimethicone) cross KSG-41A consisting of polymer and liquid paraffin
  • KSG-43 consisting of (vinyl dimethicone/lauryl dimethicone) crosspolymer and triethylhexanoin
  • KSG- consisting of (lauryl polydimethylsiloxyethyl dimethicone/bis-vinyl dimethicone) crosspolymer and isododecane 042Z
  • 9040 and 9045 Silicone Elastomer Blend consisting of dimethicone crosspolymer and cyclopent
  • a film-forming polymer emulsion is an aqueous dispersion of a water-insoluble polymer.
  • film-forming polymer emulsions include alkyl acrylate copolymer emulsions, alkyl methacrylate copolymer emulsions, styrene/alkyl acrylate copolymer emulsions, styrene/alkyl methacrylate copolymer emulsions, vinyl acetate polymers.
  • the content of the film component is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass based on the total amount of the cosmetic. If the amount of the film component is too small, the effect of enhancing the firmness may not be obtained. On the other hand, if there are too many film components, the sticky feeling may not be suppressed.
  • the cosmetic of the present embodiment contains a thickening/stabilizing agent that functions as at least one of a thickening agent and a stabilizing agent.
  • a thickening/stabilizing agent that functions as at least one of a thickening agent and a stabilizing agent.
  • the thickening and stabilizing agent for example, a water-soluble polymer other than the water-soluble film forming agent, a clay mineral, or the like can be used.
  • thickening stabilizer examples include carboxyvinyl polymer, sodium polyacrylate, acrylic acid/alkyl methacrylate copolymer, and (PEG-240/decyltetradeceth-20/HDI) copolymer.
  • carboxyvinyl polymer acrylic acid/alkyl methacrylate copolymer, xanthan gum, (Na acrylate/acryloyl dimethyl taurine) copolymer, and hydroxypropylmethyl cellulose.
  • the content of the thickening/stabilizing agent is preferably 0.01 to 5% by mass, more preferably 0.02 to 4% by mass, and particularly preferably 0.05 to 3% by mass, based on the total amount of the cosmetic. ..
  • the content of the thickening/stabilizing agent is less than 0.01% by mass, it is impossible to improve the usability and stabilize the emulsion/dispersion state.
  • Cellulose nanofibers have been conventionally used as a thickening and stabilizing agent, but in this embodiment, they are used as a film-forming component. In this embodiment, the cellulose nanofibers are mixed with the cosmetic under predetermined conditions in order to function as a film-forming component, and the above-mentioned thickening and stabilizing agent is separately blended to function as the thickening and stabilizing function.
  • the cosmetics of this form include nonionic surfactants, polymeric emulsifiers, anionic (anionic) surfactants, cationic (cationic) surfactants, amphoteric surfactants, semipolar surfactants, etc.
  • the surface active agent can be blended.
  • the surfactant may function as an emulsifier as well as a solubilizer, a wetting agent, a detergent, and the like.
  • anionic surfactant examples include fatty acid soaps, ether carboxylic acids and salts thereof, carboxylates such as condensation of amino acids and fatty acids, alkyl sulfonic acids, alkene sulfonates, sulfonates of fatty acid esters, and fatty acid amides.
  • sulfuric acid ester salts of amides sulfuric acid ester salts such as funnel oil, alkyl phosphates, alkyl ether phosphates, alkylallyl ether phosphates, amide phosphates and the like.
  • cationic surfactant examples include alkylamine salts, amine salts such as polyamines and aminoalcohol fatty acid derivatives, alkyl quaternary ammonium salts, aromatic quaternary ammonium salts, pyridinium salts, imidazolium salts and the like. it can.
  • amphoteric surfactants examples include betaine, aminocarboxylic acid salts, imidazoline derivatives and the like.
  • nonionic surfactant examples include sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, ethylene oxide derivative of glycerin fatty acid ester, propylene glycol fatty acid ester, and oxidation of propylene glycol fatty acid ester.
  • Ethylene derivative polyethylene glycol fatty acid ester, sucrose ester, polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene castor oil derivative, polyoxyethylene hydrogenated castor oil derivative, polyoxyethylene phyto Examples thereof include stanol ether, polyoxyethylene phytosterol ether, polyoxyethylene cholestanol ether, polyoxyethylene cholesteryl ether, and polyoxyalkylene-modified organopolysiloxane.
  • a moisturizer can be added to the cosmetic of this embodiment.
  • the moisturizing agent for example, one kind or a combination of two or more kinds selected from polyhydric alcohols, sugars, sugar alcohols, amino acids, peptides, water-soluble polymers and the like can be used. Further, as the moisturizing agent, for example, xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, collagen, sodium lactate, dl-pyrrolidone carboxylate, Issai rose extract, Yarrow millet extract, melilot extract and the like are blended. be able to.
  • the cosmetics of this embodiment include, for example, antibacterial agents, antiseptics, fragrances, antioxidants, pH adjusters, chelating agents, cooling agents, anti-inflammatory agents, skin-care ingredients, vitamins, amino acids, nucleic acids, and inclusions. It is possible to add various components such as compounds that are usually added to cosmetics.
  • a usual production method for example, a method of preparing an aqueous phase and an oil phase respectively, and then gradually adding the oil phase to the aqueous phase while stirring to obtain an oil-in-water emulsion
  • the soap emulsification method, the reaction emulsification method, the D phase emulsification method, or the like can be adopted.
  • the cosmetic of this embodiment may be in any form of cream, gel, emulsion and liquid (diluted emulsion).
  • the cosmetic of this embodiment is particularly excellent as a makeup cosmetic such as a foundation or a base.
  • the cosmetic of this embodiment is also excellent as a makeup cosmetic such as a milky or creamy eye shadow, a blusher, and a concealer.
  • An oil-in-water type emulsion cosmetic (sample) having the composition shown in Table 1 was prepared according to the following production procedure. Next, each prepared sample was applied to the skin (face) of the evaluation panel and the urethane artificial skin for evaluation (manufactured by Vyrax), and dried at room temperature for 30 minutes or more. Various samples were evaluated according to the following criteria.
  • Softwood bleached kraft pulp was used as the raw material for the cellulose fibers (CNF-A, CNF-B, MFC) blended in each sample.
  • CNF-C Rheocrister (TEMPO oxidation type CNF), which is a product of Dai-ichi Kogyo Seiyaku Co., Ltd., was used.
  • the physical properties of each cellulose fiber are shown in Table 2.
  • the average fiber width was determined for CNF-A and CNF-B by the method described above (observation by SEM image).
  • CNF-C was obtained by using a transmission electron microscope (TEM).
  • MFC was measured using a fiber analyzer "FS5" manufactured by Valmet.
  • the dry shrinkage rate was obtained by the following method.
  • An oil-in-water emulsion foundation having the formulation shown in Table 1 was prepared according to the following manufacturing procedure, and was "non-greasy", “feeling of firmness”, “no feeling of stickiness”, “fineness of finish”, “film”Flexibility” and “texture score by image analysis”.
  • Table 1 The components of Nos. 1 to 4 were mixed at the mixing ratio shown in Table 1 and dissolved by heating at 80° C. to prepare an aqueous phase (a).
  • the components Nos. 5 to 11 were mixed at the mixing ratio shown in Table 1 and dissolved by heating at 80° C. to prepare an oil phase (b).
  • the emulsion phase (c) was prepared by mixing the aqueous phase (a) with the oil phase (b) little by little while stirring the aqueous phase (a).
  • the emulsified phase (c) was cooled, and the components Nos. 12 to 18 were mixed at 35° C. in the mixing ratio shown in Table 1 to prepare a cosmetic.
  • FIGS. 1 to 6 (A) is a photograph of the test piece before extension and (B) is a photograph of the test piece after extension.
  • FIG. 1 shows the sample 11 of Example 1 applied.
  • FIG. 2 shows the sample 12 of Example 2 applied.
  • FIG. 3 shows the sample 13 of Comparative Example 3 applied.
  • FIG. 4 shows the sample 14 of Comparative Example 4 applied.
  • FIG. 5 shows the sample 15 of Comparative Example 5 applied.
  • FIG. 6 shows the sample 16 of Comparative Example 6 applied.
  • [Judgment] 5 No cracks were found on the makeup film, and the black artificial skin was hidden. 3: A crack having a width of less than 1 mm is observed, and a black background is visible. 1: A crack having a width of 1 mm or more is observed. (Text score by image analysis) Appropriate amount of each sample (Examples 1 and 2 and Comparative Examples 3 to 6) was applied to the faces (left and right cheeks) of two women in their 20s and photographed using a skin image analyzer VISIA EVOLUTION (manufactured by Canfield).
  • a texture score which is an index of the smoothness of the skin, was calculated using the attached analysis software.
  • the photographing was carried out by applying the same sample to each of the left and right cheeks at 4 locations (8 locations in total). Then, photographing was performed for each sample (Examples 1 and 2 and Comparative Examples 3 to 6). The value obtained by dividing the texture score calculated for this same sample by the texture score calculated for the sample (Comparative Example 1) in which the same subject was not blended with cellulose nanofibers was taken as the T value.
  • T value (texture score calculated for each sample (Examples 1 and 2 and Comparative Examples 3 to 6))/(texture score calculated for Comparative Example 1)
  • the obtained T values per eight locations were simply averaged to obtain the average value of (T), and the judgment was made according to the following criteria.
  • the results of texture score are shown in Table 4. [Judgment]: [Average value of (T)] 5: Less than 0.9 3: 0.9 or more and less than 1.0 1: 1.0 or more
  • the present invention can be used as cosmetics such as foundation and base makeup cosmetics.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

【課題】肌上にべたつきのない、柔軟で断裂の生じない化粧膜を形成することにより、肌に物理的なハリ感を付与し、視覚的にもきめ細かい肌に見せる化粧料を提供する。 【解決手段】増粘安定化剤のほか、平均繊維径10~1000nmのセルロースナノファイバーを含む化粧料とする。

Description

化粧料
 本発明は、化粧料に関するものである。
 肌のハリ感や抗シワ効果を標榜する化粧料が数多く発売されている。肌のハリや弾力性を高める方法としては植物抽出物を配合する方法や、ビタミンA誘導体を用いる方法などが知られている。これらの方法は即時的な効果実感に乏しいため、薬理効果が発現するまでの長期の連用を促すことが難しい。そのため、肌に化粧膜を形成させることにより、物理的にハリを与えて、即時的な効果を実感させる取り組みや、しわ等の凹凸を目立ちにくくし、視覚的にハリ・ツヤを付与する取り組みが行われている。
 特許文献1(特開2007-269723号公報)にはポリビニルアルコール等の水溶性皮膜形成剤と水溶性保湿剤及び特定のエステル油を配合した塗布時ののび広がりが良好で、しかも、ツヤ感が高く、ハリ感の付与に優れる化粧料が開示されている。特許文献2(特開2010-235472号公報)には固形油であるステアリン酸ステアリルと炭化水素を組合わせることにより、柔らかな皮膜で適度な肌のハリ感の付与に優れる乳化化粧料が得られることが開示されている。特許文献3(特開2013-136546号公報)には油溶性皮膜形成剤と揮発性の高い油剤を併用することで即効性のハリ感を付与することができると記載されている。
 しかしながらこれらで用いられる化粧膜を形成することによりハリ感付与に寄与する、水溶性高分子、固形油及び油溶性皮膜形成剤は、いずれも肌に塗布中及び塗布後にべたつきを感じるものであった。また形成される化粧膜が柔軟性に欠ける場合は、肌の動きにより、化粧膜の断裂が生じるという問題もあった。特許文献4(特開平11-180817号公報)には正反射光と拡散反射光がともに強い粉体を用いることにより、視覚的につややかでハリのある肌にすることができるハリ付与剤が得られることが開示されているが、これは化粧膜による物理的なハリ感を付与するものではない。
 一方セルロースナノファイバーは、複合材料の強度向上等の用途検討が為されているが、化粧料分野においては、増粘剤(特許文献5(特開2009-62332号公報))や、分散安定化剤(特許文献6(特開2011-57567号公報))としての利用が検討されているのみで、化粧膜の物性改良に利用されたことはない。
特開2007-269723号公報 特開2010-235472号公報 特開2013-136546号公報 特開平11-180817号公報 特開2009-62332号公報 特開2011-57567号公報
 本発明は、このような背景技術の下に完成したものであり、その目的は、肌上にべたつきのない、柔軟で断裂の生じない化粧膜を形成することにより、肌に物理的なハリ感を付与し、視覚的にもきめ細かい肌に見せる化粧料を提供することにある。
 そこで本発明者らは、鋭意研究した結果、特定のセルロースナノファイバーを配合した化粧料が、上記課題を解決することを見出した、上記課題を解決した本発明は次記のとおりである。
(請求項1に記載の手段)
 増粘安定化剤のほか、平均繊維径10~1000nmのセルロースナノファイバーを含む、
 ことを特徴とする化粧料。
(請求項2に記載の手段)
 前記セルロースナノファイバーは、繊維径分布の変動係数が1.1以下である、
 請求項1に記載の化粧料。
(請求項3に記載の手段)
 前記セルロースナノファイバーは、擬似粒度分布曲線のピーク値が1~100μmであり、粒径100μm以下の積算体積割合が90%以上である、
 請求項1又は請求項2に記載の化粧料。
(請求項4に記載の手段)
 前記セルロースナノファイバーを0.01~3質量%、油分を1~50質量%を含む、
 請求項1~3のいずれか1項に記載の化粧料。
(請求項5に記載の手段)
 ベースメイク化粧料である、
 請求項1~4のいずれか1項に記載の化粧料。
 本発明によると、肌に物理的なハリ感を付与し、視覚的にもきめ細かい肌に見せる化粧料となる。
皮膜の柔軟性の試験結果を示す図である。 皮膜の柔軟性の試験結果を示す図である。 皮膜の柔軟性の試験結果を示す図である。 皮膜の柔軟性の試験結果を示す図である。 皮膜の柔軟性の試験結果を示す図である。 皮膜の柔軟性の試験結果を示す図である。
 次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
 本形態の化粧料は、増粘安定化剤のほかに、所定のセルロースナノファイバーを少なくとも含む。従来、増粘安定化剤としてセルロースナノファイバーが使用されたことはあった。しかしながら、本形態においては、セルロースナノファイバーを、例えば、皮膜形成成分として使用するものである。つまり、本形態においては、増粘安定化剤も別途配合しており、従来のセルロースナノファイバーは、本形態においては当該増粘安定化剤の一種に該当する(対応付けられる)ものである。
 なお、以下で詳細に説明するように、セルロースナノファイバーを皮膜形成成分として使用する場合、増粘安定化剤として使用可能なセルロースナノファイバーを全て使用することができるというものではなく、所定の条件が存在する。また、本形態においては、セルロースナノファイバーを増粘安定化剤として使用するものではないが、別途、増粘安定化剤としてセルロースナノファイバーを使用することを否定するものではない。
(セルロースナノファイバー)
 本形態においては、所定のセルロースナノファイバー(CNF)が、皮膜形成成分として機能する。また、所定のセルロースナノファイバーもセルロースナノファイバーの一種であるが故に、べとつき感を抑制する機能を有する。さらに、セルロースナノファイバーは、肌に塗布された後、化粧料中のその他の不揮発性成分と共に肌上において化粧膜を形成し、もって肌に物理的なハリ感を与え、視覚的にもきめ細かい肌に見せる機能を有する。
 本形態における所定のセルロースナノファイバーは、原料パルプを解繊(微細化)することで得ることができる。
 セルロースナノファイバーの原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。
 ただし、不純物の混入を可及的に避け、セルロース成分の中でもアルカリに不溶なα-セルロースを高配合で得られることから非木材パルプや古紙パルプよりも木材パルプを使用する方が好ましい。アルカリで処理する事により、アルカリに可溶な成分を除去でき、セルロースの純度を高めることができる。
 木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。ただし、前述したセルロース以外の不純物の混入を避けるため、特に広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプの使用が好ましい。
 セルロースナノファイバーの解繊に先立っては、化学的手法によって前処理することもできる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。
 解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース繊維の分散が促進される。
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
 解繊に先立って酵素処理や酸処理、酸化処理を施すと、セルロースナノファイバーの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、セルロースナノファイバーの保水度が低いと脱水し易くなり、セルロースナノファイバーの分散液(以下、「スラリー」とも言う。)の脱水性が向上する。
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解され、結果、微細化処理のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。セルロース繊維の分散性は、例えば、セルロースナノファイバーの均質性向上に資する。この点、化粧料の分野においては、化粧料全量に対するセルロースナノファイバーの配合量が少ないため、均質性向上は、重要なファクターとなる。ただし、前処理は、セルロースナノファイバーのアスペクト比を低下させるため、特に皮膜形成成分として使用する場合においては、過度の前処理は避けるのが好ましい。
 原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
 原料パルプの解繊は、得られるセルロースナノファイバーの平均繊維径、平均繊維長、保水度、結晶化度、繊維径分布の変動係数、擬似粒度分布曲線におけるピーク値、パルプ粘度、分散液(スラリー)のB型粘度が、以下に示すような所望の値又は評価となるように行うのが好ましい。
 セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは10~1000nm、より好ましくは10~100nm、特に好ましくは10~80nmである。セルロースナノファイバーの平均繊維径が10nmを下回ると、皮膜形成成分としての機能が損なわれるおそれがある。つまり、肌の上に形成された化粧膜の柔軟性が劣るものになり、塗布後の皮膚の動きにより、化粧膜の断裂や亀裂が生じるおそれがある。また、セルロースナノファイバーの平均繊維径が10nmを下回ると、化粧料の粘度が上昇するため、化粧料の伸ばし易さが低下するとの問題や、化粧料に所望の量のセルロースナノファイバーを配合することができなくなるおそれがある。その他、セルロースナノファイバーの平均繊維径が10nmを下回ると、セルロースナノファイバーを含むスラリーの脱水性が悪化するおそれがある。
 他方、セルロースナノファイバーの平均繊維径が1000nmを上回ると、化粧材料のざらつき、べたつき感やハリ感が劣るものになるおそれがある。このべたつき感やハリ感という点では、特にセルロースナノファイバーの平均繊維径が100nm以下であるのが好ましい。
 セルロースナノファイバーの平均繊維径は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。
 セルロースナノファイバーの平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%のセルロースナノファイバーの水分散液(スラリー)100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3000倍~30000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
 セルロースナノファイバーの平均繊維長(単繊維の長さ平均)は、好ましくは0.3~200μm、より好ましくは0.4~200μm、特に好ましくは0.5~200μmである。セルロースナノファイバーの平均繊維長が0.3μmを下回ると、皮膜形成成分として機能しなくなるおそれがある。また、セルロースナノファイバーの平均繊維長が0.3μmを下回ると、ハリ感に劣るものになるおそれもある。
 他方、セルロースナノファイバーの平均繊維長が200μmを上回ると、繊維同士が絡み易くなり、凝集の問題が生じるおそれがある。なお、セルロースナノファイバーの凝集は、化粧料のざらざら感につながるおそれがあり、また、消しゴム様の固まり(よれ)が発生する原因になるおそれがある。
 セルロースナノファイバーの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。
 セルロースナノファイバーの平均繊維長の測定方法は、平均繊維径の場合と同様にして、各繊維の長さを目視で計測する。計測値の中位長を平均繊維長とする。
 セルロースナノファイバーは、繊維径分布の変動係数が、好ましくは0.1以上~1.5以下、より好ましくは0.3~1.1以下である。繊維径分布の変動係数が1.1を超えると繊維径分布が広くなり、ナノサイズのセルロース繊維だけではなく、マイクロサイズの大きさの繊維も含まれることとなり、化粧材料自体の流動性の低下のほか、肌に塗布した際のざらつきなどの不快感につながる。変動係数0.3以下であれば、ナノサイズの繊維径は、均一に揃う傾向となるが、前処理、解繊等による調整が困難となりやすい。
 繊維径分布の変動係数は、前述した平均繊維径の集計において集計した繊維径の平均値と標準偏差値を用いて、標準偏差値÷平均値を求めた値である。
 セルロースナノファイバーの保水度は、好ましくは500%以下、より好ましくは300~480%、である。セルロースナノファイバーの保水度が300%を下回ると、セルロースナノファイバーの分散性が悪化するおそれがある。また、セルロースナノファイバーの保水度が300%を下回ると、化粧材料のざらつきの原因となるおそれがある。
 他方、セルロースナノファイバーの保水度が500%を上回ると、セルロースナノファイバー自体の保水力が高くなり、セルロースナノファイバーの脱水性が悪化するおそれがある。
 セルロースナノファイバーの保水度は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。
 セルロースナノファイバーの保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。
 セルロースナノファイバーのパルプ粘度は、好ましくは1~10cps、より好ましくは2~9cps、特に好ましくは3~8cpsである。パルプ粘度は、セルロースを銅エチレンジアミン液に溶解させた後の溶解液の粘度であり、パルプ粘度が大きいほどセルロースの重合度が大きいことを示している。セルロース繊維の強度・剛性に関係する。重合度が高すぎるとハリ感が劣り、肌との親和性が失われる可能性が高く、重合度が低いと、繊維自体の強度も失われ、亀裂しやすい皮膜になりやすい。セルロースナノファイバーの重合度は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。パルプ粘度が以上の範囲内であれば、皮膜形成成分として機能させつつ、ざらざら感の発生も防ぐことができる。
 セルロースナノファイバーの擬似粒度分布曲線におけるピーク値(以下、単に「ピーク値」とも言う。)は、1つのピークであるのが好ましい。1つのピークである場合、セルロースナノファイバーは、繊維長及び繊維径の均一性が高く、化粧料の原料として使用するのに好適である。
 セルロースナノファイバーのピーク値は、例えば1~100μm、好ましくは3~80μm、より好ましくは5~60μmである。セルロースナノファイバーのピーク値が1μmを下回ると、セルロースの微細化が進行するが、他方、セルロースナノファイバーのピーク値が100μmを上回ると、繊維がナノサイズまで解繊できてないおそれがある。
 セルロースナノファイバーのピーク値は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。
 セルロースナノファイバーのピーク値は、ISO-13320(2009)に準拠して測定した値である。より詳細には、まず、粒度分布測定装置(株式会社セイシン企業のレーザー回折・散乱式粒度分布測定器)を使用してセルロースナノファイバーの水分散液の体積基準粒度分布を調べる。次に、この分布からセルロースナノファイバーの中位径を測定する。この中位径をピーク値とする。
 以上のピーク値に加えて、セルロースナノファイバーは、粒径100μm以下の積算体積割合が、好ましくは70%以上、より好ましくは90%以上である。粒径100μm以下の積算体積割合が70%未満であれば、例えば、後述する試験例から推測可能なように、べたつき感やハリ感が損なわれると共に、皮膜形成成分としての機能が十分に発揮されないおそれがある。
 解繊して得られたセルロースナノファイバーは、必要により、水系媒体中に分散して分散液(スラリー)としておくことができる。水系媒体は、全量が水であるのが特に好ましい(水溶液)。ただし、水系媒体は、一部が水と相溶性を有する他の液体であってもよい。他の液体としては、例えば、炭素数3以下の低級アルコール類等を使用することができる。
 セルロースナノファイバーの分散液(濃度1.5%)のB型粘度は、好ましくは1,000cps~20,000cps、より好ましくは1,000~10,000cps、特に好ましくは1,000~5,000cpsである。分散液のB型粘度を以上の範囲内にすると、化粧料を構成する他の成分との混合が容易になり、また、スラリー(分散液)の脱水性が向上する。
 セルロースナノファイバーの分散液のB型粘度(固形分濃度1.5%)は、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定した値である。B型粘度は分散液を攪拌したときの抵抗トルクであり、高いほど攪拌に必要なエネルギーが多くなることを意味する。
 セルロースナノファイバーの分散液は、水等の溶媒を加える等して、分散液中におけるセルロースナノファイバーの固形分濃度を調節すると好適である。セルロースナノファイバーの固形分濃度は、好ましくは0.1%~5.0%、より好ましくは0.3~4.0%、特に好ましくは0.5~3.0%である。セルロースナノファイバーの固形分濃度が0.1%を下回ると、流動性が高くなり過ぎ、他の成分と混合するのが困難になるおそれがある。また、セルロースナノファイバーの固形分濃度が5.0質量%を上回っても流動性が著しく低下することで、他の成分と混合するのが困難になるおそれがある。
 セルロースナノファイバーは、化粧料中において水相及び油相のどちらに分散していても良い。ただし、水相中に分散している方が、化粧料の保存安定性、肌への伸ばし易さの点で好ましい。
 セルロースナノファイバーは、化粧料中における含有量が、好ましくは0.01~3質量%、より好ましくは0.05~2質量%、特に好ましくは0.1~1質量%である。セルロースナノファイバーの含有量が過度に少ないと、ハリ感が劣るものになり、また、皮膜形成成分としての機能が発揮されないおそれがある。他方、セルロースナノファイバーの含有量が過度に多いと、化粧料の伸びが悪くなり、また、化粧膜の柔軟性が低下する。
(油分)
 本形態の化粧料には、分散相として油分が存在する。油分は、肌に塗布された後、セルロースナノファイバー等と共に化粧膜を形成し、肌にハリ感を与える働きを有する。
 油分としては、例えば、動物油、植物油、合成油等の起源や、固形油、半固形油、液体油、揮発性油等の性状を問わず、いずれをも使用することができる。
 油分としては、例えば、炭化水素類、油脂類、ロウ類、硬化油類、エステル油類、脂肪酸類、シリコーン油類、フッ素系油類、ラノリン誘導体類、油溶性紫外線吸収剤等の中から1種又は2種以上を組み合わせて使用することができる。
 より具体的には、例えば、流動パラフィン、スクワラン、ワセリン、パラフィンワックス、セレシンワックス、マイクロクリスタリンワックス、モクロウ、モンタンワックス等の炭化水素類;
 オリーブ油、ヒマシ油、ホホバ油、ミンク油、マカデミアンナッツ油等の油脂類;
 ミツロウ、ラノリン、カルナウバワックス、キャンデリラワックス、ゲイロウ等のロウ類;
 セチルイソオクタネート、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、ミリスチン酸オクチルドデシル、トリオクタン酸グリセリル、トリベヘン酸グリセリル、ロジン酸ペンタエリトリットエステル、ジオクタン酸ネオペンチルグリコール等のエステル類;
 低重合度ジメチルポリシロキサン、高重合度ジメチルポリシロキサン、メチルフェニルポリシロキサン、デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン、フッ素変性シリコーン等のシリコーン類;
 パーフルオロポリエーテル、パーフルオロデカン、パーフルオロオクタン等のフッ素系油剤類;
 ラノリン、酢酸ラノリン、ラノリン脂肪酸イソプロピル、ラノリンアルコール等のラノリン誘導体類;
 等の中から1種又は2種以上を組み合わせて使用することができる。
 化粧料中における油分の含有量は、好ましくは1~50質量%、より好ましくは3~40質量%、特に好ましくは5~25質量%である。油分の含有量が1質量%を下回ると、化粧膜の柔軟性が劣るものになるおそれがある。他方、油分の含有量が50質量%を上回ると、ハリ感が低下し、また、べたつき感を取り去ることができないおそれがある。
(粉体)
 本形態の化粧料には、粉体を配合することができる。化粧料が粉体を含むと、化粧膜のべたつき感をより抑えることができる。また、本形態の化粧料をベースメイク化粧料として使用する場合においては、カバー力や仕上がり感を所望のものとすることができるようになる。
 粉体は、例えば、球状、板状、紡錘状、針状等の形状、粒子径、多孔質、無孔質等の粒子構造等によって限定されない。また、無機粉体類、光輝性粉体類、有機粉体類、色素類、複合粉体類のいずれであってもよい。
 粉体としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化セリウム、赤酸化鉄、黄酸化鉄、黒酸化鉄、コンジョウ、群青、無水ケイ酸、炭酸マグネシウム、炭酸カルシウム、水酸化アルミニウム、水酸化クロム、カーボンブラック、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、雲母、スメクタイト、ベントナイト、カオリン、合成雲母、合成セリサイト、セリサイト、タルク、炭化珪素、硫酸バリウム、窒化硼素等の無機粉体類;
 オキシ塩化ビスマス、雲母チタン、酸化鉄被覆雲母、酸化鉄被覆雲母チタン、有機顔料被覆雲母チタン、アルミニウムパウダー等の光輝性粉体類;
 ステアリン酸マグネシウム、ステアリン酸亜鉛、N-アシルリジン、ポリスチレン、ナイロン、ポリメチルメタクリレート、ポリメチルシルセスキオキサンパウダー、オルガノポリシロキサンエラストマーパウダー、セルロース、結晶セルロース、酢酸セルロース等の有機粉体類;
 等の中から1種又は2種以上を組み合わせて使用することができる。
 以上の粉体には、必要により、表面処理剤であるアルミナ、シリカ、酸化鉄等の無機化合物、フッ素化合物、シリコーン化合物、リン脂質、リン脂質誘導体、金属石鹸、ロウ、界面活性剤、油脂、炭化水素等によって表面処理して使用することもできる。
 以上の中でも、球状の有機粉体、例えば、ポリスチレン、ナイロン、ポリメチルメタクリレート、ポリメチルシルセスキオキサンパウダー、オルガノポリシロキサンエラストマーパウダー、セルロース、結晶セルロース、酢酸セルロース等を使用すると、毛穴・小じわなどの凹凸を効果的に隠蔽できるので好ましい仕上がりとなる。
 本形態の化粧料をベースメイク化粧料として使用する場合においては、粉体として酸化チタン、赤酸化鉄、黄酸化鉄、黒酸化鉄等の無機粉体類の中から1種又は2種以上を組み合わせて使用するのが好ましい。また、特に、シリカ等の金属酸化物で被覆した無機粉体類は、連続相である水相への分散が良好であるため、乳化安定性、色変化防止の点で優れている。
 シリカ被覆赤酸化鉄の市販品としては、例えば、日揮触媒化成社製のSYMPHOLIGHT RWを使用することができる。また、シリカ被覆黄酸化鉄の市販品としては、例えば、SYMPHOLIGHT Y10を使用することができる。
 粉体の含有量は、化粧料全量に対して、好ましくは1~40質量%、より好ましくは3~30質量%、特に好ましくは5~25質量%である。粉体の含有量が1質量%未満であると、化粧膜がべたつく傾向にある。他方、粉体の化粧料が40質量%を上回ると、化粧膜の柔軟性が劣るものになるおそれがある。
(紫外線防御剤)
 本明細書において、紫外線防御剤とは、紫外線を吸収し(紫外線吸収剤)、あるいは散乱する(紫外線散乱剤)ことで肌や化粧料自体を紫外線から防御する成分を意味する。この点、化粧料に使用される一般的な紫外線散乱剤には、紫外線を吸収する能力もあると言われている。しかるに、本形態においては、紫外線吸収剤及び紫外線散乱剤を明確に区別する必要はなく、いずれも肌や化粧料自体を紫外線から防御するために使用するものである。そこで、本明細書においては、両者を含めて紫外線防御剤と定義することにする。
 紫外線吸収剤としては、水溶性紫外線吸収剤及び油分に分類される油溶性紫外線吸収剤が存在する。水溶性紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニル-ベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3-カルボキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;
 フェニルベンズイミダゾール-5-スルホン酸及びその塩、フェニレン-ビス-ベンゾイミダゾール-テトラスルホン酸及びその塩等のベンゾイミダゾール系紫外線吸収剤;
 3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル等の中から1種又は2種以上を組み合わせて使用することができる。
 油溶性紫外線吸収剤としては、例えば、パラメトキシケイ皮酸ベンジル、パラメトキシケイ皮酸2-エチルヘキシル、ジパラメトキシケイ皮酸モノ-2-エチルヘキサン酸グリセリル等のケイ皮酸系紫外線吸収剤;
 ヒドロキシメトキシベンゾフェノン、ジヒドロキシメトキシベンゾフェノン、ジヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;
 パラアミノ安息香酸、パラアミノ安息香酸エチル、パラアミノ安息香酸グリセリル、パラジメチルアミノ安息香酸アミル、パラジメチルアミノ安息香酸オクチル、4-[N,N-ジ(2-ヒドロキシプロピル)アミノ]安息香酸エチル、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル等の安息香酸エステル系紫外線吸収剤;
 サリチル酸エチレングリコール、サリチル酸フェニル、サリチル酸オクチル、サリチル酸ベンジル、サリチル酸パラ-ターシャリーブチルフェニル、サリチル酸ホモメンチル等のサリチル酸系紫外線吸収剤;
 エチルヘキシルトリアゾン(2,4,6-トリス[4-(2-エチルヘキシルオキシカルボニル)アニリノ]1,3,5-トリアジン)、ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン等のトリアジン系紫外線吸収剤;
 4-ターシャリーブチル-4’-メトキシジベンゾイルメタン、アントラニル酸メンチル、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、ジメトキシベンジリデンジオキソイミダゾリジンプロピオン酸2-エチルヘキシル、オクトクリレン、ジメチコジエチルベンザルマロネート等の中から1種又は2種以上を組み合わせて使用することができる。
 紫外線散乱剤は、微粒子粉体であり、前述した粉体に分類される。この紫外線散乱剤は、平均粒子径100nm以下の金属酸化物であると好ましい。具体的には、例えば、平均粒子径100nm以下の酸化チタン、酸化亜鉛、酸化セリウム等の中から1種又は2種以上を組み合わせて使用することができる。
 紫外線散乱剤としては、耐水性の点で疎水処理したものが好ましい。疎水処理法としては、通常の表面処理法を採用することができる。具体的には、例えば、粉体表面に油脂を吸着させ、あるいは水酸基等の官能基を利用し、エステル化やエーテル化を起こさせて粉体を親油的にする油脂処理法、脂肪酸の亜鉛塩やマグネシウム塩やアルミ塩を用いた金属石鹸処理法、ジメチルシロキサンやハイドゲンジメチコン等のシリコーン化合物を用いたシリコーン処理法、パーフルオロアルキル基を有するフッ素化合物で処理する方法、アルキルアルコキシシランで処理する方法等を採用することができる。以上の処理法の中では、耐水性、乳化安定性の観点から、シリコーン化合物を用いたシリコーン処理を採用するのが好ましい。
 紫外線防御剤の含有量は、化粧料全体に対して、好ましくは1~40質量%、より好ましくは3~30質量%、特に好ましくは5~25質量%である。紫外線防御剤の含有量が1質量%未満であると、紫外線防御効果が不十分である。他方、紫外線防御剤の含有量が40質量%を上回ると、化粧料の肌への伸ばし易さが低下するおそれがある。
(皮膜成分)
 本形態の化粧料には、水中油型乳化化粧料が含まれ、水溶性皮膜形成剤、油溶性皮膜形成剤、及び皮膜形成性ポリマーエマルションの中から選択される皮膜成分を1種以上含むと好適である。これらの皮膜成分を含むことで、肌のハリ感をより高めることができる。
 水溶性皮膜形成剤は、水性成分に溶解し、化粧膜を形成する。水溶性皮膜形成剤としては、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、酢酸ビニル・ビニルピロリドン共重合体、変性コーンスターチ、加水分解水添デンプン等の中から1種又は2種以上を組み合わせて使用することができる。
 油溶性皮膜形成剤は、油性成分に溶解又は分散し、化粧膜を形成する。油溶性皮膜形成剤としては、例えば、トリメチルシロキシケイ酸、部分架橋オルガノポリシロキサン、トリメチルシロキシシリルプロピルカルバミド酸、フッ素変性シリコーン、アクリル変性シリコーン、シリコーンデンドリマー変性樹脂化合物等のシリコーン系樹脂、ロジン酸ペンタエリスリット、ロジン酸グリセリル等のロジン酸系樹脂、キャンデリラ樹脂、ポリ酢酸ビニル系樹脂、ポリビニルイソブチルエーテル、ポリイソブチレン等の中から1種又は2種以上を組み合わせて使用することができる。
 ただし、以上の中でも、部分架橋オルガノポリシロキサンは、べたつきの少ない耐水性の化粧膜を形成することができるので、特に好ましい。部分架橋オルガノポリシロキサンは、液状油分に分散されたゲルの形態で入手することができる。部分架橋オルガノポリシロキサンの市販品としては、例えば、信越化学工業社製の(ジメチコン/ビニルジメチコン)クロスポリマー及びシクロペンタシロキサンからなるKSG-15、(ジメチコン/ビニルジメチコン)クロスポリマー及びメチルトリメチコンからなるKSG-1510、(ジメチコン/ビニルジメチコン)クロスポリマー及びジメチコンからなるKSG-16、(ジメチコン/フェニルビニルジメチコン)クロスポリマー及びジフェニルシロキシフェニルトリメチコンからなるKSG-18A、(ビニルジメチコン/ラウリルジメチコン)クロスポリマー及び流動パラフィンからなるKSG-41A、(ビニルジメチコン/ラウリルジメチコン)クロスポリマー及びトリエチルヘキサノインからなるKSG-43、(ラウリルポリジメチルシロキシエチルジメチコン/ビス-ビニルジメチコン)クロスポリマー及びイソドデカンからなるKSG-042Z、東レ・ダウコーニング社製のジメチコンクロスポリマー及びシクロペンタシロキサンからなる9040及び9045 Silicone Elastomer Blend、ジメチコンクロスポリマー及びジメチコンからなる9041 Silicone Elastomer Blend、(ジメチコン/ビニルジメチコン)クロスポリマー及びジメチコンからなる3901Liquid Satin Blend、(ジメチコン/ビス-イソブチルPPG-20)クロスポリマー及びネオペンタン酸イソデシルからなるEL-8051 IN Silicone Organic Elastomer Blend、モメンティブ・パフォーマンス・マテリアルズ社製のアルキル(C30-45)セテアリルジメチコンクロスポリマー及びシクロペンタシロキサンからなるVelvesil 125、アルキル(C30-45)セテアリルジメチコンクロスポリマー及びカプリリルメチコンからなるVelvesil 034、セテアリルジメチコンクロスポリマー及びジメチコンからなるVelvesil DM等が存在する。
 皮膜形成性ポリマーエマルションは、水不溶性高分子の水分散物である。皮膜形成性ポリマーエマルションとしては、例えば、アクリル酸アルキル共重合体エマルション、メタクリル酸アルキル共重合体エマルション、スチレン・アクリル酸アルキル共重合体エマルション、スチレン・メタクリル酸アルキル共重合体エマルション、酢酸ビニル重合体エマルション、ビニルピロリドン・スチレン共重合体エマルション、アクリル酸アルキル・酢酸ビニル共重合体エマルション、メタクリル酸アルキル・酢酸ビニル共重合体エマルション、アクリル酸・アクリル酸アルキル共重合体エマルション、アクリル酸・メタクリル酸アルキル共重合体エマルション、メタクリル酸・アクリル酸アルキル共重合体エマルション、メタクリル酸・メタクリル酸アルキル共重合体エマルション、アクリル酸アルキルジメチコン共重合体エマルション等の中から1種又は2種以上を組み合わせて使用することができる。
 皮膜成分の含有量は、化粧料全量に対して、好ましくは0.01~10質量%、より好ましくは0.1~5質量%である。皮膜成分が少な過ぎると、ハリ感の増強効果が得られないおそれがある。他方、皮膜成分が多過ぎると、べたつき感を抑制することができないおそれがある。
(増粘安定化剤)
 本形態の化粧料には、増粘剤及び安定化剤の少なくともいずれかとして機能する増粘安定化剤を配合する。これにより、化粧料の伸ばしやすさ等の使用感を向上させ、乳化状態や分散状態を長期間安定に保つことができる。増粘安定化剤としては、例えば、水溶性皮膜形成剤以外の水溶性高分子や、粘土鉱物等を使用することができる。
 より具体的には、増粘安定化剤としては、例えば、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、アクリル酸・メタクリル酸アルキル共重合体、(PEG-240/デシルテトラデセス-20/HDI)コポリマー、(アクリル酸Na/アクリロイルジメチルタウリン)コポリマー、(アクリル酸ヒドロキシエチル/アクリロイルジメチルタウリンナトリウム)コポリマー、(アクリロイルジメチルタウリンアンモニウム/VP)コポリマー、(アクリロイルジメチルタウリンアンモニウムメタクリル酸ベヘネス-25)クロスポリマー、(アクリル酸アルキル/メタクリル酸ステアレス-20)コポリマー、(ジメチルアクリルアミド/アクリロイルジメチルタウリンNa)クロスポリマー、ポリアクリルアミド、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリビニルメチルエーテル、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、カチオン化セルロース、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル、グアーガム、ローカストビーンガム、アラビアゴム、トラガカント、ガラクタン、キャロブガム、カラヤガム、ペクチン、寒天、クインスシード(マルメロ)、アルゲコロイド(褐藻エキス)、カラギーナン、キサンタンガム、デキストラン、プルラン、ベントナイト、モンモリロナイト、ヘクトライト、ケイ酸アルミニウムマグネシウム、ラポナイト等の中から1種又は2種以上を組み合わせて使用することができる。
 ただし、カルボキシビニルポリマー、アクリル酸・メタクリル酸アルキル共重合体、キサンタンガム、(アクリル酸Na/アクリロイルジメチルタウリン)コポリマー、ヒドロキシプロピルメチルセルロースの中から1種又は2種以上を組み合わせて使用するのが好ましい。
 増粘安定化剤の含有量は、化粧料全量に対して、好ましくは0.01~5質量%、より好ましくは0.02~4質量%、特に好ましくは0.05~3質量%である。増粘安定化剤の含有量が0.01質量%を下回ると、使用感の向上及び乳化・分散状態の安定化を図ることができない。セルロースナノファイバーは、従来、増粘安定化剤として使用されているが、本形態では、皮膜形成成分として使用されている。本形態ではセルロースナノファイバーを皮膜形成成分として機能させるため所定の条件で化粧料に配合し、前述の増粘安定化剤を別途配合することで増粘安定化を機能させている。
(界面活性剤)
 本形態の化粧料には、非イオン性界面活性剤、高分子乳化剤、陰イオン(アニオン)性界面活性剤、陽イオン(カチオン)性界面活性剤、両性界面活性剤、半極性界面活性剤等の界面活性剤を配合することができる。界面活性剤は、乳化剤としてのほか、例えば、可溶化剤、湿潤剤、洗浄剤等としても機能し得る。
 アニオン性界面活性剤としては、例えば、脂肪酸セッケン、エーテルカルボン酸及びその塩、アミノ酸と脂肪酸の縮合等のカルボン酸塩、アルキルスルホン酸、アルケンスルホン酸塩、脂肪酸エステルのスルホン酸塩、脂肪酸アミドのスルホン酸塩、アルキルスルホン酸塩とそのホルマリン縮合物のスルホン酸塩、アルキル硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキル及びアリルエーテル硫酸エステル塩、脂肪酸エステルの硫酸エステル塩、脂肪酸アルキロールアミドの硫酸エステル塩、ロート油等の硫酸エステル塩類、アルキルリン酸塩、アルキルエーテルリン酸塩、アルキルアリルエーテルリン酸塩、アミドリン酸塩等を例示することができる。
 カチオン性界面活性剤としては、例えば、アルキルアミン塩、ポリアミン及びアミノアルコール脂肪酸誘導体等のアミン塩、アルキル四級アンモニウム塩、芳香族四級アンモニウム塩、ピリジウム塩、イミダゾリウム塩等を例示することができる。
 両性界面活性剤としては、例えば、ベタイン、アミノカルボン酸塩、イミダゾリン誘導体等を例示することができる。
 非イオン性界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、グリセリン脂肪酸エステルの酸化エチレン誘導体、プロピレングリコール脂肪酸エステル、プロピレングリコール脂肪酸エステルの酸化エチレン誘導体、ポリエチレングリコール脂肪酸エステル、ショ糖エステル、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油誘導体、ポリオキシエチレン硬化ヒマシ油誘導体、ポリオキシエチレンフィトスタノールエーテル、ポリオキシエチレンフィトステロールエーテル、ポリオキシエチレンコレスタノールエーテル、ポリオキシエチレンコレステリルエーテル、ポリオキシアルキレン変性オルガノポリシロキサン等を例示することができる。
(保湿剤)
 本形態の化粧料には、保湿剤を配合することができる。保湿剤としては、例えば、多価アルコール類、糖類、糖アルコール類、アミノ酸類、ペプチド類、水溶性高分子類等中から1種又は2種以上を組み合わせて使用することができる。また、保湿剤としては、例えば、キシリトール、ソルビトール、マルチトール、コンドロイチン硫酸、ヒアルロン酸、コラーゲン、乳酸ナトリウム、dl-ピロリドンカルボン酸塩、イサイヨバラ抽出物、セイヨウノコギリソウ抽出物、メリロート抽出物等を配合することができる。
(その他の成分)
 本形態の化粧料には、例えば、抗菌剤、防腐剤、香料、酸化防止剤、pH調整剤、キレート剤、清涼剤、抗炎症剤、美肌用成分、ビタミン類、アミノ酸類、核酸、包接化合物等の通常の化粧料に配合する各種成分を配合することができる。
(製造方法)
 本形態の化粧料を製造するにあたっては、通常の製法、例えば、水相及び油相をそれぞれ調製した後、油相を水相に攪拌しながら徐々に添加して水中油型乳化料とする方法、セッケン乳化法、あるいは反応乳化法、D相乳化法等を採用することができる。
(用途等)
 本形態の化粧料は、クリーム状、ゲル状、乳液状、液状(希薄な乳液)のいずれの形態であってもよい。本形態の化粧料は、例えば、ファンデーション、下地等のメイクアップ化粧料とするに特に優れている。ただし、本形態の化粧料は、乳液状又はクリーム状のアイシャドウ、頬紅、コンシーラー等のメイクアップ化粧料とするにも優れている。
 次に、各種試験結果を示し、本発明の効果をより明確にする。
 表1に示す組成の水中油型乳化化粧料(試料)を下記の製造手順に従って調製した。次に、調製された各試料を、評価パネルの肌(顔)及び評価用のウレタン製人工肌(ビューラックス社製)に塗布し、室温で30分以上乾燥した。各種試料について、下記の基準で評価した。
 各試料に配合したセルロース繊維(CNF-A、CNF-B、MFC)の原料としては、針葉樹晒クラフトパルプを使用した。また、CNF-Cとしては、第一工業製薬株式会社の製品であるレオクリスタ(TEMPO酸化型CNF)を使用した。各セルロース繊維の物性を、表2に示した。なお、平均繊維幅は、CNF-A及びCNF-Bについては、前述した方法(SEM画像による観察)で求めた。また、CNF-Cについては、透過型電子顕微鏡(TEM)を使用して求めた。さらに、MFCについては、バルメット社製の繊維分析計「FS5」を使用して測定した。また、乾燥収縮率は、以下の方法で求めた。
(乾燥収縮率)
 まず、CNF等のセルロース繊維を水分散液とし、濃度を0.5質量%に調整した。次に、当該濃度に調整された水分散液を直径7.5cmのシャーレに30g-WET投入して105℃で乾燥した。そして、この乾燥によって得られたセルロース繊維膜の直径の収縮率を測定した。収縮率の計算は、セルロース繊維膜の直径を算出(4本線の平均を算出)し、以下の式にて求めた。
 収縮率=セルロース繊維膜の直径÷容器内径(7.5cm)×100(%)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(製造手順)
 表1に記載した処方の水中油型乳化ファンデーションを以下に示す製造手順にて調製し、「べたつきのなさ」、「ハリ感」、「ツッパリ感のなさ」、「仕上がりのきめ細かさ」、「皮膜の柔軟性」および「画像解析によるキメスコア」の各項目について評価した。表1について、
 (1)番号1~4の各成分を表1に示す混合比で混合し、80℃に加熱溶解して水相(a)を調製した。
 (2)番号5~11の各成分を表1に示す混合比で混合し、80℃に加熱溶解して油相(b)を調製した。
 (3)水相(a)を撹拌しながら、同水相(a)に油相(b)を少量ずつ混合して乳化相(c)を調製した。
 (4)乳化相(c)を冷却し、35℃で番号12~18の各成分を表1に示す混合比で混合して化粧料を調製した。
(評価:使用感)
 女子評価パネル(5名)の顔に各試料(実施例1、2及び比較例3~6)を塗布し、使用感(べたつきのなさ、ハリ感、つっぱり感のなさ、仕上がりのきめ細かさ)について、下記の基準に従って官能評価した。べたつきのなさ、ハリ感、仕上がりのきめ細かさの結果については表3に、つっぱり感のなさの結果については表4に示した。各項目別に「良い(評点:2)」「どちらとも言えない(評点:1)」「悪い(評点:0)」の3段階で評価し、評点の平均点から下記基準で性能の良否を判定した。
  [判定] : [評点の平均点]
  5 : 1.5以上
  4 : 1.2以上1.5未満
  3 : 0.8以上1.2未満
  2 : 0.3以上0.8未満
  1 : 0.3未満
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(皮膜の柔軟性)
 まず、前述した厚さ2mmのウレタン製人工肌(ビューラックス社製 肌模型No.77 2T#ブラック)を30mm×70mmの長方形に裁断し、30mm×50mmの面に各試料(実施例1、2及び比較例3~6)0.05gを均一に塗布し、室温で30分以上乾燥したものを試験片とした。サン科学社製レオメーターCR-100を用い、引張試験用冶具で試験片の長辺方向の上下の未塗布部位10mmを固定し、試料台速度 20mm/minで下降させ、20mm(140%)伸長時の状態を観察した。下記基準により判定した。皮膜の柔軟性の結果は表4及び図1~図6に示した。図1~図6の各図で(A)は伸長前の試験片、(B)は伸長後の試験片を撮影したものである。図1は実施例1の試料11を塗布したものである。図2は実施例2の試料12を塗布したものである。図3は比較例3の試料13を塗布したものである。図4は比較例4の試料14を塗布したものである。図5は比較例5の試料15を塗布したものである。図6は比較例6の試料16を塗布したものである。
  [判定]
  5 : 化粧膜の亀裂等が見られず、黒地の人工肌が隠蔽されている。
  3 : 1mm未満の幅の亀裂が観察され、黒地が見える。
  1 : 1mm以上の幅の亀裂が観察される。
(画像解析によるキメスコア)
 20代女性2名の顔面(左右の頬部)に各試料(実施例1、2及び比較例3~6)を適量塗布し、皮膚画像解析装置VISIA EVOLUTION(Canfield社製)を用いて撮影し、付属の解析ソフトにより肌の滑らかさの指標であるキメ(Texture)スコアを算出した。撮影は、同一試料を左右の頬部各々について4箇所(合計8箇所)に塗布して行った。そして、撮影は、各試料(実施例1、2及び比較例3~6)について行った。この同一試料について算出されたキメスコアを、同一被験者の同一部位におけるセルロースナノファイバー無配合の試料(比較例1)について算出されたキメスコアで除した値をT値とした。
(T値)=(各試料(実施例1、2及び比較例3~6)について算出されたキメスコア)/(比較例1について算出されたキメスコア)
 この求められた8箇所あたりのT値を単純平均して(T)の平均値とし、下記基準により判定した。キメスコアの結果は表4に示した。
  [判定] : [(T)の平均値]
  5 : 0.9未満
  3 : 0.9以上1.0未満
  1 : 1.0以上
(考察)
 表3から、セルロースナノファイバーを配合すると、べたつき感が抑えられ、また、ハリ感が付与されることが分かる。もっとも、表4から明らかなように、セルロースナノファイバーの平均繊維径が小さ過ぎると、つっぱり感が生じてしまい、また、化粧膜の柔軟性に欠けることが分かる。
 本発明は、ファンデーション、ベースメイク化粧料等の化粧料として利用可能である。
11   実施例1の試料
12   実施例2の試料
13   比較例3の試料
14   比較例4の試料
15   比較例5の試料
16   比較例6の試料

Claims (5)

  1.  増粘安定化剤のほか、平均繊維径10~1000nmのセルロースナノファイバーを含む、
     ことを特徴とする化粧料。
  2.  前記セルロースナノファイバーは、繊維径分布の変動係数が1.1以下である、
     請求項1に記載の化粧料。
  3.  前記セルロースナノファイバーは、擬似粒度分布曲線のピーク値が1~100nmであり、粒径100nm以下の積算体積割合が90%以上である、
     請求項1又は請求項2に記載の化粧料。
  4.  前記セルロースナノファイバーを0.01~3質量%、油分を1~50質量%を含む、
     請求項1~3のいずれか1項に記載の化粧料。
  5.  ベースメイク化粧料である、
     請求項1~4のいずれか1項に記載の化粧料。
PCT/JP2019/050767 2018-12-27 2019-12-25 化粧料 WO2020138144A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19904222.7A EP3903886A4 (en) 2018-12-27 2019-12-25 COSMETIC
KR1020217013173A KR20210124176A (ko) 2018-12-27 2019-12-25 화장료
US17/289,437 US20210393502A1 (en) 2018-12-27 2019-12-25 Cosmetic
CN201980071455.3A CN113056306B (zh) 2018-12-27 2019-12-25 化妆品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245915 2018-12-27
JP2018245915A JP6845510B2 (ja) 2018-12-27 2018-12-27 化粧料

Publications (1)

Publication Number Publication Date
WO2020138144A1 true WO2020138144A1 (ja) 2020-07-02

Family

ID=71129425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050767 WO2020138144A1 (ja) 2018-12-27 2019-12-25 化粧料

Country Status (6)

Country Link
US (1) US20210393502A1 (ja)
EP (1) EP3903886A4 (ja)
JP (1) JP6845510B2 (ja)
KR (1) KR20210124176A (ja)
CN (1) CN113056306B (ja)
WO (1) WO2020138144A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11938687B2 (en) 2020-10-28 2024-03-26 Panasonic Intellectual Property Management Co., Ltd. Plant fiber-containing composite resin molded article with sustained release of aroma

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241846A1 (ja) * 2019-05-31 2020-12-03 花王株式会社 皮膜形成組成物
EP4252859A1 (en) * 2020-11-30 2023-10-04 Kao Corporation Film-forming composition for skin
EP4252862A1 (en) * 2020-11-30 2023-10-04 Kao Corporation Film-forming composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269723A (ja) 2006-03-31 2007-10-18 Kose Corp 化粧料
JP2009062332A (ja) 2007-09-07 2009-03-26 Asahi Kasei Chemicals Corp 微細繊維状セルロース及び/又はその複合体を含む香粧品組成物
JP2010235472A (ja) 2009-03-30 2010-10-21 Naris Cosmetics Co Ltd 乳化化粧料
JP2011057567A (ja) 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd 疎水性固体含有水系組成物およびそれを用いた疎水性固体含有乾燥物、ならびに化粧品組成物
JP2012193139A (ja) * 2011-03-16 2012-10-11 Daicel Corp 化粧料
JP2013136546A (ja) 2011-12-28 2013-07-11 Kao Corp 皮膚外用剤
JP2017048181A (ja) * 2015-09-01 2017-03-09 王子ホールディングス株式会社 化粧料
WO2017150950A1 (ko) * 2016-03-03 2017-09-08 주식회사 엘지생활건강 바이오셀룰로오스 미세섬유 수분산체 네트워크 조성물
JP2018511623A (ja) * 2015-04-13 2018-04-26 ボレガード アーエス ミクロフィブリル化セルロースを含むスキンケア用組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180817A (ja) 1997-12-24 1999-07-06 Kao Corp つやハリ付与剤
FR2822679A1 (fr) * 2001-03-30 2002-10-04 Oreal Composition cosmetique comprenant un melange de fibres
JP2012518601A (ja) * 2009-01-29 2012-08-16 ビーエーエスエフ ソシエタス・ヨーロピア 化粧品組成物の安定化
JP6351509B2 (ja) * 2012-12-07 2018-07-04 日本製紙株式会社 カルボキシメチル化セルロースの繊維
JP5795094B2 (ja) * 2014-02-14 2015-10-14 第一工業製薬株式会社 増粘剤組成物
WO2015167963A1 (en) * 2014-04-28 2015-11-05 Dow Corning Corporation Cross-linked composition and cosmetic composition comprising the same
EP3332763A4 (en) * 2015-08-04 2019-01-23 Oji Holdings Corporation COSMETIC
JP6916425B2 (ja) * 2015-12-04 2021-08-11 国立大学法人愛媛大学 極小セルロースの製造方法
EP3424487B1 (en) * 2016-03-03 2021-09-15 LG Household & Health Care Ltd. Networked dispersion of biocellulose microfibrils in water
KR20170103628A (ko) * 2016-03-03 2017-09-13 주식회사 엘지생활건강 셀룰로오스 나노섬유 수분산체 조성물
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269723A (ja) 2006-03-31 2007-10-18 Kose Corp 化粧料
JP2009062332A (ja) 2007-09-07 2009-03-26 Asahi Kasei Chemicals Corp 微細繊維状セルロース及び/又はその複合体を含む香粧品組成物
JP2010235472A (ja) 2009-03-30 2010-10-21 Naris Cosmetics Co Ltd 乳化化粧料
JP2011057567A (ja) 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd 疎水性固体含有水系組成物およびそれを用いた疎水性固体含有乾燥物、ならびに化粧品組成物
JP2012193139A (ja) * 2011-03-16 2012-10-11 Daicel Corp 化粧料
JP2013136546A (ja) 2011-12-28 2013-07-11 Kao Corp 皮膚外用剤
JP2018511623A (ja) * 2015-04-13 2018-04-26 ボレガード アーエス ミクロフィブリル化セルロースを含むスキンケア用組成物
JP2017048181A (ja) * 2015-09-01 2017-03-09 王子ホールディングス株式会社 化粧料
WO2017150950A1 (ko) * 2016-03-03 2017-09-08 주식회사 엘지생활건강 바이오셀룰로오스 미세섬유 수분산체 네트워크 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3903886A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11938687B2 (en) 2020-10-28 2024-03-26 Panasonic Intellectual Property Management Co., Ltd. Plant fiber-containing composite resin molded article with sustained release of aroma

Also Published As

Publication number Publication date
EP3903886A1 (en) 2021-11-03
CN113056306A (zh) 2021-06-29
EP3903886A4 (en) 2022-11-09
US20210393502A1 (en) 2021-12-23
JP6845510B2 (ja) 2021-03-17
KR20210124176A (ko) 2021-10-14
JP2020105119A (ja) 2020-07-09
CN113056306B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2020138144A1 (ja) 化粧料
JP5931832B2 (ja) シリコーンゴム粒子の水分散液、シリコーンゴム粒子、及び化粧料
US20070207101A1 (en) Cosmetic Compositions Comprising Sub-micron Boron Nitride Particles
WO2011065439A1 (ja) O/w型乳化化粧料
CN112689500B (zh) 水包油型乳化化妆料
JP7253206B2 (ja) 化粧料
JP5242243B2 (ja) 水中油型乳化化粧料
JPWO2020090874A1 (ja) 乳化化粧料及びその製造方法
JP2021075562A5 (ja)
JP2012211113A (ja) 固形粉末化粧料
JP6262995B2 (ja) 凹凸補正化粧料
EP4316600A1 (en) Composite powder and cosmetic containing same
JP4163339B2 (ja) 水中油型乳化化粧料
JP6845724B2 (ja) 水中油型乳化化粧料
JP2013082649A (ja) スイゼンジノリ由来糖誘導体被覆処理粉体およびその製造方法並びに化粧料
JP6114077B2 (ja) 固形粉末化粧料
JP6912232B2 (ja) 粉体化粧料
JP2003277217A (ja) 化粧料
JP7222747B2 (ja) 固形粉末化粧料
TW202233157A (zh) 化妝料
JP6725570B2 (ja) 粉末状化粧料
JP7227917B2 (ja) 固形粉末化粧料
JP2014166962A (ja) 含水粉末化粧料
JP7066625B2 (ja) 固形粉末化粧料
JP2013177328A (ja) ヒアルロン酸被覆処理粉体およびその製造方法並びに化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904222

Country of ref document: EP

Effective date: 20210727