WO2020137941A1 - Metallized film - Google Patents

Metallized film Download PDF

Info

Publication number
WO2020137941A1
WO2020137941A1 PCT/JP2019/050281 JP2019050281W WO2020137941A1 WO 2020137941 A1 WO2020137941 A1 WO 2020137941A1 JP 2019050281 W JP2019050281 W JP 2019050281W WO 2020137941 A1 WO2020137941 A1 WO 2020137941A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
silicon compound
compound layer
film
metallized film
Prior art date
Application number
PCT/JP2019/050281
Other languages
French (fr)
Japanese (ja)
Inventor
上林浩行
佐藤誠
吉岡忠司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020505517A priority Critical patent/JPWO2020137941A1/en
Publication of WO2020137941A1 publication Critical patent/WO2020137941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to a capacitor film having a metal layer having an extremely high resistance to moisture and heat, and a capacitor using the film.
  • the method of improving the withstand voltage of a capacitor is to reduce the thickness of the metal thin film formed on the upper surface of the film to a high film resistance so that the metal thin film near the insulation defect is evaporated and scattered by the momentary short-circuit current flowing at the time of dielectric breakdown.
  • self-healing so-called self-healing
  • the metal layer is oxidized or watered by oxygen or water from the outside air in a high temperature and high humidity environment. There is a problem that it oxidizes and does not function as an electrode, resulting in a decrease in capacity and an increase in tan ⁇ .
  • Patent Document 2 a technique of laminating an acrylic resin on the surface of the metal layer in order to protect the metal layer from oxygen and water from the outside air.
  • Patent Document 3 As another improvement method, there is known a technique of stacking a Si oxide layer on a metal surface to shield the metal layer from moisture (Patent Document 3).
  • the method of laminating the acrylic resin as in Patent Document 2 is, for example, in a high temperature and high humidity environment where the temperature is 85° C. and the humidity is 85% RH, which is a barrier property against oxygen and moisture of the acrylic resin itself.
  • the entire metal layer is oxidized or hydroxylated, resulting in a large decrease in capacity.
  • Patent Document 3 in the method of laminating a Si oxide layer on a metal surface, the Si oxide layer is a hard and fragile layer. There is a problem in that defects such as cracks and breaks occur in the Si oxide layer, and the metal layer is oxidized or hydroxylated from the defect portion to reduce the capacity.
  • the present invention develops sufficient moisture resistance in a harsh environment of temperature 85° C. and humidity 85% RH, is less likely to cause processing defects in the film transport and the subsequent steps, and has high moisture resistance. It is intended to provide a metallized film that can be maintained.
  • the present invention adopts the following means in order to solve such a problem. That is, (1) A metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate, The silicon compound layer is obtained by FT-IR analysis, the intensity A of a peak having a maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, present from the wave number 1240 cm -1 in the range of 1280 cm -1.
  • the metallized film, wherein the intensity ratio of the intensity B of the peak having the maximum intensity (intensity A/intensity B) is 1.0 or more.
  • the present invention can provide a metallized film excellent in extremely high humidity resistance and oxidation resistance.
  • the metallized film of the present invention is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one side of a polymer substrate, and the silicon compound layer is obtained by FT-IR analysis. and intensity a of a peak having a maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, the intensity ratio of the intensity B of a peak having a maximum intensity that exist from the wave number 1240 cm -1 in the range of 1280 cm -1 (intensity a /Strength B) is 1.0 or more, which is a metallized film.
  • the metallized film of this embodiment will be referred to as the present invention 1.
  • a metallized film of the present invention in another aspect is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate, and the silicon compound layer is FT-IR.
  • the intensity C of a peak having a maximum intensity that exist from 870 cm -1 in the range of 940 cm -1, the intensity ratio of the intensity B of a peak having a maximum intensity that exist from 1240 cm -1 in the range of 1280 cm -1 (Strength C/Strength B) is 1.0 or more, which is a metallized film.
  • the metallized film of this aspect will be referred to as Invention 2.
  • present invention 1 and the present invention 2 are collectively referred to as the present invention hereinafter.
  • FIG. 1 shows a cross-sectional view and a plan view of an example of the metallized film of the present invention.
  • the metal layer 2 and the silicon compound layer 3 are laminated in this order on one surface of the polymer substrate 1.
  • continuous non-deposited margins 4 are formed at the ends in the longitudinal direction.
  • the metal layer 2 is formed at the end portion in the longitudinal direction facing the non-evaporation margin 4.
  • the longitudinal direction refers to the winding direction of the polymer base material 1
  • the width direction refers to the direction orthogonal to the longitudinal direction.
  • the end on the side where the non-deposition margin 4 is applied is referred to as the non-deposition margin side end 5
  • the end on the side where the metal layer is present is referred to as the electrode side end 6.
  • the metallized film of the present invention has a high moisture resistance because the silicon compound layer suppresses the adhesion of water and oxygen to the metal layer surface by laminating the silicon compound layer on the gold layer. Become.
  • the FT-IR analysis is an analysis capable of ascertaining a molecular structure or a functional group from an infrared absorption spectrum obtained by irradiating an object with infrared rays and transmitting or reflecting the infrared rays. Details of the analysis method and procedure are as shown in Examples.
  • the peak having the maximum intensity existing in the wave number range of 1030 cm ⁇ 1 to 1130 cm ⁇ 1 is an absorption peak attributed to the siloxane bond (Si—O—Si bond) contained in the silicon compound layer.
  • the peak having the maximum intensity existing in the wave number range of 1240 cm ⁇ 1 to 1280 cm ⁇ 1 is an absorption peak attributed to the Si—C bond derived from the trimethylsilyl group (SiCH 3 ) contained in the silicon compound layer. That is, the existence and bonding state of the silicon compound layer can be grasped from the change in the ratio of these two peak intensities.
  • Silicon compound layer of the present invention 1, the intensity A of a peak having a maximum intensity that exist from the wave number 1030 cm -1 obtained by FT-IR analysis in the range of 1130 cm -1, wave number 1240 cm -1 in the range of 1280 cm -1
  • the intensity ratio of the intensity B of the peak having the maximum intensity present is 1.0 or more. Since the strength ratio (strength A/strength B) of the silicon compound layer is 1.0 or more, the silicon compound layer 3 has a large content ratio of Si—O—Si bonds having higher binding energy than Si—C bonds. Therefore, the adhesion of water or oxygen to the surface of the metal layer can be suppressed, and the moisture resistance can be improved.
  • the strength A/strength B is less than 1.0, the bonding of the entire silicon compound layer is weakened, so the layer is destroyed in a harsh environment of temperature 85° C. and humidity 85% RH, and high moisture resistance is obtained. I can't get it. Further, when there is no peak in the wave number range of 1240 cm -1 to 1280 cm -1 , the silicon compound layer does not contain SiCH 3 which is an organic component, so that flexibility is impaired and cracks or Defects such as cracks are likely to occur, which causes deterioration of moisture resistance. Note that it is difficult to completely remove the Si—C bond derived from SiCH 3 contained in the silicon compound layer, and a trace amount remains, so the upper limit of strength A/strength B is 10.0 or less. Therefore, strength A/strength B is 1.0 or more, preferably 2.0 or more, and the upper limit is not particularly limited, but is preferably 10.0 or less.
  • the strength A and the strength B described above and the strength C described later are measured in a state where the fluorine oil used for forming the non-deposited margin oil is adhered to the position measured by FT-IR analysis of the silicon compound layer.
  • the intensity A and the intensity B described above and the intensity C described later can be obtained by measuring the silicon compound layer and the non-deposited margin portion by FT-IR analysis and using the difference spectrum between them.
  • the adhesion of the fluorine oil to the silicon compound layer can be determined by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis is performed from the surface of the silicon compound layer, and it is determined that the fluorine oil is attached when the fluorine atom content is 1.0% or more in the obtained elemental composition ratio.
  • XPS X-ray photoelectron spectroscopy
  • the metallized film of the present invention is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate. Therefore, the metallized film of the present invention can be provided with a metal layer only on one side or both sides of the polymer substrate, and the silicon compound layer can be provided only on one side or both sides of the polymer substrate provided with the metal layer. I do not care. As a specific configuration, any of the following (i) to (v) may be used.
  • the polymer base material used in the present invention is not particularly limited as long as the metal layer can be formed by vapor deposition or the like, but is not limited to polyethylene, unstretched or stretched polypropylene, polymethylpentene, cycloolefin polymer, norbornene polymer, polyethylene.
  • Organic polymer films composed of terephthalate, polyethylene naphthalate, polyamide, polyamide imide, polyphenylene sulfide, polyether imide, polyimide, liquid crystal polymer, etc., or a mixture of two or more thereof and a polymer alloy are preferable, and when a capacitor is formed.
  • the polypropylene film may be a film made of a homopolymer of polypropylene, a film made of a copolymer of propylene and another ⁇ -olefin (eg ethylene, butene, etc.), or a film made of polypropylene and another ⁇ -olefin polymer. It may be a film made of a blended product with (for example, polyethylene, polybutene, etc.).
  • the polymer base material may contain a lubricant, a plasticizer, and the like as known additives within a range that does not hinder the intended properties of the present invention.
  • the surface of the polymer base material may be surface-treated by corona discharge treatment, flame treatment, plasma treatment, or the like, or an adhesive coating layer, a resin coating layer, or a resin layer formed by melt extrusion may be laminated.
  • the coating layer of the adhesive formed on the surface of the polymer substrate, the resin coating layer, and the resin layer formed by melt extrusion are included in the polymer substrate (which is a part of the polymer substrate).
  • the thickness of the polymer base material used in the present invention is not particularly limited and can be appropriately determined depending on the application in which the capacitor is used, but from the viewpoint of miniaturization and high capacity of the capacitor, 0.1 ⁇ m or more and 10 ⁇ m or less is preferable. Good, and preferably 1 ⁇ m or more and 7 ⁇ m or less.
  • the material of the metal layer that can be used for the metallized film of the present invention is not particularly limited, but is made of Al, Zn, Sn, Ni, Cr, Fe, Cu, Mg, Ti, Si, and alloys of these metals. It is preferable to use one containing at least one selected from the group. Among these, it is preferable to use a simple substance of Zn, a laminated product of Zn and Al, an alloy of Zn and Al, or a simple substance of Al from the viewpoint of obtaining a uniform and stable vapor-deposited film of a conductive metal.
  • the thickness of the metal layer is preferably 1 nm or more and 50 nm or less from the viewpoint of electrical characteristics and mechanical characteristics. From the viewpoint of ensuring sufficient conductivity, the thickness of the metal layer is preferably 1 nm or more and 50 nm or less, and more preferably 5 nm or more and 30 nm or less in self-recovery property upon dielectric breakdown.
  • the thickness of the metal layer can be usually measured by observing a cross section with a transmission electron microscope (TEM).
  • the method for forming the metal layer includes a vacuum vapor deposition method, a sputtering method, an ion plating method, etc., but the vacuum vapor deposition method is preferable from the viewpoint of high formation rate and economical advantage.
  • the vacuum vapor deposition method is a method in which a metal is vapor-deposited from a vapor deposition source on a polymer base material that is in close contact with a cooling roll in vacuum to form a metal layer on the surface of the polymer base material.
  • the evaporation source includes a resistance heating boat type, a crucible type by radiation or high-frequency heating, and an electron beam heating type, but is not particularly limited and may be appropriately selected.
  • the silicon compound layer in the present invention is a layer containing a silicon compound, and the layer may contain any other material as long as it contains the silicon compound.
  • the silicon compound in the silicon compound layer include silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, or a mixture thereof.
  • the silicon compound layer contains at least one silicon compound selected from the group consisting of silicon oxide, silicon carbide, silicon nitride, and silicon oxynitride.
  • the component contained in the silicon oxide layer is not limited to silicon (Si), and examples thereof include aluminum (Al), titanium (Ti), zirconium (Zr), tin (Sn), indium (In), niobium (Nb). ), molybdenum (Mo), tantalum (Ta), palladium (Pd), or the like, or a metal oxide may be included.
  • the silicon compound layer is formed on the metal layer can be confirmed from the detected amount of silicon (Si) atoms by the following fluorescent X-ray analysis (XRF analysis).
  • XRF analysis fluorescent X-ray analysis
  • the detection amount of silicon (Si) atoms measured by XRF analysis is 0.005 ⁇ g / cm 2 ⁇ 0.2 ⁇ g / cm 2 It is preferable that the detected amount of silicon (Si) atoms is 0.01 ⁇ g/cm 2 to 0.1 ⁇ g/cm 2 .
  • the silicon compound layer of the present invention 1 has an intensity ratio (intensity C) between the intensity C of the peak having the maximum intensity existing in the wave number range of 870 cm ⁇ 1 to 940 cm ⁇ 1 and the intensity B, which is obtained by FT-IR analysis. /Strength B) is preferably 1.0 or more. Furthermore silicon compound layer of the present invention 2 is obtained by FT-IR analysis, and the intensity C of a peak having a maximum intensity that exist from the wave number 870 cm -1 in the range of 940 cm -1, wave number 1240 cm -1 in 1280 cm -1 The intensity ratio of the intensity B of the peak having the maximum intensity existing in the range (intensity C/intensity B) is 1.0 or more.
  • the peak having the maximum intensity existing in the wave number range of 870 cm ⁇ 1 to 940 cm ⁇ 1 is the absorption attributed to the Al—O bond formed on the surface of the metal layer when aluminum is contained in the metal layer. It is a peak.
  • the silicon compound layer of the product of the present invention has a strength ratio of strength C and strength B (strength C/strength B) of 1.0 or more, so that it is more a metal layer than a Si—C bond contained in the silicon compound layer.
  • the abundance ratio of Al—O bonds formed on the surface of the is increased.
  • plasma and heat at the time of forming the silicon compound layer decrease the above Si—C bond and increase Si—O—Si bond, while part of the Si—O—Si bond. Is cut and the Al atoms and O atoms present on the surface of the metal layer are bonded to form an Al—O bond or an Al—O—Si bond, so that a stronger bond is formed at the interface between the metal layer and the silicon compound layer.
  • the method for producing the metallized film of the present invention is not particularly limited, for example, the step of forming a continuous non-deposition margin in the longitudinal direction on the polymer substrate, the step of providing a metal layer, heating the silicone composition, After evaporating and coating on the metal layer, plasma discharge treatment is performed to form a strong silicon compound layer.
  • a vacuum vapor deposition machine is preferably used as a method for carrying out all of these steps in one film conveyance.
  • the process of forming continuous non-deposited margins in the longitudinal direction on the polymer base material may be done by using an oil such as silicone oil, fluorine oil or liquid paraffin.
  • an oil such as silicone oil, fluorine oil or liquid paraffin.
  • there is a method using a tape or a laser but any method is sufficient as long as the non-deposited portion is continuously formed in the longitudinal direction with a predetermined width, and the method is not particularly limited.
  • a method using fluorine oil is preferable as a method for forming the non-deposition margin quickly and easily.
  • Fluorine oil can be put in an oil evaporator, heated and evaporated, and a non-deposition margin in the longitudinal direction can be formed on the film base material through a slit provided in the upper part of the oil evaporator.
  • the step of providing the metal layer includes, for example, when forming an alloy film of zinc and aluminum, while unwinding the polymer base material from the unwinding shaft in the vacuum vapor deposition machine and cooling the polymer base material on a cooling drum, It can be formed by heating and melting by an induction heating method, a resistance heating method, an electron beam method, or the like from vapor deposition sources containing aluminum and aluminum, and vapor depositing both metals at the same time.
  • the composition of the metal layer formed can be controlled by adjusting the temperature of each vapor deposition source. Further, the thickness can be adjusted to a desired thickness by the film conveying speed.
  • the solid content concentration is adjusted with a solvent so that the thickness after drying the coating material containing the silicone composition becomes a desired thickness, and a reverse coating method, a gravure coating method, a rod coating method, a bar coating method.
  • a reverse coating method a gravure coating method, a rod coating method, a bar coating method.
  • a method of forming There is a method of forming.
  • the silicon compound layer can be formed in the same vapor deposition machine, and from the viewpoint of excellent productivity and uniformity, the latter method is a silicone composition heated from a dot-shaped or thin slit-shaped nozzle. Is preferred, and plasma discharge treatment is performed to form a strong silicon compound layer.
  • the silicone composition of the present invention means a resin composition containing 70% by weight or more, preferably 85% by weight or more of silicone.
  • the silicone composition used in the present invention has a main chain from the viewpoint of accelerating the formation of Si—O—Si bond by cutting the Si—C bond by plasma discharge treatment of the silicone composition sprayed on the metal layer.
  • a siloxane bond (Si—O—Si) a dimethylpolysiloxane having a methyl group in a side chain or a methylphenylsilicone having a phenyl group in a side chain is preferable, and a phenylmethyldimethylpolysiloxane is more preferable from the viewpoint of moisture resistance.
  • an organic modified silicone in which a part of the methyl group is replaced with an organic functional group is preferred so that the formation of Si—O—Si bond is promoted by the plasma discharge treatment.
  • the organically modified silicone includes side chain type in which a part of the side chain has an organic functional group, both end type in which both ends of the main chain have an organic functional group, and both end side chains in which a side chain and an end have an organic functional group.
  • the silicone composition for example, amino-modified silicone, alkyl-modified silicone, silanol-modified silicone, phenyl-modified silicone, polyether-modified silicone and the like are preferable. Among them, silanol-modified silicone has a side chain OH group that undergoes dehydration condensation by plasma discharge treatment. However, it is more preferable because it promotes the formation of Si—O—Si bonds.
  • the gas species used in the plasma discharge treatment of the silicone composition sprayed on the surface of the metal layer is not particularly limited, but examples thereof include O 2 , Ar, CO, CO 2 , and H 2 . Particularly preferred is O 2 or Ar, or a mixed gas containing one or more of these.
  • the power density of the plasma discharge treatment is preferably 10 W ⁇ min/m 2 or more, and more preferably 35 W ⁇ min/m 2 or more from the viewpoint of promoting the formation of Si—O—Si bonds.
  • the plasma discharge electrode it is preferable to use Cu, Al, or stainless steel as a target material capable of stable discharge without abnormal discharge.
  • a method other than the above that efficiently cuts the Si—C bond and promotes the formation of the Si—O—Si bond is a polymer base material.
  • a method of forming Al—O bond or Al—O—Si bond on the surface of the metal layer there is a method of performing plasma discharge treatment on the surface of the metal layer before spraying the silicone composition.
  • the silicon compound layer in the metallized film of the present invention preferably has a surface water contact angle of 70° or more and 95° or less.
  • the water contact angle of the surface of the silicon compound layer can be 70° or more and 95° or less.
  • plasma discharge treatment is insufficient, so that water and oxygen easily pass through the silicon compound layer, and the metal layer oxidizes or hydroxylates, resulting in sufficient moisture resistance. I can't get sex.
  • the water contact angle on the surface of the silicon compound layer is less than 70°, water and oxygen are likely to be adsorbed on the surface of the silicon compound layer, and as a result, the moisture resistance is deteriorated. That is, the water contact angle on the surface of the silicon compound layer is preferably 70° or more and 95° or less, and the water contact angle is more preferably 85° or more and 95° or less in the range where the treatment uniformity is good.
  • the metallized film thus obtained can be preferably used as a film for capacitors, and a capacitor can be obtained by laminating or winding by a known method.
  • a wound film capacitor For example, the case of a wound film capacitor is illustrated.
  • a roll of metallized film that has a metal layer and a non-deposition margin in the width direction, slit the center part of each metal layer and the center part of each non-deposition margin to make a take-up reel that has a non-deposition margin on the left or right side. To do.
  • the end portions of the metal layers are shifted to the outside of the non-deposition margin, overlapped, and wound.
  • the wound body thus obtained can be pressed to spray the metallikon on both end faces to form external electrodes, and the lead wire is welded to the metallikon to obtain the wound capacitor element. Furthermore, in the case of a capacitor element with an outer case, the capacitor element is placed in an outer case made of resin having heat resistance and flame retardancy such as epoxy resin, filled with two-component cast epoxy resin, heated, and cured to prepare. be able to.
  • resin having heat resistance and flame retardancy such as epoxy resin, filled with two-component cast epoxy resin, heated, and cured to prepare.
  • the capacitor formed by using the metallized film of the present invention is used as an exterior capacitor, a non-exterior capacitor, or a non-impregnated (dry) capacitor. It is also used as a capacitor for automobiles and is also applied to capacitors used in harsh environments.
  • the metal film resistance between electrodes of 100 mm was measured by the 4-terminal method, and the measured value was multiplied by (measurement width/distance between electrodes) to calculate the film resistance per width 10 mm and distance between electrodes 10 mm.
  • the unit is displayed as ⁇ / ⁇ .
  • the measurement cell was evacuated with a pump to a pressure of 0.1 MPa or less without a sample, and a baseline measurement was performed under the following measurement conditions.
  • the silicon compound layer of each level sample was pressure-bonded to the ATR crystal, the inside of the measurement cell was evacuated with a pump to a pressure of 0.1 MPa or less, and then the absorption spectrum was measured under the following measurement conditions.
  • Measurement conditions/apparatus FT/IR-6100 (manufactured by JASCO Corporation) ⁇ Light source :High brightness ceramic ⁇ Detector :TGS ⁇ Purge: Nitrogen gas ⁇ Resolution: 4 cm -1 - number of integration: 32 times Measurement method: attenuated total reflection (Attenuated Total Refrection, ATR) method, measurement wavelength: 4,000 cm -1 ⁇ 600 cm -1 ⁇ Attachment: ATR PRO450-S -ATR crystal: Ge prism-Incident angle: 45 degrees-Analysis software: Spectra Manager Version 2 (manufactured by JASCO Corporation).
  • C ( ⁇ F) is the capacitance before the humidity resistance test
  • the capacitance change rate ⁇ C/C ⁇ 100 is represented by + in the increasing direction and ⁇ in the decreasing direction. The average of the measured values of 10 elements was calculated, and the one having a capacitance change rate of ⁇ 10 to +10% was judged to be good.
  • Capacitance measuring method The electrostatic capacity of the capacitor element in the moisture resistance evaluation was measured by charging 1 VAC ⁇ 1 kHz using TYPE PE-4331 LCRMETER manufactured by Ando Electric Co., Ltd.
  • Example 1 A biaxially oriented polypropylene film having a width of 640 mm and a thickness of 6.0 ⁇ m (Toray Industries, Inc.: Trefan (registered trademark) 2172) was used as the polymer substrate. First, decompress the inside of the vacuum evaporator, heat the fluorine-based oil previously supplied to the oil evaporator to 90°C or higher, and pass through the slits on the top of the oil evaporator, A non-deposited margin having a width of 3.0 mm was formed in the direction.
  • Trefan registered trademark
  • phenylmethyldimethylpolysiloxane (SH702 manufactured by Toray Dow Corning Co., Ltd.) is heated and vapor-deposited on the mixed metal layer of aluminum and zinc in the same vapor deposition machine to form a silicon compound layer, and then on both surfaces of the polymer substrate.
  • a metallized film of an alloy of aluminum and zinc was obtained.
  • the heating temperature of siloxane was adjusted so that the amount of Si contained was in the range of 0.035 to 0.045 ⁇ g/cm 2 .
  • the above metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • the obtained metallized film was cut into a film having a width of 14 mm and a non-deposition margin width of 1.5 mm to produce a reel.
  • the two reels thus obtained were overlapped with each other so that the non-vapor deposition margins were opposite to each other and wound with a shift width of 1.0 mm to produce an element.
  • the winding length was adjusted so that the capacitance of the manufactured film capacitor was 500 PF.
  • the obtained element was pressed under the conditions of a pressure of 25 kg/cm 2 , a temperature of 105° C. and a pressing time of 5 minutes to make the element a flat type, subjected to metallikon treatment and soldering of electrode terminals to produce a film capacitor. ..
  • the obtained film capacitor element was placed in an epoxy resin outer case, filled with a two-component cast epoxy resin, and heated at a temperature of 100° C. for 2 hours for curing to prepare a film capacitor element in the outer case.
  • the obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
  • Example 3 In the formation of the silicon compound layer of Example 1, a metallized film was prepared in the same manner as in Example 1 except that dimethylpolysiloxane (SH200, 10cs manufactured by Toray Dow Corning Co., Ltd.) was used instead of phenylmethyldimethylpolysiloxane. Obtained. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • dimethylpolysiloxane SH200, 10cs manufactured by Toray Dow Corning Co., Ltd.
  • Example 4 In the formation of the silicon compound layer of Example 1, dimethylpolysiloxane (SH200, 10cs manufactured by Toray Dow Corning Co., Ltd.) was used in place of phenylmethyldimethylpolysiloxane, and plasma discharge treatment was performed on both surfaces of the polymer substrate. A metallized film was obtained in the same manner as in Example 1 except that the processing power density E was 45.5 W ⁇ min/m 2 . The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • Example 5 In the formation of the silicon compound layer of Example 1, instead of phenylmethyldimethylpolysiloxane, both-end type silanol-modified silicone having OH groups at both ends of the main chain (X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd.) A metallized film was obtained in the same manner as in Example 1 except that was used. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • Example 7 In the formation of the silicon compound layer of Example 1, a metallized film was prepared in the same manner as in Example 1 except that an alkyl-modified silicone (BY16-846 manufactured by Toray Dow Corning Co., Ltd.) was used instead of phenylmethyldimethylpolysiloxane. Obtained. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • an alkyl-modified silicone BY16-846 manufactured by Toray Dow Corning Co., Ltd.
  • Example 8 In the formation of the silicon compound layer of Example 1, an alkyl-modified silicone (BY16-846 manufactured by Toray Dow Corning Co., Ltd.) was used in place of phenylmethyldimethylpolysiloxane, and plasma discharge treatment on both surfaces of the polymer substrate was performed on one side. A metallized film was obtained in the same manner as in Example 1 except that the processing power density E was 45.5 W ⁇ min/m 2 . The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • Example 1 A metallized film was obtained in the same manner as in Example 1 except that the silicon compound layer of Example 1 was not formed. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • Example 2 A metallized film was obtained in the same manner as in Example 1 except that plasma discharge treatment was not performed on both surfaces of the polymer substrate in forming the silicon compound layer of Example 1. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • Example 3 In the formation of the silicon compound layer of Example 3, a metallized film was obtained in the same manner as in Example 3 except that plasma discharge treatment on both surfaces of the polymer substrate was not performed. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
  • the metallized film of the present invention has excellent moisture resistance to high temperature and high humidity environments, and therefore, for example, is used for electrical equipment of automobiles and trains used in harsh environments and for engines and motors, and for inverter smoothing capacitors and lighting. It is preferably used for applications.

Landscapes

  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention pertains to a metallized film which exhibits sufficient moisture resistance in a severe environment of 85˚C and 85% RH, is less likely to cause processing defects in film transport or post-processes, and can retain moisture resistance. The present invention provides a metallized film in which a metal layer (2) and a silicon compound layer (3) are laminated in this order on at least one surface of a polymer substrate (1). In the silicon compound layer (3), the intensity ratio (intensity A/intensity B) of peak intensity A having a maximum intensity in the wave number range of 1030 cm-1 to 1130 cm-1 to peak intensity B having a maximum intensity in the wave number range of 1240 cm-1 to 1280 cm-1 is at least 1.0 as obtained by FT-IR analysis.

Description

金属化フィルムMetallized film
 本発明は、極めて高い耐湿熱性に優れた金属層を有するコンデンサ用フィルムおよびそれを用いてなるコンデンサに関する。 The present invention relates to a capacitor film having a metal layer having an extremely high resistance to moisture and heat, and a capacitor using the film.
 近年のデジタル家電の急速な発達に伴い、機器内部の半導体基板に多数使用されるコンデンサの特性が重要視されるようになってきている。特に、薄型ディスプレイなどのデジタル機器においては、屋外や車載用途が増えつつあり、高温高湿の過酷な環境で耐圧性、保安性が求められている。 With the rapid development of digital home appliances in recent years, the characteristics of capacitors used in a large number of semiconductor substrates inside devices are becoming more important. In particular, in digital devices such as thin displays, outdoor and in-vehicle applications are increasing, and pressure resistance and safety are required in a severe environment of high temperature and high humidity.
 従来、コンデンサの耐電圧性を向上させる方法としては、フィルム上面に形成する金属薄膜を薄くして高膜抵抗とすることで、絶縁破壊時に流れる瞬時短絡電流により絶縁欠陥付近の金属薄膜を蒸発飛散させ絶縁を回復させる、いわゆる自己回復(セルフヒーリング)を機能しやすくする方法がある(特許文献1)。 Conventionally, the method of improving the withstand voltage of a capacitor is to reduce the thickness of the metal thin film formed on the upper surface of the film to a high film resistance so that the metal thin film near the insulation defect is evaporated and scattered by the momentary short-circuit current flowing at the time of dielectric breakdown. There is a method for facilitating so-called self-healing (self-healing) which restores insulation (Patent Document 1).
 ところで、従来技術のフィルム上面に金属薄膜を薄く形成する方法は、金属層の厚みが5nmから30nmと薄いため、高温高湿の環境下では外気からの酸素や水によって、金属層が酸化あるいは水酸化して電極として機能しなくなり、容量低下、tanδの上昇を引き起こす問題がある。この問題点を改善する方法として、金属層を外気からの酸素や水から保護するために、金属層表面にアクリル樹脂を積層する技術が知られている(特許文献2)。 By the way, according to the conventional method of forming a thin metal thin film on the upper surface of the film, since the thickness of the metal layer is as thin as 5 nm to 30 nm, the metal layer is oxidized or watered by oxygen or water from the outside air in a high temperature and high humidity environment. There is a problem that it oxidizes and does not function as an electrode, resulting in a decrease in capacity and an increase in tan δ. As a method of improving this problem, there is known a technique of laminating an acrylic resin on the surface of the metal layer in order to protect the metal layer from oxygen and water from the outside air (Patent Document 2).
 また、別の改善する方法として、金属表面にSi酸化物層を積層して水分から金属層を遮断する技術が知られている(特許文献3)。 As another improvement method, there is known a technique of stacking a Si oxide layer on a metal surface to shield the metal layer from moisture (Patent Document 3).
特開平8-142252号公報(特許請求の範囲)Japanese Patent Laid-Open No. 8-142252 (Claims) 特開平7-26193号公報(特許請求の範囲)JP-A-7-26193 (Claims) 特開平10-83930号公報(特許請求の範囲)Japanese Patent Laid-Open No. 10-83930 (Claims)
 しかしながら、特許文献2のように、アクリル樹脂を積層する方法は、例えば温度85℃、湿度85%RHといった従来よりも過酷な高温高湿の環境下では、アクリル樹脂自体の酸素や水分の遮断性が不足し、金属層全体が酸化あるいは水酸化し、大きく容量低下する問題があった。また、特許文献3のように、金属表面にSi酸化物層を積層する方法は、Si酸化物層が硬く壊れやすい層であるため、コンデンサ素子作製時のフィルム搬送や巻き取り、プレス加工によって、Si酸化物層にクラックや割れなどの欠点が発生し、欠点部から金属層が酸化あるいは水酸化し、容量低下する問題があった。 However, the method of laminating the acrylic resin as in Patent Document 2 is, for example, in a high temperature and high humidity environment where the temperature is 85° C. and the humidity is 85% RH, which is a barrier property against oxygen and moisture of the acrylic resin itself. However, there has been a problem that the entire metal layer is oxidized or hydroxylated, resulting in a large decrease in capacity. Further, as in Patent Document 3, in the method of laminating a Si oxide layer on a metal surface, the Si oxide layer is a hard and fragile layer. There is a problem in that defects such as cracks and breaks occur in the Si oxide layer, and the metal layer is oxidized or hydroxylated from the defect portion to reduce the capacity.
 本発明は、かかる従来技術の背景に鑑み、温度85℃、湿度85%RHの過酷な環境に対して十分な耐湿性を発現し、フィルム搬送や後工程で加工不良を起こしにくく、耐湿性を維持することが可能な金属化フィルムを提供せんとするものである。 In view of such background of the prior art, the present invention develops sufficient moisture resistance in a harsh environment of temperature 85° C. and humidity 85% RH, is less likely to cause processing defects in the film transport and the subsequent steps, and has high moisture resistance. It is intended to provide a metallized film that can be maintained.
 本発明は、かかる課題を解決するために、次のような手段を採用する。すなわち、以下である。
(1) 高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、
 前記ケイ素化合物層は、FT-IR分析で得られる、波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークの強度Aと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度A/強度B)が、1.0以上であることを特徴とする、金属化フィルム。
(2) 高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、
 前記ケイ素化合物層は、FT-IR分析で得られる、870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度C/強度B)が、1.0以上であることを特徴とする、金属化フィルム。
The present invention adopts the following means in order to solve such a problem. That is,
(1) A metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate,
The silicon compound layer is obtained by FT-IR analysis, the intensity A of a peak having a maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, present from the wave number 1240 cm -1 in the range of 1280 cm -1 The metallized film, wherein the intensity ratio of the intensity B of the peak having the maximum intensity (intensity A/intensity B) is 1.0 or more.
(2) A metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate,
Maximum intensity the silicon compound layer is obtained by FT-IR analysis, present and strength C of a peak having a maximum intensity that exist from 870 cm -1 in the range of 940 cm -1, from 1240 cm -1 in the range of 1280 cm -1 A metallized film having an intensity ratio of intensity B (intensity C/intensity B) of 1.0 or more.
 本発明は、極めて高い耐湿性および耐酸化性に優れた金属化フィルムを提供することができる。 The present invention can provide a metallized film excellent in extremely high humidity resistance and oxidation resistance.
本発明の金属化フィルムの一例を示した平面図、断面図である。It is the top view and sectional view which showed an example of the metallized film of this invention.
 [金属化フィルム]
 本発明の金属化フィルムは、高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、前記ケイ素化合物層は、FT-IR分析で得られる、波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークの強度Aと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度A/強度B)が、1.0以上であることを特徴とする、金属化フィルムである。以下、この態様の金属化フィルムを、本発明1という。
[Metalized film]
The metallized film of the present invention is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one side of a polymer substrate, and the silicon compound layer is obtained by FT-IR analysis. and intensity a of a peak having a maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, the intensity ratio of the intensity B of a peak having a maximum intensity that exist from the wave number 1240 cm -1 in the range of 1280 cm -1 (intensity a /Strength B) is 1.0 or more, which is a metallized film. Hereinafter, the metallized film of this embodiment will be referred to as the present invention 1.
 また別の態様の本発明の金属化フィルムは、高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、前記ケイ素化合物層は、FT-IR分析で得られる、870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度C/強度B)が、1.0以上であることを特徴とする、金属化フィルムである。以下、この態様の金属化フィルムを、本発明2という。 A metallized film of the present invention in another aspect is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate, and the silicon compound layer is FT-IR. obtained in the analysis, and the intensity C of a peak having a maximum intensity that exist from 870 cm -1 in the range of 940 cm -1, the intensity ratio of the intensity B of a peak having a maximum intensity that exist from 1240 cm -1 in the range of 1280 cm -1 (Strength C/Strength B) is 1.0 or more, which is a metallized film. Hereinafter, the metallized film of this aspect will be referred to as Invention 2.
 さらに本発明1と本発明2とを総称して、以下、本発明という。 Further, the present invention 1 and the present invention 2 are collectively referred to as the present invention hereinafter.
 図1に本発明の金属化フィルムの一例の断面図と平面図を示す。本発明の金属化フィルムは、高分子基材1の片面に金属層2およびケイ素化合物層3がこの順に積層されている。図1の態様の本発明の金属化フィルムにおける金属層2の形成面には、長手方向の端部に連続した非蒸着マージン4が形成されている。一方、この態様の本発明の金属化フィルムにおける、非蒸着マージン4に対向する長手方向の端部は、金属層2が形成されている。ここで、長手方向とは高分子基材1の巻き取り方向のことであり、幅方向とは長手方向に直交する方向のことをいう。また、本明細書においては、非蒸着マージン4が施された側の端部を非蒸着マージン側端部5、金属層がある側の端部を電極側端部6と称する。 FIG. 1 shows a cross-sectional view and a plan view of an example of the metallized film of the present invention. In the metallized film of the present invention, the metal layer 2 and the silicon compound layer 3 are laminated in this order on one surface of the polymer substrate 1. On the surface of the metallized film of the present invention of the embodiment shown in FIG. 1 on which the metal layer 2 is formed, continuous non-deposited margins 4 are formed at the ends in the longitudinal direction. On the other hand, in the metalized film of the present invention of this aspect, the metal layer 2 is formed at the end portion in the longitudinal direction facing the non-evaporation margin 4. Here, the longitudinal direction refers to the winding direction of the polymer base material 1, and the width direction refers to the direction orthogonal to the longitudinal direction. In the present specification, the end on the side where the non-deposition margin 4 is applied is referred to as the non-deposition margin side end 5, and the end on the side where the metal layer is present is referred to as the electrode side end 6.
 本発明の金属化フィルムは、金層層の上にケイ素化合物層を積層することによって、ケイ素化合物層が金属層表面への水や酸素の付着を抑制するため、高度な耐湿性を有するものとなる。 The metallized film of the present invention has a high moisture resistance because the silicon compound layer suppresses the adhesion of water and oxygen to the metal layer surface by laminating the silicon compound layer on the gold layer. Become.
 本発明において、FT-IR分析とは、対象物に赤外線を照射し、透過また反射して得られる赤外吸収スペクトルから、分子の構造や官能基を把握することが可能な分析である。分析方法、手順の詳細は、実施例に示す通りである。 In the present invention, the FT-IR analysis is an analysis capable of ascertaining a molecular structure or a functional group from an infrared absorption spectrum obtained by irradiating an object with infrared rays and transmitting or reflecting the infrared rays. Details of the analysis method and procedure are as shown in Examples.
 本発明において、波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークとは、ケイ素化合物層に含まれるシロキサン結合(Si-O-Si結合)に帰属する吸収ピークである。さらに波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークとは、ケイ素化合物層に含まれるトリメチルシリル基(SiCH)由来のSi-C結合に帰属する吸収ピークである。すなわち、これら2つのピーク強度比の変化からケイ素化合物層の存在および結合状態を把握することができる。 In the present invention, the peak having the maximum intensity existing in the wave number range of 1030 cm −1 to 1130 cm −1 is an absorption peak attributed to the siloxane bond (Si—O—Si bond) contained in the silicon compound layer. Furthermore, the peak having the maximum intensity existing in the wave number range of 1240 cm −1 to 1280 cm −1 is an absorption peak attributed to the Si—C bond derived from the trimethylsilyl group (SiCH 3 ) contained in the silicon compound layer. That is, the existence and bonding state of the silicon compound layer can be grasped from the change in the ratio of these two peak intensities.
 本発明1のケイ素化合物層は、FT-IR分析で得られる波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークの強度Aと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度A/強度B)が、1.0以上である。ケイ素化合物層の強度比(強度A/強度B)が1.0以上であることにより、ケイ素化合物層3にはSi-C結合よりも結合エネルギーが高いSi-O-Si結合の含有比率が大きくなるため、金属層表面への水や酸素の付着を抑制でき、耐湿性を向上することができる。強度A/強度Bが1.0未満である場合は、ケイ素化合物層全体の結合が弱くなるため、温度85℃、湿度85%RHの過酷な環境下では層が破壊され、高度な耐湿性は得られない。また、波数1240cm-1から1280cm-1の範囲にピークが存在しない場合は、有機成分であるSiCHを含有しないケイ素化合物層となるため、柔軟性が損なわれ、コンデンサ素子の作製中にクラックや割れなどの欠点が発生しやすく、耐湿性を悪化させる原因となる。なお、ケイ素化合物層に含まれるSiCH由来のSi-C結合を完全に除去することは難しく、微量残留するため、強度A/強度Bの上限は10.0以下となる。従って、強度A/強度Bは1.0以上であり、2.0以上が好ましく、また上限については特に限定はされないが、10.0以下が好ましい。 Silicon compound layer of the present invention 1, the intensity A of a peak having a maximum intensity that exist from the wave number 1030 cm -1 obtained by FT-IR analysis in the range of 1130 cm -1, wave number 1240 cm -1 in the range of 1280 cm -1 The intensity ratio of the intensity B of the peak having the maximum intensity present (intensity A/intensity B) is 1.0 or more. Since the strength ratio (strength A/strength B) of the silicon compound layer is 1.0 or more, the silicon compound layer 3 has a large content ratio of Si—O—Si bonds having higher binding energy than Si—C bonds. Therefore, the adhesion of water or oxygen to the surface of the metal layer can be suppressed, and the moisture resistance can be improved. When the strength A/strength B is less than 1.0, the bonding of the entire silicon compound layer is weakened, so the layer is destroyed in a harsh environment of temperature 85° C. and humidity 85% RH, and high moisture resistance is obtained. I can't get it. Further, when there is no peak in the wave number range of 1240 cm -1 to 1280 cm -1 , the silicon compound layer does not contain SiCH 3 which is an organic component, so that flexibility is impaired and cracks or Defects such as cracks are likely to occur, which causes deterioration of moisture resistance. Note that it is difficult to completely remove the Si—C bond derived from SiCH 3 contained in the silicon compound layer, and a trace amount remains, so the upper limit of strength A/strength B is 10.0 or less. Therefore, strength A/strength B is 1.0 or more, preferably 2.0 or more, and the upper limit is not particularly limited, but is preferably 10.0 or less.
 ここで、ケイ素化合物層のFT-IR分析で測定する位置に非蒸着マージンオイルを形成する際のフッ素オイルが付着している状態で、前述の強度Aや強度B、後述する強度Cを測定する場合は、ケイ素化合物層と非蒸着マージン部のそれぞれについてFT-IR分析で測定し、両者の差スペクトルを使用することで、前述の強度Aや強度B、後述する強度Cを求めることができる。なお、ケイ素化合物層へのフッ素オイルの付着は、X線光電子分光法(XPS)分析で判断することができる。ケイ素化合物層の表面からXPS分析を行い、得られた元素組成比において、フッ素原子が1.0%以上の場合にフッ素オイルが付着していると判断する。 Here, the strength A and the strength B described above and the strength C described later are measured in a state where the fluorine oil used for forming the non-deposited margin oil is adhered to the position measured by FT-IR analysis of the silicon compound layer. In this case, the intensity A and the intensity B described above and the intensity C described later can be obtained by measuring the silicon compound layer and the non-deposited margin portion by FT-IR analysis and using the difference spectrum between them. The adhesion of the fluorine oil to the silicon compound layer can be determined by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis is performed from the surface of the silicon compound layer, and it is determined that the fluorine oil is attached when the fluorine atom content is 1.0% or more in the obtained elemental composition ratio.
 本発明の金属化フィルムは、高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムである。そのため本発明の金属化フィルムは、高分子基材の片面のみまたは両面に金属層を設けることができ、ケイ素化合物層は、金属層を設けた高分子基材の片側のみまたは両側に設けても構わない。具体的な構成として、以下の(i)~(v)のいずれでも構わない。
(i)高分子基材/金属層/ケイ素化合物層
(ii)ケイ素化合物層/金属層/高分子基材/金属層
(iii)ケイ素化合物層/金属層/高分子基材/ケイ素化合物層
(iv)ケイ素化合物層/金属層/高分子基材/金属層/ケイ素化合物層
 これらの中でも生産性の観点から(i)の構成が好ましい。
The metallized film of the present invention is a metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate. Therefore, the metallized film of the present invention can be provided with a metal layer only on one side or both sides of the polymer substrate, and the silicon compound layer can be provided only on one side or both sides of the polymer substrate provided with the metal layer. I do not care. As a specific configuration, any of the following (i) to (v) may be used.
(I) Polymer substrate/metal layer/silicon compound layer (ii) Silicon compound layer/metal layer/polymer substrate/metal layer (iii) Silicon compound layer/metal layer/polymer substrate/silicon compound layer ( iv) Silicon compound layer/metal layer/polymer substrate/metal layer/silicon compound layer Among these, the configuration (i) is preferable from the viewpoint of productivity.
 [高分子基材]
 本発明に用いられる高分子基材は、金属層が蒸着などにより形成できるものであれば特に限定されないが、ポリエチレン、無延伸あるいは延伸ポリプロピレン、ポリメチルペンテン、シクロオレフィン系ポリマー、ノルボルネン系ポリマー、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、液晶ポリマーなどの単体、またはこれら2種以上の混合物並びにポリマーアロイからなる有機高分子フィルムが好ましく、コンデンサを形成した場合の耐電圧特性、誘電正接特性、絶縁抵抗特性に優れる点から、無延伸あるいは延伸のポリプロピレン系フィルムが特に好ましく用いられる。ポリプロピレン系フィルムは、ポリプロピレンのホモポリマーからなるフィルム以外に、プロピレンと他のαーオレフィン(例えばエチレン、ブテンなど)の共重合体からなるフィルムであっても、またポリプロピレンと他のα-オレフイン重合体(例えばポリエチレン、ポリブテンなど)とのブレンド品からなるフィルムであっても構わない。
[Polymer base material]
The polymer base material used in the present invention is not particularly limited as long as the metal layer can be formed by vapor deposition or the like, but is not limited to polyethylene, unstretched or stretched polypropylene, polymethylpentene, cycloolefin polymer, norbornene polymer, polyethylene. Organic polymer films composed of terephthalate, polyethylene naphthalate, polyamide, polyamide imide, polyphenylene sulfide, polyether imide, polyimide, liquid crystal polymer, etc., or a mixture of two or more thereof and a polymer alloy are preferable, and when a capacitor is formed. An unstretched or stretched polypropylene film is particularly preferably used because it has excellent withstand voltage characteristics, dielectric loss tangent characteristics, and insulation resistance characteristics. The polypropylene film may be a film made of a homopolymer of polypropylene, a film made of a copolymer of propylene and another α-olefin (eg ethylene, butene, etc.), or a film made of polypropylene and another α-olefin polymer. It may be a film made of a blended product with (for example, polyethylene, polybutene, etc.).
 高分子基材には本発明の目的とする特性に支障を及ぼさない範囲で公知の添加剤として、滑剤や可塑剤などが含まれてもよい。また、高分子基材の表面はコロナ放電処理、火炎処理、プラズマ処理などの表面処理、或いは、接着剤のコーティング層、樹脂コーティング層、溶融押し出しによる樹脂層が積層されていても構わない。なお、高分子基材の表面に形成される接着剤のコーティング層、樹脂コーティング層、溶融押し出しによる樹脂層は、高分子基材に含まれる(高分子基材の一部である)。 The polymer base material may contain a lubricant, a plasticizer, and the like as known additives within a range that does not hinder the intended properties of the present invention. Further, the surface of the polymer base material may be surface-treated by corona discharge treatment, flame treatment, plasma treatment, or the like, or an adhesive coating layer, a resin coating layer, or a resin layer formed by melt extrusion may be laminated. The coating layer of the adhesive formed on the surface of the polymer substrate, the resin coating layer, and the resin layer formed by melt extrusion are included in the polymer substrate (which is a part of the polymer substrate).
 本発明で使用する高分子基材の厚みは、特に制限はなく、コンデンサを使用する用途に応じて適宜決定できるが、コンデンサの小型化、高容量化の観点から、0.1μm以上10μm以下が良く、好ましくは1μm以上7μm以下である。 The thickness of the polymer base material used in the present invention is not particularly limited and can be appropriately determined depending on the application in which the capacitor is used, but from the viewpoint of miniaturization and high capacity of the capacitor, 0.1 μm or more and 10 μm or less is preferable. Good, and preferably 1 μm or more and 7 μm or less.
 [金属層]
 本発明の金属化フィルムに用いる事のできる金属層の材質としては、特に限定されないが、Al、Zn、Sn、Ni、Cr、Fe、Cu、Mg、Ti、Si、及びこれら金属の合金からなる群より選ばれる少なくとも1つを含むものを用いることが好ましい。これらの中でも、均一で安定した導電性金属の蒸着膜を得る観点から、Zn単体、またはZnとAlの積層品、またはZnとAlの合金、Al単体を用いることが好ましい。
[Metal layer]
The material of the metal layer that can be used for the metallized film of the present invention is not particularly limited, but is made of Al, Zn, Sn, Ni, Cr, Fe, Cu, Mg, Ti, Si, and alloys of these metals. It is preferable to use one containing at least one selected from the group. Among these, it is preferable to use a simple substance of Zn, a laminated product of Zn and Al, an alloy of Zn and Al, or a simple substance of Al from the viewpoint of obtaining a uniform and stable vapor-deposited film of a conductive metal.
 金属層の厚みは電気特性、機械特性の観点から、1nm以上、50nm以下が好ましい。導電性が十分に確保できる観点から金属層の厚みは1nm以上、50nm以下が好ましく、さらには絶縁破壊時の自己回復性5nm以上30nm以下がより好ましい。金属層の厚みは、通常は透過型電子顕微鏡(TEM)による断面観察により測定することが可能である。 The thickness of the metal layer is preferably 1 nm or more and 50 nm or less from the viewpoint of electrical characteristics and mechanical characteristics. From the viewpoint of ensuring sufficient conductivity, the thickness of the metal layer is preferably 1 nm or more and 50 nm or less, and more preferably 5 nm or more and 30 nm or less in self-recovery property upon dielectric breakdown. The thickness of the metal layer can be usually measured by observing a cross section with a transmission electron microscope (TEM).
 金属層の形成方法は、真空蒸着法やスパッタリング法、イオンプレーティング法等があるが、形成速度が速く、経済的に有利である観点から真空蒸着法が好ましい。真空蒸着法は、真空中で冷却ロールに密着した高分子基材に蒸着源から金属を蒸着させ、高分子基材表面に金属層を形成する方法である。この蒸着源には、抵抗加熱式のボート式や輻射あるいは高周波加熱によるルツボ形式や、電子ビーム加熱による方式などがあるが、特に限定されず、適宜選択すればよい。 The method for forming the metal layer includes a vacuum vapor deposition method, a sputtering method, an ion plating method, etc., but the vacuum vapor deposition method is preferable from the viewpoint of high formation rate and economical advantage. The vacuum vapor deposition method is a method in which a metal is vapor-deposited from a vapor deposition source on a polymer base material that is in close contact with a cooling roll in vacuum to form a metal layer on the surface of the polymer base material. The evaporation source includes a resistance heating boat type, a crucible type by radiation or high-frequency heating, and an electron beam heating type, but is not particularly limited and may be appropriately selected.
 [ケイ素化合物層]
 次に、ケイ素化合物層について詳細を説明する。本発明におけるケイ素化合物層は、ケイ素化合物を含む層であり、ケイ素化合物を含みさえすれば、その層が他に何を含んでいてもかまわない。ケイ素化合物層中のケイ素化合物としては、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物、ケイ素酸窒化物または、それらの混合物などをあげることができる。特に、ケイ素化合物層が、酸化ケイ素、炭化ケイ素、窒化ケイ素、及び酸窒化ケイ素からなる群より選択される少なくとも1つのケイ素化合物を含むことが好ましい。なお、ケイ素酸化物層に含まれる成分はケイ素(Si)に限定されず、例えば、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、スズ(Sn)、インジウム(In)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、パラジウム(Pd)等から形成された金属や金属酸化物を含んでも構わない。
[Silicon compound layer]
Next, the silicon compound layer will be described in detail. The silicon compound layer in the present invention is a layer containing a silicon compound, and the layer may contain any other material as long as it contains the silicon compound. Examples of the silicon compound in the silicon compound layer include silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, or a mixture thereof. Particularly, it is preferable that the silicon compound layer contains at least one silicon compound selected from the group consisting of silicon oxide, silicon carbide, silicon nitride, and silicon oxynitride. The component contained in the silicon oxide layer is not limited to silicon (Si), and examples thereof include aluminum (Al), titanium (Ti), zirconium (Zr), tin (Sn), indium (In), niobium (Nb). ), molybdenum (Mo), tantalum (Ta), palladium (Pd), or the like, or a metal oxide may be included.
 本発明において、金属層の上にケイ素化合物層が形成されているかどうかは、以下の蛍光X線分析(XRF分析)によるケイ素(Si)原子の検出量から確認することができる。 In the present invention, whether or not the silicon compound layer is formed on the metal layer can be confirmed from the detected amount of silicon (Si) atoms by the following fluorescent X-ray analysis (XRF analysis).
 本発明のケイ素化合物層は、金属層の耐湿性を向上させる観点から、XRF分析で測定されるケイ素(Si)原子の検出量が0.005μg/cm~0.2μg/cmであることが好ましく、さらにはケイ素(Si)原子の検出量が0.01μg/cm~0.1μg/cmであることが好ましい。 Silicon compound layer of the present invention, from the viewpoint of improving the moisture resistance of the metal layer, the detection amount of silicon (Si) atoms measured by XRF analysis is 0.005μg / cm 2 ~ 0.2μg / cm 2 It is preferable that the detected amount of silicon (Si) atoms is 0.01 μg/cm 2 to 0.1 μg/cm 2 .
 また、本発明1のケイ素化合物層は、FT-IR分析で得られる、波数870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、強度Bの強度比(強度C/強度B)が、1.0以上であることが好ましい。さらに本発明2のケイ素化合物層は、FT-IR分析で得られる、波数870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度C/強度B)が、1.0以上である。ここで、波数870cm-1から940cm-1の範囲に存在する最大強度を有するピークとは、金属層にアルミニウムが含有する場合において、金属層の表面に形成されるAl-O結合に帰属する吸収ピークである。 Further, the silicon compound layer of the present invention 1 has an intensity ratio (intensity C) between the intensity C of the peak having the maximum intensity existing in the wave number range of 870 cm −1 to 940 cm −1 and the intensity B, which is obtained by FT-IR analysis. /Strength B) is preferably 1.0 or more. Furthermore silicon compound layer of the present invention 2 is obtained by FT-IR analysis, and the intensity C of a peak having a maximum intensity that exist from the wave number 870 cm -1 in the range of 940 cm -1, wave number 1240 cm -1 in 1280 cm -1 The intensity ratio of the intensity B of the peak having the maximum intensity existing in the range (intensity C/intensity B) is 1.0 or more. Here, the peak having the maximum intensity existing in the wave number range of 870 cm −1 to 940 cm −1 is the absorption attributed to the Al—O bond formed on the surface of the metal layer when aluminum is contained in the metal layer. It is a peak.
 本発明品のケイ素化合物層は、強度Cと、強度Bの強度比(強度C/強度B)が、1.0以上であることにより、ケイ素化合物層に含まれるSi-C結合よりも金属層の表面に形成されるAl-O結合の存在比率が大きくなる。詳細は定かでは無いが、ケイ素化合物層を形成時のプラズマや熱によって、上述したSi-C結合が減少し、Si-O-Si結合が増加する一方で、Si-O-Si結合の一部が切断され、金属層の表面に存在するAl原子とO原子が結合し、Al-O結合やAl-O-Si結合を形成するため、金属層とケイ素化合物層との界面により強固な結合が形成されていると考えている。すなわち、金属層の表面にはAl-O結合により不動態となる酸化アルミニウムの形成やAl-O-Si結合によるシリケートが形成され、金属層の表面が化学的に安定化するため、温度85℃、湿度85%RHの過酷な環境に対しても酸化や水酸化の反応が起こりにくく、耐湿性を維持することが可能な金属化フィルムになると推測している。なお、ケイ素化合物層に含まれるSiCH由来のSi-C結合を完全に除去することは難しく、微量残留するため、強度C/強度Bは10.0以下となる。従って、強度C/強度Bは1.0以上であり、また上限については特に限定されないが、10.0以下が好ましい。 The silicon compound layer of the product of the present invention has a strength ratio of strength C and strength B (strength C/strength B) of 1.0 or more, so that it is more a metal layer than a Si—C bond contained in the silicon compound layer. The abundance ratio of Al—O bonds formed on the surface of the is increased. Although details are not clear, plasma and heat at the time of forming the silicon compound layer decrease the above Si—C bond and increase Si—O—Si bond, while part of the Si—O—Si bond. Is cut and the Al atoms and O atoms present on the surface of the metal layer are bonded to form an Al—O bond or an Al—O—Si bond, so that a stronger bond is formed at the interface between the metal layer and the silicon compound layer. I think it has been formed. That is, on the surface of the metal layer, aluminum oxide that becomes passive due to Al—O bond or silicate due to Al—O—Si bond is formed, and the surface of the metal layer is chemically stabilized. It is presumed that the metallized film will be resistant to oxidation and hydroxylation reaction even in a harsh environment with a humidity of 85% RH and can maintain moisture resistance. It is difficult to completely remove the Si—C bond derived from SiCH 3 contained in the silicon compound layer, and a small amount remains, so the strength C/strength B becomes 10.0 or less. Therefore, strength C/strength B is 1.0 or more, and the upper limit is not particularly limited, but is preferably 10.0 or less.
 本発明の金属化フィルムの製造方法について、以下に詳細を説明する。 The details of the method for producing the metallized film of the present invention will be described below.
 本発明の金属化フィルムの製造方法は特に限定されないが、例えば、高分子基材上に長手方向に連続した非蒸着マージンを形成する工程と、金属層を設ける工程と、シリコーン組成物を加熱、蒸発させ、金属層上に塗布後、プラズマ放電処理をして強固なケイ素化合物層を形成する工程を経て作製される。これらの工程を一回のフィルム搬送で全て実施する方法として真空蒸着機を使用することが好ましい。 The method for producing the metallized film of the present invention is not particularly limited, for example, the step of forming a continuous non-deposition margin in the longitudinal direction on the polymer substrate, the step of providing a metal layer, heating the silicone composition, After evaporating and coating on the metal layer, plasma discharge treatment is performed to form a strong silicon compound layer. A vacuum vapor deposition machine is preferably used as a method for carrying out all of these steps in one film conveyance.
 高分子基材上に長手方向に連続した非蒸着マージンを形成する工程は、シリコーン系オイル、フッ素系オイル、流動パラフィンなどのオイルを用いる方法がある。この他の方法として、テープ、レーザーを用いる方法があるが、いずれの方法でも所定の幅で非蒸着部分が長手方向連続的に形成されれば良く、特に方法に限定されない。これらの中でも高速かつ簡便に非蒸着マージンを形成する方法として、フッ素オイルを用いる方法が好ましい。オイル蒸発機の中にフッ素オイルを入れて、加熱、蒸発させ、オイル蒸発器上部に設けられたスリットを通して、フィルム基材に長手方向の非蒸着マージンを形成することができる。 The process of forming continuous non-deposited margins in the longitudinal direction on the polymer base material may be done by using an oil such as silicone oil, fluorine oil or liquid paraffin. As another method, there is a method using a tape or a laser, but any method is sufficient as long as the non-deposited portion is continuously formed in the longitudinal direction with a predetermined width, and the method is not particularly limited. Among these, a method using fluorine oil is preferable as a method for forming the non-deposition margin quickly and easily. Fluorine oil can be put in an oil evaporator, heated and evaporated, and a non-deposition margin in the longitudinal direction can be formed on the film base material through a slit provided in the upper part of the oil evaporator.
 金属層を設ける工程は、例えば、亜鉛とアルミニウムの合金膜を形成する場合、高分子基材を真空蒸着機内の巻出軸から巻出して高分子基材を冷却ドラム上で冷却しながら、亜鉛とアルミニウムがそれぞれ入った蒸着源から誘導加熱法もしくは抵抗加熱法、電子ビーム法などにより加熱・溶融させ、両金属を同時に蒸着することで形成できる。それぞれの蒸着源の温度を調整することで形成される金属層の組成を制御することができる。また、厚みはフィルム搬送速度により所望の厚みになるよう調整できる。 The step of providing the metal layer includes, for example, when forming an alloy film of zinc and aluminum, while unwinding the polymer base material from the unwinding shaft in the vacuum vapor deposition machine and cooling the polymer base material on a cooling drum, It can be formed by heating and melting by an induction heating method, a resistance heating method, an electron beam method, or the like from vapor deposition sources containing aluminum and aluminum, and vapor depositing both metals at the same time. The composition of the metal layer formed can be controlled by adjusting the temperature of each vapor deposition source. Further, the thickness can be adjusted to a desired thickness by the film conveying speed.
 ケイ素化合物層を形成する工程は、シリコーン組成物を含む塗料を乾燥後の厚みが所望の厚みになるように溶媒で固形分濃度を調整しリバースコート法、グラビアコート法、ロッドコート法、バーコート法、ダイコート法、スプレーコート法、スピンコート法などにより塗布し、加熱、蒸発させる方法や真空中において点状もしくは細いスリット状のノズルから加熱したシリコーン組成物を噴霧し、プラズマ放電処理をして形成する方法などがある。真空蒸着機で金属層を形成する場合、同じ蒸着機内でケイ素化合物層を形成でき、生産性や均一性に優れる観点から、後者方法である点状もしくは細いスリット状のノズルから加熱したシリコーン組成物を噴霧し、プラズマ放電処理をして強固なケイ素化合物層を形成する方法が好ましい。 In the step of forming the silicon compound layer, the solid content concentration is adjusted with a solvent so that the thickness after drying the coating material containing the silicone composition becomes a desired thickness, and a reverse coating method, a gravure coating method, a rod coating method, a bar coating method. Method, die coating method, spray coating method, spin coating method, etc., and heating and vaporizing, or spraying the heated silicone composition from a dot-shaped or thin slit-shaped nozzle in a vacuum, and performing plasma discharge treatment. There is a method of forming. When the metal layer is formed by a vacuum vapor deposition machine, the silicon compound layer can be formed in the same vapor deposition machine, and from the viewpoint of excellent productivity and uniformity, the latter method is a silicone composition heated from a dot-shaped or thin slit-shaped nozzle. Is preferred, and plasma discharge treatment is performed to form a strong silicon compound layer.
 本発明のシリコーン組成物とは、シリコーンを70重量%以上、好ましくは85重量%以上含む樹脂組成物のことを言う。本発明に用いられるシリコーン組成物は、金属層上に噴霧されたシリコーン組成物をプラズマ放電処理でSi-C結合を切断し、Si-O-Si結合の形成を促進させる観点から、主鎖にシロキサン結合(Si-O-Si)、側鎖にメチル基を有するジメチルポリシロキサンまたは側鎖にフェニル基を有するメチルフェニルシリコーンが好ましく、耐湿性の観点からフェニルメチルジメチルポリシロキサンがより好ましい。また、プラズマ放電処理でSi-O-Si結合の形成が促進するようにメチル基の一部を有機官能基に置き換えた有機変性シリコーンが好ましい。有機変性シリコーンには、側鎖の一部を有機官能基にした側鎖型や主鎖の両末端を有機官能基にした両末端型、側鎖と末端を有機官能基にした両末端側鎖型があるが、プラズマ放電処理による均一性の観点から両末端型が好ましい。シリコーン組成物としては、例えば、アミノ変性シリコーンやアルキル変性シリコーン、シラノール変性シリコーン、フェニル変性シリコーン、ポリエーテル変性シリコーンなどが好ましく、中でもシラノール変性シリコーンは、側鎖のOH基がプラズマ放電処理で脱水縮合し、Si-O-Si結合の形成を促進させるためより好ましい。 The silicone composition of the present invention means a resin composition containing 70% by weight or more, preferably 85% by weight or more of silicone. The silicone composition used in the present invention has a main chain from the viewpoint of accelerating the formation of Si—O—Si bond by cutting the Si—C bond by plasma discharge treatment of the silicone composition sprayed on the metal layer. A siloxane bond (Si—O—Si), a dimethylpolysiloxane having a methyl group in a side chain or a methylphenylsilicone having a phenyl group in a side chain is preferable, and a phenylmethyldimethylpolysiloxane is more preferable from the viewpoint of moisture resistance. Further, an organic modified silicone in which a part of the methyl group is replaced with an organic functional group is preferred so that the formation of Si—O—Si bond is promoted by the plasma discharge treatment. The organically modified silicone includes side chain type in which a part of the side chain has an organic functional group, both end type in which both ends of the main chain have an organic functional group, and both end side chains in which a side chain and an end have an organic functional group. There is a mold, but a double-end mold is preferable from the viewpoint of uniformity by plasma discharge treatment. As the silicone composition, for example, amino-modified silicone, alkyl-modified silicone, silanol-modified silicone, phenyl-modified silicone, polyether-modified silicone and the like are preferable. Among them, silanol-modified silicone has a side chain OH group that undergoes dehydration condensation by plasma discharge treatment. However, it is more preferable because it promotes the formation of Si—O—Si bonds.
 金属層表面に噴霧されたシリコーン組成物をプラズマ放電処理する際に用いられるガス種は特に限定されないが、例えば、O、Ar、CO、CO、Hなどが挙げられる。特に好ましくはOやAr、あるいはこれらの1種以上を含む混合ガスである。プラズマ放電処理の電力密度は、10W・min/m以上にすることが好ましく、Si-O-Si結合の形成を促進させる観点から、35W・min/m以上がより好ましい。プラズマ放電電極には、異常放電が無く、安定放電が可能なターゲット材料として、CuまたはAl、あるいはステンレスを使用することが好ましい。 The gas species used in the plasma discharge treatment of the silicone composition sprayed on the surface of the metal layer is not particularly limited, but examples thereof include O 2 , Ar, CO, CO 2 , and H 2 . Particularly preferred is O 2 or Ar, or a mixed gas containing one or more of these. The power density of the plasma discharge treatment is preferably 10 W·min/m 2 or more, and more preferably 35 W·min/m 2 or more from the viewpoint of promoting the formation of Si—O—Si bonds. For the plasma discharge electrode, it is preferable to use Cu, Al, or stainless steel as a target material capable of stable discharge without abnormal discharge.
 また、金属層表面に噴霧されたシリコーン組成物のプラズマ放電処理において、上述以外に効率良くSi-C結合を切断し、Si-O-Si結合の形成を促進させる方法としては、高分子基材の両面から同時にプラズマ放電処理する方法や高分子基材の金属層を形成しない面側から40℃以上のヒーターで加熱処理しながらシリコーン組成物をプラズマ放電処理する方法などがある。また、金属層表面にAl-O結合やAl-O-Si結合を形成する方法としては、シリコーン組成物を噴霧する前の金属層表面をプラズマ放電処理する方法がある。この場合、プラズマ放電電極に使用するターゲット材料として、CuまたはAl、あるいはステンレスを使用することが好ましく、Al-O結合を促進させる観点からAlがより好ましい。 In addition, in the plasma discharge treatment of the silicone composition sprayed on the surface of the metal layer, a method other than the above that efficiently cuts the Si—C bond and promotes the formation of the Si—O—Si bond is a polymer base material. And a method in which the silicone composition is subjected to plasma discharge treatment while being heated with a heater of 40° C. or higher from the side of the polymer base material on which the metal layer is not formed. As a method of forming Al—O bond or Al—O—Si bond on the surface of the metal layer, there is a method of performing plasma discharge treatment on the surface of the metal layer before spraying the silicone composition. In this case, it is preferable to use Cu, Al, or stainless steel as the target material used for the plasma discharge electrode, and Al is more preferable from the viewpoint of promoting the Al—O bond.
 本発明の金属化フィルム中のケイ素化合物層は、その表面の水接触角が70°以上95°以下であることが好ましい。シリコーン組成物がプラズマ放電で十分に処理され、Si-O-Si結合を促進することにより、ケイ素化合物層の表面の水接触角を70°以上、95°以下とすることが可能である。ケイ素化合物層の表面の水接触角が95°より大きい場合、プラズマ放電処理が不十分であるため、水や酸素がケイ素化合物層を透過しやすく、金属層が酸化や水酸化し、十分な耐湿性は得られない。ケイ素化合物層の表面の水接触角が70°未満になると、ケイ素化合物層の表面に水や酸素が吸着しやすくなり、結果的に耐湿性は悪化する。すなわち、ケイ素化合物層の表面の水接触角は70°以上、95°以下が好ましく、処理の均一性が良い範囲として、水接触角は85°以上、95°以下がより好ましい。 The silicon compound layer in the metallized film of the present invention preferably has a surface water contact angle of 70° or more and 95° or less. By sufficiently treating the silicone composition with plasma discharge to promote the Si—O—Si bond, the water contact angle of the surface of the silicon compound layer can be 70° or more and 95° or less. When the water contact angle of the surface of the silicon compound layer is larger than 95°, plasma discharge treatment is insufficient, so that water and oxygen easily pass through the silicon compound layer, and the metal layer oxidizes or hydroxylates, resulting in sufficient moisture resistance. I can't get sex. When the water contact angle on the surface of the silicon compound layer is less than 70°, water and oxygen are likely to be adsorbed on the surface of the silicon compound layer, and as a result, the moisture resistance is deteriorated. That is, the water contact angle on the surface of the silicon compound layer is preferably 70° or more and 95° or less, and the water contact angle is more preferably 85° or more and 95° or less in the range where the treatment uniformity is good.
 このようにして得られた金属化フィルムはコンデンサ用フィルムとして好ましく用いることが出来、公知の方法で積層もしくは巻回してコンデンサを得ることができる。 The metallized film thus obtained can be preferably used as a film for capacitors, and a capacitor can be obtained by laminating or winding by a known method.
 例えば、巻回型フィルムコンデンサの場合を例示する。幅方向に金属層と非蒸着マージンを有する金属化フィルムのロールにおいて、各金属層の中央部と各非蒸着マージンの中央部をスリットし、左側もしくは右側に非蒸着マージンを有する巻取リールを作製する。次に、左側に非蒸着マージンを有するリールと、右側に非蒸着マージンを有するリールを使用し、金属層端部を非蒸着マージンより外側にずらして重ね合わせ、巻回する。こうして得られた巻回体をプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して巻回型コンデンサ素子を得ることができる。さらに外装ケース入りのコンデンサ素子の場合は、コンデンサ素子をエポキシ樹脂などの耐熱性、難燃性を有する樹脂製外装ケースに入れ、2液性注型エポキシ樹脂を充填、加熱、硬化して作製することができる。 For example, the case of a wound film capacitor is illustrated. In a roll of metallized film that has a metal layer and a non-deposition margin in the width direction, slit the center part of each metal layer and the center part of each non-deposition margin to make a take-up reel that has a non-deposition margin on the left or right side. To do. Next, using a reel having a non-deposition margin on the left side and a reel having a non-deposition margin on the right side, the end portions of the metal layers are shifted to the outside of the non-deposition margin, overlapped, and wound. The wound body thus obtained can be pressed to spray the metallikon on both end faces to form external electrodes, and the lead wire is welded to the metallikon to obtain the wound capacitor element. Furthermore, in the case of a capacitor element with an outer case, the capacitor element is placed in an outer case made of resin having heat resistance and flame retardancy such as epoxy resin, filled with two-component cast epoxy resin, heated, and cured to prepare. be able to.
 本発明の金属化フィルムを用いて構成されるコンデンサは、外装コンデンサ、無外装コンデンサ、あるいは無含浸(乾式)コンデンサ、として使用され、例えば、一般家電や自動車や電車の電装用及びエンジン、モーター制御用コンデンサなどに用いられ、過酷環境に使用されるコンデンサにも適用される。 The capacitor formed by using the metallized film of the present invention is used as an exterior capacitor, a non-exterior capacitor, or a non-impregnated (dry) capacitor. It is also used as a capacitor for automobiles and is also applied to capacitors used in harsh environments.
 以下、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。 The present invention will be specifically described below based on examples. However, the present invention is not limited to the following examples.
 [評価方法]
 次に、本発明に用いる測定法及び評価法について説明する。
[Evaluation method]
Next, the measuring method and the evaluating method used in the present invention will be described.
 (1)膜抵抗の測定方法
 ヘビーエッジ部(非蒸着マージンに対向する長手方向の端部側の金属層が厚い部分のことを、ヘビーエッジ部という)の膜抵抗を測定する場合は、非蒸着マージンに対向する長手方向の金属層端部から幅方向に3mm、長手方向に250mmを切り出し、測定サンプルとした。ヘビーエッジ部以外の膜抵抗を測定する場合は、長手方向の非蒸着マージンと金属膜の界面から幅方向に5mm、長手方向に250mmを切り出し、測定サンプルとした。
(1) Method of measuring film resistance When measuring the film resistance of the heavy edge portion (the portion where the metal layer on the end side in the longitudinal direction facing the non-deposition margin is thick) is the non-deposition 3 mm in the width direction and 250 mm in the length direction were cut out from the end of the metal layer in the lengthwise direction facing the margin to obtain a measurement sample. When measuring the film resistance other than at the heavy edge portion, 5 mm in the width direction and 250 mm in the length direction were cut out from the interface between the non-deposited margin in the longitudinal direction and the metal film to obtain a measurement sample.
 4端子法により、100mmの電極間の金属膜抵抗を測定し、測定値に(測定幅/電極間距離)を掛けて、幅10mm、電極間距離10mm当たりの膜抵抗を算出した。単位はΩ/□と表示する。 The metal film resistance between electrodes of 100 mm was measured by the 4-terminal method, and the measured value was multiplied by (measurement width/distance between electrodes) to calculate the film resistance per width 10 mm and distance between electrodes 10 mm. The unit is displayed as Ω/□.
 (2)金属層のZn量、Al量およびケイ素化合物層のSi量
 理学電気工業(株)製の自動蛍光X線分析装置(RIX3000)を用いて試料板の上にフィルムをのせ、10mmφの測定面積でZn、Al、Si元素のそれぞれの含有量を測定した。
(2) Zn content of metal layer, Al content and Si content of silicon compound layer Using an automatic fluorescent X-ray analyzer (RIX3000) manufactured by Rigaku Denki Kogyo Co., Ltd., a film was placed on a sample plate and measurement of 10 mmφ was performed. The contents of Zn, Al, and Si elements were measured by the area.
 (3)水接触角測定
 温度23℃、相対湿度65%の条件下で、接触角計CA-D型(協和界面科学(株)製)にて、金属層またはケイ素化合物層上での水の接触角を測定した。測定には、5個の平均値を用いた。
(3) Water contact angle measurement Under the conditions of a temperature of 23° C. and a relative humidity of 65%, a contact angle meter CA-D type (manufactured by Kyowa Interface Science Co., Ltd.) was used to measure water on the metal layer or the silicon compound layer. The contact angle was measured. An average value of 5 was used for the measurement.
 (4)FT-IR測定
 ケイ素化合物層のFT-IR測定は、ATR(Attenuated Total Refrection)法を用いた。
(4) FT-IR measurement For the FT-IR measurement of the silicon compound layer, an ATR (Attenuated Total Reflection) method was used.
 まずサンプルが無い状態で圧力0.1MPa以下まで測定セル内をポンプで排気し、以下の測定条件でベースライン測定を行った。次に、各水準サンプルのケイ素化合物層をATR結晶に圧着し、圧力0.1MPa以下まで測定セル内をポンプで排気後、以下の測定条件で吸収スペクトルを測定した。各水準サンプルについて、n=2回ずつ測定を実施した。 First, the measurement cell was evacuated with a pump to a pressure of 0.1 MPa or less without a sample, and a baseline measurement was performed under the following measurement conditions. Next, the silicon compound layer of each level sample was pressure-bonded to the ATR crystal, the inside of the measurement cell was evacuated with a pump to a pressure of 0.1 MPa or less, and then the absorption spectrum was measured under the following measurement conditions. For each level sample, n=2 measurements were performed.
 得られた吸収スペクトルから、解析ソフトを使用して、波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークの強度Aと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度B、波数870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cをそれぞれ得た。各水準サンプルの強度A/強度Bおよび強度C/強度Bの強度比の平均値を表1に示す。 From the obtained absorption spectrum, using the analysis software, and the intensity of peak A having the maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, present from the wave number 1240 cm -1 in the range of 1280 cm -1 The intensity B of the peak having the maximum intensity and the intensity C of the peak having the maximum intensity existing in the wave number range of 870 cm −1 to 940 cm −1 were obtained. Table 1 shows the average value of the intensity ratio of intensity A/intensity B and intensity C/intensity B of each level sample.
 測定条件
・装置  :FT/IR-6100(日本分光株式会社製)
・光源  :高輝度セラミック
・検知器 :TGS
・パージ :窒素ガス
・分解能 :4cm-1
・積算回数:32回
・測定方法:減衰全反射(Attenuated Total Refrection,ATR)法
・測定波長:4,000cm-1~600cm-1
・付属装置:ATR PRO450-S
・ATR結晶:Geプリズム
・入射角度 :45度
・解析ソフト:Spectra Manager Version2(日本分光(株)製)。
Measurement conditions/apparatus: FT/IR-6100 (manufactured by JASCO Corporation)
・Light source :High brightness ceramic ・Detector :TGS
・Purge: Nitrogen gas ・Resolution: 4 cm -1
- number of integration: 32 times Measurement method: attenuated total reflection (Attenuated Total Refrection, ATR) method, measurement wavelength: 4,000 cm -1 ~ 600 cm -1
・Attachment: ATR PRO450-S
-ATR crystal: Ge prism-Incident angle: 45 degrees-Analysis software: Spectra Manager Version 2 (manufactured by JASCO Corporation).
 (5)耐湿性評価
 各水準の蒸着フィルムから作製されたコンデンサ素子各10個を、温度85℃、相対湿度85%の雰囲気下で、電圧310VACとなるように交流電圧を印加し、1000時間経過後の静電容量変化率ΔC/C×100(%)を測定した。
(5) Moisture resistance evaluation Ten capacitor elements each made of vapor-deposited film of each level were applied with an AC voltage so as to have a voltage of 310 VAC in an atmosphere of a temperature of 85° C. and a relative humidity of 85%, and 1000 hours passed. The subsequent capacitance change rate ΔC/C×100 (%) was measured.
 ここで、C(μF)は耐湿性試験前の静電容量、ΔC(μF)は耐湿性試験後の静電容量変化量(=耐湿性試験後の静電容量(μF)-耐湿性試験前の静電容量(μF))であり、静電容量変化率ΔC/C×100は増加方向を+、減少方向を-で表した。10個の素子の測定値の平均を算出し、静電容量変化率が-10~+10%のものを良好と判断した。 Here, C (μF) is the capacitance before the humidity resistance test, ΔC (μF) is the capacitance change amount after the humidity resistance test (= capacitance after the humidity resistance test (μF)-before the moisture resistance test The capacitance change rate ΔC/C×100 is represented by + in the increasing direction and − in the decreasing direction. The average of the measured values of 10 elements was calculated, and the one having a capacitance change rate of −10 to +10% was judged to be good.
 (6)静電容量測定方法
 (5)耐湿性評価におけるコンデンサ素子の静電容量は、安藤電気株式会社製TYPE AG-4311 LCRMETERを用いて、1VAC×1kHzを荷電して測定した。
(6) Capacitance measuring method (5) The electrostatic capacity of the capacitor element in the moisture resistance evaluation was measured by charging 1 VAC×1 kHz using TYPE PE-4331 LCRMETER manufactured by Ando Electric Co., Ltd.
 (実施例1)
 高分子基材として幅640mm、厚み6.0μmの2軸延伸ポリプロピレンフィルム(東レ(株)製:トレファン(登録商標)2172)を用いた。まず真空蒸着機上室内を減圧し、予めオイル蒸発器の中に供給しておいたフッ素系オイルを90℃以上に加熱し、オイル蒸発器上部に設けられたスリットを通して、高分子基材の長手方向に幅3.0mmの非蒸着マージンを形成した。
(Example 1)
A biaxially oriented polypropylene film having a width of 640 mm and a thickness of 6.0 μm (Toray Industries, Inc.: Trefan (registered trademark) 2172) was used as the polymer substrate. First, decompress the inside of the vacuum evaporator, heat the fluorine-based oil previously supplied to the oil evaporator to 90°C or higher, and pass through the slits on the top of the oil evaporator, A non-deposited margin having a width of 3.0 mm was formed in the direction.
 次いで、減圧された真空蒸着機下室に位置する冷却ロール下部で、アルミニウム、亜鉛の順にスリットを通して加熱蒸着し、膜抵抗がヘビーエッジ部で2~3Ω/□、アクティブ部で8~10Ω/□となるようにスリットを通して蒸着し、アルミニウムと亜鉛の混合金属層を形成した。なお、アルミニウムと亜鉛の含有比率は、重量比3:97になるように各金属の蒸着源の温度を調整した。 Then, under the cooling roll located in the lower chamber of the depressurized vacuum vapor deposition machine, aluminum and zinc are heated and vapor-deposited through a slit in order, and the film resistance is 2 to 3 Ω/□ at the heavy edge part and 8 to 10 Ω/□ at the active part. Was evaporated through a slit so that a mixed metal layer of aluminum and zinc was formed. The temperature of the vapor deposition source of each metal was adjusted so that the weight ratio of aluminum to zinc was 3:97.
 次いで、同一蒸着機内でアルミニウムと亜鉛の混合金属層上に、フェニルメチルジメチルポリシロキサン( 東レダウコーニング株式会社製SH702)を加熱蒸着してケイ素化合物層を形成し、続けて高分子基材両面に、酸素ガスを微量供給しながら250kHz、5.0kWのパルスDC電源を用いて、片面の処理電力密度E=25.5W・min/mでプラズマ放電処理を施し、これを巻取軸で巻き取りアルミニウム、亜鉛の合金の金属化フィルムを得た。なお、ケイ素化合物層は、含有するSi量が0.035~0.045μg/cmの範囲になるように、シロキサンの加熱温度を調整した。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。 Next, phenylmethyldimethylpolysiloxane (SH702 manufactured by Toray Dow Corning Co., Ltd.) is heated and vapor-deposited on the mixed metal layer of aluminum and zinc in the same vapor deposition machine to form a silicon compound layer, and then on both surfaces of the polymer substrate. While supplying a small amount of oxygen gas, using a pulsed DC power supply of 250 kHz and 5.0 kW, plasma discharge processing was performed at a processing power density E=25.5 W·min/m 2 on one side, and this was wound on a winding shaft. A metallized film of an alloy of aluminum and zinc was obtained. In the silicon compound layer, the heating temperature of siloxane was adjusted so that the amount of Si contained was in the range of 0.035 to 0.045 μg/cm 2 . The above metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムをフィルム幅14mm、非蒸着マージン幅1.5mmになるように裁断し、リールを作製した。得られたリール2つを互いに非蒸着マージンが反対面になるよう重ね、ずらし幅を1.0mmとして巻回し、素子を作製した。ここで、作製後のフィルムコンデンサの静電容量は500PFになるように巻回長さを調整した。次に、得られた素子を圧力25kg/cm、温度105℃、プレス時間5分の条件でプレスして素子を扁平型にし、メタリコン処理、電極端子のはんだ付けを行い、フィルムコンデンサを作製した。得られたフィルムコンデンサ素子をエポキシ樹脂製外装ケースに入れ、2液性注型エポキシ樹脂を充填して温度100℃で2時間加熱、硬化して、外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, the obtained metallized film was cut into a film having a width of 14 mm and a non-deposition margin width of 1.5 mm to produce a reel. The two reels thus obtained were overlapped with each other so that the non-vapor deposition margins were opposite to each other and wound with a shift width of 1.0 mm to produce an element. Here, the winding length was adjusted so that the capacitance of the manufactured film capacitor was 500 PF. Next, the obtained element was pressed under the conditions of a pressure of 25 kg/cm 2 , a temperature of 105° C. and a pressing time of 5 minutes to make the element a flat type, subjected to metallikon treatment and soldering of electrode terminals to produce a film capacitor. .. The obtained film capacitor element was placed in an epoxy resin outer case, filled with a two-component cast epoxy resin, and heated at a temperature of 100° C. for 2 hours for curing to prepare a film capacitor element in the outer case. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例2)
 実施例1のケイ素化合物層の形成において、高分子基材両面のプラズマ放電処理を片面の処理電力密度E=45.5W・min/mとする以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 2)
In the formation of the silicon compound layer of Example 1, metallization was performed in the same manner as in Example 1 except that the plasma discharge treatment on both surfaces of the polymer substrate was set to the treatment power density E=45.5 W·min/m 2 on one side. I got a film. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例3)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、ジメチルポリシロキサン(東レダウコーニング株式会社製SH200、10cs)を用いる以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 3)
In the formation of the silicon compound layer of Example 1, a metallized film was prepared in the same manner as in Example 1 except that dimethylpolysiloxane (SH200, 10cs manufactured by Toray Dow Corning Co., Ltd.) was used instead of phenylmethyldimethylpolysiloxane. Obtained. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例4)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、ジメチルポリシロキサン(東レダウコーニング株式会社製SH200、10cs)を用い、さらに高分子基材両面のプラズマ放電処理を片面の処理電力密度E=45.5W・min/mとする以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 4)
In the formation of the silicon compound layer of Example 1, dimethylpolysiloxane (SH200, 10cs manufactured by Toray Dow Corning Co., Ltd.) was used in place of phenylmethyldimethylpolysiloxane, and plasma discharge treatment was performed on both surfaces of the polymer substrate. A metallized film was obtained in the same manner as in Example 1 except that the processing power density E was 45.5 W·min/m 2 . The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例5)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、主鎖の両末端をOH基にした両末端型のシラノール変性シリコーン(信越化学工業株式会社製X-21-5841)を用いる以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 5)
In the formation of the silicon compound layer of Example 1, instead of phenylmethyldimethylpolysiloxane, both-end type silanol-modified silicone having OH groups at both ends of the main chain (X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd.) A metallized film was obtained in the same manner as in Example 1 except that was used. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例6)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、主鎖の両末端をOH基にした両末端型のシラノール変性シリコーン(信越化学工業株式会社製X-21-5841)を用い、さらに高分子基材両面の片面のプラズマ放電処理を処理電力密度E=45.5W・min/mとする以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 6)
In the formation of the silicon compound layer of Example 1, instead of phenylmethyldimethylpolysiloxane, both-end type silanol-modified silicone having OH groups at both ends of the main chain (X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd.) A metallized film was obtained in the same manner as in Example 1 except that the plasma discharge treatment on both sides of the polymer substrate was performed at a treatment power density E=45.5 W·min/m 2 . The above metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例7)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、アルキル変性シリコーン(東レダウコーニング株式会社製BY16-846)を用いる以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 7)
In the formation of the silicon compound layer of Example 1, a metallized film was prepared in the same manner as in Example 1 except that an alkyl-modified silicone (BY16-846 manufactured by Toray Dow Corning Co., Ltd.) was used instead of phenylmethyldimethylpolysiloxane. Obtained. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (実施例8)
 実施例1のケイ素化合物層の形成において、フェニルメチルジメチルポリシロキサンの替わりに、アルキル変性シリコーン(東レダウコーニング株式会社製BY16-846)を用い、さらに高分子基材両面のプラズマ放電処理を片面の処理電力密度E=45.5W・min/mとする以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Example 8)
In the formation of the silicon compound layer of Example 1, an alkyl-modified silicone (BY16-846 manufactured by Toray Dow Corning Co., Ltd.) was used in place of phenylmethyldimethylpolysiloxane, and plasma discharge treatment on both surfaces of the polymer substrate was performed on one side. A metallized film was obtained in the same manner as in Example 1 except that the processing power density E was 45.5 W·min/m 2 . The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (比較例1)
 実施例1のケイ素化合物層の形成しない以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Comparative Example 1)
A metallized film was obtained in the same manner as in Example 1 except that the silicon compound layer of Example 1 was not formed. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (比較例2)
 実施例1のケイ素化合物層の形成において、高分子基材両面のプラズマ放電処理を施さない以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Comparative example 2)
A metallized film was obtained in the same manner as in Example 1 except that plasma discharge treatment was not performed on both surfaces of the polymer substrate in forming the silicon compound layer of Example 1. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (比較例3)
 実施例3のケイ素化合物層の形成において、高分子基材両面のプラズマ放電処理を施さない以外は、実施例3と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Comparative example 3)
In the formation of the silicon compound layer of Example 3, a metallized film was obtained in the same manner as in Example 3 except that plasma discharge treatment on both surfaces of the polymer substrate was not performed. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
 (比較例4)
 実施例1のケイ素化合物層の形成において、高分子基材のフェニルメチルジメチルポリシロキサン表面を処理電力密度E=6.5W・min/mでプラズマ放電処理を施し、フェニルメチルジメチルポリシロキサンを形成しない側の高分子基材表面にプラズマ放電処理を施さない以外は、実施例1と同様にして金属化フィルムを得た。得られた金属化フィルムについて、上述した(1)~(4)の評価を行った。結果を表1に示す。
(Comparative Example 4)
In the formation of the silicon compound layer of Example 1, the surface of the polymer-based phenylmethyldimethylpolysiloxane was subjected to plasma discharge treatment at a treatment power density E=6.5 W·min/m 2 to form phenylmethyldimethylpolysiloxane. A metallized film was obtained in the same manner as in Example 1 except that the plasma discharge treatment was not performed on the surface of the polymer base material on the non-coated side. The obtained metallized films were evaluated in the above (1) to (4). The results are shown in Table 1.
 次いで、得られた金属化フィルムを使用し実施例1と同様にして外装ケース入りのフィルムコンデンサ素子を作製した。得られた外装ケース入りのフィルムコンデンサ素子について、(5)、(6)の評価を行った。結果を表1に示す。 Next, using the obtained metallized film, a film capacitor element with an outer case was manufactured in the same manner as in Example 1. The obtained film capacitor element in an outer case was evaluated (5) and (6). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の金属化フィルムは、高温、高湿環境に対する耐湿性に優れているので、例えば、過酷な環境で使用される自動車や電車の電装用及びエンジン、モーターの制御用やインバータ平滑コンデンサ、照明用などに好適に用いられる。 The metallized film of the present invention has excellent moisture resistance to high temperature and high humidity environments, and therefore, for example, is used for electrical equipment of automobiles and trains used in harsh environments and for engines and motors, and for inverter smoothing capacitors and lighting. It is preferably used for applications.
1 高分子基材
2 金属層
3 ケイ素化合物層
4 非蒸着マージン
5 非蒸着マージン側端部
6 電極側端部
1 Polymer Base Material 2 Metal Layer 3 Silicon Compound Layer 4 Non-Deposited Margin 5 Non-Deposited Margin Side End 6 Electrode Side End

Claims (5)

  1.  高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、
     前記ケイ素化合物層は、FT-IR分析で得られる、波数1030cm-1から1130cm-1の範囲に存在する最大強度を有するピークの強度Aと、波数1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度A/強度B)が、1.0以上であることを特徴とする、金属化フィルム。
    A metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate,
    The silicon compound layer is obtained by FT-IR analysis, the intensity A of a peak having a maximum intensity that exist from the wave number 1030 cm -1 in the range of 1130 cm -1, present from the wave number 1240 cm -1 in the range of 1280 cm -1 The metallized film, wherein the intensity ratio of the intensity B of the peak having the maximum intensity (intensity A/intensity B) is 1.0 or more.
  2.  前記ケイ素化合物層は、FT-IR分析で得られる、波数870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、前記強度Bの強度比(強度C/強度B)が、1.0以上であることを特徴とする、請求項1に記載の金属化フィルム。 The silicon compound layer is obtained by FT-IR analysis, and the intensity C of a peak having a maximum intensity that exist from the wave number 870 cm -1 in the range of 940 cm -1, the intensity ratio of the intensity B (intensity C / intensity B) Is 1.0 or more, The metallized film of Claim 1 characterized by the above-mentioned.
  3.  高分子基材の少なくとも片面に、金属層及びケイ素化合物層がこの順に積層された金属化フィルムであって、
     前記ケイ素化合物層は、FT-IR分析で得られる、870cm-1から940cm-1の範囲に存在する最大強度を有するピークの強度Cと、1240cm-1から1280cm-1の範囲に存在する最大強度を有するピークの強度Bの強度比(強度C/強度B)が、1.0以上であることを特徴とする、金属化フィルム。
    A metallized film in which a metal layer and a silicon compound layer are laminated in this order on at least one surface of a polymer substrate,
    Maximum intensity the silicon compound layer is obtained by FT-IR analysis, present and strength C of a peak having a maximum intensity that exist from 870 cm -1 in the range of 940 cm -1, from 1240 cm -1 in the range of 1280 cm -1 A metallized film having an intensity ratio of intensity B (intensity C/intensity B) of 1.0 or more.
  4.  前記金属層は、Al、Zn、Sn、Ni、Cr、Fe、Cu、Mg、Ti、Si、及びこれら金属の合金からなる群より選ばれる少なくとも1つを含むことを特徴とする、請求項1~3のいずれかに記載の金属化フィルム。 2. The metal layer contains at least one selected from the group consisting of Al, Zn, Sn, Ni, Cr, Fe, Cu, Mg, Ti, Si, and alloys of these metals. 4. The metallized film according to any one of 3 to 3.
  5.  前記ケイ素化合物層の表面の水接触角が70°以上95°以下であることを特徴とする、請求項1~4のいずれかに記載の金属化フィルム。 The metallized film according to any one of claims 1 to 4, wherein the surface of the silicon compound layer has a water contact angle of 70° or more and 95° or less.
PCT/JP2019/050281 2018-12-25 2019-12-23 Metallized film WO2020137941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505517A JPWO2020137941A1 (en) 2018-12-25 2019-12-23 Metallised film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-240794 2018-12-25
JP2018240794 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137941A1 true WO2020137941A1 (en) 2020-07-02

Family

ID=71126420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050281 WO2020137941A1 (en) 2018-12-25 2019-12-23 Metallized film

Country Status (2)

Country Link
JP (1) JPWO2020137941A1 (en)
WO (1) WO2020137941A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128908A (en) * 1996-11-05 1998-05-19 Toray Ind Inc Metal vapor-deposition film, its production method, and capacitor using the same
JPH10189382A (en) * 1996-12-20 1998-07-21 Mitsubishi Shindoh Co Ltd Zinc deposition film and metallization film capacitor
JP2006231544A (en) * 2005-02-22 2006-09-07 Toray Ind Inc Film for capacitor and capacitor using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128908A (en) * 1996-11-05 1998-05-19 Toray Ind Inc Metal vapor-deposition film, its production method, and capacitor using the same
JPH10189382A (en) * 1996-12-20 1998-07-21 Mitsubishi Shindoh Co Ltd Zinc deposition film and metallization film capacitor
JP2006231544A (en) * 2005-02-22 2006-09-07 Toray Ind Inc Film for capacitor and capacitor using it

Also Published As

Publication number Publication date
JPWO2020137941A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US7542265B2 (en) High energy density capacitors and methods of manufacture
KR102051328B1 (en) Gas barrier film
US8094431B2 (en) Methods for improving the dielectric properties of a polymer, and related articles and devices
JP2007300126A (en) High temperature capacitor and method of manufacturing the same
EP2779187B1 (en) Film capacitor
JP2017177343A (en) Laminate film and method for manufacturing the same
JP2006264317A (en) Metalized film, film for capacitor and film capacitor using it
KR20110133487A (en) Aluminum member covered with conductive coat and process for production of same
JP2009054669A (en) Method of manufacturing metalized capacitor film and metalized film
JP4915947B2 (en) Metallized film capacitors
WO2020137941A1 (en) Metallized film
JP2021130208A (en) Aluminum vapor deposition film and laminate using the same
Lee et al. Adhesion of poly (arylene ether benzimidazole) to copper and polyimides
WO2011114680A1 (en) Electrode foil and capacitor using same
JP2018157055A (en) Metallized film for capacitor and capacitor using the same
JP5057067B2 (en) Film for metallized capacitor and capacitor using the same
JP5526931B2 (en) Deposition wire rod and metallized film capacitor formed using the same
JP3769842B2 (en) Metal vapor deposition film, method for producing the same, and capacitor using the same
JP4604758B2 (en) Capacitor film and capacitor using the same
Oh et al. Effects of defect density on ultrathin graphene-based metal diffusion barriers
JP2021520058A (en) Metallised film
JP7477898B2 (en) Cathode foil for electrolytic capacitor, and electrolytic capacitor
JPH01211908A (en) Capacitor
JP4211301B2 (en) Capacitor film and capacitor using the same
KR0141509B1 (en) Method for zinc adhesive strength film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020505517

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901624

Country of ref document: EP

Kind code of ref document: A1