WO2020090438A1 - Microparticle detector - Google Patents

Microparticle detector Download PDF

Info

Publication number
WO2020090438A1
WO2020090438A1 PCT/JP2019/040453 JP2019040453W WO2020090438A1 WO 2020090438 A1 WO2020090438 A1 WO 2020090438A1 JP 2019040453 W JP2019040453 W JP 2019040453W WO 2020090438 A1 WO2020090438 A1 WO 2020090438A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
noise
collection
flow path
gas flow
Prior art date
Application number
PCT/JP2019/040453
Other languages
French (fr)
Japanese (ja)
Inventor
英正 奥村
和幸 水野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2020090438A1 publication Critical patent/WO2020090438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing

Definitions

  • the present invention relates to a particle detector.
  • the particle detector As the particle detector, a ceramic housing having a gas flow path, and a charge generation unit that adds charge generated by discharge to particles in the gas introduced into the gas flow path to form charged particles,
  • the gas flow path was provided with a collection unit that collects the charged fine particles on the downstream side of the charge generation unit, and a number measurement unit that measures the number of the fine particles based on the amount of charges of the collected charged fine particles.
  • the thing is known (for example, refer patent document 1).
  • the collection part has a collection electrode exposed in the gas flow path, and a counter electrode facing the collection electrode with the gas flow path in between.
  • the collection electrode collects the charged fine particles by using an electric field generated between the collection electrode and the counter electrode in the gas flow path by the voltage applied between the collection electrode and the counter electrode.
  • the amount of charges of the collected charged fine particles is detected as a minute current (for example, several pA).
  • the amount of electric charge of the collected charged fine particles is detected as a minute current (for example, several pA), it is easily affected by noise around the collecting electrode, which makes it difficult to detect accurately.
  • the present invention has been made to solve such a problem, and its main purpose is to improve the detection accuracy of the amount of fine particles.
  • the present invention has adopted the following means in order to achieve the above-mentioned main purpose.
  • the particle detector of the present invention is A particle detector used to detect particles in a gas, A casing having a gas flow path through which the gas passes, A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the gas flow path to form charged fine particles, A collector provided in the gas flow path on the downstream side of the gas flow with respect to the charge generator, and having a collector electrode for collecting the charged fine particles, A noise detection electrode for detecting noise around the collection electrode, A noise component is subtracted from the particle detection signal based on a particle detection signal from the collection electrode and a noise signal from the noise detection electrode to obtain a corrected signal, and the amount of the particles is determined based on the corrected signal.
  • a computing unit for computing It is equipped with.
  • the particle detection unit subtracts the noise component from the particle detection signal based on the particle detection signal from the collection electrode and the noise signal from the noise detection electrode to obtain a corrected signal, and based on the corrected signal Calculate the quantity. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the amount of particles is increased by calculating the amount of particles based on the corrected signal.
  • charge includes ions in addition to positive charges and negative charges.
  • signal may be a parameter that changes according to the amount of charged fine particles collected by the collecting electrode, and examples thereof include current.
  • amount of fine particles includes, for example, the number of fine particles, mass, surface area, and the like.
  • the noise detection electrode may be provided on the wall surface of the gas flow path of the housing. In this case, since the surface of the noise detection electrode is exposed, it is easy to detect noise.
  • the noise detection electrode may be provided on a wall surface of the gas flow path of the housing, and the surface of the noise detection electrode may be covered with a non-conductive protective layer. .. By doing so, it is possible to reliably prevent the charged fine particles from adhering to the noise detection electrode, and it becomes difficult for leakage current to flow.
  • the noise detection electrode may be embedded in the housing. Even in this case, it is possible to reliably prevent the charged fine particles from adhering to the noise detection electrode, and it becomes difficult for leakage current to flow.
  • the noise detection electrode may be provided on the downstream side of the collection electrode.
  • the noise detection electrode since the charged fine particles are collected by the collection electrode provided on the upstream side of the noise detection electrode, it is possible to prevent the charged fine particles from being collected by the noise detection electrode.
  • the surface of the noise detection electrode is covered with a protective layer or when the noise detection electrode is embedded in the housing, charged particles are not attached to the noise detection electrode. Need not be provided on the downstream side of.
  • the particle detector of the present invention may include a leakage current absorption electrode provided so as to surround the collection electrode, and the noise detection electrode may be provided inside the leakage current absorption electrode.
  • the leakage current absorption electrode absorbs the leakage current that is about to flow into the collection electrode. When such a leak current flows into the collection electrode, it affects the particle detection signal, but since it is absorbed by the leak current absorption electrode here, it is prevented that a leak current is added to the particle detection signal from the collection electrode. .. Further, since the noise detection electrode is also provided inside the leakage current absorption electrode, it is possible to prevent the leakage current from being added to the noise signal from the noise detection electrode.
  • the noise detection electrode is covered with a protective layer or if the noise detection electrode is embedded in the housing, it is difficult for the leakage current to flow to the noise detection electrode, so It does not necessarily have to be provided inside the electrode.
  • the particle detector of the present invention is provided with a removal electrode provided in the gas flow path between the charge generation section and the collection section for removing excess charge not charged to the particles to the ground. Good. In this case, since the excess charge is removed by the removal electrode, it is possible to prevent the excess charge from being collected by the collection electrode and counted in the amount of fine particles.
  • the particulate matter detector of the present invention is provided with the leakage current absorption electrode, and the noise detection electrode is provided inside the leakage current absorption electrode, and the charge generation unit and the collection unit are provided in the gas flow path.
  • the leakage current absorption electrode may be shared with the removal electrode, the removal electrode being provided between the removal electrodes and removing the excess charge not charged to the particles to the ground. In this case, since the excess charge is removed by the removal electrode, it is possible to prevent the excess charge from being collected by the collection electrode and counted in the amount of fine particles. Moreover, since the leakage current absorption electrode is shared with the removal electrode, the structure of the electrode can be simplified.
  • the removal electrode does not have a unique power source for generating an electric field on the removal electrode, and the voltage arranged around the removal electrode and the removal electrode.
  • the surplus charges may be removed to the ground by utilizing the electric field generated between the applied electrode and the electrodes.
  • the structure of the particle detector can be simplified as compared with the case where the removal electrode has its own power source for generating an electric field.
  • the voltage application electrode is a discharge electrode of the charge generation unit to which a voltage is applied by a discharge power supply, or the voltage application electrode is opposed to the collection electrode of the collection unit by a collection power supply. It may be a counter electrode to which is applied. By doing so, it is possible to use the discharge power supply or the collection power supply instead of the power supply unique to the removal electrode.
  • the arithmetic unit detects the first reference noise signal detected by the collection electrode and the noise detection electrode in a state where the gas is not passed through the gas flow path. Obtaining the amplification factor of the second reference noise signal so that it matches the second reference noise signal, and then, in a state where the gas is passed through the gas flow path, from the particle detection signal from the collection electrode,
  • the corrected signal may be obtained by subtracting an amplified signal obtained by multiplying the noise signal from the noise detection electrode by the amplification factor as the noise component. By doing so, the amplification factor can be accurately obtained without being affected by the gas.
  • the noise signal on the collection electrode and the noise signal on the noise detection electrode may have different signal magnitudes due to the difference in distance from the noise source (for example, the discharge electrode) or the difference in electrode area, These effects can be canceled by the amplification factor of the second reference noise signal.
  • Such a particle detector of the present invention has a first input terminal, a second input terminal and one output terminal, the collecting electrode is connected to the first input terminal, and the noise is input to the second input terminal.
  • a detection electrode is connected through an amplification factor adjusting unit, the arithmetic unit is connected to the output terminal, and a differential that outputs a difference between signals input to the first and second input terminals from the output terminal.
  • An amplifier circuit is provided, and the arithmetic unit of the amplification factor adjustment unit is such that the output signal from the differential amplifier circuit is in a range considered to be zero in a state where the gas is not passed through the gas flow path.
  • FIG. 3 is a perspective view of the particle detection element 20.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a sectional view taken along line BB of FIG. CC sectional drawing of FIG. 3 is an exploded perspective view of the particle detection element 20.
  • FIG. Explanatory drawing of another example of the number detection part 60.
  • the flowchart which shows an example of a calibration. Sectional drawing when the removal electrode 44 and the guard electrode 68 are provided separately (corresponding to the BB sectional view of FIG. 2).
  • the partial cross section figure of another embodiment of particulate detection element 20 The partial cross section figure of another embodiment of particulate detection element 20.
  • FIG. 8 is an exploded perspective view of a modified example of the particle detection element 20. Sectional drawing of a modification of the particle detection element 20 (corresponding to the BB sectional view of FIG. 2).
  • FIG. 1 is an explanatory view of the particle detector 10 of the present embodiment
  • FIG. 2 is a perspective view of the particle detection element 20
  • FIG. 3 is a sectional view taken along line AA of FIG. 2
  • FIG. 4 is a sectional view taken along line BB of FIG. 5 is a sectional view taken along line CC of FIG. 2
  • FIG. 6 is an exploded perspective view of the particle detection element 20.
  • the vertical direction, the horizontal direction, and the front-back direction are as shown in FIGS. 1 and 2.
  • the particle detector 10 detects the number of particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine.
  • the particle detector 10 includes a particle detection element 20 and an accessory unit 80 including various power sources 36 and 56 and a number detection unit 60.
  • the particle detection element 20 is attached to a ring-shaped pedestal 16 fixed to the exhaust pipe 12 while being inserted into a columnar support 14.
  • the particle detection element 20 is protected by the protective cover 18.
  • the protective cover 18 has a hole (not shown) through which the exhaust gas flowing through the exhaust pipe 12 passes through a gas flow path 24 provided at the lower end 22a of the particle detection element 20.
  • the particle detection element 20 includes a housing 22, a charge generation section 30, an excess charge removal section 40, a collection section 50, and guard electrodes 68 and 92 (see FIGS. 3 and 4). And a noise detection electrode 70 and a heater electrode 78.
  • the housing 22 is a long rectangular parallelepiped that is long in a direction intersecting the axial direction of the exhaust pipe 12 (here, a direction that is substantially orthogonal).
  • the housing 22 is made of ceramic such as alumina.
  • the lower end 22a of the housing 22 is arranged inside the exhaust pipe 12, and the upper end 22b is arranged outside the exhaust pipe 12.
  • a gas flow path 24 is provided at the lower end 22 a of the housing 22.
  • Various terminals are provided on the upper end 22b of the housing 22.
  • the axial direction of the gas flow path 24 matches the axial direction of the exhaust pipe 12.
  • the gas flow path 24 extends from a rectangular gas inlet 24 a provided on the front surface of the housing 22 to a rectangular gas outlet 24 b provided on the rear surface of the housing 22. It is a continuous rectangular parallelepiped space.
  • the housing 22 includes a pair of left and right flow path walls 22c and 22d that form a gas flow path 24.
  • the charge generation unit 30 is provided on the flow passage wall 22c so that charges are generated in the gas flow passage 24 in the vicinity of the gas introduction port 24a.
  • the charge generator 30 has a discharge electrode 32 and two ground electrodes 34, 34.
  • the discharge electrode 32 is provided along the inner surface of the flow path wall 22c, and as shown in FIG. 3, has a plurality of fine protrusions around a rectangle.
  • the two ground electrodes 34, 34 are rectangular electrodes, and are embedded in the flow path wall 22c so as to be parallel to the discharge electrode 32 with a space therebetween.
  • a pulse voltage of several kV of the discharge power supply 36 (one of the accessory units 80) is applied between the discharge electrode 32 and the two ground electrodes 34, 34.
  • an air discharge is generated due to the potential difference between the electrodes.
  • the portion of the housing 22 between the discharge electrode 32 and the ground electrodes 34, 34 serves as a dielectric layer.
  • the discharge electrode 32 is connected to a discharge electrode terminal 33 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and is connected to a discharge power supply 36 via this terminal 33.
  • the two ground electrodes 34, 34 are connected to the ground electrode terminal 35 (see FIGS. 2 and 6) of the upper end 22b of the housing 22, and are connected to the discharging power supply 36 via this terminal 35. ..
  • the fine particles 26 contained in the gas enter the gas flow path 24 through the gas introduction port 24a and, when passing through the charge generation unit 30, charge 28 generated by the air discharge of the charge generation unit 30. Is added to form charged fine particles P, and the particles move backward. Further, of the generated electric charges 28, those not added to the fine particles 26 move rearward as the electric charges 28.
  • the surplus charge removal unit 40 is provided downstream of the charge generation unit 30 and upstream of the collection unit 50, as shown in FIG.
  • the surplus charge removal portion 40 has a removal electrode 44 (see FIGS. 4 and 5), but an application electrode (an electrode for generating an electric field on the removal electrode 44) is provided at a position facing the removal electrode 44. I don't have it.
  • the removal electrode 44 is provided along the inner surface of the flow path wall 22d on the right side and is exposed in the gas flow path 24.
  • the removal electrode 44 is connected to the ground via a removal electrode terminal 45 (see FIGS. 2 and 6).
  • the collection unit 50 is provided downstream of the charge generation unit 30 and the surplus charge removal unit 40 in the gas flow path 24.
  • the collecting unit 50 collects the charged fine particles P, and has a counter electrode (electric field generating electrode) 52 and a collecting electrode 54.
  • the counter electrode 52 is provided along the inner surface of the left channel wall 22c and is exposed in the gas channel 24 (see FIGS. 3 and 5).
  • the collection electrode 54 is provided along the inner surface of the right channel wall 22d and is exposed in the gas channel 24 (see FIGS. 4 and 5).
  • the counter electrode 52 and the collecting electrode 54 are arranged at positions facing each other.
  • a DC voltage V1 (a positive potential, for example, about 2 kV) is applied to the counter electrode 52 by a collection power supply 56 via a counter electrode terminal 53 (see FIGS. 2 and 6).
  • the collection electrode 54 is connected to the ground via the collection electrode terminal 55 (see FIGS. 2 and 6), the differential amplifier circuit 62 and the ammeter 64.
  • a relatively strong electric field is generated between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Therefore, the charged fine particles P flowing in the gas flow path 24 are attracted to and collected by the collection electrode 54 by this relatively strong electric field. ..
  • the strength of the electric field generated by the discharge electrode 44, the distance between the removal electrode 44 and the discharge electrode 32, and the distance between the removal electrode 44 and the counter electrode 52 are determined by the collection electrode 54 without the charged fine particles P being collected by the removal electrode 44. It is set so as to be collected and the charge 28 not added to the fine particles 26 is removed by the removal electrode 44.
  • the electric mobility of the electric charge 28 is 10 times or more the electric mobility of the charged fine particles P, and the electric field necessary for collecting the electric charge is one digit or more. Therefore, such setting can be easily performed. Become.
  • the guard electrode 68 is a leakage current absorption electrode that absorbs a leakage current flowing from the counter electrode 52 through the housing 22 to the collection electrode 54.
  • the guard electrode 68 is provided on the surface of the flow path wall 22d so as to surround the collection electrode 54 as shown in FIGS. A part of the guard electrode 68 is shared with the removal electrode 44.
  • the guard electrode 68 is connected to the ground through the removal electrode terminal 45 (see FIGS. 2 and 6) together with the removal electrode 44. Note that, in FIG. 4, for the sake of convenience, the collection electrode 54 is shown as a quadrangle and the guard electrode 68 is described as having a shape surrounding the quadrangle. Since a lead-out portion for use is provided, the upper portion of the guard electrode 68 has a shape surrounding the lead-out portion.
  • the noise detection electrode 70 is an electrode that detects noise around the collection electrode 54.
  • the noise detection electrode 70 is provided along the inner surface of the flow path wall 22d of the housing 22 and is exposed in the gas flow path 24.
  • the noise detection electrode 70 is provided in the region surrounded by the guard electrode 68 (that is, inside the guard electrode 68) and on the downstream side of the collection electrode 54 as shown in FIGS. 4 to 6.
  • the number detecting unit 60 is one of the accessory units 80, and includes a differential amplifier circuit 62, an ammeter 64, and a number measuring device 66, as shown in FIG.
  • the number detecting unit 60 corresponds to the calculating unit of the present invention.
  • the collection electrode 54 is connected to the + side input terminal (first input terminal)
  • the noise detection electrode 70 is connected to the ⁇ side input terminal (second input terminal).
  • the ammeter 64 has one terminal connected to the output terminal of the differential amplifier circuit 62 and the other terminal connected to the ground.
  • the ammeter 64 measures a current based on the electric charge 28 of the charged fine particles P collected by the collecting electrode 54.
  • the number measuring device 66 is composed of a microprocessor having a well-known CPU and the like, and calculates the number of the particles 26 based on the current of the ammeter 64.
  • the heater electrode 78 is a strip-shaped heating element embedded in the housing 22. Specifically, as shown in FIGS. 2 and 6, the heater electrode 78 has the flow path wall 22c of the case 22 drawn in a zigzag manner from one heater electrode terminal 79 of the upper end 22b of the case 22. After that, wiring is provided so as to return to the other heater electrode terminal 79 on the upper end 22b of the housing 22.
  • the heater electrode 78 is connected to a power supply device (not shown) via a pair of heater electrode terminals 79, 79, and generates heat when energized by the power supply device.
  • the heater electrode 78 heats each electrode such as the housing 22, the removal electrode 44, and the collection electrode 54.
  • the particle detection element 20 is composed of six sheets S1 to S6.
  • Each of the sheets S1 to S6 is made of the same material as the case 22.
  • the sheets are referred to as a first sheet S1, a second sheet S2, ...
  • the right side surface of each of the sheets S1 to S6 is referred to as a front surface
  • the left side surface is referred to as a back surface.
  • the thickness of each of the sheets S1 to S6 may be set appropriately, and may be the same or different.
  • a heater electrode 78 is provided on the surface of the first sheet S1. One end and the other end of the heater electrode 78 are arranged above the front surface of the first sheet S1, and the heater electrode terminals 79 are provided above the back surface of the first sheet S1 through the through holes of the first sheet S1. , 79, respectively.
  • the ground electrodes 34, 34 are provided on the surface of the second sheet S2.
  • the ground electrodes 34, 34 are integrated into one wiring 34a.
  • the end of the wiring 34a is arranged above the front surface of the second sheet S2, and is provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1. It is connected to the electrode terminal 35.
  • the wiring 44a of the removal electrode 44, the wiring 54a of the collection electrode 54, and the wiring 70a of the noise detection electrode 70 are provided along the vertical direction.
  • the upper ends of the wirings 44a, 54a, 70a are provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1 and are provided with a removal electrode terminal 45, a collection electrode terminal 55, and noise. Each is connected to the detection electrode terminal 71.
  • the discharge electrode 32 and the counter electrode 52 are provided on the surface of the third sheet S3.
  • a gas flow path 24, that is, a rectangular parallelepiped space is provided on the lower end side of the fourth sheet S4.
  • the removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on the back surface of the fifth sheet S5.
  • the removal electrode 44 integrated with the guard electrode 68 is connected to the wiring 44a of the second sheet S2 through each through hole of the fourth sheet S4 and the third sheet S3, and the removal electrode terminal 45 is connected through this wiring 44a. It is connected to the.
  • the collecting electrode 54 is connected to the wiring 54a of the second sheet S2 via the through holes of the fourth sheet S4 and the third sheet S3, and is connected to the collecting electrode terminal 55 via the wiring 54a.
  • the noise detection electrode 70 is connected to the wiring 70a of the second sheet S2 via the through holes of the fourth sheet S4 and the third sheet S3, and is connected to the noise detection electrode terminal 71 via this wiring 70a.
  • the wiring 32a of the discharge electrode 32 and the wiring 52a of the counter electrode 52 are provided on the back surface of the sixth sheet S6 along the vertical direction.
  • the lower end of the wiring 32a is connected to the discharge electrode 32 provided on the third sheet S3 through the through holes of the fourth to fifth sheets S4 to S5.
  • the lower end of the wiring 52a is connected to the counter electrode 52 provided on the third sheet S3 through the through holes of the fourth to fifth sheets S4 to S5.
  • the upper ends of the wirings 32a and 52a are connected to the discharge electrode terminal 33 and the counter electrode terminal 53 provided above the surface of the sixth sheet S6 through the through holes of the sixth sheet S6, respectively.
  • the particle detection element 20 can be manufactured using a plurality of ceramic green sheets. Specifically, each of the plurality of ceramic green sheets is provided with notches, through holes or grooves, or screen-printed with electrodes or wiring patterns, if necessary, and then laminated and fired. The notches, the through holes, and the grooves may be filled with a material (for example, an organic material) that will be burned out during firing. In this way, the particle detection element 20 is obtained. Then, the discharge electrode terminal 33 and the counter electrode terminal 53 of the particle detection element 20 are connected to the discharge power supply 36 and the collection power supply 56 of the accessory unit, respectively. Further, the ground electrode terminal 35 and the removal electrode terminal 45 of the particle detection element 20 are connected to the ground.
  • a material for example, an organic material
  • the collection electrode terminal 55 and the noise detection electrode terminal 71 are connected to the + side and ⁇ side input terminals of the differential amplifier circuit 62, respectively, and the output terminals of the differential amplifier circuit 62 are counted through the ammeter 64. Connect to device 66. Then, the heater electrode terminals 79, 79 are connected to a power supply device (not shown). By doing so, the particle detector 10 can be manufactured.
  • the fine particle detection element 20 When measuring the fine particles 26 contained in the exhaust gas of an automobile, the fine particle detection element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1). As shown in FIG. 5, the fine particles 26 contained in the exhaust gas introduced into the gas flow path 24 from the gas introduction port 24a are charged with a charge 28 (here, a positive charge) generated by the discharge of the charge generation unit 30. It becomes fine particles P.
  • the charged fine particles P have a weak electric field (the electric field generated between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44), and the length of the removal electrode 44 is the collection electrode 54.
  • the excess charge removing section 40 which is shorter than the above, passes through as it is and reaches the collecting section 50.
  • the charges 28 not added to the particles 26 are attracted to the removal electrode 44 of the excess charge removal unit 40 even if the electric field is weak, and are discarded to the ground via the removal electrode 44.
  • the unnecessary charges 28 that have not been added to the fine particles 26 hardly reach the collection unit 50.
  • the charged fine particles P that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the counter electrode 52.
  • a current obtained by adding a current based on the noise around the collection electrode 54 to a current based on the charge 28 of the collected charged fine particles P flows through the collection electrode 54.
  • the noise around the collection electrode 54 includes, for example, noise generated by the charge generation unit 30 and noise generated by vehicle-mounted devices such as ETC.
  • a current based on noise around the collection electrode 54 flows through the noise detection electrode 70. Since the charged fine particles P are collected by the collecting electrode 54 provided on the upstream side of the noise detection electrode 70, a current based on the charged fine particles P does not flow through the noise detection electrode 70.
  • the current flowing through the collection electrode 54 is input to the + side input terminal of the differential amplifier circuit 62, and the current flowing through the noise detection electrode 70 is input to the ⁇ side input terminal. From the output terminal of the differential amplifier circuit 62, a signal amplified after subtracting the current flowing through the noise detection electrode 70 from the current flowing through the collection electrode 54 is output to the ammeter 64. Therefore, a current (a current not including a noise component) based on the charge 28 of the charged fine particles P collected by the collecting electrode 54 flows through the ammeter 64. Then, the current is measured by the ammeter 64, and the number measuring device 66 calculates the number of the fine particles 26 based on the current.
  • the number measuring device 66 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (accumulated charge amount), divides the accumulated charge amount by elementary charge, and obtains the total number of charges (collected charge number).
  • the number Nt of the fine particles 26 collected by the collecting electrode 54 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 26 (average number of charges) (see below). (See formula (1)).
  • the number measuring device 66 detects this number Nt as the number of fine particles 26 in the exhaust gas.
  • Nt (accumulated charge amount) / ⁇ (elementary charge) ⁇ (average number of charges) ⁇ (1)
  • the charged particles P may not be newly collected by the collection electrode 54. Therefore, by heating the collection electrode 54 by the heater electrode 78 periodically or at the timing when the deposition amount reaches a predetermined amount, the deposit on the collection electrode 54 is heated and incinerated, and the collection electrode 54 is heated. Refresh the electrode surface.
  • the heater electrode 78 can also incinerate the fine particles 26 attached to the inner peripheral surface of the housing 22.
  • the role of the guard electrode 68 will be described.
  • the voltage V1 is applied between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Since the voltage V1 is several kV, a leakage current of several tens to several hundreds pA is generated in the counter electrode 52 and the collection electrode 54 even in the case 22 made of ceramic such as alumina which is usually considered as an electric insulator. It flows from one side to the other side through the housing 22.
  • the detected current measured by the ammeter 64 when detecting the number Nt is several pA. Therefore, the leakage current affects the detection current. In this embodiment, such a leakage current is absorbed by the guard electrode 68 and is discarded to the ground.
  • the collection electrode 54 is surrounded by the guard electrode 68.
  • the noise detection electrode 70 is also surrounded by the guard electrode 68. Therefore, it is possible to prevent the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
  • the counting device 66 subtracts the noise signal (current) from the noise detection electrode 70 from the particle detection signal (current) from the collection electrode 54 and then amplifies the signal (corrected signal). ) Is used to calculate the number of fine particles. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the number of particles is increased by calculating the number of particles based on the corrected signal.
  • the surface of the noise detection electrode 70 is exposed to the gas flow path 24, it is easy to detect noise.
  • the charged fine particles P are collected by the collecting electrode 54 provided on the upstream side of the noise detection electrode 70, it is possible to prevent the charged fine particles P from being collected by the noise detection electrode 70. ..
  • the leak current is absorbed by the guard electrode 68, the leak current is prevented from being added to the particle detection signal from the collection electrode 54.
  • the noise detection electrode 70 is also provided inside the guard electrode 68, it is possible to prevent a leak current from being added to the noise signal from the noise detection electrode 70. Therefore, it is possible to prevent the detection accuracy from decreasing due to the influence of the leakage current, and it is possible to improve the detection accuracy of the number of fine particles.
  • the guard electrode 68 is shared with the removal electrode 44, the structure of the electrode can be simplified.
  • the removal electrode 44 does not have its own power source for generating an electric field on the removal electrode 44, and is provided between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44.
  • the excess electric charge 28 is removed to the ground by using the electric field generated in the. Therefore, the structure of the particle detector 10 can be simplified as compared with the case where the removal electrode 44 has its own power source for generating an electric field.
  • the number detection unit 60 includes the amplification factor adjustment unit 61 between the ⁇ side input terminal of the differential amplifier circuit 62 and the noise detection electrode 70, as shown in FIG. 7. Good.
  • the number detection unit 60 detects the first reference noise signal detected by the collection electrode 54 when the charge generation unit 30 and the collection unit 50 are energized in a state where gas is not passing through the gas flow path 24.
  • the amplification factor of the second reference noise signal is calculated so that the second reference noise signal detected by the noise detection electrode 70 matches (calibration).
  • the number detection unit 60 adjusts the amplification factor of the amplification factor adjustment unit 61 to be the amplification factor of the second reference noise signal thus obtained, and in a state where the gas is passed through the gas flow path 24.
  • a corrected signal is obtained by subtracting a signal obtained by multiplying the current from the noise detection electrode 70 by the adjusted amplification factor from the current from the collection electrode 54, and the number of particles is calculated based on the corrected signal. You may calculate.
  • the number measuring device 66 of the number detection unit 60 performs a short circuit check of the charge generation unit 30, the surplus charge removal unit 40, and the collection unit 50 in advance before starting the calibration, and it is not shorted in any of them. To confirm.
  • the number measurement device 66 starts the calibration, first, the charge generation unit 30 and the collection unit 50 are temporarily energized (S110). In the temporary energization, the low voltage is applied when S110 is executed for the first time, but the voltage is increased stepwise so as to approach the main voltage as the number of times increases after the second time (step-up application). Subsequently, the number measuring device 66 measures the leakage current (S120).
  • the leakage current is measured by measuring the current flowing through the collecting electrode 54 with an ammeter (not shown). Subsequently, the number measuring device 66 determines whether the leakage current is less than or equal to a predetermined threshold value (S130), and if the leakage current exceeds the threshold value, it is considered that some abnormality may occur. Then, the power supply to the charge generation unit 30 and the collection unit 50 is turned off to issue a warning (S135), and the calibration is completed. The warning is given, for example, by lighting or blinking a lamp, sounding a buzzer, or explaining the situation by voice.
  • the threshold value of the leakage current is set in advance in a preliminary experiment or the like within a range in which there is no abnormality in the particle detector 10.
  • the number measuring device 66 determines whether or not the temporary energization voltage has reached the main energization voltage (voltage at the time of measuring the number of fine particles) (S140), If the voltage for the main energization has not been reached, the process returns to S110, temporary energization is performed with a voltage one step higher than the previous time, and then the processes of S120 to S140 are executed again.
  • the number measuring device 66 keeps the voltage of the main energization applied to the charge generation unit 30 and the collection unit 50, and the differential amplifier circuit 62. Is energized (S150) and the differential current is measured (S160).
  • the differential current is an output signal of the differential amplification circuit 62, and is multiplied by the amplification factor adjusted by the amplification factor adjustment unit 61 detected by the noise detection electrode 70 from the first reference noise signal detected by the collection electrode 54. It is a value obtained by subtracting the second reference noise signal.
  • the number measuring device 66 determines whether or not the differential current is substantially zero, that is, whether or not it is equal to or less than a predetermined zero point specified value (S170), and the differential current exceeds the zero point specified value. If so, the amplification factor of the amplification factor adjusting unit 61 is updated (S175), and the processes of S160 and S170 are executed again.
  • the amplification rate is set low at the first time, and is set to a gradually larger value each time the amplification rate is updated in S175.
  • the number-counting device 66 stores the amplification factor at that time in a memory (not shown) (S180), and the charge generation unit 30, the collection unit 50, and the The power supply to the differential amplifier circuit 62 is turned off (S190), and the calibration is completed. After that, the number measuring device 66 calculates the number of fine particles using the amplification factor stored in a memory (not shown).
  • the amplification factor can be obtained accurately without being affected by gas.
  • the noise signal on the collecting electrode 54 and the noise signal on the noise detecting electrode 70 are different in magnitude depending on the difference in distance between the noise generating source (for example, the discharge electrode 32) of each electrode 54, 70 and the difference in electrode area. However, even if they are different, the influences thereof can be canceled by the amplification rate of the amplification rate adjusting unit 61 set by the calibration.
  • the calibration is performed by the number measuring device 66 of the number detecting unit 60, but may be performed by another processor (for example, an engine ECU).
  • the guard electrode 68 and the removal electrode 44 are used in common, but as shown in FIG. 9 (corresponding to the DD sectional view of FIG. 2), the frame-shaped guard electrode 68 and the rectangular removal electrode are provided. 44 and 44 may be provided separately. Also in FIG. 9, the guard electrode 68 is provided so as to surround the collection electrode 54, and the noise detection electrode 70 is provided inside the guard electrode 68 and on the downstream side of the collection electrode 54. In this case, both electrodes 68 and 44 may be connected to the ground via a common wire, or may be connected to the ground via individual wires.
  • the noise detection electrode 70 is provided along the inner surface of the flow channel wall 22d, but it may be embedded in the flow channel wall 22d of the housing 22 like the noise detection electrode 170 shown in FIG.
  • the same components as those in the above-described embodiment are designated by the same reference numerals.
  • the noise detection electrode 170 does not necessarily have to be provided on the downstream side of the collection electrode 54. Further, it becomes difficult for leakage current to flow through the noise detection electrode 170. Therefore, the noise detection electrode 170 does not necessarily have to be arranged inside the guard electrode 68.
  • the distance from the surface of the noise detection electrode 170 (the lower surface in FIG. 10) to the surface of the housing 22 is preferably short.
  • the distance is preferably 0.1 mm or less, more preferably 0.01 mm or less.
  • the surface of the noise detection electrode 70 provided along the inner surface of the flow path wall 22d may be covered with a non-conductive protective layer 70b.
  • the same components as those in the above-described embodiment are designated by the same reference numerals.
  • the thickness of the protective layer 70b is preferably thin in consideration of noise detection by the noise detection electrode 70, preferably 0.1 mm or less in consideration of not disturbing the gas flow, and the thickness of the noise detection electrode 70 (for example, If considering 0.005 to 0.01 mm), 0.01 mm or less is preferable.
  • the material of the protective layer 70b ceramics such as alumina and glass such as silica are preferable from the viewpoint of heat resistance.
  • An example of the method for forming the glass protective layer 70b will be described below. That is, a plate-shaped glass (having a thickness of about 0.1 mm) larger than the noise detection electrode 70 is placed on the noise detection electrode 70, and the glass is heated to a temperature higher than the glass transition point to be softened. Thus, the protective layer 70b made of glass can be formed.
  • guard electrode 68 absorbs the leakage current flowing on the surface and discards it to the ground, but in addition to this, as shown in FIGS.
  • Guard electrodes 69, 69 may be embedded so as to surround 54 and the noise detection electrode 70 from above and below. 12 and 13, the same components as those in the above-described embodiment are designated by the same reference numerals.
  • both guard electrodes 69, 69 are provided on the surface of the fourth sheet S4 above and below the gas flow path 24, respectively.
  • the lower guard electrode 69 is connected to the removal electrode 44.
  • the upper guard electrode 69 is connected in the middle of the conductive path connecting the removal electrode 44 and the wiring 44a, and is connected to the removal electrode terminal 45 via the wiring 44a.
  • the leakage current flowing in the housing 22 is absorbed by the guard electrodes 69, 69 embedded in the housing 22 and discarded to the ground, and the leakage current flowing on the surface is absorbed in the guard electrode 68 and grounded. Thrown away Therefore, it is possible to further suppress the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
  • the guard electrode 68 is provided on the inner surface of the gas flow path 24 in the above-described embodiment, the position of the guard electrode 68 is not particularly limited to the inner surface, and any position that can absorb the leakage current can be used. I do not care.
  • part or all of the guard electrode 68 may be embedded inside the housing 22.
  • guard electrode 68 is provided in the above-described embodiment, the guard electrode 68 may be omitted if the housing 22 has high electric insulation and the leakage current is substantially zero without the guard electrode 68. ..
  • the surplus charge removing unit 40 is described as having no application electrode for generating an electric field on the removal electrode 44 or an original removal power source for applying a voltage to the application electrode.
  • an applying electrode may be provided at a position facing the removing electrode 44 (left side channel wall 22c), and a removing power source for applying a voltage to the applying electrode may be provided. In that case, the voltage applied to the removal electrode 44 is adjusted so as to collect the excess charges 28 but not the charged fine particles P.
  • the removal electrode 44 of the excess charge removal unit 40, the collection electrode 54 of the collection unit 50, the noise detection electrode 70, and the guard electrode 68 are provided on the flow path wall 22d on the right side of the housing 22, and the left side thereof is provided.
  • the counter electrode 52 of the collection unit 50 is provided on the flow channel wall 22c, the present invention is not limited to this.
  • the removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on the flow path wall 22c on the left side of the housing 22, and the counter electrode 52 of the collection unit 50 is provided on the flow path wall 22d on the right side. It may be provided. ..
  • the removal electrode 44 of the excess charge removing portion 40 is provided on the right flow passage wall 22d of the housing 22, but the removal electrode connected to the ground may be provided on the left flow passage wall 22c. Good.
  • the charge generation unit 30 is configured by the discharge electrode 32 provided along the inner surface of the gas flow path 24 and the two ground electrodes 34, 34 embedded in the housing 22. Any structure may be used as long as it can generate electric charges by discharging.
  • the ground electrodes 34, 34 may be provided along the inner surface of the gas flow path 24 instead of being buried in the wall of the gas flow path 24.
  • the charge generation section may be composed of a needle electrode and a counter electrode.
  • the charge generation unit 30 is provided on the flow channel wall 22c, but instead of or in addition to this, the charge generation unit 30 may be provided on the flow channel wall 22d.
  • the counter electrode 52 is exposed to the gas flow path 24, but it is not limited to this and may be embedded in the housing 22.
  • the particulate matter detector 10 is not particularly limited to the exhaust pipe 12 of the engine, and may be any pipe as long as a gas containing particulates flows therethrough. Such a tube may be used.
  • the particle detection element 20 detects the number of particles, but it may detect the mass or surface area of the particles.
  • the mass of the fine particles can be obtained, for example, by multiplying the number of the fine particles by the average mass of the fine particles, and the relationship between the accumulated charge amount and the mass of the collected fine particles is stored in a storage device as a map in advance. It is also possible to obtain the mass of the fine particles from the accumulated charge amount using this map.
  • the surface area of the fine particles can also be determined by the same method as the mass of the fine particles.
  • the present invention can be used for a particle detector that detects particles in exhaust gas of a power machine such as an automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A microparticle detector 10 is provided with a housing 22, a charge generation unit 30, a collector unit 50, a noise detection electrode 70, and a count detection unit 60. The housing 22 has a gas flow path 24. The charge generation unit 30 makes charged microparticles P by adding a charge 28 generated by discharge to microparticles 26 in gas that has been introduced into the gas flow path 24. The collector unit 50 has a collecting electrode 54 that is provided further to a downstream side of the flow of gas than the charge generation unit 30 within the gas flow path 24, and that collects the charged microparticles P. The noise detection electrode 70 detects noise of the surroundings of the collecting electrode 54. The count detection unit 60 subtracts, on the basis of a microparticle detection signal from the collecting electrode 54 and a noise signal from the noise detection electrode 70, a noise component from the microparticle detection signal to obtain an already-corrected signal and computes a number of microparticles on the basis of the already-corrected signal.

Description

微粒子検出器Particle detector
 本発明は、微粒子検出器に関する。 The present invention relates to a particle detector.
 微粒子検出器としては、ガス流路を有するセラミック製の筐体と、ガス流路内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、ガス流路内で電荷発生部よりも下流側で帯電微粒子を捕集する捕集部と、捕集された帯電微粒子の電荷の量に基づいて微粒子の個数を測定する個数測定部とを備えたものが知られている(例えば特許文献1参照)。捕集部は、ガス流路に露出している捕集電極と、ガス流路を挟んで捕集電極に対向している対向電極とを有している。捕集電極は、捕集電極と対向電極との間に印加された電圧によってガス流路のうち捕集電極と対向電極との間に発生した電界を利用して、帯電微粒子を捕集する。捕集された帯電微粒子の電荷の量は、微小な電流(例えば数pA)として検出される。 As the particle detector, a ceramic housing having a gas flow path, and a charge generation unit that adds charge generated by discharge to particles in the gas introduced into the gas flow path to form charged particles, The gas flow path was provided with a collection unit that collects the charged fine particles on the downstream side of the charge generation unit, and a number measurement unit that measures the number of the fine particles based on the amount of charges of the collected charged fine particles. The thing is known (for example, refer patent document 1). The collection part has a collection electrode exposed in the gas flow path, and a counter electrode facing the collection electrode with the gas flow path in between. The collection electrode collects the charged fine particles by using an electric field generated between the collection electrode and the counter electrode in the gas flow path by the voltage applied between the collection electrode and the counter electrode. The amount of charges of the collected charged fine particles is detected as a minute current (for example, several pA).
国際公開第2015/146456号パンフレットInternational Publication No. 2015/146456 pamphlet
 しかしながら、捕集された帯電微粒子の電荷の量は微小な電流(例えば数pA)として検出されるため、捕集電極の周囲のノイズの影響を受けやすく、精度よく検出するのが難しかった。 However, since the amount of electric charge of the collected charged fine particles is detected as a minute current (for example, several pA), it is easily affected by noise around the collecting electrode, which makes it difficult to detect accurately.
 本発明はこのような課題を解決するためになされたものであり、微粒子の量の検出精度を高めることを主目的とする。 The present invention has been made to solve such a problem, and its main purpose is to improve the detection accuracy of the amount of fine particles.
 本発明は、上述した主目的を達成するために以下の手段を採った。 The present invention has adopted the following means in order to achieve the above-mentioned main purpose.
 本発明の微粒子検出器は、
 ガス中の微粒子を検出するために用いられる微粒子検出器であって、
 前記ガスが通過するガス流路を有する筐体と、
 前記ガス流路内に導入された前記ガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
 前記ガス流路内で前記電荷発生部よりも前記ガスの流れの下流側に設けられ、前記帯電微粒子を捕集する捕集電極を有する捕集部と、
 前記捕集電極の周囲のノイズを検出するノイズ検出電極と、
 前記捕集電極からの微粒子検出信号と前記ノイズ検出電極からのノイズ信号とに基づいて前記微粒子検出信号からノイズ成分を減算して補正済み信号とし、前記補正済み信号に基づいて前記微粒子の量を演算する演算部と、
 を備えたものである。
The particle detector of the present invention is
A particle detector used to detect particles in a gas,
A casing having a gas flow path through which the gas passes,
A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the gas flow path to form charged fine particles,
A collector provided in the gas flow path on the downstream side of the gas flow with respect to the charge generator, and having a collector electrode for collecting the charged fine particles,
A noise detection electrode for detecting noise around the collection electrode,
A noise component is subtracted from the particle detection signal based on a particle detection signal from the collection electrode and a noise signal from the noise detection electrode to obtain a corrected signal, and the amount of the particles is determined based on the corrected signal. A computing unit for computing,
It is equipped with.
 この微粒子検出器では、電荷発生部が電荷を発生させることでガス流路内に導入されたガス中の微粒子を帯電微粒子にし、捕集電極がその帯電微粒子を捕集する。捕集電極からの微粒子検出信号には、捕集電極の周囲のノイズが含まれている。そのため、演算部は、捕集電極からの微粒子検出信号とノイズ検出電極からのノイズ信号とに基づいて微粒子検出信号からノイズ成分を減算して補正済み信号とし、その補正済み信号に基づいて微粒子の量を演算する。補正済み信号はノイズの影響をほとんど受けていない信号であるため、その補正済み信号に基づいて微粒子の量を演算することにより、微粒子の量の検出精度が高まる。 In this particle detector, particles in the gas introduced into the gas flow path are made into charged particles by the charge generation section generating charges, and the collecting electrodes collect the charged particles. The particle detection signal from the collecting electrode contains noise around the collecting electrode. Therefore, the calculation unit subtracts the noise component from the particle detection signal based on the particle detection signal from the collection electrode and the noise signal from the noise detection electrode to obtain a corrected signal, and based on the corrected signal Calculate the quantity. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the amount of particles is increased by calculating the amount of particles based on the corrected signal.
 なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「信号」とは、捕集電極に捕集される帯電微粒子の量に応じて変化するパラメータであればよく、例えば電流などが挙げられる。「微粒子の量」とは、例えば微粒子の数、質量、表面積などが挙げられる。 In this specification, the term "charge" includes ions in addition to positive charges and negative charges. The “signal” may be a parameter that changes according to the amount of charged fine particles collected by the collecting electrode, and examples thereof include current. The "amount of fine particles" includes, for example, the number of fine particles, mass, surface area, and the like.
 本発明の微粒子検出器において、前記ノイズ検出電極は、前記筐体の前記ガス流路の壁面上に設けられていてもよい。こうすれば、ノイズ検出電極はその表面が露出しているため、ノイズを検出しやすい。 In the particle detector of the present invention, the noise detection electrode may be provided on the wall surface of the gas flow path of the housing. In this case, since the surface of the noise detection electrode is exposed, it is easy to detect noise.
 本発明の微粒子検出器において、前記ノイズ検出電極は、前記筐体の前記ガス流路の壁面上に設けられ、前記ノイズ検出電極の表面は、非導電性の保護層で覆われていてもよい。こうすれば、ノイズ検出電極に帯電微粒子が付着するのを確実に防止できるし、漏れ電流が流れにくくなる。 In the particle detector of the present invention, the noise detection electrode may be provided on a wall surface of the gas flow path of the housing, and the surface of the noise detection electrode may be covered with a non-conductive protective layer. .. By doing so, it is possible to reliably prevent the charged fine particles from adhering to the noise detection electrode, and it becomes difficult for leakage current to flow.
 本発明の微粒子検出器において、前記ノイズ検出電極は、前記筐体に埋設されていてもよい。こうしても、ノイズ検出電極に帯電微粒子が付着するのを確実に防止できるし、漏れ電流が流れにくくなる。 In the particle detector of the present invention, the noise detection electrode may be embedded in the housing. Even in this case, it is possible to reliably prevent the charged fine particles from adhering to the noise detection electrode, and it becomes difficult for leakage current to flow.
 本発明の微粒子検出器において、前記ノイズ検出電極は、前記捕集電極の下流側に設けられていてもよい。こうすれば、帯電微粒子はノイズ検出電極の上流側に設けられている捕集電極に捕集されるため、帯電微粒子がノイズ検出電極に捕集されてしまうのを防止することができる。なお、ノイズ検出電極の表面が保護層で覆われている場合やノイズ検出電極が筐体に埋設されている場合には、ノイズ検出電極に帯電微粒子が付着しないため、ノイズ検出電極を捕集電極の下流側に設ける必要は必ずしもない。 In the particle detector of the present invention, the noise detection electrode may be provided on the downstream side of the collection electrode. In this case, since the charged fine particles are collected by the collection electrode provided on the upstream side of the noise detection electrode, it is possible to prevent the charged fine particles from being collected by the noise detection electrode. When the surface of the noise detection electrode is covered with a protective layer or when the noise detection electrode is embedded in the housing, charged particles are not attached to the noise detection electrode. Need not be provided on the downstream side of.
 本発明の微粒子検出器は、前記捕集電極を囲むように設けられた漏れ電流吸収電極を備え、前記ノイズ検出電極は、前記漏れ電流吸収電極の内側に設けられていてもよい。漏れ電流吸収電極は、捕集電極に流れ込もうとする漏れ電流を吸収する。こうした漏れ電流は、捕集電極に流れ込むと微粒子検出信号に影響を与えるが、ここでは漏れ電流吸収電極によって吸収されるため、捕集電極からの微粒子検出信号に漏れ電流が加わることが防止される。また、ノイズ検出電極も漏れ電流吸収電極の内側に設けられているため、ノイズ検出電極からのノイズ信号に漏れ電流が加わることが防止される。したがって、漏れ電流の影響による検出精度の低下を防止することができ、微粒子の量の検出精度を高めることができる。なお、ノイズ検出電極の表面が保護層で覆われている場合やノイズ検出電極が筐体に埋設されている場合には、ノイズ検出電極に漏れ電流が流れにくいため、ノイズ検出電極を漏れ電流吸収電極の内側に設ける必要は必ずしもない。 The particle detector of the present invention may include a leakage current absorption electrode provided so as to surround the collection electrode, and the noise detection electrode may be provided inside the leakage current absorption electrode. The leakage current absorption electrode absorbs the leakage current that is about to flow into the collection electrode. When such a leak current flows into the collection electrode, it affects the particle detection signal, but since it is absorbed by the leak current absorption electrode here, it is prevented that a leak current is added to the particle detection signal from the collection electrode. .. Further, since the noise detection electrode is also provided inside the leakage current absorption electrode, it is possible to prevent the leakage current from being added to the noise signal from the noise detection electrode. Therefore, it is possible to prevent the detection accuracy from decreasing due to the influence of the leakage current, and it is possible to improve the detection accuracy of the amount of fine particles. Note that if the surface of the noise detection electrode is covered with a protective layer or if the noise detection electrode is embedded in the housing, it is difficult for the leakage current to flow to the noise detection electrode, so It does not necessarily have to be provided inside the electrode.
 本発明の微粒子検出器は、前記ガス流路内で前記電荷発生部と前記捕集部との間に設けられ、前記微粒子に帯電しなかった余剰電荷をグランドに除去する除去電極を備えていてもよい。こうすれば、余剰電荷は除去電極によって除去されるため、余剰電荷が捕集電極に捕集されて微粒子の量にカウントされてしまうのを抑制することができる。 The particle detector of the present invention is provided with a removal electrode provided in the gas flow path between the charge generation section and the collection section for removing excess charge not charged to the particles to the ground. Good. In this case, since the excess charge is removed by the removal electrode, it is possible to prevent the excess charge from being collected by the collection electrode and counted in the amount of fine particles.
 前記漏れ電流吸収電極を備え、前記ノイズ検出電極は、前記漏れ電流吸収電極の内側に設けられている本発明の微粒子検出器は、前記ガス流路内で前記電荷発生部と前記捕集部との間に設けられ、前記微粒子に帯電しなかった余剰電荷をグランドに除去する除去電極を備え、前記漏れ電流吸収電極は、前記除去電極と共通化されていてもよい。こうすれば、余剰電荷は除去電極によって除去されるため、余剰電荷が捕集電極に捕集されて微粒子の量にカウントされてしまうのを抑制することができる。また、漏れ電流吸収電極は除去電極と共通化されているため、電極の構成を簡略化することができる。 The particulate matter detector of the present invention is provided with the leakage current absorption electrode, and the noise detection electrode is provided inside the leakage current absorption electrode, and the charge generation unit and the collection unit are provided in the gas flow path. The leakage current absorption electrode may be shared with the removal electrode, the removal electrode being provided between the removal electrodes and removing the excess charge not charged to the particles to the ground. In this case, since the excess charge is removed by the removal electrode, it is possible to prevent the excess charge from being collected by the collection electrode and counted in the amount of fine particles. Moreover, since the leakage current absorption electrode is shared with the removal electrode, the structure of the electrode can be simplified.
 前記除去電極を備えた本発明の微粒子検出器において、前記除去電極は、前記除去電極上に電界を発生させる独自の電源を有さず、前記除去電極と前記除去電極の周囲に配置された電圧印加電極との間に発生する電界を利用して前記余剰電荷をグランドに除去してもよい。こうすれば、除去電極に電界を発生させる独自の電源を有する場合と比べて微粒子検出器の構成を簡略化することができる。更に、前記電圧印加電極は、前記電荷発生部のうち放電用電源によって電圧が印加される放電電極であるか、又は、前記捕集部のうち前記捕集電極と対向し捕集用電源によって電圧が印加される対向電極であってもよい。こうすれば、除去電極独自の電源の代わりに、放電用電源を利用したり捕集用電源を利用したりすることができる。 In the particle detector of the present invention provided with the removal electrode, the removal electrode does not have a unique power source for generating an electric field on the removal electrode, and the voltage arranged around the removal electrode and the removal electrode. The surplus charges may be removed to the ground by utilizing the electric field generated between the applied electrode and the electrodes. In this case, the structure of the particle detector can be simplified as compared with the case where the removal electrode has its own power source for generating an electric field. Further, the voltage application electrode is a discharge electrode of the charge generation unit to which a voltage is applied by a discharge power supply, or the voltage application electrode is opposed to the collection electrode of the collection unit by a collection power supply. It may be a counter electrode to which is applied. By doing so, it is possible to use the discharge power supply or the collection power supply instead of the power supply unique to the removal electrode.
 本発明の微粒子検出器において、前記演算部は、前記ガス流路に前記ガスを通過させていない状態で、前記捕集電極で検出される第1基準ノイズ信号と前記ノイズ検出電極で検出される第2基準ノイズ信号とが一致するように前記第2基準ノイズ信号の増幅率を求め、その後、前記ガス流路に前記ガスを通過させた状態で、前記捕集電極からの微粒子検出信号から、前記ノイズ検出電極からのノイズ信号に前記増幅率を乗算した増幅信号を前記ノイズ成分として減算することにより、前記補正済み信号としてもよい。こうすれば、ガスの影響を受けることなく精度よく増幅率を求めることができる。また、捕集電極に乗るノイズ信号とノイズ検出電極に乗るノイズ信号はノイズ発生源(例えば放電電極)からの距離の違いや電極面積の違いによって信号の大きさが異なることがあったとしても、第2基準ノイズ信号の増幅率によってそれらの影響をキャンセルすることができる。 In the particle detector of the present invention, the arithmetic unit detects the first reference noise signal detected by the collection electrode and the noise detection electrode in a state where the gas is not passed through the gas flow path. Obtaining the amplification factor of the second reference noise signal so that it matches the second reference noise signal, and then, in a state where the gas is passed through the gas flow path, from the particle detection signal from the collection electrode, The corrected signal may be obtained by subtracting an amplified signal obtained by multiplying the noise signal from the noise detection electrode by the amplification factor as the noise component. By doing so, the amplification factor can be accurately obtained without being affected by the gas. Further, even if the noise signal on the collection electrode and the noise signal on the noise detection electrode may have different signal magnitudes due to the difference in distance from the noise source (for example, the discharge electrode) or the difference in electrode area, These effects can be canceled by the amplification factor of the second reference noise signal.
 こうした本発明の微粒子検出器は、第1入力端子と第2入力端子と1つの出力端子とを有し、前記第1入力端子に前記捕集電極が接続され、前記第2入力端子に前記ノイズ検出電極が増幅率調整部を介して接続され、前記出力端子に前記演算部が接続されており、前記第1及び第2入力端子に入力された信号の差を前記出力端子から出力する差動増幅回路を備え、前記演算部は、前記ガス流路に前記ガスを通過させていない状態で、前記差動増幅回路からの出力信号がゼロとみなされる範囲となるように前記増幅率調整部の増幅率を求め、その後、前記ガス流路に前記ガスを通過させた状態で、前記捕集電極からの微粒子検出信号から、前記ノイズ検出電極からのノイズ信号に前記増幅率を乗算した増幅信号を減算することにより、前記補正済み信号としてもよい。こうすれば、差動増幅回路を用いて比較的容易に本発明の微粒子検出器を実現することができる。 Such a particle detector of the present invention has a first input terminal, a second input terminal and one output terminal, the collecting electrode is connected to the first input terminal, and the noise is input to the second input terminal. A detection electrode is connected through an amplification factor adjusting unit, the arithmetic unit is connected to the output terminal, and a differential that outputs a difference between signals input to the first and second input terminals from the output terminal. An amplifier circuit is provided, and the arithmetic unit of the amplification factor adjustment unit is such that the output signal from the differential amplifier circuit is in a range considered to be zero in a state where the gas is not passed through the gas flow path. Obtaining the amplification factor, then, in a state where the gas is passed through the gas flow path, from the particulate detection signal from the collection electrode, an amplification signal obtained by multiplying the noise signal from the noise detection electrode by the amplification factor is obtained. By subtracting, It may be used as the finished signal. This makes it possible to relatively easily realize the particle detector of the present invention by using the differential amplifier circuit.
微粒子検出器10の説明図。Explanatory drawing of the particle detector 10. 微粒子検出素子20の斜視図。FIG. 3 is a perspective view of the particle detection element 20. 図2のA-A断面図。FIG. 3 is a sectional view taken along line AA of FIG. 図2のB-B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 図2のC-C断面図。CC sectional drawing of FIG. 微粒子検出素子20の分解斜視図。3 is an exploded perspective view of the particle detection element 20. FIG. 個数検出部60の別例の説明図。Explanatory drawing of another example of the number detection part 60. キャリブレーションの一例を示すフローチャート。The flowchart which shows an example of a calibration. 除去電極44とガード電極68が別々に設けられている場合の断面図(図2のB-B断面図に相当)。Sectional drawing when the removal electrode 44 and the guard electrode 68 are provided separately (corresponding to the BB sectional view of FIG. 2). 微粒子検出素子20の別の実施形態の部分断面図。The partial cross section figure of another embodiment of particulate detection element 20. 微粒子検出素子20の別の実施形態の部分断面図。The partial cross section figure of another embodiment of particulate detection element 20. 微粒子検出素子20の変形例の分解斜視図。FIG. 8 is an exploded perspective view of a modified example of the particle detection element 20. 微粒子検出素子20の変形例の断面図(図2のB-B断面図に相当)。Sectional drawing of a modification of the particle detection element 20 (corresponding to the BB sectional view of FIG. 2).
 本発明の好適な実施形態について、図面を用いて説明する。図1は本実施形態の微粒子検出器10の説明図、図2は微粒子検出素子20の斜視図、図3は図2のA-A断面図、図4は図2のB-B断面図、図5は図2のC-C断面図、図6は微粒子検出素子20の分解斜視図である。なお、本実施形態において、上下方向,左右方向及び前後方向は、図1~図2に示した通りとする。 A preferred embodiment of the present invention will be described with reference to the drawings. 1 is an explanatory view of the particle detector 10 of the present embodiment, FIG. 2 is a perspective view of the particle detection element 20, FIG. 3 is a sectional view taken along line AA of FIG. 2, and FIG. 4 is a sectional view taken along line BB of FIG. 5 is a sectional view taken along line CC of FIG. 2, and FIG. 6 is an exploded perspective view of the particle detection element 20. In this embodiment, the vertical direction, the horizontal direction, and the front-back direction are as shown in FIGS. 1 and 2.
 微粒子検出器10は、図1に示すように、エンジンの排気管12を流れる排ガスに含まれる微粒子26(図5参照)の数を検出するものである。この微粒子検出器10は、微粒子検出素子20と、各種電源36,56や個数検出部60を含む付属ユニット80とを備えている。 As shown in FIG. 1, the particle detector 10 detects the number of particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine. The particle detector 10 includes a particle detection element 20 and an accessory unit 80 including various power sources 36 and 56 and a number detection unit 60.
 微粒子検出素子20は、図1に示すように、円柱状の支持体14に差し込まれた状態で、排気管12に固定されたリング状の台座16に取り付けられている。微粒子検出素子20は、保護カバー18によって保護されている。保護カバー18には図示しない穴が設けられており、この穴を介して排気管12を流通する排ガスが微粒子検出素子20の下端22aに設けられたガス流路24を通過する。微粒子検出素子20は、図5に示すように、筐体22に、電荷発生部30と、余剰電荷除去部40と、捕集部50と、ガード電極68,92(図3及び図4参照)と、ノイズ検出電極70と、ヒータ電極78とを備えたものである。 As shown in FIG. 1, the particle detection element 20 is attached to a ring-shaped pedestal 16 fixed to the exhaust pipe 12 while being inserted into a columnar support 14. The particle detection element 20 is protected by the protective cover 18. The protective cover 18 has a hole (not shown) through which the exhaust gas flowing through the exhaust pipe 12 passes through a gas flow path 24 provided at the lower end 22a of the particle detection element 20. As shown in FIG. 5, the particle detection element 20 includes a housing 22, a charge generation section 30, an excess charge removal section 40, a collection section 50, and guard electrodes 68 and 92 (see FIGS. 3 and 4). And a noise detection electrode 70 and a heater electrode 78.
 筐体22は、図1に示すように、排気管12の軸方向と交差する方向(ここでは略直交する方向)に長い長尺の直方体である。筐体22は、例えばアルミナなどのセラミック製である。筐体22の下端22aは排気管12の内部に配置され、上端22bは排気管12の外部に配置される。筐体22の下端22aには、ガス流路24が設けられている。筐体22の上端22bには、各種端子が設けられている。 As shown in FIG. 1, the housing 22 is a long rectangular parallelepiped that is long in a direction intersecting the axial direction of the exhaust pipe 12 (here, a direction that is substantially orthogonal). The housing 22 is made of ceramic such as alumina. The lower end 22a of the housing 22 is arranged inside the exhaust pipe 12, and the upper end 22b is arranged outside the exhaust pipe 12. A gas flow path 24 is provided at the lower end 22 a of the housing 22. Various terminals are provided on the upper end 22b of the housing 22.
 ガス流路24の軸方向は、排気管12の軸方向と一致している。ガス流路24は、図2に示すように、筐体22の前方の面に設けられた矩形のガス導入口24aから、筐体22の後方の面に設けられた矩形のガス排出口24bまで連なる直方体形状の空間である。筐体22は、ガス流路24を構成する左右一対の流路壁22c,22dを備えている。 The axial direction of the gas flow path 24 matches the axial direction of the exhaust pipe 12. As shown in FIG. 2, the gas flow path 24 extends from a rectangular gas inlet 24 a provided on the front surface of the housing 22 to a rectangular gas outlet 24 b provided on the rear surface of the housing 22. It is a continuous rectangular parallelepiped space. The housing 22 includes a pair of left and right flow path walls 22c and 22d that form a gas flow path 24.
 電荷発生部30は、図3及び図5に示すように、ガス流路24内のガス導入口24aの近傍に電荷が発生するように、流路壁22cに設けられている。電荷発生部30は、放電電極32と2つのグランド電極34,34とを有している。放電電極32は、流路壁22cの内面に沿って設けられ、図3に示すように、矩形の周囲に複数の微細突起を有している。2つのグランド電極34,34は、矩形電極であり、流路壁22cに間隔をあけて放電電極32と平行となるように埋設されている。電荷発生部30では、図5に示すように、放電電極32と2つのグランド電極34,34との間に放電用電源36(付属ユニット80の1つ)の数kVのパルス電圧が印加されることで、両電極間の電位差による気中放電が発生する。このとき、筐体22のうち放電電極32とグランド電極34,34との間の部分が誘電体層の役割を果たす。この気中放電によって、放電電極32の周囲に存在するガスがイオン化されて正の電荷28が発生する。放電電極32は、筐体22の上端22bの放電電極端子33(図2及び図6参照)に接続され、この端子33を介して放電用電源36に接続されている。また、2つのグランド電極34,34は、筐体22の上端22bのグランド電極端子35(図2及び図6参照)に接続され、この端子35を介して放電用電源36に接続されている。  As shown in FIGS. 3 and 5, the charge generation unit 30 is provided on the flow passage wall 22c so that charges are generated in the gas flow passage 24 in the vicinity of the gas introduction port 24a. The charge generator 30 has a discharge electrode 32 and two ground electrodes 34, 34. The discharge electrode 32 is provided along the inner surface of the flow path wall 22c, and as shown in FIG. 3, has a plurality of fine protrusions around a rectangle. The two ground electrodes 34, 34 are rectangular electrodes, and are embedded in the flow path wall 22c so as to be parallel to the discharge electrode 32 with a space therebetween. In the charge generation unit 30, as shown in FIG. 5, a pulse voltage of several kV of the discharge power supply 36 (one of the accessory units 80) is applied between the discharge electrode 32 and the two ground electrodes 34, 34. As a result, an air discharge is generated due to the potential difference between the electrodes. At this time, the portion of the housing 22 between the discharge electrode 32 and the ground electrodes 34, 34 serves as a dielectric layer. By this air discharge, the gas existing around the discharge electrode 32 is ionized, and the positive charge 28 is generated. The discharge electrode 32 is connected to a discharge electrode terminal 33 (see FIGS. 2 and 6) on the upper end 22b of the housing 22, and is connected to a discharge power supply 36 via this terminal 33. Further, the two ground electrodes 34, 34 are connected to the ground electrode terminal 35 (see FIGS. 2 and 6) of the upper end 22b of the housing 22, and are connected to the discharging power supply 36 via this terminal 35. ‥
 ガスに含まれる微粒子26は、図5に示すように、ガス導入口24aからガス流路24内に入り、電荷発生部30を通過する際に電荷発生部30の気中放電によって発生した電荷28が付加されて帯電微粒子Pとなったあと後方に移動する。また、発生した電荷28のうち微粒子26に付加されなかったものは、電荷28のまま後方に移動する。 As shown in FIG. 5, the fine particles 26 contained in the gas enter the gas flow path 24 through the gas introduction port 24a and, when passing through the charge generation unit 30, charge 28 generated by the air discharge of the charge generation unit 30. Is added to form charged fine particles P, and the particles move backward. Further, of the generated electric charges 28, those not added to the fine particles 26 move rearward as the electric charges 28.
 余剰電荷除去部40は、図5に示すように、電荷発生部30の下流で且つ捕集部50の上流に設けられている。余剰電荷除去部40は、除去電極44(図4及び図5参照)を有しているが、除去電極44に対向する位置に印加電極(除去電極44上に電界を発生させるための電極)を有していない。除去電極44は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。除去電極44は、除去電極端子45(図2及び図6参照)を介してグランドに接続されている。 The surplus charge removal unit 40 is provided downstream of the charge generation unit 30 and upstream of the collection unit 50, as shown in FIG. The surplus charge removal portion 40 has a removal electrode 44 (see FIGS. 4 and 5), but an application electrode (an electrode for generating an electric field on the removal electrode 44) is provided at a position facing the removal electrode 44. I don't have it. The removal electrode 44 is provided along the inner surface of the flow path wall 22d on the right side and is exposed in the gas flow path 24. The removal electrode 44 is connected to the ground via a removal electrode terminal 45 (see FIGS. 2 and 6).
 捕集部50は、図5に示すように、ガス流路24のうち電荷発生部30及び余剰電荷除去部40よりも下流に設けられている。捕集部50は、帯電微粒子Pを捕集するものであり、対向電極(電界発生電極)52と捕集電極54とを有している。対向電極52は、左側の流路壁22cの内面に沿って設けられ、ガス流路24内に露出している(図3及び図5参照)。捕集電極54は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している(図4及び図5参照)。対向電極52と捕集電極54とは互いに向かい合う位置に配設されている。対向電極52は、対向電極端子53(図2及び図6参照)を介して直流電圧V1(正電位、例えば2kV程度)が捕集用電源56によって印加される。捕集電極54は、捕集電極端子55(図2及び図6参照)を介して差動増幅回路62及び電流計64を経てグランドに接続されている。これにより、捕集部50の対向電極52と捕集電極54との間には比較的強い電界が発生する。したがって、ガス流路24を流れる帯電微粒子Pは、この比較的強い電界によって捕集電極54に引き寄せられて捕集される。  As shown in FIG. 5, the collection unit 50 is provided downstream of the charge generation unit 30 and the surplus charge removal unit 40 in the gas flow path 24. The collecting unit 50 collects the charged fine particles P, and has a counter electrode (electric field generating electrode) 52 and a collecting electrode 54. The counter electrode 52 is provided along the inner surface of the left channel wall 22c and is exposed in the gas channel 24 (see FIGS. 3 and 5). The collection electrode 54 is provided along the inner surface of the right channel wall 22d and is exposed in the gas channel 24 (see FIGS. 4 and 5). The counter electrode 52 and the collecting electrode 54 are arranged at positions facing each other. A DC voltage V1 (a positive potential, for example, about 2 kV) is applied to the counter electrode 52 by a collection power supply 56 via a counter electrode terminal 53 (see FIGS. 2 and 6). The collection electrode 54 is connected to the ground via the collection electrode terminal 55 (see FIGS. 2 and 6), the differential amplifier circuit 62 and the ammeter 64. As a result, a relatively strong electric field is generated between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Therefore, the charged fine particles P flowing in the gas flow path 24 are attracted to and collected by the collection electrode 54 by this relatively strong electric field. ‥
 なお、余剰電荷除去部40の除去電極44のサイズ、放電電極32と除去電極44との間の電界の強さ、捕集部50の各電極52,54のサイズ、両電極52,54の間に発生させる電界の強さ、除去電極44と放電電極32との距離、除去電極44と対向電極52との距離は、帯電微粒子Pが除去電極44に捕集されることなく捕集電極54に捕集されるように、また、微粒子26に付加しなかった電荷28が除去電極44によって除去されるように、設定されている。一般に、電荷28の電気移動度は、帯電微粒子Pの電気移動度の10倍以上であり、捕集するのに必要な電界は1桁以上小さくて済むので、このような設定が容易に可能となる。 The size of the removal electrode 44 of the excess charge removal unit 40, the strength of the electric field between the discharge electrode 32 and the removal electrode 44, the size of each electrode 52, 54 of the collection unit 50, the distance between both electrodes 52, 54. The strength of the electric field generated by the discharge electrode 44, the distance between the removal electrode 44 and the discharge electrode 32, and the distance between the removal electrode 44 and the counter electrode 52 are determined by the collection electrode 54 without the charged fine particles P being collected by the removal electrode 44. It is set so as to be collected and the charge 28 not added to the fine particles 26 is removed by the removal electrode 44. Generally, the electric mobility of the electric charge 28 is 10 times or more the electric mobility of the charged fine particles P, and the electric field necessary for collecting the electric charge is one digit or more. Therefore, such setting can be easily performed. Become.
 ガード電極68は、対向電極52から筐体22を経て捕集電極54へ流れる漏れ電流を吸収する漏れ電流吸収電極である。ガード電極68は、図4及び図5に示すように捕集電極54を囲むように流路壁22dの表面に設けられている。ガード電極68の一部は除去電極44と共通化されている。ガード電極68は、除去電極44と共に除去電極端子45(図2及び図6参照)を介してグランドに接続されている。なお、図4では、便宜上、捕集電極54を四角形で表しガード電極68はその四角形を囲う形状として記載したが、実際には、捕集電極54の上部には図6に示すように端子接続用の引き出し部が設けられているため、ガード電極68の上部はこの引き出し部も囲う形状となっている。 The guard electrode 68 is a leakage current absorption electrode that absorbs a leakage current flowing from the counter electrode 52 through the housing 22 to the collection electrode 54. The guard electrode 68 is provided on the surface of the flow path wall 22d so as to surround the collection electrode 54 as shown in FIGS. A part of the guard electrode 68 is shared with the removal electrode 44. The guard electrode 68 is connected to the ground through the removal electrode terminal 45 (see FIGS. 2 and 6) together with the removal electrode 44. Note that, in FIG. 4, for the sake of convenience, the collection electrode 54 is shown as a quadrangle and the guard electrode 68 is described as having a shape surrounding the quadrangle. Since a lead-out portion for use is provided, the upper portion of the guard electrode 68 has a shape surrounding the lead-out portion.
 ノイズ検出電極70は、捕集電極54の周囲のノイズを検出する電極である。ノイズ検出電極70は、筐体22の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。ノイズ検出電極70は、図4~図6に示すようにガード電極68によって囲まれた領域内(すなわちガード電極68の内側)であって捕集電極54の下流側に設けられている。 The noise detection electrode 70 is an electrode that detects noise around the collection electrode 54. The noise detection electrode 70 is provided along the inner surface of the flow path wall 22d of the housing 22 and is exposed in the gas flow path 24. The noise detection electrode 70 is provided in the region surrounded by the guard electrode 68 (that is, inside the guard electrode 68) and on the downstream side of the collection electrode 54 as shown in FIGS. 4 to 6.
 個数検出部60は、付属ユニット80の1つであり、図5に示すように、差動増幅回路62と電流計64と個数測定装置66とを備えている。個数検出部60は、本発明の演算部に相当する。差動増幅回路62は、+側の入力端子(第1入力端子)に捕集電極54が接続され、-側の入力端子(第2入力端子)にノイズ検出電極70が接続されている。電流計64は、一方の端子が差動増幅回路62の出力端子に接続され、もう一方の端子がグランドに接続されている。この電流計64は、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流を測定する。個数測定装置66は、周知のCPUなどを備えたマイクロプロセッサからなり、電流計64の電流に基づいて微粒子26の個数を演算する。 The number detecting unit 60 is one of the accessory units 80, and includes a differential amplifier circuit 62, an ammeter 64, and a number measuring device 66, as shown in FIG. The number detecting unit 60 corresponds to the calculating unit of the present invention. In the differential amplifier circuit 62, the collection electrode 54 is connected to the + side input terminal (first input terminal), and the noise detection electrode 70 is connected to the − side input terminal (second input terminal). The ammeter 64 has one terminal connected to the output terminal of the differential amplifier circuit 62 and the other terminal connected to the ground. The ammeter 64 measures a current based on the electric charge 28 of the charged fine particles P collected by the collecting electrode 54. The number measuring device 66 is composed of a microprocessor having a well-known CPU and the like, and calculates the number of the particles 26 based on the current of the ammeter 64.
 ヒータ電極78は、筐体22に埋設された帯状の発熱体である。具体的には、ヒータ電極78は、図2及び図6に示すように、筐体22の上端22bの一方のヒータ電極端子79から、筐体22の流路壁22cをジグザグに引き回されたあと、筐体22の上端22bの他方のヒータ電極端子79に戻るように配線されている。ヒータ電極78は、一対のヒータ電極端子79,79を介して図示しない給電装置に接続され、その給電装置によって通電されると発熱する。ヒータ電極78は、筐体22や除去電極44,捕集電極54などの各電極を加熱する。 The heater electrode 78 is a strip-shaped heating element embedded in the housing 22. Specifically, as shown in FIGS. 2 and 6, the heater electrode 78 has the flow path wall 22c of the case 22 drawn in a zigzag manner from one heater electrode terminal 79 of the upper end 22b of the case 22. After that, wiring is provided so as to return to the other heater electrode terminal 79 on the upper end 22b of the housing 22. The heater electrode 78 is connected to a power supply device (not shown) via a pair of heater electrode terminals 79, 79, and generates heat when energized by the power supply device. The heater electrode 78 heats each electrode such as the housing 22, the removal electrode 44, and the collection electrode 54.
 ここで、微粒子検出素子20の構成について、図6の分解斜視図を用いて更に説明する。微粒子検出素子20は、6枚のシートS1~S6で構成されている。各シートS1~S6は、筐体22と同じ材料で形成されている。説明の便宜上、左から右に向かって第1シートS1、第2シートS2、…と称し、各シートS1~S6における右側の面を表面、左側の面を裏面と称する。各シートS1~S6の厚みは適宜設定すればよく、例えばすべて同じであってもよいし、それぞれ異なっていてもよい。 Here, the configuration of the particle detection element 20 will be further described with reference to the exploded perspective view of FIG. The particle detection element 20 is composed of six sheets S1 to S6. Each of the sheets S1 to S6 is made of the same material as the case 22. For convenience of description, the sheets are referred to as a first sheet S1, a second sheet S2, ... From left to right, the right side surface of each of the sheets S1 to S6 is referred to as a front surface, and the left side surface is referred to as a back surface. The thickness of each of the sheets S1 to S6 may be set appropriately, and may be the same or different.
 第1シートS1の表面には、ヒータ電極78が設けられている。ヒータ電極78の一端及び他端は、第1シートS1の表面の上方に配置されており、第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたヒータ電極端子79,79にそれぞれ接続されている。 A heater electrode 78 is provided on the surface of the first sheet S1. One end and the other end of the heater electrode 78 are arranged above the front surface of the first sheet S1, and the heater electrode terminals 79 are provided above the back surface of the first sheet S1 through the through holes of the first sheet S1. , 79, respectively.
 第2シートS2の表面には、グランド電極34,34が設けられている。グランド電極34,34は1本の配線34aにまとめられている。その配線34aの端部は、第2シートS2の表面の上方に配置されており、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたグランド電極端子35に接続されている。第2シートS2の表面には、除去電極44の配線44aと捕集電極54の配線54aとノイズ検出電極70の配線70aとが上下方向に沿ってそれぞれ設けられている。各配線44a,54a,70aの上端は、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた除去電極端子45、捕集電極端子55及びノイズ検出電極端子71にそれぞれ接続されている。 The ground electrodes 34, 34 are provided on the surface of the second sheet S2. The ground electrodes 34, 34 are integrated into one wiring 34a. The end of the wiring 34a is arranged above the front surface of the second sheet S2, and is provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1. It is connected to the electrode terminal 35. On the surface of the second sheet S2, the wiring 44a of the removal electrode 44, the wiring 54a of the collection electrode 54, and the wiring 70a of the noise detection electrode 70 are provided along the vertical direction. The upper ends of the wirings 44a, 54a, 70a are provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1 and are provided with a removal electrode terminal 45, a collection electrode terminal 55, and noise. Each is connected to the detection electrode terminal 71.
 第3シートS3の表面には、放電電極32及び対向電極52が設けられている。 The discharge electrode 32 and the counter electrode 52 are provided on the surface of the third sheet S3.
 第4シートS4の下端側には、ガス流路24すなわち直方体形状の空間が設けられている。 A gas flow path 24, that is, a rectangular parallelepiped space is provided on the lower end side of the fourth sheet S4.
 第5シートS5の裏面には、除去電極44、捕集電極54、ノイズ検出電極70及びガード電極68が設けられている。ガード電極68と一体化された除去電極44は、第4シートS4及び第3シートS3の各スルーホールを介して第2シートS2の配線44aに接続され、この配線44aを介して除去電極端子45に接続されている。捕集電極54は、第4シートS4及び第3シートS3の各スルーホールを介して第2シートS2の配線54aに接続され、この配線54aを介して捕集電極端子55に接続されている。ノイズ検出電極70は、第4シートS4及び第3シートS3の各スルーホールを介して第2シートS2の配線70aに接続され、この配線70aを介してノイズ検出電極端子71に接続されている。 The removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on the back surface of the fifth sheet S5. The removal electrode 44 integrated with the guard electrode 68 is connected to the wiring 44a of the second sheet S2 through each through hole of the fourth sheet S4 and the third sheet S3, and the removal electrode terminal 45 is connected through this wiring 44a. It is connected to the. The collecting electrode 54 is connected to the wiring 54a of the second sheet S2 via the through holes of the fourth sheet S4 and the third sheet S3, and is connected to the collecting electrode terminal 55 via the wiring 54a. The noise detection electrode 70 is connected to the wiring 70a of the second sheet S2 via the through holes of the fourth sheet S4 and the third sheet S3, and is connected to the noise detection electrode terminal 71 via this wiring 70a.
 第6シートS6の裏面には、放電電極32の配線32aと対向電極52の配線52aとが上下方向に沿ってそれぞれ設けられている。配線32aの下端は、第4~第5シートS4~S5の各スルーホールを介して第3シートS3に設けられた放電電極32に接続されている。配線52aの下端は、第4~第5シートS4~S5の各スルーホールを介して第3シートS3に設けられた対向電極52に接続されている。各配線32a,52aの上端は、第6シートS6のスルーホールを介して第6シートS6の表面の上方に設けられた放電電極端子33及び対向電極端子53にそれぞれ接続されている。 The wiring 32a of the discharge electrode 32 and the wiring 52a of the counter electrode 52 are provided on the back surface of the sixth sheet S6 along the vertical direction. The lower end of the wiring 32a is connected to the discharge electrode 32 provided on the third sheet S3 through the through holes of the fourth to fifth sheets S4 to S5. The lower end of the wiring 52a is connected to the counter electrode 52 provided on the third sheet S3 through the through holes of the fourth to fifth sheets S4 to S5. The upper ends of the wirings 32a and 52a are connected to the discharge electrode terminal 33 and the counter electrode terminal 53 provided above the surface of the sixth sheet S6 through the through holes of the sixth sheet S6, respectively.
 次に、微粒子検出器10の製造例について説明する。微粒子検出素子20は、複数枚のセラミックグリーンシートを用いて作製することができる。具体的には、複数枚のセラミックグリーンシートの各々について、必要に応じて切欠や貫通孔や溝を設けたり電極や配線パターンをスクリーン印刷したりした後、それらを積層して焼成する。なお、切欠や貫通孔や溝については、焼成時に焼失するような材料(例えば有機材料)で充填しておいてもよい。こうして、微粒子検出素子20を得る。続いて、微粒子検出素子20の放電電極端子33及び対向電極端子53をそれぞれ付属ユニットの放電用電源36及び捕集用電源56に接続する。また、微粒子検出素子20のグランド電極端子35及び除去電極端子45をグランドに接続する。更に、捕集電極端子55及びノイズ検出電極端子71を差動増幅回路62の+側及び-側の入力端子にそれぞれ接続し、差動増幅回路62の出力端子を電流計64を介して個数測定装置66に接続する。そして、ヒータ電極端子79,79を図示しない給電装置に接続する。こうすることにより、微粒子検出器10を製造することができる。 Next, a manufacturing example of the particle detector 10 will be described. The particle detection element 20 can be manufactured using a plurality of ceramic green sheets. Specifically, each of the plurality of ceramic green sheets is provided with notches, through holes or grooves, or screen-printed with electrodes or wiring patterns, if necessary, and then laminated and fired. The notches, the through holes, and the grooves may be filled with a material (for example, an organic material) that will be burned out during firing. In this way, the particle detection element 20 is obtained. Then, the discharge electrode terminal 33 and the counter electrode terminal 53 of the particle detection element 20 are connected to the discharge power supply 36 and the collection power supply 56 of the accessory unit, respectively. Further, the ground electrode terminal 35 and the removal electrode terminal 45 of the particle detection element 20 are connected to the ground. Further, the collection electrode terminal 55 and the noise detection electrode terminal 71 are connected to the + side and − side input terminals of the differential amplifier circuit 62, respectively, and the output terminals of the differential amplifier circuit 62 are counted through the ammeter 64. Connect to device 66. Then, the heater electrode terminals 79, 79 are connected to a power supply device (not shown). By doing so, the particle detector 10 can be manufactured.
 次に、微粒子検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子26を計測する場合、上述したようにエンジンの排気管12に微粒子検出素子20を取り付ける(図1参照)。図5に示すように、ガス導入口24aからガス流路24内に導入された排ガスに含まれる微粒子26は、電荷発生部30の放電によって発生した電荷28(ここでは正電荷)を帯びて帯電微粒子Pになる。帯電微粒子Pは、電界(除去電極44とその周囲に配置された電圧印加電極(放電電極32や対向電極52)との間に発生する電界)が弱く除去電極44の長さが捕集電極54よりも短い余剰電荷除去部40をそのまま通過して、捕集部50に至る。一方、微粒子26に付加されなかった電荷28は、電界が弱くても余剰電荷除去部40の除去電極44に引き寄せられ、除去電極44を介してグランドに捨てられる。これにより、微粒子26に付加されなかった不要な電荷28は捕集部50にほとんど到達することがない。 Next, an example of use of the particle detector 10 will be described. When measuring the fine particles 26 contained in the exhaust gas of an automobile, the fine particle detection element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1). As shown in FIG. 5, the fine particles 26 contained in the exhaust gas introduced into the gas flow path 24 from the gas introduction port 24a are charged with a charge 28 (here, a positive charge) generated by the discharge of the charge generation unit 30. It becomes fine particles P. The charged fine particles P have a weak electric field (the electric field generated between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44), and the length of the removal electrode 44 is the collection electrode 54. The excess charge removing section 40, which is shorter than the above, passes through as it is and reaches the collecting section 50. On the other hand, the charges 28 not added to the particles 26 are attracted to the removal electrode 44 of the excess charge removal unit 40 even if the electric field is weak, and are discarded to the ground via the removal electrode 44. As a result, the unnecessary charges 28 that have not been added to the fine particles 26 hardly reach the collection unit 50.
 捕集部50に到達した帯電微粒子Pは、対向電極52によって発生した捕集用電界によって捕集電極54に捕集される。捕集電極54には、捕集された帯電微粒子Pの電荷28に基づく電流に捕集電極54の周囲のノイズに基づく電流が加算された電流が流れる。捕集電極54の周囲のノイズには、例えば電荷発生部30によるノイズやETCなどの車載機器によるノイズなどが含まれる。ノイズ検出電極70には、捕集電極54の周囲のノイズに基づく電流が流れる。帯電微粒子Pはノイズ検出電極70の上流側に設けられた捕集電極54によって捕集されるため、ノイズ検出電極70には帯電微粒子Pに基づく電流は流れない。差動増幅回路62の+側の入力端子には、捕集電極54に流れる電流が入力され、-側の入力端子には、ノイズ検出電極70に流れる電流が入力される。差動増幅回路62の出力端子からは、捕集電極54に流れる電流からノイズ検出電極70に流れる電流を減算したあと増幅された信号が電流計64へ出力される。そのため、電流計64には、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流(ノイズ成分を含まない電流)が流れる。そして、その電流が電流計64で測定され、その電流に基づいて個数測定装置66が微粒子26の個数を演算する。電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。個数測定装置66は、所定期間にわたって電流値を積分(累算)してその積分値(蓄積電荷量)を求め、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子26に付加する電荷の数の平均値(平均帯電数)で除算することで、捕集電極54に捕集された微粒子26の個数Ntを求める(下記式(1)参照)。個数測定装置66は、この個数Ntを排ガス中の微粒子26の数として検出する。
 Nt=(蓄積電荷量)/{(素電荷)×(平均帯電数)} …(1)
The charged fine particles P that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the counter electrode 52. A current obtained by adding a current based on the noise around the collection electrode 54 to a current based on the charge 28 of the collected charged fine particles P flows through the collection electrode 54. The noise around the collection electrode 54 includes, for example, noise generated by the charge generation unit 30 and noise generated by vehicle-mounted devices such as ETC. A current based on noise around the collection electrode 54 flows through the noise detection electrode 70. Since the charged fine particles P are collected by the collecting electrode 54 provided on the upstream side of the noise detection electrode 70, a current based on the charged fine particles P does not flow through the noise detection electrode 70. The current flowing through the collection electrode 54 is input to the + side input terminal of the differential amplifier circuit 62, and the current flowing through the noise detection electrode 70 is input to the − side input terminal. From the output terminal of the differential amplifier circuit 62, a signal amplified after subtracting the current flowing through the noise detection electrode 70 from the current flowing through the collection electrode 54 is output to the ammeter 64. Therefore, a current (a current not including a noise component) based on the charge 28 of the charged fine particles P collected by the collecting electrode 54 flows through the ammeter 64. Then, the current is measured by the ammeter 64, and the number measuring device 66 calculates the number of the fine particles 26 based on the current. The relationship between the current I and the charge amount q is I = dq / (dt) and q = ∫Idt. The number measuring device 66 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (accumulated charge amount), divides the accumulated charge amount by elementary charge, and obtains the total number of charges (collected charge number). The number Nt of the fine particles 26 collected by the collecting electrode 54 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 26 (average number of charges) (see below). (See formula (1)). The number measuring device 66 detects this number Nt as the number of fine particles 26 in the exhaust gas.
Nt = (accumulated charge amount) / {(elementary charge) × (average number of charges)} (1)
 微粒子検出素子20の使用に伴い、微粒子26等が捕集電極54に数多く堆積すると、新たに帯電微粒子Pが捕集電極54に捕集されないことがある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、捕集電極54をヒータ電極78によって加熱することにより、捕集電極54上の堆積物を加熱して焼却し捕集電極54の電極面をリフレッシュする。また、ヒータ電極78により、筐体22の内周面に付着した微粒子26を焼却することもできる。 When a large number of particles 26 and the like are deposited on the collection electrode 54 due to the use of the particle detection element 20, the charged particles P may not be newly collected by the collection electrode 54. Therefore, by heating the collection electrode 54 by the heater electrode 78 periodically or at the timing when the deposition amount reaches a predetermined amount, the deposit on the collection electrode 54 is heated and incinerated, and the collection electrode 54 is heated. Refresh the electrode surface. The heater electrode 78 can also incinerate the fine particles 26 attached to the inner peripheral surface of the housing 22.
 次に、ガード電極68の役割について説明する。微粒子検出器10では、個数Ntを検出する際に、捕集部50の対向電極52と捕集電極54との間に電圧V1を印加する。電圧V1は数kVであるため、通常は電気絶縁体と考えられているアルミナ等のセラミックからなる筐体22であっても数10~数100pAの漏れ電流が対向電極52及び捕集電極54の一方から筐体22を経て他方へ流れる。一方、個数Ntを検出する際に電流計64で測定される検出電流は数pAである。そのため、漏れ電流は検出電流に影響を与える。本実施形態では、こうした漏れ電流をガード電極68が吸収してグランドに捨てる。捕集電極54はガード電極68によって囲まれている。また、ノイズ検出電極70もガード電極68によって囲まれている。そのため、捕集電極54に流れる電流やノイズ検出電極70に流れる電流に漏れ電流が影響するのを抑制することができる。 Next, the role of the guard electrode 68 will be described. In the particle detector 10, when detecting the number Nt, the voltage V1 is applied between the counter electrode 52 and the collection electrode 54 of the collection unit 50. Since the voltage V1 is several kV, a leakage current of several tens to several hundreds pA is generated in the counter electrode 52 and the collection electrode 54 even in the case 22 made of ceramic such as alumina which is usually considered as an electric insulator. It flows from one side to the other side through the housing 22. On the other hand, the detected current measured by the ammeter 64 when detecting the number Nt is several pA. Therefore, the leakage current affects the detection current. In this embodiment, such a leakage current is absorbed by the guard electrode 68 and is discarded to the ground. The collection electrode 54 is surrounded by the guard electrode 68. The noise detection electrode 70 is also surrounded by the guard electrode 68. Therefore, it is possible to prevent the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
 以上説明した微粒子検出器10では、個数測定装置66は捕集電極54からの微粒子検出信号(電流)からノイズ検出電極70からのノイズ信号(電流)を減算したあと増幅された信号(補正済み信号)に基づいて微粒子の数を演算する。補正済み信号はノイズの影響をほとんど受けていない信号であるため、その補正済み信号に基づいて微粒子の数を演算することにより、微粒子の数の検出精度が高まる。 In the particle detector 10 described above, the counting device 66 subtracts the noise signal (current) from the noise detection electrode 70 from the particle detection signal (current) from the collection electrode 54 and then amplifies the signal (corrected signal). ) Is used to calculate the number of fine particles. Since the corrected signal is a signal that is hardly affected by noise, the accuracy of detecting the number of particles is increased by calculating the number of particles based on the corrected signal.
 また、ノイズ検出電極70は、その表面がガス流路24に露出しているため、ノイズを検出しやすい。 Moreover, since the surface of the noise detection electrode 70 is exposed to the gas flow path 24, it is easy to detect noise.
 また、帯電微粒子Pはノイズ検出電極70の上流側に設けられている捕集電極54に捕集されるため、帯電微粒子Pがノイズ検出電極70に捕集されてしまうのを防止することができる。 Further, since the charged fine particles P are collected by the collecting electrode 54 provided on the upstream side of the noise detection electrode 70, it is possible to prevent the charged fine particles P from being collected by the noise detection electrode 70. ..
 更に、漏れ電流はガード電極68によって吸収されるため、捕集電極54からの微粒子検出信号に漏れ電流が加わることが防止される。また、ノイズ検出電極70もガード電極68の内側に設けられているため、ノイズ検出電極70からのノイズ信号に漏れ電流が加わることが防止される。したがって、漏れ電流の影響による検出精度の低下を防止することができ、微粒子の数の検出精度を高めることができる。 Further, since the leak current is absorbed by the guard electrode 68, the leak current is prevented from being added to the particle detection signal from the collection electrode 54. Further, since the noise detection electrode 70 is also provided inside the guard electrode 68, it is possible to prevent a leak current from being added to the noise signal from the noise detection electrode 70. Therefore, it is possible to prevent the detection accuracy from decreasing due to the influence of the leakage current, and it is possible to improve the detection accuracy of the number of fine particles.
 更にまた、余剰電荷は除去電極44によって除去されるため、余剰電荷が捕集電極54に捕集されて微粒子の数にカウントされてしまうのを抑制することができる。 Furthermore, since the excess charge is removed by the removal electrode 44, it is possible to prevent the excess charge from being collected by the collection electrode 54 and counted as the number of fine particles.
 そしてまた、ガード電極68は、除去電極44と共通化されているため、電極の構成を簡略化することができる。 Moreover, since the guard electrode 68 is shared with the removal electrode 44, the structure of the electrode can be simplified.
 そして更に、除去電極44は、除去電極44上に電界を発生させる独自の電源を有さず、除去電極44とその周囲に配置された電圧印加電極(放電電極32や対向電極52)との間に発生する電界を利用して余剰の電荷28をグランドに除去する。そのため、除去電極44に電界を発生させる独自の電源を有する場合と比べて微粒子検出器10の構成を簡略化することができる。 Further, the removal electrode 44 does not have its own power source for generating an electric field on the removal electrode 44, and is provided between the removal electrode 44 and the voltage application electrodes (the discharge electrode 32 and the counter electrode 52) arranged around the removal electrode 44. The excess electric charge 28 is removed to the ground by using the electric field generated in the. Therefore, the structure of the particle detector 10 can be simplified as compared with the case where the removal electrode 44 has its own power source for generating an electric field.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Needless to say, the present invention is not limited to the above-described embodiments, and can be carried out in various modes within the technical scope of the present invention.
 例えば、上述した実施形態において、個数検出部60は、図7に示すように、差動増幅回路62の-側の入力端子とノイズ検出電極70との間に増幅率調整部61を備えていてもよい。この場合、個数検出部60は、ガス流路24にガスを通過させていない状態で電荷発生部30や捕集部50に通電したときに、捕集電極54で検出される第1基準ノイズ信号とノイズ検出電極70で検出される第2基準ノイズ信号とが一致するように第2基準ノイズ信号の増幅率を求める(キャリブレーション)。その後、個数検出部60は、増幅率調整部61の増幅率がこのようにして求めた第2基準ノイズ信号の増幅率となるように調節し、ガス流路24にガスを通過させた状態で、捕集電極54からの電流から、ノイズ検出電極70からの電流に調節後の増幅率を乗算した信号を減算することにより、補正済み信号を求め、その補正済み信号に基づいて微粒子の数を演算してもよい。 For example, in the above-described embodiment, the number detection unit 60 includes the amplification factor adjustment unit 61 between the − side input terminal of the differential amplifier circuit 62 and the noise detection electrode 70, as shown in FIG. 7. Good. In this case, the number detection unit 60 detects the first reference noise signal detected by the collection electrode 54 when the charge generation unit 30 and the collection unit 50 are energized in a state where gas is not passing through the gas flow path 24. And the amplification factor of the second reference noise signal is calculated so that the second reference noise signal detected by the noise detection electrode 70 matches (calibration). After that, the number detection unit 60 adjusts the amplification factor of the amplification factor adjustment unit 61 to be the amplification factor of the second reference noise signal thus obtained, and in a state where the gas is passed through the gas flow path 24. A corrected signal is obtained by subtracting a signal obtained by multiplying the current from the noise detection electrode 70 by the adjusted amplification factor from the current from the collection electrode 54, and the number of particles is calculated based on the corrected signal. You may calculate.
 キャリブレーションの一例を図8のフローチャートに基づいて以下に説明する。個数検出部60の個数測定装置66は、キャリブレーションの開始前に、予め電荷発生部30、余剰電荷除去部40及び捕集部50の短絡点検を行い、それらのいずれにおいても短絡していないことを確認する。個数測定装置66は、キャリブレーションを開始すると、まず電荷発生部30及び捕集部50に仮通電を行う(S110)。仮通電では、S110を初めて実行するときには低電圧を印加するが、2回目以降は回を重ねるにしたがって本電圧に近づくように電圧を段階的に上げて印加する(ステップアップ印加)。続いて、個数測定装置66は、漏れ電流を計測する(S120)。漏れ電流は、捕集電極54に流れる電流を図示しない電流計で測定することにより計測する。続いて、個数測定装置66は、漏れ電流が予め定めた閾値以下か否かを判定し(S130)、漏れ電流が閾値を超えていたならば、何らかの異常が発生しているおそれがあるとみなして電荷発生部30及び捕集部50への通電をオフして警告を発し(S135)、キャリブレーションを終了する。警告は、例えばランプを点灯又は点滅したりブザーを鳴らしたり音声で状況を説明したりすることにより行う。なお、漏れ電流の閾値は予め予備実験等で微粒子検出器10の異常のない範囲に設定されている。一方、S130で漏れ電流が閾値以下だったならば、個数測定装置66は、仮通電の電圧が本通電の電圧(微粒子数計測時の電圧)に達したか否かを判定し(S140)、本通電の電圧に達していなければ、S110に戻って前回よりも一段高い電圧で仮通電を行ったあと、再びS120~S140の処理を実行する。一方、S140で仮通電の電圧が本通電の電圧に達していたならば、個数測定装置66は、電荷発生部30及び捕集部50に本通電の電圧を印加したまま、差動増幅回路62に通電し(S150)、差動電流を計測する(S160)。差動電流は、差動増幅回路62の出力信号であり、捕集電極54で検出される第1基準ノイズ信号からノイズ検出電極70で検出され増幅率調整部61で調節された増幅率を乗算した第2基準ノイズ信号を差し引いた値である。続いて、個数測定装置66は、差動電流が実質的にゼロか否か、すなわち予め定めたゼロ点規定値以下か否かを判定し(S170)、差動電流がゼロ点規定値を超えていたならば増幅率調整部61の増幅率を更新し(S175)、再びS160,S170の処理を実行する。増幅率は初回は低く設定されており、S175で増幅率を更新するたびに徐々に大きい値に設定される。一方、S170で差動電流がゼロ点既定値以下だったならば、個数測定装置66は、そのときの増幅率を図示しないメモリに記憶し(S180)、電荷発生部30、捕集部50及び差動増幅回路62への通電をオフし(S190)、キャリブレーションを終了する。その後、個数測定装置66は、図示しないメモリに記憶された増幅率を用いて微粒子の数を演算する。 An example of calibration will be explained below based on the flowchart of FIG. The number measuring device 66 of the number detection unit 60 performs a short circuit check of the charge generation unit 30, the surplus charge removal unit 40, and the collection unit 50 in advance before starting the calibration, and it is not shorted in any of them. To confirm. When the number measurement device 66 starts the calibration, first, the charge generation unit 30 and the collection unit 50 are temporarily energized (S110). In the temporary energization, the low voltage is applied when S110 is executed for the first time, but the voltage is increased stepwise so as to approach the main voltage as the number of times increases after the second time (step-up application). Subsequently, the number measuring device 66 measures the leakage current (S120). The leakage current is measured by measuring the current flowing through the collecting electrode 54 with an ammeter (not shown). Subsequently, the number measuring device 66 determines whether the leakage current is less than or equal to a predetermined threshold value (S130), and if the leakage current exceeds the threshold value, it is considered that some abnormality may occur. Then, the power supply to the charge generation unit 30 and the collection unit 50 is turned off to issue a warning (S135), and the calibration is completed. The warning is given, for example, by lighting or blinking a lamp, sounding a buzzer, or explaining the situation by voice. The threshold value of the leakage current is set in advance in a preliminary experiment or the like within a range in which there is no abnormality in the particle detector 10. On the other hand, if the leakage current is less than or equal to the threshold value in S130, the number measuring device 66 determines whether or not the temporary energization voltage has reached the main energization voltage (voltage at the time of measuring the number of fine particles) (S140), If the voltage for the main energization has not been reached, the process returns to S110, temporary energization is performed with a voltage one step higher than the previous time, and then the processes of S120 to S140 are executed again. On the other hand, if the voltage of the temporary energization has reached the voltage of the main energization in S140, the number measuring device 66 keeps the voltage of the main energization applied to the charge generation unit 30 and the collection unit 50, and the differential amplifier circuit 62. Is energized (S150) and the differential current is measured (S160). The differential current is an output signal of the differential amplification circuit 62, and is multiplied by the amplification factor adjusted by the amplification factor adjustment unit 61 detected by the noise detection electrode 70 from the first reference noise signal detected by the collection electrode 54. It is a value obtained by subtracting the second reference noise signal. Subsequently, the number measuring device 66 determines whether or not the differential current is substantially zero, that is, whether or not it is equal to or less than a predetermined zero point specified value (S170), and the differential current exceeds the zero point specified value. If so, the amplification factor of the amplification factor adjusting unit 61 is updated (S175), and the processes of S160 and S170 are executed again. The amplification rate is set low at the first time, and is set to a gradually larger value each time the amplification rate is updated in S175. On the other hand, if the differential current is below the zero-point default value in S170, the number-counting device 66 stores the amplification factor at that time in a memory (not shown) (S180), and the charge generation unit 30, the collection unit 50, and the The power supply to the differential amplifier circuit 62 is turned off (S190), and the calibration is completed. After that, the number measuring device 66 calculates the number of fine particles using the amplification factor stored in a memory (not shown).
 このようなキャリブレーションを実行することで、ガスの影響を受けることなく精度よく増幅率を求めることができる。また、捕集電極54に乗るノイズ信号とノイズ検出電極70に乗るノイズ信号は各電極54,70のノイズ発生源(例えば放電電極32)からの距離の違いや電極面積の違いによって信号の大きさが異なることがあったとしても、キャリブレーションによって設定された増幅率調整部61の増幅率によってそれらの影響をキャンセルすることができる。なお、キャリブレーションは個数検出部60の個数測定装置66が実行するようにしたが、他のプロセッサ(例えばエンジンECU)が実行するようにしてもよい。 By performing such a calibration, the amplification factor can be obtained accurately without being affected by gas. The noise signal on the collecting electrode 54 and the noise signal on the noise detecting electrode 70 are different in magnitude depending on the difference in distance between the noise generating source (for example, the discharge electrode 32) of each electrode 54, 70 and the difference in electrode area. However, even if they are different, the influences thereof can be canceled by the amplification rate of the amplification rate adjusting unit 61 set by the calibration. The calibration is performed by the number measuring device 66 of the number detecting unit 60, but may be performed by another processor (for example, an engine ECU).
 上述した実施形態では、ガード電極68と除去電極44とを共通化したが、図9(図2のD-D断面図に相当)に示すように、フレーム状のガード電極68と矩形の除去電極44とをそれぞれ個別に設けてもよい。図9においても、ガード電極68は捕集電極54を囲むように設けられ、ノイズ検出電極70はガード電極68の内側で捕集電極54の下流側に設けられている。この場合、両電極68,44を共通の配線を介してグランドに接続してもよいし、個別の配線を介してグランドに接続してもよい。 In the above-described embodiment, the guard electrode 68 and the removal electrode 44 are used in common, but as shown in FIG. 9 (corresponding to the DD sectional view of FIG. 2), the frame-shaped guard electrode 68 and the rectangular removal electrode are provided. 44 and 44 may be provided separately. Also in FIG. 9, the guard electrode 68 is provided so as to surround the collection electrode 54, and the noise detection electrode 70 is provided inside the guard electrode 68 and on the downstream side of the collection electrode 54. In this case, both electrodes 68 and 44 may be connected to the ground via a common wire, or may be connected to the ground via individual wires.
 上述した実施形態では、ノイズ検出電極70を流路壁22dの内面に沿って設けたが、図10に示すノイズ検出電極170のように筐体22の流路壁22dに埋設してもよい。なお、図10では上述した実施形態と同じ構成要素には同じ符号を付した。こうすれば、ノイズ検出電極170に帯電微粒子Pが付着するのを確実に防止できる。そのため、ノイズ検出電極170は捕集電極54の下流側に設ける必要は必ずしもない。また、ノイズ検出電極170に漏れ電流が流れにくくなる。そのため、ノイズ検出電極170はガード電極68の内側に配置する必要は必ずしもない。ノイズ検出電極170の表面(図10では下面)から筐体22の表面までの距離は短いことが好ましい。例えば、その距離は0.1mm以下が好ましく、0.01mm以下がより好ましい。 In the above-described embodiment, the noise detection electrode 70 is provided along the inner surface of the flow channel wall 22d, but it may be embedded in the flow channel wall 22d of the housing 22 like the noise detection electrode 170 shown in FIG. In FIG. 10, the same components as those in the above-described embodiment are designated by the same reference numerals. By doing so, it is possible to reliably prevent the charged fine particles P from adhering to the noise detection electrode 170. Therefore, the noise detection electrode 170 does not necessarily have to be provided on the downstream side of the collection electrode 54. Further, it becomes difficult for leakage current to flow through the noise detection electrode 170. Therefore, the noise detection electrode 170 does not necessarily have to be arranged inside the guard electrode 68. The distance from the surface of the noise detection electrode 170 (the lower surface in FIG. 10) to the surface of the housing 22 is preferably short. For example, the distance is preferably 0.1 mm or less, more preferably 0.01 mm or less.
 あるいは、図11に示すように、流路壁22dの内面に沿って設けられたノイズ検出電極70の表面を非導電性の保護層70bで覆ってもよい。なお、図11では上述した実施形態と同じ構成要素には同じ符号を付した。こうすれば、ノイズ検出電極70に帯電微粒子Pが付着するのを確実に防止できる。そのため、保護層70bの付いたノイズ検出電極70は捕集電極54の下流側に設ける必要は必ずしもない。また、ノイズ検出電極70に漏れ電流が流れにくくなる。そのため、保護層70bの付いたノイズ検出電極170はガード電極68の内側に配置する必要は必ずしもない。保護層70bの厚みは、ノイズ検出電極70によるノイズ検出を考慮すると薄いことが好ましく、ガスの流れを妨げないようにすることを考慮すると0.1mm以下が好ましく、ノイズ検出電極70の厚み(例えば0.005~0.01mm)を考慮すると0.01mm以下が好ましい。保護層70bの材料については、耐熱性の点からアルミナ等のセラミックスやシリカ等のガラスが好ましい。ガラス製の保護層70bの形成方法の一例を以下に説明する。すなわち、ノイズ検出電極70よりもサイズの大きな板状のガラス(厚みは0.1mm程度)をノイズ検出電極70の上に置き、そのガラスをガラス転移点よりも高い温度に加熱して軟化させることで、ガラス製の保護層70bを形成することができる。 Alternatively, as shown in FIG. 11, the surface of the noise detection electrode 70 provided along the inner surface of the flow path wall 22d may be covered with a non-conductive protective layer 70b. In FIG. 11, the same components as those in the above-described embodiment are designated by the same reference numerals. By doing so, it is possible to reliably prevent the charged fine particles P from adhering to the noise detection electrode 70. Therefore, the noise detection electrode 70 with the protective layer 70b does not necessarily have to be provided on the downstream side of the collection electrode 54. Further, it becomes difficult for leakage current to flow through the noise detection electrode 70. Therefore, the noise detection electrode 170 with the protective layer 70b does not necessarily have to be arranged inside the guard electrode 68. The thickness of the protective layer 70b is preferably thin in consideration of noise detection by the noise detection electrode 70, preferably 0.1 mm or less in consideration of not disturbing the gas flow, and the thickness of the noise detection electrode 70 (for example, If considering 0.005 to 0.01 mm), 0.01 mm or less is preferable. As the material of the protective layer 70b, ceramics such as alumina and glass such as silica are preferable from the viewpoint of heat resistance. An example of the method for forming the glass protective layer 70b will be described below. That is, a plate-shaped glass (having a thickness of about 0.1 mm) larger than the noise detection electrode 70 is placed on the noise detection electrode 70, and the glass is heated to a temperature higher than the glass transition point to be softened. Thus, the protective layer 70b made of glass can be formed.
 上述した実施形態では、ガード電極68は表面を流れる漏れ電流を吸収してグランドに捨てるようにしたが、これに加えて、図12及び図13に示すように、筐体22内に捕集電極54及びノイズ検出電極70を上下から囲むガード電極69,69を埋設してもよい。なお、図12及び図13では上述した実施形態と同じ構成要素には同じ符号を付した。図12に示すように、両ガード電極69,69は第4シートS4の表面であってガス流路24の上方と下方にそれぞれ設けられている。下方のガード電極69は、除去電極44に接続されている。上方のガード電極69は、除去電極44と配線44aとを結ぶ導電経路の途中に接続され、配線44aを介して除去電極端子45に接続されている。こうすれば、筐体22内を流れる漏れ電流は筐体22内に埋設されたガード電極69,69によって吸収されてグランドに捨てられ、表面を流れる漏れ電流はガード電極68に吸収されてグランドに捨てられる。そのため、捕集電極54に流れる電流やノイズ検出電極70に流れる電流に漏れ電流が影響するのを一層抑制することができる。 In the above-described embodiment, the guard electrode 68 absorbs the leakage current flowing on the surface and discards it to the ground, but in addition to this, as shown in FIGS. Guard electrodes 69, 69 may be embedded so as to surround 54 and the noise detection electrode 70 from above and below. 12 and 13, the same components as those in the above-described embodiment are designated by the same reference numerals. As shown in FIG. 12, both guard electrodes 69, 69 are provided on the surface of the fourth sheet S4 above and below the gas flow path 24, respectively. The lower guard electrode 69 is connected to the removal electrode 44. The upper guard electrode 69 is connected in the middle of the conductive path connecting the removal electrode 44 and the wiring 44a, and is connected to the removal electrode terminal 45 via the wiring 44a. In this way, the leakage current flowing in the housing 22 is absorbed by the guard electrodes 69, 69 embedded in the housing 22 and discarded to the ground, and the leakage current flowing on the surface is absorbed in the guard electrode 68 and grounded. Thrown away Therefore, it is possible to further suppress the leakage current from affecting the current flowing through the collection electrode 54 and the current flowing through the noise detection electrode 70.
 上述した実施形態では、ガード電極68をガス流路24の内表面に設けたが、ガード電極68の位置は特に内表面に限定されるものではなく、漏れ電流を吸収可能な位置であればどこでも構わない。例えば、ガード電極68の一部又は全部を筐体22の内部に埋設してもよい。 Although the guard electrode 68 is provided on the inner surface of the gas flow path 24 in the above-described embodiment, the position of the guard electrode 68 is not particularly limited to the inner surface, and any position that can absorb the leakage current can be used. I do not care. For example, part or all of the guard electrode 68 may be embedded inside the housing 22.
 上述した実施形態では、ガード電極68を設けたが、筐体22の電気絶縁性が高くてガード電極68がなくても漏れ電流が実質ゼロの場合には、ガード電極68を省略してもよい。 Although the guard electrode 68 is provided in the above-described embodiment, the guard electrode 68 may be omitted if the housing 22 has high electric insulation and the leakage current is substantially zero without the guard electrode 68. ..
 上述した実施形態では、余剰電荷除去部40は除去電極44上に電界を発生させるための印加電極やその印加電極に電圧を印加する独自の除去用電源を有さないものとして説明したが、図5において除去電極44に対向する位置(左側の流路壁22c)に印加電極を設け、その印加電極に電圧を印加する除去用電源を設けてもよい。その場合、除去電極44に印加する電圧は余剰の電荷28を捕集するが帯電微粒子Pを捕集しないように調整する。 In the above-described embodiment, the surplus charge removing unit 40 is described as having no application electrode for generating an electric field on the removal electrode 44 or an original removal power source for applying a voltage to the application electrode. In FIG. 5, an applying electrode may be provided at a position facing the removing electrode 44 (left side channel wall 22c), and a removing power source for applying a voltage to the applying electrode may be provided. In that case, the voltage applied to the removal electrode 44 is adjusted so as to collect the excess charges 28 but not the charged fine particles P.
 上述した実施形態では、筐体22の右側の流路壁22dに余剰電荷除去部40の除去電極44と捕集部50の捕集電極54とノイズ検出電極70とガード電極68とを設け、左側の流路壁22cに捕集部50の対向電極52を設けたが、特にこれに限らない。例えば、筐体22の左側の流路壁22cに除去電極44と捕集電極54とノイズ検出電極70とガード電極68とを設け、右側の流路壁22dに捕集部50の対向電極52を設けてもよい。  In the above-described embodiment, the removal electrode 44 of the excess charge removal unit 40, the collection electrode 54 of the collection unit 50, the noise detection electrode 70, and the guard electrode 68 are provided on the flow path wall 22d on the right side of the housing 22, and the left side thereof is provided. Although the counter electrode 52 of the collection unit 50 is provided on the flow channel wall 22c, the present invention is not limited to this. For example, the removal electrode 44, the collection electrode 54, the noise detection electrode 70, and the guard electrode 68 are provided on the flow path wall 22c on the left side of the housing 22, and the counter electrode 52 of the collection unit 50 is provided on the flow path wall 22d on the right side. It may be provided. ‥
 上述した実施形態では、筐体22の右側の流路壁22dに余剰電荷除去部40の除去電極44を設けたが、左側の流路壁22cにもグランドに接続された除去電極を設けてもよい。 In the above-described embodiment, the removal electrode 44 of the excess charge removing portion 40 is provided on the right flow passage wall 22d of the housing 22, but the removal electrode connected to the ground may be provided on the left flow passage wall 22c. Good.
 上述した実施形態では、電荷発生部30として、ガス流路24の内面に沿って設けられた放電電極32と筐体22に埋設された2つのグランド電極34,34とにより構成したが、気中放電により電荷を発生するものであれば特にどのような構成でも構わない。例えば、グランド電極34,34をガス流路24の壁に埋設する代わりに、ガス流路24の内面に沿って設けてもよい。あるいは、特許文献1に記載されているように、電荷発生部を針状電極と対向電極とで構成してもよい。また、上述した実施形態では、電荷発生部30を流路壁22cに設けたが、これに代えて又は加えて、電荷発生部30を流路壁22dに設けてもよい。 In the above-described embodiment, the charge generation unit 30 is configured by the discharge electrode 32 provided along the inner surface of the gas flow path 24 and the two ground electrodes 34, 34 embedded in the housing 22. Any structure may be used as long as it can generate electric charges by discharging. For example, the ground electrodes 34, 34 may be provided along the inner surface of the gas flow path 24 instead of being buried in the wall of the gas flow path 24. Alternatively, as described in Patent Document 1, the charge generation section may be composed of a needle electrode and a counter electrode. Further, in the above-described embodiment, the charge generation unit 30 is provided on the flow channel wall 22c, but instead of or in addition to this, the charge generation unit 30 may be provided on the flow channel wall 22d.
 上述した実施形態では、対向電極52はガス流路24に露出していたが、これに限らず筐体22に埋設されていてもよい。 In the above-described embodiment, the counter electrode 52 is exposed to the gas flow path 24, but it is not limited to this and may be embedded in the housing 22.
 上述した実施形態では、微粒子検出器10をエンジンの排気管12に取り付ける場合を例示したが、特にエンジンの排気管12に限定されるものではなく、微粒子を含むガスが流通する管であればどのような管であってもよい。 In the above-described embodiment, the case where the particulate matter detector 10 is attached to the exhaust pipe 12 of the engine is illustrated, but the particulate matter detector 10 is not particularly limited to the exhaust pipe 12 of the engine, and may be any pipe as long as a gas containing particulates flows therethrough. Such a tube may be used.
 上述した実施形態では、微粒子検出素子20は微粒子の数を検出するものとしたが、微粒子の質量や表面積などを検出するものとしてもよい。微粒子の質量は、例えば、微粒子の数に微粒子の平均質量を乗じることにより求めることができるし、予め蓄積電荷量と捕集された微粒子の質量との関係をマップとして記憶装置に記憶しておき、このマップを用いて蓄積電荷量から微粒子の質量を求めることもできる。微粒子の表面積についても、微粒子の質量と同様の方法で求めることができる。 In the above-described embodiment, the particle detection element 20 detects the number of particles, but it may detect the mass or surface area of the particles. The mass of the fine particles can be obtained, for example, by multiplying the number of the fine particles by the average mass of the fine particles, and the relationship between the accumulated charge amount and the mass of the collected fine particles is stored in a storage device as a map in advance. It is also possible to obtain the mass of the fine particles from the accumulated charge amount using this map. The surface area of the fine particles can also be determined by the same method as the mass of the fine particles.
 本出願は、2018年10月31日に出願された日本国特許出願第2018-205612号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2018-205612 filed on Oct. 31, 2018, as a basis for claiming priority, and the entire contents thereof are included in the present specification by reference.
  本発明は、例えば自動車などの動力機械の排ガス中の微粒子を検出する微粒子検出器に利用可能である。 The present invention can be used for a particle detector that detects particles in exhaust gas of a power machine such as an automobile.
10 微粒子検出器、12 排気管、14 支持体、16 台座、18 保護カバー、20 微粒子検出素子、22 筐体、22a 下端、22b 上端、22c 流路壁、22d 流路壁、24 ガス流路、24a ガス導入口、24b ガス排出口、26 微粒子、28 電荷、30 電荷発生部、32 放電電極、32a 配線、33 放電電極端子、34 グランド電極、34a 配線、35 グランド電極端子、36 放電用電源、40 余剰電荷除去部、44 除去電極、44a 配線、45 除去電極端子、50 捕集部、52 対向電極、52a 配線、53 対向電極端子、54 捕集電極、54a 配線、55 捕集電極端子、56 捕集用電源、60 個数検出部、61 増幅率調整部、62 差動増幅回路、64 電流計、66 個数測定装置、68,69 ガード電極、70,170 ノイズ検出電極、70a 配線、70b 保護層、71 ノイズ検出電極端子、78 ヒータ電極、79 ヒータ電極端子、80 付属ユニット、P 帯電微粒子、S1~S6 第1~第6シート。 10 particle detector, 12 exhaust pipe, 14 support, 16 pedestal, 18 protective cover, 20 particle detection element, 22 housing, 22a lower end, 22b upper end, 22c flow path wall, 22d flow path wall, 24 gas flow path, 24a gas inlet, 24b gas outlet, 26 particles, 28 electric charge, 30 electric charge generation part, 32 discharge electrode, 32a wiring, 33 discharge electrode terminal, 34 ground electrode, 34a wiring, 35 ground electrode terminal, 36 discharge power supply, 40 excess charge removing section, 44 removing electrode, 44a wiring, 45 removing electrode terminal, 50 collecting section, 52 counter electrode, 52a wiring, 53 counter electrode terminal, 54 collecting electrode, 54a wiring, 55 collecting electrode terminal, 56 Power supply for collection, 60 number detection unit, 61 amplification factor adjustment unit, 62 differential amplification circuit, 64 Flowmeter, 66 number measuring device, 68,69 guard electrode, 70,170 noise detection electrode, 70a wiring, 70b protective layer, 71 noise detection electrode terminal, 78 heater electrode, 79 heater electrode terminal, 80 accessory unit, P charged fine particles , S1 to S6 1st to 6th sheets.

Claims (12)

  1.  ガス中の微粒子を検出するために用いられる微粒子検出器であって、
     前記ガスが通過するガス流路を有する筐体と、
     前記ガス流路内に導入された前記ガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
     前記ガス流路内で前記電荷発生部よりも前記ガスの流れの下流側に設けられ、前記帯電微粒子を捕集する捕集電極を有する捕集部と、
     前記捕集電極の周囲のノイズを検出するノイズ検出電極と、
     前記捕集電極からの微粒子検出信号と前記ノイズ検出電極からのノイズ信号とに基づいて前記微粒子検出信号からノイズ成分を減算して補正済み信号とし、前記補正済み信号に基づいて前記微粒子の量を演算する演算部と、
     を備えた微粒子検出器。
    A particle detector used to detect particles in a gas,
    A casing having a gas flow path through which the gas passes,
    A charge generation unit that adds a charge generated by electric discharge to the fine particles in the gas introduced into the gas flow path to form charged fine particles,
    A collector provided in the gas flow path on the downstream side of the gas flow with respect to the charge generator, and having a collector electrode for collecting the charged fine particles,
    A noise detection electrode for detecting noise around the collection electrode,
    A noise component is subtracted from the particle detection signal based on a particle detection signal from the collection electrode and a noise signal from the noise detection electrode to obtain a corrected signal, and the amount of the particles is determined based on the corrected signal. A computing unit for computing,
    Particle detector equipped with.
  2.  前記ノイズ検出電極は、前記筐体の前記ガス流路の壁面上に設けられている、
     請求項1に記載の微粒子検出器。
    The noise detection electrode is provided on the wall surface of the gas flow path of the housing,
    The particle detector according to claim 1.
  3.  前記ノイズ検出電極は、前記筐体の前記ガス流路の壁面上に設けられ、前記ノイズ検出電極の表面は、非導電性の保護層で覆われている、
     請求項1に記載の微粒子検出器。
    The noise detection electrode is provided on the wall surface of the gas flow path of the housing, the surface of the noise detection electrode is covered with a non-conductive protective layer,
    The particle detector according to claim 1.
  4.  前記ノイズ検出電極は、前記筐体に埋設されている、
     請求項1に記載の微粒子検出器。
    The noise detection electrode is embedded in the housing,
    The particle detector according to claim 1.
  5.  前記ノイズ検出電極は、前記捕集電極の下流側に設けられている、
     請求項1~4のいずれか1項に記載の微粒子検出器。
    The noise detection electrode is provided on the downstream side of the collection electrode,
    The particle detector according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか1項に記載の微粒子検出器であって、
     前記捕集電極を囲むように設けられた漏れ電流吸収電極
     を備え、
     前記ノイズ検出電極は、前記漏れ電流吸収電極の内側に設けられている、
     微粒子検出器。
    The particle detector according to any one of claims 1 to 5,
    A leakage current absorption electrode provided so as to surround the collection electrode,
    The noise detection electrode is provided inside the leakage current absorption electrode,
    Particle detector.
  7.  請求項1~6のいずれか1項に記載の微粒子検出器であって、
     前記ガス流路内で前記電荷発生部と前記捕集部との間に設けられ、前記微粒子に帯電しなかった余剰電荷をグランドに除去する除去電極
     を備えた微粒子検出器。
    The particle detector according to any one of claims 1 to 6, wherein:
    A particle detector provided with a removal electrode, which is provided between the charge generation section and the collection section in the gas flow path and removes excess charges not charged to the particles to the ground.
  8.  請求項6に記載の微粒子検出器であって、
     前記ガス流路内で前記電荷発生部と前記捕集部との間に設けられ、前記微粒子に帯電しなかった余剰電荷をグランドに除去する除去電極
     を備え、
     前記漏れ電流吸収電極は、前記除去電極と共通化されている、
     微粒子検出器。
    The particle detector according to claim 6, wherein
    A removal electrode provided in the gas flow path between the charge generation section and the collection section, for removing excess charge not charged to the fine particles to ground,
    The leakage current absorption electrode is shared with the removal electrode,
    Particle detector.
  9.  前記除去電極は、前記除去電極上に電界を発生させる独自の電源を有さず、前記除去電極と前記除去電極の周囲に配置された電圧印加電極との間に発生する電界を利用して前記余剰電荷をグランドに除去する、
     請求項7又は8に記載の微粒子検出器。
    The removal electrode does not have its own power source for generating an electric field on the removal electrode, and utilizes the electric field generated between the removal electrode and a voltage application electrode arranged around the removal electrode. Remove excess charge to ground,
    The particle detector according to claim 7 or 8.
  10.  前記電圧印加電極は、前記電荷発生部のうち放電用電源によって電圧が印加される放電電極であるか、又は、前記捕集部のうち前記捕集電極と対向し捕集用電源によって電圧が印加される対向電極である、
     請求項9に記載の微粒子検出器。
    The voltage application electrode is a discharge electrode of the charge generation unit to which a voltage is applied by a discharge power supply, or the voltage application electrode is opposed to the collection electrode of the collection unit and a voltage is applied by a collection power supply. Counter electrode,
    The particle detector according to claim 9.
  11.  前記演算部は、前記ガス流路に前記ガスを通過させていない状態で、前記捕集電極で検出される第1基準ノイズ信号と前記ノイズ検出電極で検出される第2基準ノイズ信号とが一致するように前記第2基準ノイズ信号の増幅率を求め、その後、前記ガス流路に前記ガスを通過させた状態で、前記捕集電極からの微粒子検出信号から、前記ノイズ検出電極からのノイズ信号に前記増幅率を乗算した増幅信号を前記ノイズ成分として減算することにより、前記補正済み信号とする、
     請求項1~10のいずれか1項に記載の微粒子検出器。
    The arithmetic unit matches a first reference noise signal detected by the collection electrode and a second reference noise signal detected by the noise detection electrode in a state where the gas is not passing through the gas flow path. Then, the amplification factor of the second reference noise signal is obtained, and then, in a state where the gas is passed through the gas flow path, from the particle detection signal from the collection electrode, the noise signal from the noise detection electrode To the corrected signal by subtracting an amplified signal obtained by multiplying the amplification factor as the noise component.
    The particle detector according to any one of claims 1 to 10.
  12.  請求項11に記載の微粒子検出器であって、
     第1入力端子と第2入力端子と1つの出力端子とを有し、前記第1入力端子に前記捕集電極が接続され、前記第2入力端子に前記ノイズ検出電極が増幅率調整部を介して接続され、前記出力端子に前記演算部が接続されており、前記第1及び第2入力端子に入力された信号の差を前記出力端子から出力する差動増幅回路
     を備え、
     前記演算部は、前記ガス流路に前記ガスを通過させていない状態で、前記差動増幅回路からの出力信号がゼロとみなされる範囲となるように前記増幅率調整部の増幅率を求め、その後、前記ガス流路に前記ガスを通過させた状態で、前記捕集電極からの微粒子検出信号から、前記ノイズ検出電極からのノイズ信号に前記増幅率を乗算した増幅信号を減算することにより、前記補正済み信号とする、
     微粒子検出器。
    The particle detector according to claim 11, wherein:
    It has a first input terminal, a second input terminal, and one output terminal, the collection electrode is connected to the first input terminal, and the noise detection electrode is connected to the second input terminal via an amplification factor adjusting unit. A differential amplifier circuit that outputs the difference between the signals input to the first and second input terminals from the output terminal, the arithmetic unit being connected to the output terminal,
    The arithmetic unit obtains the amplification factor of the amplification factor adjustment unit so that the output signal from the differential amplification circuit is in a range considered to be zero in a state where the gas is not passed through the gas flow path, Then, in a state where the gas is passed through the gas flow path, from the particle detection signal from the collection electrode, by subtracting an amplification signal obtained by multiplying the noise signal from the noise detection electrode by the amplification factor, The corrected signal,
    Particle detector.
PCT/JP2019/040453 2018-10-31 2019-10-15 Microparticle detector WO2020090438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-205612 2018-10-31
JP2018205612 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090438A1 true WO2020090438A1 (en) 2020-05-07

Family

ID=70464486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040453 WO2020090438A1 (en) 2018-10-31 2019-10-15 Microparticle detector

Country Status (1)

Country Link
WO (1) WO2020090438A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128739A (en) * 2006-11-17 2008-06-05 Isuzu Motors Ltd Method and instrument for measuring number of fine particles
WO2008111403A1 (en) * 2007-03-15 2008-09-18 Ngk Insulators, Ltd. Particulate material detecting apparatus
JP2013029385A (en) * 2011-07-27 2013-02-07 Sharp Corp Ion content measurement device, ion content measurement method, and ion generation device
JP2016075674A (en) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 Fine particle measurement system
US20170168002A1 (en) * 2015-12-11 2017-06-15 Hyundai Motor Company Particulate matter sensor and measurement method thereof
WO2018139345A1 (en) * 2017-01-26 2018-08-02 日本碍子株式会社 Device for detecting number of fine particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128739A (en) * 2006-11-17 2008-06-05 Isuzu Motors Ltd Method and instrument for measuring number of fine particles
WO2008111403A1 (en) * 2007-03-15 2008-09-18 Ngk Insulators, Ltd. Particulate material detecting apparatus
JP2013029385A (en) * 2011-07-27 2013-02-07 Sharp Corp Ion content measurement device, ion content measurement method, and ion generation device
JP2016075674A (en) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 Fine particle measurement system
US20170168002A1 (en) * 2015-12-11 2017-06-15 Hyundai Motor Company Particulate matter sensor and measurement method thereof
WO2018139345A1 (en) * 2017-01-26 2018-08-02 日本碍子株式会社 Device for detecting number of fine particles

Similar Documents

Publication Publication Date Title
US10488316B2 (en) Fine-particle number measurement device and fine-particle number measurement method
US20190285534A1 (en) Particulate detector
US20190145858A1 (en) Fine-particle number detector
WO2020090438A1 (en) Microparticle detector
WO2019239588A1 (en) Fine particle number detector
WO2020137416A1 (en) Fine particle detection element and fine particle detector
JP6420525B1 (en) Fine particle detection element and fine particle detector
WO2020137418A1 (en) Fine particle detector
CN110612442A (en) Particle number detector
WO2020179502A1 (en) Fine particle detection element and fine particle detector
US20200200664A1 (en) Particle counter
KR102524709B1 (en) Particle Sensor with Planar Exposed Corona Discharge Electrodes
US20200200710A1 (en) Particle detection element and particle detector
JP2019163976A (en) Fine particle detector
US20200348220A1 (en) Particle detection device
JP2019138738A (en) Fine particle detector
WO2020036092A1 (en) Fine particle detector
WO2018163704A1 (en) Microparticle number detector
JPWO2019049566A1 (en) Particle detection element and particle detector
WO2020137431A1 (en) Microparticle detection element and microparticle detector
JP2019045504A (en) Fine particle detection element and fine particle detector
WO2020179356A1 (en) Fine particle detection element and fine particle detector
WO2021060105A1 (en) Microparticle detection element and microparticle detector
JP2020159726A (en) Fine particle detection element
JP2017227517A (en) Fine particles number detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP