HUE030291T2 - Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced - Google Patents

Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced Download PDF

Info

Publication number
HUE030291T2
HUE030291T2 HUE14744591A HUE14744591A HUE030291T2 HU E030291 T2 HUE030291 T2 HU E030291T2 HU E14744591 A HUE14744591 A HU E14744591A HU E14744591 A HUE14744591 A HU E14744591A HU E030291 T2 HUE030291 T2 HU E030291T2
Authority
HU
Hungary
Prior art keywords
masterbatch
composite material
amorphous polymer
carbon nanotubes
polymer
Prior art date
Application number
HUE14744591A
Other languages
Hungarian (hu)
Inventor
Dimitri Rousseaux
Olivier Lhost
Philippe Lodefier
Eddi Scandino
Original Assignee
Total Res & Technology Feluy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Res & Technology Feluy filed Critical Total Res & Technology Feluy
Publication of HUE030291T2 publication Critical patent/HUE030291T2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Description
Field of the invention [0001] The present invention relates to masterbatchesfor preparing conductive composite materials comprising carbon nanotubes. The present invention also relates to process for the preparation of said masterbatches. The invention also relates to process preparing composite materials comprising carbon nanotubes using said masterbatches and to the composite materials produced.
Background of the invention [0002] As electronic devices become smaller and faster, their sensitivity to electrostatic charges is increased and electronic packaging has been provided to improve electrostatically dissipative properties. Electronics packaging is designed to prevent the build-up of static electrical charges and the consecutive electrostatic discharge (ESD) which can be responsible of serious damages to sensitive electronics and result in product defects and high scrap rates.
[0003] In order to ensure ESD protection, inherently electrically insulating polymers may be rendered conductive or dissipative by incorporating conductive fillers -such as carbon black (CB)- allowing effective dissipation of static electrical charges.
[0004] Currently conductive or dissipative plastics are dominated by CB, mainly because CB is relatively cheap in comparison to other conductive fillers, such as carbon fiber, carbon nanotubes (CNT), metal fiber, metal-coated carbon fiber, and metal powder. Addition level of CB must be sufficient so that particles create a conductive pathway through the materials. In consequence, high levels of CB (15-30 %) are required to meet the requirements, which alter critical physical properties of the basic polymer such as impact strength, elongation and compound viscosity.
[0005] These properties need to be preserved when using other fillers instead of CB as conductive fillers. Nevertheless, a minimum concentration is required to obtain the desired conductivity. Since other fillers are more expensive than CB, there remains a need to provide improved conductive compositions which are electrically insulating and remain costly attractive.
[0006] Conductive compositions containing CNT are known. Production of polymer-CNT composites can be done by physically mixing the polymer powder and the CNT for example by shear mixing techniques or by grinding. However a disadvantage of these methods is that the CNT are not well dispersed in the polymer.
Summary of the invention [0007] It is therefore an object of the present invention to provide composite materials which are electrically conductive or dissipative with low content of CNT.
[0008] According to a first aspect, the invention provides a masterbatch for use in a process of preparing a composite material according to the invention. The masterbatch comprises a blend of a first amorphous polymer with carbon nanotubes, with at least 5% by weight of carbon nanotubes based on the total weight of the masterbatch as determined according to ISO 11358; and has a high load melt flow index HLMI1 of less than 40 g/10min determined at 200°C under a load of 21.6 kg according to IS01133 and wherein the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H.
[0009] In a preferred embodiment, the invention provides a masterbatch for use in a process of preparing a composite material according to the invention. The masterbatch comprises a blend of a first amorphous polymer with carbon nanotubes, from 5 % to 15% by weight of carbon nanotubes based on the total weight of the masterbatch as determined according to ISO 11358; and has a high load melt flow index HLMI1 of less than 40 g/10min determined at 200°C under a load of 21.6 kg according to IS01133 and wherein the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H.
[0010] In a preferred embodiment, the masterbatch has a surface resistivity of at most 1x102 Ohm/sq as determined according to CEI 60167.
[0011] In a preferred embodiment, the masterbatch has a high load melt flow index HLMI1 of less than 30 g/10 min, preferably less than 20 g/10 min determined at 200°C under a load of 21.6 kg according to IS01133.
[0012] In a preferred embodiment, the masterbatch further com prises from 0.01 to 4.0 by weight of one or more additive based on the total weight of the masterbatch, the one or more additive being selected from waxes, tristearin, zinc stearate, calcium stearate, magnesium stearate, erucyl amide, oleic acid amide, ethylene-acrilyc acid copolymer, ethylene vinyl acetate copolymer and cetyl trimethyl ammonium bromide.
[0013] In a preferred embodiment, the first amorphous polymer is selected from polystyrene, acrylonitrile-butadiene-styrene, polycarbonate, styrene acrylonitrile, poly(methyl methacrylate), poly(vinyl chloride), polybutadiene, polybutylene terephthalate, poly(p-phenylene oxide), polysulfone, polyethersulfone, polyethylenimine, polyphenylsulfone, acrylonitrile styrene acrylate or any combination thereof; preferably the first polymer is polystyrene and selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene.
[0014] According to a second aspect, the invention provides a process of preparing a masterbatch, comprising the steps of: a1. providing carbon nanotubes; a2. providing an first amorphous polymer, said first amorphous polymer having a glass transition temperature Tg1 ; and a melt flow index of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H, and optionally from 0.01 to 4.0 by weight of one or more additive based on the total weight of the masterbatch, the one or more additive being selected from waxes, tristearin, zinc stearate, calcium stearate, magnesium stearate, erucyl amide, oleic acid amide, ethylene-acrilyc acid copolymer, ethylene vinyl acetate copolymer and cetyl trimethyl ammonium bromide a3. blending together said carbon nanotubes and said first amorphous polymer by extrusion at a barrel temperature ranging from Tg1 to Tg1 +80°C, preferably Tg1 +5°C to Tg1 + 50 °C, the glass transition temperature being determined according to ISO 11357-2:2013.
[0015] In a preferred embodiment, the step a3) of blending together said carbon nanotubes and said first amorphous polymer by extrusion is conducted on co-rotating twin screw extruder at a screw speed of at least 250 RPM, with preference at least 300 RPM.
[0016] The process is particularly suitable to produce a masterbatch according to the first aspect of the invention.
[0017] According to a third aspect, the invention provides a process for preparing a composite material comprising a polymer composition and carbon nanotubes, wherein said polymer composition comprises a mixture of a first and a second amorphous polymer and the composite material comprises from 0.05 to 1.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358, and further wherein the composite material has a surface resistivity of at most 1x104 Ohm/sq, said process comprising the steps of: b. providing a masterbatch comprising a first amorphous polymer and at least 5%, and preferably from 5 % to 15%, by weight of carbon nanotubes based on the total weight of the masterbatch as determined according to ISO 11358, and wherein the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H; c. providing a second amorphous polymer having a glass transition temperature Tg2; d. blending together the masterbatch and the second amorphous polymer by extrusion in an extruder at a barrel temperature ranging from Tg2+100°C to Tg2+200°C, the glass transition temperature being determined according to ISO 11357-2:2013.
[0018] The masterbatch used is preferably a masterbatch according to the first aspect of the invention.
[0019] In a preferred embodiment, the process for preparing a composite material includes before the step b) of providing a masterbatch, a step of preparation of the masterbatch according to the second aspect of the invention.
[0020] In a preferred embodiment, the first amorphous polymer having a melt flow index MFI1 and second amorphous polymer having a melt flow index MFI2, the process further comprises the step of selecting the first and second amorphous polymer so that MFI1 has a value of at least twice the value of MFI2.
[0021] In a preferred embodiment, said composite material comprises from 0.05 to 0.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358.
[0022] In a preferred embodiment, the first and/or second amorphous polymers are selected from polystyrene, acry-lonitrile-butadiene-styrene, polycarbonate, styrene acrylonitrile, poly(methyl methacrylate), poly(vinyl chloride), polybutadiene, polybutylene terephthalate, poly(p-phenylene oxide), polysulfone, polyethersulfone, polyethylenimine, polyphenylsulfone, acrylonitrile styrene acrylate or any combination thereof.
[0023] In a preferred embodiment, at least one of the first or second amorphous polymer is polystyrene, said polystyrene being selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene.
[0024] According to a fourth aspect the invention encompasses a composite material according to the invention comprises a polymer composition and carbon nanotubes (CNT), wherein said composite material: comprises from 0.05 to 1.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358; comprises a portion of carbon nanotubes being in the form of agglomerate, with the agglomerate area fraction being less than 2.5 % as determined in accordance with ASTM D-2663-14, and has a surface resistivity of at most 1x104 Ohm/sq, preferably at most 9x103 Ohm/sq as determined according to CEI 60167.
[0025] Said composite material is preferably produced by the process according to the third aspect of the invention.
[0026] The invention also encompasses formed articles comprising the composite material according to the fourth aspect of the invention.
[0027] Thus, the invention provides an article made of a composite material as defined in the fourth aspect of the invention. Preferably, the article is a sheet.
[0028] Preferably the article is a monolayered sheet made of the composite material according to the invention or a multilayered sheet comprising at least two coextruded layers of different material wherein at least one of the layer is made of a composite material according to the invention, preferably the multilayered sheet comprises three layers, wherein at least one of the outer layers is made of a composite material according to the invention.
[0029] The invention also encompasses the use of the composite material according to the invention to make an article in a process selected from blow-moulding, injection, rotomoulding or injection blow moulding.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030]
Figure 1 is a picture showing CNT agglomerates on inventive example E2.
Figure 2 is a picture showing CNT agglomerates on comparative example C4.
Detailed description of the invention [0031] In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
Definition of the masterbatch and of the composite material [0032] A masterbatch according to the invention comprises a blend of a first amorphous polymer with carbon nanotubes, with at least 5% and preferably from 5 % to 15 % by weight of carbon nanotubes based on the total weight of the masterbatch, and has a high load melt flow index HLMI1 of less than 40 g/10 min, preferably less than 30 g/10min, more preferably of less than 20 g/10min, most preferably less than 18 g/10min according to IS01133 (21.6 kg - 200°C).
[0033] The term "amorphous polymer" indicates a polymer that, because of its constitution, is unable to crystallize, i.e.,apolymerthat is not a crystallizable polymer. The glass transition temperature is the reversible transition in amorphous materials from a hard and relatively brittle state into a molten or rubber-like state. The glass transition temperature of an amorphous polymer can be determined by the method according to ISO 11357-2:2013.
[0034] The HLMI of the masterbatch is obtained by selecting the first amorphous polymer with a given HLMI1 and a suitable content of CNT blended with the polymer. Without being bound by a theory it is believed that the HLMI of the masterbatch is lower than the HLMI1 of the first amorphous polymer due to the presence of the CNT and due to the blending conditions in the process of preparation of the masterbatch. For a given HLMI1 of the first amorphous polymer, the HLMI of the masterbatch decreases while the content of CNT in the masterbatch increases.
[0035] In a preferred embodiment the masterbatch comprises at most 15 %, preferably 13 % by weight of carbon nanotubes based on the total weight of the masterbatch and has a surface resistivity of at most 1x102 Ohm/sq; preferably the masterbatch comprises at most 11 % by weight of carbon nanotubes based on the total weight of the masterbatch and has a surface resistivity of at most 1x102 Ohm/sq.
[0036] The melt flow index MFI1 of the first amorphous polymer is at least 10 g/10 min as measured at 200°C under a load of 5 kg according to IS01133 H, preferably at least 15 g/10 min, preferably at least 18 g/10 min, preferably at least 20 g/10 min, more preferably at least 25 g/10 min. In an embodiment, MFI1 is at most 300 g/10 min, preferably at most 100 g/10 min, more preferably 60 g/10 min, most preferably 40 g/10 min.
[0037] It is noted, that if necessary, in order to determine its MFI, the first amorphous polymer may be extracted from the masterbatch using the following method: 1) Weigh a quantity of sample, taking into account all the additives, to finally obtain the amount needed by the various analyzes requested on pure PS (to determine MFI, weigh about 7 g). 2) Dissolve the sample in a volume of Tetrahydrofuran (THF) (with excess of Butylated hydroxytoluene (BHT)) corresponding to a solution of ± 1% (used a white bottle of sufficient volume to contain THF). 3) Turn on the shaker table used to GPC_BT (± 50 rpm) for at least one night. 4) Use equipment vacuum filtration THF. 5) Then, filtered on sintered glass covered with a flat polytetrafluoroethylene (PTFE) filter 0.22μΐτι. 6) As soon as one realizes that the filtration is exercised almost, change the PTFE filter. 7) When the filtration is complete, rinse 3x bottle containing dissolved pellets. 8) Add a pinch of Aox (1076), corresponding to a few hundred ppm, to the filtered solution. 9) evaporated on a water bath (95 ° C) in a large aluminum capsule. 10) Once evaporation is complete, to the capsule in an oven under vacuum at 80 ° C for one night or until a completely dry residue. 11) Finally, let cool in a desiccator and determine MFI of pure PS recovered.
[0038] As used herein, the term "masterbatch" refers to concentrates of active material (such as the carbon nanotubes (CNT)) in a polymer, which are intended to be subsequently incorporated into another polymer (compatible or noncompatible with the polymer already contained in these masterbatches). Use of masterbatches makes processes more easily adaptable to industrial scale, compared to direct incorporation of CNT powder.
[0039] The masterbatch comprises at least 5% by weight of carbon nanotubes based on the total weight of the masterbatch. Preferably the masterbatch comprises at least 8% by weight of carbon nanotubes based on the total weight of the masterbatch. Preferably the masterbatch comprises at least 10% by weight of carbon nanotubes based on the total weight of the masterbatch.
[0040] Preferably the masterbatch comprises at most 15% by weight of carbon nanotubes based on the total weight of the masterbatch. Preferably the masterbatch comprises at most 13% by weight of carbon nanotubes based on the total weight of the masterbatch.
[0041] The masterbatch according to the invention is used to produce a composite material. The composite material according to the invention comprises a polymer composition and carbon nanotubes (CNT), wherein said polymer composition comprises a mixture of a first and a second amorphous polymer, said composite material comprises from 0.05 to 1.95 % by weight of carbon nanotubes based on the total weight of the composite material, and further wherein said composite material has a surface resistivity of at most 1x104 Ohm/sq.
[0042] It is understood that the first amorphous polymer of the masterbatch is also the first amorphous polymer of the composite material. The other polymer in which the masterbatch is subsequently incorporated is the second amorphous polymer. Thus the process of preparing said masterbatch and the process of preparing the composite material include the definitions of the first and second amorphous polymer given in the description of the composite material and vice-versa.
[0043] The amorphous polymers considered by the invention for the first and second amorphous polymer are selected from polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), styrene acrylonitrile (SAN), poly(me-thyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), polybutadiene (PBu), polybutylene terephthalate (PBt), poly(p-phenylene oxide) (PPO), polysulfone(PSU), polyethersulfone(PES), polyethylenimine(PEI), polyphenylsulfone(PPSU), acrylonitrile styrene acrylate (ASA) or any combination thereof.
[0044] In a preferred embodiment the first amorphous polymer is polystyrene, modified polystyrene or a mixture of polystyrene and modified polystyrene, with preference the first amorphous polymer is polystyrene, for example general-purpose polystyrene (GPPS).
[0045] In an embodiment, the first and the second amorphous polymer differs from each other by the polymer-type. For example, one amorphous polymer is polystyrene and the other one is acrylonitrile-butadiene-styrene or styrene acrylonitrile. In another example one amorphous polymer is styrene acrylonitrile and the other one is a mixture of polystyrene and polybutadiene.
[0046] In an embodiment, the first and the second amorphous polymer differs from each other by the molecular weight.
[0047] In an embodiment, the first and the second amorphous polymer differs from each other by their melt flow index (MFI), the MFI being determined according to ISO 1133.
[0048] In a preferred embodiment the first and the second amorphous polymer are of the same polymer type and differ from each other by the molecular weight. In a preferred embodiment of the invention, both the first and the second amorphous polymer are chosen to be polystyrene, one of the first or second polystyrene has a molecular weight ranging from 80 000 to 120 000 g/mol whereas the other one has a molecular weight ranging from 160 000 to 240 000 g/mol. The polymer composition of the composite material shows bimodality. With preference the first amorphous polymer has the lowest molecular weight.
[0049] Non-limiting examples of suitable polystyrenes which can be used in the composition comprise polystyrene (for example General Purpose Polystyrene-GPPS), modified polystyrene (for example High Impact Polystyrene - HIPS), or combination of polystyrene and modified polystyrene. Combination of polystyrene and modified polystyrene is to be understood as any mixture of polystyrene and modified polystyrene.
[0050] With preference, at least one of the first or second amorphous polymer is selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene. In an embodiment both the first and the second amorphous polymer are selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene. Preferably, in such an embodiment, the first and second amorphous polymers differ by their respective molecular weight and/or by their respective melt flow index.
[0051] In the modified-polystyrene, part of the styrene may be replaced by unsaturated monomers copolymerizable with styrene, for example alpha- methylstyrene or (meth)acrylates, Other examples which may be mentioned are chlo-ropolystyrene, poly-alpha-methylstyrene, styrene-chlorostyrene copolymers, styrene-propylene copolymers, styreneb-utadiene copolymers, styrene-isoprene copolymers, styrene-vinyl chloride copolymers, styrene-vinyl acetate copolymers, styrene-alkyl acrylate copolymers (methyl, ethyl, butyl, octyl, phenyl acrylate), styrene-alkyl methacrylate copolymers (methyl, ethyl, butyl, phenyl methacrylate), styrene methyl chloroacrylate copolymers and styrene-acrylonitrile-alkyl acrylate copolymers.
[0052] The polystyrenes for use in the present invention may be co-or homopolymers of styrene, alpha methylstyrene and para methyl styrene. Preferably the polystyrene is homopolystyrene.
[0053] The polystyrenes may be prepared by a number of methods. This process is well known to those skilled in the art. An example of method to produce polystyrene is given in EP2401311. An example of method to produce high impact polystyrene (HIPS) is given in US2012/0289656.
[0054] The modified-polystyrene for use in the composition may be rubber modified.
[0055] The rubbermay be prepared by a number of methods, preferably by emulsion or solution polymerization. These processes are well known to those skilled in the art.
[0056] If present, preferably the rubber is present in an amount from about 3 to 15 % by weight relative to the total weight of the modified-polystyrene. Polybutadiene is a particularly useful rubber.
[0057] Preferably the modified-polystyrene is rubber modified polystyrene.
[0058] In an embodiment, the rubber modified polystyrene is a High Impact Polystyrene (HIPS). The process for making HIPS is well known to those skilled in the art. For example, the process may comprise polymerizing styrene monomer in the presence of dissolved rubber. Polymerization of styrene, and optionally a comonomer, may be initiated by heating and/or by an initiator, by way of example a radical initiator. The rubber may be "dissolved" in the styrene monomer. The usual rubber types utilized in the manufacture of HIPS include polybutadiene (PBu), styrene-butadiene rubber (SBR), and styrene-butadiene-styrene rubber (SBS). Polystyrene may be initially formed from the styrene monomer within the homogeneous rubber solution in styrene. In HIPS, a part of the styrene may be replaced by unsaturated monomers copolymerizable with styrene such as other monovinylaromatic monomers, alkyl esters of acrylic or meth-acrylic acid and acrylonitrile. Non-limiting examples of suitable processes for preparing HIPS are described in US2010/240832, incorporated herein by reference.
[0059] Advantageously, the modified-polystyrene is a HIPS or a mixture of polystyrene and HIPS.
[0060] In an embodiment, the composite material comprises the melt blending product of said first and second amorphous polymer and said carbon nanotubes.
[0061] As used herein, the term "melt blending" involves the use of shearforce, extensional force, compressive force, ultrasonic energy, electromagnetic energy, thermal energy or combinations comprising at least one of the foregoing forces or forms of energy and is conducted in processing equipment wherein the aforementioned forces are exerted by a single screw, multiple screws, intermeshing co-rotating or counter rotating screws, non-intermeshing co-rotating or counter rotating screws, reciprocating screws, screws with pins, barrels with pins, rolls, rams, helical rotors, or combinations comprising at least one of the foregoing. Melt blending may be conducted in machines such as, single or multiple screw extruders, Buss kneader, Eirich mixers, Henschel, helicones, Ross mixer, Banbury, roll mills, molding machines such as injection molding machines, vacuum forming machines, blow molding machines, or the like, or combinations comprising at least one of the foregoing machines. It is generally desirable during melt or solution blending of the composition to impart a specific energy of about 0.01 to about 10 kilowatt-hour/kilogram (kwhr/kg) of the composition. In a preferred embodiment, melt blending is performed in a twin screw extruder, such as a Brabender co-rotating twin screw extruder and/or a Leistritz extruder.
[0062] In an embodiment, the composite material comprises at most 1.75% by weight, for example at most 1.50% by weight, for example at most 1.25% by weight, for example at most 1.00% by weight, for example at most 0.95%, for example at most 0.90% by weight of carbon nanotubes, based on the total weight of the composite material.
[0063] In another embodiment, the composite material according to the invention comprises at least 0.05% preferably 0.10% by weight of carbon nanotubes, relative to the total weight of the composite material. For example, the composite material of the present invention can comprise at least 0.30% by weight of carbon nanotubes, for example at least 0.40% by weight, for example at least 0.45% by weight of carbon nanotubes, relative to the total weight of the composition, preferably at least 0.50% by weight, preferably at least 0.55% by weight, more preferably at least 0.60% by weight, more preferably at least 0.65% by weight, most preferably at least 0.70 % by weight, relative to the total weight of the composite material.
[0064] In a preferred embodiment, the composite material comprises from 0.05 to 0.95 % by weight of carbon nanotubes based on the total weight of the composite material, preferably from 0.30 to 0.95 wt%.
[0065] Suitable carbon nanotubes used in the present invention can generally be characterized by having a size from 1 nm to 500 nm, this definition of size can be limited to two dimensions only, i.e. the third dimension may be outside of these limits.
[0066] Suitable carbon nanotubes also referred to as "nanotubes" herein, can be cylindrical in shape and structurally related to fullerenes, an example of which is Buckminster fullerene (C60). Suitable carbon nanotubes may be open or capped at their ends. The end cap may for example be a Buckminster-type fullerene hemisphere. Suitable carbon nanotubes used in the present invention can comprise more than 90%, more preferably more than 95%, even more preferably more than 99% and most preferably more than 99.9% of their total weight in carbon. However, minor amounts of other atoms may also be present.
[0067] Suitable carbon nanotubes to be used in the present invention can be prepared by any method known in the art. They can be prepared by the catalyst decomposition of hydrocarbons, a technique that is called Catalytic Carbon Vapor Deposition (CCVD). Other methods for preparing carbon nanotubes include the arc-discharge method, the plasma decomposition of hydrocarbons or the pyrolysis of selected polyolefin under selected oxidative conditions. The starting hydrocarbons can be acetylene, ethylene, butane, propane, ethane, methane or any other gaseous or volatile carbon-containing compound. The catalyst, if present, is used in either pure or in supported form. The presence of a support greatly improves the selectivity of the catalysts but it contaminates the carbon nanotubes with support particles, in addition to the soot and amorphous carbon prepared during pyrolysis. Purification can remove these by-products and impurities. This can be carried out according to the following two steps: 1) the dissolution of the support particles, typically carried out with an appropriate agent that depends upon the nature of the support and 2) the removal of the pyrolytic carbon component, typically based on either oxidation or reduction processes.
[0068] Carbon nanotubes can exist as single-walled nanotubes (SWNT) and multi-walled nanotubes (MWNT), i.e. carbon nanotubes having one single wall and nanotubes having more than one wall, respectively. In single-walled carbon nanotubes a one atom thick sheet of atoms, for example a one atom thick sheet of graphite (also called graphene), is rolled seamlessly to form a cylinder. Multi-walled carbon nanotubes consist of a number of such cylinders arranged concentrically. The arrangement in a multi-walled carbon nanotubes can be described by the so-called Russian doll model, wherein a larger doll opens to reveal a smaller doll.
[0069] In an embodiment, the carbon nanotubes are multi-walled carbon nanotubes, more preferably multi-walled carbon nanotubes having on average from 5 to 15 walls.
[0070] Carbon nanotubes, irrespectively of whether they are single-walled or multi-walled, may be characterized by their outer diameter or by their length or by both.
[0071] Single-walled carbon nanotubes are preferably characterized by an outer diameter of at least 0.5 nm, more preferably of at least 1 nm, and most preferably of at least 2 nm. Preferably their outer diameter is at most 50 nm, more preferably at most 30 nm and most preferably at most 10 nm. Preferably, the length of single-walled nanotubes is at least 0.1 μπι, more preferably at least 1 μίτι, even more preferably at least 10 μίτι. Preferably, their length is at most 50 mm, more preferably at most 25 mm.
[0072] Multi-walled carbon nanotubes are preferably characterized by an outer diameter of at least 1 nm, more preferably of at least 2 nm, 4 nm, 6 nm or 8 nm, and most preferably of at least 10 nm. The preferred outer diameter is at most 100 nm, more preferably at most 80 nm, 60 nm or 40 nm, and most preferably at most 20 nm. Most preferably, the outer diameter is in the range from 10 nm to 20 nm. The preferred length of the multi-walled nanotubes is at least 50 nm, more preferably at least 75 nm, and most preferably at least 100 nm. Their preferred length is at most 20 mm, more preferably at most 10 mm, 500 μίτι, 250 μίτι, 100 μίτι, 75 μίτι, 50 μηι, 40 μηι, 30 μηι or 20 μηι, and most preferably at most 10 μίτι. The most preferred length is in the range from 100 nm to 10 μίτι. In an embodiment, the multi-walled carbon nanotubes have an average outer diameter in the range from 10 nm to 20 nm or an average length in the range from 100 nm to 10 μ(η or both.
[0073] Preferred carbon nanotubes are carbon nanotubes having a surface area of 200-400 m2/g (measured by Brunauer-Emmett-Teller (BET) method).
[0074] Preferred carbon nanotubes are carbon nanotubes having a mean number of 5-15 walls.
[0075] Non-limiting examples of commercially available multi-walled carbon nanotubes are Graphistrength™ 100, available from Arkema, Nanocyl™ NC 7000 available from Nanocyl, FloTube™ 9000 available from CNano Technology, Baytubes® C 150 B available from Bayer Material Science.
[0076] In an embodiment of the invention, the composite material comprises one or more additives selected from the group comprising an antioxidant, an antiacid, a UV-absorber, an antistatic agent, a light stabilizing agent, an acid scavenger, a lubricant, a nucleating/clarifying agent, a colorant or a peroxide. An overview of suitable additives may be found in Plastics Additives Handbook, ed. H. Zweifel, 5th edition, 2001, Hanser Publishers, which is hereby incorporated by reference in its entirety.
[0077] The invention also encompasses the composite material as described herein wherein the composite material comprises from 0% to 10% by weight of at least one additive such as antioxidant, based on the total weight of the composite material. In a preferred embodiment, said composite material comprises less than 5% by weight of additive, based on the total weight of the composite material, for example from 0.1 to 3% by weight of additive, based on the total weight of the composite material.
[0078] In an embodiment, the composite material comprises an antioxidant. Suitable antioxidants include, for example, phenolic antioxidants such as pentaerythritol tetrakis[3-(3’,5’-di-tert-butyl-4’-hydroxyphenyl)propionate] (herein referred to as Irganox 1010), tris(2,4-ditert-butylphenyl) phosphite (herein referred to as Irgafos 168), 3DL-alpha-tocopherol, 2,6-di-tert-butyl-4-methylphenol, dibutylhydroxyphenylpropionicacid stearyl ester, 3,5-di-tert-butyl-4-hydroxyhydrocinnamic acid, 2,2’-methylenebis(6-tert-butyl-4-methyl-phenol), hexamethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propion-ate], benzenepropanamide,N,N’-1,6-hexanediyl bis[3,5-bis(1,1-dimethylethyl)-4-hydroxy] (Antioxidant 1098), Diethyl 3.5- Di-Tert-Butyl-4-Hydroxybenzyl Phosphonate, Calcium bis[monoethyl(3,5-di-tert-butyl-4-hydroxylbenzyl)phospho-nate], Triethylene glycol bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate (Antioxidant 245), 6,6’-di-tert-butyl-4,4’-butylidenedi-m-cresol, 3,9-bis(2-(3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, (2,4,6-trioxo-1,3,5-triazine-1,3,5(2H,4H,6H)-triyl)triethylene tris[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, Tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, ethylene bis[3,3-bis(3-tert-butyl-4-hydroxyphenyl)butyrate], and 2,6-bis[[3-(1,1-dimethyl-ethyl)-2-hydroxy-5-methylphenyl] octahydro-4,7-methano-1H-indenyl]-4-methyl-phenol. Suitable antioxidants also include, for example, phenolic antioxidants with dual functionality such 4,4’-Thio-bis(6-tert-butyl-m-methyl phenol) (Antioxidant 300), 2,2’-Sulfanediylbis(6-tert-butyl-4-methylphenol) (Antioxidant 2246-S), 2-Methyl-4,6-bis(octylsulfanylme-thyl)phenol, thiodiethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2,6-di-tert-butyl-4-(4,6-bis(octylthio)- 1.3.5- triazin-2-ylamino)phenol, N-(4-hydroxyphenyl)stearamide, bis(1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butylmalonate, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hex-adecyl 3,5-di-tert-butyl-4-hydroxy-benzoate, 2-(1,1 -dimethylethyl)-6-[[3-( 1,1-dimethylethyl)-2-hydroxy-5-methylphenyl] methyl]-4-methylphenyl acrylate, and Cas nr. 128961-68-2 (Sumilizer GS). Suitable antioxidants also include, for example, aminic antioxidants such as N-phenyl-2-naphthylamine, poly(1,2-dihydro-2,2,4-trimethyl-quinoline), N-isopropyl-N’-phenyl-p-phenylenediamine, N-Phenyl-1-naphthylamine, CAS nr. 68411-46-1 (Antioxidant 5057), and 4,4-bis(alpha,al-pha-dimethylbenzyl)diphenylamine (Antioxidant KY 405). Preferably, the antioxidant is selected from pentaerythritol tetrakis[3-(3’,5’-di-tert-butyl-4’-hydroxyphenyl)propionate] (herein referred to as Irganox 1010), tris(2,4-ditert-butylphe-nyl) phosphite (herein referred to as Irgafos 168), or a mixture thereof.
[0079] The composite material may further comprise a styrenic copolymer, preferably wherein the styrenic copolymer is selected from styrene-butadiene-styrene block copolymer (SBS) or styrene-ethylene-butadiene-styrene block copolymer (SEBS).
[0080] Preferably, the styrenic copolymer is a styrenic block copolymer. Suitable styrenic block copolymers include at least two monoalkenyl arene blocks, preferably two polystyrene blocks, separated by a block of a saturated conjugated diene, such as a saturated polybutadiene block. Suitable unsaturated block copolymers include, but are not limited to, those represented by the following formulas: A-B-R(-B-A)n or Ax-(BA-)y-BA wherein each A is a polymer block comprising a vinyl aromatic monomer, such as styrene, and each B is a polymer block comprising a conjugated diene, such as isoprene or butadiene, and optionally a vinyl aromatic monomer, such as styrene; R is the remnant of a multifunctional coupling agent (if R is present, the block copolymer can be a star or branched block copolymer); n is an integer from 1 to 5; X is zero or 1 ; and y is a real number from zero to 4.
[0081] The composite material according to the invention may have improved conductive-dissipative conductivity. The target resistivity may depend on the particular application (ANSI-ESD F 541-2008).
[0082] Preferably, the composite material has a surface resistivity of at most 5x103 Ohm/sq, with preference at most 4x103 Ohm/sq. The resistivity can be measured using the method described in ASTM- D257, or as described herein after in the example section.
[0083] The composite material comprises a portion of carbon nanotubes being in the form of agglomerates, with the agglomerate area fraction being less than 2.5 % as determined in accordance with ASTM D-2663-14, preferably less than 2%, more preferably less than 1.5%, and most preferably less than 1%.
[0084] The composite material may be suitable for typical injection, extrusion and stretch blow molding applications, but also thermoforming, foaming and rotomolding. The articles made according to these processes can be mono- or multilayer, wherein at least one of the layers comprises the composite material of the invention.
[0085] Articles madefrom the composite material may be commonly utilized in material-handling and electronic devices such as packaging film, sheets and thermoformed objects therefrom, chip carriers, computers, printers and photocopier components where electrostatic dissipation or electromagnetic shielding are important requirements. Preferably, the formed article comprises packaging. Preferably, the formed article comprises electronics packaging.
[0086] The invention provides new conductive-dissipative compositions and materials therefrom comprising low amounts of CNT, below 1.9 wt%, preferably below 1.5 wt%, more preferably below 1.0 wt%, most preferably below 0.9 wt% by weight of carbon nanotubes based on the total weight of the composite material.
[0087] Such composite materials are economically viable in comparison to usual conductive-dissipative compounds filled with carbon black.
Definition of the processes to preparing a masterbatch and a composite material [0088] The invention also relates to a process for preparing a masterbatch according to the above definition.
[0089] The inventive process for preparing a masterbatch comprises the steps of: a1. providing carbon nanotubes; a2. providing an first amorphous polymer, said first amorphous polymer having a glass transition temperature Tg1 ; and a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133, and optionally from 0.01 to 4.0 by weight of one or more additive based on the total weight of the masterbatch, the one or more additive being selected from waxes, tristearin, zinc stearate, calcium stearate, magnesium stearate, erucyl amide, oleic acid amide, ethylene-acrilyc acid copolymer, ethylene vinyl acetate copolymer and cetyl trimethyl ammonium bromide;
a3. blending together said carbon nanotubes and said first amorphous polymer by extrusion in an extruder at a barrel temperature ranging from Tg1 to Tg1 +80°C
[0090] In an embodiment, the step a3) of blending together said carbon nanotubes and said first amorphous polymer by extrusion is conducted on co-rotating twin screw extruder at a screw speed of at least 250 RPM, with preference at least 300 RPM.
[0091] In an embodiment, the extrusion is performed in a extruder at a barrel temperature of at least Tg1+5°C, more preferably of at least Tg1+10°C. In another embodiment, the extrusion is performed in a extruder at a barrel temperature of at most Tg1+60°C, more preferably of at most Tg1+50°C.
[0092] Thus the masterbatch according to the invention are processed at low temperature and with an high screw speed.
[0093] To form a masterbatch, the CNT and polymer powders may be mixed in a mixer which is either integrated into the processing equipment, or positioned upstream of the latter.
[0094] This mixing of powders, blends and masterbatch, is carried in mixing equipment of the Brabender, Z-blade mixer or extruder type.
[0095] The present invention also encompasses a process for preparing the masterbatch according to the definition given above.
[0096] The inventive process for preparing a composite material according to the invention comprises the steps of: b. providing a masterbatch comprising a first amorphous polymer and at least 5%, and preferably from 5 % to 15 %, by weight of carbon nanotubes based on the total weight of the masterbatch, and wherein the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min;; c. providing a second amorphous polymer having a glass transition temperature Tg2; d. blending together the masterbatch and the second amorphous polymer by extrusion in an extruder at a barrel temperature ranging from Tg2+100°C to Tg2+200°C.
[0097] In a preferred embodiment the masterbatch used in said process is a masterbatch according to the definition given above.
[0098] In an embodiment, the extrusion is performed in a extruder at a barrel temperature of at leastTg2+110°C, more preferably of at least Tg2+120°C. In another embodiment, the extrusion is performed in a extruder at a barrel temperature of at most Tg2+180°C, more preferably of at most Tg2+170°C.
[0099] In a preferred embodiment the second amorphous polymer is modified polystyrene, with preference the second amorphous polymer is HIPS.
[0100] In an embodiment, the process for preparing a composite material according to the invention includes before the step b) of providing a masterbatch, a step of preparation of a masterbatch as defined above.
[0101] In a preferred embodiment, the first amorphous polymer having a melt flow index MFI1 and second amorphous polymer having a melt flow index MFI2, the process for preparing a composite material according to the invention further comprises the step of selecting the first and second amorphous polymer so that MFI1 has a value of at least twice the value of MFI2. With preference, MFI1 has a value of at least three times the value of MFI2. Preferably, the melt flow index MFI2 is at most 5 g/10 min, more preferably at most 4 g/10 min.
[0102] Using first amorphous polymer more fluid than the second one ease to dilute the masterbatch comprising such first amorphous polymer in the second amorphous polymer. Moreover, as forthe dispersion of primary CNT agglomerates, the infiltration process of matrix polymer chains into the pores of the agglomerate is the first step; the infiltration is more faster with fluid resins. Using a second amorphous polymer with high viscosity eases the masterbatch to be distributed in said second amorphous polymerwhen preparing the composite material. Indeed, highly viscous masterbatch is difficult to disperse homogeneously within low viscosity resins.
[0103] According to the invention, the first amorphous polymer is processed at a low extrusion temperature during the masterbatch preparation so that the viscosity of said first amorphous polymer is high and high shear stress is applied to primary CNT agglomerates which reduce their size, increasing the dispersibility of the CNT.
[0104] According to the invention, the masterbatch is blended with the second amorphous polymer at high temperature so that the viscosity of the first amorphous polymer is lower and the mobility of the CNT is then higher in order to favor the nanoagglomeration of the CNT leading to the formation of electrical percolation of CNT. The percolation is facilitated if CNT mobility is less restricted.
[0105] Preferably the second amorphous polymer is characterized by a high load melt flow index HLMI2 of more than 30g/10min according to IS01133 (21.6 kg -200°C), preferably more than40g/10min, preferably more than 50g/10min.
[0106] The present invention can be further illustrated by the following examples, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated.
Examples [0107] Blends according to embodiments of the invention were prepared using a two step process. The inventive blends comprised polystyrene, high-impact polystyrene and carbon nanotubes.
Methods [0108] The content of carbon nanotubes in % by weight in blends (%CNT) can be determined by thermal gravimetric analysis (TGA) according to ISO 11358 and ASTM E1131, using a Mettler Toledo STAR TGA/DSC 1 apparatus. Prior to the determination of the content of carbon nanotubes in % by weight in blends (%CNT), the carbon content of the carbon nanotubes in % by weight (%C-CNT) was determined: 2 to 3 milligrams of carbon nanotubes were placed into a TGA. The material was heated at a rate of 20°C/min from 30°C to 600°C in nitrogen (100 ml/min). At 600°C, the gas was switched to air (100 ml/min), and the carbon oxidized, yielding the carbon content of the carbon nanotubes in % by weight (%C-CNT). The %C-CNT value was the average of 3 measurements. For the content of carbon nanotubes % by weight in blends (%CNT), 10 to 20 milligrams of sample was placed into a TGA. The material was heated at a rate of 20°C/min from 30°C to 600°C in nitrogen (100 ml/min). At 600°C, the gas was switched to air (100 ml/min), and the carbon oxidized, yielding to the carbon content of carbon nanotubes in the sample (%C-sample). The %C-sample value was the average of 3 measurements. The content of carbon nanotubes % by weight in sample (%CNT) was then determined by dividing the carbon content of carbon nanotubes % by weight in samples (%C-sample) by the carbon content of the carbon nanotubes in % by weight (%C-CNT) and multiplying by 100.
[0109] The surface resistivity (SR) of the blend was measured using a 2410 SourceMeter® apparatus. Conditions which were used were similar to those described in the CEI 60167 and NF C26-215 test methods. The surface resistivity (SR) was measured on 2 mm thick compression molded plaque at 200°C during 12 minutes. The resistance measurement was performed using an electrode system made of two conductive paint lines using silver ink and an adhesive mask presenting 2 parallel slits 25 mm long, 1 mm wide and 2mm apart. The samples were conditioned at 23°C/50% RFI for minimum 4 hours before running the test. The measure of the resistance in ohm was reported to a square measurement area and expressed in ohm/square using the following equation: SR = (Rx L) /d, wherein: SR is the average resistance reported to a square measurement area, conventionally called surface resistivity (expressed in ohm/sq), R is the average of the resistance measurements (ohm), L is the paint line length (cm), d is the distance between the electrodes (cm). L = 2.5 cm and d = 0.2 cm and SR = R x 12.5. The surface resistivity (SR) value was the average of 3 measurements.
[0110] The melt flow index (MFI) is the weight of polymer melt flowing out from a standard die (2.095 x 8 mm) at a given temperature and with a standard weight applied to the piston, which pushing the sample. The MFI was determined under a load of 5 kg at a temperature of 200°C according to ISO 1133 FI.
[0111] The high melt flow index (FHLMI) was determined under a load of 21.6 kg at a temperature of 200°C according to ISO 1133.
[0112] Density of the polymers is determined according to ISO 1183 [0113] The molecular weight of the polymers was measured by Gel Permeation Chromatography (GPC).
[0114] The glass transition temperature can be determined by the method according to ISO 11357-2:2013.
[0115] The agglomerate area fraction (U%) is determined in accordance with ASTM D-2663-14
Example 1: Preparation of the Masterbatch Inventive examples of masterbatch M1 to M4 [0116] The carbon nanotubes used are multi-walled carbon nanotubes Nanocyl™ NC 7000, commercially available from Nanocyl. These nanotubes have a surface area of 250-300 m2/g (measured by BET method), a carbon purity of about 90 % by weight (measured by thermal gravimetric analysis), an average diameter of 9.5 nm and an average length of 1.5 μίτι (as measured by transmission electron microscopy).
[0117] The first amorphous polymer used is polystyrene with a melt flow index of 30 g/10mn as measured according to ISO 1133 H (200°C-5kg), a density of 1.05 g/cm3 (ISO 1183), a flexural modulus of 2900 MP (ISO 178), a surface resistivity>1014 Ohms as measured according to ISO IEC 93. The molecular weight of the first amorphous polymer is Mw: 112 000 g/mol. Thus, the melt flow index of the first amorphous polymer is at least 10 g/10 min. The polystyrene shows a glass transition temperature Tg of 104°C (i.e.: Tg1).
[0118] The masterbatches are prepared by blending polystyrene and carbon nanotubes, using classical twin-screw extrusion process. Carbon nanotubes powder and polystyrene is introduced into the extruder such as to obtain a CNT content of about 10 % by weight based on the total weight of the blend. The masterbatches are blended on Leitztriz corotating twin screw extruder with a L/D of 52 (D=27), at an barrel temperature of 110-145°C for M1 and M2, and at a barrel temperature of 160-175°C for M3 and M4.
[0119] The melt temperature measured with thermocouple shows that the material has a temperature in the barrel of about 150°C to 200°C. The melt temperature could be lowered by using a better cooling device on the extruder.
[0120] For inventive Masterbatch M1 the screw speed is fixed at 250 RPM, at a throughput of 14 kg/h. For inventive Masterbatch M2 to M4 the screw speed is fixed at 500 RPM, at a throughput of 14 kg/h. Additives have been introduced in M3 and M4.
[0121] The barrel temperature is comprised between Tg1 to Tg1+80°C, here between 104°C to 184°C. Comparative example of masterbatch CM1 to CM3 [0122] CM1 is a commercially available masterbatch, known as CNano Technology CP320-07. CM1 contains polystyrene and 7 wt% FloTubeTM 9000 carbon nanotubes, based on the total weight of the masterbatch. The melt flow index of the polymer used in CM1 is not known but the datasheet of the product states that when diluted to 3.5 wt% loading, the melt flow index of the masterbatch is 1.5 g/10min (200°C/5kg according to ASTM D1238).
[0123] CM2 is a commercially available masterbatch known as TNH IPS and sold by Timesnano. CM2 contains modified polystyrene and 10 wt% of TNIM4 carbon nanotubes, based on the total weight of the masterbatch. The melt flow index of the modified polystyrene (HIPS) used in the CM2 is 2.7 g/10min (200°C/5kg according to ASTM D1238).
[0124] CM3 is a masterbatch prepared by blending polystyrene and carbon nanotubes, using classical twin-screw extrusion process. High impact polystyrene (HIPS) Total 8350 was blended with powdered carbon nanotubes (CNT) such as to obtain a CNT content of about 10 % by weight based on the total weight of the blend. The masterbatche is blended on Leitztriz co-rotating twin screw extruder with a L/D of 52 (D=27), at an barrel temperature of 190-210°C. The carbon nanotubes used are multi-walled carbon nanotubes Nanocyl™ NC 7000, commercially available from Nanocyl. The melt flow index of the modified polystyrene (HIPS) used in the CM2 is 4.5 g/10min (200°C/5kg according to ASTM D1238).
[0125] The results are given in Table 1. From the results it can be seen that the inventive masterbatches have an HLMI (21.6 kg - 200°Cin accordance to IS01133) of less than 20 g/10min, contrary to the commercially available masterbatches. The inventive masterbatches show improvement of the surface resistivity properties compared to the commercially available masterbatches. The inventive masterbatches show an improvement in the dispersion of the CNT in comparison to comparative masterbatch CM3, said improvement in dispersion is evidenced on the composite material as it is seen in Example 2.
Example 2: Preparation of the composite material [0126] The second amorphous polymer is modified polystyrene: high impact polystyrene. The same second amorphous polymer is chosen for both inventive and comparative examples.
Inventive examples [0127] The high impact polystyrene (HIPS) selected in accordance to the invention hasa melt flow index of 2.8 g/10mn as measured according to ISO 1133 H (200°C-5kg), a density of 1.04 g/cm3 (ISO 1183), a flexural modulus of 1600 MP (ISO 178), a surface resistivity> 1013 Ohms as measured according to ISO IEC 93. The melt flow index of the second amorphous polymer is not more that 5 g/10 min. The HIPS shows a glass transition temperature of 100°C (i.e. Tg2). The molecular weight of the second amorphous polymer is Mw: 225 000 g/mol.
[0128] The H IPS is chosen so as the melt flow index of the first amorphous polymer used in the inventive masterbatches has a melt flow index higher than the second amorphous polymer. In particular the melt flow index of the first amorphous polymer has a value (i.e 30 g/min) of at least twice the value of the melt flow index of the second amorphous polymer (i.e. 2.8 g/min).
Example E1 - composite material containing 1 wt% of CNT
[0129] In the dilution step, the masterbatch is blended with the second amorphous polymer, using classical singlescrew extrusion process. Both first and second polymer composition are introduced in the extruder through the hoper. The extrusion is conducted in brabender single-screw extruder using with a L/D of 25 (D=19) at a barrel temperature of 200°C and the screw speed is fixed at 60 RPM
Examples E2 to E4 - composite material containing 0.9 wt% of CNT
[0130] In the dilution step, the masterbatches are blended with the second amorphous polymer, using classical twin-screw extrusion process. Both first and second polymer composition are introduced in the extruder through the main feed. The extrusion is conducted in brabender twin-screw extruder with a UD of 40 (D=20), at a barrel temperature of 220-260°Cand the screw speed is fixed at 80 RPM, at a throughput of 2 kg/h.
[0131] The barrel temperature is between Tg2+120°C to Tg+200°C, here between 220°C to 300°C.
Comparative examples [0132] Comparative examples are produced using the same process and second amorphous polymerthan the inventive examples. The difference lies in the masterbatches used.
[0133] The results are given in Table 2. From the results it can be seen that the dilution of the inventive mastebaches according to the inventive process provide composite material having a good surface resistivity even at low concentration in carbon nanotubes. The inventive composite materials show better surface resistivity than the comparative composites materials produced from the commercially available. The inventive process demonstrates an improvement of the surface resistivity properties on the composite material obtained with an increase of the barrel temperature used for the extrusion.
[0134] The attention is drawn in particular on Examples E2 and C4 for which the agglomerate area fraction has been determined. E2 shows improvement of the surface resistivity properties that the comparative examples, but also an improvement in the agglomerate area fraction compared to C4. Figures 1 and 2 show the CNT agglomerates on the composite of Example E2 and C4 respectively.
[0135] It is believed that the good results obtained regarding the surface resistivity properties have been obtained by an improvement in the dispersion of the CNT, first in the masterchach then by the dilution of the masterbatch in the second amorphous polymer. Without being bound by a theory, it is believed that the choice of the first amorphous polymer used in the masterbatch as well as the process of preparation of the masterbatch influences the quality of dispersion of the CNT in the masterbatch as it can be seen by the comparison between E2 and C4.
Claims 1. Masterbatch for use in a process of preparing a composite material, the masterbatch comprising a blend of a first amorphous polymer with carbon nanotubes, at least 5%, and preferably from 5 % to 15 %, by weight of carbon nanotubes based on the total weight of the masterbatch as determined according to ISO 11358, and having a high load melt flow index HLMI1 of less than 40 g/10min determined at 200°C under a load of 21.6 kg according to IS01133, the masterbatch being characterized in that the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H. 2. Masterbatch according to claim 1 characterized in that it has a surface resistivity of at most 1x102 Ohm/sq as determined according to CEI 60167, and/or high load melt flow index HLMI1 of less than 20 g/10min determined at 200°C under a load of 21.6 kg according to IS01133. 3. Masterbatch according to claim 1 or 2 characterized in that it further comprises from 0.01 to 4.0 by weight of one or more additive based on the total weight of the masterbatch, the one or more additive being selected from waxes, tristearin, zinc stearate, calcium stearate, magnesium stearate, erucyl amide, oleic acid amide, ethylene-acrilyc acid copolymer, ethylene vinyl acetate copolymer and cetyl trimethyl ammonium bromide. 4. Masterbatch according any of claim 1 to 3 being further characterized in that the first amorphous polymer is selected from polystyrene, acrylonitrile-butadiene-styrene, polycarbonate, styrene acrylonitrile, poly(methyl methacrylate), poly(vinyl chloride), polybutadiene, polybutylene terephthalate, poly(p-phenylene oxide), polysulfone, polyethersul-fone, polyethylenimine, polyphenylsulfone, acrylonitrile styrene acrylate or any combination thereof; preferably the first polymer is polystyrene and selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene. 5. Process for preparing a masterbatch according to claim 1 to 4 characterized by the steps of : a1. providing carbon nanotubes; a2. providing an first amorphous polymer, said first amorphous polymer having a glass transition temperature Tg1, and a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H, and optionally from 0.01 to 4.0 by weight of one or more additive based on the total weight of the masterbatch, the one or more additive being selected from waxes, tristearin, zinc stearate, calcium stearate, magnesium stearate, erucyl amide, oleic acid amide, ethylene-acrilyc acid copolymer, ethylene vinyl acetate copolymer and cetyl trimethyl ammonium bromide; a3. blending together said carbon nanotubes and said first amorphous polymer by extrusion in an extruder at a barrel temperature ranging from Tg1 to Tg1 +80°C, preferably Tg1 +5°C to Tg1 + 50 °C, the glass transition temperature being determined according to ISO 11357-2:2013 6. Process according to claim 5, characterized in that the step a3) of blending together said carbon nanotubes and said first amorphous polymer by extrusion is conducted on co-rotating twin screw extruder at a screw speed of at least 250 RPM, with preference at least 300 RPM. 7. Process for preparing a composite material comprising a polymer composition and carbon nanotubes, characterized in that said polymer composition comprises a mixture of a first and a second amorphous polymer and the composite material comprises from 0.05 to 1.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358, and in that the composite material has a surface resistivity of at most 1x104 Ohm/sq, said process comprising the steps of: b. providing a masterbatch comprising a first amorphous polymer and at least 5%, and preferably from 5 % to 15 %, by weight of carbon nanotubes based on the total weight of the masterbatch as determined according to ISO 11358, and wherein the first amorphous polymer has a melt flow index MFI1 of at least 10 g/10 min determined at 200°C under a load of 5 kg according to IS01133H; c. providing a second amorphous polymer having a glass transition temperature Tg2; d. blending together the masterbatch and the second amorphous polymer by extrusion in an extruder at a barrel temperature ranging from Tg2+100°C to Tg2+200°C, preferably ranging from Tg2+120°C to Tg2+180°C, the glass transition temperature being determined according to according to ISO 11357-2:2013. 8. Process according to claim 7 characterized in that the masterbatch is a masterbatch according to anyone of claims 1 to 4. 9. Process according to claim 7 or 8 characterized in that the process includes before the step b) of providing a masterbatch, a step of preparation of the masterbatch according to claim 5 or 6. 10. Process according to anyone of claims 7 to 9, the first amorphous polymer having a melt flow index MFI1 and second amorphous polymer having a melt flow index MFI2, the process being characterized in that it further comprises the step of selecting the first and second amorphous polymer so that MFI1 has a value of at least twice the value of MFI2. 11. Process according to anyone of claims 7 to 10 characterized in that said composite material comprises from 0.05 to 0.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358. 12. Process according to anyone of claims 7 to 11, characterized in that the first and/or second amorphous polymers are selected from polystyrene, acrylonitrile-butadiene-styrene, polycarbonate, styrene acrylonitrile, poly(methyl methacrylate), poly(vinyl chloride), polybutadiene, polybutylene terephthalate, poly(p-phenylene oxide), polysulfone, polyethersulfone, polyethylenimine, polyphenylsulfone, acrylonitrile styrene acrylate or any combination thereof; with preference at least one of the first or second amorphous polymer is polystyrene, said polystyrene being selected from polystyrene, modified polystyrene, or combination of polystyrene and modified polystyrene. 13. Composite material comprising a polymer composition and carbon nanotubes, characterized in that the composite material: - comprises from 0.05 to 1.95 % by weight of carbon nanotubes based on the total weight of the composite material as determined according to ISO 11358; - comprises a portion of carbon nanotubes being in the form of agglomerates, with the agglomerate area fraction being less than 2.5 % as determined in accordance with ASTM D-2663-14, and in that - has a surface resistivity of at most 1x104 Ohm/sq, preferably at most 9x103 Ohm/sq as determined according to CEI 60167. 14. Article made of a composite material of claim 13, preferably the article is a monolayered sheet, or a multilayered sheet comprising at least two coextruded layers of different material wherein that at least one of the layer is made of a composite material according to claim 13, preferably the multilayered sheet comprises three layers, wherein at least one of the outer layers is made of a composite material according to claim 13. 15. Use of the composite material of claim 13 to make an article in a process selected from blow-moulding, injection, rotomoulding or injection blow moulding.
Patentansprüche 1. Masterbatch zum Einsatz in einem Verfahren zur Herstellung eines Verbundmaterials, wobei das Masterbatch eine Mischung aus einem ersten amorphen Polymer mit Kohlenstoffnanoröhrchen, mindestens 5 Gew. %, vorzugsweise 5-15 Gew. % Kohlenstoffnanoröhrchen bezogen auf das nach ISO 11358 ermittelte Gesamtgewicht des Masterbatches und mit einem bei 200 °C unter einer Belastung von 21,6 kg nach ISO 1133 ermittelten Schmelzindex bei hoher Belastung HLMI1 von weniger als 40 g/10 min, wobei das Masterbatch dadurch gekennzeichnet ist, dass das erste amorphe Polymer einen bei 200 °C unter einer Belastung von 5 kg nach ISO 1133H ermittelten Schmelzindex MFI1 von mindestens 10 g/10 min aufweist. 2. Masterbatch nach Anspruch 1, dadurch gekennzeichnet, dass es einen nach CEI 60167 ermittelten Oberflächenwiderstand von mindestens 1 x 102 Ohm/sq und/oder einen bei 200 °C unter einer Belastung von 21,6 kg nach ISO 1133 ermittelten Schmelzindex bei hoher Belastung HLMI1 von weniger als 20 g/10 min aufweist. 3. Masterbatch nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es ferner 0,01 - 4,0 Gew. % eines oder mehrerer Zusatzstoffe bezogen auf das Gesamtgewicht des Masterbatches umfasst, wobei der eine oder mehrere Zusatzstoffe aus der nachfolgenden Gruppe gewählt sind: Wachse, Tristearin, Zinkstearat, Kalziumstearat, Mag-nesiumstearat, Erucylamid, Ölsäureamid, Ethylen-Acrylsäure-Copolymer, Ethylenvinylacetat-Copolymer und Ce-tyltrimethylammoniumbromid. 4. Masterbatch nach einem der Ansprüche 1 - 3, ferner dadurch gekennzeichnet, dass das erste amorphe Polymer aus der nachfolgenden Gruppe gewählt ist: Polystyrol, Acrylonitril-Butadien-Styrol, Polycarbonat, Styrolacrylonitril, Poly(methylmethacrylat), Poly(vinylchlorid), Polybutadien, Polybutylenterephthalat, Poly(p-phenylenoxid), Polysul-fon, Polyäthersulfon, Polyethylenimin, Polyphenylsulfon, Acrylonitrilstyrolacrylat oder eine beliebige Kombination davon; vorzugsweise ist das erste Polymer Polystyrol und aus der nachfolgenden Gruppe gewählt: Polystyrol, modifiziertes Polystyrol oder eine Kombination aus Polystyrol und modifiziertem Polystyrol. 5. Verfahren zur Herstellung eines Masterbatches nach Anspruch 1 - 4, gekennzeichnet durch die nachfolgenden Schritte: a1. Vorsehen von Kohlenstoffnanoröhrchen; A2. Vorsehen eines ersten amorphen Polymers, wobei das erste amorphe Polymer eine Glasübergangstemperatur Tg1 und einen bei 200 °C unter einer Belastung von 5 kg nach ISO 1133H ermittelten Schmelzindex MFI1 von mindestens 10 g/10 min und wahlweise 0,01 -4,0 Gew. % eines oder mehrerer Zusatzstoffe bezogen auf das Gesamtgewicht des Masterbatches umfasst, wobei der eine oder mehrere Zusatzstoffe aus der nachfolgenden Gruppe gewählt sind: Wachse, Tristearin, Zinkstearat, Kalziumstearat, Magnesiumstearat, Erucylamid, Ölsäureamid, Ethylen-Acrylsäure-Copolymer, Ethylenvinylacetat-Copolymer und Cetyltrimethylammoni-umbromid. a3. Mischen der Kohlenstoffnanoröhrchen und des ersten amorphen Polymers durch Extrusion in einem Extruder bei einer Faßtemperatur im Bereich zwischen Tg1 und Tg1 + 80 °C, vorzugsweise Tg1 + 5 °C bis Tg1 + 50 °C, wobei die Glasübergangstemperatur nach ISO 11357 - 2:2013 ermittelt wird. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Schritt a3) des Vermischens der Kohlenstoffna-noröhrchen und des ersten amorphen Polymers durch Extrusion auf einem gleichsinnig drehenden Doppelschneckenextruder bei einer Schneckendrehzahl von mindestens 250 U/m, vorzugsweise mindestens 300 U/m erfolgt. 7. Verfahren zur Herstellung eines Verbundmaterials, umfassend eine Polymerzusammensetzung und KohlenstofFn-anoröhrchen, dadurch gekennzeichnet, dass die Polymerzusammensetzung eine Mischung aus einem ersten und einem zweiten amorphen Polymer umfasst und das Verbundmaterial 0,05 -1,95 Gew. % KohlenstofFnanoröhr-chen bezogen auf das nach ISO 11358 ermittelte Gesamtgewicht des Verbundmaterials umfsst, und dass das Verbundmaterial einen Oberflächenwidestand von mindestens 1 x 104 Ohm/sq aufweist, wobei das Verfahren die nachfolgenden Schritte umfasst: b. Vorsehen eines Masterbatches, umfassend ein erstes amorphes Polymer undmindestens 5 Gew. %, vorzugsweise 5 -15 Gew. % KohlenstofFnanoröhrchen bezogen auf das nach ISO 11358 ermittelte Gesamtgewicht des Masterbatches, und wobei das erste amorphe Polymer einen bei 200 °C unter einer Belastung von 5 kg nach ISO 1133H ermittelten Schmelzindex MFI1 von mindestens 10 g/10 min aufweist; c. Vorsehen eines zweiten amorphen Polymers mit einer Glasübergangstemperatur Tg2; d. Vermischen des Masterbatches und des zweiten amorphen Polymers durch Extrusion in einem Extruder bei einer Faßtemperatur im Bereich zwischen Tg2 + 100 °C und Tg2 + 200 °C, vorzugsweise zwischen Tg2 + 120 °C und Tg2 + 180 °C erfolgt, wobei die Glasübergangstemperatur nach ISO 11357 - 2:2013 ermittelt wird. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Masterbatch ein Masterbatch nach einem der Ansprüche 1 - 4 ist. 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Verfahren vor dem Schritt b) des Vorse-henes eines Masterbatches einen Schritt des Herstellens des Masterbatches nach Anspruch 5 oder 6 umfasst. 10. Verfahren nach einem der Ansprüche 7-9, wobei das erste amorphe Polymer einen Schmelzindex MFI1 und das zweite amorphe Polymer einen Schmelzindex MIF2 aufweist, wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner den Schritt des Wählens des ersten und zweiten amorphen Polymers umfasst, damit der Betrag von MFI1 mindestens ein Zweifaches des Betrags von MFI2 ist. 11. Verfahren nach einem der Ansprüche 7 - 10, dadurch gekennzeichnet, dass das Verbundmaterial 0,05 - 0,95 Gew. % Kohlenstoffnanoröhrchen bezogen auf das nach IS011358 ermittelte Gesamtgewicht des Verbundmaterials umfasst. 12. Verfahren nach einem der Ansprüche 7-11, dadurch gekennzeichnet, dass das erste und/oder zweite amorphe Polymer aus der nachfolgenden Gruppe gewählt sind: Polystyrol, Acrylonitril-Butadien-Styrol, Polycarbonat, Styro-lacrylonitril, Poly(methylmethacrylat), Poly(vinylchlorid), Polybutadien, Polybutylenterephthalat, Poly(p-phenyleno-xid), Polysulfon, Polyäthersulfon, Polyethylenimin, Polyphenylsulfon, Acrylonitrilstyrolacrylat oder eine beliebige Kombination davon; vorzugsweise ist mindestens eines vom ersten oder zweiten Polymer Polystyrol, wobei das Polystyrol aus der nachfolgenden Gruppe gewählt ist: Polystyrol, modifiziertes Polystyrol oder eine Kombination aus Polystyrol und modifiziertem Polystyrol. 13. Verbundmaterial, umfassend eine Polymerzusammensetzung und Kohlenstoffnanoröhrchen, dadurch gekennzeichnet, dass das Verbundmaterial: 0,05-1,95 Gew. % Kohlenstoffnanoröhrchen bezogen auf das nach ISO 11358 ermittelte Gesamtgewicht des Vebundmaterials umfasst; einen Anteil Kohlenstoffnanoröhrchen in Form von Agglomeraten umfasst, wobei der Flächenanteil der Agglomerate weniger als 2,5 % nach ASTM D-2663-14 beträgt, und dass es einen nach CEI 60167 ermittelten Oberflächenwiderstand von höchstens 1 x 104 Ohm/sq, vorzugsweise höchstens 9 x 103 Ohm/sq aufweist. 14. Artikel aus einem Verbundmaterial nach Anspruch 13; vorzugsweise handelt es sich beim Artikel um eine einschichtige Folie oder eine mehrschichtige Folie, umfassend mindestens zwei coextrudierte Schichtenaus unterschiedlichem Material, wobei mindestens eine der Schichten aus einem Verbundmaterial nach Anspruch 13 besteht, wobei die mehrschichtige Folie vorzugsweise mindestens drei Schichten umfasst, wobei mindestens eine der äußeren
Schichten aus einem Verbundmaterial nach Anspruch 13 besteht. 15. Einsatz des Verbundmaterials nach Anspruch 13 zur Herstellung eines Artikels in einem Verfahren aus der nachfolgenden Gruppe: Blasformung, Spritzen, Rotationsformung oder Spritzblasformung.
Revendications 1. Mélange maître pour utilisation dans un procédé de préparation d’un matériau composite, le mélange maître comprenant un mélange d’un premier polymère amorphe avec des nanotubes de carbone, au moins 5% et de préférence de 5 % à 15 % en poids de nanotubes de carbone par rapport au poids total du mélange maître, comme déterminé conformément à la norme ISO 11358, et ayant un indice de fluage sous forte charge HLMI1 inférieur à 40 g/10 min, déterminé à 200°C sous une charge de 21,6 kg conformément à la norme ISO 1133, le mélange maître étant caractérisé en ce que le premier polymère amorphe a un indice de fluage MFI1 d’au moins 10 g/10 min, déterminé à 200°C sous une charge de 5 kg conformément à la norme ISO 1133H. 2. Mélange maître selon la revendication 1, caractérisé en ce qu’il a une résistivité de surface d’au plus 1 x 102 Ohms/carré, telle que déterminé conformément à la norme CEI 60167, et/ou un indice de fluage sous forte charge H LM 11 inférieur à 20 g/10 min, déterminé à 200°C sous une charge de 21,6 kg conformément à la norme ISO 1133. 3. Mélange maître selon la revendication 1 ou 2, caractérisé en ce qu’il comprend en outre de 0,01 à 4,0 % en poids d’un ou plusieurs additifs par rapport au poids total du mélange maître, le ou les additifs étant choisis parmi les cires, la tristéarine, le stéarate de zinc, le stéarate de calcium, le stéarate de magnésium, l’érucylamide, l’amide d’acide oléique, un copolymère d’éthylène/acide acrylique, un copolymère d’éthylène/ acétate de vinyle et le bromure de cétyltriméthylammonium. 4. Mélange maître selon l’une quelconque des revendications 1 à 3, caractérisé en outre en ce que le premier polymère amorphe est choisi parmi le polystyrène, l’acrylonitrile-butadiène-styrène, le polycarbonate, le styrène-acrylonitrile, le poly(méthacrylate de méthyle), le poly(chlorure de vinyle), le polybutadiène, le poly(téréphtalate de butylène), le poly(oxyde de p-phénylène), la polysulfone, la polyéther-sulfone, la polyéthylène-imine, la polyphényl-sulfone, l’acrylonitrile-acrylate de styrène ou l’une quelconque de leurs combinaisons ; de préférence le premier polymère est un polystyrène et est choisi parmi le polystyrène, un polystyrène modifié, et une combinaison de polystyrène et de polystyrène modifié. 5. Procédé pour préparer un mélange maître selon les revendications 1 à 4, caractérisé par les étapes consistant à : a1. disposer de nanotubes de carbone ; a2. disposer d’un premier polymère amorphe, ledit premier polymère amorphe ayant une température de transition vitreuse Tg1 et un indice de fluage MFI1 d’au moins 10 g/10 min, déterminé à 200°C sous une charge de 5 kg conformément à la norme ISO 1133H, et éventuellement de 0,01 à 4,0 % en poids d’un ou plusieurs additifs, par rapport au poids total du mélange maître, le ou les additifs étant choisis parmi les cires, la tristéarine, le stéarate de zinc, le stéarate de calcium, le stéarate de magnésium, l’érucylamide, l’amide d’acide oléique, un copolymère d’éthylène/acide acrylique, un copolymère d’éthylène/acétate de vinyle et le bromure de cétyltriméthylammonium ; a3. mélanger ensemble lesdits nanotubes de carbone et ledit premier polymère amorphe par extrusion dans une extrudeuse à une température de fût située dans la plage allant de Tg1 à Tg1 + 80°C, de préférence de Tg1 + 5°C à Tg1 + 50°C, la température de transition vitreuse étant déterminée conformément à la norme ISO 11357-2:2013. 6. Procédé selon la revendication 5, caractérisé en ce que l’étape a3) consistant à mélanger ensemble lesdits nanotubes de carbone et ledit premier polymère amorphe par extrusion est mise en oeuvre sur une extrudeuse double vis en co-rotation à une vitesse de vis d’au moins 250 t/min, de préférence d’au moins 300 t/min. 7. Procédé pour préparer un matériau composite comprenant une composition de polymère et des nanotubes de carbone, caractérisé en ce que ladite première composition comprenant un mélange d’un premier et d’un deuxième polymères amorphes et le matériau composite comprend de 0,05 à 1,95 % en poids de nanotubes de carbone, par rapport au poids total du matériau composite, comme déterminé conformément à la norme ISO 11358, et en ce que le matériau composite a une résistivité de surface d’au plus 1 x 104 ohms/carré, ledit procédé comprenant les étapes consistant à : b. disposer d’un mélange maître comprenant un premier polymère amorphe et au moins 5 %, et de préférence de 5 % à 15 % en poids de nanotubes de carbone, par rapport au poids total du mélange maître, comme déterminé conformément à la norme ISO 11358, le premier polymère amorphe ayant un indice de fluage MFI1 d’au moins 10 g/10 min, déterminé à 200°C sous une charge de 5 kg conformément à la norme ISO 1133H ; c. disposer d’un deuxième polymère amorphe ayant une température de transition vitreuse Tg2 ; d. mélanger ensemble le mélange maître et le deuxième polymère amorphe par extrusion dans une extrudeuse à une température de fût située dans la plage allant de Tg2 + 100°C à Tg2 + 200°C, de préférence allant de Tg2 + 120°C à Tg2 + 180°C, la température de transition vitreuse étant déterminée conformément à la norme ISO 11357-2:2013. 8. Procédé selon la revendication 7, caractérisé en ce que le mélange maître est un mélange maître selon l’une quelconque des revendications 1 à 4. 9. Procédé selon la revendication 7 ou 8, caractérisé en ce qu’il comprend, avant l’étape b) consistant à disposer d’un mélange maître, une étape consistant à préparer le mélange maître selon la revendication 5 ou 6. 10. Procédé selon l’une quelconque des revendications 7 à 9, le premier polymère amorphe ayant un indice de fluage MFI1 et un deuxième polymère amorphe ayant un indice de fluage MFI2, le procédé étant caractérisé en ce qu’il comprend en outre l’étape consistant à sélectionner les premier et deuxième polymères amorphes de façon que le MFI1 ait une valeur au moins double de la valeur de MFI2. 11. Procédé selon l’une quelconque des revendications 7 à 10, caractérisé en ce que ledit matériau composite comprend de 0,05 à 0,95 % en poids de nanotubes de carbone, par rapport au poids total du matériau composite, comme déterminé conformément à la norme ISO 11358. 12. Procédé selon l’une quelconque des revendications 7 à 11, caractérisé en ce que les premier et/ou deuxième polymères amorphes sont choisis parmi le polystyrène, l’acrylonitrile-butadiène-styrène, le polycarbonate, lestyrène-acrylonitrile, le poly(méthacrylate de méthyle), le poly(chlorure de vinyle), le polybutadiène, le poly(téréphtalate de butylène), le poly(oxyde de p-phénylène), la polysulfone, la polyéther-sulfone, la polyéthylène-imine, la polyphényl-sulfone, l’acrylonitrile-acrylate de styrène ou l’une quelconque de leurs combinaisons ; de préférence au moins l’un parmi les premier et deuxième polymères amorphes est un polystyrène, ledit polystyrène étant choisi parmi le polystyrène, un polystyrène modifié, et une combinaison de polystyrène et de polystyrène modifié. 13. Matériau composite comprenant une composition de polymère et des nanotubes de carbone, caractérisé en ce que le matériau composite : - comprend de 0,05 à 1,95 % en poids de nanotubes de carbone, par rapport au poids total du matériau composite, tel que déterminé conformément à la norme ISO 11358 ; - comprend une partie des nanotubes de carbone sous la forme d’agglomérats, la fraction de surface des agglomérats étant inférieure à 2,5 %, telle que déterminée conformément à la norme ASTM D-2663-14, et en ce que - il a une résistivité de surface d’au plus 1 x 104 Ohms/carré, de préférence d’au plus 9 x 103 Ohms/carré, telle que déterminée conformément à la norme CEI 60167. 14. Article fait en un matériau composite selon la revendication 13, l’article étant de préférence une feuille monocouche, ou une feuille multicouche comprenant au moins deux couches coextrudées en des matériaux différents, où au moins l’une des couches est faite en un matériau composite selon la revendication 13, et de préférence la feuille multicouche comprend trois couches où au moins l’une des couches extérieures est faite en un matériau composite selon la revendication 13. 15. Utilisation du matériau composite selon la revendication 13 pour produire un article dans un procédé choisi parmi le moulage par soufflage, l’injection, le rotomoulage et le moulage par injection-soufflage.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • EP 2401311 A [0053] · US 2010240832 A [0058] • US 20120289656 A[0053]
Non-patent literature cited in the description • Plastics Additives Handbook. Hanser Publishers, 2001 [0076]

Claims (6)

ÄSTERKiÄlKSK FOKOZOTT VELEÎÔRÉRESSÈOtTULAJÖÖNSÁGÖRKÁI BÍRÓ KÖMPOZiT mmmm, ELJÁRÁS A ÁH»OK KIALAKÍTÁSÁBA, ÉS À KOktPöZIT ANYÁSOK SZABADALMI IGÉNYPONTOK 1: Mesierkevefbk (másierbstch) feihasznsíásra egy kórnpoxii (összstgtif anyag elkészítésének aprásáhsz, ahs? a :més?eíkeyerék iártáfms&amp;a egy Csö möri polimer kwsrékM sYén Aá?töc#vskkai |oaaoluba|, amely keverék legalább ő tömeg % ímeaaYiáégbén, előnyösen 5 tömeg % és: 15 ternes i kÖsSiiínennpégnsn taríáimaí: esén nanööSöYéket a mesferkeverik isijéé tömegére ez meg van flÉfosvd; az J§ö II3SS <Mst$yß* :n8®y4&amp;îfo8ii|p$ olvadási, folyékonyság! indexszel [lead melt How Index (RL^Üil rendelkezik, amely kisebb, mint: 40 g/1ö: pere 2QCES hôfÂékieînêf megbaíárózsá 2LÖ kg têrbeléS: alatt mMQ 1.133 szabvány szer int aboi a 'lÄöii: as Jellemzi, hogy a* elsői ampifipöllmernekmzmivabäsi folyékonyság! irMexe fméit flow Index ?ΜΡίΤ$ igaiâbô: JO g/JO pere: 200-G: ndmársékieiné! meglmtàrozvs kg terhelés aistî sz ISO1133H szabvány szenn 1. 2: As L igértyaentmzerinti ftsesierkavemk, ssxai jell^ezvSi bogy iégfelebp 1 îO? ©nm/sn iriégyséd télâléti Jsliagos ellsnilè*-kêpessép: llfesistiviiy} :van* adögysn esi meg ven bnlározva e 011 SOIS? szabvány szeriéi, és/vsgy öíyan; nagyderbeiéses sivadásl fbjyétemysági indexszé? fisad me!! flow index ínLMllfl rendlfelk, amely kisebb, mint 21 08 pere: 200-G hőmésaékiéméí Tneghatárosva: 21 ;ö kg iémalés alatt m I S01133 ssabvlny ; sprint. 3..A* 1. vagy 2, igésiypon? sgerinii rnésierkevérék, szxsí jellemezve, hogy tartalmaz továbbá égy vagyÜbb adalékanyagét 0,01 tömeg % és 4.0 tömeg % közöld mennyiségben é mesterkevemk teljes tömegére venalésztátvá, áböi az égy vagy több adalékanyag aÄatkezök kökül vsiasztbato ki: viasZék, Msz?éarlní: slnlrsziearái. amid, eiemsavamiö, éillén-ákisav kopoiimen eGén-vibiiaestát kspoiirnsf is: œt44ri?îmibamii#)iemibfômid:ÄSTERKiÄlKSK INCREASED VELEÎÔRÉRESSÈOtTULAJÖÖNSÁGÖRKÁI JUDGE composite mmmm PROCEDURE GG »OK develop and the KOktPöZIT nut CLAIMS 1: Mesierkevefbk (másierbstch) feihasznsíásra preparing a kórnpoxii (összstgtif material aprásáhsz, ahs the MES eíkeyerék iártáfms &amp; of a pipe Morin polymer kwsrékM? Yet, a mixture of at least 5% w / w, preferably 5% w / w and 15% w / w / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt / wt. *: n8®y4 &amp; îfo8ii | p $ with melting, fluidity index [lead melt How Index (RL ^ Üil has less than: 40 g / 1ö: family 2QCES heat-shrinkingfree 2LÖ kg têrbeléSS: below mMQ 1.133 standard aboi a 'lÄöii: as Characterizes that * first ampifipöllmernekmzmivabäsi fluidity! irMexe fméit flow Index? ΜΡίΤ $ every iâbô: JO g / JO family: 200-G: ndcomparents, ptctk kg load aistî s ISO1133H standard senn. © nm / sn iriyyshey wintergirls Jsliagos ellsnilè * -chest: llfesistiviiy}: is there * adögysnát meg ven bnllatép e e1111 SOIS? standard and / vsgy yiya; a great deal of devotion to the crowd index? fisad me !! flow index tendinLmllfl is less than 21 08 family: 200-G heat shrink probe Tneghatrade: 21; kg kg under lubrication m I S01133 ssabvlny; sprint. 3.A * 1 or 2, on the right? characterized by serkinii bladder bladder, which also contains four or more additives in an amount of 0.01% to 4.0% by weight of green matter to total weight of master skins, the alcohols having four or more additive compounds are obtained as follows: vias, aryls: sslrearear. amid, eiema-amami, yeast-acacia copolymer eGen vibiiaestate kspoiirnsf is: œt44ri? 4, Az 14. igénypontök bármelyike szermti meslérkevemk, smejyel iéyébbá as JÄmez, begy ex eisöámoif pollsters· következők közöl váleszthate ki: pollszibl, akdlbiti'-biiíadiéívsatirel, poiikerbonál, sxtifobskífrmnk pö!i(rnetii-metakdlét), :Pöli:(Vlnííkioríí:l;s pöitbutsdiéfL poiiösÖléfVÍ^fsltaíát, pDÜfp^sniién-oxld;s pótís^mΙ^οπ:, paliétersxu110ri, :pbiiSiänimin,:föilfeniisanifon; :akríiíatrAsxtirot.mkdíát, vagy mindezek bármilyen kombinébi&amp;ia; az «i#pi<$m®it .amely a kövéíkezök közöl választható ki: piisziirok mödosifstt poliszáról, vagy ápiléztire! iSGiíjárás; aa 1*4. Igénypontok bármelyike szsbnii MáSiéfkevéfék eiôâiiitastai: A^af;fbiiwiepe; bogy: â::kővetkező lépéseket tarfslmsxza: ál. szánmanoosövekel szplgáiiaturskf s2. szolgáltatunk egy első amorf polimert, ahol az: sKo amorf polimemok van agy Tgl üvegesedésl átmeneti1 hőmérséklete ígíass: íransiiiöR tamperstere) és egy MR1 olvadási: foiyékonyságs indexe: ameiy legalább iö g/1Ö:prs 200^0 bbméísékletnéí msgbátbmzva: δ kg terhelésiisü az 1301133H szabvány szerint, ás kívánt esetben szöíglItatdnk OiOi fömeg őt és 4:ü tömeg % közéi: ménnyiségben egy vagy több adalékanyagé? a mesmrxeverék te|es Λοη^ι^ΐΡ vonatkoztatva: aboi az egy vágy több: adalékanyag a kővetkezők közöl váiasztbato ki: viaszok, mszrearim cink -sztearát. kaicíum-sztearát, magnézlum-aztearáí. erűik amid, oieinsavarnid, eillén-akriisav kopoiimer, gni|n<.viníiace?8íkopÍimsrés eetiiárirnrRii-ammónium'bforniö. M. összekevertük agyút? az említett szén nanecsövske? és az említett amorf első polimert extradliás révén egy sxlrubsmee olyan iârtâlyxfbaf^î^èrs^Â.âméiyïô-Ig.ii. és TglrdPO kézöttí bőfnéraékiebtartbrnepyöán van. előnyösen a Tgi-#G és a TgléSöAD közötti böméísékíebtadómánybani ahoi m. övépsádési: átmeneti hômérséktef az iöil 3Mt2G13 szabvány szebnbvsn meghafámxva,: δ. Αχ §. '^iéifpntÂrteti'.^pèS: hogy 8z:o3, lépést, vagyis; ez együttes osazesev&amp;rös# :δ*. éïÂtt -sasén nanoosovsktM èsM emíiléti első amorf pöimemek éxfaidáÉS révérs egy agya íbforgó (co-rotatíng) ikorosavai-os extfuderen haltjuk végre olyan :eiaväräÄ^n#^eiy.l|giiiäÄ25Ö:f3rdäiä^efö |^fn|-.eíőnyösen legalább 300 Wui8i$gf&amp;.4, Serial bee colostrum, according to any one of claims 14, JÄmez, et al. 1, ptyBeLeFeLiPiLiFiTiTiLi, pDiFiTiNiNeOlDiLi, pBiiSiNiNiNiIiRiI: pbiiSiNiNiNiNiNiNiNiNi: AcrylicAsxtirot.mk, or any combination of these &#39; i # pi <$ m You can choose one of the following options: whitewashed polysaccharide or skimmed iSGiA a 1 * 4 Anything ssbnii Mafiéfkevéfék neôâiiitastai: A ^ af; fbiiwiepe; we provide a first amorphous polymer, wherein: amo-amorphous polymers have a Tgl glass transition transition temperature1: transylal tamperstere) and an MR1 melt Factor: Liquidity Index: which is at least 1 g / 1: prs 200 ^ 0 at the end of the test: δ kg load weight according to standard 1301133H, and if desired, OiOi bulk and 4: 1% by weight of one or more additives? with the teaspoon of ye and :οη ^ ι ^:: aboi is a desire for more: additive comes from the following: waxes, mrearim zinc stearate. calcium calcium stearate, magnesium azearate. strong amide, oxyacetamide, acrylic acid acrylic copolymer, gni | n <.viníiace? 8íkopÍimsrés etetiárirnrRii-ammonium'bforniö. M. have we mixed the brain? the said carbon nanotubes? and said amorphous first polymer by extradition is a sxlrubsmee such as if. and TglrdPO has a handmade lingerie. preferably, the tgi # G and TgléSöAD spigot transmitters are present. belt tensioning: temporary temperature is set to 3Mt2G13 standard sebnbvsn meghafámx, δ. Αχ §. '^ iéifpntÂrteti'. ^ pèS: to 8z: o3, step; this is a joint osazesev &amp; rös #: δ *. yeast nanoosovsktM èsM emulsion the first amorphous flares of the brain and the brain of a brain-rotating (c-rotatine) dysfunctional extfuder: eïäräÄ ^ n # ^ y l | | Wui8i $ gf &amp;. 7. Eljárás olyamkompoze anyag eióáiiilására, amely egy pimer kompozíciói ès-ezèn nanocsővekef tartalmaz, sssal jellemezve, hogy a? §ÄÄ palimét kompozistó tartalmas egy első és agy második amorf polimer keveréket, és a lémpexií anyag .fôîiaimâx 0,05 tömeg % és 1,95 tömeg % kozott mennyiségben élén nenocsövekef: a; íefés tömegén·; vonatkoztatva, sbggyáb ex még van határozva g$ ISO tllSS siáövány sisrini továbbá aszal jslfemezye, hogy a kompozit anyagnak Segfeljébb 1,104 Ohhl/sq feliéi Wa^pa sttelífö^peseégé van, ahol az emtltott éPrés a következő lépeseket taríaimaxza: b. szolgalmiunk agy mastébreverakeb amely tartalmaz egy első amotípilmeíí és legalább 5 tömeg % éfenyösen J tömeg % és 1o tömeg % közötti mennyiségben szerr nanocsöveket s mesierkeveris teljes tömegére mnsíkozistva ahogyan ez: még m' hatáimzyá az ISO 1135&amp; szabvány szerint, és u fKutemsk -oivadési; fslyékőhy$á|£· intim (melt flow index (tVfFH)l legalább 10 g-'tO perx;2ö0C hőmérsékletnél meghatározva 5 kg terhelés alatt az ISO 1133H szabvány szénát; e, szolgáltatunk egy második polimert, amely Tg2 irvegesedési átmeneti hőmérséklettel bír; d> összekeverjük együtt a mesíerkeveréket és a második amorf polimer! eximoálas révén egy extruderben olyan tartály (barrel) aöméfsékldtnél, amely a 7g2+10ö«C és Tg2-r2í>X; közötti hőmérséklet-tartományban van, előnyösen a Tg2»-I2t>€ és a Tg2*18f>e közötti Mméfsékiektarmményfeaa, ahol az pvegesedésl átmeneti hőmérséklet az IS01137-2 2013 szabvány szennt van meghatározva, 3; A ?, igénypont szerinti eljárás, aastál jellemezve, hogy a mestefkéverék egy, az Ί4- igényponibk bármelyike szedné mesterkeverék. S;  7. vagy S, igénypont szerinti eprás, azzal jellemezve, bogy az éijáfés rnágában foglalja egy mosteikaveiSk szolgáltatásának D) lépése előtt a mesterkeverékíö. vagy S, igénypont ssedπfi ölőállitásáddl< Iépáséi. íö, á igénypontok bármelyiké iszerinti eljárás, ahol az első; amorf polimernek MFH olvadási felyeksnysägi indexe és a második amorf polimernek MFiámiyédási folyékonyság! Index® van, ahol az eljárás? m jéílámzi, hogy ez iáiiaimazza töylbbá az első éS: második amorf polimer kiválassdásánáklépéséi úgy; hogy m PfjNt# áz értéke legalább keiszéresé az Writ érték Ihek,7. A method of reworking a composite material comprising a pimeric composition of è and -none nanotubes, characterized in that? §ÄÄ palimete composite contains a first and second second amorphous polymer blend, and the lamellar material has a high content of 0.05% and 1.95% wt. brush mass ·; with reference, sbggyab ex is still defined as g $ ISO tllSS root sister, and it should be noted that the composite material has a 1.104 Ohhl / sq superimposed Wa ^ pa stteli ese l wash, where the melting of the following steps provides the following steps: b. BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION contains a first amotype and at least 5% w / w of about 1% w / w to about 1% w / w of the total weight of the mesierkeveris as described in ISO 1135 &amp;amp; according to the standard, and u fKutemsk-descent; fslyékőhy $ á | £ · intimate (melt flow index (VfFH) l at a temperature of at least 10 g -tO perx; 2o0C at a load of 5 kg under standard ISO 1133H; e) a second polymer having a Tg2 glass transition temperature is provided; d> mixing the mesil mixture and the second amorphous polymer eximulates a container (barrel) at an extruder in the temperature range of 7g2 + 10oC to Tg2-r <2> X, preferably Tg2 »-I2t> The process according to claim 1, wherein the masterpiece is a masterpiece of any of the k4 claims. S;                Â? Reki. or S, the ssedπfi killer of your claim. the method of any one of claims 1 to 3, wherein the first is; an amorphous polymer having an MFH melting point index and a second amorphous polymer having a Mfi melting fluidity! Index® is where the procedure is? m illustrates that this leads to a reduction in the first step of the first and second amorphous polymer; that the value of m PfjNt # oase is at least kinky for the Writ value Ihek, 11, A Αΐδ, Igénypontok bsrmeiyikft szerinti átjárás, azzal jellemezve, hogy az ^írilitdtf köniptíKít anyag ö,öá íárdeg %és ö,9F tömeg % közötti aiennyiségpon tartalmaz szén riánocsSvekéi a kompozk anyag teljes tömegére vonatkoztatva, ahogyan ez meg lián határozva az IS011358 szabvány széfiét. 12; A ?»11, igénypontok bármelyike szerint· epms, azzal jellemezve, hogy az: első és másedik ámoif poilmer a következők lözílí válaszható ki: poiiszted, aKfl;nitrii-bíjtaa:én sssfeöí, pglikafbonáí, eztlroFakhinlínl, poií|mei»metakríiát). polijvlmikiorldj, pOiibutádién, poiibatiléfi-tereftalái, poiifp-ienilenmxici), pöliszaifön, poiiétemzulfen, poPtiíénirnin, poílíeniíszuifdn, akriindrii^ztirol-akriiét, vagy mindezek bármilyen kombinációja, az első vagy második amorf polimer előnyösen polisztiroi, amely a kővetkezők közöl vátaszthaié ki: poiisziirol, módosított poilsztiroi. vagy a poiisztíroi és a módosítóit poiisztiroi kombinációin. 13 Kompod anyag, amely tartalmaz egy polimer kompssdót és tûàm Ä Ä« lëteffl«©*«, hogy ο komposi anyag: * 0,05 tömeg % és 1.85 tömeg 1 közötti mennyiségben tartalmas szén nanoexoveket 8 komóoslt anyag télies tömegére ftMtttottMt, ahogyan m ree# van határosve az !SD IldSgszabvény szerint; - tartalmazza a szén nanecsövek azo« fisáéi amely agglomerátumok formáiéban van olyan agglomerátum terület frakcióvá!, amely Kisebb, miét 2,S%, ahogyan m meg van határosra az ASTtó &amp;-2®63d4 szabvánnyal &amp;szNe»päft, továbbá azsaí Jeilememíéj hogy » legfeljebb 1,10^ ó^m/sq (négyzet) ftlU.Í|^ü ÂâlÂjÂ^e, dényöapg legföljebb SAW úmim Íté$yW&amp; Mifeft' fajlagos eiienáikyképossége van, ahogyan as meg:van látfevá: a CEI 80167 szabvány szerint.11, A Αΐδ, according to claims bsrmeiyikft, characterized in that the carbonyl carbonate material is present in an amount of between 5% and 9% by weight, based on the total weight of the composite as defined by IS011358. széfiét. 12; An epms according to any one of claims 11 to 11, characterized in that the first and second amoifilyls are selected from the group consisting of polystyrene, Kfl; nitrilylta: ssfefin, pglikaffin, thisfacinquinyl, poly (methacrylate). polyvinyl chloride, polyobutylene, polybutylene terephthalate, polypropylene glycol), pylisafen, polyethylene sulfene, polyethylene terinyl, polyylene sulphon, acrylonitrile, acrylate, or any combination thereof, the first or second amorphous polymer preferably being polystyrene, which may be denatured by polysyrol, modified polystyrene. or polystyrene and modifiers of polystyrene combinations. 13 Composite material containing a polymer compass and needle-like © * ο ο Composite material: * In an amount of between 0.05% and 1.85% by weight of carbonaceous carbon nanotubes, used for the wintering of 8 comestible substances, as described above. # is bounded by the SD SD standard; - contains the carbon nanotubes in the form of agglomerates in the agglomerate area fraction, which is Smaller than 2, S%, as is bounded by the ASTt &amp; -2®63d4 &amp; szne, and the Yiilememy that »up to 1.10 ^ oh ^ m / sq (square) ftlU.Í | ^ ü ÂâlÂje, the most important thing is SAW my te $ yW &amp; Mifeft has a specific disparity as it is: there is a visor: according to CEI 80167. 14. Árucikk (article), amely a 13. Igénypont szerinti kompoz« anyagból van hászirve, ahol as árucikk előnyösen egyrétegű lap {monolayered sheet) vagy többrétegű lap {myfefayeredi sheet), amely különböző anyagok legalább két scvön-exbuctait (co-ex«uőed) rétegét tartalmazza, aboi a rétegek legalább egyike egy 13. igénypont szerinti kompoz« anyagból van készítve, és a tbbbréfegö lap elényéson három rltept tÄmas, ahol é KIM rétegek teg^iá égyiko égy 13, igénypont szenna kompoz« anyagból van készítve,An article of article 13 according to claim 13, wherein said article is preferably a monolayered sheet or a multi-layer sheet (myfefayeredi sheet) of at least two scvön-exbuctait (co-ex) of different materials. at least one of the layers is made of a composite material according to claim 13, and the plurality of sheets are made of three rltept, whereby the KIM layers are made of a composite material 13; 15. AIkelmasiéé 8 13, tytyjflpnt sa^Mi teposií sf^ägÄ bogy árucikk készapn befele egy olyan elérés segítségévek amely e köveihézék kézül választható ki: lövéssé formázás: {blov^moeld-ng}, betécskendezèses tefÄ (inieçlfeh): forgatéses lármázás (roiomsbidmgj és stow moukiingj.15. AIkelmasiée 8 13, tytyjflpnt sa ^ Mi teposií sf ^ ägÄ bogy commodity ready-to-use in the form of an access assistant that can be selected by this stone: shot formatting: {blov ^ moeld-ng}, ineçlfeh: rotation (roiomsbidmgj) and stow moukiingj.
HUE14744591A 2013-08-01 2014-07-30 Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced HUE030291T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13178973 2013-08-01

Publications (1)

Publication Number Publication Date
HUE030291T2 true HUE030291T2 (en) 2017-05-29

Family

ID=48918255

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14744591A HUE030291T2 (en) 2013-08-01 2014-07-30 Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced

Country Status (16)

Country Link
US (2) US10431347B2 (en)
EP (1) EP2895534B1 (en)
JP (1) JP6012906B2 (en)
KR (1) KR101742926B1 (en)
CN (1) CN105431473B (en)
BR (1) BR112016002211A2 (en)
CA (1) CA2917607C (en)
DK (1) DK2895534T3 (en)
ES (1) ES2580603T3 (en)
HU (1) HUE030291T2 (en)
MY (1) MY173701A (en)
PH (1) PH12016500099A1 (en)
PL (1) PL2895534T3 (en)
SG (2) SG11201600247SA (en)
SI (1) SI2895534T1 (en)
WO (1) WO2015014897A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206711A (en) * 2015-02-12 2017-09-26 贝卡尔特公司 Conducting plastic product
TR201901296T4 (en) * 2015-03-12 2019-02-21 Total Res & Technology Feluy Process for the preparation of composite products with improved electrical properties.
KR20170129178A (en) * 2015-03-12 2017-11-24 토탈 리서치 앤드 테크놀로지 펠루이 Masterbatches for preparing a composite material based on semi-crystalline polymer with enhanced conductivity properties, process and composite materials produced therefrom
CN106147011A (en) * 2015-04-17 2016-11-23 普立万聚合体(上海)有限公司 A kind of carbon nanotubes is as the master batch of black pigment
KR102065559B1 (en) * 2015-06-09 2020-01-13 주식회사 엘지화학 Composite having improved conductivity and Preparation Method Thereof
GB2547188B (en) 2016-02-03 2018-04-18 Colour Tone Masterbatch Ltd Masterbatch for PVC
US20190283381A1 (en) 2016-07-20 2019-09-19 Total Research & Technology Feluy Multilayer Sheet for Thermoforming Having Improved Sagging Resistance
JP7244207B2 (en) * 2017-02-09 2023-03-22 株式会社カネカ Styrene-based resin composition and method for producing expandable styrene-based resin particles
PL234739B1 (en) * 2017-08-03 2020-03-31 Politechnika Lodzka Elastomer composition intended for rubber products with increased mechanical properties and reversible electrical conductance
WO2021214267A1 (en) * 2020-04-24 2021-10-28 Total Research & Technology Feluy Process for the preparation of polypropylene-based conductive injection-moulded articles
CN112251013A (en) * 2020-11-05 2021-01-22 成都佳驰电子科技有限公司 Low RCS test carrier of light broadband wave-absorbing composite material
KR102514631B1 (en) * 2021-03-08 2023-03-27 주식회사 이루켐 Manufacturing Method of Carbon Nanotube Masterbatch and Manufacturing Method of Electroconductive Polymer Composite by Using the Same
US20220363944A1 (en) * 2021-04-29 2022-11-17 Industrial Technology Research Institute Inkjet ink, 3d printing method, and 3d printing object
TWI789007B (en) * 2021-09-13 2023-01-01 南亞塑膠工業股份有限公司 Conductive polyester laminated structure and conductive packaging material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1663864B1 (en) * 2003-08-05 2009-04-08 Nanocyl S.A. Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses
JP2005139431A (en) * 2003-10-16 2005-06-02 Nippon Polystyrene Kk Method for molding polystyrene-based resin using master batch and molded product produced by the method for molding
FR2907442B1 (en) 2006-10-19 2008-12-05 Arkema France CONDUCTIVE COMPOSITE MATERIAL BASED ON THERMOPLASTIC POLYMER AND CARBON NANOTUBE
EP1947122A1 (en) 2007-01-22 2008-07-23 Total Petrochemicals France Process for preparing high impact monovinylaromatic polymers in the presence of a borane complex
WO2010020360A1 (en) * 2008-08-20 2010-02-25 Bayer Materialscience Ag Method for producing composite materials having reduced resistance and comprising carbon nanotubes
EP2184319B1 (en) * 2008-11-06 2011-04-20 Clariant Finance (BVI) Limited Process for the production of organic polymeric profiles
US20100222532A1 (en) 2009-02-27 2010-09-02 Fina Technology, Inc. Polystyrene Having High Melt Flow and High Vicat
JP2011219735A (en) * 2010-03-23 2011-11-04 Dic Corp Resin composition, and method of manufacturing resin composition
US8961834B2 (en) * 2011-03-23 2015-02-24 Sabic Global Technologies B.V. Carbon nanotube masterbatch, preparation thereof, and use in forming electrically conductive thermoplastic composition
US8691914B2 (en) 2011-05-12 2014-04-08 Fina Technology, Inc. High impact polystyrene with high gloss and high impact strength
WO2013107535A1 (en) * 2012-01-20 2013-07-25 Total Research & Technology Feluy Polymer composition comprising carbon nanotubes
JP2015061891A (en) * 2012-01-27 2015-04-02 昭和電工株式会社 Production method of conductive resin composition master batch and master batch
JP2015117253A (en) * 2012-04-20 2015-06-25 昭和電工株式会社 Conductive resin composition master batch
CN102899742B (en) * 2012-11-07 2014-07-23 东华大学 Electrically conductive composite fiber containing carbon nanotubes and preparation method of fiber
JP6052020B2 (en) * 2013-03-29 2016-12-27 日本ポリエチレン株式会社 Conductive polyethylene composition for injection molding and molded body and fuel system part using the same

Also Published As

Publication number Publication date
CN105431473A (en) 2016-03-23
KR101742926B1 (en) 2017-06-01
JP6012906B2 (en) 2016-10-25
BR112016002211A2 (en) 2017-08-01
SI2895534T1 (en) 2016-08-31
ES2580603T3 (en) 2016-08-25
WO2015014897A1 (en) 2015-02-05
US10431347B2 (en) 2019-10-01
EP2895534B1 (en) 2016-04-13
CA2917607A1 (en) 2015-02-05
EP2895534A1 (en) 2015-07-22
DK2895534T3 (en) 2016-08-01
PL2895534T3 (en) 2016-10-31
KR20160020583A (en) 2016-02-23
JP2016524005A (en) 2016-08-12
PH12016500099A1 (en) 2016-04-18
MY173701A (en) 2020-02-17
SG11201600247SA (en) 2016-02-26
SG10201610984PA (en) 2017-02-27
CA2917607C (en) 2017-02-28
US20190378634A1 (en) 2019-12-12
CN105431473B (en) 2017-12-22
US20160172071A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
HUE030291T2 (en) Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced
EP3268415B1 (en) Process for the preparation of composite articles having enhanced electrical properties
US10550231B2 (en) Masterbatches for preparing a composite material based on semi-crystalline polymer with enhanced conductivity properties, process and composite materials produced therefrom
EP2804898B1 (en) A process for preparing a conductive composition using a masterbatch.
JP2019529154A (en) Multi-layer sheet for thermoforming with improved slugging resistance
KR101924351B1 (en) Thin wall moldable conductive compositions with improved physical properties and uses thereof
WO2016142543A1 (en) Thermal switch based on polymer compound