WO2020137416A1 - Fine particle detection element and fine particle detector - Google Patents

Fine particle detection element and fine particle detector Download PDF

Info

Publication number
WO2020137416A1
WO2020137416A1 PCT/JP2019/047596 JP2019047596W WO2020137416A1 WO 2020137416 A1 WO2020137416 A1 WO 2020137416A1 JP 2019047596 W JP2019047596 W JP 2019047596W WO 2020137416 A1 WO2020137416 A1 WO 2020137416A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
collection
fine particles
detection element
particle detection
Prior art date
Application number
PCT/JP2019/047596
Other languages
French (fr)
Japanese (ja)
Inventor
英正 奥村
晃暢 織部
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2020137416A1 publication Critical patent/WO2020137416A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas

Definitions

  • the present invention relates to a particle detection element and a particle detector.
  • Patent Document 1 discloses, as such a particulate matter detector, one having a partition part for partitioning a gas flow path into a plurality of branch flow paths, and a collection electrode being arranged in each of the plurality of branch flow paths. .. It is described that by doing so, the particles to which electric charges are added are more easily collected by the collection electrode.
  • Patent Document 1 since a flat plate member is used as the partition part, the collection efficiency of fine particles cannot be sufficiently increased.
  • the present invention has been made to solve such a problem, and in a fine particle detection element having a partitioning section for partitioning a gas flow path into a plurality of branch flow paths, to improve the efficiency of collecting a collection target.
  • the main purpose is.
  • the fine particle detection element of the present invention A fine particle detection element used for detecting fine particles in a gas, A casing having a gas flow path through which the gas passes, A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the housing to form charged fine particles, A partition part having a non-flat shape for partitioning the gas flow path into a plurality of branch flow paths, A collection electrode provided in the partition section for collecting a collection target which is any one of the charged fine particles and the charges not added to the fine particles, It is equipped with.
  • the charge generation unit generates charges to convert the particles in the gas into charged particles, and the collection electrode collects the collection target (either charged particles or charges not added to the particles). To gather. Since the physical quantity changes depending on the collection target collected by the collection electrode, the particles in the gas can be detected by using this particle detection element.
  • the gas flow passage is divided into a plurality of branch flow passages by a non-flat partition portion provided with a collection electrode.
  • the surface area of the collecting electrode provided on the non-flat partition portion is larger than the surface area of the collecting electrode provided on the flat partition portion as in Patent Document 1. Therefore, according to the particulate matter detection element of the present invention, it is possible to improve the efficiency of collecting the collection target as compared with the conventional case.
  • the partition section may be a plate member having irregularities.
  • the object to be collected in the gas collides with the unevenness, so that the gas is easily collected by the collecting electrode.
  • the partition part may be a plate member having a shape in which dents and bulges alternately appear.
  • the object to be collected in the gas collides with dents and bulges that appear alternately, a plurality of times, so that the gas is more easily collected by the collection electrode.
  • the particle detection element of the present invention may be provided with an electric field generation electrode which is provided at a position facing the collection electrode and which generates a collection electric field for moving the collection target toward the collection electrode. ..
  • the collection electrode and the electric field generation electrode may be set as one set of electrodes, and the one set of electrodes may be provided in each of the plurality of branch flow paths. By doing so, it becomes easier to collect the collection target by the collection electrode.
  • the particle detector of the present invention is a particle detection element according to any one of the aspects described above, and a detection unit that detects the particles based on a physical quantity that changes according to the collection target collected in the collection electrode. , Are provided. Therefore, this particle detector has the same effects as those of the particle detection element of the present invention described above, for example, the effect of increasing the efficiency of collecting the object to be collected as compared with the conventional case.
  • the detection unit may detect the amount of the fine particles based on the physical quantity.
  • the “fine particle amount” may be, for example, at least one of the number, mass, and surface area of the fine particles.
  • the detection unit when the object to be collected is the electric charge that has not been added to the particles, the detection unit includes the physical quantity and the electric charge generated by the electric charge generation unit (for example, the number of electric charges or the electric charge). The amount of) and the fine particles may be detected.
  • charge includes ions in addition to positive charges and negative charges.
  • Detecting the amount of fine particles means not only measuring the amount of fine particles but also determining whether the amount of fine particles falls within a predetermined numerical range (for example, whether or not it exceeds a predetermined threshold value). The case shall be included.
  • the “physical quantity” may be any parameter that changes based on the number of collection targets (charge quantity), and examples thereof include current.
  • FIG. 3 is a perspective view of the particle detection element 20.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a sectional view taken along line BB of FIG. CC sectional drawing of FIG. 3 is an exploded perspective view of the particle detection element 20.
  • FIG. 3 is a perspective view of the particle detection element 20.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a sectional view taken along line BB of FIG. CC sectional drawing of FIG. 3 is an exploded perspective view of the particle detection element 20.
  • FIG. 1 is an explanatory view of a particle detector 10 of the present embodiment
  • FIG. 2 is a perspective view of a particle detection element 20
  • FIG. 3 is a sectional view taken along line AA of FIG. 2
  • FIG. 4 is a sectional view taken along line BB of FIG. 5 is a sectional view taken along line CC of FIG. 2
  • FIG. 6 is an exploded perspective view of the particle detection element 20.
  • the up-down direction, the left-right direction, and the front-back direction are as shown in FIGS. 1 and 2.
  • the particle detector 10 detects the number of particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine.
  • the particle detector 10 includes a particle detection element 20 and an accessory unit 80 including various power sources 36 and 56 and a number detection unit 60.
  • the fine particle detection element 20 is attached to a ring-shaped pedestal 16 fixed to the exhaust pipe 12 while being inserted into a columnar support 14.
  • the particle detection element 20 is protected by the protective cover 18.
  • the protective cover 18 is provided with a hole (not shown), and the exhaust gas flowing through the exhaust pipe 12 passes through the gas passage 24 provided at the lower end 22a of the particle detection element 20 through the hole.
  • the particle detection element 20 includes a charge generation unit 30, a surplus charge removal unit 40, a collection unit 50, and guard electrodes 68 and 92 in a housing 22 (see FIGS. 3 and 4). And a noise detection electrode 70 and a heater electrode 78.
  • the housing 22 is a long rectangular parallelepiped that is long in a direction intersecting the axial direction of the exhaust pipe 12 (here, a direction substantially orthogonal to it).
  • the housing 22 is made of ceramic such as alumina.
  • the lower end 22 a of the housing 22 is arranged inside the exhaust pipe 12, and the upper end 22 b is arranged outside the exhaust pipe 12.
  • a gas flow path 24 is provided at the lower end 22 a of the housing 22.
  • Various terminals are provided on the upper end 22b of the housing 22.
  • the axial direction of the gas flow path 24 matches the axial direction of the exhaust pipe 12.
  • the gas flow path 24 extends from a rectangular gas inlet 24 a provided on the front surface of the housing 22 to a rectangular gas outlet 24 b provided on the rear surface of the housing 22. It is a continuous rectangular parallelepiped space.
  • the housing 22 includes a left wall 22c and a right wall 22d that form the gas flow path 24, and a partition wall 22e that is parallel to these walls 22c and 22d.
  • the partition wall 22e is a non-flat wall that reaches the gas discharge port 24b from a position slightly deeper than the gas introduction port 24a, and divides the gas flow channel 24 into the first branch flow channel 241 and the second branch flow channel 242.
  • the partition wall 22e is a plate member having irregularities, and specifically, a plate member having a shape in which dents and bulges alternately appear when viewed in the vertical direction and the front-back direction.
  • the charge generation unit 30 generates charges in the vicinity of the gas introduction port 24a in the gas flow path 24 (between the gas introduction port 24a and the front end face 22e1 of the partition wall 22e). Thus, it is provided on the left side wall 22c.
  • the charge generator 30 has a discharge electrode 32 and two ground electrodes 34, 34.
  • the discharge electrode 32 is provided along the inner surface of the left side wall 22c, and has a plurality of fine protrusions around a rectangle as shown in FIG.
  • the two ground electrodes 34, 34 are rectangular electrodes, and are embedded in the left wall 22c so as to be parallel to the discharge electrode 32 with a space therebetween.
  • the charge generation unit 30 as shown in FIG.
  • a pulse voltage of several kV of the discharge power supply 36 (one of the accessory units 80) is applied between the discharge electrode 32 and the two ground electrodes 34, 34.
  • an air discharge is generated due to the potential difference between the electrodes.
  • the portion of the housing 22 between the discharge electrode 32 and the ground electrodes 34, 34 serves as a dielectric layer.
  • the discharge electrode 32 is connected to the discharge electrode terminal 33 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and is connected to the discharge power supply 36 via this terminal 33.
  • the two ground electrodes 34, 34 are connected to a ground electrode terminal 35 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and are connected to a discharge power supply 36 via this terminal 35.
  • the fine particles 26 contained in the gas enter the gas flow path 24 through the gas introduction port 24 a and, when passing through the charge generation unit 30, charge 28 generated by the air discharge of the charge generation unit 30. After being added to form the charged fine particles P, the particles move to one of the first and second branch channels 241 and 242. Further, of the generated electric charges 28, those not added to the fine particles 26 move to one of the first and second branch flow paths 241 and 242 as the electric charges 28 as the surplus electric charges.
  • the surplus charge removal unit 40 is provided downstream of the charge generation unit 30 and upstream of the collection unit 50, as shown in FIG.
  • the excess charge removing portion 40 has the removing electrode 44, but does not have the applying electrode (the electrode for generating an electric field on the removing electrode 44) at a position facing the removing electrode 44.
  • the removal electrodes 44 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242.
  • the removal electrode 44 is connected to the ground via a removal electrode terminal 45 (see FIGS. 2 and 6).
  • FIG. 4 shows the removal electrode 44 exposed in the first branch flow channel 241.
  • the collection unit 50 is provided downstream of the charge generation unit 30 and the surplus charge removal unit 40.
  • the collecting unit 50 collects the charged fine particles P, and has a counter electrode (electric field generating electrode) 52 and a collecting electrode 54.
  • the counter electrode 52 is provided on each of the left side wall 22c and the right side wall 22d, and is exposed to the first or second branch flow channels 241 and 242.
  • FIG. 3 shows the counter electrode 52 exposed in the first branch flow channel 241.
  • the collection electrodes 54 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242.
  • FIG. 4 shows the collecting electrode 54 exposed in the first branch flow channel 241.
  • the counter electrode 52 and the collecting electrode 54 are arranged at positions facing each other, as shown in FIG.
  • a DC voltage V1 (a positive potential, for example, about 2 kV) is applied to the counter electrode 52 by a collection power supply 56 via a counter electrode terminal 53 (see FIGS. 2 and 6).
  • the collecting electrode 54 is connected to the ground via the collecting electrode terminal 55 (see FIGS. 2 and 6), the differential amplifier circuit 62 and the ammeter 64.
  • the strength of the electric field generated at the distance, the distance between the removal electrode 44 and the discharge electrode 32, and the distance between the removal electrode 44 and the counter electrode 52 are determined by the collection electrode 54 without the charged fine particles P being collected by the removal electrode 44. It is set so as to be collected and the charge 28 not added to the fine particles 26 is removed by the removal electrode 44.
  • the electric mobility of the electric charge 28 is 10 times or more the electric mobility of the charged fine particles P, and the electric field required to collect the electric particles 28 can be reduced by one digit or more. Therefore, such setting can be easily performed. Become.
  • the guard electrode 68 is a leakage current absorption electrode that absorbs a leakage current flowing from the counter electrode 52 through the housing 22 to the collection electrode 54.
  • the guard electrodes 68 are provided on both sides of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242.
  • FIG. 4 shows the guard electrode 68 exposed in the first branch flow channel 241.
  • the guard electrode 68 is provided so as to surround the collection electrode 54, and a part of the guard electrode 68 is shared with the removal electrode 44.
  • the guard electrode 68 is connected to the ground through the removal electrode terminal 45 (see FIGS. 2 and 6) together with the removal electrode 44. Note that, in FIG.
  • the collecting electrode 54 is shown as a quadrangle and the guard electrode 68 is described as having a shape surrounding the quadrangle. Since the lead-out portion is provided, the upper portion of the guard electrode 68 has a shape surrounding the lead-out portion.
  • the noise detection electrode 70 is an electrode that detects noise around the collection electrode 54.
  • the noise detection electrodes 70 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242.
  • FIG. 4 shows the noise detection electrode 70 exposed in the first branch flow channel 241.
  • the noise detection electrode 70 is provided in the region surrounded by the guard electrode 68 (that is, inside the guard electrode 68) and on the downstream side of the collection electrode 54.
  • the number detecting unit 60 is one of the accessory units 80, and includes a differential amplifier circuit 62, an ammeter 64, and a number measuring device 66, as shown in FIG.
  • the collection electrode 54 is connected to the + side input terminal
  • the noise detection electrode 70 is connected to the ⁇ side input terminal.
  • the ammeter 64 has one terminal connected to the output terminal of the differential amplifier circuit 62 and the other terminal connected to the ground.
  • the ammeter 64 measures the current based on the charge 28 of the charged fine particles P collected by the collecting electrode 54.
  • the number measuring device 66 is composed of a microprocessor having a well-known CPU and the like, and calculates the number of the particles 26 based on the current of the ammeter 64.
  • the heater electrode 78 is a strip-shaped heating element embedded in the housing 22. Specifically, the heater electrode 78 is arranged such that the heater electrode terminal 79 on one side of the upper end 22b of the case 22 draws the left side wall 22c of the case 22 in zigzag, and then the other side of the upper end 22b of the case 22. It is wired so as to return to the heater electrode terminal 79.
  • the heater electrode 78 is connected to a power supply device (not shown) via a pair of heater electrode terminals 79, 79, and generates heat when energized by the power supply device.
  • the heater electrode 78 heats each electrode such as the housing 22, the removal electrode 44, and the collection electrode 54.
  • the particle detection element 20 is composed of eight sheets S1 to S8.
  • Each of the sheets S1 to S8 is made of the same material as the case 22.
  • the sheets are referred to as a first sheet S1, a second sheet S2,...
  • the thickness of each of the sheets S1 to S8 may be set appropriately, and may be, for example, the same or different.
  • a heater electrode 78 is provided on the surface of the first sheet S1. One end and the other end of the heater electrode 78 are arranged above the front surface of the first sheet S1, and the heater electrode terminals 79 are provided above the back surface of the first sheet S1 via the through holes of the first sheet S1. , 79, respectively.
  • Ground electrodes 34, 34 are provided on the surface of the second sheet S2.
  • the ground electrodes 34, 34 are integrated into one wiring 34a.
  • the end of the wiring 34a is arranged above the front surface of the second sheet S2, and is provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1. It is connected to the electrode terminal 35.
  • the wiring 44a of the removal electrode 44, the wiring 54a of the collection electrode 54, and the wiring 70a of the noise detection electrode 70 are provided along the vertical direction.
  • the upper ends of the wirings 44a, 54a, 70a are provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1, and the removal electrode terminal 45, the collection electrode terminal 55 and the noise are provided. Each is connected to the detection electrode terminal 71.
  • the discharge electrode 32 and the counter electrode 52 are provided on the surface of the third sheet S3.
  • a rectangular parallelepiped space serving as the gas flow path 24 (mainly the first branch flow path 241) is provided on the lower end side of the fourth sheet S4.
  • the fifth sheet S5 is a member that becomes the partition wall 22e, and a rectangular notch is provided at the lower front end. A portion of the notch that extends in the vertical direction becomes the front end face 22e1 of the partition wall 22e.
  • the removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on both front and back surfaces of the fifth sheet S5.
  • FIG. 6 shows the electrodes 44, 54, 70, 68 provided on the surface of the fifth sheet S5.
  • the electrodes 44, 54, 70, 68 provided on the back surface of the fifth sheet S5 are arranged in plane symmetry with the fifth sheet S5 as a plane of symmetry.
  • the removal electrode 44 (integrated with the guard electrode 68) provided on the front and back surfaces of the fifth sheet S5 is connected to the wiring 44a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5. And is connected to the removal electrode terminal 45 via the wiring 44a.
  • the collecting electrodes 54 provided on both front and back surfaces of the fifth sheet S5 are connected to the wiring 54a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5, and via the wiring 54a. It is connected to the collecting electrode terminal 55.
  • the noise detection electrodes 70 provided on both front and back surfaces of the fifth sheet S5 are connected to the wiring 70a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5, and via the wiring 70a. It is connected to the noise detection electrode terminal 71.
  • a rectangular parallelepiped space that becomes the gas flow path 24 (mainly the second branch flow path 242) is provided.
  • a counter electrode 52 is provided on the back surface of the seventh sheet S7.
  • the wiring 32a of the discharge electrode 32 and the wiring 52a of the counter electrode 52 are provided on the back surface of the eighth sheet S8 along the vertical direction.
  • the lower end of the wiring 32a is connected to the discharge electrode 32 provided on the third sheet S3 through the through holes of the fourth to seventh sheets S4 to S7.
  • the lower end of the wiring 52a is connected to the counter electrode 52 provided on the third and seventh sheets S3 and S7 through the through holes of the fourth to seventh sheets S4 to S7.
  • the upper ends of the wirings 32a and 52a are connected to the discharge electrode terminal 33 and the counter electrode terminal 53 provided above the surface of the eighth sheet S8 through the through holes of the eighth sheet S8, respectively.
  • the particle detection element 20 can be manufactured by using a plurality of ceramic green sheets. Specifically, each of the plurality of ceramic green sheets is provided with notches, through holes, or grooves as required, screen-printed with electrodes or wiring patterns, and then laminated and fired. Note that the notches, through holes, and grooves may be filled with a material (for example, an organic material) that will be burned out during firing. Thus, the particle detection element 20 is obtained.
  • the partition wall 22e is manufactured, the non-flat shape is controlled by adjusting the composition of the green sheet, the shrinkage rate during firing, the composition of the collecting electrode paste, the shrinkage rate during firing, firing conditions, and the like.
  • the discharge electrode terminal 33 and the counter electrode terminal 53 of the particle detection element 20 are connected to the discharge power supply 36 and the collection power supply 56 of the accessory unit, respectively. Further, the ground electrode terminal 35 and the removal electrode terminal 45 of the particle detection element 20 are connected to the ground. Further, the collection electrode terminal 55 and the noise detection electrode terminal 71 are connected to the + side and ⁇ side input terminals of the differential amplifier circuit 62, respectively, and the output terminals of the differential amplifier circuit 62 are counted through the ammeter 64. Connect to device 66. Then, the heater electrode terminals 79, 79 are connected to a power supply device (not shown). By doing so, the particle detector 10 can be manufactured.
  • the fine particle detecting element 20 When measuring the fine particles 26 contained in the exhaust gas of an automobile, the fine particle detecting element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1). As shown in FIG. 5, the fine particles 26 contained in the exhaust gas introduced into the gas flow path 24 from the gas introduction port 24a are charged with a charge 28 (here, a positive charge) generated by the discharge of the charge generation unit 30. It becomes fine particles P.
  • the charged fine particles P have a weak electric field (electric field generated between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44), and the length of the removal electrode 44 is long.
  • the excess charge removing unit 40 which is shorter than the above, passes through as it is and reaches the collecting unit 50.
  • the charges 28 not added to the particles 26 are attracted to the removal electrode 44 of the excess charge removal unit 40 even if the electric field is weak, and are discarded to the ground via the removal electrode 44.
  • the unnecessary charges 28 that have not been added to the fine particles 26 hardly reach the collection unit 50.
  • the charged fine particles P that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the counter electrode 52.
  • a current obtained by adding a current based on the noise around the collection electrode 54 to a current based on the electric charge 28 of the collected charged fine particles P flows through the collection electrode 54.
  • the noise around the collection electrode 54 includes, for example, noise generated by the charge generation unit 30 and noise generated by vehicle-mounted devices such as ETC.
  • a current based on noise around the collection electrode 54 flows through the noise detection electrode 70. Since the charged fine particles P are collected by the collection electrode 54 provided on the upstream side of the noise detection electrode 70, no current based on the charged fine particles P flows through the noise detection electrode 70.
  • the positive side input terminal of the differential amplifier circuit 62 receives the current flowing through the collection electrode 54, and the negative side input terminal receives the current flowing through the noise detection electrode 70. From the output terminal of the differential amplifier circuit 62, a signal amplified after subtracting the current flowing through the noise detection electrode 70 from the current flowing through the collection electrode 54 is output to the ammeter 64. Therefore, a current (a current not including a noise component) based on the charge 28 of the charged fine particles P collected by the collecting electrode 54 flows through the ammeter 64. Then, the current is measured by the ammeter 64, and the number measuring device 66 calculates the number of the fine particles 26 based on the current.
  • the number measuring device 66 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (stored charge amount), divides the stored charge amount by the elementary charge, and obtains the total number of charges (collected charge number).
  • the number Nt of the fine particles 26 collected by the collecting electrode 54 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 26 (average charge number) (see below). (See formula (1)).
  • the charged particles P may not be newly collected by the collection electrode 54. Therefore, by heating the collection electrode 54 by the heater electrode 78 periodically or at the timing when the deposition amount reaches a predetermined amount, the deposit on the collection electrode 54 is heated and incinerated, and the collection electrode 54 is heated. Refresh the electrode surface. Further, the heater electrode 78 can also incinerate the fine particles 26 adhering to the inner peripheral surface of the housing 22.
  • the guard electrode 68 when detecting the number Nt, the voltage V1 is applied between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Since the voltage V1 is several kV, even in the case 22 made of ceramic such as alumina, which is usually considered to be an electric insulator, a leakage current of several tens to several hundreds pA is generated in the counter electrode 52 and the collection electrode 54. It flows from one side to the other side through the housing 22. On the other hand, the detected current measured by the ammeter 64 when detecting the number Nt is several pA. Therefore, the leakage current affects the detection current.
  • such a leakage current is absorbed by the guard electrode 68 and is discarded to the ground.
  • the collection electrode 54 is surrounded by the guard electrode 68.
  • the noise detection electrode 70 is also surrounded by the guard electrode 68. Therefore, it is possible to prevent the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
  • the gas flow path 24 is divided into the first and second branch flow paths 241 and 242 by the non-flat partition wall 22e provided with the collection electrode 54.
  • the surface area of the collecting electrode 54 provided on the non-flat partition wall 22e is the collecting electrode provided on the flat partition wall (having the same vertical and horizontal sizes as the partition wall 22e) as in Patent Document 1. Larger than the surface area of. Therefore, it is possible to improve the efficiency of collecting the charged fine particles P, which is the collection target, as compared with the related art.
  • the charged fine particles P in the gas collide with the irregularities of the partition wall 22e, they are easily collected by the collecting electrode 54.
  • the partition wall 22e has a shape in which dents and bulges alternately appear, the charged fine particles P collide more than once. Therefore, it becomes easier to be collected by the collection electrode 54.
  • the collection fine particles 54 can be more easily collected by the collection electrode 54.
  • the counter electrode 52 and the collection electrode 54 are used as one set of electrodes, and one set of electrodes is provided in each of the first and second branch channels 241 and 242. At 54, it becomes easier to collect the charged fine particles P.
  • the number measuring device 66 subtracts the noise signal (current) from the noise detection electrode 70 from the particle detection signal (current) from the collection electrode 54 and then based on the amplified signal (corrected signal), Calculates a number. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the number of particles is increased by calculating the number of particles based on the corrected signal.
  • the leak current is absorbed by the guard electrode 68, the leak current is prevented from being added to the particle detection signal from the collection electrode 54.
  • the noise detection electrode 70 is also provided inside the guard electrode 68, it is possible to prevent a leak current from being added to the noise signal from the noise detection electrode 70. Therefore, it is possible to prevent the detection accuracy from being lowered due to the influence of the leakage current, and it is possible to improve the detection accuracy of the number of fine particles.
  • guard electrode 68 is shared with the removal electrode 44, the structure of the electrode can be simplified.
  • the removal electrode 44 does not have its own power source for generating an electric field on the removal electrode 44, and is provided between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44.
  • the excess electric charge 28 is removed to the ground by using the electric field generated in the. Therefore, the configuration of the particle detector 10 can be simplified as compared with the case where the removal electrode 44 has its own power source for generating an electric field.
  • the number of fine particles is calculated with the collection target as the charged fine particles P, but the number of particles may be calculated with the collection target as excess charges.
  • the removal electrode 44 is omitted, the voltage applied to the counter electrode 52 by the collection power source 56 is set lower than the voltage V1, and the excess charge is collected by the collection electrode 54 and charged.
  • the fine particles P may be discharged from the gas discharge port 24b without being collected by the collection electrode 54. In that case, first, the total number of the electric charges 28 generated in the electric charge generating unit 30 is measured, and thereafter, when the gas containing the fine particles 26 is flown in the gas flow path 24, the excess electric charge is generated from the current flowing in the collecting electrode 54.
  • the number of fine particles is determined by measuring the number and subtracting the number of surplus charges from the total number of charges 28. Even in this case, the surface area of the collecting electrode 54 provided on the non-flat partition wall 22e is provided on the flat partition wall (having the same vertical and horizontal sizes as the partition wall 22e) as in Patent Document 1. Since it is larger than the surface area of the collecting electrode, it is possible to improve the efficiency of collecting the surplus charges to be collected, as compared with the conventional case.
  • the gas flow path 24 is partitioned into the first and second branch flow paths 241 and 242 by the partition wall 22e, but the gas flow path 24 is divided into two or more partition walls and three or more branch flow paths. You may divide into. Even in that case, if the partition wall is formed in a non-flat shape like the partition wall 22e of the above-described embodiment, the efficiency of collecting the collection target can be increased as compared with the conventional case.
  • both electrodes 68 and 44 may be connected to the ground via a common wire, or may be connected to the ground via individual wires.
  • the guard electrode 68 is provided in the above-described embodiment, the guard electrode 68 may be omitted if the housing 22 has a high electric insulation property and the leakage current is substantially zero without the guard electrode 68. ..
  • the surplus charge removing unit 40 is described as having no application electrode for generating an electric field on the removal electrode 44 or an original removal power source for applying a voltage to the application electrode.
  • an applying electrode may be provided at a position (left wall 22c on the left side) facing the removing electrode 44, and a removing power source for applying a voltage to the applying electrode may be provided.
  • the voltage applied to the removal electrode 44 is adjusted so as to collect the excess charges 28 but not the charged fine particles P.
  • the charge generation unit 30 is provided on the left side wall 22c of the housing 22, but instead of or in addition to this, the charge generation unit may be provided on the right side wall 22d.
  • the counter electrode 52 is exposed to the gas flow path 24, but it is not limited to this and may be embedded in the housing 22.
  • the particulate matter detector 10 is attached to the exhaust pipe 12 of the engine, but the particulate matter detector 10 is not particularly limited to the exhaust pipe 12 of the engine, and may be any pipe as long as a gas containing particulates flows. Such a tube may be used.
  • the particle detection element 20 detects the number of particles, but it may detect the mass or surface area of the particles.
  • the mass of the fine particles can be obtained, for example, by multiplying the number of the fine particles by the average mass of the fine particles, and the relationship between the accumulated charge amount and the mass of the collected fine particles is stored in a storage device as a map in advance. It is also possible to obtain the mass of the fine particles from the accumulated charge amount using this map.
  • the surface area of the fine particles can also be obtained by the same method as the mass of the fine particles.
  • the amplification factor adjusting unit is provided between the negative side input terminal of the differential amplifier circuit 62 and the noise detection electrode 70, and the noise signal detected by the collection electrode 54 and the noise detection electrode 70 are detected.
  • the amplification factor of the amplification factor adjusting unit may be set so as to match the generated noise signal. By doing so, the magnitude of the noise signal that rides on the collection electrode 54 and the noise signal that rides on the noise detection electrode 70 due to the difference in distance from the noise generation source (for example, the discharge electrode 32) of each electrode 54 and the difference in electrode area. However, even if they are different, their influence can be canceled by the amplification factor of the amplification factor adjusting unit.
  • the present invention can be used for a particle detector that detects particles contained in gas.

Abstract

A fine particle detection element 20 is used to detect fine particles 26 in a gas. The gas is introduced into a gas flow path 24, and a charge generation unit 30 adds a charge 28 generated through discharging to the fine particles 26 in the gas so as to make the fine particles 26 charged fine particles P. A partition wall 22e having a shape that is not flat partitions the gas flow path 24 into first and second branch flow paths 241, 242. A trapping electrode 54 is provided on the partition wall 22e and traps the charged fine particles P.

Description

微粒子検出素子及び微粒子検出器Particle detection element and particle detector
 本発明は、微粒子検出素子及び微粒子検出器に関する。 The present invention relates to a particle detection element and a particle detector.
 従来、微粒子検出器としては、筐体内に導入された被測定ガス中の微粒子に電荷を付加し、電荷が付加された微粒子を捕集電極で捕集し、捕集された微粒子の電荷の量に基づいて微粒子の個数を測定するものが知られている。特許文献1は、こうした微粒子検出器として、ガス流路を複数の分岐流路に仕切る仕切り部を有し、捕集電極は複数の分岐流路の各々に配設されたものを開示している。こうすることにより、電荷が付加された微粒子を捕集電極でより捕集しやすくなると説明されている。 Conventionally, as a particle detector, an electric charge is added to the particles in the gas to be measured introduced into the housing, the charged particles are collected by a collecting electrode, and the amount of charges of the collected particles is measured. It is known to measure the number of fine particles based on the above. Patent Document 1 discloses, as such a particulate matter detector, one having a partition part for partitioning a gas flow path into a plurality of branch flow paths, and a collection electrode being arranged in each of the plurality of branch flow paths. .. It is described that by doing so, the particles to which electric charges are added are more easily collected by the collection electrode.
国際公開第2018/163466号パンフレットInternational Publication No. 2018/163466 Pamphlet
 しかしながら、特許文献1では、仕切り部として平坦な板部材を用いているため、微粒子の捕集効率を十分高めることができなかった。 However, in Patent Document 1, since a flat plate member is used as the partition part, the collection efficiency of fine particles cannot be sufficiently increased.
 本発明はこのような課題を解決するためになされたものであり、ガス流路を複数の分岐流路に仕切る仕切り部を備えた微粒子検出素子において、捕集対象を捕集する効率を高めることを主目的とする。 The present invention has been made to solve such a problem, and in a fine particle detection element having a partitioning section for partitioning a gas flow path into a plurality of branch flow paths, to improve the efficiency of collecting a collection target. The main purpose is.
 本発明の微粒子検出素子は、
 ガス中の微粒子を検出するために用いられる微粒子検出素子であって、
 前記ガスが通過するガス流路を有する筐体と、
 前記筐体内に導入された前記ガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
 前記ガス流路を複数の分岐流路に仕切る非平坦形状の仕切り部と、
 前記仕切り部に設けられ、前記帯電微粒子と前記微粒子に付加されなかった前記電荷とのいずれかである捕集対象を捕集する捕集電極と、
 を備えたものである。
The fine particle detection element of the present invention,
A fine particle detection element used for detecting fine particles in a gas,
A casing having a gas flow path through which the gas passes,
A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the housing to form charged fine particles,
A partition part having a non-flat shape for partitioning the gas flow path into a plurality of branch flow paths,
A collection electrode provided in the partition section for collecting a collection target which is any one of the charged fine particles and the charges not added to the fine particles,
It is equipped with.
 この微粒子検出素子では、電荷発生部が電荷を発生させることでガス中の微粒子を帯電微粒子にし、捕集電極が捕集対象(帯電微粒子と微粒子に付加されなかった電荷とのいずれか)を捕集する。捕集電極に捕集された捕集対象に応じて物理量が変化するため、この微粒子検出素子を用いることでガス中の微粒子を検出できる。また、ガス流路は捕集電極が設けられた非平坦形状の仕切り部によって複数の分岐流路に仕切られている。ここで、非平坦形状の仕切り部に設けられた捕集電極の表面積は、特許文献1のように平坦形状の仕切り部に設けられた捕集電極の表面積よりも大きい。そのため、本発明の微粒子検出素子によれば、従来に比べて捕集対象を捕集する効率を高めることができる。 In this particle detection element, the charge generation unit generates charges to convert the particles in the gas into charged particles, and the collection electrode collects the collection target (either charged particles or charges not added to the particles). To gather. Since the physical quantity changes depending on the collection target collected by the collection electrode, the particles in the gas can be detected by using this particle detection element. Further, the gas flow passage is divided into a plurality of branch flow passages by a non-flat partition portion provided with a collection electrode. Here, the surface area of the collecting electrode provided on the non-flat partition portion is larger than the surface area of the collecting electrode provided on the flat partition portion as in Patent Document 1. Therefore, according to the particulate matter detection element of the present invention, it is possible to improve the efficiency of collecting the collection target as compared with the conventional case.
 本発明の微粒子検出素子において、前記仕切り部は、凹凸を有する板部材であってもよい。こうすれば、ガス中の捕集対象は凹凸に衝突するため捕集電極により捕集されやすくなる。 In the fine particle detection element of the present invention, the partition section may be a plate member having irregularities. In this case, the object to be collected in the gas collides with the unevenness, so that the gas is easily collected by the collecting electrode.
 本発明の微粒子検出素子において、前記仕切り部は、へこみと膨らみとが交互に現れる形状の板部材であってもよい。こうすれば、ガス中の捕集対象は交互に現れるへこみと膨らみに複数回衝突するため捕集電極に一層捕集されやすくなる。 In the fine particle detection element of the present invention, the partition part may be a plate member having a shape in which dents and bulges alternately appear. In this case, the object to be collected in the gas collides with dents and bulges that appear alternately, a plurality of times, so that the gas is more easily collected by the collection electrode.
 本発明の微粒子検出素子は、前記捕集電極に対向する位置に設けられ、前記捕集電極に向けて前記捕集対象を移動させる捕集用電界を発生させる電界発生電極を備えていてもよい。こうすれば、捕集用電界で捕集対象を捕集電極に向けて移動させるため、捕集電極で捕集対象をより捕集しやすくなる。この場合、前記捕集電極と前記電界発生電極とを1組の電極として、前記複数の分岐流路の各々に前記1組の電極が設けられていてもよい。こうすれば、捕集電極で捕集対象を更に捕集しやすくなる。 The particle detection element of the present invention may be provided with an electric field generation electrode which is provided at a position facing the collection electrode and which generates a collection electric field for moving the collection target toward the collection electrode. .. In this case, since the collection target is moved toward the collection electrode by the collection electric field, the collection target can be more easily collected by the collection electrode. In this case, the collection electrode and the electric field generation electrode may be set as one set of electrodes, and the one set of electrodes may be provided in each of the plurality of branch flow paths. By doing so, it becomes easier to collect the collection target by the collection electrode.
 本発明の微粒子検出器は、上述したいずれかの態様の微粒子検出素子と、前記捕集電極に捕集された前記捕集対象に応じて変化する物理量に基づいて前記微粒子を検出する検出部と、を備えたものである。そのため、この微粒子検出器は、上述した本発明の微粒子検出素子と同様の効果、例えば従来に比べて捕集対象を捕集する効率を高めるという効果が得られる。この場合において、前記検出部は、前記物理量に基づいて、前記微粒子の量を検出してもよい。「微粒子の量」は、例えば微粒子の数,質量,表面積の少なくともいずれかであってもよい。この微粒子検出器において、前記捕集対象が前記微粒子に付加されなかった前記電荷である場合には、前記検出部は、前記物理量と、前記電荷発生部が発生させる電荷(例えば電荷の数又は電荷量)と、に基づいて、前記微粒子を検出してもよい。 The particle detector of the present invention is a particle detection element according to any one of the aspects described above, and a detection unit that detects the particles based on a physical quantity that changes according to the collection target collected in the collection electrode. , Are provided. Therefore, this particle detector has the same effects as those of the particle detection element of the present invention described above, for example, the effect of increasing the efficiency of collecting the object to be collected as compared with the conventional case. In this case, the detection unit may detect the amount of the fine particles based on the physical quantity. The “fine particle amount” may be, for example, at least one of the number, mass, and surface area of the fine particles. In this particle detector, when the object to be collected is the electric charge that has not been added to the particles, the detection unit includes the physical quantity and the electric charge generated by the electric charge generation unit (for example, the number of electric charges or the electric charge). The amount of) and the fine particles may be detected.
 なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「微粒子の量を検出する」とは、微粒子の量を測定する場合のほか、微粒子の量が所定の数値範囲に入るか否か(例えば所定のしきい値を超えるか否か)を判定する場合も含むものとする。「物理量」とは、捕集対象の数(電荷量)に基づいて変化するパラメータであればよく、例えば電流などが挙げられる。 In this specification, the term "charge" includes ions in addition to positive charges and negative charges. "Detecting the amount of fine particles" means not only measuring the amount of fine particles but also determining whether the amount of fine particles falls within a predetermined numerical range (for example, whether or not it exceeds a predetermined threshold value). The case shall be included. The “physical quantity” may be any parameter that changes based on the number of collection targets (charge quantity), and examples thereof include current.
微粒子検出器10の説明図。Explanatory drawing of the particle detector 10. 微粒子検出素子20の斜視図。FIG. 3 is a perspective view of the particle detection element 20. 図2のA-A断面図。FIG. 3 is a sectional view taken along line AA of FIG. 図2のB-B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 図2のC-C断面図。CC sectional drawing of FIG. 微粒子検出素子20の分解斜視図。3 is an exploded perspective view of the particle detection element 20. FIG.
 本発明の好適な実施形態について、図面を用いて説明する。図1は本実施形態の微粒子検出器10の説明図、図2は微粒子検出素子20の斜視図、図3は図2のA-A断面図、図4は図2のB-B断面図、図5は図2のC-C断面図、図6は微粒子検出素子20の分解斜視図である。なお、本実施形態において、上下方向,左右方向及び前後方向は、図1~図2に示した通りとする。 A preferred embodiment of the present invention will be described with reference to the drawings. 1 is an explanatory view of a particle detector 10 of the present embodiment, FIG. 2 is a perspective view of a particle detection element 20, FIG. 3 is a sectional view taken along line AA of FIG. 2, and FIG. 4 is a sectional view taken along line BB of FIG. 5 is a sectional view taken along line CC of FIG. 2, and FIG. 6 is an exploded perspective view of the particle detection element 20. In this embodiment, the up-down direction, the left-right direction, and the front-back direction are as shown in FIGS. 1 and 2.
 微粒子検出器10は、図1に示すように、エンジンの排気管12を流れる排ガスに含まれる微粒子26(図5参照)の数を検出するものである。この微粒子検出器10は、微粒子検出素子20と、各種電源36,56や個数検出部60を含む付属ユニット80とを備えている。 As shown in FIG. 1, the particle detector 10 detects the number of particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine. The particle detector 10 includes a particle detection element 20 and an accessory unit 80 including various power sources 36 and 56 and a number detection unit 60.
 微粒子検出素子20は、図1に示すように、円柱状の支持体14に差し込まれた状態で、排気管12に固定されたリング状の台座16に取り付けられている。微粒子検出素子20は、保護カバー18によって保護されている。保護カバー18には図示しない穴が設けられており、この穴を介して排気管12を流通する排ガスが微粒子検出素子20の下端22aに設けられたガス流路24を通過する。微粒子検出素子20は、図5に示すように、筐体22に、電荷発生部30と、余剰電荷除去部40と、捕集部50と、ガード電極68,92(図3及び図4参照)と、ノイズ検出電極70と、ヒータ電極78とを備えたものである。 As shown in FIG. 1, the fine particle detection element 20 is attached to a ring-shaped pedestal 16 fixed to the exhaust pipe 12 while being inserted into a columnar support 14. The particle detection element 20 is protected by the protective cover 18. The protective cover 18 is provided with a hole (not shown), and the exhaust gas flowing through the exhaust pipe 12 passes through the gas passage 24 provided at the lower end 22a of the particle detection element 20 through the hole. As shown in FIG. 5, the particle detection element 20 includes a charge generation unit 30, a surplus charge removal unit 40, a collection unit 50, and guard electrodes 68 and 92 in a housing 22 (see FIGS. 3 and 4). And a noise detection electrode 70 and a heater electrode 78.
 筐体22は、図1に示すように、排気管12の軸方向と交差する方向(ここでは略直交する方向)に長い長尺の直方体である。筐体22は、例えばアルミナなどのセラミック製である。筐体22の下端22aは排気管12の内部に配置され、上端22bは排気管12の外部に配置される。筐体22の下端22aには、ガス流路24が設けられている。筐体22の上端22bには、各種端子が設けられている。 As shown in FIG. 1, the housing 22 is a long rectangular parallelepiped that is long in a direction intersecting the axial direction of the exhaust pipe 12 (here, a direction substantially orthogonal to it). The housing 22 is made of ceramic such as alumina. The lower end 22 a of the housing 22 is arranged inside the exhaust pipe 12, and the upper end 22 b is arranged outside the exhaust pipe 12. A gas flow path 24 is provided at the lower end 22 a of the housing 22. Various terminals are provided on the upper end 22b of the housing 22.
 ガス流路24の軸方向は、排気管12の軸方向と一致している。ガス流路24は、図2に示すように、筐体22の前方の面に設けられた矩形のガス導入口24aから、筐体22の後方の面に設けられた矩形のガス排出口24bまで連なる直方体形状の空間である。筐体22は、ガス流路24を構成する左方壁22cと右方壁22dを備えると共に、これらの壁22c,22dと平行な仕切り壁22eを備えている。仕切り壁22eは、ガス導入口24aよりもやや奥に入り込んだ位置からガス排出口24bに達する非平坦形状の壁であり、ガス流路24を第1分岐流路241と第2分岐流路242にほぼ等分している。仕切り壁22eは、図5に示すように、凹凸を有する板部材であり、具体的には上下方向及び前後方向をみたときにへこみと膨らみとが交互に現れる形状の板部材である。 The axial direction of the gas flow path 24 matches the axial direction of the exhaust pipe 12. As shown in FIG. 2, the gas flow path 24 extends from a rectangular gas inlet 24 a provided on the front surface of the housing 22 to a rectangular gas outlet 24 b provided on the rear surface of the housing 22. It is a continuous rectangular parallelepiped space. The housing 22 includes a left wall 22c and a right wall 22d that form the gas flow path 24, and a partition wall 22e that is parallel to these walls 22c and 22d. The partition wall 22e is a non-flat wall that reaches the gas discharge port 24b from a position slightly deeper than the gas introduction port 24a, and divides the gas flow channel 24 into the first branch flow channel 241 and the second branch flow channel 242. It is divided into almost equal parts. As shown in FIG. 5, the partition wall 22e is a plate member having irregularities, and specifically, a plate member having a shape in which dents and bulges alternately appear when viewed in the vertical direction and the front-back direction.
 電荷発生部30は、図3及び図5に示すように、ガス流路24内のガス導入口24aの近傍(ガス導入口24aから仕切り壁22eの前端面22e1までの間)に電荷が発生するように、左方壁22cに設けられている。電荷発生部30は、放電電極32と2つのグランド電極34,34とを有している。放電電極32は、左方壁22cの内面に沿って設けられ、図3に示すように、矩形の周囲に複数の微細突起を有している。2つのグランド電極34,34は、矩形電極であり、左方壁22cに間隔をあけて放電電極32と平行となるように埋設されている。電荷発生部30では、図5に示すように、放電電極32と2つのグランド電極34,34との間に放電用電源36(付属ユニット80の1つ)の数kVのパルス電圧が印加されることで、両電極間の電位差による気中放電が発生する。このとき、筐体22のうち放電電極32とグランド電極34,34との間の部分が誘電体層の役割を果たす。この気中放電によって、放電電極32の周囲に存在するガスがイオン化されて正の電荷28が発生する。放電電極32は、筐体22の上端22bの放電電極端子33(図2及び図6参照)に接続され、この端子33を介して放電用電源36に接続されている。また、2つのグランド電極34,34は、筐体22の上端22bのグランド電極端子35(図2及び図6参照)に接続され、この端子35を介して放電用電源36に接続されている。 As shown in FIGS. 3 and 5, the charge generation unit 30 generates charges in the vicinity of the gas introduction port 24a in the gas flow path 24 (between the gas introduction port 24a and the front end face 22e1 of the partition wall 22e). Thus, it is provided on the left side wall 22c. The charge generator 30 has a discharge electrode 32 and two ground electrodes 34, 34. The discharge electrode 32 is provided along the inner surface of the left side wall 22c, and has a plurality of fine protrusions around a rectangle as shown in FIG. The two ground electrodes 34, 34 are rectangular electrodes, and are embedded in the left wall 22c so as to be parallel to the discharge electrode 32 with a space therebetween. In the charge generation unit 30, as shown in FIG. 5, a pulse voltage of several kV of the discharge power supply 36 (one of the accessory units 80) is applied between the discharge electrode 32 and the two ground electrodes 34, 34. As a result, an air discharge is generated due to the potential difference between the electrodes. At this time, the portion of the housing 22 between the discharge electrode 32 and the ground electrodes 34, 34 serves as a dielectric layer. By this air discharge, the gas existing around the discharge electrode 32 is ionized, and the positive charge 28 is generated. The discharge electrode 32 is connected to the discharge electrode terminal 33 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and is connected to the discharge power supply 36 via this terminal 33. Further, the two ground electrodes 34, 34 are connected to a ground electrode terminal 35 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and are connected to a discharge power supply 36 via this terminal 35.
 ガスに含まれる微粒子26は、図5に示すように、ガス導入口24aからガス流路24内に入り、電荷発生部30を通過する際に電荷発生部30の気中放電によって発生した電荷28が付加されて帯電微粒子Pとなったあと、第1及び第2分岐流路241,242のいずれかに移動する。また、発生した電荷28のうち微粒子26に付加されなかったものは、余剰電荷として電荷28のまま第1及び第2分岐流路241,242のいずれかに移動する。 As shown in FIG. 5, the fine particles 26 contained in the gas enter the gas flow path 24 through the gas introduction port 24 a and, when passing through the charge generation unit 30, charge 28 generated by the air discharge of the charge generation unit 30. After being added to form the charged fine particles P, the particles move to one of the first and second branch channels 241 and 242. Further, of the generated electric charges 28, those not added to the fine particles 26 move to one of the first and second branch flow paths 241 and 242 as the electric charges 28 as the surplus electric charges.
 余剰電荷除去部40は、図5に示すように、電荷発生部30の下流で且つ捕集部50の上流に設けられている。余剰電荷除去部40は、除去電極44を有しているが、除去電極44に対向する位置に印加電極(除去電極44上に電界を発生させるための電極)を有していない。除去電極44は、仕切り壁22eの両面のそれぞれに設けられ、第1又は第2分岐流路241,242に露出している。除去電極44は、除去電極端子45(図2及び図6参照)を介してグランドに接続されている。図4に第1分岐流路241に露出している除去電極44を示す。 The surplus charge removal unit 40 is provided downstream of the charge generation unit 30 and upstream of the collection unit 50, as shown in FIG. The excess charge removing portion 40 has the removing electrode 44, but does not have the applying electrode (the electrode for generating an electric field on the removing electrode 44) at a position facing the removing electrode 44. The removal electrodes 44 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242. The removal electrode 44 is connected to the ground via a removal electrode terminal 45 (see FIGS. 2 and 6). FIG. 4 shows the removal electrode 44 exposed in the first branch flow channel 241.
 捕集部50は、図5に示すように、電荷発生部30及び余剰電荷除去部40よりも下流に設けられている。捕集部50は、帯電微粒子Pを捕集するものであり、対向電極(電界発生電極)52と捕集電極54とを有している。対向電極52は、左方壁22c及び右方壁22dのそれぞれに設けられ、第1又は第2分岐流路241,242に露出している。図3に第1分岐流路241に露出している対向電極52を示す。捕集電極54は、仕切り壁22eの両面のそれぞれに設けられ、第1又は第2分岐流路241,242に露出している。図4に第1分岐流路241に露出している捕集電極54を示す。対向電極52と捕集電極54とは、図5に示すように、互いに向かい合う位置に配設されている。対向電極52は、対向電極端子53(図2及び図6参照)を介して直流電圧V1(正電位、例えば2kV程度)が捕集用電源56によって印加される。捕集電極54は、捕集電極端子55(図2及び図6参照)を介して差動増幅回路62及び電流計64を経てグランドに接続されている。これにより、捕集部50の対向電極52と捕集電極54との間には、帯電微粒子Pを捕集電極54に向けて移動させる比較的強い電界が発生する。したがって、ガス流路24を流れる帯電微粒子Pは、この比較的強い電界によって捕集電極54に引き寄せられて捕集される。 As shown in FIG. 5, the collection unit 50 is provided downstream of the charge generation unit 30 and the surplus charge removal unit 40. The collecting unit 50 collects the charged fine particles P, and has a counter electrode (electric field generating electrode) 52 and a collecting electrode 54. The counter electrode 52 is provided on each of the left side wall 22c and the right side wall 22d, and is exposed to the first or second branch flow channels 241 and 242. FIG. 3 shows the counter electrode 52 exposed in the first branch flow channel 241. The collection electrodes 54 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242. FIG. 4 shows the collecting electrode 54 exposed in the first branch flow channel 241. The counter electrode 52 and the collecting electrode 54 are arranged at positions facing each other, as shown in FIG. A DC voltage V1 (a positive potential, for example, about 2 kV) is applied to the counter electrode 52 by a collection power supply 56 via a counter electrode terminal 53 (see FIGS. 2 and 6). The collecting electrode 54 is connected to the ground via the collecting electrode terminal 55 (see FIGS. 2 and 6), the differential amplifier circuit 62 and the ammeter 64. As a result, a relatively strong electric field that moves the charged fine particles P toward the collection electrode 54 is generated between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Therefore, the charged fine particles P flowing in the gas flow path 24 are attracted to and collected by the collection electrode 54 by this relatively strong electric field.
 なお、余剰電荷除去部40の除去電極44のサイズ、放電電極32と除去電極44との間の電界の強さ、捕集部50の各電極52,54のサイズ、両電極52,54の間に発生させる電界の強さ、除去電極44と放電電極32との距離、除去電極44と対向電極52との距離は、帯電微粒子Pが除去電極44に捕集されることなく捕集電極54に捕集されるように、また、微粒子26に付加しなかった電荷28が除去電極44によって除去されるように、設定されている。一般に、電荷28の電気移動度は、帯電微粒子Pの電気移動度の10倍以上であり、捕集するのに必要な電界は1桁以上小さくて済むので、このような設定が容易に可能となる。 The size of the removal electrode 44 of the excess charge removal unit 40, the strength of the electric field between the discharge electrode 32 and the removal electrode 44, the size of each electrode 52, 54 of the collection unit 50, the distance between both electrodes 52, 54. The strength of the electric field generated at the distance, the distance between the removal electrode 44 and the discharge electrode 32, and the distance between the removal electrode 44 and the counter electrode 52 are determined by the collection electrode 54 without the charged fine particles P being collected by the removal electrode 44. It is set so as to be collected and the charge 28 not added to the fine particles 26 is removed by the removal electrode 44. Generally, the electric mobility of the electric charge 28 is 10 times or more the electric mobility of the charged fine particles P, and the electric field required to collect the electric particles 28 can be reduced by one digit or more. Therefore, such setting can be easily performed. Become.
 ガード電極68は、対向電極52から筐体22を経て捕集電極54へ流れる漏れ電流を吸収する漏れ電流吸収電極である。ガード電極68は、仕切り壁22eの両面のそれぞれに設けられ、第1又は第2分岐流路241,242に露出している。図4に第1分岐流路241に露出しているガード電極68を示す。図4に示すように、ガード電極68は、捕集電極54を囲むように設けられ、ガード電極68の一部は除去電極44と共通化されている。ガード電極68は、除去電極44と共に除去電極端子45(図2及び図6参照)を介してグランドに接続されている。なお、図4では、便宜上、捕集電極54を四角形で表しガード電極68はその四角形を囲う形状として記載したが、実際には、捕集電極54の上部には図6に示すように端子接続用の引き出し部が設けられているため、ガード電極68の上部はこの引き出し部も囲う形状となっている。 The guard electrode 68 is a leakage current absorption electrode that absorbs a leakage current flowing from the counter electrode 52 through the housing 22 to the collection electrode 54. The guard electrodes 68 are provided on both sides of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242. FIG. 4 shows the guard electrode 68 exposed in the first branch flow channel 241. As shown in FIG. 4, the guard electrode 68 is provided so as to surround the collection electrode 54, and a part of the guard electrode 68 is shared with the removal electrode 44. The guard electrode 68 is connected to the ground through the removal electrode terminal 45 (see FIGS. 2 and 6) together with the removal electrode 44. Note that, in FIG. 4, for convenience, the collecting electrode 54 is shown as a quadrangle and the guard electrode 68 is described as having a shape surrounding the quadrangle. Since the lead-out portion is provided, the upper portion of the guard electrode 68 has a shape surrounding the lead-out portion.
 ノイズ検出電極70は、捕集電極54の周囲のノイズを検出する電極である。ノイズ検出電極70は、仕切り壁22eの両面のそれぞれに設けられ、第1又は第2分岐流路241,242に露出している。図4に第1分岐流路241に露出しているノイズ検出電極70を示す。図4に示すように、ノイズ検出電極70は、ガード電極68によって囲まれた領域内(すなわちガード電極68の内側)であって捕集電極54の下流側に設けられている。 The noise detection electrode 70 is an electrode that detects noise around the collection electrode 54. The noise detection electrodes 70 are provided on both surfaces of the partition wall 22e and are exposed in the first or second branch flow channels 241 and 242. FIG. 4 shows the noise detection electrode 70 exposed in the first branch flow channel 241. As shown in FIG. 4, the noise detection electrode 70 is provided in the region surrounded by the guard electrode 68 (that is, inside the guard electrode 68) and on the downstream side of the collection electrode 54.
 個数検出部60は、付属ユニット80の1つであり、図5に示すように、差動増幅回路62と電流計64と個数測定装置66とを備えている。差動増幅回路62は、+側の入力端子に捕集電極54が接続され、-側の入力端子にノイズ検出電極70が接続されている。電流計64は、一方の端子が差動増幅回路62の出力端子に接続され、もう一方の端子がグランドに接続されている。この電流計64は、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流を測定する。個数測定装置66は、周知のCPUなどを備えたマイクロプロセッサからなり、電流計64の電流に基づいて微粒子26の個数を演算する。 The number detecting unit 60 is one of the accessory units 80, and includes a differential amplifier circuit 62, an ammeter 64, and a number measuring device 66, as shown in FIG. In the differential amplifier circuit 62, the collection electrode 54 is connected to the + side input terminal, and the noise detection electrode 70 is connected to the − side input terminal. The ammeter 64 has one terminal connected to the output terminal of the differential amplifier circuit 62 and the other terminal connected to the ground. The ammeter 64 measures the current based on the charge 28 of the charged fine particles P collected by the collecting electrode 54. The number measuring device 66 is composed of a microprocessor having a well-known CPU and the like, and calculates the number of the particles 26 based on the current of the ammeter 64.
 ヒータ電極78は、筐体22に埋設された帯状の発熱体である。具体的には、ヒータ電極78は、筐体22の上端22bの一方のヒータ電極端子79から、筐体22の左方壁22cをジグザグに引き回されたあと、筐体22の上端22bの他方のヒータ電極端子79に戻るように配線されている。ヒータ電極78は、一対のヒータ電極端子79,79を介して図示しない給電装置に接続され、その給電装置によって通電されると発熱する。ヒータ電極78は、筐体22や除去電極44,捕集電極54などの各電極を加熱する。 The heater electrode 78 is a strip-shaped heating element embedded in the housing 22. Specifically, the heater electrode 78 is arranged such that the heater electrode terminal 79 on one side of the upper end 22b of the case 22 draws the left side wall 22c of the case 22 in zigzag, and then the other side of the upper end 22b of the case 22. It is wired so as to return to the heater electrode terminal 79. The heater electrode 78 is connected to a power supply device (not shown) via a pair of heater electrode terminals 79, 79, and generates heat when energized by the power supply device. The heater electrode 78 heats each electrode such as the housing 22, the removal electrode 44, and the collection electrode 54.
 ここで、微粒子検出素子20の構成について、図6の分解斜視図を用いて更に説明する。微粒子検出素子20は、8枚のシートS1~S8で構成されている。各シートS1~S8は、筐体22と同じ材料で形成されている。説明の便宜上、左から右に向かって第1シートS1、第2シートS2、…と称し、各シートS1~S8における右側の面を表面、左側の面を裏面と称する。各シートS1~S8の厚みは適宜設定すればよく、例えばすべて同じであってもよいし、それぞれ異なっていてもよい。 Here, the configuration of the particle detection element 20 will be further described with reference to the exploded perspective view of FIG. The particle detection element 20 is composed of eight sheets S1 to S8. Each of the sheets S1 to S8 is made of the same material as the case 22. For the sake of convenience of description, the sheets are referred to as a first sheet S1, a second sheet S2,... The thickness of each of the sheets S1 to S8 may be set appropriately, and may be, for example, the same or different.
 第1シートS1の表面には、ヒータ電極78が設けられている。ヒータ電極78の一端及び他端は、第1シートS1の表面の上方に配置されており、第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたヒータ電極端子79,79にそれぞれ接続されている。 A heater electrode 78 is provided on the surface of the first sheet S1. One end and the other end of the heater electrode 78 are arranged above the front surface of the first sheet S1, and the heater electrode terminals 79 are provided above the back surface of the first sheet S1 via the through holes of the first sheet S1. , 79, respectively.
 第2シートS2の表面には、グランド電極34,34が設けられている。グランド電極34,34は1本の配線34aにまとめられている。その配線34aの端部は、第2シートS2の表面の上方に配置されており、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたグランド電極端子35に接続されている。第2シートS2の表面には、除去電極44の配線44aと捕集電極54の配線54aとノイズ検出電極70の配線70aとが上下方向に沿ってそれぞれ設けられている。各配線44a,54a,70aの上端は、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた除去電極端子45、捕集電極端子55及びノイズ検出電極端子71にそれぞれ接続されている。 Ground electrodes 34, 34 are provided on the surface of the second sheet S2. The ground electrodes 34, 34 are integrated into one wiring 34a. The end of the wiring 34a is arranged above the front surface of the second sheet S2, and is provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1. It is connected to the electrode terminal 35. On the surface of the second sheet S2, the wiring 44a of the removal electrode 44, the wiring 54a of the collection electrode 54, and the wiring 70a of the noise detection electrode 70 are provided along the vertical direction. The upper ends of the wirings 44a, 54a, 70a are provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1, and the removal electrode terminal 45, the collection electrode terminal 55 and the noise are provided. Each is connected to the detection electrode terminal 71.
 第3シートS3の表面には、放電電極32及び対向電極52が設けられている。 The discharge electrode 32 and the counter electrode 52 are provided on the surface of the third sheet S3.
 第4シートS4の下端側には、ガス流路24(主に第1分岐流路241)になる直方体形状の空間が設けられている。 A rectangular parallelepiped space serving as the gas flow path 24 (mainly the first branch flow path 241) is provided on the lower end side of the fourth sheet S4.
 第5シートS5は、仕切り壁22eになる部材であり、下方前端には矩形の切欠が設けられている。この切欠のうち上下方向に延びる部分が仕切り壁22eの前端面22e1になる。第5シートS5の表裏両面には、それぞれ除去電極44、捕集電極54、ノイズ検出電極70及びガード電極68が設けられている。図6に第5シートS5の表面に設けられた各電極44,54,70,68を示す。なお、第5シートS5の裏面に設けられた各電極44,54,70,68は、第5シートS5を対称面として面対称になるように配置されている。第5シートS5の表裏両面に設けられた除去電極44(ガード電極68と一体化されている)は、第3~第5シートS3~S5の各スルーホールを介して第2シートS2の配線44aに接続され、この配線44aを介して除去電極端子45に接続されている。第5シートS5の表裏両面に設けられた捕集電極54は、第3~第5シートS3~S5の各スルーホールを介して第2シートS2の配線54aに接続され、この配線54aを介して捕集電極端子55に接続されている。第5シートS5の表裏両面に設けられたノイズ検出電極70は、第3~第5シートS3~S5の各スルーホールを介して第2シートS2の配線70aに接続され、この配線70aを介してノイズ検出電極端子71に接続されている。 The fifth sheet S5 is a member that becomes the partition wall 22e, and a rectangular notch is provided at the lower front end. A portion of the notch that extends in the vertical direction becomes the front end face 22e1 of the partition wall 22e. The removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on both front and back surfaces of the fifth sheet S5. FIG. 6 shows the electrodes 44, 54, 70, 68 provided on the surface of the fifth sheet S5. The electrodes 44, 54, 70, 68 provided on the back surface of the fifth sheet S5 are arranged in plane symmetry with the fifth sheet S5 as a plane of symmetry. The removal electrode 44 (integrated with the guard electrode 68) provided on the front and back surfaces of the fifth sheet S5 is connected to the wiring 44a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5. And is connected to the removal electrode terminal 45 via the wiring 44a. The collecting electrodes 54 provided on both front and back surfaces of the fifth sheet S5 are connected to the wiring 54a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5, and via the wiring 54a. It is connected to the collecting electrode terminal 55. The noise detection electrodes 70 provided on both front and back surfaces of the fifth sheet S5 are connected to the wiring 70a of the second sheet S2 through the through holes of the third to fifth sheets S3 to S5, and via the wiring 70a. It is connected to the noise detection electrode terminal 71.
 第6シートS6の下端側には、ガス流路24(主に第2分岐流路242)になる直方体形状の空間が設けられている。 On the lower end side of the sixth sheet S6, a rectangular parallelepiped space that becomes the gas flow path 24 (mainly the second branch flow path 242) is provided.
 第7シートS7の裏面には、対向電極52が設けられている。 A counter electrode 52 is provided on the back surface of the seventh sheet S7.
 第8シートS8の裏面には、放電電極32の配線32aと対向電極52の配線52aとが上下方向に沿ってそれぞれ設けられている。配線32aの下端は、第4~第7シートS4~S7の各スルーホールを介して第3シートS3に設けられた放電電極32に接続されている。配線52aの下端は、第4~第7シートS4~S7の各スルーホールを介して第3及び第7シートS3,S7に設けられた対向電極52に接続されている。各配線32a,52aの上端は、第8シートS8のスルーホールを介して第8シートS8の表面の上方に設けられた放電電極端子33及び対向電極端子53にそれぞれ接続されている。 The wiring 32a of the discharge electrode 32 and the wiring 52a of the counter electrode 52 are provided on the back surface of the eighth sheet S8 along the vertical direction. The lower end of the wiring 32a is connected to the discharge electrode 32 provided on the third sheet S3 through the through holes of the fourth to seventh sheets S4 to S7. The lower end of the wiring 52a is connected to the counter electrode 52 provided on the third and seventh sheets S3 and S7 through the through holes of the fourth to seventh sheets S4 to S7. The upper ends of the wirings 32a and 52a are connected to the discharge electrode terminal 33 and the counter electrode terminal 53 provided above the surface of the eighth sheet S8 through the through holes of the eighth sheet S8, respectively.
 次に、微粒子検出器10の製造例について説明する。微粒子検出素子20は、複数枚のセラミックグリーンシートを用いて作製することができる。具体的には、複数枚のセラミックグリーンシートの各々について、必要に応じて切欠や貫通孔や溝を設けたり電極や配線パターンをスクリーン印刷したりした後、それらを積層して焼成する。なお、切欠や貫通孔や溝については、焼成時に焼失するような材料(例えば有機材料)で充填しておいてもよい。こうして、微粒子検出素子20を得る。なお、仕切り壁22eを作製するにあたっては、グリーンシートの組成や焼成時の収縮率、捕集電極ペーストの組成や焼成時の収縮率、焼成条件などを調整することで非平坦形状を制御する。続いて、微粒子検出素子20の放電電極端子33及び対向電極端子53をそれぞれ付属ユニットの放電用電源36及び捕集用電源56に接続する。また、微粒子検出素子20のグランド電極端子35及び除去電極端子45をグランドに接続する。更に、捕集電極端子55及びノイズ検出電極端子71を差動増幅回路62の+側及び-側の入力端子にそれぞれ接続し、差動増幅回路62の出力端子を電流計64を介して個数測定装置66に接続する。そして、ヒータ電極端子79,79を図示しない給電装置に接続する。こうすることにより、微粒子検出器10を製造することができる。 Next, a manufacturing example of the particle detector 10 will be described. The particle detection element 20 can be manufactured by using a plurality of ceramic green sheets. Specifically, each of the plurality of ceramic green sheets is provided with notches, through holes, or grooves as required, screen-printed with electrodes or wiring patterns, and then laminated and fired. Note that the notches, through holes, and grooves may be filled with a material (for example, an organic material) that will be burned out during firing. Thus, the particle detection element 20 is obtained. When the partition wall 22e is manufactured, the non-flat shape is controlled by adjusting the composition of the green sheet, the shrinkage rate during firing, the composition of the collecting electrode paste, the shrinkage rate during firing, firing conditions, and the like. Then, the discharge electrode terminal 33 and the counter electrode terminal 53 of the particle detection element 20 are connected to the discharge power supply 36 and the collection power supply 56 of the accessory unit, respectively. Further, the ground electrode terminal 35 and the removal electrode terminal 45 of the particle detection element 20 are connected to the ground. Further, the collection electrode terminal 55 and the noise detection electrode terminal 71 are connected to the + side and − side input terminals of the differential amplifier circuit 62, respectively, and the output terminals of the differential amplifier circuit 62 are counted through the ammeter 64. Connect to device 66. Then, the heater electrode terminals 79, 79 are connected to a power supply device (not shown). By doing so, the particle detector 10 can be manufactured.
 次に、微粒子検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子26を計測する場合、上述したようにエンジンの排気管12に微粒子検出素子20を取り付ける(図1参照)。図5に示すように、ガス導入口24aからガス流路24内に導入された排ガスに含まれる微粒子26は、電荷発生部30の放電によって発生した電荷28(ここでは正電荷)を帯びて帯電微粒子Pになる。帯電微粒子Pは、電界(除去電極44とその周囲に配置された電圧印加電極(放電電極32や対向電極52)との間に発生する電界)が弱く除去電極44の長さが捕集電極54よりも短い余剰電荷除去部40をそのまま通過して、捕集部50に至る。一方、微粒子26に付加されなかった電荷28は、電界が弱くても余剰電荷除去部40の除去電極44に引き寄せられ、除去電極44を介してグランドに捨てられる。これにより、微粒子26に付加されなかった不要な電荷28は捕集部50にほとんど到達することがない。 Next, a usage example of the particle detector 10 will be described. When measuring the fine particles 26 contained in the exhaust gas of an automobile, the fine particle detecting element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1). As shown in FIG. 5, the fine particles 26 contained in the exhaust gas introduced into the gas flow path 24 from the gas introduction port 24a are charged with a charge 28 (here, a positive charge) generated by the discharge of the charge generation unit 30. It becomes fine particles P. The charged fine particles P have a weak electric field (electric field generated between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44), and the length of the removal electrode 44 is long. The excess charge removing unit 40, which is shorter than the above, passes through as it is and reaches the collecting unit 50. On the other hand, the charges 28 not added to the particles 26 are attracted to the removal electrode 44 of the excess charge removal unit 40 even if the electric field is weak, and are discarded to the ground via the removal electrode 44. As a result, the unnecessary charges 28 that have not been added to the fine particles 26 hardly reach the collection unit 50.
 捕集部50に到達した帯電微粒子Pは、対向電極52によって発生した捕集用電界によって捕集電極54に捕集される。捕集電極54には、捕集された帯電微粒子Pの電荷28に基づく電流に捕集電極54の周囲のノイズに基づく電流が加算された電流が流れる。捕集電極54の周囲のノイズには、例えば電荷発生部30によるノイズやETCなどの車載機器によるノイズなどが含まれる。ノイズ検出電極70には、捕集電極54の周囲のノイズに基づく電流が流れる。帯電微粒子Pはノイズ検出電極70の上流側に設けられた捕集電極54によって捕集されるため、ノイズ検出電極70には帯電微粒子Pに基づく電流は流れない。差動増幅回路62の+側の入力端子には、捕集電極54に流れる電流が入力され、-側の入力端子には、ノイズ検出電極70に流れる電流が入力される。差動増幅回路62の出力端子からは、捕集電極54に流れる電流からノイズ検出電極70に流れる電流を減算したあと増幅された信号が電流計64へ出力される。そのため、電流計64には、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流(ノイズ成分を含まない電流)が流れる。そして、その電流が電流計64で測定され、その電流に基づいて個数測定装置66が微粒子26の個数を演算する。電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。個数測定装置66は、所定期間にわたって電流値を積分(累算)してその積分値(蓄積電荷量)を求め、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子26に付加する電荷の数の平均値(平均帯電数)で除算することで、捕集電極54に捕集された微粒子26の個数Ntを求める(下記式(1)参照)。個数測定装置66は、この個数Ntを排ガス中の微粒子26の数として検出する。
 Nt=(蓄積電荷量)/{(素電荷)×(平均帯電数)} …(1)
The charged fine particles P that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the counter electrode 52. A current obtained by adding a current based on the noise around the collection electrode 54 to a current based on the electric charge 28 of the collected charged fine particles P flows through the collection electrode 54. The noise around the collection electrode 54 includes, for example, noise generated by the charge generation unit 30 and noise generated by vehicle-mounted devices such as ETC. A current based on noise around the collection electrode 54 flows through the noise detection electrode 70. Since the charged fine particles P are collected by the collection electrode 54 provided on the upstream side of the noise detection electrode 70, no current based on the charged fine particles P flows through the noise detection electrode 70. The positive side input terminal of the differential amplifier circuit 62 receives the current flowing through the collection electrode 54, and the negative side input terminal receives the current flowing through the noise detection electrode 70. From the output terminal of the differential amplifier circuit 62, a signal amplified after subtracting the current flowing through the noise detection electrode 70 from the current flowing through the collection electrode 54 is output to the ammeter 64. Therefore, a current (a current not including a noise component) based on the charge 28 of the charged fine particles P collected by the collecting electrode 54 flows through the ammeter 64. Then, the current is measured by the ammeter 64, and the number measuring device 66 calculates the number of the fine particles 26 based on the current. The relationship between the current I and the charge amount q is I=dq/(dt) and q=∫Idt. The number measuring device 66 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (stored charge amount), divides the stored charge amount by the elementary charge, and obtains the total number of charges (collected charge number). The number Nt of the fine particles 26 collected by the collecting electrode 54 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 26 (average charge number) (see below). (See formula (1)). The number measuring device 66 detects this number Nt as the number of fine particles 26 in the exhaust gas.
Nt=(accumulated charge amount)/{(elementary charge)×(average number of charges)} (1)
 微粒子検出素子20の使用に伴い、微粒子26等が捕集電極54に数多く堆積すると、新たに帯電微粒子Pが捕集電極54に捕集されないことがある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、捕集電極54をヒータ電極78によって加熱することにより、捕集電極54上の堆積物を加熱して焼却し捕集電極54の電極面をリフレッシュする。また、ヒータ電極78により、筐体22の内周面に付着した微粒子26を焼却することもできる。 When a large number of particles 26 and the like are deposited on the collection electrode 54 as the particle detection element 20 is used, the charged particles P may not be newly collected by the collection electrode 54. Therefore, by heating the collection electrode 54 by the heater electrode 78 periodically or at the timing when the deposition amount reaches a predetermined amount, the deposit on the collection electrode 54 is heated and incinerated, and the collection electrode 54 is heated. Refresh the electrode surface. Further, the heater electrode 78 can also incinerate the fine particles 26 adhering to the inner peripheral surface of the housing 22.
 次に、ガード電極68の役割について説明する。微粒子検出器10では、個数Ntを検出する際に、捕集部50の対向電極52と捕集電極54との間に電圧V1を印加する。電圧V1は数kVであるため、通常は電気絶縁体と考えられているアルミナ等のセラミックからなる筐体22であっても数10~数100pAの漏れ電流が対向電極52及び捕集電極54の一方から筐体22を経て他方へ流れる。一方、個数Ntを検出する際に電流計64で測定される検出電流は数pAである。そのため、漏れ電流は検出電流に影響を与える。本実施形態では、こうした漏れ電流をガード電極68が吸収してグランドに捨てる。捕集電極54はガード電極68によって囲まれている。また、ノイズ検出電極70もガード電極68によって囲まれている。そのため、捕集電極54に流れる電流やノイズ検出電極70に流れる電流に漏れ電流が影響するのを抑制することができる。 Next, the role of the guard electrode 68 will be described. In the particle detector 10, when detecting the number Nt, the voltage V1 is applied between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Since the voltage V1 is several kV, even in the case 22 made of ceramic such as alumina, which is usually considered to be an electric insulator, a leakage current of several tens to several hundreds pA is generated in the counter electrode 52 and the collection electrode 54. It flows from one side to the other side through the housing 22. On the other hand, the detected current measured by the ammeter 64 when detecting the number Nt is several pA. Therefore, the leakage current affects the detection current. In this embodiment, such a leakage current is absorbed by the guard electrode 68 and is discarded to the ground. The collection electrode 54 is surrounded by the guard electrode 68. The noise detection electrode 70 is also surrounded by the guard electrode 68. Therefore, it is possible to prevent the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
 以上説明した微粒子検出素子20では、ガス流路24は捕集電極54が設けられた非平坦形状の仕切り壁22e部によって第1及び第2分岐流路241,242に仕切られている。ここで、非平坦形状の仕切り壁22eに設けられた捕集電極54の表面積は、特許文献1のように平坦形状の仕切り壁(仕切り壁22eと縦横サイズが同じ)に設けられた捕集電極の表面積よりも大きい。そのため、従来に比べて捕集対象である帯電微粒子Pを捕集する効率を高めることができる。 In the particle detection element 20 described above, the gas flow path 24 is divided into the first and second branch flow paths 241 and 242 by the non-flat partition wall 22e provided with the collection electrode 54. Here, the surface area of the collecting electrode 54 provided on the non-flat partition wall 22e is the collecting electrode provided on the flat partition wall (having the same vertical and horizontal sizes as the partition wall 22e) as in Patent Document 1. Larger than the surface area of. Therefore, it is possible to improve the efficiency of collecting the charged fine particles P, which is the collection target, as compared with the related art.
 また、ガス中の帯電微粒子Pは仕切り壁22eの凹凸に衝突するため捕集電極54により捕集されやすくなる。特に、仕切り壁22eはへこみと膨らみが交互に現れる形状であるため、帯電微粒子Pは衝突回数が複数回になる。そのため、捕集電極54に一層捕集されやすくなる。 Further, since the charged fine particles P in the gas collide with the irregularities of the partition wall 22e, they are easily collected by the collecting electrode 54. In particular, since the partition wall 22e has a shape in which dents and bulges alternately appear, the charged fine particles P collide more than once. Therefore, it becomes easier to be collected by the collection electrode 54.
 更に、対向電極52と捕集電極54との間に発生する電界で帯電微粒子Pを捕集電極54に向けて移動させるため、捕集電極54で帯電微粒子Pをより捕集しやすくなる。上述した実施形態では、対向電極52と捕集電極54とを1組の電極として、第1及び第2分岐流路241,242の各々に1組の電極が設けられているため、捕集電極54で帯電微粒子Pを更に捕集しやすくなる。 Furthermore, since the charged fine particles P are moved toward the collection electrode 54 by the electric field generated between the counter electrode 52 and the collection electrode 54, the collection fine particles 54 can be more easily collected by the collection electrode 54. In the above-described embodiment, the counter electrode 52 and the collection electrode 54 are used as one set of electrodes, and one set of electrodes is provided in each of the first and second branch channels 241 and 242. At 54, it becomes easier to collect the charged fine particles P.
 更にまた、個数測定装置66は捕集電極54からの微粒子検出信号(電流)からノイズ検出電極70からのノイズ信号(電流)を減算したあと増幅された信号(補正済み信号)に基づいて微粒子の数を演算する。補正済み信号はノイズの影響をほとんど受けていない信号であるため、その補正済み信号に基づいて微粒子の数を演算することにより、微粒子の数の検出精度が高まる。 Furthermore, the number measuring device 66 subtracts the noise signal (current) from the noise detection electrode 70 from the particle detection signal (current) from the collection electrode 54 and then based on the amplified signal (corrected signal), Calculates a number. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the number of particles is increased by calculating the number of particles based on the corrected signal.
 そしてまた、漏れ電流はガード電極68によって吸収されるため、捕集電極54からの微粒子検出信号に漏れ電流が加わることが防止される。また、ノイズ検出電極70もガード電極68の内側に設けられているため、ノイズ検出電極70からのノイズ信号に漏れ電流が加わることが防止される。したがって、漏れ電流の影響による検出精度の低下を防止することができ、微粒子の数の検出精度を高めることができる。 Moreover, since the leak current is absorbed by the guard electrode 68, the leak current is prevented from being added to the particle detection signal from the collection electrode 54. Further, since the noise detection electrode 70 is also provided inside the guard electrode 68, it is possible to prevent a leak current from being added to the noise signal from the noise detection electrode 70. Therefore, it is possible to prevent the detection accuracy from being lowered due to the influence of the leakage current, and it is possible to improve the detection accuracy of the number of fine particles.
 そして更に、余剰電荷は除去電極44によって除去されるため、余剰電荷が捕集電極54に捕集されて微粒子の数にカウントされてしまうのを抑制することができる。 Furthermore, since the excess charge is removed by the removal electrode 44, it is possible to prevent the excess charge from being collected by the collection electrode 54 and counted in the number of fine particles.
 そして更にまた、ガード電極68は、除去電極44と共通化されているため、電極の構成を簡略化することができる。 Furthermore, since the guard electrode 68 is shared with the removal electrode 44, the structure of the electrode can be simplified.
 加えて、除去電極44は、除去電極44上に電界を発生させる独自の電源を有さず、除去電極44とその周囲に配置された電圧印加電極(放電電極32や対向電極52)との間に発生する電界を利用して余剰の電荷28をグランドに除去する。そのため、除去電極44に電界を発生させる独自の電源を有する場合と比べて微粒子検出器10の構成を簡略化することができる。 In addition, the removal electrode 44 does not have its own power source for generating an electric field on the removal electrode 44, and is provided between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44. The excess electric charge 28 is removed to the ground by using the electric field generated in the. Therefore, the configuration of the particle detector 10 can be simplified as compared with the case where the removal electrode 44 has its own power source for generating an electric field.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes within the technical scope of the present invention.
 例えば、上述した実施形態では、捕集対象を帯電微粒子Pとして微粒子の数を求めたが、捕集対象を余剰電荷として微粒子の数を求めてもよい。例えば、上述した実施形態において、除去電極44を省略し、捕集用電源56が対向電極52に印加する電圧を電圧V1よりも低く設定し、余剰電荷が捕集電極54に捕集され、帯電微粒子Pが捕集電極54に捕集されずにガス排出口24bから排出されるようにしてもよい。その場合、まず、電荷発生部30で発生する電荷28の総数を測定しておき、その後、微粒子26を含むガスをガス流路24に流したときに捕集電極54に流れる電流から余剰電荷の数を測定し、電荷28の総数から余剰電荷の数を引くことにより微粒子の数を求める。このようにしても、非平坦形状の仕切り壁22eに設けられた捕集電極54の表面積は、特許文献1のように平坦形状の仕切り壁(仕切り壁22eと縦横サイズが同じ)に設けられた捕集電極の表面積よりも大きいため、従来に比べて捕集対象である余剰電荷を捕集する効率を高めることができる。 For example, in the above-described embodiment, the number of fine particles is calculated with the collection target as the charged fine particles P, but the number of particles may be calculated with the collection target as excess charges. For example, in the above-described embodiment, the removal electrode 44 is omitted, the voltage applied to the counter electrode 52 by the collection power source 56 is set lower than the voltage V1, and the excess charge is collected by the collection electrode 54 and charged. The fine particles P may be discharged from the gas discharge port 24b without being collected by the collection electrode 54. In that case, first, the total number of the electric charges 28 generated in the electric charge generating unit 30 is measured, and thereafter, when the gas containing the fine particles 26 is flown in the gas flow path 24, the excess electric charge is generated from the current flowing in the collecting electrode 54. The number of fine particles is determined by measuring the number and subtracting the number of surplus charges from the total number of charges 28. Even in this case, the surface area of the collecting electrode 54 provided on the non-flat partition wall 22e is provided on the flat partition wall (having the same vertical and horizontal sizes as the partition wall 22e) as in Patent Document 1. Since it is larger than the surface area of the collecting electrode, it is possible to improve the efficiency of collecting the surplus charges to be collected, as compared with the conventional case.
 上述した実施形態では、ガス流路24を仕切り壁22eで第1及び第2分岐流路241,242に仕切ったが、ガス流路24を2枚以上の仕切り壁で3つ以上の分岐流路に仕切ってもよい。その場合も、仕切り壁を上述した実施形態の仕切り壁22eと同様に非平坦形状にすれば、従来に比べて捕集対象を捕集する効率を高めることができる。 In the above-described embodiment, the gas flow path 24 is partitioned into the first and second branch flow paths 241 and 242 by the partition wall 22e, but the gas flow path 24 is divided into two or more partition walls and three or more branch flow paths. You may divide into. Even in that case, if the partition wall is formed in a non-flat shape like the partition wall 22e of the above-described embodiment, the efficiency of collecting the collection target can be increased as compared with the conventional case.
 上述した実施形態では、ガード電極68と除去電極44とを共通化したが、フレーム状のガード電極68と矩形の除去電極44とを前後に分離して設けてもよい。この場合、両電極68,44を共通の配線を介してグランドに接続してもよいし、個別の配線を介してグランドに接続してもよい。 In the above-described embodiment, the guard electrode 68 and the removal electrode 44 are commonly used, but the frame-shaped guard electrode 68 and the rectangular removal electrode 44 may be separately provided in the front and rear. In this case, both electrodes 68 and 44 may be connected to the ground via a common wire, or may be connected to the ground via individual wires.
 上述した実施形態では、ガード電極68を設けたが、筐体22の電気絶縁性が高くてガード電極68がなくても漏れ電流が実質ゼロの場合には、ガード電極68を省略してもよい。 Although the guard electrode 68 is provided in the above-described embodiment, the guard electrode 68 may be omitted if the housing 22 has a high electric insulation property and the leakage current is substantially zero without the guard electrode 68. ..
 上述した実施形態では、余剰電荷除去部40は除去電極44上に電界を発生させるための印加電極やその印加電極に電圧を印加する独自の除去用電源を有さないものとして説明したが、図5において除去電極44に対向する位置(左側の左方壁22c)に印加電極を設け、その印加電極に電圧を印加する除去用電源を設けてもよい。その場合、除去電極44に印加する電圧は余剰の電荷28を捕集するが帯電微粒子Pを捕集しないように調整する。 In the above-described embodiment, the surplus charge removing unit 40 is described as having no application electrode for generating an electric field on the removal electrode 44 or an original removal power source for applying a voltage to the application electrode. 5, an applying electrode may be provided at a position (left wall 22c on the left side) facing the removing electrode 44, and a removing power source for applying a voltage to the applying electrode may be provided. In that case, the voltage applied to the removal electrode 44 is adjusted so as to collect the excess charges 28 but not the charged fine particles P.
 上述した実施形態では、筐体22の左方壁22cに電荷発生部30を設けたが、それに代えて又は加えて、右方壁22dに電荷発生部を設けてもよい。 In the above-described embodiment, the charge generation unit 30 is provided on the left side wall 22c of the housing 22, but instead of or in addition to this, the charge generation unit may be provided on the right side wall 22d.
 上述した実施形態では、対向電極52はガス流路24に露出していたが、これに限らず筐体22に埋設されていてもよい。 In the above-described embodiment, the counter electrode 52 is exposed to the gas flow path 24, but it is not limited to this and may be embedded in the housing 22.
 上述した実施形態では、微粒子検出器10をエンジンの排気管12に取り付ける場合を例示したが、特にエンジンの排気管12に限定されるものではなく、微粒子を含むガスが流通する管であればどのような管であってもよい。 In the above-described embodiment, the case where the particulate matter detector 10 is attached to the exhaust pipe 12 of the engine is illustrated, but the particulate matter detector 10 is not particularly limited to the exhaust pipe 12 of the engine, and may be any pipe as long as a gas containing particulates flows. Such a tube may be used.
 上述した実施形態では、微粒子検出素子20は微粒子の数を検出するものとしたが、微粒子の質量や表面積などを検出するものとしてもよい。微粒子の質量は、例えば、微粒子の数に微粒子の平均質量を乗じることにより求めることができるし、予め蓄積電荷量と捕集された微粒子の質量との関係をマップとして記憶装置に記憶しておき、このマップを用いて蓄積電荷量から微粒子の質量を求めることもできる。微粒子の表面積についても、微粒子の質量と同様の方法で求めることができる。 In the above embodiment, the particle detection element 20 detects the number of particles, but it may detect the mass or surface area of the particles. The mass of the fine particles can be obtained, for example, by multiplying the number of the fine particles by the average mass of the fine particles, and the relationship between the accumulated charge amount and the mass of the collected fine particles is stored in a storage device as a map in advance. It is also possible to obtain the mass of the fine particles from the accumulated charge amount using this map. The surface area of the fine particles can also be obtained by the same method as the mass of the fine particles.
 上述した実施形態において、差動増幅回路62の-側の入力端子とノイズ検出電極70との間に増幅率調整部を設け、捕集電極54で検出されるノイズ信号とノイズ検出電極70で検出されるノイズ信号とが一致するように増幅率調整部の増幅率を設定してもよい。こうすれば、各電極54,70のノイズ発生源(例えば放電電極32)からの距離の違いや電極面積の違いによって捕集電極54に乗るノイズ信号とノイズ検出電極70に乗るノイズ信号の大きさが異なることがあったとしても、増幅率調整部の増幅率によってそれらの影響をキャンセルすることができる。 In the above-described embodiment, the amplification factor adjusting unit is provided between the negative side input terminal of the differential amplifier circuit 62 and the noise detection electrode 70, and the noise signal detected by the collection electrode 54 and the noise detection electrode 70 are detected. The amplification factor of the amplification factor adjusting unit may be set so as to match the generated noise signal. By doing so, the magnitude of the noise signal that rides on the collection electrode 54 and the noise signal that rides on the noise detection electrode 70 due to the difference in distance from the noise generation source (for example, the discharge electrode 32) of each electrode 54 and the difference in electrode area. However, even if they are different, their influence can be canceled by the amplification factor of the amplification factor adjusting unit.
  本出願は、2018年12月27日に出願された日本国特許出願第2018-244455号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on the claim of priority of Japanese Patent Application No. 2018-244455 filed on Dec. 27, 2018, and the entire contents thereof are included in the present specification by reference.
   本発明は、ガス中に含まれる微粒子を検出する微粒子検出器に利用可能である。 The present invention can be used for a particle detector that detects particles contained in gas.
10 微粒子検出器、12 排気管、14 支持体、16 台座、18 保護カバー、20 微粒子検出素子、22 筐体、22a 下端、22b 上端、22c 左方壁、22d 右方壁、22e 仕切り壁、22e1 前端面、24 ガス流路、24a ガス導入口、24b ガス排出口、26 微粒子、28 電荷、30 電荷発生部、32 放電電極、32a 配線、33 放電電極端子、34 グランド電極、34a 配線、35 グランド電極端子、36 放電用電源、40 余剰電荷除去部、44 除去電極、44a 配線、45 除去電極端子、50 捕集部、52 対向電極、52a 配線、53 対向電極端子、54 捕集電極、54a 配線、55 捕集電極端子、56 捕集用電源、60 個数検出部、62 差動増幅回路、64 電流計、66 個数測定装置、68 ガード電極、70 ノイズ検出電極、70a 配線、71 ノイズ検出電極端子、78 ヒータ電極、79 ヒータ電極端子、80 付属ユニット、P 帯電微粒子、S1~S8 第1~第8シート。 10 particle detector, 12 exhaust pipe, 14 support, 16 pedestal, 18 protective cover, 20 particle detection element, 22 housing, 22a lower end, 22b upper end, 22c left wall, 22d right wall, 22e partition wall, 22e1 Front end face, 24 gas flow path, 24a gas inlet, 24b gas outlet, 26 particles, 28 electric charge, 30 electric charge generation part, 32 discharge electrode, 32a wiring, 33 discharge electrode terminal, 34 ground electrode, 34a wiring, 35 ground Electrode terminal, 36 discharge power supply, 40 surplus charge removing section, 44 removing electrode, 44a wiring, 45 removing electrode terminal, 50 collecting section, 52 counter electrode, 52a wiring, 53 counter electrode terminal, 54 collecting electrode, 54a wiring , 55 collection electrode terminals, 56 collection power supply, 60 number detection unit, 62 differential amplification circuit, 64 ammeter, 66 number measurement device, 68 guard electrode, 70 noise detection electrode, 70a wiring, 71 noise detection electrode terminal , 78 heater electrode, 79 heater electrode terminal, 80 accessory unit, P charged fine particles, S1 to S8, 1st to 8th sheets.

Claims (6)

  1.  ガス中の微粒子を検出するために用いられる微粒子検出素子であって、
     前記ガスが通過するガス流路を有する筐体と、
     前記筐体内に導入された前記ガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
     前記ガス流路を複数の分岐流路に仕切る非平坦形状の仕切り部と、
     前記仕切り部に設けられ、前記帯電微粒子と前記微粒子に付加されなかった前記電荷とのいずれかである捕集対象を捕集する捕集電極と、
     を備えた微粒子検出素子。
    A fine particle detection element used for detecting fine particles in a gas,
    A casing having a gas flow path through which the gas passes,
    A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the housing to form charged fine particles,
    A partition part having a non-flat shape for partitioning the gas flow path into a plurality of branch flow paths,
    A collection electrode provided in the partition section for collecting a collection target which is any one of the charged fine particles and the charges not added to the fine particles,
    A fine particle detection element equipped with.
  2.  前記仕切り部は、凹凸を有する板部材である、
     請求項1に記載の微粒子検出素子。
    The partition portion is a plate member having irregularities,
    The fine particle detection element according to claim 1.
  3.  前記仕切り部は、へこみと膨らみとが交互に現れる形状の板部材である、
     請求項1又は2に記載の微粒子検出素子。
    The partition part is a plate member having a shape in which dents and bulges appear alternately.
    The fine particle detection element according to claim 1.
  4.  請求項1~3のいずれか1項に記載の微粒子検出素子であって、
     前記捕集電極に対向する位置に設けられ、前記捕集電極に向けて前記捕集対象を移動させる捕集用電界を発生させる電界発生電極
     を備えた微粒子検出素子。
    The fine particle detection device according to any one of claims 1 to 3,
    A fine particle detection element comprising an electric field generating electrode which is provided at a position facing the collection electrode and which generates a collection electric field for moving the collection target toward the collection electrode.
  5.  前記捕集電極と前記電界発生電極とを1組の電極として、前記複数の分岐流路の各々に前記1組の電極が設けられている、
     請求項4に記載の微粒子検出素子。
    With the collection electrode and the electric field generation electrode as one set of electrodes, the one set of electrodes is provided in each of the plurality of branch channels.
    The particle detection element according to claim 4.
  6.  請求項1~5のいずれか1項に記載の微粒子検出素子と、
     前記捕集電極に捕集された前記捕集対象に応じて変化する物理量に基づいて前記微粒子を検出する検出部と、
     を備えた微粒子検出器。
    A fine particle detection element according to any one of claims 1 to 5,
    A detection unit that detects the fine particles based on a physical quantity that changes according to the collection target that is collected by the collection electrode,
    Particle detector equipped with.
PCT/JP2019/047596 2018-12-27 2019-12-05 Fine particle detection element and fine particle detector WO2020137416A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244455 2018-12-27
JP2018244455 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137416A1 true WO2020137416A1 (en) 2020-07-02

Family

ID=71126237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047596 WO2020137416A1 (en) 2018-12-27 2019-12-05 Fine particle detection element and fine particle detector

Country Status (1)

Country Link
WO (1) WO2020137416A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535015A (en) * 2010-06-29 2013-09-09 エンパイア テクノロジー ディベロップメント エルエルシー Method and system for detecting or collecting particles
US20170146430A1 (en) * 2015-11-20 2017-05-25 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
WO2018163466A1 (en) * 2017-03-10 2018-09-13 日本碍子株式会社 Microparticle detecting element and microparticle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535015A (en) * 2010-06-29 2013-09-09 エンパイア テクノロジー ディベロップメント エルエルシー Method and system for detecting or collecting particles
US20170146430A1 (en) * 2015-11-20 2017-05-25 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
WO2018163466A1 (en) * 2017-03-10 2018-09-13 日本碍子株式会社 Microparticle detecting element and microparticle detector

Similar Documents

Publication Publication Date Title
JP6505082B2 (en) Particle counting device
US20190285534A1 (en) Particulate detector
US20190145858A1 (en) Fine-particle number detector
US20190391063A1 (en) Particulate detecting element and particulate detector
WO2020137416A1 (en) Fine particle detection element and fine particle detector
WO2019239588A1 (en) Fine particle number detector
JP6420525B1 (en) Fine particle detection element and fine particle detector
WO2020090438A1 (en) Microparticle detector
WO2020179502A1 (en) Fine particle detection element and fine particle detector
WO2020137418A1 (en) Fine particle detector
JPWO2018212156A1 (en) Particle count detector
US20200200710A1 (en) Particle detection element and particle detector
WO2021060105A1 (en) Microparticle detection element and microparticle detector
WO2020036092A1 (en) Fine particle detector
WO2019049566A1 (en) Microparticle detection element and microparticle detector
WO2019155920A1 (en) Fine particle detector
WO2020137431A1 (en) Microparticle detection element and microparticle detector
JP6366491B2 (en) Particle sensor
JP2019163976A (en) Fine particle detector
JP2020159726A (en) Fine particle detection element
JP2019045504A (en) Fine particle detection element and fine particle detector
WO2018163704A1 (en) Microparticle number detector
JPWO2019049568A1 (en) Particle detection element and particle detector
JP2021043123A (en) Detector for detecting number of fine particles
JP2019138738A (en) Fine particle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP