WO2020133994A1 - 显示面板、透光oled基板及oled基板 - Google Patents

显示面板、透光oled基板及oled基板 Download PDF

Info

Publication number
WO2020133994A1
WO2020133994A1 PCT/CN2019/093730 CN2019093730W WO2020133994A1 WO 2020133994 A1 WO2020133994 A1 WO 2020133994A1 CN 2019093730 W CN2019093730 W CN 2019093730W WO 2020133994 A1 WO2020133994 A1 WO 2020133994A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled
electrode
pixel
same
sub
Prior art date
Application number
PCT/CN2019/093730
Other languages
English (en)
French (fr)
Inventor
楼均辉
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to JP2020571655A priority Critical patent/JP7235778B2/ja
Priority to EP19902278.1A priority patent/EP3796410A4/en
Priority to KR1020207036974A priority patent/KR102544116B1/ko
Publication of WO2020133994A1 publication Critical patent/WO2020133994A1/zh
Priority to US17/011,233 priority patent/US11322070B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3216Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present application relates to the technical field of OLED display devices, in particular to a display panel, a light-transmitting OLED substrate and an OLED substrate.
  • the invention aims to provide a display panel, a light-transmitting OLED substrate and an OLED substrate, change the structure of the light-transmitting OLED substrate, solve the diffraction problem, and improve the imaging quality of the light-transmitting OLED substrate.
  • a first aspect of the present application provides a light-transmitting OLED substrate, including: a substrate, and a first electrode layer on the substrate, wherein the first electrode layer includes an arrangement along a first direction A plurality of electrode groups, each of the electrode groups includes at least one first electrode, each of the first electrodes extends along a second direction, the second direction is perpendicular to the first direction; located in the first electrode layer On the light-emitting structure layer, wherein the light-emitting structure layer includes n-color light-emitting structures, n ⁇ 1; for each of the first electrodes, the first electrode is provided with at least one of the light-emitting structure, which is provided in The light emitting structures on the same first electrode are of the same color; and the second electrode on the light emitting structure layer; wherein, when a driving voltage is applied between each of the first electrode and the second electrode
  • the transparent OLED substrate is configured to perform a display function; when no driving voltage is applied between each of the first electrode and the second electrode,
  • the reason why the imaging effect of the under-screen camera is worse is that the sub-pixel corresponding to the light-transmitting display area contains multiple graphic layers. When light passes through the multiple graphic layers, it will be in different graphics Diffraction phenomenon occurs at the boundary of the film layer.
  • the first electrode layer of the light-transmitting OLED substrate by setting the first electrode layer of the light-transmitting OLED substrate to include a plurality of electrode groups arranged along the first direction, one electrode group includes at least one first electrode, and the first electrode in the same electrode group Both extend in a second direction, the second direction being perpendicular to the first direction; the size of the first electrode in the second direction is much larger than the size in the first direction; relative to the size of the first electrode in the first direction
  • the structure with little difference in size from the second direction can reduce the boundary of the graphic film layer, reduce the complexity, and improve the diffraction problems involved in light transmission.
  • the transparent OLED substrate needs to perform the display function, a driving voltage is applied between each of the first electrode and the second electrode, the transparent OLED substrate is configured to perform the display function, and is displayed together with the non-transparent OLED substrate, The entire OLED substrate forms a full screen; when the light-transmitting OLED substrate needs to perform the light-transmitting function, no driving voltage is applied and driving is not performed between each of the first electrode and the second electrode. Since the problem related to diffraction is solved, the imaging effect of the photosensitive element under the transparent OLED substrate is good.
  • FIG. 1 is a top view of a light-transmitting OLED substrate in the first embodiment of the present application
  • FIG. 2 is a cross-sectional view along the line AA in FIG. 1;
  • FIG. 3 is a circuit schematic diagram of a passive driving mode of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate;
  • FIG. 4 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels of the same color in two rows of a transparent OLED substrate;
  • FIG. 5 is a schematic circuit diagram of an active driving mode of the first OLED sub-pixels of the same color in two rows of a transparent OLED substrate;
  • Figure 6 is a GIP circuit structure and timing diagram
  • FIG. 7 is a circuit schematic diagram of another active driving method of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate;
  • FIG. 8 is a circuit diagram and a timing diagram of a pixel driving circuit having a function of compensating for the threshold voltage of a driving transistor
  • FIG. 9 is a top view of the light-transmitting OLED substrate in the second embodiment of the present application.
  • FIGS. 10, 11 and 12 are top views of a light-transmitting OLED substrate in a third embodiment of this application;
  • FIG. 13 is a top view of the light-transmitting OLED substrate in the fourth embodiment of the present application.
  • FIG. 14 is a schematic circuit diagram of a passive driving mode of the first OLED sub-pixels in two rows of the transparent OLED substrate;
  • 15 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate;
  • 16 is a circuit schematic diagram of yet another passive driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate;
  • 17 is a schematic circuit diagram of an active driving mode of the first OLED sub-pixels in two rows of the transparent OLED substrate;
  • 19 is a schematic circuit diagram of a passive driving mode of the first OLED sub-pixels of the same color in two columns of the transparent OLED substrate;
  • 20 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels of the same color in two columns of a transparent OLED substrate;
  • 21 is a schematic circuit diagram of an active driving method of the first OLED sub-pixels of the same color in two columns of a transparent OLED substrate;
  • 22 is a schematic circuit diagram of another active driving method of the first OLED sub-pixels of the same color in two columns of the transparent OLED substrate;
  • 23 is a schematic circuit diagram of a passive driving mode of the first OLED sub-pixels in two columns of the transparent OLED substrate;
  • 24 is a schematic circuit diagram of an active driving method of the first OLED sub-pixels in two columns of the transparent OLED substrate;
  • 25 is a top view of the OLED substrate in the first embodiment of the present application.
  • 26 is a cross-sectional view of the second OLED substrate in FIG. 25.
  • FIG. 1 is a top view of a light-transmitting OLED (Organic Light-Emitting Diode) substrate in the first embodiment of the present application;
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • OLED Organic Light-Emitting Diode
  • the light-transmitting OLED substrate 11 includes a substrate 110, a first electrode layer 111 on the substrate 110, a light emitting structure layer 112 on the first electrode layer 111, and a light emitting structure layer The second electrode 113 on 112.
  • the first electrode layer 111 includes a plurality of electrode groups 1111 arranged along the first direction Y, one electrode group 1111 includes two first electrodes 1111a, 1111b, and the first electrodes 1111a, 1111b in the same electrode group 1111 are along It extends in the second direction X, that is, the size in the second direction X is much larger than the size in the first direction Y, and the second direction X is perpendicular to the first direction Y.
  • the second electrode 113 is a surface electrode.
  • the light-emitting structure layer 112 includes n-color light-emitting structures 1121, n ⁇ 1, a first electrode 1111a is provided with a light-emitting structure 1121, the light-emitting structure 1121 of the same first electrode 1111a is the same color; when the first electrode When a driving voltage is applied between 1111a, 1111b and the second electrode 113, the transparent OLED substrate 11 performs a display function; when a driving voltage is not applied between each first electrode 1111a, 1111b and the second electrode 113, the transparent OLED substrate 11 Perform light transmission function.
  • the size of the first electrode 1111a in the second direction X is much larger than the “much larger” in the size of the first direction Y: preferably greater than 10:1. In other alternatives, it can also be greater than 20:1, 50:1, 100:1, or even greater than 400:1.
  • the first direction Y is the row direction
  • the second direction X is the column direction
  • the light emitting structure 1121 on one first electrode 1111a/1111b covers the entire first electrode 1111a/1111b, that is, the light emitting structure 1121 extends from the top to the bottom of the first electrode 1111a/1111b.
  • the light-emitting structure 1121 may also be distributed only in a partial area of the entire first electrode 1111a/1111b.
  • the size and position of the light emitting structure 1121 on the first electrode 1111a/1111b are defined by the pixel definition layer 114.
  • the pixel definition layer 114 may also be omitted, and the size and position of the light emitting structure 1121 may be defined by the pattern on the mask for evaporation.
  • the first electrodes 1111a/1111b and/or the light emitting structure 1121 are arranged in a number of columns extending from the top to the middle, and from the middle to the bottom. Compared with the array of rows and columns, the number of pattern boundaries can be reduced and the light transmission can be improved. Interference and diffraction problems when the OLED substrate 11 transmits light.
  • a first electrode 1111a/1111b, a light emitting structure 1121 on the first electrode 1111a/1111b, and a portion of the second electrode 113 corresponding to the first electrode 1111a/1111b form a first OLED sub-pixel 11a.
  • the first OLED sub-pixels 11a in two rows may be red sub-pixels, green sub-pixels, blue sub-pixels, yellow sub-pixels, white sub-pixels, etc.
  • the area emits light in a single color.
  • the light emission driving method of the first OLED sub-pixel 11a may be an active type or a passive type.
  • Passively driven OLED Passively driven OLED
  • PMOLED Passively driven OLED
  • PMOLED Passively driven OLED
  • each sub-pixel is operated in the short pulse mode, and emits light for a moment with high brightness.
  • the external circuit can be controlled by a display driver integrated chip (display driver integrated chip, DDIC).
  • Active drive OLED Active Matrix OLED, AMOLED
  • AMOLED Active Matrix OLED
  • TFT thin-film transistor
  • AMOLED uses an independent thin film transistor to control each pixel to emit light, and each sub-pixel can emit light continuously. In other words, the addressing of each OLED sub-pixel is directly controlled by the thin film transistor array.
  • the row selection signal of the thin film transistor array can be derived from the GIP (Gate In Panel) circuit, and the column selection signal can be derived from the display driver integrated chip (DDIC).
  • GIP Gate In Panel
  • DDIC display driver integrated chip
  • FIG. 3 is a circuit schematic diagram of a passive driving mode of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11a in the first row is connected to the same data signal, and the first electrode of each first OLED sub-pixel 11a in the second row is connected to the same another Data signal; the second electrodes of all the first OLED sub-pixels 11a are grounded.
  • the color data carried by the two data signal channels is consistent with the color of the corresponding first OLED sub-pixel 11a.
  • the data signal is provided by an external circuit.
  • the light-transmitting OLED substrate has two rows of first OLED sub-pixels 11a, it is necessary to apply one driving current to the first row and another driving current to the second row.
  • the two driving currents may be derived from the display driving integrated chip (DDIC) ) Two data signal channels (data lines).
  • FIG. 4 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11 a in each row is connected to a different data signal, and the second electrodes of all the first OLED sub-pixels 11 a are grounded.
  • the color data carried by each data signal channel is consistent with the color of the corresponding first OLED sub-pixel 11a.
  • the various data signals are also provided by external circuits. Since the light-transmitting OLED substrate has two rows of first OLED sub-pixels 11a, a driving current needs to be applied to each of the first OLED sub-pixels 11a in the first row and the second row.
  • the above driving currents can be derived from the display driving integrated chip ( One data signal channel (data line) of DDIC), all driving current can come from several data signal channels (data lines) of the display driver integrated chip (DDIC).
  • the traces of the first electrodes of the first OLED sub-pixels 11a in the first row are arranged in the frame area on the upper side of the transparent OLED substrate 11 and the frame area on the side, namely the first The electrode wiring is not provided in the area where the first OLED sub-pixel 11a is located.
  • the traces of the first electrodes of the first OLED sub-pixels 11a in the second row are arranged in the border area on the lower side and the border area on the side of the transparent OLED substrate 11.
  • the scheme of placing the trace of the first electrode in the border area can further reduce the graphic film layer of the area where the first OLED sub-pixel 11a is located, Further reduce the interference and diffraction problems in light transmission mode.
  • the former has fewer data signal channels, fewer connection traces, and less occupied area.
  • FIG. 5 is a schematic circuit diagram of an active driving mode of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate.
  • a pixel driving circuit includes a switching transistor X1, a driving transistor X2, and a storage capacitor C. As shown in FIG.
  • the first electrode of each first OLED sub-pixel 11a in the first row is connected to the drain of the driving transistor X2 in the same pixel drive circuit, and each first OLED sub-pixel in the second row
  • the first electrode of 11a is connected to the drain of the driving transistor X2 in the same another pixel driving circuit; the second electrodes of all the first OLED sub-pixels 11a are grounded; the gate of the driving transistor X2 in the first row of pixel driving circuits
  • the data signal is connected to the gate of the driving transistor X2 through a switching transistor X1
  • the gate of the driving transistor X2 in the pixel driving circuit of the second row corresponds to another data signal, which passes through another switching transistor X1 is connected to the gate of the driving transistor X2, and the sources of the two driving transistors correspond to a power supply voltage (Voltage, Drain, VDD).
  • the pixel driving circuit in the first row may be disposed in the frame area above the light-transmitting OLED substrate 11.
  • the pixel driving circuit in the second row may be disposed in the bezel area below the light-transmitting OLED substrate 11.
  • the data line of the upper pixel drive circuit can be connected to a data signal channel (data line) of the display drive integrated chip (DDIC); the data line of the lower pixel drive circuit can be connected to another of the display drive integrated chip (DDIC) One data signal channel (data line); the scanning lines of the pixel driving circuits above and below can be connected to one scanning signal channel of the GIP circuit.
  • DDIC display drive integrated chip
  • Figure 6 is a GIP circuit structure and timing diagram.
  • the one-stage GIP circuit includes a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, and a fifth transistor T5.
  • the first clock signal line XCK is connected to the gate of the first transistor T1 and the gate of the third transistor T3, and the second clock signal line CK is connected to the source of the second transistor T2.
  • the first gate line Vgh connects the source of the fourth transistor T4 and the source of the fifth transistor T5, and the second gate line Vg1 connects the source of the third transistor T3.
  • the GIP circuit structure may include a multi-stage GIP circuit.
  • the source of the first transistor T1 of the n-th stage GIP circuit is connected to the input signal line G n to input signals for the n-th stage GIP circuit.
  • the drain of the second transistor T2 of the nth stage GIP circuit is connected to the output signal line of the nth stage GIP circuit, and the output signal of the nth stage GIP circuit is used as the input signal G n+1 of the n+ 1th stage GIP circuit.
  • the first gate line V gh is at a high level
  • the second gate line V gl is at a low level
  • the first clock signal line XCK and the second clock signal line CK output digital signals of opposite high and low levels, respectively.
  • the scanning line G 1 of the first-stage GIP circuit inputs a low level
  • the second clock signal line CK jumps to a low level
  • the first-stage GIP circuit outputs A low-level signal is used as the input signal of the second-level GIP circuit, that is, a low level is input to the scanning line G 2 of the second-level GIP circuit, and so on, and the output signal of the n-level circuit is taken as the n+ Input signal for level 1 circuit.
  • FIG. 7 is a circuit schematic diagram of another active driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11a in the first row is connected to the drain of the driving transistor X2 in a different pixel drive circuit, and each first OLED sub-pixel 11a in the second row Is connected to the drains of the driving transistors X2 in different pixel driving circuits; the second electrodes of all the first OLED sub-pixels 11a are grounded; the gate of the driving transistor in each pixel driving circuit corresponds to a data signal, The data signal is connected to the gate of the driving transistor through a switching transistor, and the source of the driving transistor in each pixel driving circuit corresponds to the same power supply voltage.
  • a pixel driving circuit includes a transistor array, and each transistor unit in the transistor array includes: a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • the pixel driving circuit connected to the first electrode of each first OLED sub-pixel 11a in the first row may be disposed in a frame area above the light-transmitting OLED substrate 11.
  • the pixel driving circuit connected to the first electrode of each first OLED sub-pixel 11a in the second row may be disposed in the bezel area below the light-transmitting OLED substrate 11.
  • the data line in each transistor unit provided in each pixel drive circuit above can be connected to a data signal channel (data line) of the display drive integrated chip (DDIC); each of the pixel drive circuits provided below
  • the data line in the transistor unit can be connected to a data signal channel (data line) of the display driver integrated chip (DDIC); each scanning line in each transistor unit in each pixel drive circuit above and below can be connected to GIP A scanning signal channel of the circuit.
  • the data line in each transistor unit occupies one data signal channel of the display driving integrated chip, and the scan line in each transistor unit occupies one scan signal channel of the GIP circuit.
  • the pixel driving circuit 8 is a circuit diagram and a timing diagram of a pixel driving circuit having a function of compensating for the threshold voltage of a driving transistor.
  • the pixel driving circuit may also be a pixel driving circuit that compensates for the threshold voltage of the driving transistor, such as 7T1C and 6T1C.
  • the 7T1C pixel drive circuit shown in FIG. 8 is divided into three working stages: a reset stage, a compensation stage, and a light-emitting stage. In the compensation stage, the threshold voltage Vth of the drive transistor is first stored in its gate-source voltage Vgs.
  • Vgs-Vth is converted into current, because Vgs already contains Vth, so when converting into current, Vth The effect is cancelled, thereby achieving current consistency.
  • the pixel driving circuit shown in FIG. 8 can improve the life span and display uniformity of the first OLED sub-pixel 11a.
  • the first electrode for each first OLED sub-pixel 11a (also referred to as a first OLED pixel row) in the first row is connected to the drain of the driving transistor in the same one pixel driving circuit, the gate of the driving transistor Corresponding to a data signal of the display driver chip, the source corresponds to a power supply voltage; the first electrode of each first OLED sub-pixel 11a (also called a second OLED pixel row) in the second row is connected to the same another pixel
  • the drain of the driving transistor in the driving circuit, the gate of the driving transistor corresponds to another data signal of the display driving chip, and the source corresponds to a power supply voltage (see FIG.
  • the data line signal V DATA of the pixel driving circuit may come from a data signal channel (data line) of the display driving integrated chip (DDIC); the data line signal V DATA of the pixel driving circuit of the second row OLED pixel 11a may come from the display driving integrated chip (DDIC) another data signal channel (data line); the signals of the scanning lines G n-1 and G n of each pixel drive circuit of the OLED pixels 11a in the first and second rows can come from the two scanning signals of the GIP circuit Channel, the emission signal (Emitting signal, EM) of each pixel driving circuit can come from an emission signal channel of the GIP circuit, and the initial signal (Initiating signal, INIT) of each pixel driving circuit can come from the display driving integrated chip.
  • DDIC display driving integrated chip
  • the gates of the driving transistors in each pixel driving circuit correspond to the display A data signal of the driving chip, the source of each driving transistor corresponds to the same or different power supply voltage (see FIG.
  • the data line signal V DATA may come from a data signal channel (data line) of the display driving integrated chip (DDIC), that is, the data line signal V of the pixel driving circuit of the plurality of first OLED sub-pixels 11a in the first row and the second row DATA can come from a plurality of data signal channels (data lines) of the display drive integrated chip (DDIC); the scan lines G n-1 and G n of the pixel drive circuits of the first OLED pixels 11 a in the first row and the second row above
  • the signal can come from the two scanning signal channels of the GIP circuit, the transmission signal EM can come from a transmission signal channel of the GIP circuit, and the initial signal INIT can come from the display driving integrated chip.
  • the former has a smaller number of data signal channels, fewer connection traces, and a smaller occupied area.
  • FIG. 9 is a top view of a light-transmitting OLED substrate in the second embodiment of the present application.
  • the light-transmitting OLED substrate 12 shown in FIG. 9 is substantially the same as the light-transmitting OLED substrate 11 shown in FIG. 1, except that a plurality of spaced-apart light-emitting structures 1121 are provided on one first electrode 1111a/1111b. Each spaced light emitting structure 1121 is separated by a pixel definition layer 114 or there is no pixel definition layer 114 between the spaced light emitting structures 1121.
  • the light-transmitting OLED substrate 12 can increase the pixel density of the first OLED sub-pixel 11 a on the light-transmitting OLED substrate 12. In addition, whether one or more light-emitting structures 1121 are provided on the first electrode 1111a, the light-emitting driving of the first OLED sub-pixel 11a on the light-transmitting OLED substrate 12 is not affected.
  • FIG. 10 is substantially the same as the light-transmitting OLED substrate 11 shown in FIG. 1, except that one electrode group 1111 includes one first electrode 1111a.
  • the structure shown in FIG. 10 is equivalent to the structure shown in FIG. 1: removing the first electrode 1111b of the second row, and extending the first electrode 1111a of the first row to the transparent OLED substrate 13 in the X direction The bottom end; or the first electrode 1111a of the first row is removed, and the first electrode 1111b of the second row is extended to the top of the light-transmitting OLED substrate 13 in the X direction.
  • the structure of each first OLED sub-pixel 11a in this embodiment is the same as the structure of each first OLED sub-pixel 11a in the first row or each first OLED in the second row in the embodiments of FIGS. 1 and 9
  • the structure of the sub-pixel 11a is substantially the same.
  • the projection of the first electrode 1111a on the substrate 110 may include one graphic unit or more than two graphic units.
  • the graphic unit in FIG. 10 is rectangular, and the graphic unit in FIG. 11 is gourd-shaped. In other alternatives, the graphic unit may also be oval, dumbbell-shaped, or circular.
  • the above-mentioned pattern can make the diffraction pattern fringes overlap and cancel each other, thereby improving the diffraction problem.
  • each first OLED sub-pixel 11a in this embodiment corresponds to the driving method of each first OLED sub-pixel 11a in the first row in the embodiment of FIG. 1 or corresponds to each first OLED sub-pixel in the second row The driving method of the pixel 11a. This application will not repeat them here.
  • each first OLED sub-pixel 11a may extend up and down in the X direction within a certain section of the middle of the light-transmitting OLED substrate 13, or extend downward from the top of the light-transmitting OLED substrate 13 to the middle in the X direction, or from the middle Extend to the lower end in the X direction.
  • each first OLED sub-pixel 11a in the first row may extend up and down along the X direction in the transparent OLED substrate 13, specifically: The middle section of the section extends in an up-down direction, or extends downward from the top of the OLED substrate 13 to the upper middle section, or from the upper middle section to the middle section; each first OLED sub-pixel 11a in the second row may be in a light-transmitting OLED
  • the substrate 13 extends up and down along the X direction, specifically, extends in the up and down direction within a certain section of the middle section of the lower section, or extends upward from the bottom end of the OLED substrate 13 to the lower middle section, or extends from the lower middle section to the middle section.
  • each first OLED sub-pixel in this embodiment may combine sub-pixels Different patterns of
  • FIG. 13 is a top view of a light-transmitting OLED substrate in the fourth embodiment of the present application.
  • the colors of the light-emitting structures 1121 on the first electrodes 1111a/1111b in the same row and different columns are alternately distributed according to the same law, and adjacent three columns of first OLED sub-pixels 11b, 11c, and 11d with different colors form an OLED Pixel unit.
  • the first OLED sub-pixels 11b, 11c, and 11d may be red, green, and blue sub-pixels, respectively.
  • the first OLED sub-pixels 11b, 11c, and 11d may be sub-pixels of other colors, respectively.
  • adjacent four columns of first OLED sub-pixels in different colors may also form an OLED pixel unit.
  • each first OLED sub-pixel 11b, 11c, 11d please refer to the specific structure of the first OLED sub-pixel 11a in the foregoing embodiment.
  • one first OLED sub-pixel 11a may be referred to as one OLED pixel unit. The following describes how to drive multiple color sub-pixels.
  • FIG. 14 is a schematic circuit diagram of a passive driving mode of the first OLED sub-pixels in two rows of the transparent OLED substrate.
  • the first electrodes of the same-color sub-pixels 11b, 11c, and 11d in the first row of OLED pixel units in the first row are connected to a data signal, and the first OLEDs in the second row of OLED pixel units
  • the first electrodes of the same-color sub-pixels 11b, 11c, and 11d are connected to another data signal; the second electrodes of all the first OLED sub-pixels 11b, 11c, and 11d are grounded.
  • the first electrodes of all red sub-pixels are connected to the same R data signal; the first electrodes of all green sub-pixels are connected to the same G data signal; and the first electrodes of all blue sub-pixels are connected to the same B data signal.
  • the R, G, and B data signals are provided by external circuits.
  • the light-transmitting OLED substrate has two rows of first OLED sub-pixels, it is necessary to apply a driving current to each first OLED same-color sub-pixel of the first row and another to each first OLED same-color sub-pixel of the second row.
  • One drive current; the drive current applied by the first OLED sub-pixels of the same color in the first row can be derived from the three data signal channels (data lines) of the display driver integrated chip (DDIC), each in the second row
  • the driving current applied by the first OLED sub-pixel of the same color may be derived from the other three data signal channels of the display driving integrated chip (DDIC).
  • DDIC display driver integrated chip
  • FIG. 15 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate.
  • the second electrodes of the first OLED same-color sub-pixels 11b, 11c, and 11d in each OLED pixel unit in the first row are grounded, the first electrode is connected to the drain of a switching transistor, and each OLED pixel in the first row
  • the source of the switching transistor corresponding to each first OLED sub-pixel of the same color in the unit is connected to a data signal, and the gate is connected to a switching signal; the switching transistor corresponding to each first OLED sub-pixel of the same color in each OLED pixel unit in the second row
  • the source is connected to another data signal, and the gate is connected to another switching signal.
  • the switching signal can control all the first OLED same-color sub-pixels in a row to perform a display function or a light-transmitting function in a unified manner, and can also control all the first OLED same-color sub-pixels in a row to perform a light-transmitting function when the switching signal is "OFF" Prevent crosstalk when adjacent other color sub-pixels perform display functions.
  • the first electrode of each first OLED same-color sub-pixel in each row of OLED pixel units is connected to the drain of a switching transistor, and each first OLED same-color sub-pixel in each OLED pixel unit of the first row corresponds to
  • the source of the switching transistor is connected to a data signal, and the gate is connected to a different switching signal; the source of the switching transistor corresponding to each first OLED sub-pixel of the same color in each OLED pixel unit in the second row is connected to another data signal, the gate Connect different switching signals.
  • FIG. 16 is a circuit schematic diagram of yet another passive driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel in each OLED pixel unit of the first and second rows It can also be connected to different data signals.
  • the data signal is also provided by an external circuit. Since the light-transmitting OLED substrate has two rows of first OLED sub-pixels, a driving current needs to be applied to each first OLED sub-pixel.
  • the driving current of each first OLED sub-pixel can be derived from a data signal channel (data line) of the display driving integrated chip (DDIC), and the driving current of all the first OLED sub-pixels is derived from several of the display driving integrated chip (DDIC) Data signal channel (data line).
  • DDIC display driving integrated chip
  • FIG. 17 is a schematic circuit diagram of an active driving method of the first OLED sub-pixels in two rows of the transparent OLED substrate.
  • the second electrode of each first OLED sub-pixel is grounded, and the first electrode of each first OLED sub-pixel of the same color in each OLED pixel unit of the first row is respectively connected to the driving transistor drain of a pixel driving circuit
  • the gate of the driving transistor corresponds to a data signal, and the data signal is connected to the gate of the driving transistor through a switching transistor, and the source of the driving transistor corresponds to a power supply voltage VDD; each of the OLED pixel units in the second row
  • the first electrode of an OLED sub-pixel of the same color is connected to the drain of the driving transistor in another pixel driving circuit, the gate of the driving transistor corresponds to a data signal, and the data signal is connected to the gate of the driving transistor through a switching transistor to drive
  • the source of the transistor corresponds to a power supply voltage.
  • the pixel driving circuit may include a transistor array.
  • the transistor array includes a plurality of transistor cells.
  • Each transistor unit may include: a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • the data line in each transistor unit can be connected to a data signal channel (data line) of the display driver integrated chip (DDIC); each of the same-color sub-pixels of the first OLED pixel unit in each OLED pixel unit of the first row and the second row
  • Each scanning line in each transistor unit can be connected to one scanning signal channel of the GIP circuit.
  • each OLED pixel unit in the first row occupies three data signal channels of the display driving integrated chip (in the case where one OLED pixel unit includes three kinds of first OLED sub-pixels), and each OLED pixel unit in the second row occupies the display driving integration The other three data signal channels of the chip.
  • the first electrode of each first OLED sub-pixel in each OLED pixel unit is connected to the drain of a driving transistor in a different pixel driving circuit, and the gate of each driving transistor corresponds to a data signal.
  • the signal is connected to the gate of the driving transistor through a switching transistor, and the source of the driving transistor corresponds to a power supply voltage.
  • the pixel driving circuit may include a transistor array.
  • Each transistor unit in the transistor array may include: a switching transistor X1, a driving transistor X2, and a storage capacitor C, also known as a 2T1C structure.
  • each transistor unit can be connected to one data signal channel (data line) of the display driver integrated chip (DDIC); each scan line in each transistor unit can be connected to one scan signal channel of the GIP circuit.
  • each first OLED sub-pixel occupies one data signal channel of the display driving integrated chip and one scan signal channel of the GIP circuit.
  • the pixel driving circuit may also be a 6T1C structure, a 7T1C structure, and so on.
  • the data line signal V DATA of each pixel driving circuit mentioned above may come from a data signal channel (data line) of the display driving integrated chip (DDIC); the signals of the scanning lines G n-1 and G n may come from the two scanning signals of the GIP circuit Channel, the transmission signal EM can come from a transmission signal channel of the GIP circuit, and the initial signal INIT can come from the display driver integrated chip.
  • FIG. 18 is a top view of a light-transmitting OLED substrate in the fifth embodiment of the present application.
  • the difference between the structure of the light-transmitting OLED substrate 15 in this embodiment and the structure of the light-transmitting OLED substrates 11, 12, 13, 14 in the embodiments of FIGS. 1 to 17 is that the first direction Y is In the column direction, the second direction X is the row direction. In other words, the first electrode extends in the Y direction.
  • FIG. 19 is a schematic circuit diagram of a passive driving method of the first OLED sub-pixels of the same color in two columns of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11a in the first column is connected to one data signal, and the first electrode of each first OLED sub-pixel 11a in the second column is connected to another data signal; all The second electrode of the first OLED sub-pixel 11a is grounded.
  • the color data carried by the two data signal channels is consistent with the color of the corresponding first OLED sub-pixel 11a. As shown in FIG.
  • the lead of the data signal corresponding to each first OLED sub-pixel 11a in the first column can go on the left border area, and the lead of the data signal corresponding to each first OLED sub-pixel 11a in the second column You can walk in the border area on the right.
  • FIG. 20 is a circuit schematic diagram of another passive driving method of the first OLED sub-pixels of the same color in two rows of the transparent OLED substrate. Referring to FIG. 20, the first electrode of each first OLED sub-pixel 11a in the first column and the second column is connected to the same data signal.
  • FIG. 21 is a schematic circuit diagram of an active driving mode of the first OLED sub-pixels 11a of the same color in two columns of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11a in the first column is connected to the drain of a driving transistor of a pixel driving circuit, the gate of the driving transistor is connected to a data signal, and the data signal passes through a
  • the switching transistor is connected to the gate of the driving transistor, and the source of the driving transistor corresponds to a power supply voltage; the first electrode of each first OLED sub-pixel 11a in the second column is connected to the drain of the driving transistor of another pixel driving circuit.
  • the gate of the driving transistor is connected to another data signal.
  • the data signal is connected to the gate of the driving transistor through a switching transistor.
  • the source of the driving transistor corresponds to a power supply voltage; the scanning lines of the two pixel driving circuits are connected to the same GIP circuit. Scan the signal.
  • the pixel driving circuit in FIG. 21 takes the 2T1C structure as an example, and in other optional solutions, it may also be a 3T1C structure, a 6T1C structure, a 7T1C structure, and so on.
  • FIG. 22 is a circuit schematic diagram of another active driving method of the first OLED sub-pixels of the same color in two columns of the transparent OLED substrate.
  • the first electrode of each first OLED sub-pixel 11a in the first column and the second column is connected to the drain of a driving transistor X2 of a pixel driving circuit, and the gate of the driving transistor X2 is connected to a data signal
  • the data signal is connected to the gate of the driving transistor X2 through a switching transistor X1, and the source of the driving transistor X2 corresponds to a power supply voltage VDD;
  • the scanning line of the pixel driving circuit is connected to a scanning signal of the GIP circuit.
  • the pixel driving circuit in FIG. 22 takes the 2T1C structure as an example, and in other alternatives, it may also be a 3T1C structure, a 6T1C structure, a 7T1C structure, and so on.
  • FIG. 23 is a schematic circuit diagram of a passive driving method of the first OLED sub-pixels in two columns of the transparent OLED substrate.
  • each of the first OLED sub-pixels in the first column having the same color corresponds to the same data signal; each of the OLED pixel units in the second column have the same color
  • the first OLED sub-pixel corresponds to the same another data signal, so that the first column of the first OLED sub-pixels of the same color emit light of the same brightness at the same time, and the second column of the first OLED sub-pixels of the same color emit light of the same brightness at the same time.
  • each first OLED sub-pixel in the first column corresponds to one data signal; each first OLED sub-pixel in the second column corresponds to one data signal, so as to separately control the light emission of each sub-pixel.
  • FIG. 24 is a schematic circuit diagram of an active driving method of the first OLED sub-pixels in two columns of the transparent OLED substrate.
  • each first OLED same-color sub-pixel in each OLED pixel unit in the first column corresponds to the drain of a driving transistor of a pixel driving circuit; each first in each OLED pixel unit in the second column
  • the OLED sub-pixels of the same color correspond to the drain of the driving transistor of another pixel driving circuit, so that the sub-pixels of the same color in the first column are controlled together, and the sub-pixels of the same color in the second column are controlled together.
  • each first OLED sub-pixel in the first column corresponds to the drain of the driving transistor of one pixel driving circuit; each first OLED sub-pixel in the second column corresponds to the drain of the driving transistor of one pixel driving circuit The light emission of each sub-pixel is controlled.
  • the pixel driving circuit in FIG. 24 may also include a 3T1C structure, a 6T1C structure, and a 7T1C structure.
  • the shapes of the light-transmitting OLED substrates 11, 12, 13, 14, 15 may be drop-shaped, rectangular, bang-shaped, circular, or semi-circular.
  • An encapsulation layer may be provided above the light-transmitting OLED substrates 11, 12, 13, 14, 15 to form a display panel.
  • the display panel can also be provided with a touch layer to be used as a touch panel.
  • the display panel can also be integrated and assembled with other components as a semi-finished product to form a display device such as a mobile phone, a tablet computer, or a car display screen.
  • a light sensor is correspondingly disposed below the light-transmitting OLED substrates 11, 12, 13, 14, and 15, and the light sensor includes one or a combination of a camera, an iris recognition sensor, and a fingerprint recognition sensor.
  • FIG. 25 is a top view of the OLED substrate in the first embodiment of the present application.
  • an OLED substrate 1 includes a first OLED substrate 11 and a second OLED substrate 21;
  • the first OLED substrate 11 includes the light-transmitting OLED substrate in the above embodiment;
  • the second OLED substrate 21 includes a non-light-transmitting substrate, and the first OLED substrate 11 and the second OLED substrate 21 share a substrate 110 (refer to FIG. 2 and FIG. 26).
  • the first OLED substrate 11 may further include the light-transmitting OLED substrates 12, 13, 14, and 15 in any of the foregoing embodiments.
  • the second OLED substrate 21 surrounds or semi-encloses the first OLED substrate 11.
  • 26 is a cross-sectional view of the second OLED substrate in FIG. 25.
  • the second OLED substrate 21 includes a substrate 110, a third electrode layer 211 on the substrate 110, a light emitting structure layer 212 on the third electrode layer 211, and a third light emitting structure layer 212 on the light emitting structure layer 212.
  • the third electrode layer 211 has light reflection performance;
  • the third electrode layer 211 includes a plurality of third electrodes 2111,
  • the light emitting structure layer 212 includes a plurality of light emitting structures 2121 of different colors, and each third electrode 2111 is provided with a light emitting structure 2121; in the first direction Y and/or the second direction X, the light-emitting structures 2121 of different colors are alternately distributed according to the same law;
  • the fourth electrode 213 is a surface electrode
  • a third electrode 2111, a light emitting structure 2121 on the third electrode 2111, and a fourth electrode 213 corresponding to the light emitting structure 2121 form a second OLED sub-pixel 21a.
  • the light-emitting structure 2121 on the third electrode 2111 is defined by the pixel definition layer 214 in size and position.
  • the pixel definition layer 214 may also be omitted.
  • the first OLED substrate 11 and the second OLED substrate 21 are manufactured separately, and then assembled together. In another alternative, both are fabricated on the same substrate 110 at the same time.
  • the third electrode layer 211 and the first electrode layer 111 may be on the same layer, and/or the fourth electrode 213 and the second electrode 113 may be on the same layer; or the light emitting structure 1121 on the first electrode layer 111
  • the light emitting structure 2121 on the third electrode layer 211 is formed by vapor deposition in the same process.
  • both of them can be vapor-deposited at one time using the same mask in the vapor deposition process, or different masks can be used
  • the film plate is divided into two or two mask plates together to be evaporated once.
  • the driving method of the second OLED sub-pixel 21a is active, that is, the second OLED substrate 21 is an AMOLED.
  • the pixel driving circuit corresponding to the first OLED substrate 11 may be located in the border area on the second OLED substrate 21 or the second OLED substrate 21 and the first OLED The transition area between the substrates 11. In short, removing the pixel driving circuit from the display area of the first OLED substrate 11 can improve the light transmittance and reduce the diffraction.
  • the second electrode 113 and the fourth electrode 213 are connected to form an integral surface electrode. Compared with the structure in which the two surface electrodes are disconnected, on the one hand, the ground terminal and the voltage terminal can be saved, and on the other hand, the structure is simple.
  • the second electrode 113 is a single-layer structure or a stacked structure; when it is a single-layer structure, the second electrode 113 is a single-layer metal layer, or a single-layer metal mixture layer, or a single-layer transparent metal oxide When it is a laminated structure, the second electrode 113 is a laminate of a transparent metal oxide layer and a metal layer, or the second electrode 113 is a laminate of a transparent metal oxide layer and a metal mixture layer.
  • the material forming the second electrode is doped with a metal oxide, and the thickness of the second electrode 113 is greater than or equal to 100 angstroms, and less than or equal to 500 angstroms, the thickness of the second electrode 113 is continuous as a whole, and The transparency of the second electrode 113 is greater than 40%.
  • the thickness of the second electrode 113 is greater than or equal to 100 angstroms and less than or equal to 200 angstroms, the thickness of the second electrode 113 is continuous as a whole, and the thickness of the second electrode 113 Transparency is greater than 40%.
  • the thickness of the second electrode 113 is greater than or equal to 50 angstroms and less than or equal to 200 angstroms, the thickness of the second electrode 113 is continuous as a whole, and the thickness of the second electrode 113 Transparency is greater than 50%.
  • the material forming the second electrode is doped with a metal oxide.
  • the thickness of the second electrode 113 is greater than or equal to 50 angstroms and less than or equal to 200 angstroms, the thickness of the second electrode 113 is continuous as a whole, and the second electrode 113 The transparency is greater than 60%.
  • the single-layer metal layer material is Al, Ag, etc.
  • the single-layer metal mixture layer material is MgAg or an Al-doped metal mixed material, etc.
  • the transparent metal oxide is ITO, IZO, or the like.
  • the materials of the second electrode 113 and the fourth electrode 213 are the same or different.
  • the materials of the second electrode 113 and the fourth electrode 213 are the same, and the second electrode 113 and the fourth electrode 213 have a single-layer structure, and the thickness of the second electrode 113 is smaller than the thickness of the fourth electrode 213.
  • the materials of the second electrode 113 and the fourth electrode 213 are a single metal layer, a single metal mixture layer, or a single transparent metal oxide layer.
  • the material of the second electrode 113 and the fourth electrode 213 are the same, and the second electrode 113 is a single-layer structure, the fourth electrode 213 is a laminated structure, and the thickness of the second electrode 113 is smaller than that of the fourth electrode 213 In thickness, the fourth electrode 213 includes a second electrode material layer formed simultaneously with the second electrode 113, and a fourth electrode material layer formed above or below the second electrode material layer.
  • the thickness of the fourth electrode material layer is greater than the thickness of the second electrode material layer.
  • the second electrode 113 is a single metal layer, or a single metal mixture layer, or a single transparent metal oxide layer, or a stack of a transparent metal oxide layer and a metal layer, or a transparent metal oxide A stack of layers and a metal mixture layer;
  • the fourth electrode 213 is a single-layer metal layer, or a single-layer metal mixture layer, or a stack of metal mixture layers, or a stack of metal layers and metal mixture layers;
  • the material of the second electrode 113 is Al, Ag, MgAg, Al-doped metal mixed material, ITO or IZO, etc.
  • the material of the fourth electrode 213 is Al, Ag, MgAg, Al-doped metal Mixed materials, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种显示面板、透光OLED基板及OLED基板,其中,该透光OLED基板包括:衬底,位于所述衬底上的第一电极层,位于第一电极层上的发光结构层,位于所述发光结构层上的第二电极。所述第一电极层包括沿第一方向排列的多个电极组,各个所述电极组包括至少一个第一电极,各个第一电极沿第二方向延伸,第二方向与第一方向垂直;当向各个所述第一电极与所述第二电极之间施加驱动电压时,透光OLED基板被配置为执行显示功能;当各个所述第一电极与所述第二电极之间未施加驱动电压时,所述透光OLED基板被配置为执行透光功能。

Description

显示面板、透光OLED基板及OLED基板 技术领域
本申请涉及OLED显示设备技术领域,尤其涉及一种显示面板、透光OLED基板和OLED基板。
背景技术
随着显示装置的快速发展,用户对屏幕占比的要求越来越高,由于屏幕上方需要安装摄像头、传感器、听筒等元件,因此屏幕上方通常会预留一部分区域用于安装上述元件,例如苹果手机iphoneX的前刘海区域,影响了屏幕的整体一致性,全面屏显示受到业界越来越多的关注。
发明内容
本发明的发明目的是提供一种显示面板、透光OLED基板及OLED基板,改变透光OLED基板的结构,解决衍射问题,提高透光OLED基板的成像质量。
为实现上述目的,本申请的第一方面提供一种透光OLED基板,包括:衬底、位于所述衬底上的第一电极层,其中,所述第一电极层包括沿第一方向排列的多个电极组,各个所述电极组包括至少一个第一电极,各个所述第一电极沿第二方向延伸,所述第二方向与所述第一方向垂直;位于所述第一电极层上的发光结构层,其中,所述发光结构层包括n种颜色的发光结构,n≥1;针对各个所述第一电极,所述第一电极上设有至少一个所述发光结构,设置在同一所述第一电极上的发光结构为同种颜色;和位于所述发光结构层上的第二电极;其中,当向各个所述第一电极与所述第二电极之间施加驱动电压时,所述透光OLED基板被配置为执行显示功能;当各个所述第一电极与所述第二电极之间未施加驱动电压时,所述透光OLED基板被配置为执行透光功能。
本申请的有益效果在于:
在全面屏中,屏下摄像头的成像效果变差的原因在于:对应透光显示区的子像素包含多个图形化的膜层,光线通过该多个图形化的膜层时,会在不同图形膜层的交界处出现干涉及衍射现象。基于上述分析,本申请通过将透光OLED基板的第一电极层设置为包括沿第一方向排列的多个电极组,一个电极组包括至少一个第一电极,同一个电极组中的第一电极都沿第二方向延伸,所述第二方向与所述第一方向垂直;所述第一电极在第二方向的尺寸远大于在第一方向的尺寸;相对于第一电极的第一方向尺寸与第二方向尺寸差别不大的结构,可以减少图形膜层的交界、降低复杂度,改善透光时的干涉及衍射问题。如此,透光OLED基板需要执行显示功能时,在各个所述第一电极与第二电极之间施加驱动电压,透光OLED基板被配置为执行显示功能,与非透光OLED基板一并显示,整个OLED基板形成全面屏;透光OLED基板需要执行透光功能时,各个所述第一电极与第二电极之间不施加驱动电压、不进行驱动。由于解决了干涉及衍射问题,因而透光OLED基板下的感光元件成像效果佳。
附图说明
图1是本申请第一实施例中的透光OLED基板的俯视图;
图2是沿着图1中的AA直线的剖视图;
图3是透光OLED基板两行各第一OLED同色子像素的一种被动驱动方式的电路示意图;
图4是透光OLED基板两行各第一OLED同色子像素的另一种被动驱动方式的电路示意图;
图5是透光OLED基板两行各第一OLED同色子像素的一种主动驱动方式的电路示意图;
图6是一种GIP电路结构及时序图;
图7是透光OLED基板两行各第一OLED同色子像素的另一种主动驱动方式的电路示意图;
图8是具有对驱动晶体管的阈值电压进行补偿功能的一种像素驱动电路的电路图以及时序图;
图9是本申请第二实施例中的透光OLED基板的俯视图;
图10、图11与图12分别是本申请第三实施例中的透光OLED基板的俯视图;
图13是本申请第四实施例中的透光OLED基板的俯视图;
图14是透光OLED基板两行各第一OLED子像素的一种被动驱动方式的电路示意图;
图15是透光OLED基板两行各第一OLED子像素的另一种被动驱动方式的电路示意图;
图16是透光OLED基板两行各第一OLED子像素的再一种被动驱动方式的电路示意图;
图17是透光OLED基板两行各第一OLED子像素的一种主动驱动方式的电路示意图;
图18是本申请第五实施例中的透光OLED基板的俯视图;
图19是透光OLED基板两列各第一OLED同色子像素的一种被动驱动方式的电路示意图;
图20是透光OLED基板两列各第一OLED同色子像素的另一种被动驱动方式的电路示意图;
图21是透光OLED基板两列各第一OLED同色子像素的一种主动驱动方式的电路示意图;
图22是透光OLED基板两列各第一OLED同色子像素的另一种主动驱动方式的电 路示意图;
图23是透光OLED基板两列各第一OLED子像素的一种被动驱动方式的电路示意图;
图24是透光OLED基板两列各第一OLED子像素的一种主动驱动方式的电路示意图;
图25是本申请第一实施例中的OLED基板的俯视图;
图26是图25中的第二OLED基板的一个剖视图。
为方便理解本申请,以下列出本申请中出现的附图标记。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的实施例做详细的说明。
图1是本申请第一实施例中的透光OLED(Organic Light-Emitting Diode)基板的俯视图;图2是沿着图1中的AA直线的剖视图。
参照图1与图2所示,该透光OLED基板11包括:衬底110、位于衬底110上的第一电极层111、位于第一电极层111上的发光结构层112、位于发光结构层112上的第二电极113。
其中,第一电极层111包括沿第一方向Y排列的多个电极组1111,一个电极组1111包括两个第一电极1111a、1111b,同一个电极组1111中的第一电极1111a、1111b都沿着第二方向X延伸,即,在第二方向X的尺寸远大于在第一方向Y的尺寸,第二方向X与第一方向Y垂直。第二电极113为面电极。
发光结构层112包括n种颜色的发光结构1121,n≥1,一个第一电极1111a上设有一个发光结构1121,同一第一电极1111a的发光结构1121为同种颜色;当向各个第一电极1111a、1111b与第二电极113之间施加驱动电压时,透光OLED基板11执行显示功能;当各个第一电极1111a、1111b与第二电极113之间未施加驱动电压时,透光OLED基板11执行透光功能。
在具体实施过程中,第一电极1111a在第二方向X的尺寸远大于在第一方向Y的尺寸中的“远大于”优选:大于10:1。其它可选方案中,也可以大于20:1、50:1、100:1,甚至大于400:1。
参照图1所示,本实施例中,第一方向Y为行方向,第二方向X为列方向。
此外,本实施例中,一个第一电极1111a/1111b上的发光结构1121布满整个第一电极1111a/1111b,即发光结构1121自第一电极1111a/1111b的顶端延伸至底端。其它可选方案中,发光结构1121也可以仅分布在整个第一电极1111a/1111b的部分区域。参照图2所示,第一电极1111a/1111b上的发光结构1121的大小及位置由像素定义层114限定。其它可选方案中,也可以省略像素定义层114,由蒸镀用掩膜版上的图案来限定发光结构1121的大小及位置。
将第一电极1111a/1111b和/或发光结构1121设置为自顶端延伸至中部、自中部延伸至底端的若干列,相对于阵列式分布的若干行列单元,可以减少图形交界的数量,改善透光OLED基板11透光时的干涉和衍射问题。
一个第一电极1111a/1111b、该第一电极1111a/1111b上的发光结构1121以及与该第一电极1111a/1111b对应的部分第二电极113形成一个第一OLED子像素11a。
本实施例中,n=1,即所有第一OLED子像素11a为同色子像素。可选方案中,两行第一OLED子像素11a可以都为红色子像素、绿色子像素、蓝色子像素、黄色子像素、白色子像素等。换言之,透光OLED基板11执行显示功能时,该区域为单色发光。
关于第一OLED子像素11a的发光驱动方式,可以为主动式,也可以为被动式。
被动驱动式OLED(Passive Matrix OLED,PMOLED),也称无源驱动式OLED,单纯地以阴极(第二电极)、阳极(第一电极)构成矩阵状,以扫描方式点亮阵列中行列交叉点的像素,每个子像素都是操作在短脉冲模式下,为瞬间高亮度发光。换言之,每个OLED子像素的寻址直接受控于外部电路。该外部电路可以受控于显示驱动集成芯片(display driver integrated chip,DDIC)。
主动驱动式OLED(Active Matrix OLED,AMOLED),也称有源驱动式OLED,包括薄膜晶体管(Thin-film transistor,TFT)阵列,该薄膜晶体管阵列中的每一薄膜晶体管包含存储电容。AMOLED是采用独立的薄膜晶体管控制每个像素发光,且每个子像素可以连续发光。换言之,每个OLED子像素的寻址直接受控于薄膜晶体管阵列。薄膜晶体管阵列的行选择信号可以来源于GIP(Gate In Panel)电路、列选择信号可以来源于显示驱动集成芯片(DDIC)。
图3是透光OLED基板两行各第一OLED同色子像素的一种被动驱动方式的电路示意图。参照图3所示,第一行中的各第一OLED子像素11a的第一电极连接相同的一个数据信号,第二行中的各第一OLED子像素11a的第一电极连接相同的另一个数据信号;所有第一OLED子像素11a的第二电极接地。该两个数据信号通道携带的颜色数据与对应的第一OLED子像素11a的颜色一致。该数据信号由外部电路提供。由于该透光OLED基板具有两行第一OLED子像素11a,因而需向第一行施加一个驱动电流、第二行施加另一个驱动电流,该两个驱动电流可以来源于显示驱动集成芯片(DDIC)的两个数据信号通道(数据线)。
图4是透光OLED基板两行各第一OLED同色子像素的另一种被动驱动方式的电路示意图。参照图4所示,每行中的各第一OLED子像素11a的第一电极连接不同的数据信号,所有第一OLED子像素11a的第二电极接地。该各个数据信号通道携带的颜色数据与对应的第一OLED子像素11a的颜色一致。该各个数据信号也由外部电路提供。由于该透光OLED基板具有两行第一OLED子像素11a,因而需向第一行、第二行中各第一OLED子像素11a施加驱动电流,上述各驱动电流可以来源于显示驱动集成芯片(DDIC)的一个数据信号通道(数据线),所有驱动电流可以来源于显示驱动集成芯片(DDIC)的若干个数据信号通道(数据线)。
图3与图4的实施例中,第一行中的各第一OLED子像素11a的第一电极的走线 设置在透光OLED基板11上边的边框区以及侧边的边框区,即第一电极的走线没有设置在第一OLED子像素11a所在的区域。类似地,第二行中的各第一OLED子像素11a的第一电极的走线设置在透光OLED基板11下边的边框区以及侧边的边框区。相对于第一电极的走线设置在第一OLED子像素11a所在区域的方案,将第一电极的走线设置在边框区的方案能进一步减少第一OLED子像素11a所在区域的图形膜层,进一步降低透光模式下的干涉和衍射问题。
对比图3实施例与图4实施例:前者数据信号的通道数目较少,连接走线数目也较少、占用面积也较少。
图5是透光OLED基板两行第一OLED同色子像素的一种主动驱动方式的电路示意图。一个像素驱动电路包括一个开关晶体管X1、一个驱动晶体管X2以及一个存储电容C。参照图5所示,第一行中的各第一OLED子像素11a的第一电极连接至相同的一个像素驱动电路中的驱动晶体管X2的漏极,第二行中的各第一OLED子像素11a的第一电极连接至相同的另一个像素驱动电路中的驱动晶体管X2的漏极;所有第一OLED子像素11a的第二电极接地;第一行像素驱动电路中的驱动晶体管X2的栅极对应一个数据信号,该数据信号通过一个开关晶体管X1与驱动晶体管X2的栅极连接,第二行像素驱动电路中的驱动晶体管X2的栅极对应另一个数据信号,该数据信号通过另一个开关晶体管X1与驱动晶体管X2的栅极连接,该两个驱动晶体管的源极对应一个电源电压(Voltage Drain Drain,VDD)。
第一行的像素驱动电路可以设置在透光OLED基板11上方的边框区。第二行的像素驱动电路可以设置在透光OLED基板11下方的边框区。
该上方的像素驱动电路的数据线可以接入显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);该下方的像素驱动电路的数据线可以接入显示驱动集成芯片(DDIC)的另一个数据信号通道(数据线);所述上方及下方的像素驱动电路的扫描线可以接入GIP电路的一个扫描信号通道。
图6是一种GIP电路结构及时序图。参照图6所示,一级GIP电路包括第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4和第五晶体管T5。第一时钟信号线XCK连接第一晶体管T1的栅极和第三晶体管T3的栅极,第二时钟信号线CK连接第二晶体管T2的源极。第一栅极线V gh连接第四晶体管T4的源极和第五晶体管T5的源极,第二栅极线V gl连接第三晶体管T3的源极。GIP电路结构中可以包括多级GIP电路,第n级GIP电路的第一晶体管T1的源极连接输入信号线G n,为第n级GIP电路输入信号。第n级GIP电路的第二晶体管T2的漏极连接第n级GIP电路的输出信号线,并且,第n级GIP电路的输出信号作为第n+1级GIP电路的输入信号G n+1
参照图6中的GIP电路驱动的波形图。第一栅极线V gh为高电平,第二栅极线V gl为低电平,第一时钟信号线XCK和第二时钟信号线CK分别输出高低电平相反的数字信号。在第一时钟信号线XCK跳变为低电平时,第1级GIP电路的扫描线G 1输入一低电平,在第二时钟信号线CK跳变为低电平时,第1级GIP电路输出一低电平信号,作为第2级GIP电路的输入信号,即,第2级GIP电路的扫描线G 2输入一低电平,并以此类推,第n级电路的输出信号作为第n+1级电路的输入信号。
图7是透光OLED基板两行各第一OLED子像素的另一种主动驱动方式的电路示意图。参照图7所示,第一行中的各第一OLED子像素11a的第一电极连接至不同的像素驱动电路中的驱动晶体管X2的漏极,第二行中的各第一OLED子像素11a的第一电极连接至不同的像素驱动电路中的驱动晶体管X2的漏极;所有第一OLED子像素11a的第二电极接地;每一像素驱动电路中的驱动晶体管的栅极对应一个数据信号,该数据信号通过一个开关晶体管与驱动晶体管的栅极连接,各个像素驱动电路中的驱动晶体管的源极对应同一电源电压。
图7中,一个像素驱动电路包括一晶体管阵列,该晶体管阵列中的每个晶体管单元包括:一个开关晶体管X1、一个驱动晶体管X2以及一个存储电容C。第一行中的各第一OLED子像素11a的第一电极连接的像素驱动电路可以设置在透光OLED基板11上方的边框区。第二行中的各第一OLED子像素11a的第一电极连接的像素驱动电路可以设置在透光OLED基板11下方的边框区。
设置在上方的各个像素驱动电路中的每个晶体管单元中的数据线可以接入显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);设置在下方的各个像素驱动电路中的每个晶体管单元中的数据线可以接入显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);所述上方及下方的各个像素驱动电路中的各晶体管单元中的各个扫描线可以接入GIP电路的一个扫描信号通道。换言之,各晶体管单元中的数据线占据显示驱动集成芯片的一个数据信号通道,以及各晶体管单元中的扫描线占据GIP电路的一个扫描信号通道。
图8是具有对驱动晶体管的阈值电压进行补偿功能的一种像素驱动电路的电路图以及时序图。在具体实施过程中,像素驱动电路除了上述的2T1C结构(包括两个晶体管及一个存储电容的结构),还可以为7T1C、6T1C等对驱动晶体管的阈值电压进行补偿的像素驱动电路。图8所示的7T1C像素驱动电路分为三个工作阶段:复位阶段、补偿阶段、发光阶段。在补偿阶段把驱动晶体管的阈值电压Vth先存在它的栅源电压Vgs内,在最后发光阶段,把Vgs-Vth转换为电流,因为Vgs已经包含了Vth,因而在转化成电流时就把Vth的影响抵消了,从而实现了电流的一致性。图8所示的像素驱动电路可以提高第一OLED子像素11a的寿命以及显示均匀性。
针对第一行中的各第一OLED子像素11a(也被称为第一OLED像素行)的第一电极连接至相同的一个像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的一个数据信号,源极对应一电源电压;第二行中的各第一OLED子像素11a(也被称为第二OLED像素行)的第一电极连接至相同的另一个像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的另一个数据信号,源极对应一电源电压的情况(参照图5所示):上述第一行OLED像素11a的像素驱动电路的数据线信号V DATA可以来自显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);第二行OLED像素11a的像素驱动电路的数据线信号V DATA可以来自显示驱动集成芯片(DDIC)的另一个数据信号通道(数据线);第一行与第二行OLED像素11a的各像素驱动电路的扫描线G n-1、G n的信号可以来自GIP电路的两个扫描信号通道,各像素驱动电路的发射信号(Emitting signal,EM)可以来自GIP电路的一个发射信号通道,各像素驱动电路的初始信号(Initiating signal,INIT)可以来自显示驱动集成芯片。
针对第一行、第二行中的各第一OLED子像素11a的第一电极连接至不同的像素驱动电路中的驱动晶体管的漏极,每一像素驱动电路中的驱动晶体管的栅极对应显示驱动芯片的一个数据信号,各驱动晶体管的源极对应同一或不同电源电压的情况(参照图7所示):上述第一行、第二行中的各第一OLED子像素11a的像素驱动电路的数据线信号V DATA可以来自显示驱动集成芯片(DDIC)的一个数据信号通道(数据线),即第一行、第二行多个第一OLED子像素11a的像素驱动电路的数据线信号V DATA可以来自显示驱动集成芯片(DDIC)的多个数据信号通道(数据线);上述第一行与第二行的第一OLED像素11a的像素驱动电路的扫描线G n-1、G n的信号可以来自GIP电路的两个扫描信号通道,发射信号EM可以来自GIP电路的一个发射信号通道,初始信号INIT可以来自显示驱动集成芯片。
对比图5实施例与图7实施例:前者数据信号的通道数目较少,连接走线数目也较少、占用面积较少。
图9是本申请第二实施例中的透光OLED基板的俯视图。图9所示的透光OLED基板12与图1所示的透光OLED基板11大致相同,区别在于:一个第一电极1111a/1111b上设有多个间隔的发光结构1121。各个间隔的发光结构1121由像素定义层114分隔开或间隔的发光结构1121之间无像素定义层114。
透光OLED基板12能提高透光OLED基板12上的第一OLED子像素11a的像素密度。除此之外,第一电极1111a上不论设有一个,还是多个发光结构1121,不影响透光OLED基板12上的第一OLED子像素11a的发光驱动。
图10、图11与图12分别是本申请第三实施例中的透光OLED基板的俯视图。图10所示的透光OLED基板13与图1所示的透光OLED基板11大致相同,区别在于:一个电极组1111包括一个第一电极1111a。
图10所示的结构相当于在图1所示的结构的基础上:去除第二行的第一电极1111b,并将第一行的第一电极1111a沿X方向延伸至透光OLED基板13的底端;或去除第一行的第一电极1111a,并将第二行的第一电极1111b沿X方向延伸至透光OLED基板13的顶端。如此,本实施例中的各第一OLED子像素11a的结构与图1以及图9实施例中的第一行中的各第一OLED子像素11a的结构或第二行中的各第一OLED子像素11a的结构大致相同。
第一电极1111a在衬底110上的投影可以包括一个图形单元或者两个以上的图形单元。图10中图形单元为矩形,图11中图形单元为葫芦形。其它可选方案中,图形单元还可以为椭圆形、哑铃形、或圆形等。上述图案可以使得衍射图案条纹相互叠加相消,从而改善衍射问题。
本实施例中的各第一OLED子像素11a的驱动方法对应于图1实施例中第一行中的各第一OLED子像素11a的驱动方法或对应于第二行中的各第一OLED子像素11a的驱动方法。本申请在此不再赘述。
图12中,各第一OLED子像素11a可以在透光OLED基板13的中部某一段内沿X方向上下延伸、或自透光OLED基板13的顶端沿X方向向下延伸至中部、或自中部 沿X方向延伸至下端。当透光OLED基板13包括两行、多列第一OLED子像素11a时,第一行中的各第一OLED子像素11a可以在透光OLED基板13沿X方向上下延伸,具体为:靠上区段的中部某一段内沿上下方向延伸、或自OLED基板13的顶端向下延伸至上中部、或自上中部延伸至中部;第二行中的各第一OLED子像素11a可以在透光OLED基板13沿X方向上下延伸,具体为靠下区段的中部某一段内沿上下方向延伸、或自OLED基板13的底端向上延伸至下中部、或自下中部延伸至中部。不同于前述方案中,通过在第一电极上施加不同大小的驱动电流,和/或对不同颜色的子像素施加驱动电流以实现不同的图案,本实施例中各第一OLED子像素可以结合子像素的不同图案形成各种图案。
图13是本申请第四实施例中的透光OLED基板的俯视图。图13所示的透光OLED基板14与图1所示的透光OLED基板11大致相同,区别在于:n=3。
换言之,同一行不同列的第一电极1111a/1111b上的发光结构1121的颜色按同一规律交替分布,相邻的、颜色互不相同的三列第一OLED子像素11b、11c、11d形成一个OLED像素单元。在OLED像素单元中,第一OLED子像素11b、11c、11d可以分别为红、绿、蓝子像素。其它可选方案中,第一OLED子像素11b、11c、11d可以分别为其它颜色的子像素。其它可选方案中,相邻的、颜色互不相同的四列第一OLED子像素也可以形成一个OLED像素单元。
各第一OLED子像素11b、11c、11d的具体结构请参照前述实施例中第一OLED子像素11a的具体结构。在图1-图12所示实施例中,由于各第一OLED子像素11a为同色子像素,一个第一OLED子像素11a可以被称为一个OLED像素单元。以下介绍多个颜色子像素的驱动方式。
图14是透光OLED基板两行各第一OLED子像素的一种被动驱动方式的电路示意图。参照图14所示,第一行各OLED像素单元中的各第一OLED同色子像素11b、11c、11d的第一电极连接至一个数据信号,第二行各OLED像素单元中的各第一OLED同色子像素11b、11c、11d的第一电极连接至另一个数据信号;所有第一OLED子像素11b、11c、11d的第二电极接地。换言之,所有红色子像素的第一电极连接至同一R数据信号;所有绿色子像素的第一电极连接至同一G数据信号;所有蓝色子像素的第一电极连接至同一B数据信号。该R、G、B数据信号由外部电路提供。图14中,由于该透光OLED基板具有两行第一OLED子像素,因而需向第一行各第一OLED同色子像素施加一个驱动电流,向第二行各第一OLED同色子像素施加另一个驱动电流;该第一行中的各第一OLED同色子像素所施加的驱动电流可以来源于显示驱动集成芯片(DDIC)的三个数据信号通道(数据线),该第二行中的各第一OLED同色子像素所施加的驱动电流可以来源于显示驱动集成芯片(DDIC)的另三个数据信号通道。简言之,对于各个OLED像素行,在该OLED像素行中,各个第一OLED同色子像素的第一电极连接至同一数据信号。
图15是透光OLED基板两行各第一OLED子像素的另一种被动驱动方式的电路示意图。参照图15所示,第一行各OLED像素单元中的各第一OLED同色子像素11b、11c、11d的第二电极接地、第一电极连接一个开关晶体管的漏极,第一行各OLED像 素单元中的各第一OLED同色子像素对应的开关晶体管的源极连接一个数据信号,栅极连接一个开关信号;第二行各OLED像素单元中的各第一OLED同色子像素对应的开关晶体管的源极连接另一个数据信号,栅极连接至另一个开关信号。所述开关信号除了能统一控制一行所有第一OLED同色子像素执行显示功能或透光功能外,在开关信号为“关”时,还能控制一行所有第一OLED同色子像素执行透光功能,防止相邻其它颜色子像素执行显示功能时串扰。
其它可选方案中,每行各OLED像素单元中的各第一OLED同色子像素的第一电极连接一个开关晶体管的漏极,第一行各OLED像素单元中的各第一OLED同色子像素对应的开关晶体管的源极连接一个数据信号,栅极连接不同的开关信号;第二行各OLED像素单元中的各第一OLED同色子像素对应的开关晶体管的源极连接另一个数据信号,栅极连接不同的开关信号。上述结构使得各第一OLED同色子像素可以独立执行显示功能或透光功能。
图16是透光OLED基板两行各第一OLED子像素的再一种被动驱动方式的电路示意图。为了使每行各第一OLED同色子像素可以独立执行显示功能或透光功能,参照图16所示,第一行、第二行各OLED像素单元中的各第一OLED子像素的第一电极也可以连接至不同的数据信号。该数据信号也由外部电路提供。由于该透光OLED基板具有两行第一OLED子像素,因而需向各第一OLED子像素施加驱动电流。各第一OLED子像素的驱动电流可以来源于显示驱动集成芯片(DDIC)的一个数据信号通道(数据线),所有第一OLED子像素的驱动电流来源于显示驱动集成芯片(DDIC)的若干个数据信号通道(数据线)。
图17是透光OLED基板两行各第一OLED子像素的一种主动驱动方式的电路示意图。参照图17所示,各第一OLED子像素的第二电极接地,第一行各OLED像素单元中的各第一OLED同色子像素的第一电极分别连接至一个像素驱动电路中的驱动晶体管漏极,该驱动晶体管的栅极对应一个数据信号,该数据信号通过一个开关晶体管与驱动晶体管的栅极连接,驱动晶体管的源极对应一个电源电压VDD;第二行各OLED像素单元中的各第一OLED同色子像素的第一电极分别连接至另一个像素驱动电路中的驱动晶体管漏极,驱动晶体管的栅极对应一个数据信号,该数据信号通过一个开关晶体管连接到驱动晶体管的栅极,驱动晶体管的源极对应一个电源电压。
图17中,像素驱动电路可以包括晶体管阵列。该晶体管阵列包括多个晶体管单元。每一个晶体管单元可以包括:一个开关晶体管X1、一个驱动晶体管X2以及一个存储电容C。每一晶体管单元中的数据线可以接入显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);第一行、第二行各OLED像素单元中的各第一OLED同色子像素对应的各个晶体管单元中的各扫描线可以接入GIP电路的一个扫描信号通道。换言之,第一行各OLED像素单元占据显示驱动集成芯片的三个数据信号通道(在一个OLED像素单元包含三种第一OLED子像素的情况下),第二行各OLED像素单元占据显示驱动集成芯片的另三个数据信号通道。
其它可选方案中,各OLED像素单元中的各第一OLED子像素的第一电极连接至不同的像素驱动电路中的驱动晶体管漏极,每一驱动晶体管的栅极对应一个数据信号, 该数据信号通过一个开关晶体管与驱动晶体管的栅极连接,驱动晶体管的源极对应一个电源电压。像素驱动电路可以包括晶体管阵列。晶体管阵列中的每一晶体管单元可以包括:一个开关晶体管X1、一个驱动晶体管X2以及一个存储电容C,也被称为2T1C结构。各个晶体管单元中的数据线可以接入显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);各个晶体管单元中的各扫描线可以接入GIP电路的一个扫描信号通道。换言之,各第一OLED子像素占据显示驱动集成芯片的一个数据信号通道,以及GIP电路的一个扫描信号通道。
在具体实施过程中,像素驱动电路,除了上述的2T1C结构,还可以为6T1C结构、7T1C结构等。上述各像素驱动电路的数据线信号V DATA可以来自显示驱动集成芯片(DDIC)的一个数据信号通道(数据线);扫描线G n-1、G n的信号可以来自GIP电路的两个扫描信号通道,发射信号EM可以来自GIP电路的一个发射信号通道,初始信号INIT可以来自显示驱动集成芯片。
图18是本申请第五实施例中的透光OLED基板的俯视图。参照图18所示,本实施例中的透光OLED基板15与图1至图17实施例中的透光OLED基板11、12、13、14的结构相比,区别在于:第一方向Y为列方向,第二方向X为行方向。换言之,第一电极沿Y方向延伸。
以下介绍发光驱动的区别。
图19是透光OLED基板两列各第一OLED同色子像素的一种被动驱动方式的电路示意图。参照图19所示,第一列中的各第一OLED子像素11a的第一电极连接一个数据信号,第二列中的各第一OLED子像素11a的第一电极连接另一个数据信号;所有第一OLED子像素11a的第二电极接地。该两个数据信号通道携带的颜色数据与对应的第一OLED子像素11a的颜色一致。如图19所示,第一列中的各第一OLED子像素11a对应的数据信号的引线可以走在左边的边框区,第二列中的各第一OLED子像素11a对应的数据信号的引线可以走在右边的边框区。
图20是透光OLED基板两列各第一OLED同色子像素的另一种被动驱动方式的电路示意图。参照图20所示,第一列、第二列中的各第一OLED子像素11a的第一电极连接同一个数据信号。
图21是透光OLED基板两列各第一OLED同色子像素11a的一种主动驱动方式的电路示意图。参照图21所示,第一列中的各第一OLED子像素11a的第一电极连接一个像素驱动电路的驱动晶体管的漏极,该驱动晶体管的栅极连接一个数据信号,该数据信号通过一个开关晶体管与驱动晶体管的栅极连接,驱动晶体管的源极对应一个电源电压;第二列中的各第一OLED子像素11a的第一电极连接另一个像素驱动电路的驱动晶体管的漏极,该驱动晶体管的栅极连接另一个数据信号,该数据信号通过一个开关晶体管与驱动晶体管的栅极连接,驱动晶体管的源极对应一个电源电压;这两个像素驱动电路的扫描线连接GIP电路的同一扫描信号。
图21中的像素驱动电路以2T1C结构为例,其它可选方案中,也可以为3T1C结构、6T1C结构、7T1C结构等。
图22是透光OLED基板两列各第一OLED同色子像素的另一种主动驱动方式的电路示意图。参照图22所示,第一列、第二列中的各第一OLED子像素11a的第一电极连接一个像素驱动电路的驱动晶体管X2的漏极,该驱动晶体管X2的栅极连接一个数据信号,该数据信号通过一个开关晶体管X1与驱动晶体管X2的栅极连接,驱动晶体管X2的源极对应一个电源电压VDD;像素驱动电路的扫描线连接GIP电路的一个扫描信号。
图22中的像素驱动电路以2T1C结构为例,其它可选方案中,也可以为3T1C结构、6T1C结构、7T1C结构等。
图23是透光OLED基板两列各第一OLED子像素的一种被动驱动方式的电路示意图。参照图23所示,第一列中的各OLED像素单元中的各个具有相同颜色的第一OLED子像素对应相同的一个数据信号;第二列中的各OLED像素单元中的各个具有相同颜色的第一OLED子像素对应相同的另一个数据信号,以使第一列第一OLED同色子像素同时发同样亮度的光、第二列第一OLED同色子像素同时发同样亮度的光。其它实施方案中,第一列各第一OLED子像素对应一个数据信号;第二列各第一OLED子像素对应一个数据信号,以单独对每一子像素的发光进行亮暗控制。
图24是透光OLED基板两列各第一OLED子像素的一种主动驱动方式的电路示意图。参照图24所示,第一列中的各OLED像素单元中的各第一OLED同色子像素对应一个像素驱动电路的驱动晶体管的漏极;第二列中的各OLED像素单元中的各第一OLED同色子像素对应另一个像素驱动电路的驱动晶体管的漏极,以使第一列同色子像素一并控制、第二列同色子像素一并控制。其它实施方案中,第一列各第一OLED子像素对应一个像素驱动电路的驱动晶体管的漏极;第二列各第一OLED子像素对应一个像素驱动电路的驱动晶体管的漏极,以单独对每一子像素的发光进行控制。
其它可选方案中,图24中的像素驱动电路除了是2T1C结构,也可以包括3T1C结构、6T1C结构、7T1C结构等。
在具体实施过程中,透光OLED基板11、12、13、14、15的形状可以为水滴形、矩形、刘海形、圆形或半圆形等。
可以在透光OLED基板11、12、13、14、15上方设置封装层以形成显示面板。
显示面板除了作为显示器件外,还可以设置触控层,作为触控面板使用。显示面板也可以作为半成品与其它部件集成、装配在一起形成如手机、平板电脑、车载显示屏等的显示装置。
在显示装置中,在透光OLED基板11、12、13、14、15下方对应设置光传感器,光传感器包括:摄像头、虹膜识别传感器以及指纹识别传感器中的一种或组合。
图25是本申请第一实施例中的OLED基板的俯视图。
参照图25所示,一种OLED基板1包括第一OLED基板11及第二OLED基板21;
其中,第一OLED基板11包括上述实施例中的透光OLED基板;第二OLED基板21包括非透光基板,第一OLED基板11与第二OLED基板21共用衬底110(参照 图2、图26所示)。
其它可选方案中,第一OLED基板11还可以包括上述任一实施例中的透光OLED基板12、13、14、15。
参照图25所示,第二OLED基板21包围或半包围第一OLED基板11。
图26是图25中的第二OLED基板的一个剖视图。
参照图26所示,第二OLED基板21包括:衬底110、位于衬底110上的第三电极层211、位于第三电极层211上的发光结构层212、位于发光结构层212上的第四电极213;
其中,第三电极层211具有反光性能;第三电极层211包括多个第三电极2111,发光结构层212包括多个不同颜色的发光结构2121,每一第三电极2111上设有一个发光结构2121;在第一方向Y和/或第二方向X上,不同颜色的发光结构2121按同一规律交替分布;
第四电极213为面电极;
一个第三电极2111、第三电极2111上的发光结构2121以及与该发光结构2121对应的第四电极213形成一个第二OLED子像素21a。
图26中,第三电极2111上的发光结构2121由像素定义层214限定大小及位置,其它可选方案中,也可以省略像素定义层214。
一个可选方案中,第一OLED基板11与第二OLED基板21各自制作,之后组装在一起。另一个可选方案中,两者在同一衬底110上同时制作。
在具体制作过程中,第三电极层211与第一电极层111可以位于同一层、和/或第四电极213与第二电极113可以位于同一层;或第一电极层111上的发光结构1121与第三电极层211上的发光结构2121在同一工序中蒸镀形成。
可选地,对于第一电极层111上的发光结构1121与第三电极层211上的发光结构2121,两者在蒸镀工序中可以使用同一掩膜版一次蒸镀完成,也可以使用不同掩膜版分次或两个掩膜版组合在一起一次蒸镀完成。
在具体实施过程中,第二OLED子像素21a的驱动方式为主动式,即第二OLED基板21为AMOLED。
对于OLED基板1,第一OLED基板11通过主动驱动式执行显示功能时,第一OLED基板11对应的像素驱动电路可以位于第二OLED基板21上的边框区或第二OLED基板21与第一OLED基板11之间的过渡区。总之,将像素驱动电路从第一OLED基板11的显示区中移开,可以提高透光率及降低衍射。
一个可选方案中,第二电极113与第四电极213连接成一个整体的面电极。相对于两个面电极断开的结构,一方面可以节省接地端及电压端,另一方面结构简单。
一个可选方案中,第二电极113为单层结构或叠层结构;当为单层结构时,第二电极113为单层金属层、或单层金属混合物层、或单层透明金属氧化物层;当为叠层结 构时,第二电极113为透明金属氧化物层与金属层的叠层、或第二电极113为透明金属氧化物层与金属混合物层的叠层。
一个可选方案中,形成第二电极的材料中掺杂有金属氧化物,且第二电极113的厚度大于或等于100埃,小于或等于500埃时,第二电极113的厚度整体连续,且第二电极113的透明度大于40%。
进一步地,形成第二电极的材料中掺杂有金属,且第二电极113的厚度大于或等于100埃,小于或等于200埃时,第二电极113的厚度整体连续,且第二电极113的透明度大于40%。
进一步地,形成第二电极的材料中掺杂有金属,且第二电极113的厚度大于或等于50埃,小于或等于200埃时,第二电极113的厚度整体连续,且第二电极113的透明度大于50%。
进一步地,形成第二电极的材料中掺杂有金属氧化物,第二电极113的厚度大于或等于50埃,小于或等于200埃时,第二电极113的厚度整体连续,且第二电极113的透明度大于60%。
第二电极113为单层结构时,单层金属层材料为Al、Ag等,单层金属混合物层材料为MgAg或掺杂Al的金属混合材料等,透明金属氧化物为ITO或IZO等。
一个可选方案中,第二电极113与第四电极213的材料相同或不同。
一个可选方案中,第二电极113与第四电极213的材料相同,且第二电极113与第四电极213为单层结构,第二电极113的厚度小于第四电极213的厚度。
一个可选方案中,第二电极113与第四电极213的材料为单层金属层、或单层金属混合物层、或单层透明金属氧化物层。
一个可选方案中,第二电极113与第四电极213的材料相同,且第二电极113为单层结构,第四电极213为叠层结构,第二电极113的厚度小于第四电极213的厚度,第四电极213包括与第二电极113同时形成的第二电极材料层,以及形成于所述第二电极材料层上方或下方的第四电极材料层。
一个可选方案中,第四电极材料层的厚度大于所述第二电极材料层的厚度。
一个可选方案中,第二电极113为单层金属层、或单层金属混合物层、或单层透明金属氧化物层、或透明金属氧化物层与金属层的叠层、或透明金属氧化物层与金属混合物层的叠层;第四电极213为单层金属层、或单层金属混合物层、或金属混合物层的叠层、或金属层与金属混合物层的叠层;
一个可选方案中,第二电极113的材料为Al、Ag、MgAg、掺杂Al的金属混合材料、ITO或IZO等,第四电极213的材料为Al、Ag、MgAg、掺杂Al的金属混合材料等。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动、组合与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (20)

  1. 一种透光OLED基板,包括:
    衬底;
    位于所述衬底上的第一电极层,其中,所述第一电极层包括沿第一方向排列的多个电极组,各个所述电极组包括至少一个第一电极,各个所述第一电极沿第二方向延伸,所述第二方向与所述第一方向垂直;
    位于所述第一电极层上的发光结构层,
    其中,所述发光结构层包括n种颜色的发光结构,n≥1;
    针对各个所述第一电极,
    所述第一电极上设有至少一个所述发光结构,
    设置在同一所述第一电极上的发光结构为同种颜色;和
    位于所述发光结构层上的第二电极;
    其中,当向各个所述第一电极与所述第二电极之间施加驱动电压时,所述透光OLED基板被配置为执行显示功能;当各个所述第一电极与所述第二电极之间未施加驱动电压时,所述透光OLED基板被配置为执行透光功能。
  2. 根据权利要求1所述的透明OLED基板,其中,所述第二电极为面电极;或者,
    所述第二电极为单层结构或叠层结构,所述第二电极为单层结构时,所述第二电极为单层金属层、或单层金属混合物层、或单层透明金属氧化物层,所述第二电极为叠层结构时,所述第二电极为透明金属氧化物层与金属层的叠层、或所述第二电极为透明金属氧化物层与金属混合物层的叠层。
  3. 根据权利要求1所述的透光OLED基板,其中,各个所述电极组中的各个所述第一电极上的发光结构的颜色相同或不同。
  4. 根据权利要求1所述的透光OLED基板,还包括:
    多个第一OLED子像素,其中,每个所述第一OLED子像素包括:
    一个所述第一电极;
    所述第一电极上的所有发光结构;以及
    与所述第一电极对应的部分所述第二电极;
    其中,所述第二电极接地;
    所述第一OLED子像素的驱动方式为主动式或被动式。
  5. 根据权利要求4所述的透光OLED基板,其中,当各个所述第一OLED子像素的驱动方式为主动式时,所述第一OLED子像素对应的一个或多个像素驱动电路设置在与所述第一OLED子像素所在的区域无重叠的边框区。
  6. 根据权利要求4所述的透光OLED基板,其中,当各个所述第一OLED子像素的驱动方式为被动式时,各个所述第一OLED子像素中的第一电极的走线设置在与所述第一OLED子像素所在的区域无重叠的边框区。
  7. 根据权利要求4所述的透光OLED基板,还包括:
    至少一个OLED像素单元,其中,各个所述OLED像素单元包括至少一个所述第一OLED子像素;
    当n=1时,各个所述OLED像素单元中各个所述第一OLED子像素为同色子像素;
    当n≥3时,各个所述OLED像素单元中各个所述第一OLED子像素第一电极上的 发光结构的颜色各不相同并按照同一规律交替分布。
  8. 根据权利要求4所述的透光OLED基板,其中,各个所述第一OLED同色子像素的驱动方式为被动式:
    当所述第一方向为列方向时,一列中的各第一OLED同色子像素的第一电极连接至同一个数据信号;各列第一OLED同色子像素的第一电极连接至同一个数据信号或不同的数据信号;
    当所述第一方向为行方向时,一行中的各第一OLED同色子像素的第一电极连接至同一个数据信号;各行第一OLED同色子像素的第一电极连接至同一个数据信号或不同的数据信号。
  9. 根据权利要求4所述的透光OLED基板,其中,各个所述OLED像素单元的驱动方式为被动式:
    当所述第一方向为列方向时,一列各OLED像素单元中的各个具有相同颜色的第一OLED子像素的第一电极连接至同一个数据信号或不同的数据信号;
    当所述第一方向为行方向时,一行各OLED像素单元中的各个具有相同颜色的第一OLED子像素的第一电极连接至同一个数据信号或不同的数据信号。
  10. 根据权利要求4所述的透光OLED基板,其中,各个所述OLED像素单元的驱动方式为被动式:
    当所述第一方向为列方向时,各OLED像素单元中的第一OLED子像素的第一电极连接至一个开关晶体管的漏极,所述开关晶体管的源极连接同一个数据信号或不同的数据信号,位于一列的具有相同颜色的第一OLED子像素对应的开关晶体管的栅极连接同一个开关信号或不同的开关信号;
    当所述第一方向为行方向时,各OLED像素单元中的第一OLED子像素的第一电极连接至一个开关晶体管的漏极,所述开关晶体管的源极连接同一个数据信号或不同的数据信号,位于一行的具有相同颜色的第一OLED子像素对应的开关晶体管的栅极连接同一个开关信号或不同的开关信号。
  11. 根据权利要求4所述的透光OLED基板,其中,各个所述第一OLED同色子像素的驱动方式为主动式:
    当所述第一方向为列方向时,一列中的各第一OLED同色子像素的第一电极连接至同一个像素驱动电路中的驱动晶体管的漏极;或者各列所述第一OLED同色子像素的第一电极连接至同一个或不同的像素驱动电路中的驱动晶体管的漏极;所述驱动晶体管的栅极对应一个数据信号,所述驱动晶体管的源极对应电源电压;
    当所述第一方向为行方向时,一行中的各第一OLED同色子像素的第一电极连接至同一个像素驱动电路中的驱动晶体管的漏极;或者各行第一OLED同色子像素的第一电极连接至同一个或不同的像素驱动电路中的驱动晶体管的漏极;所述驱动晶体管的栅极对应一个数据信号,所述驱动晶体管的源极对应电源电压。
  12. 根据权利要求4所述的透明OLED基板,其中,各个所述OLED像素单元的驱动方式为主动式:
    当所述第一方向为列方向时,一列各OLED像素单元中的各个具有相同颜色的第一OLED子像素的第一电极连接至同一像素驱动电路或连接至不同的像素驱动电路中的驱动晶体管的漏极,每个所述驱动晶体管的栅极对应一个数据信号,每个所述驱动晶体管 的源极对应电源电压;
    当所述第一方向为行方向时,一行各OLED像素单元中的各个具有相同颜色的第一OLED子像素的第一电极连接至同一像素驱动电路或连接至不同的像素驱动电路中的驱动晶体管的漏极,每个所述驱动晶体管的栅极对应一个数据信号,每个所述驱动晶体管的源极对应电源电压。
  13. 根据权利要求1所述的透明OLED基板,其特征在于其中,在所述第二方向上,所述第一电极在所述衬底上的投影由一个第一图形单元或者两个以上的第一图形单元组成;所述第一图形单元为圆形、椭圆形、哑铃形、葫芦形或矩形,
    各个第一电极和/或发光结构在所述衬底上的投影的长度、和/或位置相同或不同,所述第一电极上设有一个所述发光结构,所述发光结构布满所述第一电极;或所述第一电极上设有若干个间隔分布的发光结构,所述间隔的发光结构由像素定义层分隔开或间隔的发光结构之间无像素定义层。
  14. 根据权利要求1所述的透明OLED基板,其中,所述第一电极在第二方向的尺寸与在第一方向的尺寸之比大于10:1。
  15. 一种显示面板,其中,包括权利要求1至14任一项所述的透光OLED基板。
  16. 一种OLED基板,包括:
    所述第一OLED基板;及
    第二OLED基板;
    其中,所述第一OLED基板包括权利要求1-14任一项所述的透光OLED基板;所述第二OLED基板为非透光基板,第一OLED基板与第二OLED基板共用衬底。
  17. 根据权利要求16所述的OLED基板,其中,所述第二OLED基板包围或半包围所述第一OLED基板。
  18. 根据权利要求16所述的OLED基板,其中,所述第二OLED基板包括:
    所述衬底;
    位于所述衬底上的第三电极层,其中,所述第三电极层具有反光性能;
    位于所述第三电极层上的第二发光结构层,其中,在第一方向和/或第二方向上,所述第二发光结构的颜色按同一规律交替分布;和
    位于所述第二发光结构层上的第四电极,其中,所述第四电极为面电极。
  19. 根据权利要求18所述的OLED基板,其中,所述第三电极层与所述第一电极层位于同一层、和/或所述四电极层与所述第二电极位于同一层;或所述第一电极上发光结构与所述第三电极上的发光结构在同一工序中蒸镀形成,
    所述第一电极上发光结构与所述第三电极上的发光结构在同一蒸镀工序中使用同一掩膜版形成。
  20. 根据权利要求16所述的OLED基板,其中,所述第一OLED基板通过主动式或被动式驱动执行显示功能,所述第一OLED基板对应的像素驱动电路位于所述第二OLED基板的边框区、或位于所述第二OLED基板与所述第一OLED基板之间的过渡区。
PCT/CN2019/093730 2018-12-28 2019-06-28 显示面板、透光oled基板及oled基板 WO2020133994A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020571655A JP7235778B2 (ja) 2018-12-28 2019-06-28 ディスプレイパネル、透光oled基板、及びoled基板
EP19902278.1A EP3796410A4 (en) 2018-12-28 2019-06-28 DISPLAY PANEL, LIGHT TRANSMITTING OLED SUBSTRATE AND OLED SUBSTRATE
KR1020207036974A KR102544116B1 (ko) 2018-12-28 2019-06-28 디스플레이 패널, 투광 oled 기판 및 oled 기판
US17/011,233 US11322070B2 (en) 2018-12-28 2020-09-03 Display panel, transparent OLED substrate and OLED substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811627472.4A CN110767829B (zh) 2018-12-28 2018-12-28 显示装置及其显示面板、oled透明基板、oled基板
CN201811627472.4 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/011,233 Continuation US11322070B2 (en) 2018-12-28 2020-09-03 Display panel, transparent OLED substrate and OLED substrate

Publications (1)

Publication Number Publication Date
WO2020133994A1 true WO2020133994A1 (zh) 2020-07-02

Family

ID=69023415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093730 WO2020133994A1 (zh) 2018-12-28 2019-06-28 显示面板、透光oled基板及oled基板

Country Status (7)

Country Link
US (1) US11322070B2 (zh)
EP (1) EP3796410A4 (zh)
JP (1) JP7235778B2 (zh)
KR (1) KR102544116B1 (zh)
CN (1) CN110767829B (zh)
TW (1) TWI714166B (zh)
WO (1) WO2020133994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220115459A1 (en) * 2020-10-09 2022-04-14 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, and display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767107B (zh) * 2018-12-28 2023-03-24 昆山国显光电有限公司 显示装置及其显示面板、oled阵列基板
CN112542484A (zh) * 2019-09-20 2021-03-23 北京小米移动软件有限公司 显示面板、显示屏及电子设备
US20230095298A1 (en) * 2019-11-15 2023-03-30 Beijing Boe Display Technology Co., Ltd. Display panel, splicing display panel and preparation method thereof
CN111627959B (zh) * 2020-03-24 2022-08-02 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置
CN113327967A (zh) * 2021-06-01 2021-08-31 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN113823210B (zh) * 2021-08-19 2023-06-27 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
EP4273846A4 (en) * 2021-08-30 2023-12-27 BOE Technology Group Co., Ltd. PIXEL CIRCUIT, PIXEL DRIVE METHOD, LIGHT EMITTING SUBSTRATE AND LIGHT EMITTING DEVICE
CN115050323B (zh) * 2022-06-29 2023-04-25 惠科股份有限公司 像素阵列、显示面板和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029940A1 (en) * 2005-06-16 2007-02-08 Toshiba Matsushita Display Technology Co., Ltd Driving method of display device using organic self-luminous element and driving circuit of same
CN105355646A (zh) * 2015-11-13 2016-02-24 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
CN108717244A (zh) * 2018-05-18 2018-10-30 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011572A (ja) 2003-06-17 2005-01-13 Seiko Epson Corp 有機el装置とその製造方法、並びに電子機器
US8013809B2 (en) * 2004-06-29 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method of the same, and electronic apparatus
US7923919B2 (en) * 2004-10-28 2011-04-12 Sharp Kabushiki Kaisha Organic electroluminescent panel and production method thereof, and color filter substrate and production method thereof
TW200641774A (en) * 2005-04-28 2006-12-01 Sanyo Electric Co Electroluminescense display device and data line driving circuit
GB2435956B (en) 2006-03-09 2008-07-23 Cambridge Display Tech Ltd Current drive systems
EP1903610A3 (de) * 2006-09-21 2012-03-28 OPTREX EUROPE GmbH OLED-Anzeige
DE102007039996B4 (de) * 2007-02-07 2020-09-24 Leonhard Kurz Stiftung & Co. Kg Sicherheitselement für ein Sicherheitsdokument und Verfahren zu seiner Herstellung
JP5116359B2 (ja) * 2007-05-17 2013-01-09 株式会社半導体エネルギー研究所 液晶表示装置
EP2264687A4 (en) 2008-03-31 2011-10-19 Sharp Kk DISPLAY DEVICE
JP4816985B2 (ja) * 2009-06-16 2011-11-16 Tdk株式会社 有機el表示装置
JP5672695B2 (ja) 2009-12-18 2015-02-18 セイコーエプソン株式会社 表示装置
EP2607950B1 (en) * 2011-12-22 2014-05-21 Acreo Swedish ICT AB Fixed image display device and method of manufacturing the same
JP5834889B2 (ja) 2011-12-22 2015-12-24 日本ゼオン株式会社 発光素子
JP6159965B2 (ja) 2012-07-31 2017-07-12 株式会社Joled 表示パネル、表示装置ならびに電子機器
KR102013701B1 (ko) * 2012-12-11 2019-08-26 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 구동방법
KR101967717B1 (ko) * 2012-12-27 2019-08-13 삼성전자주식회사 멀티 레이어 디스플레이 장치
KR102084715B1 (ko) * 2013-06-18 2020-03-05 삼성디스플레이 주식회사 유기 발광 표시 장치
US9361851B1 (en) * 2014-03-18 2016-06-07 Google Inc. Electrochromic two way display for two in one laptop/tablet form factors
US9164641B1 (en) * 2014-05-29 2015-10-20 Parade Technologies, Ltd. In-cell touch scanning modes for simultaneous touch and display
KR102465080B1 (ko) * 2015-08-24 2022-11-10 엘지디스플레이 주식회사 표시장치 및 표시패널
CN106203026A (zh) * 2016-06-23 2016-12-07 华勤通讯技术有限公司 指纹识别传感器、显示屏、电子设备及功能启动方法
KR102590011B1 (ko) * 2016-08-31 2023-10-16 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
WO2018100476A1 (en) * 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2018156882A (ja) 2017-03-21 2018-10-04 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法
US10388212B2 (en) * 2017-06-12 2019-08-20 Motorola Mobility Llc Organic light emitting diode display with transparent pixel portion and corresponding devices
CN108364957B (zh) 2017-09-30 2022-04-22 云谷(固安)科技有限公司 显示屏及显示装置
CN108364967B (zh) * 2017-09-30 2021-07-27 昆山国显光电有限公司 显示屏及显示装置
CN108376696B (zh) * 2017-09-30 2020-08-25 云谷(固安)科技有限公司 终端及显示屏
CN108389879B (zh) 2017-09-30 2021-06-15 云谷(固安)科技有限公司 显示屏以及电子设备
CN108336117A (zh) 2017-09-30 2018-07-27 云谷(固安)科技有限公司 显示屏以及电子设备
CN108365122A (zh) 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
CN108365123A (zh) 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
JP6458886B2 (ja) 2018-02-02 2019-01-30 セイコーエプソン株式会社 発光装置及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029940A1 (en) * 2005-06-16 2007-02-08 Toshiba Matsushita Display Technology Co., Ltd Driving method of display device using organic self-luminous element and driving circuit of same
CN105355646A (zh) * 2015-11-13 2016-02-24 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
CN108717244A (zh) * 2018-05-18 2018-10-30 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796410A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220115459A1 (en) * 2020-10-09 2022-04-14 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, and display device
US11778882B2 (en) * 2020-10-09 2023-10-03 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, and display device

Also Published As

Publication number Publication date
US20200402443A1 (en) 2020-12-24
US11322070B2 (en) 2022-05-03
TW201941469A (zh) 2019-10-16
KR20210003290A (ko) 2021-01-11
CN110767829A (zh) 2020-02-07
CN110767829B (zh) 2020-10-09
EP3796410A1 (en) 2021-03-24
JP2021528820A (ja) 2021-10-21
KR102544116B1 (ko) 2023-06-15
JP7235778B2 (ja) 2023-03-08
TWI714166B (zh) 2020-12-21
EP3796410A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020133994A1 (zh) 显示面板、透光oled基板及oled基板
KR102480132B1 (ko) 유기발광표시패널 및 이를 이용한 유기발광표시장치
CN109388273B (zh) 触控显示面板及其驱动方法、电子装置
US10147361B2 (en) Display devices and methods for making and driving the same
US11380262B2 (en) Display device having a transparent display area for display and light transmitting functions
US11580904B2 (en) Transparent display panels and display panels
KR101127859B1 (ko) 단색 발광 표시장치 및 이의 제조방법
US9892680B2 (en) Display device having display cells capable of being independently driven
US20230006023A1 (en) Display substrate and display device
WO2020133950A1 (zh) 阵列基板、显示面板和显示装置
KR20170023300A (ko) 투명표시패널 및 이를 포함하는 투명표시장치
US11877482B2 (en) Display substrate and method for manufacturing the same, driving method and display device
TW201925884A (zh) 顯示面板及有機發光顯示裝置
KR20100119653A (ko) 유기전계발광소자와 그 구동방법 및 제조방법
WO2021227025A1 (zh) 一种显示面板及其制作方法、显示装置
CN116137786A (zh) 显示面板及包含该显示面板的显示装置
US20240161691A1 (en) Display Substrate and Display Apparatus
WO2022170547A1 (zh) 显示基板及其制备方法、显示装置
KR102688915B1 (ko) 유기발광표시패널 및 이를 이용한 유기발광표시장치
WO2024007313A1 (zh) 显示面板及显示装置
EP4336484A1 (en) Display substrate and display device
WO2022041237A1 (zh) 一种显示基板及其制作方法、显示装置
KR20240116695A (ko) 유기발광표시패널 및 이를 이용한 유기발광표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036974

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020571655

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019902278

Country of ref document: EP

Effective date: 20201217

NENP Non-entry into the national phase

Ref country code: DE