WO2020134718A1 - 光学扫描设备和图像形成设备 - Google Patents

光学扫描设备和图像形成设备 Download PDF

Info

Publication number
WO2020134718A1
WO2020134718A1 PCT/CN2019/119399 CN2019119399W WO2020134718A1 WO 2020134718 A1 WO2020134718 A1 WO 2020134718A1 CN 2019119399 W CN2019119399 W CN 2019119399W WO 2020134718 A1 WO2020134718 A1 WO 2020134718A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
spot
light
scanning direction
light beam
Prior art date
Application number
PCT/CN2019/119399
Other languages
English (en)
French (fr)
Inventor
王超
邵哲
Original Assignee
珠海奔图电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海奔图电子有限公司 filed Critical 珠海奔图电子有限公司
Priority to EP19906054.2A priority Critical patent/EP3889667A4/en
Publication of WO2020134718A1 publication Critical patent/WO2020134718A1/zh
Priority to US17/359,231 priority patent/US11493754B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors

Definitions

  • the present application relates to optical scanning technology, in particular to an optical scanning device and an image forming device.
  • Optical scanning equipment is widely used in image formation fields such as printing and imaging, graphic copying, laser coding, and medical imaging.
  • image formation fields such as printing and imaging, graphic copying, laser coding, and medical imaging.
  • an optical scanning device is used to scan and form an electrostatic latent image on the scanned surface of the photosensitive drum, which is then developed and transferred to a paper surface for printing or copying.
  • the size of the optical scanning device has a great influence on the volume of the overall product. In order to reduce the volume of the overall product, it is necessary to realize the miniaturization of the optical scanning device on the premise of ensuring scanning accuracy and scanning quality.
  • Existing optical scanning equipment increases the maximum scanning incident angle in the main scanning direction by changing the refractive index and surface curvature of the lens system, and shortens the optical path to reduce the volume of the optical scanning equipment.
  • the maximum scanning incident angle of the light beam incident on the photosensitive drum is too large, the position of the exposure points at both ends of the edge of the photosensitive drum may be inclined, thereby increasing the size of the actual exposure point, which may result in blurred edges of the transferred image.
  • the imaging quality of existing optical scanning devices is not high.
  • the present application provides an optical scanning device and an image forming device, which improves the quality of optical scanning imaging and improves the problem of blurred edges of the transferred image.
  • an optical scanning device including:
  • An optical deflector for deflecting the light beam emitted by the light source
  • An imaging optical system for guiding the light beam deflected by the optical deflector to the scanned surface for imaging
  • the output beam of the imaging optical system forms a maximum incident angle ⁇ max with the normal of the scanned surface in the main scanning direction , And the imaging optical system images the inclination rate of the spot formed on the scanned surface to form a spot Meet the following formula one:
  • a is the size of the light spot in the main scanning direction
  • e is the amount of light spot tilt
  • b is the size of the light spot in the sub-scanning direction
  • the sub-scanning direction is perpendicular to the main scanning direction
  • is the exit beam of the imaging optical system in the sub-scanning direction and the scanned surface
  • the ⁇ max satisfies the following formula two:
  • the ⁇ max is 35°.
  • the ⁇ satisfies the following formula 3:
  • the ⁇ is 5° or 7°.
  • a is the size of the light spot in the main scanning direction
  • b is the size of the light spot in the sub-scanning direction.
  • the method further includes: a diaphragm unit;
  • the diaphragm unit shapes the light beam emitted by the light source.
  • the first optical unit includes an anamorphic lens
  • the imaging optical system is an F- ⁇ lens.
  • an image forming apparatus including:
  • a photosensitive device having the scanned surface for sensing the light beam emitted by the optical scanning device on the scanned surface to form an electrostatic latent image
  • a transfer device for transferring the toner image to a transfer medium
  • the fixing device is used to fix the transferred toner image on the transfer medium.
  • An optical scanning device and an image forming device include a light source for diverging light beams; a first optical unit for collimating the light beam emitted by the light source in the main scanning direction and focusing in the sub-scanning direction ; An optical deflector for deflecting the light beam emitted by the light source; an imaging optical system for guiding the light beam deflected by the optical deflector to the scanned surface for imaging; the optical deflector is aligned with the maximum deflection angle When the light beam emitted by the light source is deflected, the exit beam of the imaging optical system forms a maximum incident angle ⁇ max with the normal of the scanned surface in the main scanning direction, and the imaging optical system forms an image on the scanned surface Spot tilt rate forming the spot Satisfy: Therefore, the problem of blurred edges of the transferred image is improved, and the optical scanning imaging quality is improved.
  • FIG. 1 is a schematic diagram of the optical structure of the main scanning surface of an optical scanning device provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the optical structure of a sub-scanning surface of an optical scanning device provided by an embodiment of the present application;
  • FIG. 3 is a schematic side view of a light beam incident on a scanned surface of an optical scanning device provided by an embodiment of the present application;
  • FIG. 4 is a schematic top view of a light beam incident on a scanned surface of an optical scanning device provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a light spot incident on a scanned surface of a beam of an optical scanning device provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a light spot incident on a scanned surface of another optical scanning device provided by an embodiment of the present application.
  • FIG. 7 is a three-dimensional schematic diagram of a light spot of an optical scanning device beam incident on a scanned surface provided by an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of an image forming apparatus provided by an embodiment of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise specifically limited.
  • B corresponding to A means that the shape or function of B and A has Correspondence, according to A can determine B. Determining B based on A does not mean determining B based on A alone, but also determining B based on A and/or other information.
  • main scanning direction refers to a direction perpendicular to both the rotation axis of the optical deflector and the main optical axis of the imaging optical system, and it can also be understood that the optical deflector deflects the light source to emit After the beam, make the beam scan back and forth on the scanned surface.
  • sub-scanning direction may be understood as a direction parallel to the rotation axis of the optical deflector, or may be understood as a direction perpendicular to the main scanning direction.
  • scanning plane refers to the plane where the outgoing beam of the imaging optical system scans back and forth.
  • the term F- ⁇ lens is also called f-theta lens.
  • the image surface of this type of lens is a flat surface, and the image quality is the same on the entire image surface, and the aberration is small.
  • the linear scanning of constant linear velocity can be realized with the incident light of equal angular velocity.
  • FIG. 1 is a schematic diagram of the optical structure of the main scanning surface of an optical scanning device provided by an embodiment of the present application.
  • the optical scanning device shown in FIG. 1 mainly includes: a light source 1, a diaphragm 2, a first optical unit 3, an optical deflector 4, and an imaging optical system 5.
  • the optical deflector 4 is used to deflect the light beam emitted by the light source 1 so that the light beam is scanned in the main scanning direction.
  • the optical deflector 4 deflects the light beam onto the scanned surface 6 along the main scanning direction X, and causes the light beam to scan back and forth on the scanned surface 6 as the optical deflector 4 rotates.
  • An optional structure of the optical deflector 4 may be a rotating optical polyhedron having a plurality of mirror surfaces (for example, a rotating hexahedron having 6 reflecting mirror surfaces), or a light-transmitting disc containing a plurality of lenses.
  • the optical deflector 4 may also be provided with a rotation controller to control the rotation angle and speed of the optical deflector 4.
  • the light beam emitted by the light source 1 hits the mirror surface of the optical deflector 4, is deflected and reflected toward the scanned surface 6, and as the optical deflector 4 rotates, the light beam is caused to move along the main scanning direction X on the scanned surface 6 Be scanned.
  • An imaging optical system 5 is used to guide the light beam deflected by the optical deflector 4 onto the scanned surface 6 for imaging.
  • the imaging optical system 5 is provided between the optical deflector 4 and the scanned surface 6 so that the light beam deflected by the optical deflector 4 is imaged on the scanned surface 6.
  • the imaging optical system 5 may be a plastic optical element or a glass optical element.
  • the imaging optical system 5 shown in FIG. 1 is a single lens, but the present application is not limited to this, and the imaging optical system 5 may also be a plurality of lenses optically coupled to each other.
  • FIG. 2 is a schematic diagram of the optical structure of a sub-scanning surface of an optical scanning device provided by an embodiment of the present application.
  • the scanned surface 6 shown in FIG. 2 is provided by the photosensitive drum, and the rotation axis of the photosensitive drum shown in FIG. 2 is lower than the scanning plane of the incident beam, so that the normal of the scanned surface 6 forms an angle ⁇ with the incident beam .
  • FIG. 3 it is a schematic side view of a light beam incident on a scanned surface 6 of an optical scanning device provided by an embodiment of the present application.
  • the incident surface in FIG. 3 takes the surface of the photosensitive drum as an example.
  • the normal angle between the light beam and the irradiation point is ⁇
  • the width of the light beam in the sub-scanning direction is b
  • the light beam is in the sub-scanning direction.
  • the width dimension c irradiated on the surface of the photosensitive drum It can be seen from FIG. 3 that the direction of the width dimension c of the light beam irradiated on the surface of the photosensitive drum in the sub-scanning direction and the vertical direction in FIG. 3 (the direction perpendicular to the rotation axis of the photosensitive drum and the scanning plane of the light beam) include an angle Also ⁇ .
  • FIG. 4 it is a schematic top view of a light beam incident on a scanned surface of an optical scanning device provided by an embodiment of the present application.
  • the diameter of the photosensitive drum is usually more than 20 mm, and the size a of the spot in the main scanning direction and the size b of the sub-scanning direction are usually less than 100 ⁇ m. Therefore, for the light spot on the surface of the photosensitive drum, although it is irradiated on the surface of the photosensitive drum on the cylindrical surface, due to the large size difference, the surface of the photosensitive drum can be approximately analyzed according to the plane.
  • the size of the light spot in the main scanning direction is a, and the angle with the main optical axis of the imaging optical system 5 is ⁇ . Since the light beam is incident obliquely on the surface of the photosensitive drum, the shape of the light spot on the surface of the photoreceptor can be The parallelogram equivalent is used for analysis.
  • FIG. 5 it is a schematic diagram of a light spot incident on a scanned surface of a light beam of an optical scanning device provided by an embodiment of the present application.
  • FIG. 6 it is a schematic diagram of a light spot incident on a scanned surface of another optical scanning device provided by an embodiment of the present application.
  • the light spot shown in FIG. 5 can be understood as the shape of the far spot where the light beam is incident on both ends of the photosensitive drum, and the light spot shown in FIG. 6 can be understood as the shape of the near end spot where the light beam is incident on the middle of the photosensitive drum, a rectangular shape, etc.
  • the effective light spot can be understood as the incident condition where ⁇ is 0°.
  • is 0°.
  • the shape of the light spot is generally inclined.
  • the spot tilt amount e see FIGS. 4 and 5.
  • FIG. 7 it is a schematic perspective view of a light spot of a light beam incident on a scanned surface of an optical scanning device provided by an embodiment of the present application.
  • the plane BHEC is equivalent to the plane where the surface of the photosensitive drum is located, which can be understood as the scanned surface 6.
  • BC is parallel to the main scanning direction
  • CE is perpendicular to BC
  • the parallelogram GHMC on the plane BHEC is equivalent to the area where the light beam is irradiated on the surface of the photosensitive drum.
  • the plane DEFC is perpendicular to BC, and the length of DE is equal to the length b of the light spot in the sub-scanning direction.
  • CE Since CE is perpendicular to HM and GC, its length is the width dimension c where the light spot falls on the surface of the photosensitive drum in the sub-scanning direction. And C2-C is equal to twice the length of the spot tilt amount e. The length of the GC is equal to the length a of the light spot. According to the three-dimensional model of the light spot and the photosensitive drum in FIG.
  • the size e of the light spot tilt amount can be determined as: Where b is the size of the light spot in the sub-scanning direction, the sub-scanning direction is a direction perpendicular to the scanning plane of the outgoing beam of the imaging optical system 5, and ⁇ is the exit of the imaging optical system 5 The angle formed by the light beam and the normal of the scanned surface 6 in the sub-scanning direction.
  • the size b in the sub-scanning direction and the angle ⁇ formed by the beam and the normal of the scanned surface 6 in the sub-scanning direction are fixed and the scanning position is constantly
  • the change causes ⁇ to change continuously, and the spot tilt amount e also changes with the change of ⁇ .
  • the value of the light spot tilt amount e will also be larger, which will cause the exposure size of the light spot in the main scanning direction to increase, resulting in the tilt of the exposure point positions at both ends of the drum edge , Thereby increasing the actual exposure spot size, which in turn affects the quality of the printed image.
  • the optical deflector 4 of this embodiment deflects the light beam emitted by the light source 1 at the maximum deflection angle
  • the output beam of the imaging optical system 5 is A maximum incident angle ⁇ max is formed in the main scanning direction with the normal of the scanned surface 6, and the spot tilt rate e/a of the spot formed by the imaging optical system 5 imaging on the scanned surface 6 satisfies the following Formula one:
  • the sub-scanning direction is a direction perpendicular to the scanning plane of the outgoing beam of the imaging optical system 5
  • is the outgoing beam of the imaging optical system 5 at An angle formed by the normal line of the scanned surface 6 in the sub-scanning direction.
  • the imaging optical system 5 can make the light beam deflected by the deflector 4 scan and move on the scanned surface 6 at a constant linear velocity in the main scanning direction X, and in the main scanning direction X and In the sub-scanning direction Y, the light beam is focused on the scanned surface 6 to form a light spot.
  • the imaging optical system 5 may be an F- ⁇ lens.
  • the optional set of parameters of the optical scanning device can be shown in Table 1 below.
  • half of the maximum effective scanning angle of the optical scanning device may be 52.08°, where the maximum effective scanning angle may be understood as the maximum effective scanning angle of the incident light of the imaging optical system 5.
  • the effective scanning width of the optical scanning device can be 216mm, which can be understood as the scanning width of the light emitted by the imaging optical system 5 on the scanned surface 6 along the main scanning direction, and can also be understood as the scanning surface 6 along the main scanning direction Effective width, such as the lateral effective scanning width of the photosensitive drum in the printer.
  • the maximum scanning incident angle of the optical scanning device is ⁇ max (36.84°)
  • the distance between the spot position on the photoreceptor and the center of the optical axis is the focal length
  • the maximum scanning height of the optical scanning device can be 108 mm when the ⁇ max is 36.84°.
  • the maximum incident angle of the optical scanning device on the scanned surface 6 in the main scanning direction may be 36.84°, which can be understood as the angle formed by the outermost deflection beam in the main scanning direction and the normal of the scanned surface 6.
  • the light source 1 may be a point light source using a laser diode (abbreviation: LD), and the laser wavelength of the light source 1 may be 788 nm.
  • LD laser diode
  • the imaging optical system 5 may be an F- ⁇ lens, and the refractive index of the F- ⁇ lens may be 1.535.
  • the distance between the deflection surface of the optical deflector 4 and the incident surface of the main optical axis of the F- ⁇ lens may be 21.9 mm, see L1 shown in FIG. 1.
  • the thickness of the main optical axis lens of the F- ⁇ lens may be 9 mm, see L2 shown in FIG. 1.
  • the distance from the main optical axis exit surface of the F- ⁇ lens to the scanned surface 6 along the main optical axis direction may be 95.8 mm, see L3 shown in FIG. 1.
  • the ⁇ max may be 35°, which can obtain a small amount of spot tilt and a spot tilt rate.
  • the following is an analysis of the amount of spot tilt and the rate of spot tilt for different sizes of spot under different ⁇ max through three sets of embodiments. Among them, ⁇ in Embodiment 1 is 5°, ⁇ in Embodiment 2 is 7°, and ⁇ in Embodiment 3 is 10°.
  • Table 2 is an example of data of Embodiment 1.
  • is set to 5°, corresponding to different spot sizes, and corresponding to different ⁇ max , the spot tilt amount e, and the spot tilt rate e/a are as follows.
  • Table 3 is an example of data of Embodiment 2.
  • is set to 7°, corresponding to different spot sizes, and corresponding to different ⁇ max , the value of the spot tilt amount e, and the spot tilt rate e/a are as follows.
  • Table 4 is an example of data of Embodiment 3.
  • is set to 10°, corresponding to different spot sizes, and corresponding to different ⁇ max , the value of the spot tilt amount e, and the spot tilt rate e/a are as follows.
  • the seven spot sizes in Table 2 to Table 4 are the most common spot sizes.
  • the spot size in a laser scanning device that achieves a resolution of 600 dpi is 60 to 80 ⁇ m in the main scanning direction, and 70 to 90 ⁇ m in the sub-scanning direction.
  • FIG. 8 it is a comparison diagram of light energy distribution when a light beam enters the surface of the photosensitive drum.
  • Figure 8 is a visual comparison of the tilt of the light spot.
  • the light energy distribution diagram corresponding to ⁇ 45°, the amount of light spot tilt is further increased.
  • the corresponding light spot already has a significant tilt that can be recognized by the human eye, which may affect the image quality of the printed image.
  • the spot tilt amount e and the spot tilt rate e/a are used to compare the tilt state of the spot.
  • Embodiment 1 corresponds to the light energy distribution diagram in the first row in FIG. 8
  • real-time solution 2 corresponds to the light energy distribution diagram in the second row in FIG. 8.
  • the inclination rate of the spot corresponding to each spot in Table 2 increases with the increase of ⁇ , but both are less than 10%.
  • the inclination rate of the spot corresponding to each spot in Table 3 increases with the increase of ⁇ , but it is also less than 10%, which does not affect the imaging quality and the quality of the printed image.
  • the size of the 7 kinds of light spots in the above three tables satisfies 1.0 ⁇ (b/a) ⁇ 1.33, with the increase of ⁇ (35° to 45°), the amount of spot tilt e of the same spot will also increase ,
  • An optical scanning device and an image forming device include a light source 1; an optical deflector 4 for deflecting the light beam emitted by the light source 1, so that the light beam is scanned in the main scanning direction; an imaging optical system, It is used to guide the light beam deflected by the optical deflector 4 onto the scanned surface 6 for imaging; when the optical deflector 4 deflects the light beam emitted by the light source 1 at the maximum deflection angle, the The outgoing light beam forms a maximum incident angle ⁇ max with the normal of the scanned surface 6 in the main scanning direction, and the imaging optical system images the spot tilt rate of the spot formed on the scanned surface 6 Satisfy: Thereby reducing the possibility of blurred edges of the transferred image and improving the optical scanning imaging quality.
  • the size of the light spot can also implement the solution of this embodiment in other cases, and this application does not limit this.
  • an organic photoconductor Organic Photoconductor, referred to as OPC
  • OPC Organic Photoconductor
  • the ⁇ satisfies the following formula 3:
  • the value of ⁇ can have the best performance if it satisfies formula three.
  • the ⁇ may be optionally 5° or 7° to reduce the value of the spot tilt rate e/a and increase The accuracy of imaging and printing images.
  • the light source 1 may be at least one modifiable point light source, so as to modulate the size of the light beam emitted by the light source.
  • the diaphragm 2 may be disposed on the side of the point light source 1 to shape the light beam emitted by the light source 1.
  • the diaphragm 2 can be understood as an aperture having a circular through hole or a square through hole, and is used to shape the light beam emitted from the light source 1 to form a circular or square light spot on the scanned surface 6.
  • the opening of the diaphragm 2 shapes the light beam emitted by the light source 1, and the opening is, for example, circular, oval, or square.
  • the diaphragm 2 is disposed between the light source 1 and the first optical unit 3 in FIGS. 1 and 2, the position of the diaphragm 2 is not limited by this.
  • the diaphragm 2 may be disposed between the first optical unit 3 and the deflection ⁇ 4 ⁇ Between 4.
  • the diaphragm 2 may also be omitted.
  • the first optical unit 3 may be an anamorphic lens or a cylindrical collimating lens.
  • the anamorphic lens can be understood as a lens that performs both the functions of a collimator lens and a cylindrical lens.
  • the optical deflector 4 may include a polyhedron body, and the surface of the polyhedron body forms a plurality of reflecting mirror surfaces.
  • the polyhedron body rotates along a rotation axis, and a central axis of the rotation axis is parallel to the sub-scanning direction.
  • the rotating polyhedron has 4 reflecting mirror surfaces.
  • FIG. 9 is a schematic structural diagram of an image forming apparatus provided by an embodiment of the present application.
  • the image forming apparatus 104 shown in FIG. 9 mainly includes: the optical scanning apparatus 100 and the photosensitive device 101 as described in the foregoing various embodiments , Developing device 107, transfer device 108, fixing device 113.
  • the photosensitive device 101 has the scanned surface 6 for sensing the light beam emitted by the optical scanning device on the scanned surface 6 to form an electrostatic latent image.
  • the developing device 107 is used to develop the electrostatic latent image to form a toner image.
  • the transfer device 108 is used to transfer the toner image to a transfer medium.
  • the fixing device 109 is used to fix the transferred toner image on the transfer medium.
  • the image forming apparatus 104 receives input of code data Dc from an external device 117 such as a personal computer.
  • the controller 111 in the device converts the code data Dc into an image signal (dot data) Di.
  • the image signal Di is input to the optical scanning device 100 according to one of the above-described embodiments.
  • the light beam 103 modulated according to the image signal Di is emitted from the optical scanning device 100, and the light beam 103 scans the photosensitive surface (the scanned surface) of the photosensitive device 101 (eg, the photosensitive drum) in the main scanning direction.
  • the controller 111 not only performs the above-described data conversion, but also controls various components in the image forming apparatus such as the motor 105 described later.
  • the photosensitive device 101 as a latent electrostatic image bearing member is driven by the motor 105 to rotate clockwise, and during the rotation, the photosensitive surface of the photosensitive device 101 moves in the sub-scanning direction relative to the light beam 103.
  • the photosensitive device 101 is charged uniformly on the photosensitive surface by the charging roller 102 provided above the photosensitive device 101 and in contact with the photosensitive surface.
  • the charging roller 102 may be responsive to the light beam 103 of the optical scanning device 100 to charge the photosensitive surface. That is, it is detected that the optical scanning device 100 emits a scanned light beam, and the charging roller 102 charges the photosensitive surface.
  • a developing device 107 (developer) is also included.
  • the developing device 107 disposed downstream of the photosensitive device 101 in contact with the photosensitive surface and starting from the irradiation position of the light beam 103 applies the electrostatic latent image Developed as a toner image.
  • the transfer device 108 (transfer roller) provided downstream of the photoconductor drum 101 so as to face the photoreceptor device 101 transfers the toner image developed by the developing device 107 to the transfer medium 112 (eg, sheet, paper, Photo paper, etc.).
  • the transfer medium 112 is stored in a medium storage box upstream of the photosensitive device 101 (on the right in FIG. 9 ), and the feed of the transfer medium is continuously maintained.
  • a feed roller 110 is provided at the edge of the media storage box to feed the transfer medium 112 in the media storage box to the conveying path.
  • the transfer medium 112 to which the unfixed toner image has been transferred as described above is further conveyed to the fixing device 109 downstream of the photosensitive device 101 (left side in FIG. 9 ).
  • the fixing device 109 includes a fixing roller 113 with a built-in fixing heater (not shown) and a pressure roller 114 provided to press the fixing roller 113.
  • the fixing device 109 presses the transfer medium 112 conveyed from the transfer roller 108 at the pressing portions of the fixing roller 113 and the pressing roller 114 while heating, thereby fixing the unfixed toner image in rotation On the printing medium 112.
  • a pair of discharge rollers 116 may be provided downstream of the fixing roller 113, so that the transfer medium 112 to which the toner image is fixed is transported from the image forming apparatus 104 to the outside. This completes the printing operation.
  • the terms “installation”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or To be one; it can be a mechanical connection, an electrical connection, or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, which can make the internal connection of the two components or the interaction between the two components.
  • installation can be a fixed connection or a detachable connection, or To be one; it can be a mechanical connection, an electrical connection, or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, which can make the internal connection of the two components or the interaction between the two components.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

一种光学扫描设备和图像形成设备,包括光源(1),用于发散光束;第一光学单元(3),用于使光源(1)发出的光束在主扫描方向上准直,在副扫描方向上聚焦;光学偏转器(4),用于偏转光源(1)发射的光束;成像光学***(5),用于将光学偏转器(4)偏转的光束引导至被扫描面(6)上成像;光学偏转器(4)在以最大偏转角度对光源(1)发射的光束进行偏转时,成像光学***(5)的出射光束在主扫描方向上与被扫描面的法线形成最大入射夹角φmax,且成像光学***成像在被扫描面上成像形成光斑的光斑倾斜率 e/α满足:e/α≤10%;从而降低转印图像边缘模糊的可能性,提高了光学扫描成像质量。

Description

光学扫描设备和图像形成设备
本申请要求于2018年12月29日提交中国专利局、申请号为2018116338143、申请名称为“光学扫描设备和图像形成设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学扫描技术,尤其涉及一种光学扫描设备和图像形成设备。
背景技术
光学扫描设备广泛应用于打印成像、图文复印、激光打码及医学影像等图像形成领域中。例如在记录介质上形成图像的打印机或复印机产品中,使用光学扫描设备在感光鼓的被扫描面上扫描形成静电潜像,然后进行显像处理后转印在纸面实现打印或复印。而光学扫描设备的尺寸对整体产品的体积影响较大,为了减小整体产品的体积,需要在保证扫描精确度及扫描质量的前提下实现光学扫描设备的小型化。
现有的光学扫描设备,通过改变透镜***的折射率和表面曲率等方式加大主扫描方向的最大扫描入射角度,减短光路,以减小光学扫描设备的体积。
但是光束入射在感光鼓的最大扫描入射角度过大容易导致感光鼓的边缘两端曝光点位置倾斜,从而增大了实际曝光点尺寸,进而导致转印图像的边缘模糊。现有的光学扫描设备的成像质量不高。
发明内容
本申请提供一种光学扫描设备和图像形成设备,提高了光学扫描成像的质量,改善了转印图像边缘模糊的问题。
根据本申请的第一方面,提供一种光学扫描设备,包括:
光源,用于发散光束;
第一光学单元,用于使所述光源发出的光束在主扫描方向上准直,在副扫描方向上聚焦;
光学偏转器,用于偏转所述光源发射的光束;
成像光学***,用于将所述光学偏转器偏转的光束引导至被扫描面上成像;
所述光学偏转器在以最大偏转角度对所述光源发射的光束进行偏转时,所述成像光学***的出射光束在所述主扫描方向上与被扫描面的法线形成最大入射夹角φ max,且所述成像光学***成像在所述被扫描面上成像形成光斑的光斑倾斜率
Figure PCTCN2019119399-appb-000001
满足如下公式一:
Figure PCTCN2019119399-appb-000002
其中,a为所述光斑在所述主扫描方向上的尺寸大小,e为光斑倾斜量,且
Figure PCTCN2019119399-appb-000003
b为所述光斑在副扫描方向上的尺寸大小,所述副扫描方向与所述主扫描方向垂直,β为所述成像光学***的出射光束在所述副扫描方向上与所述被扫描面的法线形成的夹角。
可选地,在第一方面的一种可能实现方式中,所述φ max满足如下公式二:
35°≤φ max≤45°           公式二。
可选地,在第一方面的另一种可能实现方式中,所述φ max为35°。
可选地,在第一方面的再一种可能实现方式中,所述β满足如下公式三:
5°≤β≤10°             公式三。
可选地,在第一方面的又一种可能实现方式中,所述β为5°或7°。
可选地,在第一方面的又一种可能实现方式中,
60μm≤a≤80μm,70μm≤b≤90μm
a为所述光斑在所述主扫描方向上的尺寸大小;
b为所述光斑在副扫描方向上的尺寸大小。
可选地,在第一方面的又一种可能实现方式中,还包括:光阑单元;
所述光阑单元使所述光源发射的光束成形。
可选地,在第一方面的又一种可能实现方式中,所述第一光学单元包括变形透镜,
或者包括独立的准直透镜和圆柱透镜。
可选地,在第一方面的又一种可能实现方式中,所述成像光学***为F-θ透镜。
根据本申请的第二方面,提供一种图像形成设备,包括:
本申请第一方面以及第一方面各种可能设计的所述光学扫描设备;
感光装置,具有所述被扫描面,用于在所述被扫描面上感应所述光学扫描设备出射的光束形成静电潜像;
显影装置,用于将所述静电潜像显影形成碳粉图像;
转印装置,用来将所述碳粉图像转印到转印介质上;
定影装置,用来对转印介质上的被转印的碳粉图像定影。
本申请提供的一种光学扫描设备和图像形成设备,包括光源,用于发散光束;第一光学单元,用于使所述光源发出的光束在主扫描方向上准直,在副扫描方向上聚焦;光学偏转器,用于偏转所述光源发射的光束;成像光学***,用于将所述光学偏转器偏转的光束引导至被扫描面上成像;所述光学偏转器在以最大偏转角度对所述光源发射的光束进行偏转时,所述成像光学***的出射光束在所述主扫描方向上与被扫描面的法线形成最大入射夹角φ max,且成像光学***成像在被扫描面上成像形成光斑的光斑倾斜率
Figure PCTCN2019119399-appb-000004
满足:
Figure PCTCN2019119399-appb-000005
从而改善了转印图像边缘模糊的问题,提高了光学扫描成像质量。
附图说明
图1是本申请实施例提供的一种光学扫描设备的主扫描面的光学构造示意图;
图2是本申请实施例提供的一种光学扫描设备的副扫描面的光学构造示意图;
图3是本申请实施例提供的一种光学扫描设备光束入射被扫描面的侧视示意图;
图4是本申请实施例提供的一种光学扫描设备光束入射被扫描面的俯视示意图;
图5是本申请实施例提供的一种光学扫描设备光束入射被扫描面的光斑示意图;
图6是本申请实施例提供的另一种光学扫描设备光束入射被扫描面的光斑示意图;
图7是本申请实施例提供的一种光学扫描设备光束入射被扫描面的光斑立体示意图;
图8是光束入射感光鼓表面时的光能分布比对图;
图9是本申请实施例提供的一种图像形成设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
应当理解,在本申请中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列单元的***、产品或设备不必限于清楚地列出的那些单元,而是可包括没有清楚地列出的或对于这些产品或设备固有的其它单元。
应当理解,在本申请中,“多个”是指两个或两个以上。“包括A、B和C”是指A、B、C三者都包括,“包括A、B或C”是指包括A、B、C三者之一,“包括A、B和/或C”是指包括A、B、C三者中任1个或任2个或3个。
应当理解,在本申请中,“与A对应的B”、“与A相对应的B”、“A与B相对应”或者“B与A相对应”,表示B与A的形状或功能具有对应关系,根据A可以确定B。根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。
下面以具体地实施例对本申请的技术方案进行详细说明。所述实施例的示例在附图中示出,其中自始至终以相同或类似的标号表示相同或类似的组件或具有相同或类似功能的组件。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
在下面各种实施例中,术语“主扫描方向”是指与光学偏转器的转动轴和成像光学***的主光轴都垂直的方向,也可以理解为是光学偏转器偏转所述光源发射的光束后,使光束在被扫描面上来回扫描的方向。
相应地,术语“副扫描方向”可以理解为是与光学偏转器的转动轴平行的方向,也可以理解为与主扫描方向垂直的方向。
相应地,术语“扫描平面”,是成像光学***的出射光束来回扫描所在的平面。
在下面各种实施例中,术语F-θ透镜,又称为f-theta透镜。对于单色光成像,此类透镜的像面为一平面,而且整个像面上像质一致,且像差小。对于一定的入射光偏转速度对应着一定的扫描速度,因此可用等角速度的入射光实现等线速度的线性扫描。
参见图1,是本申请实施例提供的一种光学扫描设备的主扫描面的光学构造示意图。如图1所示的光学扫描设备主要包括:光源1、光阑2、第一光学单元3、光学偏转器4和成像光学***5。
其中,光学偏转器4,用于偏转所述光源1发射的光束,使所述光束在主扫描方向上进行扫描。光学偏转器4沿着主扫描方向X将光束偏转到被扫描面6上,并使光束随着光学偏转器4的转动而在被扫描面6上来回扫描。光学偏转器4的一种可选结构,可以是具有多个反射镜表面的旋转光学多面体(例如具有6个反射镜面的旋转六面体),也可以是含有多个透镜的透光盘。光学偏转器4还可以设置有旋转控制器,以控制该光学偏转器4的旋转角度和速度。光源1发出的光束照到光学偏转器4的反射镜面上,发生偏转并朝向被扫描面6反射,并随着光学偏转器4的旋转而使得光束在被扫描面6上沿着主扫描方向X被扫描。
成像光学***5,用于将所述光学偏转器4偏转的光束引导至被扫描面6上成像。成像光学***5设置在光学偏转器4与被扫描面6之间,使得被光学偏转器4偏转的光束在被扫描面6上成像。成像光学***5可以是塑料的光学元件,也可以是玻璃的光学元件。图1所示的成像光学***5为单独的一个透镜,但本申请不局限于此,成像光学***5也可以是相互光学耦合的多个透镜。
参见图2,是本申请实施例提供的一种光学扫描设备的副扫描面的光学 构造示意图。如图2所示的被扫描面6是由感光鼓提供的,且图2所示感光鼓的转轴低于入射光束的扫描平面,以使得被扫描面6的法线与入射光束成夹角β。参见图3,是本申请实施例提供的一种光学扫描设备光束入射被扫描面6的侧视示意图。图3中的被入射面是以感光鼓表面作为示例,光束入射到感光鼓表面时,光束与照射点的法线夹角为β,光束在副扫描方向的宽度为b,光束在副扫描方向上照射在感光鼓表面的宽度尺寸c。从图3中可以看出,光束在副扫描方向上照射在感光鼓表面的宽度尺寸c的方向与图3中竖直方向(与感光鼓转轴和光束的扫描平面都相垂直的方向)夹角也为β。
参见图4,是本申请实施例提供的一种光学扫描设备光束入射被扫描面的俯视示意图。感光鼓的直径尺寸通常都在20mm以上,而光斑在主扫描方向尺寸大小a和副扫描方向尺寸大小b通常都在100μm以下。因此,对于感光鼓表面的光斑,虽然是照射在圆柱面的感光鼓表面上,但因尺寸差距较大,可以近似的按照平面来对感光鼓表面进行分析。光束入射感光鼓表面时,光斑在主扫描方向的尺寸大小为a,与成像光学***5主光轴的夹角为Φ,由于光束是斜入射在感光鼓表面,感光体表面上的光斑形状可以是用平行四边形等效来进行分析。
参见图5,是本申请实施例提供的一种光学扫描设备的光束入射被扫描面的光斑示意图。参见图6,是本申请实施例提供的另一种光学扫描设备的光束入射被扫描面的光斑示意图。在图5所示的光斑可以理解为是光束入射在感光鼓两端的远端光斑形状,而图6所示的光斑可以理解为是光束入射在感光鼓中间的近端光斑形状,矩形形状的等效光斑可以理解为φ为0°的入射情况。图5所示的光斑,由于光束对被扫描面6的入射角较大,光斑形状通常会产生倾斜。在主扫描方向上,以光斑中心尺寸为光斑基准位置,将该光斑两侧在主扫描方向上超出光斑基准位置的尺寸确定为光斑倾斜量e,参见图4和图5。
参见图7,是本申请实施例提供的一种光学扫描设备光束入射被扫描面的光斑立体示意图。如图7中所示,平面BHEC等效于感光鼓表面所在的平面,可以理解为是被扫描面6。其中BC平行于主扫描方向,CE垂直于BC,平面BHEC上的平行四边形GHMC等效于光束照射在感光鼓表面的区域。平面DEFC垂直于BC,DE的长度等于光斑在副扫描方向上的长度b。由于DC垂直于BC,C1-C在光束的照射方向上,那么C1-C与DC的夹角等效为成像 光学***5的出射光束在所述主扫描方向上与被扫描面6交点处的法线形成的入射夹角φ(扫描角达到最大值时φ为φmax)。根据图3中可以得出,在副扫描方向上,入射在感光鼓区域的光束与感光鼓交点处的法线的夹角为β,可以等效为图7中DE与CE的夹角为β。由于CE与HM及GC垂直,其长度为光斑在副扫描方向上落在感光鼓表面的宽度尺寸c。而C2-C等于光斑倾斜量e的2倍长度。GC的长度等于光斑的长度a,则根据图7的光斑与感光鼓的立体模型,可以确定光斑倾斜量e的大小可以表示为:
Figure PCTCN2019119399-appb-000006
其中,b为所述光斑在副扫描方向上的尺寸大小,所述副扫描方向为与所述成像光学***5的出射光束的扫描平面相垂直的方向,β为所述成像光学***5的出射光束在所述副扫描方向上与所述被扫描面6的法线形成的夹角。
在光束在被扫描面6上来回扫描的过程中,副扫描方向上的尺寸大小b和光束在副扫描方向上与被扫描面6的法线形成的夹角β固定不变,而扫描位置不断变化导致φ不断变化,光斑倾斜量e也随着φ变化而变化。如果光斑越远离成像光学***5的主光轴,光斑倾斜量e的数值也会越大,这就会导致光斑在主扫描方向的曝光尺寸增大,导致感光鼓的边缘两端曝光点位置倾斜,从而增大了实际曝光点尺寸,进而对打印的图像质量产生影响。为了保证打印图像的质量,避免潜像曲变,本实施例所述光学偏转器4在以最大偏转角度对所述光源1发射的光束进行偏转时,所述成像光学***5的出射光束在所述主扫描方向上与被扫描面6的法线形成最大入射夹角φ max,且所述成像光学***5成像在所述被扫描面6上成像形成的光斑的光斑倾斜率e/a满足如下公式一:
Figure PCTCN2019119399-appb-000007
其中,a为所述光斑在所述主扫描方向上的尺寸大小,e为光斑倾斜量,且
Figure PCTCN2019119399-appb-000008
b为所述光斑在副扫描方向上的尺寸大小,所述副扫描方向为与所述成像光学***5的出射光束的扫描平面相垂直的方向,β为所述成像光学***5的出射光束在所述副扫描方向上与所述被扫描面6的法线形成的夹角。
在一种可选的结构中,成像光学***5可以使经过偏转器4偏转的光束在主扫描方向X上,以恒定的线速度在被扫描面6上扫描移动,并且在主扫描方向X及副扫描方向Y上将光束在被扫描面6上聚焦形成光斑。
以图1和图2所示的光学扫描设备结构为例,所述成像光学***5可以 是F-θ透镜。光学扫描设备可选的一组参数可以如下表一所示。
表一
参数名 数值
最大有效扫描角的一半为θ max(单位:°) 52.08
有效扫描宽度W(单位:mm) 216
Fθ系数K(单位:mm/rad) 118.826
最大扫描高度Y max(单位:mm) ±108
最大入射角φ max(单位:°) 36.84
激光波长λ(单位:nm) 788
透镜折射率n 1.535
光学偏转器4至透镜入射面的距离L1(单位:mm) 21.9
透镜厚度L2(单位:mm) 9.0
透镜出射面至感光单元表面的距离L3(单位:mm) 95.8
如表一所示,光学扫描设备的最大有效扫描角度一半可以为52.08°,其中,最大有效扫描角度可以理解为是成像光学***5入射光的最大有效扫描角度。光学扫描设备的有效扫描宽度可以为216mm,可以理解为是成像光学***5出射光在被扫描面6沿主扫描方向上的扫描宽度,也可以理解为是被扫描面6上沿主扫描方向上的有效宽度,例如打印机中感光鼓的横向有效扫描宽度。光学扫描设备的最大扫描入射角为φ max时(36.84°),感光体上光斑位置距离光轴中心的距离为焦距,φ max为36.84°时光学扫描设备的最大扫描高度可以为108mm。光学扫描设备在主扫描方向上入射在被扫描面6的最大入射角可以为36.84°,可以理解为在主扫描方向上的最外侧的偏转光束与被扫描面6的法线形成的角度。光源1可以是采用激光二极管(laser diode,简称:LD)的点光源,且光源1的激光波长可以为788纳米。成像光学***5可以是F-θ透镜,所述F-θ透镜的折射率可以为1.535。所述光学偏转器4的偏转面至所述F-θ透镜的主光轴入射面的距离可以为21.9mm,参见图1所示的L1。所述F-θ透镜的主光轴透镜厚度可以为9mm,参见图1所示的L2。所述F-θ透镜的主光轴出射面沿所述主光轴方向至所述被扫描面6的距离可以为95.8mm,参见图1所示的L3。
为了满足上述公式一,可以采用多种实现方式,例如所述φ max满足如下公式二:
35°≤φ max≤45°            公式二。
可选地,所述φ max可以为35°,能够获取到较小的光斑倾斜量和光斑倾斜率。以下通过三组实施方案进行不同大小光斑在不同φ max情况下的光斑倾斜量和光斑倾斜率分析。其中实施方案1中β为5°,实施方案2中β为7°,实施方案3中β为10°。
表二是实施方案1的数据示例。实施方案1中β设定为5°,对应不同光斑的尺寸,以及对应不同的Φ max时,光斑倾斜量e,以及光斑倾斜率e/a的数值如下。
表二
Figure PCTCN2019119399-appb-000009
表三是实施方案2的数据示例。实施方案1中β设定为7°,对应不同光斑的尺寸,以及对应不同的Φ max时,光斑倾斜量e,以及光斑倾斜率e/a的数值如下。
表三
Figure PCTCN2019119399-appb-000010
Figure PCTCN2019119399-appb-000011
表四是实施方案3的数据示例。实施方案1中β设定为10°,对应不同光斑的尺寸,以及对应不同的Φ max时,光斑倾斜量e,以及光斑倾斜率e/a的数值如下。
表四
Figure PCTCN2019119399-appb-000012
表二至表四中的7个光斑尺寸,是最通用的光斑尺寸。通常在实现600dpi分辨率的激光扫描设备中的光斑尺寸在主扫描方向上为60~80μm,而在副扫描方向上为70~90μm。
参考图8,是光束入射感光鼓表面时的光能分布比对图。图8中采用的是主扫描方向光斑大小a=60μm,副扫描方向光斑大小b=80μm的光束,对应表二至表四中的光斑2。图8是对光斑倾斜情况的直观比较。图8中Φ=0°表示光束入射感光鼓表面与成像光学***5的主光轴交点位置的光斑光能分布图。在与Φ=0°对应的三幅光能分布图中光斑是没有产生倾斜的,对应 打印的画质最优。与Φ=35°对应的光能分布图,可以看到光斑是有轻微倾斜的,但不明显。与Φ=45°对应的光能分布图,光斑倾斜量进一步加大。尤其在β=10°、Φ=45°时,其对应的光斑已经具有人眼可识别的明显倾斜,很可能对打印图像的画质产生影响。
下面结合上述表二至表四,用光斑倾斜量e和光斑倾斜率e/a来对光斑的倾斜状态进行比较。
在实施方案1对应的表二和实时方案2对应的表三中,都没有大于10%的光斑倾斜率。实施方案1与图8中第一行光能分布图对应,实时方案2与图8中第二行光能分布图对应。
图8中第一行Φ=35°的光能分布图对应表二中光斑倾斜率4.1%;Φ=45°的光能分布图对应表二中光斑倾斜率5.8%。表二中各光斑对应的光斑倾斜率,都随着Φ的增大而增大,但均小于10%。
图8中第二行Φ=35°的光能分布图对应表三中光斑倾斜率5.7%,未见明显倾斜;Φ=45°的光能分布图对应表三中光斑倾斜率8.2%,有轻微倾斜。表三中各光斑对应的光斑倾斜率,都随着Φ的增大而增大,但也均小于10%,未对成像质量和打印图像质量造成影响。
图8中第三行Φ=35°的光能分布图对应表四中光斑倾斜率8.2%,倾斜程度与表三中Φ=45°对应光斑一致,有轻微倾斜;图8中第三行Φ=45°的光能分布图对应表四中光斑倾斜率11.8%,有明显倾斜。表四中各光斑对应的光斑倾斜率,也是随着Φ的增大而增大,但有四个大于10%的光斑倾斜率,分别是与Φ=45°对应的10.3%、11.8%、10.1%和11.3%,都会对成像质量和打印图像质量造成影响。
对表二至表四所示数据进行纵向比较,可以得到,β加大之后,同一光斑的光斑倾斜量e以及光斑倾斜率e/a的数值都会加大。相应地,参见图8第三列Φ=45°的光能分布图变化,随着β加大而越倾斜。参见图8中β=7°对应的三幅光能分布图,Φ=0°对应的光斑仍然是没有倾斜的;但Φ=35°对应的光斑相比β=5°时已经有轻微倾斜,其对应光斑倾斜率为8.2%,仍小于10%;当Φ=45°时,出现明显倾斜,光斑倾斜率为11.8%。可见β越小,对光斑的倾斜影响越小,参见表二与表三,实施方案2与方案1相比,β从7°减小至5°的情况下,同一光斑的光斑倾斜量e以及光斑倾斜率e/a的数值也都减小。 在目前常用的七种光斑尺寸(参见表二至表四中的光斑1-7)上,表一和表二中光斑倾斜率e/a最大为8.2%,没有超过10%,都不会对打印画质产生明显影响。与实施方案1以及实施方案2相比,β加大之后,同一光斑的光斑倾斜量e以及光斑倾斜率e/a的数值都继续加大,尤其是Φ=40°时,光斑倾斜率e/a的最大值已经达到9.9%,没有超过10%,不会对画像产生显著的影响,可以使用。但是当Φ继续加大到Φ max为45°时,在目前的常用光斑尺寸上,e/a的最大值已经达到11.8%,已经超过临界值10%,11.8%与图8中β=10°,Φ=45°的光能分布图相对应,其所示光斑已经出现显著的倾斜,在实际画像上已经会产生显著的画像缺陷。
上述三个表中7种光斑的尺寸即满足1.0≤(b/a)≤1.33,随着Φ的增大(35°增加到45°),同一光斑的光斑倾斜量e也会随之加大,光斑倾斜率e/a同样也会加大,但是,只有实施方式3中β=10°,Φ=45°时e/a存在超过10%的情况,其他组合都不会对画像产生明显的影响。可见在通用的光斑尺寸中,只要将Φ的最大值控制在40°以下,就能保证光斑倾斜率e/a小于10%,不会因扫描角过大而对打印的边缘图像质量造成影响。
本申请提供的一种光学扫描设备和图像形成设备,包括光源1;光学偏转器4,用于偏转所述光源1发射的光束,使所述光束在主扫描方向上进行扫描;成像光学***,用于将所述光学偏转器4偏转的光束引导至被扫描面6上成像;所述光学偏转器4在以最大偏转角度对所述光源1发射的光束进行偏转时,所述成像光学***的出射光束在所述主扫描方向上与被扫描面6的法线形成最大入射夹角φ max,且成像光学***成像在被扫描面6上成像形成光斑的光斑倾斜率
Figure PCTCN2019119399-appb-000013
满足:
Figure PCTCN2019119399-appb-000014
从而降低转印图像边缘模糊的可能性,提高了光学扫描成像质量。
光斑的尺寸在其他情况下也可以实现本实施例的方案,本申请并不对此进行限制。作为一种可选的实现方式,以有机光导体(Organic Photoconductor,简称:OPC)作为被扫描面6,在β=5°的情况下,当b/a为1.14时,在主扫描方向,Φ=36.8°时,通过计算OPC表面副扫描方向的倾斜量e为2.67μm,若在副扫描方向,β=5.1°,得到光斑倾斜率e/a为3.8%,没有超过10%,同样不会影响画像质量。
在现有的一些光学扫描设备中,例如现有的一些打印机中的扫描设备, 如果β设置过小,而感光鼓表面为金属材质,在副扫描方向入射到感光鼓表面的光束在正入射或者接近正入射的情况下,可以理解为在副扫描方向上入射光束与感光鼓的法线形成的角度为零度或是接近零度,此时部分光束很可能被感光鼓反射回成像光学***5和光学偏转器4中,然后重新被光学偏转器4偏转至被扫描面6的其他位置,形成“幻影”问题。在一种可选的实现方式中,为了避免“幻影”问题,所述β满足如下公式三:
5°≤β≤10°             公式三。
在多次实验中,β的取值满足公式三的情况下可以具有最优表现。在一种可选的β的取值方式中,结合上述表二至表四对应的实施方案,所述β可以可选为5°或7°,减小光斑倾斜率e/a的值,提高成像和打印图像的准确性。
在上面各组实验中,可选地,所述光源1可以是至少一个可调制的点光源,从而对光源发出光束的尺寸进行调制。
参见图1,光阑2可以设置在所述点光源1侧,用于使所述光源1发出的光束成形。光阑2可以理解为是具有圆形通孔或方形通孔的光圈,用于对从光源1发射出来的光束成形,以在被扫描面6上形成圆形或方形光斑。光阑2的开口,使光源1发射的光束成形,该开口例如是圆形、或是椭圆形、或是方形。虽然在图1和图2中光阑2设置在光源1和第一光学单元3之间,但是光阑2的位置不受此限制,例如,光阑2可以设置在第一光学单元3和偏转器4之间。此外,还可以省略光阑2。
可选地,所述第一光学单元3可以是变形透镜、或柱状准直透镜。变形透镜可以理解为是执行准直透镜和圆柱透二者功能的透镜。
可选地,所述光学偏转器4可以包括多面体主体,所述多面体主体的表面形成多个反射镜面。所述多面体主体沿旋转轴旋转,所述旋转轴的中轴线与所述副扫描方向平行。可选地,旋转多面体具有4个反射镜面。
参见图9,是本申请实施例提供的一种图像形成设备结构示意图,图9所示的图像形成设备104主要包括:如上述各种实施例中所述的光学扫描设备100,以及感光装置101、显影装置107、转印装置108、定影装置113。
其中,感光装置101,具有所述被扫描面6,用于在所述被扫描面6上感应所述光学扫描设备出射的光束形成静电潜像。
显影装置107,用于将所述静电潜像显影形成碳粉图像。
转印装置108,用来将所述碳粉图像转印到转印介质上。
定影装置109,用来对转印介质上的被转印的碳粉图像定影。
具体地,继续参见图9,图像形成设备104接收从诸如个人计算机等的外部装置117的代码数据Dc的输入。通过该设备内的控制器111,将代码数据Dc转换成图像信号(点数据)Di。将图像信号Di输入给根据上述实施例之一的光学扫描设备100。从光学扫描设备100发射根据图像信号Di调制后的光束103,并且光束103在主扫描方向上扫描感光装置101(例如是所述感光鼓)的感光面(所述被扫描面)。控制器111不仅进行上述数据转换,而且对诸如后述的电动机105等图像形成设备内的各种部件进行控制。感光装置101作为静电潜像承载构件,由电动机105驱动而顺时针方向转动,并在转动过程中,使得感光装置101的感光面相对于光束103在副扫描方向上移动。感光装置101通过设置在感光装置101上方并与感光面接触的充电辊102,使得感光面均匀带电。在一种实现方式中,充电辊102可以是响应光学扫描设备100的光束103照射,而对感光面充电。即检测到光学扫描设备100发出扫描的光束,则充电辊102对感光面充电。在一种实现方式中,还包括显影装置107(显影器)。在通过光束103照射感光面,在感光面上形成静电潜像之后,设置在感光装置101的转动方向的下游的与感光面接触设置的显影装置107,从光束103的照射位置开始将静电潜像显影为调色剂图像。以对着感光装置101的方式设置在感光鼓101下游的转印装置108(转印辊),将通过显影装置107所显影的调色剂图像转印至转印介质112(例如薄片、纸张、相纸等)上。将转印介质112储存在感光装置101上游(图9的右边)的介质存放盒中,并继续保持转印介质的进给。在介质存放盒的边缘处设置进给辊110,从而将介质存放盒内的转印介质112进给至输送路径。将如上所述转印了未定影的调色剂图像的转印介质112进一步输送至感光装置101下游(图9的左边)的定影装置109。定影装置109包括内置有定影加热器(未示出)的定影辊113和被设置成向定影辊113施压的加压辊114。定影装置109在加热的同时,在定影辊113和加压辊114的加压部处对从转印辊108输送来的转印介质112施压,从而将未定影的调色剂图像定影在转印介质112上。此外,在定影辊113的下游还可以设置有排出辊对116,从 而将定影了调色剂图像的转印介质112从图像形成设备104传输到外部。由此完成印刷操作。
在本申请的描述中,需要理解的是,所使用的术语“中心”、“长度”、“宽度”、“厚度”、“顶端”、“底端”、“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“内”、“外”“轴向”、“周向”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的位置或原件必须具有特定的方位、以特定的构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或成为一体;可以是机械连接,也可以是电连接或者可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以使两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种光学扫描设备,包括:
    光源,用于发散光束;
    第一光学单元,用于使所述光源发出的光束在主扫描方向上准直,在副扫描方向上聚焦;
    光学偏转器,用于偏转所述光源发射的光束;
    成像光学***,用于将所述光学偏转器偏转的光束引导至被扫描面上成像;
    其特征在于,所述光学偏转器在以最大偏转角度对所述光源发射的光束进行偏转时,所述成像光学***的出射光束在所述主扫描方向上与被扫描面的法线形成最大入射夹角φ max,且所述成像光学***成像在所述被扫描面上成像形成光斑的光斑倾斜率
    Figure PCTCN2019119399-appb-100001
    满足如下公式一:
    Figure PCTCN2019119399-appb-100002
    其中,a为所述光斑在所述主扫描方向上的尺寸大小;
    e为光斑倾斜量,且
    Figure PCTCN2019119399-appb-100003
    b为所述光斑在副扫描方向上的尺寸大小,所述副扫描方向与所述主扫描方向垂直;
    β为所述成像光学***的出射光束在所述副扫描方向上与所述被扫描面的法线形成的夹角。
  2. 根据权利要求1所述的光学扫描设备,其特征在于,所述φ max满足如下公式二:
    35°≤φ max<45°          公式二。
  3. 根据权利要求1或2所述的光学扫描设备,其特征在于,所述φ max为35°。
  4. 根据权利要求1或2所述的光学扫描设备,其特征在于,所述β满足如下公式三:
    5°≤β≤10°        公式三。
  5. 根据权利要求4所述的光学扫描设备,其特征在于,所述β为5°或7°。
  6. 根据权利要求1所述的光学扫描设备,其特征在于,
    其中60μm≤a≤80μm,70μm≤b≤90μm
    a为所述光斑在所述主扫描方向上的尺寸大小;
    b为所述光斑在副扫描方向上的尺寸大小。
  7. 根据权利要求1所述的光学扫描设备,其特征在于,还包括:光阑单元;
    所述光阑单元使所述光源发射的光束成形。
  8. 根据权利要求1所述的光学扫描设备,其特征在于,所述第一光学单元包括变形透镜,
    或者包括独立的准直透镜和圆柱透镜。
  9. 根据权利要求1所述的光学扫描设备,其特征在于,所述成像光学***为F-θ透镜。
  10. 一种图像形成设备,其特征在于,包括:
    权利要求1至9任一所述的光学扫描设备;
    感光装置,具有所述被扫描面,用于在所述被扫描面上感应所述光学扫描设备出射的光束形成静电潜像;
    显影装置,用于将所述静电潜像显影形成碳粉图像;
    转印装置,用来将所述碳粉图像转印到转印介质上;
    定影装置,用来对转印介质上的被转印的碳粉图像定影。
PCT/CN2019/119399 2018-12-29 2019-11-19 光学扫描设备和图像形成设备 WO2020134718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19906054.2A EP3889667A4 (en) 2018-12-29 2019-11-19 OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS
US17/359,231 US11493754B2 (en) 2018-12-29 2021-06-25 Optical scanning device and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811633814.3 2018-12-29
CN201811633814.3A CN109633894B (zh) 2018-12-29 2018-12-29 光学扫描设备和图像形成设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/359,231 Continuation US11493754B2 (en) 2018-12-29 2021-06-25 Optical scanning device and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2020134718A1 true WO2020134718A1 (zh) 2020-07-02

Family

ID=66054503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119399 WO2020134718A1 (zh) 2018-12-29 2019-11-19 光学扫描设备和图像形成设备

Country Status (4)

Country Link
US (1) US11493754B2 (zh)
EP (1) EP3889667A4 (zh)
CN (1) CN109633894B (zh)
WO (1) WO2020134718A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633894B (zh) 2018-12-29 2020-07-17 珠海奔图电子有限公司 光学扫描设备和图像形成设备
CN109975976B (zh) 2019-05-17 2021-11-16 珠海奔图电子有限公司 光学扫描单元及电子照相成像装置
JP7293004B2 (ja) * 2019-07-01 2023-06-19 東芝テック株式会社 光走査装置及び画像形成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085969A (ja) * 2002-08-28 2004-03-18 Ricoh Co Ltd 光走査装置および画像形成装置
JP2004280056A (ja) * 2003-02-27 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
CN1834723A (zh) * 2005-03-17 2006-09-20 株式会社理光 光学扫描设备和成像设备
CN1908727A (zh) * 2005-08-05 2007-02-07 株式会社东芝 光束扫描装置及图像形成装置
CN101021618A (zh) * 2006-02-15 2007-08-22 佳能株式会社 光学扫描装置和使用光学扫描装置的图像形成装置
CN109633894A (zh) * 2018-12-29 2019-04-16 珠海奔图电子有限公司 光学扫描设备和图像形成设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573587A (zh) * 1998-06-23 2005-02-02 株式会社理光 采用光束特性评价方法的写入单元调整方法
JP2004276532A (ja) * 2003-03-18 2004-10-07 Hitachi Printing Solutions Ltd カラー画像形成装置
US7177060B2 (en) * 2004-01-15 2007-02-13 Seiko Epson Corporation Optical scanning apparatus and image forming apparatus
JP2009122327A (ja) * 2007-11-14 2009-06-04 Canon Inc マルチビーム光走査装置及びそれを用いた画像形成装置
KR101902527B1 (ko) * 2012-11-12 2018-09-28 에이치피프린팅코리아 주식회사 광 주사 장치 및 이를 채용한 전자 사진 방식의 화상 형성 장치
JP2016151590A (ja) * 2015-02-16 2016-08-22 キヤノン株式会社 光走査装置および画像形成装置
JP2018101028A (ja) * 2016-12-20 2018-06-28 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085969A (ja) * 2002-08-28 2004-03-18 Ricoh Co Ltd 光走査装置および画像形成装置
JP2004280056A (ja) * 2003-02-27 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
CN1834723A (zh) * 2005-03-17 2006-09-20 株式会社理光 光学扫描设备和成像设备
CN1908727A (zh) * 2005-08-05 2007-02-07 株式会社东芝 光束扫描装置及图像形成装置
CN101021618A (zh) * 2006-02-15 2007-08-22 佳能株式会社 光学扫描装置和使用光学扫描装置的图像形成装置
CN109633894A (zh) * 2018-12-29 2019-04-16 珠海奔图电子有限公司 光学扫描设备和图像形成设备

Also Published As

Publication number Publication date
US20210325666A1 (en) 2021-10-21
US11493754B2 (en) 2022-11-08
CN109633894B (zh) 2020-07-17
EP3889667A4 (en) 2022-01-19
EP3889667A1 (en) 2021-10-06
CN109633894A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US6956685B2 (en) Multi-beam scanner, multi-beam scanning method, synchronizing beam detecting method and image forming apparatus
US7050209B2 (en) Scanning optical apparatus and image forming apparatus using the same
EP1158334A2 (en) Optical scanning apparatus and image forming apparatus using the same
US11493754B2 (en) Optical scanning device and imaging apparatus
JP5106033B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2001021824A (ja) 光走査装置および画像形成装置
JP7137401B2 (ja) 光走査装置及び画像形成装置
US11803050B2 (en) Optical scanning device and electronic imaging apparatus
JP2002221681A (ja) 走査光学装置及びそれを用いた画像形成装置
JP3943820B2 (ja) 光走査装置及びマルチビーム光走査装置及び画像形成装置
US5694236A (en) Optical scanning device
JP3854779B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4294913B2 (ja) 光走査装置および画像形成装置
JP2010169782A (ja) 光走査装置の照射位置調整方法
JP2005241727A (ja) 光走査装置及びそれを用いた画像形成装置
JP3488432B2 (ja) マルチビーム走査装置・マルチビーム走査方法・マルチビーム走査装置用の光源装置および画像形成装置
US20050269493A1 (en) Optical scanning apparatus and image fomring apparatus equipped with the same
JP4817526B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4280748B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2006071893A (ja) 光走査装置及びそれを用いた画像形成装置
JP2008309844A (ja) 光走査装置及びそれを用いた画像形成装置
JP2022138794A (ja) 光走査装置
JP2002090677A (ja) 光走査装置及びそれを用いた画像形成装置
JP4217730B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5344653B2 (ja) 光走査装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019906054

Country of ref document: EP

Effective date: 20210701