WO2020137936A1 - Resin additive composition and method for manufacturing same, and resin composition and method for manufacturing same - Google Patents

Resin additive composition and method for manufacturing same, and resin composition and method for manufacturing same Download PDF

Info

Publication number
WO2020137936A1
WO2020137936A1 PCT/JP2019/050263 JP2019050263W WO2020137936A1 WO 2020137936 A1 WO2020137936 A1 WO 2020137936A1 JP 2019050263 W JP2019050263 W JP 2019050263W WO 2020137936 A1 WO2020137936 A1 WO 2020137936A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fullerene
additive composition
dispersion
medium
Prior art date
Application number
PCT/JP2019/050263
Other languages
French (fr)
Japanese (ja)
Inventor
門田 隆二
近藤 邦夫
真澄 栗谷
宇 高
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020563235A priority Critical patent/JPWO2020137936A1/en
Publication of WO2020137936A1 publication Critical patent/WO2020137936A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin additive composition and a method for producing the same, a resin composition and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2018-246101 filed in Japan on December 27, 2018, and the content thereof is incorporated herein.
  • Patent Document 1 discloses a method of uniformly dispersing fullerenes in a polyester resin to produce a polyester resin composition.
  • One embodiment of this manufacturing method a step of dissolving a fullerene in a solvent to prepare a fullerene solution, a step of preparing a polymer dope solution by adding a polyester resin to the fullerene solution, a polymer dope solution From the solvent.
  • a step of dissolving a fullerene in a solvent to prepare a fullerene solution a raw material of polyester or an oligomer thereof is added to the fullerene solution, a polymerization reaction is performed, and a polyester resin Manufacturing the composition.
  • the polyester resin composition obtained by this production method improves the heat resistance, surface smoothness, and mechanical properties of the polyester resin.
  • Patent Document 2 discloses a technique of improving the dielectric breakdown voltage of a resin sheet by producing a resin sheet using a resin composition in which fullerene is dispersed in polyolefin.
  • Patent Document 3 discloses a technique for improving the dispersibility of fullerene in a resin by mixing a resin with an organic solvent solution containing a fullerene derivative.
  • the fullerene derivative is a fullerene derivative obtained by introducing a substituent into the fullerene that improves the solubility in an organic solvent having a high affinity with the resin.
  • fullerene is dissolved to prepare a fullerene solution, and the fullerene solution and the polyester resin are mixed or used for polymerization of the polyester resin in the fullerene solution.
  • the solvent that can be used is limited to some aromatic solvents such as benzene and toluene.
  • the resin capable of dispersing the fullerenes is limited to the polyester resin.
  • an indene adduct is disclosed as a fullerene derivative. Since the indene adduct is basically different in structure from the skeleton of a resin such as polyester or epoxy resin, the indene adduct does not have sufficient affinity with these resins and its dispersibility in these resins is not sufficient.
  • the present invention has been made in view of the above circumstances, and a resin additive composition and a method for producing the same, a resin composition and a method for producing the same, which improve heat resistance, surface smoothness, mechanical properties and withstand voltage of the resin.
  • the purpose is to provide.
  • a method for producing a resin additive composition which is at least one selected from the group consisting of a raw material of a thermoplastic resin and a raw material of a thermosetting resin.
  • the step of heat-treating the fullerene dispersion includes a step of determining a heating temperature and a heating time of the fullerene dispersion, and the step of determining the heating temperature and the heating time of the fullerene dispersion is in a heated state.
  • the medium B is a raw material of a thermosetting resin, a curing agent of a thermosetting resin, or a thermoplastic resin.
  • the medium B is a raw material of a thermosetting resin or a curing agent for a thermosetting resin, the cured product of the resin composition according to [11].
  • the resin additive composition of the present embodiment is produced by the method for producing a resin additive composition described below, and contains medium A, fullerene, and a fullerene adduct.
  • the fullerene adduct is a compound formed by adding the structure derived from the component contained in the medium A to the fullerene.
  • the resin additive composition of the present embodiment is formed by heat-treating a mixture (fullerene dispersion) of medium A and fullerene in the method for producing a resin additive composition of the present embodiment described later.
  • the medium A contained in the resin additive composition of the present embodiment is at least one selected from the group consisting of a thermoplastic resin, a raw material of a thermoplastic resin, and a raw material of a thermosetting resin. More specifically, when the resin additive composition of the present embodiment is used for a thermoplastic resin, the medium A is a thermoplastic resin or a raw material for the thermoplastic resin. Examples of the raw material of the thermoplastic resin include at least one selected from the group consisting of a monomer of the thermoplastic resin, a thermoplastic resin additive and a reactive component. When the resin additive composition of the present embodiment is used for a thermosetting resin, the medium A is a raw material for the thermosetting resin. Examples of the raw material of the thermosetting resin include at least one selected from the group consisting of a polymerizable monomer, a polymerizable oligomer and a reactive component.
  • the thermoplastic resin is one in which the chemical bonds constituting the molecules mainly having carbon, oxygen, nitrogen, and silicon atoms in the main chain are gradually cleaved, and the molecular weight decreases.
  • a thermoplastic resin include methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl allylate, butyl acrylate, vinyl acetate, styrene, ethylene glycol, propylene glycol, ethylene.
  • examples thereof include polymers of monomers such as propylene and butadiene, and copolymers of these monomers.
  • the monomers mentioned above are examples of the monomers that are the raw materials for the thermoplastic resin.
  • thermoplastic resin additive that is a raw material of the thermoplastic resin is not particularly limited.
  • thermoplastic resin additives include commercially available antioxidants. These additives may be used alone or in combination of two or more.
  • thermoplastic resin additive those having an aromatic ring are more preferable.
  • antioxidant having an aromatic ring include dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-butylphenol (DTP), bis(3,5-dibutyl-4-hydroxyphenyl)methane.
  • BDBA 2,4,6-tributylphenol
  • TBP 3-arylbenzofuran-2-one (intramolecular cyclic ester of hydroxycarboxylic acid), phenyl- ⁇ -naphthylamine, dialkyldiphenylamine, benzotriazole and the like can be mentioned.
  • the polymerizable monomer or the polymerizable oligomer which is the raw material of the thermosetting resin the following raw material monomers or oligomers can be used without particular limitation.
  • This raw material monomer or oligomer is polymerized by heating or light irradiation in the presence of a curing agent or a photo-curing agent, and is polymerized to produce a phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, Generates polyimide, etc.
  • the thermosetting resin is preferably an epoxy resin.
  • Specific examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol type epoxy resin, biphenol type epoxy resin, naphthalene skeleton-containing epoxy resin, heterocyclic epoxy resin, and silicone epoxy resin.
  • the reactive component which is a raw material of the thermoplastic resin and the thermosetting resin, is preferably a compound having a high affinity with the medium A and the medium B described later in terms of solubility.
  • the reactive component is more preferably a compound having a chemical structure similar to that of the main components of the medium A and the medium B in terms of high affinity with the medium A and the medium B in terms of solubility.
  • the reactive component is preferably a component contained in the medium B, and is preferably a compound that chemically bonds to fullerene described below at about 200°C or lower.
  • a compound having a skeleton such as paraffin, olefin, naphthene, hydrocarbon such as aromatic, ether, ester and the like is preferable.
  • the reactive component is preferably, for example, a saturated hydrocarbon having a side chain or a ring, an unsaturated hydrocarbon such as a diene or an aromatic, in that it is chemically bonded to the fullerene at about 200° C. or lower.
  • the aromatic may have multiple rings and may have alkyl side chains.
  • other preferable examples of such a reactive component are a compound having an ether bond, a compound having an ester bond, a compound having a phosphoric acid ester bond, a compound having a disulfide bond, a compound having a phenol hydroxide, and a silicone. including.
  • Such a reactive component include a linear or branched hydrocarbon (a hydrocarbon having an unsaturated double bond, an aromatic hydrocarbon having an alkyl, a hydrocarbon having a polycyclic aromatic ring, an ether).
  • a hydrocarbon having an unsaturated double bond an aromatic hydrocarbon having an alkyl
  • a hydrocarbon having a polycyclic aromatic ring an ether
  • examples thereof include compounds having a bond, compounds having an ester group, compounds having a disulfide bond, di-p-tolyl disulfide, compounds having a phenol hydroxide, diazo compounds, silicones, etc. Further, a combination thereof can be mentioned. It is considered that these compounds, when heated, have their molecules cleaved and react with fullerenes to form fullerene adducts.
  • linear or branched hydrocarbons examples include hexane, decane, cyclohexane, isobutane, decalin and the like.
  • hydrocarbon having an unsaturated double bond examples include hexacene, pentacene, cyclohexene, decene, turpentine oil, terpene derivative, ⁇ -olefin and the like.
  • alkyl-containing aromatic hydrocarbons include dodecylbenzene, hexabenzene, ethylbenzene, trimethylbenzene, tetramethylbenzene, cumene, methylnaphthalene.
  • polycyclic aromatic hydrocarbons examples include anthracene, butacene, hexacene, and the like.
  • examples of the compound having an ether bond include tripropylene glycol, dipropylene glycol, triethylene glycol, tetrahydrofuran and the like.
  • Examples of the compound having an ester group include ethyl acetate, octyl acetate, ⁇ -butyrolactone, fat (fatty acid glycerin ester) and the like.
  • examples of compounds having a phosphate ester bond include tricresyl phosphate (TCP), triphenyl phosphate (TPP), 2,6-di-tert-butylphenol (DTP) and the like.
  • Examples of compounds having a disulfide bond include dibenzyl disulfide (DBDS), di-p-tolyl disulfide (DTDS) and the like.
  • Examples of compounds having phenolic hydroxide include 3,5-di-tert-butyl-4-hydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-butylphenol (DTP), bis(3,5- Di-tert-butyl-4-hydroxyphenyl)methane (BDBA), 2,4,6-tributylphenol (TBP) and the like are included.
  • the reactive component chemically bonds (adds) to the fullerene to form a fullerene adduct.
  • the molecule (group) of the above reactive component is present on the surface of the fullerene skeleton. Therefore, the fullerene adduct has excellent affinity with the resin due to the group obtained from the reactive component existing on the surface thereof. Therefore, when the resin additive composition contains the fullerene adduct, the heat resistance, surface smoothness, mechanical characteristics, and withstand voltage of the resin can be improved.
  • An organic solvent may be used in the step of obtaining a fullerene dispersion containing the medium A and the fullerene.
  • the organic solvent when the thermoplastic resin additive of the medium A is solid at room temperature, it can be treated as a liquid by dissolving them in the organic solvent to make it a liquid. It facilitates the production of a resin additive composition. Further, by using an organic solvent, the dispersion of fullerene can be enhanced, which facilitates the production of a resin additive composition described later.
  • the dispersion of the fullerene can be enhanced by adding an organic solvent to these mixtures.
  • organic solvent examples include aromatic solvents, decalin, N-methylpyrrolidone, polypropylene glycol and the like. Among them, aromatic solvents are particularly preferable. Examples of aromatic solvents include benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene, methylnaphthalene and the like.
  • the fullerene contained in the resin additive composition of the present embodiment is not particularly limited in structure and manufacturing method, and various fullerenes can be used.
  • fullerenes include C 60 and C 70 , which are relatively easily available, and higher fullerenes, or a mixture thereof.
  • C 60 and C 70 are preferable from the viewpoint of high solubility in organic solvents and resins, and C 60 is more preferable from the viewpoint of less coloring.
  • C 60 is preferably contained in an amount of 50% by mass or more.
  • the concentration of fullerene after heat treatment in the fullerene dispersion containing medium A and fullerene becomes lower than the concentration of fullerene before heat treatment. That is, the resin additive composition of the present embodiment contains a fullerene adduct in which the reactive component that may be contained in the medium A is chemically bonded to the fullerene by heat treatment.
  • the fullerene adduct is preferably the following compound added to fullerene.
  • This compound is at least one selected from the group consisting of hydrocarbon, a compound having an ether bond, a compound having an ester bond, a compound having a phosphoric acid ester bond, a compound having a disulfide bond, a compound having phenol hydroxide, and a silicone. Is a compound of.
  • the resin additive composition of the present embodiment is a resin additive composition produced by the method for producing a resin additive composition described below.
  • the medium A, the fullerene, and the fullerene adduct are contained, and the dispersion of the medium A and the fullerene is heat-treated. Therefore, heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin can be improved by improving the solubility of the fullerene in the resin.
  • the resin additive composition of the present embodiment includes a thermosetting fiber resin reinforced plastic (FRP), a thermoplastic fiber resin reinforced plastic (FRTP), a thermosetting carbon fiber resin reinforced plastic (CFRP), and a thermoplastic carbon fiber resin reinforced plastic. It can be used for various applications such as (CFRTP), heat dissipation resin, electric insulating resin, O-ring packing, and wire coating material.
  • FRP thermosetting fiber resin reinforced plastic
  • FRTP thermoplastic fiber resin reinforced plastic
  • CFRP thermosetting carbon fiber resin reinforced plastic
  • a resin serving as a base material may be prepared by the method of the present embodiment.
  • resin base material For example, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained FRP, CFRP, heat dissipation resin, and electric insulating resin can be improved.
  • a thermosetting resin is used as the resin base material, and examples thereof include epoxy resin.
  • a resin serving as a base material (hereinafter, also referred to as “resin base material”) is produced by the method of the present embodiment. Then, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained FRP and sealing material can be improved.
  • a thermoplastic resin is used as the resin base material, and examples thereof include polyethylene, polypropylene, methyl methacrylate, methyl acrylate, polystyrene, butyl rubber, butadiene rubber, and fluororubber.
  • the method for producing a resin additive composition according to the present embodiment is the method for producing a resin additive composition according to the present embodiment described above, in which medium A and fullerene are mixed and a dissolved component of fullerene is dissolved in medium A.
  • a step of obtaining a mixture of medium A and fullerene hereinafter referred to as “first step”
  • a step of heat-treating the fullerene dispersion hereinafter referred to as “second step”.
  • the method for producing a resin additive composition according to the present embodiment may include a step of removing insoluble components contained in the mixture to obtain a mixture of fullerenes (hereinafter referred to as “third step”) after the first step.
  • fullerene dispersion A mixture of fullerene and medium A that has undergone the first step or the second step is obtained as a fullerene dispersion (hereinafter sometimes simply referred to as “fullerene dispersion"). Furthermore, in the method for producing a resin additive composition according to the present embodiment, after the third step, a step of removing volatile components such as an organic solvent contained in the resin additive composition (hereinafter referred to as “fourth step”). May be included.
  • the charge amount of the fullerene as a raw material is, for example, 1.1 times the fullerene amount at which a desired concentration of fullerene is obtained with respect to the medium A, in consideration of the fullerene concentration of the resin additive composition to be finally prepared. ⁇ 200 times, more preferably 1.1 to 20 times. If it is lower than 1.1 times, the amount of the extractable soluble component is small and the desired fullerene concentration may not be satisfied. If it is higher than 200 times, in the second step of removing the insoluble component, the filtration speed is lowered during the filtering, and the execution time becomes long. Further, the raw material cost of fullerenes increases.
  • Examples of dispersing means for dispersing the fullerene in the medium A include a stirrer, an ultrasonic dispersing device, a homogenizer, a ball mill, a bead mill, a triple roll, and a kneader.
  • the fullerene dispersion preferably has a fullerene concentration of 1 mass ppm (0.0001 mass%) or more and 10000 mass ppm (1.0 mass%) or less, and 5 mass ppm (0.0005 mass%) or more 2000 It is more preferably at most ppm by mass (0.2% by mass), more preferably at least 10% by mass (0.001% by mass) and at most 500% by mass (0.05% by mass).
  • the concentration of fullerene is in the above range, the effects of heat resistance, surface smoothness, mechanical properties, and withstand voltage due to the addition of fullerene can be maintained for a long period of time. Further, it is possible to compensate for the decrease in the concentration of fullerene due to the deterioration of fullerene.
  • the fullerene dispersion obtained in the first step is heat-treated to obtain a resin additive composition.
  • the third step of removing an insoluble component contained in the fullerene dispersion to obtain a mixture of fullerenes may be performed before the second step.
  • the third step of filtering the fullerene dispersion obtained in the first step may be performed.
  • the fullerene dispersion obtained in the first step (or the third step) is exposed to the atmosphere in the first step (or the third step), so that the internal oxygen concentration is in equilibrium with the oxygen in the atmosphere.
  • the second step includes an operation of lowering the oxygen concentration in the mixture as compared with the state of being left in the atmosphere.
  • the oxygen concentration in the mixture is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, still more preferably 1 mass ppm or less.
  • the fullerene dispersion is heat-treated to chemically bond the reactive component to the fullerene to form a fullerene adduct. Therefore, the concentration of fullerene in the resin additive composition obtained after the heat treatment is lower than the concentration of fullerene in the fullerene dispersion before the heat treatment. In other words, since the fullerene adduct is formed after the heat treatment, the fullerene is consumed and the concentration thereof is lower than that before the heat treatment.
  • the heat treatment of the second step is preferably performed in a low oxygen concentration atmosphere (O 2 concentration of 1 vol% or less).
  • O 2 concentration of 1 vol% or less
  • As a more preferable method for reducing the oxygen concentration for example, the following four methods can be mentioned.
  • the first method will be described.
  • the fullerene dispersion obtained in the first step (or the third) is placed in an airtight metal container such as stainless steel, and then the container is closed. Then, the inside of the container is replaced with an inert gas such as nitrogen gas or argon gas, or the fullerene dispersion in the container is bubbled with an inert gas to equilibrate the fullerene dispersion with the inert gas. To do.
  • the fullerene dispersion is heat-treated by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
  • the fullerene dispersion is heat-treated in a low oxygen atmosphere by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
  • the second method will be described.
  • the fullerene dispersion obtained in the second step is placed in an airtight metal container such as stainless steel, and then the container is closed.
  • the container is depressurized to reduce the oxygen concentration in the fullerene dispersion.
  • the fullerene dispersion is heat-treated by heating the container while keeping the oxygen concentration in the fullerene dispersion reduced.
  • the fullerene dispersion is heat-treated in a low oxygen atmosphere by heating the container while keeping the oxygen concentration in the fullerene dispersion low.
  • the third method will be described.
  • the fullerene dispersion obtained in the second step is placed in an airtight metal container such as stainless steel, and then the container is closed.
  • the container is depressurized to reduce the oxygen concentration in the fullerene dispersion.
  • the interior of the container is replaced with an inert gas such as nitrogen gas, or the fullerene dispersion in the container is bubbled with an inert gas to equilibrate the fullerene dispersion with the inert gas.
  • the fullerene dispersion is heat-treated by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
  • the heat treatment of the fullerene dispersion is performed in a low oxygen atmosphere by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
  • the fullerene dispersion when the fullerene dispersion is solid at room temperature, it is preferable that the fullerene dispersion is in a molten state by heating, and the heating temperature is preferably higher than the melting temperature.
  • the heating temperature of the mixture is preferably 100°C or higher and 250°C or lower, more preferably 100°C or higher and 150°C or lower, and further preferably 120°C or higher and 150°C or lower.
  • the heating temperature of the fullerene dispersion is more preferably 100°C or higher, further preferably 120°C or higher. The higher the heating temperature, the faster the heat treatment of the fullerene dispersion, and the shorter the heating time.
  • the oxygen concentration in the fullerene dispersion is high, the medium A is deteriorated by oxidation during the heat treatment of the fullerene dispersion. As a result, the medium A is colored, the viscosity of the medium A is increased or decreased, the volatile component is increased, and the volatility is increased, so that the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin are reduced. It may decrease.
  • the fullerene dispersion if the fullerene dispersion is exposed to the atmosphere for 10 minutes or longer, the oxygen concentration in the fullerene dispersion will be close to the equilibrium concentration with the atmosphere.
  • a fullerene dispersion When such a fullerene dispersion is heat-treated, it deteriorates due to the oxidation of the medium A, so that the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition deteriorate. That is, as the oxygen concentration in the fullerene dispersion is lower, the heat deterioration of the medium A is suppressed, and the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition are improved.
  • the oxygen concentration in the fullerene dispersion is preferably lower than the oxygen concentration in the atmosphere, and more preferably 1/10 or less of the oxygen concentration in the atmosphere.
  • the oxygen concentration in the fullerene dispersion is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, and further preferably 1 mass ppm or less.
  • the oxygen concentration in the fullerene dispersion can be measured using a dissolved oxygen meter. If the oxygen concentration is low, it is industrially difficult to accurately measure the oxygen concentration. Therefore, the oxygen concentration in the fullerene dispersion is adjusted to a predetermined range by adjusting the production conditions.
  • the concentration of fullerene in the resin-added composition obtained after the heat treatment becomes lower than the concentration of fullerene in the fullerene dispersion before the heat treatment. It is considered that the reason why the concentration is decreased is that the chemical bonds constituting the molecules contained in the medium A are gradually cleaved and the cleaved molecules are added to the fullerene to change the fullerene molecule into a fullerene adduct. To be Since the reaction product is generated, it is estimated that the obtained resin additive composition has improved heat resistance, surface smoothness, mechanical properties and withstand voltage.
  • the fullerene concentration in the fullerene dispersion before heat treatment and in the resin additive composition immediately after heat treatment can be measured by a method using high performance liquid chromatography (High Performance Liquid Chromatography, HPLC) described in Examples.
  • HPLC High Performance Liquid Chromatography
  • the concentration difference is preferably 5 mass ppm or more, more preferably 10 mass ppm or more, and further preferably 50 mass ppm or more. That is, in a fullerene dispersion having a fullerene content of 50 mass ppm or less, fullerene may not be detected by heat treatment. Further, even when the content of fullerene exceeds 50 mass ppm, the amount of fullerene disappeared exceeds 50 mass ppm by continuing the heat treatment, so that fullerene may not be detected. When the disappearance amount of fullerene is 5 ppm or more, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition can be improved.
  • the amount of disappeared fullerenes exceeds 500 mass ppm, or even when the amount is less than that, the heat treatment can be continued even after reaching the state where the already disappeared fullerenes do not remain.
  • the amount of fullerene disappeared is preferably 500 mass ppm or less, more preferably 100 mass ppm or less, and further preferably 50 mass ppm or less.
  • ⁇ To determine the heat treatment conditions for fullerene dispersion create a graph (calibration curve) by the following method.
  • the fullerene dispersion in a heated state is sampled at regular intervals using the device in Example 1 described later. Then, the concentration of fullerene contained in the solution is quantified, and a graph (calibration curve) showing the relationship between the concentration of fullerene in the fullerene dispersion and the heating time of the mixture is prepared. From this graph, the heating temperature and heating time of the fullerene dispersion can be determined.
  • the heating time determined is lower heating temperature when shorter than desired from the viewpoint of easiness of operation and the like, conversely, when higher than desired, higher heating temperature, and re-calibrated. It may be created and the heating temperature and heating time may be determined.
  • the mixture obtained in the first step may contain, as insoluble components, agglomerates of fullerenes that are impurities derived from the raw material fullerene, undissolved fullerenes, impurities of medium A, particles mixed in the manufacturing process, and the like. is there. Therefore, if the mixture is used as it is, problems such as abrasion of the sliding portion in contact with the resin additive composition may occur. Therefore, a third step (filtering) for removing insoluble components can be provided after the first step.
  • Examples of the third step include (1) a removal step using a membrane filter, (2) a removal step using a centrifuge, and (3) a removal step using a membrane filter in combination with a centrifuge. ..
  • (1) the removal step using a membrane filter is preferable when obtaining a small amount of the resin additive composition, and (2) centrifugation when obtaining a large amount of the resin additive composition.
  • a removal step using a separator is preferred.
  • the mixture of medium A and fullerene obtained in the first step is used with a mesh filter having a small mesh (for example, a membrane filter having a mesh size of 0.1 ⁇ m to 1 ⁇ m). Filtered and collected as a fullerene dispersion. In order to shorten the filtration time, it is preferable to reduce the pressure during filtration.
  • a centrifuge for example, the mixture of the medium A and fullerene obtained in the first step is subjected to centrifugal separation treatment, and the supernatant is recovered as a fullerene dispersion.
  • the fourth step after the third step, the volatile components such as the organic solvent contained in the resin additive composition are removed.
  • the method of removing the volatile matter include a method of heating or heating under reduced pressure to evaporate the volatile matter.
  • the fourth step can be performed continuously with the third step. For example, in the first method to the third method of the third step, after the heating is completed, the pressure of the container is made lower than the atmospheric pressure by using a vacuum pump or the like, so that the organic solvent or the like contained in the resin additive composition is The volatile components of can be removed.
  • a resin additive composition capable of improving heat resistance, surface smoothness, mechanical properties, and withstand voltage can be obtained.
  • the resin composition of the present embodiment contains the medium B and the resin additive composition, and is obtained by mixing the medium B and the resin additive composition described above.
  • the medium B contained in the resin composition of the present embodiment is a raw material of thermosetting resin, a curing agent of thermosetting resin, or a thermoplastic resin. More specifically, when the medium A used in the resin additive composition is a thermoplastic resin or a raw material for the thermoplastic resin, the medium B is a thermoplastic resin.
  • the medium A used in the resin additive composition is a raw material of a thermosetting resin
  • the medium B is a polymerizable monomer, a polymerizable oligomer, a thermosetting accelerator, a thermosetting resin curing agent, or a mixture thereof. is there.
  • the method for mixing the medium B and the above resin-added composition is not particularly limited, and a method such as a heat kneading method may be used.
  • thermosetting resin when the thermosetting resin is used, those usually used can be used without limitation.
  • examples include aliphatic polyamine-based triethylenetetramine, aromatic polyamine-based diaminodiphenylmethane, acid anhydride-based 4-methylhexahydrophthalic anhydride, phenol novolac-based phenol novolac resin, and dicyandiamide-based dicyandiamide. ..
  • the curing accelerator that is normally used can be used without limitation.
  • examples include amine-based trisdimethylaminomethylphenol, imidazole-based 1-cyanoethyl-2-ethyl-4-methylimidazole, phosphine-based triphenylphosphine, tetraphenylphosphonium/tetraphenylborate, and the like.
  • a resin composition having excellent heat resistance, surface smoothness, mechanical properties, and withstand voltage can be obtained.
  • the medium B contained in the resin composition of the present embodiment is a raw material of a thermosetting resin
  • a cured product of the resin composition is obtained by heat curing treatment.
  • the conditions of the heat curing treatment are not particularly limited, and examples thereof include a method of heating at 50 to 150° C. for 2 to 20 hours in an air atmosphere.
  • the shape of the cured product is not particularly limited, and examples thereof include a sheet shape.
  • Example 1 (Preparation of resin additive composition) ⁇ First step> As a medium A, 10 g of an epoxy resin A (bisphenol F (manufactured by Mitsubishi Chemical Co., JER806) was mixed with 40 g of toluene as an organic solvent, and the mixture was stirred at room temperature for 1 hour. Next, the obtained solution and fullerene, Nanom (Registered trademark) Mix (manufactured by Frontier Carbon Co., C 60 61% by mass, C 70 28% by mass, mixture containing 11% by mass of higher fullerenes larger than C 70 ) 0.05 g and mixed at room temperature for 6 hours A fullerene dispersion was obtained by stirring. It was confirmed by the HPLC method that this fullerene dispersion contained 600 mass ppm of C 60 and 250 mass ppm of C 70 .
  • an epoxy resin A bisphenol F (manufactured by Mitsubishi Chemical Co., JER806) was mixed with 40 g of toluene as an organic solvent, and the mixture was
  • n-dodecane manufactured by Wako Pure Chemical Industries, Ltd.
  • a dissolved oxygen meter product name: B-506, manufactured by Iijima Electronics Industry Co., Ltd.
  • the saturated oxygen concentration of the fullerene dispersion in the stainless container was measured. As a result, the saturated oxygen concentration was 150% before flowing the nitrogen gas and 7% after flowing the nitrogen gas.
  • the saturated oxygen concentration of dodecane in the air was set to 73 mass ppm, and the dissolved oxygen concentration of the fullerene dispersion was calculated to be 110 mass ppm and 5 ppm, respectively, from this value and the above 150% and 7%.
  • 0.1 mL of the fullerene dispersion in the reaction vessel was withdrawn every 2 hours, and the amounts of C 60 and C 70 contained in this were quantified by HPLC. When C 60 was reduced to 60 ppm and C 70 was reduced to 20 ppm Then the temperature of the oil bath was lowered to 100°C.
  • Fullerene dispersion C 60 600 ppm by weight before the heat treatment, C 70 is contained 250 ppm by weight, C 60 60 ppm by weight after the heat treatment, C 70 is reduced to 20 ppm by weight. It is presumed that the amount of fullerene was reduced to 1/10 or less because a part of the epoxy resin was cleaved by heating and this was added to the fullerene.
  • a vacuum pump was later connected to one of the gas inlets of the container to reduce the pressure inside the container. By leaving it in this state for 1 hour, volatile components such as toluene inside the container were removed. A highly viscous liquid was taken out from the inside of the container to obtain a resin additive composition. The mass of the obtained resin additive composition was 10 g, and the organic solvent toluene was removed.
  • the resin additive composition 8 g of HN-2200 (manufactured by Hitachi Chemical Co., Ltd.), which is a curing agent for epoxy resin, and 1-cyanoethyl-2-ethyl-4-methylimidazole, which is an initiation curing accelerator, as medium B. 1 g (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed. The resin composition of this example was obtained. The resin composition of this example was poured into a frame capable of producing a sheet having a thickness of 1 mm, heated at 70° C. for 12 hours in an air atmosphere, and cured to prepare a sheet-shaped cured product of the resin composition.
  • the withstand voltage was measured by the 20-second step method according to JIS C2110-1. First, the sheet was put in a silicone oil bath at room temperature, and sandwiched between electrodes having a diameter of 25 mm in the thickness direction of the sheet. Next, if dielectric breakdown was not performed for 20 seconds at a predetermined voltage, the step of boosting was repeated, and the voltage set to the voltage before the dielectric breakdown was taken as the withstand voltage. The voltage was increased by 1 kV up to 20 kV, and increased by 2 kV after 20 kV. The obtained withstand voltage is shown in Table 1.
  • the heat resistance of the sheet was measured by a thermogravimetric change method using a thermobalance (DTG-60A manufactured by Shimadzu Corporation). First, a 0.5 mm square piece of resin was cut out from the sheet and placed on a balance. Next, the temperature of the balance was raised from room temperature to 500° C. at 10° C./min, and the weight change of the resin piece at that time was measured. When the resin piece was heated, it burned with oxygen in the air to reduce the weight. The temperature at which the weight of the resin decreased by 10% was defined as the heat resistant temperature. The heat resistant temperature obtained is shown in Table 1.
  • the strength of the sheet was measured by a tensile test method using a tensile test device (RTF-1210 manufactured by A&T Co., Ltd.). First, a resin piece having a width of 10 mm and a length of 100 mm was cut out from a sheet and set in a tensile tester. Next, it was pulled at 1 mm/min, and the tensile strength was measured until the resin piece broke. The maximum value of tensile strength was defined as tensile strength. The obtained tensile strength is shown in Table 1.
  • the surface smoothness of the sheet was measured by an arithmetic mean height (Ra) using a surface roughness meter (DektakXT, manufactured by Bruker Co., Ltd.). First, a resin piece having a width of 10 mm and a length of 10 mm was cut out from the sheet and set in a surface roughness meter. Next, the length of 5 mm was measured and the arithmetic mean height (Ra) was calculated. The obtained surface smoothness is shown in Table 1.
  • Example 2 A resin additive composition was prepared by the procedure of Example 1 except that the step of flowing nitrogen gas was omitted in the step of heat-treating the fullerene dispersion. Using the obtained resin additive composition, a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
  • Example 1 As a comparative sample, a resin additive composition was prepared by the procedure of Example 1 except that the step of heat-treating the fullerene dispersion was omitted. Using the obtained resin additive composition, a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet. From the results in Table 1, Example 1 and Example 2 were compared with Comparative Example 1. The resin compositions prepared in Examples 1 and 2 were improved in heat resistance, surface smoothness, mechanical properties, and withstand voltage as compared with the resin compositions prepared in Comparative Example 1.
  • Example 1 fullerene was processed into a resin additive composition, and then a resin composition was prepared.
  • Comparative Example 1 the resin composition was prepared without processing the fullerene into the resin additive composition.
  • Comparative Example 2 heat resistance, surface smoothness, mechanical properties, and withstand voltage were improved by applying a nitrogen atmosphere during the heat treatment, compared with a resin composition produced without using a nitrogen atmosphere. ..
  • the epoxy monomer molecules contained in the medium A were cleaved by heating and added to the fullerenes, so that the fullerene had a higher affinity with the epoxy resin. It is considered that the fullerene solubility of the product was improved.
  • Unistar MB-881 manufactured by NOF CORPORATION
  • a resin additive composition was prepared by the procedure of Example 2 except that the step of heat-treating the fullerene dispersion was omitted.
  • a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition.
  • Table 1 shows the withstand voltage, heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet. Comparing Example 3 and Comparative Example 2 from the results of Table 1, the resin composition produced in Example 3 has higher heat resistance, surface smoothness, and mechanical properties than the resin composition produced in Comparative Example 2. And the withstand voltage was improved.
  • Example 3 a resin composition was prepared after processing the fullerene into a resin additive composition.
  • Comparative Example 2 a resin composition was prepared without processing laren into a resin additive composition.
  • the resin additive composition of Example 3 the chemical bond constituting the polyoxyethylene molecule contained in the medium A was gradually cleaved and added to the fullerene, so that the fullerene had an increased affinity for the epoxy resin, It is considered that the fullerene solubility of the resin composition was improved.
  • Example 4 In Example 1, a resin additive composition was obtained by using 5 g of the medium A as the epoxy resin C (manufactured by Kyoeisha Chemical Co., Ltd., neopentyl glycol diglycidyl ether, Eporite 1500NP) and 45 g of xylene as the solvent; and the medium B. As a result, a resin composition and a sheet-shaped cured product thereof were obtained by the method described in Example 1 except that the amount of the epoxy resin C was 5 g. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin composition.
  • Comparative Example 3 As a comparative sample, a resin composition and a sheet-shaped cured product thereof were produced by the procedure of Example 3 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet. Comparing Example 4 and Comparative Example 3 from the results of Table 1, the resin composition produced in Example 4 has higher heat resistance, surface smoothness, and mechanical properties than the resin composition produced in Comparative Example 3. And the withstand voltage was improved. In Example 4, the resin composition was prepared after processing the fullerene into the resin additive composition. On the other hand, in Comparative Example 3, the resin composition was prepared without processing the fullerene into the resin additive composition.
  • Example 5 (Thermoplastic resin) A resin additive composition was obtained by the operation of Example 1 except that the medium A was 75 g of polymethylmethacrylate (manufactured by Tokyo Kasei Co., Ltd.) and 25 g of paradichlorobenzene (manufactured by Tokyo Kasei Co., Ltd.). The resin composition was prepared by taking out the resin additive composition, using 350 g of polymethyl methacrylate (manufactured by Tokyo Kasei Co., Ltd.) as a medium B, and using a twin-screw extruder (manufactured by Toyo Seiki Seisakusho, Labo Plastomill 4C150). ) Was used for kneading.
  • the medium A was 75 g of polymethylmethacrylate (manufactured by Tokyo Kasei Co., Ltd.) and 25 g of paradichlorobenzene (manufactured by Tokyo Kasei Co., Ltd.).
  • the resin composition was prepared
  • the resin composition was obtained by kneading.
  • the obtained resin composition was molded into a sheet having a thickness of 1 mm to obtain a sheet-shaped cured product.
  • Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
  • Example 4 As a comparative sample, a resin composition and a sheet-shaped cured product thereof were produced by the procedure of Example 5 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet. Comparing Example 5 and Comparative Example 4 from the results of Table 1, the resin composition produced in Example 5 has better surface smoothness, mechanical properties, and withstand voltage than the resin composition produced in Comparative Example 4. The property has improved. Also, the heat resistance was slightly improved. In Example 5, fullerene was processed into a resin additive composition, and then a resin composition was prepared.
  • Comparative Example 4 the resin composition was prepared without processing the fullerene into the resin additive composition.
  • the following can be considered for the resin additive composition of Example 5.
  • the chemical bond constituting the polymethylmethacrylate molecule contained in the medium A was gradually cleaved, and this was added to the fullerene. Therefore, the fullerene has increased affinity with the methyl methacrylate resin. As a result, the fullerene solubility of the resin composition was improved.
  • Example 6 (Thermoplastic resin)
  • medium A was 10 g of trimethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), and a resin additive composition was obtained without using paradichlorobenzene; and, as medium B, the resin additive composition and polymethacrylic acid.
  • a resin composition was obtained by the method described in Example 5 except that the amount of methyl (manufactured by Tokyo Kasei Co., Ltd.) was 25 g.
  • Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained resin composition.
  • Example 5 As a comparative sample, a resin additive was prepared by the procedure of Example 6 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained resin composition. Comparing Example 6 and Comparative Example 5 from the results of Table 1, the resin composition produced in Example 6 has more surface smoothness, mechanical properties, and withstand voltage than the resin composition produced in Comparative Example 5. The property has improved. Also, the heat resistance was slightly improved. In Example 6, a resin composition was prepared after processing the fullerene into a resin additive composition. On the other hand, in Comparative Example 5, a resin composition was prepared without processing the fullerene into the resin additive composition.
  • the chemical bond constituting the trimethylbenzene molecule contained in the medium A was gradually cleaved and added to the fullerene. Therefore, the fullerene has increased affinity with the methyl methacrylate resin. As a result, it is considered that the fullerene solubility of the resin composition was improved.
  • the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin can be improved by the fullerene-containing resin additive composition which contains the medium A and the fullerene and is heat-treated.

Abstract

Provided are: a resin additive composition for enhancing the heat resistance, surface smoothness, mechanical characteristics, and withstand voltage properties of a resin; a method for manufacturing the resin additive composition; a resin composition; and a method for manufacturing the resin composition. The present invention provides a method for manufacturing a resin additive composition, including a step for mixing a medium A and a fullerene to obtain a fullerene dispersion including the medium A and the fullerene, and a step for heat-treating the fullerene dispersion, the medium A being at least one medium selected from the group consisting of a thermoplastic resin, a raw material for a thermoplastic resin, and a raw material for a thermosetting resin.

Description

樹脂添加組成物及びその製造方法、樹脂組成物及びその製造方法Resin additive composition and method for producing the same, resin composition and method for producing the same
 本発明は、樹脂添加組成物及びその製造方法、樹脂組成物及びその製造方法に関する。
 本願は、2018年12月27日に、日本に出願された特願2018-246101号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin additive composition and a method for producing the same, a resin composition and a method for producing the same.
The present application claims priority based on Japanese Patent Application No. 2018-246101 filed in Japan on December 27, 2018, and the content thereof is incorporated herein.
 樹脂にフラーレンを充分に分散した効果として、樹脂の耐熱性、表面平滑性、力学特性及び耐電圧性が向上することが知られている。
 特許文献1には、フラーレン類をポリエステル系樹脂中に均一に分散させ、ポリエステル系樹脂組成物を製造する方法が開示されている。この製造方法の一実施形態は、フラーレン類を溶剤に溶解させてフラーレン類溶液を調製する工程と、フラーレン類溶液にポリエステル系樹脂を添加して、ポリマードープ溶液を調製する工程と、ポリマードープ溶液から溶媒を除去する工程とを含む。また、この製造方法のその他の実施形態は、フラーレン類を溶媒に溶解させてフラーレン類溶液を調製する工程と、フラーレン類溶液にポリエステルの原料またはそのオリゴマーを加え、重合反応を行い、ポリエステル系樹脂組成物を製造する工程とを含む。この製造方法により得られたポリエステル系樹脂組成物により、ポリエステル系樹脂の耐熱性、表面平滑性、力学特性を向上させている。
 特許文献2には、ポリオレフィン中にフラーレンを分散させた樹脂組成物を用いて樹脂シートを作製することにより、樹脂シートの絶縁破壊電圧を向上させる技術が開示さている。
 特許文献3には、フラーレン誘導体を含む有機溶媒溶液と樹脂を混合することにより、樹脂に対するフラーレンの分散性を向上させる技術が開示さている。そのフラーレン誘導体は、樹脂と親和性の高い有機溶媒への溶解性が向上するような置換基をフラーレンに導入してなるフラーレン誘導体である。
It is known that heat resistance, surface smoothness, mechanical characteristics and withstand voltage of the resin are improved as an effect of sufficiently dispersing the fullerene in the resin.
Patent Document 1 discloses a method of uniformly dispersing fullerenes in a polyester resin to produce a polyester resin composition. One embodiment of this manufacturing method, a step of dissolving a fullerene in a solvent to prepare a fullerene solution, a step of preparing a polymer dope solution by adding a polyester resin to the fullerene solution, a polymer dope solution From the solvent. In addition, other embodiments of this production method, a step of dissolving a fullerene in a solvent to prepare a fullerene solution, a raw material of polyester or an oligomer thereof is added to the fullerene solution, a polymerization reaction is performed, and a polyester resin Manufacturing the composition. The polyester resin composition obtained by this production method improves the heat resistance, surface smoothness, and mechanical properties of the polyester resin.
Patent Document 2 discloses a technique of improving the dielectric breakdown voltage of a resin sheet by producing a resin sheet using a resin composition in which fullerene is dispersed in polyolefin.
Patent Document 3 discloses a technique for improving the dispersibility of fullerene in a resin by mixing a resin with an organic solvent solution containing a fullerene derivative. The fullerene derivative is a fullerene derivative obtained by introducing a substituent into the fullerene that improves the solubility in an organic solvent having a high affinity with the resin.
特開2006-117760号公報JP, 2006-117760, A 特開2018-104549号公報Japanese Patent Laid-Open No. 2018-104549 国際公開第2016/063972号International Publication No. 2016/063972
 しかしながら、特許文献1に記載された方法では、フラーレン類を溶解してフラーレン類溶液を調製するとともに、フラーレン類溶液とポリエステル系樹脂の混合、または、フラーレン類溶液中におけるポリエステル系樹脂の重合に使用できる溶媒は、ベンゼンやトルエン等の一部の芳香族系溶媒に限られる。
 特許文献2に記載された方法では、フラーレン類を分散できる樹脂がポリエステル系樹脂に限定されている。
 特許文献3に記載された方法では、フラーレン誘導体として、インデン付加体が開示されている。インデン付加体は、例えば、ポリエステル、エポキシ樹脂等の樹脂の骨格とは基本的に構造が異なるために、これらの樹脂との親和性が充分ではなく、これらの樹脂に対する分散性が充分ではない。
However, in the method described in Patent Document 1, fullerene is dissolved to prepare a fullerene solution, and the fullerene solution and the polyester resin are mixed or used for polymerization of the polyester resin in the fullerene solution. The solvent that can be used is limited to some aromatic solvents such as benzene and toluene.
In the method described in Patent Document 2, the resin capable of dispersing the fullerenes is limited to the polyester resin.
In the method described in Patent Document 3, an indene adduct is disclosed as a fullerene derivative. Since the indene adduct is basically different in structure from the skeleton of a resin such as polyester or epoxy resin, the indene adduct does not have sufficient affinity with these resins and its dispersibility in these resins is not sufficient.
 本発明は、上記事情に鑑みてなされたものであって、樹脂の耐熱性、表面平滑性、力学特性及び耐電圧性を向上する樹脂添加組成物及びその製造方法、樹脂組成物及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a resin additive composition and a method for producing the same, a resin composition and a method for producing the same, which improve heat resistance, surface smoothness, mechanical properties and withstand voltage of the resin. The purpose is to provide.
[1]媒体Aとフラーレンとを混合し、前記媒体Aと前記フラーレンを含むフラーレン分散体を得る工程と、前記フラーレン分散体を熱処理する工程と、を含み、前記媒体Aは、熱可塑性樹脂、熱可塑性樹脂の原料及び熱硬化性樹脂の原料からなる群から選択される少なくとも1種である樹脂添加組成物の製造方法。
[2]前記フラーレン分散体を得る工程において有機溶剤を混合する[1]に記載の樹脂添加組成物の製造方法。
[3]前記フラーレン分散体を熱処理する工程を、低酸素雰囲気下で行う[1]または[2]に記載の樹脂添加組成物の製造方法。
[4]前記フラーレン分散体中の酸素濃度を10質量ppm以下とする[3]に記載の樹脂添加組成物の製造方法。
[5]前記フラーレン分散体を熱処理する工程において、前記フラーレン分散体の加熱温度と加熱時間を決定する工程を含み、前記フラーレン分散体の加熱温度と加熱時間を決定する工程は、加熱状態にある前記フラーレン分散体における前記フラーレンの濃度を一定時間毎に測定して、前記フラーレン分散体における前記フラーレンの濃度と前記フラーレン分散体の加熱時間の関係を示す検量線を作成する工程と、
前記検量線に基づいて、前記フラーレン分散体の加熱温度と加熱時間を決定する工程とを含む[1]~[4]のいずれかに記載の樹脂添加組成物の製造方法。
[6]前記フラーレンが、C60、C70並びにC60及びC70を含む混合物のいずれかである[1]~[5]のいずれかに記載の樹脂添加組成物の製造方法。
[7]前記フラーレン分散体から、不溶成分を除去する工程を含む[1]~[6]のいずれかに記載の樹脂添加組成物の製造方法。
[8]前記樹脂添加組成物から、揮発成分を除去する工程を含む[1]~[7]のいずれかに記載の樹脂添加組成物の製造方法。
[9][1]~[8]のいずれかに記載の樹脂添加組成物の製造方法によって製造される樹脂添加組成物。
[10][1]~[8]のいずれかに記載の樹脂添加組成物の製造方法により樹脂添加組成物を得る工程と、得られた樹脂添加組成物と媒体Bとを混合する工程と、を含み、前記媒体Bは、熱硬化性樹脂の原料、熱硬化性樹脂の硬化剤または熱可塑性樹脂である樹脂組成物の製造方法。
[11][10]に記載の樹脂組成物の製造方法によって製造される樹脂組成物。
[12]前記媒体Bは、熱硬化性樹脂の原料、または熱硬化性樹脂の硬化剤である場合、前記[11]に記載の樹脂組成物の硬化物。
[1] a step of mixing the medium A and the fullerene to obtain a fullerene dispersion containing the medium A and the fullerene; and a step of heat-treating the fullerene dispersion, wherein the medium A is a thermoplastic resin, A method for producing a resin additive composition, which is at least one selected from the group consisting of a raw material of a thermoplastic resin and a raw material of a thermosetting resin.
[2] The method for producing a resin additive composition according to [1], wherein an organic solvent is mixed in the step of obtaining the fullerene dispersion.
[3] The method for producing a resin additive composition according to [1] or [2], wherein the step of heat-treating the fullerene dispersion is performed in a low oxygen atmosphere.
[4] The method for producing a resin additive composition according to [3], wherein the oxygen concentration in the fullerene dispersion is 10 mass ppm or less.
[5] The step of heat-treating the fullerene dispersion includes a step of determining a heating temperature and a heating time of the fullerene dispersion, and the step of determining the heating temperature and the heating time of the fullerene dispersion is in a heated state. Measuring the concentration of the fullerene in the fullerene dispersion at regular intervals, creating a calibration curve showing the relationship between the concentration of the fullerene in the fullerene dispersion and the heating time of the fullerene dispersion,
The method for producing a resin additive composition according to any one of [1] to [4], including a step of determining a heating temperature and a heating time of the fullerene dispersion based on the calibration curve.
[6] The method for producing a resin additive composition according to any one of [1] to [5], wherein the fullerene is any of C 60 , C 70 , and a mixture containing C 60 and C 70 .
[7] The method for producing a resin additive composition according to any one of [1] to [6], which comprises a step of removing an insoluble component from the fullerene dispersion.
[8] The method for producing a resin additive composition according to any one of [1] to [7], which includes a step of removing volatile components from the resin additive composition.
[9] A resin additive composition produced by the method for producing a resin additive composition according to any one of [1] to [8].
[10] A step of obtaining a resin additive composition by the method for producing a resin additive composition according to any one of [1] to [8], and a step of mixing the obtained resin additive composition and medium B Wherein the medium B is a raw material of a thermosetting resin, a curing agent of a thermosetting resin, or a thermoplastic resin.
[11] A resin composition produced by the method for producing a resin composition according to [10].
[12] When the medium B is a raw material of a thermosetting resin or a curing agent for a thermosetting resin, the cured product of the resin composition according to [11].
 本発明によれば、樹脂の耐熱性、表面平滑性、力学特性及び耐電圧性を向上する樹脂添加組成物及びその製造方法、樹脂組成物及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a resin additive composition and a method for producing the same, a resin composition and a method for producing the same, which improve heat resistance, surface smoothness, mechanical properties and withstand voltage of the resin.
 以下、本発明を適用した樹脂添加組成物及びその製造方法、樹脂組成物及びその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Hereinafter, embodiments of the resin additive composition and the method for producing the same, the resin composition and the method for producing the same according to the present invention will be described.
It should be noted that the present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
[樹脂添加組成物]
 本実施形態の樹脂添加組成物は、後述する樹脂添加組成物の製造方法で製造されるものであり、媒体Aと、フラーレンと、フラーレン付加体とを含む。前記フラーレン付加体は、前記フラーレンに、前記媒体Aに含まれている成分の由来構造を付加してからなる化合物である。本実施形態の樹脂添加組成物は、後述する本実施形態の樹脂添加組成物の製造方法において、媒体Aと、フラーレンとの混合物(フラーレン分散体)を熱処理してなる。
[Resin additive composition]
The resin additive composition of the present embodiment is produced by the method for producing a resin additive composition described below, and contains medium A, fullerene, and a fullerene adduct. The fullerene adduct is a compound formed by adding the structure derived from the component contained in the medium A to the fullerene. The resin additive composition of the present embodiment is formed by heat-treating a mixture (fullerene dispersion) of medium A and fullerene in the method for producing a resin additive composition of the present embodiment described later.
(媒体A)
 本実施形態の樹脂添加組成物に含まれる媒体Aは、熱可塑性樹脂、熱可塑性樹脂の原料及び熱硬化性樹脂の原料からなる群から選択される少なくとも1種である。より具体的には、本実施形態の樹脂添加組成物を熱可塑性樹脂に用いる場合、媒体Aは、熱可塑性樹脂、または熱可塑性樹脂の原料である。熱可塑性樹脂の原料としては、熱可塑性樹脂のモノマー、熱可塑性樹脂添加剤及び反応性成分からなる群から選択される少なくとも1種が挙げられる。また、本実施形態の樹脂添加組成物を熱硬化性樹脂に用いる場合、媒体Aは、熱硬化性樹脂の原料である。熱硬化性樹脂の原料としては、重合性モノマー、重合性オリゴマー及び反応性成分からなる群から選択される少なくとも1種が挙げられる。
(Medium A)
The medium A contained in the resin additive composition of the present embodiment is at least one selected from the group consisting of a thermoplastic resin, a raw material of a thermoplastic resin, and a raw material of a thermosetting resin. More specifically, when the resin additive composition of the present embodiment is used for a thermoplastic resin, the medium A is a thermoplastic resin or a raw material for the thermoplastic resin. Examples of the raw material of the thermoplastic resin include at least one selected from the group consisting of a monomer of the thermoplastic resin, a thermoplastic resin additive and a reactive component. When the resin additive composition of the present embodiment is used for a thermosetting resin, the medium A is a raw material for the thermosetting resin. Examples of the raw material of the thermosetting resin include at least one selected from the group consisting of a polymerizable monomer, a polymerizable oligomer and a reactive component.
 熱可塑性樹脂は、一般的に溶融温度を超える状態では、主に炭素、酸素、窒素、シリコン原子を主鎖に有する分子を構成する化学結合が徐々に開裂し、分子量が低下するものである。このような熱可塑性樹脂としては、例えば、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アリル酸エチル、アクリル酸ブチル、酢酸ビニル、スチレン、エチレングリコール、プロピレングリコール、エチレン、プロピレン、ブタジエン等のモノマーの重合体、及びこれらモノマーの共重合体が挙げられる。 ㆍGenerally, in the state where the melting temperature exceeds the melting point, the thermoplastic resin is one in which the chemical bonds constituting the molecules mainly having carbon, oxygen, nitrogen, and silicon atoms in the main chain are gradually cleaved, and the molecular weight decreases. Examples of such a thermoplastic resin include methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl allylate, butyl acrylate, vinyl acetate, styrene, ethylene glycol, propylene glycol, ethylene. Examples thereof include polymers of monomers such as propylene and butadiene, and copolymers of these monomers.
 熱可塑性樹脂の原料であるモノマーは前出のものが挙げられる。 The monomers mentioned above are examples of the monomers that are the raw materials for the thermoplastic resin.
 熱可塑性樹脂の原料である熱可塑性樹脂添加剤は、特に限定されない。熱可塑性樹脂添加剤としては、例えば、市販の酸化防止剤が挙げられる。これらの添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱可塑性樹脂添加剤としては、芳香族環を有するものがより好ましい。
 芳香族環を有する酸化防止剤としては、例えば、ジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ブチルフェノール(DTP)、ビス(3、5-ジブチル-4-ヒドロキシフェニル)メタン(BDBA)、2,4,6-トリブチルフェノール(TBP、3-アリールベンゾフラン-2-オン(ヒドロキシカルボン酸の分子内環状エステル)、フェニル-α-ナフチルアミン、ジアルキルジフェニルアミン、ベンゾトリアゾール等が挙げられる。
The thermoplastic resin additive that is a raw material of the thermoplastic resin is not particularly limited. Examples of the thermoplastic resin additives include commercially available antioxidants. These additives may be used alone or in combination of two or more.
As the thermoplastic resin additive, those having an aromatic ring are more preferable.
Examples of the antioxidant having an aromatic ring include dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-butylphenol (DTP), bis(3,5-dibutyl-4-hydroxyphenyl)methane. (BDBA), 2,4,6-tributylphenol (TBP, 3-arylbenzofuran-2-one (intramolecular cyclic ester of hydroxycarboxylic acid), phenyl-α-naphthylamine, dialkyldiphenylamine, benzotriazole and the like can be mentioned.
 熱硬化性樹脂の原料である重合性モノマーあるいは重合性オリゴマーとしては、以下のような原料モノマーあるいはオリゴマーであれば特に制限なく用いることができる。この原料モノマーあるいはオリゴマーは、硬化剤や光硬化剤が存在する条件で、加熱や光照射により、重合し、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、ポリイミド等を生成する。
 熱硬化性樹脂としては、エポキシ樹脂が好ましい。エポキシ樹脂の具体例は、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、複素環式エポキシ樹脂、シリコンエポキシ樹脂等を含む。
As the polymerizable monomer or the polymerizable oligomer which is the raw material of the thermosetting resin, the following raw material monomers or oligomers can be used without particular limitation. This raw material monomer or oligomer is polymerized by heating or light irradiation in the presence of a curing agent or a photo-curing agent, and is polymerized to produce a phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, Generates polyimide, etc.
The thermosetting resin is preferably an epoxy resin. Specific examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol type epoxy resin, biphenol type epoxy resin, naphthalene skeleton-containing epoxy resin, heterocyclic epoxy resin, and silicone epoxy resin.
 熱可塑性樹脂及び熱硬化性樹脂の原料である反応性成分は、媒体A及び後述する媒体Bと溶解性の点で親和性が高い化合物であることが好ましい。
 反応性成分は、媒体A及び媒体Bと溶解性の点で親和性が高いという点では、媒体A及び媒体Bの主成分と化学構造が類似する化合物であることがさらに好ましい。
 さらに、製造のし易さの観点から、反応性成分は、媒体Bに含まれる成分であることが好ましく、また、約200℃以下で後述するフラーレンに化学結合する化合物であることが好ましい。
 反応性成分としては、例えば、パラフィン、オレフィン、ナフテン、芳香族等の炭化水素、エーテル、エステル等の骨格を有する化合物が好ましい。
The reactive component, which is a raw material of the thermoplastic resin and the thermosetting resin, is preferably a compound having a high affinity with the medium A and the medium B described later in terms of solubility.
The reactive component is more preferably a compound having a chemical structure similar to that of the main components of the medium A and the medium B in terms of high affinity with the medium A and the medium B in terms of solubility.
Further, from the viewpoint of ease of production, the reactive component is preferably a component contained in the medium B, and is preferably a compound that chemically bonds to fullerene described below at about 200°C or lower.
As the reactive component, for example, a compound having a skeleton such as paraffin, olefin, naphthene, hydrocarbon such as aromatic, ether, ester and the like is preferable.
 また、反応性成分は、約200℃以下でフラーレンに化学結合させるという点では、例えば、側鎖や環を有する飽和炭化水素、ジエンや芳香族等の不飽和炭化水素が好ましい。その芳香族が、環を複数有してもよく、アルキル側鎖を有してもよい。また、このような反応性成分のその他の好ましい例は、エーテル結合を有する化合物、エステル結合を有する化合物、リン酸エステル結合を有する化合物、ジスルフィド結合を有する化合物、フェノール水酸を有する化合物、及びシリコーンを含む。 Further, the reactive component is preferably, for example, a saturated hydrocarbon having a side chain or a ring, an unsaturated hydrocarbon such as a diene or an aromatic, in that it is chemically bonded to the fullerene at about 200° C. or lower. The aromatic may have multiple rings and may have alkyl side chains. Further, other preferable examples of such a reactive component are a compound having an ether bond, a compound having an ester bond, a compound having a phosphoric acid ester bond, a compound having a disulfide bond, a compound having a phenol hydroxide, and a silicone. including.
 このような反応性成分としては、具体的には、直鎖または分岐した炭化水素(、不飽和2重結合を有する炭化水素、アルキルを有する芳香族炭化水素、多環芳香環の炭化水素、エーテル結合を有する化合物、エステル基を有する化合物、ジスルフィド結合を有する化合物、ジ-p-トリルジスルフィド、フェノール水酸を有する化合物、ジアゾ化合物、シリコーン、等が挙げられる。さらに、これらの組み合わせが挙げられる。これらの化合物は、加熱することにより分子が開裂し、フラーレンと反応して、フラーレン付加体を形成すると考えられる。
 直鎖または分岐した炭化水素の例は、ヘキサン、デカン、シクロヘキサン、イソブタン、デカリン等を含む。不飽和2重結合を有する炭化水素の例は、ヘキサセン、ペンタセン、シクロヘキセン、デセン、テレピン油、テルペン誘導体、α-オレフィン等を含む。アルキルを有する芳香族炭化水素の例は、ドデシルベンゼン、ヘキサベンゼン、エチルベンゼン、トリメチルベンゼン、テトラメチルベンゼン、クメン、メチルナフタレン含む。多環芳香環の炭化水素の例は、アントラセン、ブタセン、ヘキサセンなどを含む。エーテル結合を有する化合物の例は、トリプロピレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラヒロドフラン等を含む。エステル基を有する化合物の例は、酢酸エチル、酢酸オクチル、γ-ブチロラクトン、脂肪(脂肪酸グリセリンエステル)などを含む。リン酸エステル結合を有する化合物の例は、リン酸トリクレジル(TCP)、リン酸トリフェニル(TPP)、2,6-ジ-tert-ブチルフェノール(DTP)等を含む。ジスルフィド結合を有する化合物の例は、ジベンジルジサルファイド(DBDS)、ジ-p-トリルジスルフィド(DTDS)等を含む。フェノール水酸を有する化合物の例は、3,5-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ブチルフェノール(DTP)、ビス(3、5-ジ-tert-ブチル-4-ヒドロキシフェニル)メタン(BDBA)、2,4,6-トリブチルフェノール(TBP)等を含む。
Specific examples of such a reactive component include a linear or branched hydrocarbon (a hydrocarbon having an unsaturated double bond, an aromatic hydrocarbon having an alkyl, a hydrocarbon having a polycyclic aromatic ring, an ether). Examples thereof include compounds having a bond, compounds having an ester group, compounds having a disulfide bond, di-p-tolyl disulfide, compounds having a phenol hydroxide, diazo compounds, silicones, etc. Further, a combination thereof can be mentioned. It is considered that these compounds, when heated, have their molecules cleaved and react with fullerenes to form fullerene adducts.
Examples of linear or branched hydrocarbons include hexane, decane, cyclohexane, isobutane, decalin and the like. Examples of the hydrocarbon having an unsaturated double bond include hexacene, pentacene, cyclohexene, decene, turpentine oil, terpene derivative, α-olefin and the like. Examples of alkyl-containing aromatic hydrocarbons include dodecylbenzene, hexabenzene, ethylbenzene, trimethylbenzene, tetramethylbenzene, cumene, methylnaphthalene. Examples of polycyclic aromatic hydrocarbons include anthracene, butacene, hexacene, and the like. Examples of the compound having an ether bond include tripropylene glycol, dipropylene glycol, triethylene glycol, tetrahydrofuran and the like. Examples of the compound having an ester group include ethyl acetate, octyl acetate, γ-butyrolactone, fat (fatty acid glycerin ester) and the like. Examples of compounds having a phosphate ester bond include tricresyl phosphate (TCP), triphenyl phosphate (TPP), 2,6-di-tert-butylphenol (DTP) and the like. Examples of compounds having a disulfide bond include dibenzyl disulfide (DBDS), di-p-tolyl disulfide (DTDS) and the like. Examples of compounds having phenolic hydroxide include 3,5-di-tert-butyl-4-hydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-butylphenol (DTP), bis(3,5- Di-tert-butyl-4-hydroxyphenyl)methane (BDBA), 2,4,6-tributylphenol (TBP) and the like are included.
前記反応性成分がフラーレンに化学結合(付加)してフラーレン付加体を形成する。このようなフラーレン付加体では、フラーレン骨格の表面に上記の反応性成分の分子(基)が存在する。したがって、フラーレン付加体は、その表面に存在する反応性成分より得られる基により、樹脂との親和性に優れる。よって、樹脂添加組成物がフラーレン付加体を含むことにより、樹脂の耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる。 The reactive component chemically bonds (adds) to the fullerene to form a fullerene adduct. In such a fullerene adduct, the molecule (group) of the above reactive component is present on the surface of the fullerene skeleton. Therefore, the fullerene adduct has excellent affinity with the resin due to the group obtained from the reactive component existing on the surface thereof. Therefore, when the resin additive composition contains the fullerene adduct, the heat resistance, surface smoothness, mechanical characteristics, and withstand voltage of the resin can be improved.
 反応性成分がフラーレンに化学結合して、フラーレン付加体を形成していることは、液体クロマトグラフィー質量分析法(Liquid Chromatography Mass Spectrometry、LC-MS)により確認することができる。 The fact that the reactive component is chemically bonded to the fullerene to form a fullerene adduct can be confirmed by liquid chromatography mass spectrometry (Liquid Chromatography Mass Spectrometry, LC-MS).
 媒体Aとフラーレンとを含むフラーレン分散体を得る工程では、有機溶剤を使用してもよい。有機溶剤を用いることで、媒体Aの熱可塑性樹脂添加剤が室温で固体である場合に、これらを有機溶剤に溶解させることにより液状とすることがで、液体として取り扱うことが可能となり、後述の樹脂添加組成物の製造を容易にする。
 また、有機溶剤を用いることで、フラーレンの分散を高めることができ、後述の樹脂添加組成物の製造を容易にする。媒体Aの熱可塑性樹脂添加剤、重合性モノマー、重合性オリゴマー等にフラーレンを分散し難い場合に、これらの混合物に有機溶剤を添加することにより、フラーレンの分散を高めることができる。
An organic solvent may be used in the step of obtaining a fullerene dispersion containing the medium A and the fullerene. By using the organic solvent, when the thermoplastic resin additive of the medium A is solid at room temperature, it can be treated as a liquid by dissolving them in the organic solvent to make it a liquid. It facilitates the production of a resin additive composition.
Further, by using an organic solvent, the dispersion of fullerene can be enhanced, which facilitates the production of a resin additive composition described later. When it is difficult to disperse the fullerene in the thermoplastic resin additive of the medium A, the polymerizable monomer, the polymerizable oligomer, etc., the dispersion of the fullerene can be enhanced by adding an organic solvent to these mixtures.
 有機溶剤としては、例えば、芳香族溶剤、デカリン、N-メチルピロリドン、ポリプロビレングリコール等が挙げられる。その中に、芳香族溶剤が特に好ましい。芳香族溶剤の例は、ベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、ジクロロベンゼン、メチルナフタレン等を含む。 Examples of the organic solvent include aromatic solvents, decalin, N-methylpyrrolidone, polypropylene glycol and the like. Among them, aromatic solvents are particularly preferable. Examples of aromatic solvents include benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene, methylnaphthalene and the like.
(フラーレン)
 本実施形態の樹脂添加組成物に含まれるフラーレンは、構造や製造法が特に限定されず、種々のものを用いることができる。フラーレンとしては、例えば、比較的入手しやすいC60やC70、さらに高次のフラーレン、あるいはそれらの混合物が挙げられる。フラーレンの中でも、有機溶剤や樹脂への溶解性の高さの点から、C60及びC70が好ましく、着色が少ない点から、C60がより好ましい。混合物の場合は、C60が50質量%以上含まれることが好ましい。
(Fullerene)
The fullerene contained in the resin additive composition of the present embodiment is not particularly limited in structure and manufacturing method, and various fullerenes can be used. Examples of fullerenes include C 60 and C 70 , which are relatively easily available, and higher fullerenes, or a mixture thereof. Among the fullerenes, C 60 and C 70 are preferable from the viewpoint of high solubility in organic solvents and resins, and C 60 is more preferable from the viewpoint of less coloring. In the case of a mixture, C 60 is preferably contained in an amount of 50% by mass or more.
(フラーレン付加体)
 本実施形態の樹脂添加組成物は、その製造過程において、媒体Aとフラーレンとを含むフラーレン分散体における熱処理後のフラーレンの濃度が、熱処理前のフラーレンの濃度よりも低くなる。すなわち、本実施形態の樹脂添加組成物は、熱処理によって、フラーレンに、媒体Aに含まれていてもよい反応性成分が化学結合してなるフラーレン付加体を含む。フラーレン付加体は、フラーレンに付加した以下の化合物であることが好ましい。この化合物は、炭化水素、エーテル結合を有する化合物、エステル結合を有する化合物、リン酸エステル結合を有する化合物、ジスルフィド結合を有する化合物、フェノール水酸を有する化合物及びシリコーンからなる群から選ばれる少なくとも1種の化合物である。
(Fullerene adduct)
In the production process of the resin additive composition of the present embodiment, the concentration of fullerene after heat treatment in the fullerene dispersion containing medium A and fullerene becomes lower than the concentration of fullerene before heat treatment. That is, the resin additive composition of the present embodiment contains a fullerene adduct in which the reactive component that may be contained in the medium A is chemically bonded to the fullerene by heat treatment. The fullerene adduct is preferably the following compound added to fullerene. This compound is at least one selected from the group consisting of hydrocarbon, a compound having an ether bond, a compound having an ester bond, a compound having a phosphoric acid ester bond, a compound having a disulfide bond, a compound having phenol hydroxide, and a silicone. Is a compound of.
 本実施形態の樹脂添加組成物は、後述する樹脂添加組成物の製造方法により製造される樹脂添加組成物である。 The resin additive composition of the present embodiment is a resin additive composition produced by the method for producing a resin additive composition described below.
 本実施形態の樹脂添加組成物によれば、媒体Aとフラーレンとフラーレン付加体とを含み、媒体Aとフラーレンとの分散体が熱処理されてなる。そのため、フラーレンの樹脂への溶解性が向上することにより、樹脂の耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる。 According to the resin additive composition of the present embodiment, the medium A, the fullerene, and the fullerene adduct are contained, and the dispersion of the medium A and the fullerene is heat-treated. Therefore, heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin can be improved by improving the solubility of the fullerene in the resin.
 本実施形態の樹脂添加組成物は、熱硬化性繊維樹脂強化プラスチック(FRP)、熱可塑性繊維樹脂強化プラスチック(FRTP)、熱硬化性炭素繊維樹脂強化プラスチック(CFRP)、熱可塑性炭素繊維樹脂強化プラスチック(CFRTP)、放熱樹脂、電気絶縁樹脂、オーリングパッキン、電線被覆材等の各種用途に使用することができる。 The resin additive composition of the present embodiment includes a thermosetting fiber resin reinforced plastic (FRP), a thermoplastic fiber resin reinforced plastic (FRTP), a thermosetting carbon fiber resin reinforced plastic (CFRP), and a thermoplastic carbon fiber resin reinforced plastic. It can be used for various applications such as (CFRTP), heat dissipation resin, electric insulating resin, O-ring packing, and wire coating material.
 例えば、FRP、FRTP、CFRP、CFRTP、放熱樹脂、電気絶縁樹脂の用途において、基材となる樹脂(以下、「樹脂基材」と言うこともある。)を、本実施形態の方法で作製すれば、得られたFRP、CFRP、放熱樹脂、電気絶縁樹脂の耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる。
 この場合、樹脂基材としては、熱可硬化性樹脂が用いられ、例えば、エポキシ樹脂等が挙げられる。
For example, in the use of FRP, FRTP, CFRP, CFRTP, heat dissipation resin, and electrically insulating resin, a resin serving as a base material (hereinafter, also referred to as “resin base material”) may be prepared by the method of the present embodiment. For example, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained FRP, CFRP, heat dissipation resin, and electric insulating resin can be improved.
In this case, a thermosetting resin is used as the resin base material, and examples thereof include epoxy resin.
 例えば、CFRTP、FRTP、オーリングパッキン、電線被覆材などのシール樹脂の用途において、基材となる樹脂(以下、「樹脂基材」と言うこともある。)を、本実施形態の方法で作製すれば、得られたFRP、シール材の耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる。
 この場合、樹脂基材としては、熱可塑性樹脂が用いられ、例えば、ポリエチレン、ポリプロピレン、メタクリル酸メチル、アクリル酸メチル、ポリスチレン、ブチルゴム、ブタジエンゴム、フッ素ゴム等が挙げられる。
For example, in the use of sealing resin such as CFRTP, FRTP, O-ring packing, and electric wire coating material, a resin serving as a base material (hereinafter, also referred to as “resin base material”) is produced by the method of the present embodiment. Then, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained FRP and sealing material can be improved.
In this case, a thermoplastic resin is used as the resin base material, and examples thereof include polyethylene, polypropylene, methyl methacrylate, methyl acrylate, polystyrene, butyl rubber, butadiene rubber, and fluororubber.
[樹脂添加組成物の製造方法]
 本実施形態の樹脂添加組成物の製造方法は、上述の本実施形態の樹脂添加組成物の製造方法であって、媒体Aとフラーレンとを混合し、フラーレンの溶解成分を媒体A中に溶解し、媒体Aとフラーレンの混合物を得る工程(以下、「第一工程」という。)と、フラーレン分散体を熱処理する工程(以下、「第二工程」という。)と、を含む。
 さらに、本実施形態の樹脂添加組成物の製造方法は、第一工程後に、混合物に含まれる不溶成分を除去し、フラーレンの混合物を得る工程(以下、「第三工程」という。)を含んでもよい。第一工程あるいは第二工程を経たフラーレンと媒体Aの混合物をフラーレン分散体(以下、単に「フラーレン分散体」と言うことがある。)を得る。
 さらに、本実施形態の樹脂添加組成物の製造方法は、第三工程の後に、樹脂添加組成物に含まれる有機溶剤等の揮発分を除去する工程(以下、「第四工程」という。)を含んでもよい。
[Method for producing resin additive composition]
The method for producing a resin additive composition according to the present embodiment is the method for producing a resin additive composition according to the present embodiment described above, in which medium A and fullerene are mixed and a dissolved component of fullerene is dissolved in medium A. , A step of obtaining a mixture of medium A and fullerene (hereinafter referred to as “first step”), and a step of heat-treating the fullerene dispersion (hereinafter referred to as “second step”).
Further, the method for producing a resin additive composition according to the present embodiment may include a step of removing insoluble components contained in the mixture to obtain a mixture of fullerenes (hereinafter referred to as “third step”) after the first step. Good. A mixture of fullerene and medium A that has undergone the first step or the second step is obtained as a fullerene dispersion (hereinafter sometimes simply referred to as "fullerene dispersion").
Furthermore, in the method for producing a resin additive composition according to the present embodiment, after the third step, a step of removing volatile components such as an organic solvent contained in the resin additive composition (hereinafter referred to as “fourth step”). May be included.
 以下、本実施形態の樹脂添加組成物の製造方法を詳細に説明する。 Hereinafter, the method for producing the resin additive composition of the present embodiment will be described in detail.
(第一工程)
 媒体Aが室温で液体の場合、または媒体Aが固体の場合で有機溶剤に溶解された溶液状態の場合は、原料のフラーレンを媒体A(の溶液)に投入して攪拌機等の分散手段を用いて、室温付近または必要に応じて加温しながら1時間~48時間の分散処理を施す。媒体Aが室温で固体であり、加熱により溶融する場合は、溶融温度の温度で攪拌機器、混錬機器等の分散手法を用いて、1時間~48時間の分散処理を施す。
 原料のフラーレンの仕込み量は、例えば、最終的に調製したい樹脂添加組成物のフラーレン濃度を考慮して、計算上、媒体Aに対して所望のフラーレンの濃度が得られるフラーレン量の1.1倍~200倍、より好ましくは1.1倍~20倍とする。1.1倍より低いと、抽出可能な溶解成分の量が少なくて、所望のフラーレンの濃度を満たすことができない可能性がある。200倍より高いと、不溶成分を除去する第二工程において、フィルタリング途中で濾過速度の低下が生じ、実施時間が長くなる。さらに、フラーレンの原料コストが上がる。
(First step)
When the medium A is a liquid at room temperature, or when the medium A is a solid and is in a solution state dissolved in an organic solvent, the raw material fullerene is charged into the medium A (solution thereof) and a dispersing means such as a stirrer is used. Then, the dispersion treatment is performed at about room temperature or for 1 to 48 hours while heating as needed. When the medium A is solid at room temperature and melts by heating, the dispersion treatment is performed at a temperature of the melting temperature for 1 hour to 48 hours by using a dispersion method such as a stirrer and a kneader.
The charge amount of the fullerene as a raw material is, for example, 1.1 times the fullerene amount at which a desired concentration of fullerene is obtained with respect to the medium A, in consideration of the fullerene concentration of the resin additive composition to be finally prepared. ˜200 times, more preferably 1.1 to 20 times. If it is lower than 1.1 times, the amount of the extractable soluble component is small and the desired fullerene concentration may not be satisfied. If it is higher than 200 times, in the second step of removing the insoluble component, the filtration speed is lowered during the filtering, and the execution time becomes long. Further, the raw material cost of fullerenes increases.
 媒体Aにフラーレンを分散させるための分散手段としては、例えば、撹拌機、超音波分散装置、ホモジナイザー、ボールミル、ビーズミル、三本ロール、ニーダー等が挙げられる。
 前記フラーレン分散体は、フラーレンの濃度が1質量ppm(0.0001質量%)以上10000質量ppm(1.0質量%)以下であることが好ましく、5質量ppm(0.0005質量%)以上2000質量ppm(0.2質量%)以下であることがより好ましく、10質量ppm(0.001質量%)以上500質量ppm(0.05質量%)以下であることがさらに好ましい。
 フラーレンの濃度が上記範囲であれば、フラーレンの添加による、耐熱性、表面平滑性、力学特性、及び耐電圧性の効果を長期間維持することができる。また、フラーレンの劣化等による、フラーレンの濃度の低下を補うことができる。
Examples of dispersing means for dispersing the fullerene in the medium A include a stirrer, an ultrasonic dispersing device, a homogenizer, a ball mill, a bead mill, a triple roll, and a kneader.
The fullerene dispersion preferably has a fullerene concentration of 1 mass ppm (0.0001 mass%) or more and 10000 mass ppm (1.0 mass%) or less, and 5 mass ppm (0.0005 mass%) or more 2000 It is more preferably at most ppm by mass (0.2% by mass), more preferably at least 10% by mass (0.001% by mass) and at most 500% by mass (0.05% by mass).
When the concentration of fullerene is in the above range, the effects of heat resistance, surface smoothness, mechanical properties, and withstand voltage due to the addition of fullerene can be maintained for a long period of time. Further, it is possible to compensate for the decrease in the concentration of fullerene due to the deterioration of fullerene.
(第二工程)
 第一工程で得たフラーレン分散体を熱処理し、樹脂添加組成物を得る。なお、第二工程の前に、フラーレン分散体に含まれる不溶成分を除去し、フラーレンの混合物を得る第三工程を行ってもよい。具体的には、第一工程で得たフラーレン分散体をろ過する第三工程を行ってもよい。
(Second step)
The fullerene dispersion obtained in the first step is heat-treated to obtain a resin additive composition. In addition, before the second step, the third step of removing an insoluble component contained in the fullerene dispersion to obtain a mixture of fullerenes may be performed. Specifically, the third step of filtering the fullerene dispersion obtained in the first step may be performed.
 第一工程(あるいは第三工程)で得られたフラーレン分散体は、第一工程(あるいは第三工程)で大気に曝されるため、内部の酸素濃度が大気中の酸素と平衡状態になっている。そのため、第二工程は、混合物中の酸素濃度を、大気中に放置した状態よりも低下させる操作を含むことが好ましい。具体的には、混合物中の酸素濃度を、10質量ppm以下とすることが好ましく、5質量ppm以下とすることがより好ましく、1質量ppm以下とすることがさらに好ましい。その後、酸素濃度を低下させたフラーレン分散体を、再び大気に触れさせることなく、熱処理する。 The fullerene dispersion obtained in the first step (or the third step) is exposed to the atmosphere in the first step (or the third step), so that the internal oxygen concentration is in equilibrium with the oxygen in the atmosphere. There is. Therefore, it is preferable that the second step includes an operation of lowering the oxygen concentration in the mixture as compared with the state of being left in the atmosphere. Specifically, the oxygen concentration in the mixture is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, still more preferably 1 mass ppm or less. Then, the fullerene dispersion having the reduced oxygen concentration is heat-treated without being exposed to the atmosphere again.
 第二工程では、フラーレン分散体を熱処理することにより、反応性成分をフラーレンに化学結合させて、フラーレン付加体を形成する。そのため、熱処理後に得られる樹脂添加組成物におけるフラーレンの濃度は、熱処理前のフラーレン分散体におけるフラーレンの濃度よりも低くなる。言い換えれば、熱処理後により、フラーレン付加体が形成されるので、フラーレンは消費され、その濃度は、熱処理前よりも低くなる。 In the second step, the fullerene dispersion is heat-treated to chemically bond the reactive component to the fullerene to form a fullerene adduct. Therefore, the concentration of fullerene in the resin additive composition obtained after the heat treatment is lower than the concentration of fullerene in the fullerene dispersion before the heat treatment. In other words, since the fullerene adduct is formed after the heat treatment, the fullerene is consumed and the concentration thereof is lower than that before the heat treatment.
 第二工程の熱処理は、低酸素濃度雰囲気(O濃度1体積%以下)で行うことが望ましい。そのためには、熱処理の前に、前述の通り酸素濃度を低下させることが好ましい。酸素濃度を低下させるより好ましい方法としては、例えば、下記の4つ方法が挙げられる。 The heat treatment of the second step is preferably performed in a low oxygen concentration atmosphere (O 2 concentration of 1 vol% or less). For that purpose, it is preferable to reduce the oxygen concentration as described above before the heat treatment. As a more preferable method for reducing the oxygen concentration, for example, the following four methods can be mentioned.
 第一の方法を説明する。
 気密可能なステンレス等の金属製容器内に、第一工程(あるいは第三)で得たフラーレン分散体を収容した後、容器を密閉する。
 次いで、窒素ガスやアルゴンガス等の不活性ガスで容器内を置換するか、あるいは、さらに容器内のフラーレン分散体を不活性ガスでバブリングすることにより、フラーレン分散体を不活性ガスと平衡状態にする。
 次いで、フラーレン分散体と不活性ガスの平衡状態を保ったまま容器を加熱することにより、フラーレン分散体を熱処理する。
 第一の方法では、フラーレン分散体と不活性ガスの平衡状態を保ったまま容器を加熱することにより、フラーレン分散体の熱処理を、低酸素雰囲気下で行う。
The first method will be described.
The fullerene dispersion obtained in the first step (or the third) is placed in an airtight metal container such as stainless steel, and then the container is closed.
Then, the inside of the container is replaced with an inert gas such as nitrogen gas or argon gas, or the fullerene dispersion in the container is bubbled with an inert gas to equilibrate the fullerene dispersion with the inert gas. To do.
Next, the fullerene dispersion is heat-treated by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
In the first method, the fullerene dispersion is heat-treated in a low oxygen atmosphere by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
 第二の方法を説明する。
 気密可能なステンレス等の金属製容器内に、第二工程で得たフラーレン分散体を収容した後、容器を密閉する。
 次いで、容器を減圧して、フラーレン分散体中の酸素濃度を低下させる。
 次いで、フラーレン分散体中の酸素濃度を低下させた状態を保ったまま容器を加熱することにより、フラーレン分散体を熱処理する。
 第二の方法では、フラーレン分散体中の酸素濃度を低下させた状態を保ったまま容器を加熱することにより、フラーレン分散体の熱処理を、低酸素雰囲気下で行う。
The second method will be described.
The fullerene dispersion obtained in the second step is placed in an airtight metal container such as stainless steel, and then the container is closed.
Next, the container is depressurized to reduce the oxygen concentration in the fullerene dispersion.
Next, the fullerene dispersion is heat-treated by heating the container while keeping the oxygen concentration in the fullerene dispersion reduced.
In the second method, the fullerene dispersion is heat-treated in a low oxygen atmosphere by heating the container while keeping the oxygen concentration in the fullerene dispersion low.
 第三の方法を説明する。
 気密可能なステンレス等の金属製容器内に、第二工程で得たフラーレン分散体を収容した後、容器を密閉する。
 次いで、容器を減圧して、フラーレン分散体中の酸素濃度を低下させる。
 次いで、窒素ガス等の不活性ガスで容器内を置換するか、あるいは、さらに容器内のフラーレン分散体を不活性ガスでバブリングすることにより、フラーレン分散体を不活性ガスと平衡状態にする。
 次いで、フラーレン分散体と不活性ガスの平衡状態を保ったまま容器を加熱することにより、フラーレン分散体を熱処理する。
 第三の方法では、フラーレン分散体と不活性ガスの平衡状態を保ったまま容器を加熱することにより、フラーレン分散体の熱処理を、低酸素雰囲気下で行う。
The third method will be described.
The fullerene dispersion obtained in the second step is placed in an airtight metal container such as stainless steel, and then the container is closed.
Next, the container is depressurized to reduce the oxygen concentration in the fullerene dispersion.
Then, the interior of the container is replaced with an inert gas such as nitrogen gas, or the fullerene dispersion in the container is bubbled with an inert gas to equilibrate the fullerene dispersion with the inert gas.
Next, the fullerene dispersion is heat-treated by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
In the third method, the heat treatment of the fullerene dispersion is performed in a low oxygen atmosphere by heating the container while maintaining the equilibrium state of the fullerene dispersion and the inert gas.
 フラーレン分散体の加熱温度が高い程、加熱時間が短くなる。しかしながら、加熱温度が高過ぎると、媒体Aの成分が蒸発したり、媒体Aが劣化・変質したりする。
 そこで、フラーレン分散体の加熱温度の上限は、媒体Aが蒸発してフラーレン分散体の重量が減少しすぎない温度の上限となる。ただし、この温度を超えても、蒸発成分を冷却管等で回収し、媒体Aに戻す操作を行う場合、あるいは、圧力容器内で圧力をかけて蒸発を抑えた状態で熱処理する場合には、フラーレン分散体の加熱温度を媒体Aが蒸発する温度よりも高くすることができる。
The higher the heating temperature of the fullerene dispersion, the shorter the heating time. However, if the heating temperature is too high, the components of the medium A may evaporate or the medium A may deteriorate or deteriorate.
Therefore, the upper limit of the heating temperature of the fullerene dispersion becomes the upper limit of the temperature at which the medium A does not evaporate and the weight of the fullerene dispersion does not decrease too much. However, even if the temperature exceeds this temperature, when the evaporation component is recovered by a cooling pipe or the like and returned to the medium A, or when heat treatment is performed in a pressure vessel under pressure with evaporation suppressed, The heating temperature of the fullerene dispersion can be set higher than the temperature at which the medium A evaporates.
 また、フラーレン分散体が室温で固体の場合は、加熱により溶融状態となることが好ましく、加熱温度は溶融温度より高くすることが好ましい。
 混合物の加熱温度は、100℃以上250℃以下であることが好ましく、100℃以上150℃以下であることがより好ましく、120℃以上150℃以下であることがさらに好ましい。
Further, when the fullerene dispersion is solid at room temperature, it is preferable that the fullerene dispersion is in a molten state by heating, and the heating temperature is preferably higher than the melting temperature.
The heating temperature of the mixture is preferably 100°C or higher and 250°C or lower, more preferably 100°C or higher and 150°C or lower, and further preferably 120°C or higher and 150°C or lower.
 フラーレン分散体の加熱温度が低い程、加熱時間が長くなる。
 加熱温度が100℃以上であれば、樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性の向上が見られる。工業的に樹脂添加組成物を製造する場合には、フラーレン分散体の加熱温度は、100℃以上であることがより好ましく、120℃以上であることがさらに好ましい。
 加熱温度が高くなる程、フラーレン分散体の熱処理が早く進むため、加熱時間が短くなる。
The lower the heating temperature of the fullerene dispersion, the longer the heating time.
When the heating temperature is 100° C. or higher, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition are improved. In the case of industrially producing the resin-added composition, the heating temperature of the fullerene dispersion is more preferably 100°C or higher, further preferably 120°C or higher.
The higher the heating temperature, the faster the heat treatment of the fullerene dispersion, and the shorter the heating time.
 フラーレン分散体中の酸素濃度が高い程、フラーレン分散体の熱処理において、媒体Aの熱劣化が進行するため、樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性が向上し難い。フラーレン分散体中の酸素濃度が高いと、フラーレン分散体の熱処理において、媒体Aが酸化により劣化する。これにより、媒体Aが着色したり、媒体Aの粘度が上昇あるいは低下したり、揮発成分が増えて揮発性が増すなどして樹脂の耐熱性、表面平滑性、力学特性、及び耐電圧性が低下したりすることがある。 The higher the oxygen concentration in the fullerene dispersion, the more the heat deterioration of the medium A progresses in the heat treatment of the fullerene dispersion, so that the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition are improved. hard. When the oxygen concentration in the fullerene dispersion is high, the medium A is deteriorated by oxidation during the heat treatment of the fullerene dispersion. As a result, the medium A is colored, the viscosity of the medium A is increased or decreased, the volatile component is increased, and the volatility is increased, so that the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin are reduced. It may decrease.
 なお、フラーレン分散体が10分以上大気に触れると、フラーレン分散体中の酸素濃度が、大気との平衡状態の濃度に近くなる。このようなフラーレン分散体を熱処理すると、媒体Aの酸化に起因する劣化が生じるため、樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性が低下する。すなわち、フラーレン分散体中の酸素濃度が低い程、媒体Aの熱劣化が抑制され、樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性が向上する。フラーレン分散体中の酸素の濃度は、大気中の酸素濃度よりも低いことが好ましく、大気中の酸素濃度の10分の1以下であることがより好ましい。具体的には、フラーレン分散体中の酸素濃度を、10質量ppm以下とすることが好ましく、5質量ppm以下とすることがより好ましく、1質量ppm以下とすることがさらに好ましい。 Note that if the fullerene dispersion is exposed to the atmosphere for 10 minutes or longer, the oxygen concentration in the fullerene dispersion will be close to the equilibrium concentration with the atmosphere. When such a fullerene dispersion is heat-treated, it deteriorates due to the oxidation of the medium A, so that the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition deteriorate. That is, as the oxygen concentration in the fullerene dispersion is lower, the heat deterioration of the medium A is suppressed, and the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition are improved. The oxygen concentration in the fullerene dispersion is preferably lower than the oxygen concentration in the atmosphere, and more preferably 1/10 or less of the oxygen concentration in the atmosphere. Specifically, the oxygen concentration in the fullerene dispersion is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, and further preferably 1 mass ppm or less.
 フラーレン分散体中の酸素濃度は、溶存酸素計を用いて測定することができる。なお、酸素濃度が低い場合には、工業的には、酸素濃度を正確に測定することが難しいため、製造条件を調整することにより、フラーレン分散体中の酸素濃度を所定の範囲とする。 The oxygen concentration in the fullerene dispersion can be measured using a dissolved oxygen meter. If the oxygen concentration is low, it is industrially difficult to accurately measure the oxygen concentration. Therefore, the oxygen concentration in the fullerene dispersion is adjusted to a predetermined range by adjusting the production conditions.
 第二工程では、熱処理後に得られる樹脂添加組成物におけるフラーレンの濃度は、熱処理前のフラーレン分散体におけるフラーレンの濃度よりも低くなる。
 このように濃度が低下するのは、媒体Aに含まれる分子を構成する化学結合が徐々に開裂し、開裂した分子がフラーレンに付加することでフラーレン分子がフラーレン付加体へと変化するためと考えられる。前記反応生成物が生じるため、得られる樹脂添加組成物は、耐熱性、表面平滑性、力学特性及び耐電圧性を向上すると推定される。
In the second step, the concentration of fullerene in the resin-added composition obtained after the heat treatment becomes lower than the concentration of fullerene in the fullerene dispersion before the heat treatment.
It is considered that the reason why the concentration is decreased is that the chemical bonds constituting the molecules contained in the medium A are gradually cleaved and the cleaved molecules are added to the fullerene to change the fullerene molecule into a fullerene adduct. To be Since the reaction product is generated, it is estimated that the obtained resin additive composition has improved heat resistance, surface smoothness, mechanical properties and withstand voltage.
 熱処理前のフラーレン分散体及び熱処理直後の樹脂添加組成物におけるフラーレンの濃度は、実施例に記載の高速液体クロマトグラフィー(High Performance Liquid Chromatography、HPLC)を用いた手法により測定することができる。 The fullerene concentration in the fullerene dispersion before heat treatment and in the resin additive composition immediately after heat treatment can be measured by a method using high performance liquid chromatography (High Performance Liquid Chromatography, HPLC) described in Examples.
 フラーレン分散体の熱処理によるフラーレンの消失量は、熱処理前後のフラーレンの濃度の差、すなわち、熱処理前後のフラーレンの濃度差=[熱処理前のフラーレン濃度]-[熱処理後のフラーレン濃度]から算出することができる。 The amount of fullerene lost by heat treatment of the fullerene dispersion should be calculated from the difference in fullerene concentration before and after heat treatment, that is, the difference in fullerene concentration before and after heat treatment = [fullerene concentration before heat treatment]-[fullerene concentration after heat treatment] You can
 前記濃度差は、5質量ppm以上であることが好ましく、10質量ppm以上であることがより好ましく、50質量ppm以上であることがさらに好ましい。つまり、フラーレンの含有量が50質量ppm以下のフラーレン分散体では、熱処理によりフラーレンが検出されなくなる場合がある。また、フラーレンの含有量が50質量ppmを超える場合でも、熱処理を継続することにより、フラーレンの消失量が50質量ppmを超えるため、フラーレンが検出できなくなる場合がある。
 フラーレンの消失量が5ppm以上であれば、樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる。
The concentration difference is preferably 5 mass ppm or more, more preferably 10 mass ppm or more, and further preferably 50 mass ppm or more. That is, in a fullerene dispersion having a fullerene content of 50 mass ppm or less, fullerene may not be detected by heat treatment. Further, even when the content of fullerene exceeds 50 mass ppm, the amount of fullerene disappeared exceeds 50 mass ppm by continuing the heat treatment, so that fullerene may not be detected.
When the disappearance amount of fullerene is 5 ppm or more, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin additive composition can be improved.
 フラーレンの消失量が500質量ppmを超えた場合、あるいは、それ以下であっても、既に消失するフラーレンが残存しない状態に達した後も熱処理を継続することができる。しかしながら、熱処理時間の割りに、得られる樹脂添加組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性がさらに向上し難くなる。そのため、フラーレンの消失量は、500質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましく、50質量ppm以下であることがさらに好ましい。 When the amount of disappeared fullerenes exceeds 500 mass ppm, or even when the amount is less than that, the heat treatment can be continued even after reaching the state where the already disappeared fullerenes do not remain. However, it is difficult to further improve the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained resin additive composition for the heat treatment time. Therefore, the amount of fullerene disappeared is preferably 500 mass ppm or less, more preferably 100 mass ppm or less, and further preferably 50 mass ppm or less.
 フラーレン分散体の熱処理条件を決定するためには、以下の方法でグラフ(検量線)を作成する。後述する実施例1における装置を用いて、一定時間毎に、加熱状態にあるフラーレン分散体を採取する。そして、その溶液に含まれるフラーレンの濃度を定量して、フラーレン分散体におけるフラーレンの濃度と混合物の加熱時間の関係を示すグラフ(検量線)を作成する。このグラフから、フラーレン分散体の加熱温度と加熱時間を決定することができる。なお、前記決定される加熱時間が、操作のしやすさなどの観点から所望するより短い場合はより低い加熱温度で、逆に、所望するより長い場合はより高い加熱温度で、再度検量線を作成して加熱温度と加熱時間を決定してもよい。 ▽To determine the heat treatment conditions for fullerene dispersion, create a graph (calibration curve) by the following method. The fullerene dispersion in a heated state is sampled at regular intervals using the device in Example 1 described later. Then, the concentration of fullerene contained in the solution is quantified, and a graph (calibration curve) showing the relationship between the concentration of fullerene in the fullerene dispersion and the heating time of the mixture is prepared. From this graph, the heating temperature and heating time of the fullerene dispersion can be determined. In addition, the heating time determined is lower heating temperature when shorter than desired from the viewpoint of easiness of operation and the like, conversely, when higher than desired, higher heating temperature, and re-calibrated. It may be created and the heating temperature and heating time may be determined.
(第三工程)
 第一工程で得られた混合物には、不溶成分として、原料のフラーレン由来の不純物であるフラーレンの凝集物、未溶解のフラーレン、媒体Aの不純物、製造過程で混入した粒子等が含まれる場合がある。そのため、その混合物をそのまま用いると、樹脂添加組成物と接触している摺動部等が摩耗する等の不具合が生じることがある。そこで、第一工程の後に、不溶成分を除去する第三工程(フィルタリング)を設けることができる。
(Third step)
The mixture obtained in the first step may contain, as insoluble components, agglomerates of fullerenes that are impurities derived from the raw material fullerene, undissolved fullerenes, impurities of medium A, particles mixed in the manufacturing process, and the like. is there. Therefore, if the mixture is used as it is, problems such as abrasion of the sliding portion in contact with the resin additive composition may occur. Therefore, a third step (filtering) for removing insoluble components can be provided after the first step.
 第三工程としては、例えば、(1)メンブランフィルターを用いた除去工程、(2)遠心分離器を用いた除去工程、(3)メンブランフィルターと遠心分離器を組み合わせて用いる除去工程等が挙げられる。これらの除去工程の中でも、濾過時間の点から、少量の樹脂添加組成物を得る場合は(1)メンブランフィルターを用いた除去工程が好ましく、大量の樹脂添加組成物を得る場合は(2)遠心分離器を用いた除去工程が好ましい。 Examples of the third step include (1) a removal step using a membrane filter, (2) a removal step using a centrifuge, and (3) a removal step using a membrane filter in combination with a centrifuge. .. Among these removal steps, from the viewpoint of filtration time, (1) the removal step using a membrane filter is preferable when obtaining a small amount of the resin additive composition, and (2) centrifugation when obtaining a large amount of the resin additive composition. A removal step using a separator is preferred.
 (1)メンブランフィルターを用いた除去工程では、例えば、第一工程で得られた媒体Aとフラーレンの混合物を、目の小さいメッシュのフィルター(例えば、0.1μm~1μmメッシュのメンブランフィルター)を用いて濾過し、フラーレン分散体として回収する。濾過時間の短縮を図るには、濾過時に減圧することが好ましい。
 (2)遠心分離器を用いた除去工程では、例えば、第一工程で得られた媒体Aとフラーレンの混合物に対して遠心分離処理を施し、上澄みをフラーレン分散体として回収する。
(1) In the removal step using a membrane filter, for example, the mixture of medium A and fullerene obtained in the first step is used with a mesh filter having a small mesh (for example, a membrane filter having a mesh size of 0.1 μm to 1 μm). Filtered and collected as a fullerene dispersion. In order to shorten the filtration time, it is preferable to reduce the pressure during filtration.
(2) In the removal step using a centrifuge, for example, the mixture of the medium A and fullerene obtained in the first step is subjected to centrifugal separation treatment, and the supernatant is recovered as a fullerene dispersion.
(第四工程)
 第四工程では、第三工程の後に、樹脂添加組成物に含まれる有機溶剤等の揮発分を除去する。
 揮発分を除去する方法としては、例えば、加熱または減圧下で加熱して揮発分を蒸発させる方法等が挙げられる。
 第四工程は、第三工程に連続して行うことができる。例えば、第三工程の第一方法~第三方法では、加熱を終えた後に、真空ポンプ等を用いて、容器の圧力を大気圧より小さくすることで、樹脂添加組成物に含まれる有機溶剤等の揮発分を除去することができる。
(Fourth step)
In the fourth step, after the third step, the volatile components such as the organic solvent contained in the resin additive composition are removed.
Examples of the method of removing the volatile matter include a method of heating or heating under reduced pressure to evaporate the volatile matter.
The fourth step can be performed continuously with the third step. For example, in the first method to the third method of the third step, after the heating is completed, the pressure of the container is made lower than the atmospheric pressure by using a vacuum pump or the like, so that the organic solvent or the like contained in the resin additive composition is The volatile components of can be removed.
 本実施形態の樹脂添加組成物の製造方法によれば、耐熱性、表面平滑性、力学特性、及び耐電圧性を向上することができる樹脂添加組成物が得られる。 According to the method for producing a resin additive composition of this embodiment, a resin additive composition capable of improving heat resistance, surface smoothness, mechanical properties, and withstand voltage can be obtained.
[樹脂組成物、及びその製造方法]
 本実施形態の樹脂組成物は、媒体Bと前記樹脂添加組成物とを含み、媒体Bと上記の樹脂添加組成物とを混合することで得られる。 本実施形態の樹脂組成物に含まれる媒体Bは、熱硬化性樹脂の原料、熱硬化性樹脂の硬化剤または熱可塑性樹脂である。より具体的には、樹脂添加組成物に用いる媒体Aが熱可塑性樹脂又は熱可塑性樹脂の原料である場合、媒体Bは熱可塑性樹脂である。また、樹脂添加組成物に用いる媒体Aが熱硬化性樹脂の原料である場合、媒体Bは、重合性モノマー、重合性オリゴマー、熱硬化促進剤、熱硬化性樹脂の硬化剤及びこれらの混合物である。
[Resin composition and method for producing the same]
The resin composition of the present embodiment contains the medium B and the resin additive composition, and is obtained by mixing the medium B and the resin additive composition described above. The medium B contained in the resin composition of the present embodiment is a raw material of thermosetting resin, a curing agent of thermosetting resin, or a thermoplastic resin. More specifically, when the medium A used in the resin additive composition is a thermoplastic resin or a raw material for the thermoplastic resin, the medium B is a thermoplastic resin. When the medium A used in the resin additive composition is a raw material of a thermosetting resin, the medium B is a polymerizable monomer, a polymerizable oligomer, a thermosetting accelerator, a thermosetting resin curing agent, or a mixture thereof. is there.
 媒体Bと上記の樹脂添加組成物とを混合する方法としては、特限定されず、熱混練法等の方法が用いられる。 The method for mixing the medium B and the above resin-added composition is not particularly limited, and a method such as a heat kneading method may be used.
 熱硬化性樹脂を用いる場合の硬化剤は、通常用いられるものが制限なく使用できる。例えば、脂肪族ポリアミン系としてトリエチレンテトラミン、芳香族ポリアミン系としてジアミノジフェニルメタン、酸無水物系として4-メチルヘキサヒドロフタル酸無水物、フェノールノボラック系としてフェノールノボラック樹脂、ジシアンジアミド系としてジシアンジアミド等が挙げられる。 As for the curing agent when the thermosetting resin is used, those usually used can be used without limitation. Examples include aliphatic polyamine-based triethylenetetramine, aromatic polyamine-based diaminodiphenylmethane, acid anhydride-based 4-methylhexahydrophthalic anhydride, phenol novolac-based phenol novolac resin, and dicyandiamide-based dicyandiamide. ..
 硬化性樹脂を用いる場合の硬化促進剤は、通常用いられるものが制限なく使用できる。例えば、アミン系としてトリスジメチルアミノメチルフェノール、イミダゾール系として1-シアノエチル-2-エチル-4-メチルイミダゾール、ホスフィン系としてトリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられる。 When a curable resin is used, the curing accelerator that is normally used can be used without limitation. Examples include amine-based trisdimethylaminomethylphenol, imidazole-based 1-cyanoethyl-2-ethyl-4-methylimidazole, phosphine-based triphenylphosphine, tetraphenylphosphonium/tetraphenylborate, and the like.
 本実施形態の樹脂組成物の製造方法によれば、耐熱性、表面平滑性、力学特性、及び耐電圧性に優れる樹脂組成物が得られる。
[樹脂組成物の硬化物]
 本実施形態の樹脂組成物に含まれる媒体Bは、熱硬化性樹脂の原料である場合、加熱硬化処理により樹脂組成物の硬化物が得られる。加熱硬化処理の条件は特に限定されなく、例えば、大気雰囲気で、50~150℃、2~20時間で加熱する方法が挙げられる。硬化物の形状は特に限定されなく、例えば、シート状が挙げられる。
According to the method for producing a resin composition of this embodiment, a resin composition having excellent heat resistance, surface smoothness, mechanical properties, and withstand voltage can be obtained.
[Cured product of resin composition]
When the medium B contained in the resin composition of the present embodiment is a raw material of a thermosetting resin, a cured product of the resin composition is obtained by heat curing treatment. The conditions of the heat curing treatment are not particularly limited, and examples thereof include a method of heating at 50 to 150° C. for 2 to 20 hours in an air atmosphere. The shape of the cured product is not particularly limited, and examples thereof include a sheet shape.
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Can be modified and changed.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[実施例1]
(樹脂添加組成物の調製) 
 <第一工程>
 媒体Aとして、エポキシ樹脂A(ビスフェノールF(三菱化学社製、JER806)10gに、有機溶剤としてトルエン40gを混合し、室温で1時間攪拌した。次に、得られた溶液と、フラーレンであるナノム(登録商標)ミックス(フロンティアカーボン社製、C6061質量%、C7028質量%、C70より大きい高次のフラーレン11質量%を含有する混合物)0.05gとを混合し室温で6時間攪拌したことで、フラーレン分散体を得た。
 このフラーレン分散体には、C60が600質量ppm、C70が250質量ppm含まれることを、HPLC法で確認した。
[Example 1]
(Preparation of resin additive composition)
<First step>
As a medium A, 10 g of an epoxy resin A (bisphenol F (manufactured by Mitsubishi Chemical Co., JER806) was mixed with 40 g of toluene as an organic solvent, and the mixture was stirred at room temperature for 1 hour. Next, the obtained solution and fullerene, Nanom (Registered trademark) Mix (manufactured by Frontier Carbon Co., C 60 61% by mass, C 70 28% by mass, mixture containing 11% by mass of higher fullerenes larger than C 70 ) 0.05 g and mixed at room temperature for 6 hours A fullerene dispersion was obtained by stirring.
It was confirmed by the HPLC method that this fullerene dispersion contained 600 mass ppm of C 60 and 250 mass ppm of C 70 .
 <第二工程>
 このフラーレン分散体を耐圧ステンレス製の容器内に移した。この容器の蓋の部分に2つのガス注入口を取り付けた。この容器の容量は250mLであった。この容器の内部を、ガス注入口の一方から窒素ガスを流し、もう一方から容器内のガスを排気するようにして、10分間放置した。その後に、窒素注入を中止して、密栓した。この状態で、容器を140℃のオイルバスにつけて放置した。
 ここで、フラーレン分散体に溶存する酸素濃度を次の手順で測定した。
 まず、あらかじめ、n-ドデカン(和光純薬工業株式会社製)100mLを250mLビーカーに取り出し、ここに10分間空気でバブリングした。
 次に、溶存酸素計(製品名:B-506、飯島電子工業株式会社製)を用いてこの溶液の酸素濃度を基準(飽和度100%)に設定した。
 次に、上記ステンレス容器内のフラーレン分散体の飽和酸素濃度を測定した。その結果、窒素ガスを流す前は、飽和酸素濃度は150%、流した後は7%であった。
 次に、ドデカンの空気中での飽和酸素濃度を73質量ppmとし、この数値と先の150%及び7%とから、フラーレン分散体の溶存酸素濃度を110質量ppmと5ppmとそれぞれ算出した。
 反応容器内のフラーレン分散体は、2時間おきに0.1mLを抜き取り、これに含まれるC60とC70の量をHPLCにより定量し、C60が60ppm、C70が20ppmにまで減少した時点でオイルバスの温度を100℃に下げた。
 フラーレン分散体には、熱処理前にC60が600質量ppm、C70が250質量ppm含まれ、熱処理後にC60が60質量ppm、C70が20質量ppmに減少した。これは加熱によりエポキシ樹脂の一部が開裂し、これがフラーレンに付加したためにフラーレンの量が1/10以下に減少したと推定される。
<Second step>
This fullerene dispersion was transferred into a pressure-resistant stainless steel container. Two gas inlets were attached to the lid of this container. The volume of this container was 250 mL. The inside of this container was allowed to stand for 10 minutes by flowing nitrogen gas from one of the gas inlets and exhausting the gas in the container from the other. After that, the nitrogen injection was stopped and the vessel was sealed. In this state, the container was put in an oil bath at 140° C. and left.
Here, the oxygen concentration dissolved in the fullerene dispersion was measured by the following procedure.
First, 100 mL of n-dodecane (manufactured by Wako Pure Chemical Industries, Ltd.) was taken out into a 250 mL beaker, and air was bubbled therein for 10 minutes.
Next, a dissolved oxygen meter (product name: B-506, manufactured by Iijima Electronics Industry Co., Ltd.) was used to set the oxygen concentration of this solution as a standard (saturation degree 100%).
Next, the saturated oxygen concentration of the fullerene dispersion in the stainless container was measured. As a result, the saturated oxygen concentration was 150% before flowing the nitrogen gas and 7% after flowing the nitrogen gas.
Next, the saturated oxygen concentration of dodecane in the air was set to 73 mass ppm, and the dissolved oxygen concentration of the fullerene dispersion was calculated to be 110 mass ppm and 5 ppm, respectively, from this value and the above 150% and 7%.
0.1 mL of the fullerene dispersion in the reaction vessel was withdrawn every 2 hours, and the amounts of C 60 and C 70 contained in this were quantified by HPLC. When C 60 was reduced to 60 ppm and C 70 was reduced to 20 ppm Then the temperature of the oil bath was lowered to 100°C.
Fullerene dispersion, C 60 600 ppm by weight before the heat treatment, C 70 is contained 250 ppm by weight, C 60 60 ppm by weight after the heat treatment, C 70 is reduced to 20 ppm by weight. It is presumed that the amount of fullerene was reduced to 1/10 or less because a part of the epoxy resin was cleaved by heating and this was added to the fullerene.
 第四工程として、後に、容器のガス注入口の一方に真空ポンプを接続して、容器内部を減圧状態にした。この状態で1時間放置したことで、容器内部のトルエン等の揮発性成分を除去した。容器内部から高粘性の液体を取り出し、樹脂添加剤組成物を得た。得られた樹脂添加剤組成物の質量は、10gであり、有機溶剤のトルエンが除去された状態であった。 As the fourth step, a vacuum pump was later connected to one of the gas inlets of the container to reduce the pressure inside the container. By leaving it in this state for 1 hour, volatile components such as toluene inside the container were removed. A highly viscous liquid was taken out from the inside of the container to obtain a resin additive composition. The mass of the obtained resin additive composition was 10 g, and the organic solvent toluene was removed.
(樹脂組成物の作製)
 前記樹脂添加剤組成物と、媒体Bとして、エポキシ樹脂の硬化剤であるHN-2200(日立化成株式会社製)8g、及び開始硬化促進剤である1-シアノエチル-2-エチル-4-メチルイミダゾール(和光純薬工業株式会社製)1gを混合した。本実施例の樹脂組成物が得られた。
本実施例の樹脂組成物を1mm厚のシートが作製できる枠に流し入れて、大気雰囲気で70℃、12時間の加熱をし、硬化させて、シート状の樹脂組成物の硬化物を作製した。
(Preparation of resin composition)
The resin additive composition, 8 g of HN-2200 (manufactured by Hitachi Chemical Co., Ltd.), which is a curing agent for epoxy resin, and 1-cyanoethyl-2-ethyl-4-methylimidazole, which is an initiation curing accelerator, as medium B. 1 g (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed. The resin composition of this example was obtained.
The resin composition of this example was poured into a frame capable of producing a sheet having a thickness of 1 mm, heated at 70° C. for 12 hours in an air atmosphere, and cured to prepare a sheet-shaped cured product of the resin composition.
(耐電圧の評価)
 絶縁破壊試験装置YST-243-100RH0(ヤマヨ試験器株式会社製)を用い、JIS C2110-1に準拠し、20秒段階法で耐電圧を測定した。
 まず、シートを室温のシリコン油浴中に入れて、シートの厚み方向から上下に直径25mmの電極で挟みだ。次に、所定の電圧で20秒間絶縁破壊されなければ、昇圧ステップを繰り返し、絶縁破壊される前の電圧に設定した電圧を耐電圧とした。なお、20kVまでは1kVずつ昇圧し、20kV以降は2kVずつ昇圧した。
 得られた耐電圧を表1に示す。
(Evaluation of withstand voltage)
Using a dielectric breakdown tester YST-243-100RH0 (manufactured by Yamayo Tester Co., Ltd.), the withstand voltage was measured by the 20-second step method according to JIS C2110-1.
First, the sheet was put in a silicone oil bath at room temperature, and sandwiched between electrodes having a diameter of 25 mm in the thickness direction of the sheet. Next, if dielectric breakdown was not performed for 20 seconds at a predetermined voltage, the step of boosting was repeated, and the voltage set to the voltage before the dielectric breakdown was taken as the withstand voltage. The voltage was increased by 1 kV up to 20 kV, and increased by 2 kV after 20 kV.
The obtained withstand voltage is shown in Table 1.
(耐熱性の評価)
 シートの耐熱性は、熱天秤(島津製作所株式会社製、DTG-60A)を用いて、熱重量変化法により測定した。
 まず、シートから0.5ミリメートル角の樹脂片を切り出し天秤上に置いた。次に、天秤を室温から500℃までに毎分10℃で温度を高めていき、その時の樹脂片の重量変化を測定した。樹脂片は加熱により、空気中の酸素で燃焼することで、重量が減少した。樹脂の重量が10%低下した時点の温度を耐熱温度とした。
 得られた耐熱温度を表1に示す。
(Evaluation of heat resistance)
The heat resistance of the sheet was measured by a thermogravimetric change method using a thermobalance (DTG-60A manufactured by Shimadzu Corporation).
First, a 0.5 mm square piece of resin was cut out from the sheet and placed on a balance. Next, the temperature of the balance was raised from room temperature to 500° C. at 10° C./min, and the weight change of the resin piece at that time was measured. When the resin piece was heated, it burned with oxygen in the air to reduce the weight. The temperature at which the weight of the resin decreased by 10% was defined as the heat resistant temperature.
The heat resistant temperature obtained is shown in Table 1.
(機械強度の評価)
 シートの強度は、引っ張り試験装置(エー・アンド・ティー株式会社製、RTF-1210)を用いて、引っ張り試験法により測定した。
 まず、シートから幅10ミリメートル、長さ100ミリメートルの樹脂片を切り出し、これを引っ張り試験装置にセットした。次に、毎分1ミリメートルで引っ張り、樹脂片が破断するまでの間、引っ張り強度を測定した。引っ張り強度の最大値を引っ張り強度とした。
 得られた引っ張り強度を表1に示す。
(Evaluation of mechanical strength)
The strength of the sheet was measured by a tensile test method using a tensile test device (RTF-1210 manufactured by A&T Co., Ltd.).
First, a resin piece having a width of 10 mm and a length of 100 mm was cut out from a sheet and set in a tensile tester. Next, it was pulled at 1 mm/min, and the tensile strength was measured until the resin piece broke. The maximum value of tensile strength was defined as tensile strength.
The obtained tensile strength is shown in Table 1.
(表面平滑性の評価)
 シートの表面平滑性は、表面粗さ計(ブルカー株式会社製、DektakXT)を用いて、算術平均高さ(Ra)により測定した。
 まず、シートから幅10ミリメートル、長さ10ミリメートルの樹脂片を切り出し、これを表面粗さ計にセットした。次に、5mmの長さを測定し、算術平均高さ(Ra)を算出した。
 得られた表面平滑性を表1に示す。
(Evaluation of surface smoothness)
The surface smoothness of the sheet was measured by an arithmetic mean height (Ra) using a surface roughness meter (DektakXT, manufactured by Bruker Co., Ltd.).
First, a resin piece having a width of 10 mm and a length of 10 mm was cut out from the sheet and set in a surface roughness meter. Next, the length of 5 mm was measured and the arithmetic mean height (Ra) was calculated.
The obtained surface smoothness is shown in Table 1.
(HPLCによるフラーレン定量方法)
 フラーレンの濃度の測定は、以下の測定条件において、高速液体クロマトグラフを用い、樹脂添加組成物に含まれるフラーレンの量を定量した。
 装置:アジレント・テクノロジー株式会社製 1200シリーズ
 カラム:株式会社ワイエムシィ製カラム YMC-Pack ODS-AM(150mm×4.6)
 展開溶媒:トルエンとメタノールの1:1(体積比)混合物
 検出:吸光度(波長309nm)。
(Method for quantifying fullerene by HPLC)
For the measurement of the fullerene concentration, the amount of fullerene contained in the resin additive composition was quantified using a high performance liquid chromatograph under the following measurement conditions.
Device: 1200 series manufactured by Agilent Technology Co., Ltd. Column: Column manufactured by YMC Co., Ltd. YMC-Pack ODS-AM (150 mm x 4.6)
Developing solvent: 1:1 (volume ratio) mixture of toluene and methanol Detection: Absorbance (wavelength 309 nm).
[実施例2]
 実施例1で、フラーレン分散体を熱処理する工程で窒素ガスを流す工程を省いた以外は実施例1の操作で樹脂添加組成物を作製した。得られた樹脂添加組成物を用いて、実施例1と同様な方法で樹脂組成物を作製し、シート状樹脂組成物の硬化物を作成した。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
[Example 2]
A resin additive composition was prepared by the procedure of Example 1 except that the step of flowing nitrogen gas was omitted in the step of heat-treating the fullerene dispersion. Using the obtained resin additive composition, a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
[比較例1]
 比較サンプルとして、フラーレン分散体を熱処理する工程を省いた以外は実施例1の操作で樹脂添加組成物を作製した。得られた樹脂添加組成物を用いて、実施例1と同様な方法で樹脂組成物を作製し、シート状樹脂組成物の硬化物を作成した。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
 表1の結果から、実施例1及び実施例2と、比較例1とを比較した。、実施例1及び実施例2で作製した樹脂組成物は、比較例1で作製した樹脂組成物より、耐熱性、表面平滑性、力学特性、及び耐電圧性が向上した。実施例1及び実施例2において、フラーレンを樹脂添加剤組成物に加工した後に、樹脂組成物を作製とした。これに対して、比較例1において、フラーレンを樹脂添加剤組成物に加工することなく、樹脂組成物を作製した。
 実施例2を実施例1と比較すると、熱処理時に窒素雰囲気とすることにより、窒素雰囲気とすることなく作製した樹脂組成物より、耐熱性、表面平滑性、力学特性、及び耐電圧性が向上した。
 実施例1及び実施例2の樹脂添加組成物には、媒体Aに含まれるエポキシモノマー分子が加熱により開裂し、これがフラーレンに付加したために、フラーレンがエポキシ樹脂に親和性が高まった結果、樹脂組成物のフラーレン溶解性が向上したためと考えられる。
[Comparative Example 1]
As a comparative sample, a resin additive composition was prepared by the procedure of Example 1 except that the step of heat-treating the fullerene dispersion was omitted. Using the obtained resin additive composition, a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
From the results in Table 1, Example 1 and Example 2 were compared with Comparative Example 1. The resin compositions prepared in Examples 1 and 2 were improved in heat resistance, surface smoothness, mechanical properties, and withstand voltage as compared with the resin compositions prepared in Comparative Example 1. In Examples 1 and 2, fullerene was processed into a resin additive composition, and then a resin composition was prepared. On the other hand, in Comparative Example 1, the resin composition was prepared without processing the fullerene into the resin additive composition.
Comparing Example 2 with Example 1, heat resistance, surface smoothness, mechanical properties, and withstand voltage were improved by applying a nitrogen atmosphere during the heat treatment, compared with a resin composition produced without using a nitrogen atmosphere. ..
In the resin-added compositions of Examples 1 and 2, the epoxy monomer molecules contained in the medium A were cleaved by heating and added to the fullerenes, so that the fullerene had a higher affinity with the epoxy resin. It is considered that the fullerene solubility of the product was improved.
[実施例3]
 実施例1で、媒体Aをポリオキシエチレン(ユニスターMB-881、日油株式会社製)20gとし、トルエンを添加せずに樹脂添加組成物を得たこと;第四工程(揮発分=トルエンの除去)を行わなかったこと;及び、媒体Bとして、エポキシ樹脂B(三菱化学株式会社製、JER828)100g、硬化剤としてHN-2200(日立化成株式会社製)100g、及び開始硬化促進剤である1-シアノエチル-2-エチル-4-メチルイミダゾール(和光純薬工業株式会社製)10gを混合した物を用いること以外は、実施例1で示した方法で、樹脂組成物及びそのシート状硬化物を得た。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
[Example 3]
In Example 1, 20 g of polyoxyethylene (Unistar MB-881, manufactured by NOF CORPORATION) was used as the medium A, and a resin-added composition was obtained without adding toluene; the fourth step (volatile matter=toluene Removal) was not performed; and 100 g of epoxy resin B (manufactured by Mitsubishi Chemical Corporation, JER828) as medium B, 100 g of HN-2200 (manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, and an initiation curing accelerator. 1-Cyanoethyl-2-ethyl-4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was used, except that a mixture of 10 g was used. Got Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
[比較例2]
 比較サンプルとして、フラーレン分散体を熱処理する工程を省いた以外は実施例2の操作で樹脂添加組成物を作製した。得られた樹脂添加組成物を用いて、実施例1と同様な方法で樹脂組成物を作製し、シート状樹脂組成物の硬化物を作成した。得られたシートの耐電圧、耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
 表1の結果から、実施例3と比較例2とを比較すると、実施例3で作製した樹脂組成物は、比較例2で作製した樹脂組成物より、耐熱性、表面平滑性、力学特性、及び耐電圧性が向上した。実施例3において、フラーレンを樹脂添加剤組成物に加工した後に、樹脂組成物を作製した。これに対して、比較例2において、ラーレンを樹脂添加剤組成物に加工することなく、樹脂組成物を作製した。
 実施例3の樹脂添加組成物には、媒体Aに含まれるポリオキシエチレン分子を構成する化学結合が徐々に開裂し、これがフラーレンに付加したために、フラーレンがエポキシ樹脂に親和性が高まった結果、樹脂組成物のフラーレン溶解性が向上したためと考えられる。
[Comparative example 2]
As a comparative sample, a resin additive composition was prepared by the procedure of Example 2 except that the step of heat-treating the fullerene dispersion was omitted. Using the obtained resin additive composition, a resin composition was prepared in the same manner as in Example 1 to prepare a cured product of the sheet-shaped resin composition. Table 1 shows the withstand voltage, heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
Comparing Example 3 and Comparative Example 2 from the results of Table 1, the resin composition produced in Example 3 has higher heat resistance, surface smoothness, and mechanical properties than the resin composition produced in Comparative Example 2. And the withstand voltage was improved. In Example 3, a resin composition was prepared after processing the fullerene into a resin additive composition. On the other hand, in Comparative Example 2, a resin composition was prepared without processing laren into a resin additive composition.
In the resin additive composition of Example 3, the chemical bond constituting the polyoxyethylene molecule contained in the medium A was gradually cleaved and added to the fullerene, so that the fullerene had an increased affinity for the epoxy resin, It is considered that the fullerene solubility of the resin composition was improved.
[実施例4]
 実施例1で、媒体Aをエポキシ樹脂C(共栄社化学株式会社製、ネオペンチルグリコールジグリシジルエーテル、エポライト1500NP)5gと溶剤としてキシレン45gを用いて樹脂添加組成物を得たこと;および、媒体Bとして、エポキシ樹脂Cの量を5gとしたこと以外は、実施例1で示した方法で、樹脂組成物及びそのシート状硬化物を得た。樹脂組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
[Example 4]
In Example 1, a resin additive composition was obtained by using 5 g of the medium A as the epoxy resin C (manufactured by Kyoeisha Chemical Co., Ltd., neopentyl glycol diglycidyl ether, Eporite 1500NP) and 45 g of xylene as the solvent; and the medium B. As a result, a resin composition and a sheet-shaped cured product thereof were obtained by the method described in Example 1 except that the amount of the epoxy resin C was 5 g. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin composition.
[比較例3]
 比較サンプルとして、フラーレン分散体を熱処理する工程を省いた以外は実施例3の操作で樹脂組成物及びそのシート状硬化物を作製した。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
 表1の結果から、実施例4と比較例3とを比較すると、実施例4で作製した樹脂組成物は、比較例3で作製した樹脂組成物より、耐熱性、表面平滑性、力学特性、及び耐電圧性が向上した。実施例4において、フラーレンを樹脂添加剤組成物に加工した後に、樹脂組成物を作製した。これに対して、比較例3において、フラーレンを樹脂添加剤組成物に加工することなく、樹脂組成物を作製した。
 実施例4の樹脂添加組成物には、媒体Aに含まれるネオペンチルグリコールジグリシジルエーテル分子を構成する化学結合が徐々に開裂し、これがフラーレンに付加した。そのために、フラーレンがエポキシ樹脂に親和性が高まった。その結果、樹脂組成物のフラーレンの溶解性が向上したためと考えられる。
[Comparative Example 3]
As a comparative sample, a resin composition and a sheet-shaped cured product thereof were produced by the procedure of Example 3 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
Comparing Example 4 and Comparative Example 3 from the results of Table 1, the resin composition produced in Example 4 has higher heat resistance, surface smoothness, and mechanical properties than the resin composition produced in Comparative Example 3. And the withstand voltage was improved. In Example 4, the resin composition was prepared after processing the fullerene into the resin additive composition. On the other hand, in Comparative Example 3, the resin composition was prepared without processing the fullerene into the resin additive composition.
In the resin-added composition of Example 4, the chemical bond constituting the neopentyl glycol diglycidyl ether molecule contained in the medium A was gradually cleaved and added to the fullerene. Therefore, the fullerene has increased affinity with the epoxy resin. As a result, it is considered that the solubility of fullerene in the resin composition was improved.
[実施例5]
(熱可塑性樹脂)
 媒体Aをポリメタクリル酸メチル(東京化成株式会社製)75gとパラジクロロベンゼン(東京化成株式会社製)25gとしたことを除き、実施例1の操作で樹脂添加組成物を得た。
 樹脂組成物の作製は、前記樹脂添加組成物を取り出し、媒体Bとして、ポリメタクリル酸メチル(東京化成株式会社製)350gとを、二軸押出装置(株式会社東洋精機製作所製、ラボプラストミル4C150)を用いて混練した。混練条件は、小型二軸セグメント押出機(型式:2D15W)を用い、噛合型同方向回転、L/D=17(Dはスクリュー径、Lはスクリュー長さ、D=15mm)とし、140℃で混練して樹脂組成物を得た。得られた樹脂組成物を厚さ1mmのシート状に成型し、シート状硬化物を得た。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
[Example 5]
(Thermoplastic resin)
A resin additive composition was obtained by the operation of Example 1 except that the medium A was 75 g of polymethylmethacrylate (manufactured by Tokyo Kasei Co., Ltd.) and 25 g of paradichlorobenzene (manufactured by Tokyo Kasei Co., Ltd.).
The resin composition was prepared by taking out the resin additive composition, using 350 g of polymethyl methacrylate (manufactured by Tokyo Kasei Co., Ltd.) as a medium B, and using a twin-screw extruder (manufactured by Toyo Seiki Seisakusho, Labo Plastomill 4C150). ) Was used for kneading. The kneading conditions are a small twin-screw segment extruder (model: 2D15W), mesh type co-rotating, L/D=17 (D is screw diameter, L is screw length, D=15 mm), and 140° C. The resin composition was obtained by kneading. The obtained resin composition was molded into a sheet having a thickness of 1 mm to obtain a sheet-shaped cured product. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
[比較例4]
 比較サンプルとして、フラーレン分散体を熱処理する工程を省いた以外は実施例5の操作で樹脂組成物及びそのシート状硬化物を作製した。得られたシートの耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
 表1の結果から、実施例5と比較例4とを比較すると、実施例5で作製した樹脂組成物は、比較例4で作製した樹脂組成物より、表面平滑性、力学特性、及び耐電圧性が向上した。また、耐熱性はわずかに向上した。実施例5において、フラーレンを樹脂添加剤組成物に加工した後に、樹脂組成物を作製した。これに対して、比較例4において、フラーレンを樹脂添加剤組成物に加工することなく、樹脂組成物を作製した。 実施例5の樹脂添加組成物については、以下のことが考えられる。媒体Aに含まれるポリメタクリル酸メチル分子を構成する化学結合が徐々に開裂し、これがフラーレンに付加した。そのために、フラーレンがメタクリル酸メチル樹脂に親和性が高まった。その結果、樹脂組成物のフラーレン溶解性が向上した。
[Comparative Example 4]
As a comparative sample, a resin composition and a sheet-shaped cured product thereof were produced by the procedure of Example 5 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained sheet.
Comparing Example 5 and Comparative Example 4 from the results of Table 1, the resin composition produced in Example 5 has better surface smoothness, mechanical properties, and withstand voltage than the resin composition produced in Comparative Example 4. The property has improved. Also, the heat resistance was slightly improved. In Example 5, fullerene was processed into a resin additive composition, and then a resin composition was prepared. On the other hand, in Comparative Example 4, the resin composition was prepared without processing the fullerene into the resin additive composition. The following can be considered for the resin additive composition of Example 5. The chemical bond constituting the polymethylmethacrylate molecule contained in the medium A was gradually cleaved, and this was added to the fullerene. Therefore, the fullerene has increased affinity with the methyl methacrylate resin. As a result, the fullerene solubility of the resin composition was improved.
[実施例6]
(熱可塑性樹脂)  
 実施例5で、媒体Aをトリメチルベンゼン(東京化成株式会社製)10gとし、パラジクロロベンゼンを用いずに樹脂添加組成物を得たこと;および、媒体Bとして、樹脂添加剤組成物とポリメタクリル酸メチル(東京化成株式会社製)25gとしたこと以外は、実施例5で示した方法で、樹脂組成物を得た。得られた樹脂組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
[Example 6]
(Thermoplastic resin)
In Example 5, medium A was 10 g of trimethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), and a resin additive composition was obtained without using paradichlorobenzene; and, as medium B, the resin additive composition and polymethacrylic acid. A resin composition was obtained by the method described in Example 5 except that the amount of methyl (manufactured by Tokyo Kasei Co., Ltd.) was 25 g. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained resin composition.
[比較例5]
 比較サンプルとして、フラーレン分散体を熱処理する工程を省いた以外は実施例6の操作で樹脂添加剤を作製した。得られた樹脂組成物の耐熱性、表面平滑性、力学特性、及び耐電圧性を表1に示す。
 表1の結果から、実施例6と比較例5とを比較すると、実施例6で作製した樹脂組成物は、比較例5で作製した樹脂組成物より、表面平滑性、力学特性、及び耐電圧性が向上した。また、耐熱性はわずかに向上した。実施例6において、フラーレンを樹脂添加剤組成物に加工した後に、樹脂組成物を作製した。これに対して、比較例5において、フラーレンを樹脂添加剤組成物に加工することなく、樹脂組成物を作製した。
 実施例6の樹脂添加組成物には、媒体Aに含まれるトリメチルベンゼン分子を構成する化学結合が徐々に開裂し、これがフラーレンに付加した。そのために、フラーレンがメタクリル酸メチル樹脂に親和性が高まった。その結果、樹脂組成物のフラーレン溶解性が向上したためと考えられる。
[Comparative Example 5]
As a comparative sample, a resin additive was prepared by the procedure of Example 6 except that the step of heat-treating the fullerene dispersion was omitted. Table 1 shows the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the obtained resin composition.
Comparing Example 6 and Comparative Example 5 from the results of Table 1, the resin composition produced in Example 6 has more surface smoothness, mechanical properties, and withstand voltage than the resin composition produced in Comparative Example 5. The property has improved. Also, the heat resistance was slightly improved. In Example 6, a resin composition was prepared after processing the fullerene into a resin additive composition. On the other hand, in Comparative Example 5, a resin composition was prepared without processing the fullerene into the resin additive composition.
In the resin-added composition of Example 6, the chemical bond constituting the trimethylbenzene molecule contained in the medium A was gradually cleaved and added to the fullerene. Therefore, the fullerene has increased affinity with the methyl methacrylate resin. As a result, it is considered that the fullerene solubility of the resin composition was improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、媒体Aとフラーレンとを含み、熱処理されてなるフラーレン含有樹脂添加組成物により、樹脂の耐熱性、表面平滑性、力学特性、及び耐電圧性が向上することができる。 According to the present invention, the heat resistance, surface smoothness, mechanical properties, and withstand voltage of the resin can be improved by the fullerene-containing resin additive composition which contains the medium A and the fullerene and is heat-treated.

Claims (12)

  1.  媒体Aとフラーレンとを混合し、前記媒体Aと前記フラーレンを含むフラーレン分散体を得る工程と、
     前記フラーレン分散体を熱処理する工程と、を含み、
     前記媒体Aは、熱可塑性樹脂、熱可塑性樹脂の原料及び熱硬化性樹脂の原料からなる群から選択される少なくとも1種である樹脂添加組成物の製造方法。
    Mixing the medium A and the fullerene to obtain a fullerene dispersion containing the medium A and the fullerene;
    Heat-treating the fullerene dispersion,
    The said medium A is a manufacturing method of the resin additive composition which is at least 1 sort(s) selected from the group which consists of a thermoplastic resin, the raw material of a thermoplastic resin, and the raw material of a thermosetting resin.
  2.  前記フラーレン分散体を得る工程において有機溶剤を混合する請求項1に記載の樹脂添加組成物の製造方法。 The method for producing a resin additive composition according to claim 1, wherein an organic solvent is mixed in the step of obtaining the fullerene dispersion.
  3.  前記フラーレン分散体を熱処理する工程を、低酸素雰囲気下で行う請求項1または2に記載の樹脂添加組成物の製造方法。 The method for producing a resin additive composition according to claim 1 or 2, wherein the step of heat-treating the fullerene dispersion is performed in a low oxygen atmosphere.
  4.  前記フラーレン分散体中の酸素濃度を10質量ppm以下とする請求項3に記載の樹脂添加組成物の製造方法。 The method for producing a resin additive composition according to claim 3, wherein the oxygen concentration in the fullerene dispersion is 10 mass ppm or less.
  5.  前記フラーレン分散体を熱処理する工程において、
     前記フラーレン分散体の加熱温度と加熱時間を決定する工程を含み、
     前記フラーレン分散体の加熱温度と加熱時間を決定する工程は、
    加熱状態にある前記フラーレン分散体における前記フラーレンの濃度を一定時間毎に測定して、前記フラーレン分散体における前記フラーレンの濃度と前記フラーレン分散体の加熱時間の関係を示す検量線を作成する工程と、
    前記検量線に基づいて、前記フラーレン分散体の加熱温度と加熱時間を決定する工程とを含む
    請求項1~4のいずれか1項に記載の樹脂添加組成物の製造方法。
    In the step of heat-treating the fullerene dispersion,
    Including the step of determining the heating temperature and heating time of the fullerene dispersion,
    The step of determining the heating temperature and heating time of the fullerene dispersion,
    Measuring the concentration of the fullerene in the fullerene dispersion in a heated state at regular intervals, creating a calibration curve showing the relationship between the concentration of the fullerene in the fullerene dispersion and the heating time of the fullerene dispersion; ,
    The method for producing a resin additive composition according to any one of claims 1 to 4, comprising a step of determining a heating temperature and a heating time of the fullerene dispersion based on the calibration curve.
  6.  前記フラーレンが、C60、C70並びにC60及びC70を含む混合物のいずれかである請求項1~5のいずれか1項に記載の樹脂添加組成物の製造方法。 Method for producing a fullerene, C 60, C 70 and resin additive composition according to any one of claims 1 to 5 which is either a mixture containing C 60 and C 70.
  7.  前記フラーレン分散体から、不溶成分を除去する工程をさらに含む請求項1~6のいずれか1項に記載の樹脂添加組成物の製造方法。 The method for producing a resin additive composition according to any one of claims 1 to 6, further comprising a step of removing an insoluble component from the fullerene dispersion.
  8.  前記樹脂添加組成物から、揮発成分を除去する工程をさらに含む請求項1~7のいずれか1項に記載の樹脂添加組成物の製造方法。 The method for producing a resin additive composition according to any one of claims 1 to 7, further comprising a step of removing a volatile component from the resin additive composition.
  9.  請求項1~8のいずれか1項に記載の樹脂添加組成物の製造方法によって製造される樹脂添加組成物。 A resin additive composition produced by the method for producing a resin additive composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の樹脂添加組成物の製造方法により樹脂添加組成物を得る工程と、得られた樹脂添加組成物と媒体Bとを混合する工程と、を含み、
     前記媒体Bは、熱硬化性樹脂の原料、熱硬化性樹脂の硬化剤または熱可塑性樹脂である樹脂組成物の製造方法。
    A step of obtaining a resin additive composition by the method for producing a resin additive composition according to any one of claims 1 to 8, and a step of mixing the obtained resin additive composition and medium B,
    The medium B is a method for producing a resin composition, which is a raw material of a thermosetting resin, a curing agent of a thermosetting resin, or a thermoplastic resin.
  11.  請求項10に記載の樹脂組成物の製造方法によって製造される樹脂組成物。 A resin composition produced by the method for producing a resin composition according to claim 10.
  12.  前記媒体Bが、熱硬化性樹脂の原料、または熱硬化性樹脂の硬化剤である場合、前記請求項11に記載の樹脂組成物の硬化物。 The cured product of the resin composition according to claim 11, when the medium B is a raw material of a thermosetting resin or a curing agent of a thermosetting resin.
PCT/JP2019/050263 2018-12-27 2019-12-23 Resin additive composition and method for manufacturing same, and resin composition and method for manufacturing same WO2020137936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563235A JPWO2020137936A1 (en) 2018-12-27 2019-12-23 Resin-added composition and its manufacturing method, resin composition and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-246101 2018-12-27
JP2018246101 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137936A1 true WO2020137936A1 (en) 2020-07-02

Family

ID=71127326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050263 WO2020137936A1 (en) 2018-12-27 2019-12-23 Resin additive composition and method for manufacturing same, and resin composition and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2020137936A1 (en)
WO (1) WO2020137936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180201A (en) * 2019-04-24 2020-11-05 昭和電工株式会社 Resin composition containing nanodiamond and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182771A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same
JP2004331929A (en) * 2003-05-02 2004-11-25 Masao Goto Method of compounding a nanocarbon
JP2006016466A (en) * 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp Resin composition
JP2018518541A (en) * 2015-02-27 2018-07-12 ゲイツ コーポレイション Carbon nanostructure pre-blend and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182771A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same
JP2004331929A (en) * 2003-05-02 2004-11-25 Masao Goto Method of compounding a nanocarbon
JP2006016466A (en) * 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp Resin composition
JP2018518541A (en) * 2015-02-27 2018-07-12 ゲイツ コーポレイション Carbon nanostructure pre-blend and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180201A (en) * 2019-04-24 2020-11-05 昭和電工株式会社 Resin composition containing nanodiamond and method for producing the same

Also Published As

Publication number Publication date
JPWO2020137936A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
Nasti et al. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends
Che Man et al. Synthesis of polystyrene nanoparticles “armoured” with nanodimensional graphene oxide sheets by miniemulsion polymerization
JP6283441B2 (en) Fluororesin-containing thermosetting resin composition and cured product thereof
CN105829424B (en) Crosslinked polymer composition, power cable insulation and power cable
KR20130060133A (en) Graphene nano-sheets and methods for making the same
Khan et al. Reinforcement effect of acid modified nanodiamond in epoxy matrix for enhanced mechanical and electromagnetic properties
KR20110089271A (en) Carbon particles coated with polymer films, methods for their production and uses thereof
HUE030291T2 (en) Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced
WO2020137936A1 (en) Resin additive composition and method for manufacturing same, and resin composition and method for manufacturing same
Hou et al. Multifunctional POSS‐based nano‐photo‐initiator for overcoming the oxygen inhibition of photo‐polymerization and for creating self‐wrinkled patterns
Toselli et al. In situ thermal reduction of graphene oxide forming epoxy nanocomposites and their dielectric properties
Najafi et al. Preparation and characterization of poly (Ether block amide)/graphene membrane for recovery of isopropanol from aqueous solution via pervaporation
Jia et al. The effect of atmospheric‐pressure air plasma discharge power on adhesive properties of aramid fibers
Hsu et al. Physical study of room‐temperature‐cured epoxy/thermally reduced graphene oxides with various contents of oxygen‐containing groups
Fadil et al. Formation of homogeneous nanocomposite films at ambient temperature via miniemulsion polymerization using graphene oxide as surfactant
Dueramae et al. Thermal degradation mechanism of highly filled nano-SiO 2 and polybenzoxazine
KR102491306B1 (en) Polytetrafluoroethylene oil-based solvent type dispersion, epoxy resin composition containing polytetrafluoroethylene and the cured material thereof
Qiu et al. Preparation of UV-curable functionalized phosphazene-containing nanotube/polyurethane acrylate nanocomposite coatings with enhanced thermal and mechanical properties
Lim et al. Ternary Poly (styrene‐co‐acrylonitrile)/Poly (vinyl chloride) Blend Composites with Multi‐Walled Carbon Nanotubes and Enhanced Physical Characteristics
Zhao et al. The thiol group modified multi-wall carbon nanotubes to enhance the dielectric properties of polystyrene
Pełech et al. Current-voltage characteristics of the composites based on epoxy resin and carbon nanotubes
Therattil et al. Natural rubber/carbon nanotube/Ionic liquid composite membranes: Vapor permeation and gas permeability properties
JP6828110B2 (en) Method for manufacturing resin composition
CN111363330B (en) Sheet molding compound raw material, sheet molding compound product, and preparation method and application thereof
Zheng et al. Structure and properties of poly (vinyl chloride)/montmorillonite composites produced from plastisols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902622

Country of ref document: EP

Kind code of ref document: A1