WO2020133265A1 - Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier - Google Patents

Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier Download PDF

Info

Publication number
WO2020133265A1
WO2020133265A1 PCT/CN2018/125037 CN2018125037W WO2020133265A1 WO 2020133265 A1 WO2020133265 A1 WO 2020133265A1 CN 2018125037 W CN2018125037 W CN 2018125037W WO 2020133265 A1 WO2020133265 A1 WO 2020133265A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
bearing
module
spatial
spatial motion
Prior art date
Application number
PCT/CN2018/125037
Other languages
English (en)
Chinese (zh)
Inventor
黄运生
马子魁
姜绍娜
Original Assignee
舍弗勒技术股份两合公司
黄运生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 黄运生 filed Critical 舍弗勒技术股份两合公司
Priority to CN201880097264.XA priority Critical patent/CN112654797B/zh
Priority to PCT/CN2018/125037 priority patent/WO2020133265A1/fr
Publication of WO2020133265A1 publication Critical patent/WO2020133265A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Definitions

  • the present invention relates to a field of parameter acquisition and tracking based on micro-electromechanical sensors for spatial motion of bearing movable parts, and more particularly to a parameter acquisition and tracking system for spatial movement of bearing movable parts, and for bearing movable parts
  • the parameter collection and tracking method of space motion and bearing is a field of parameter acquisition and tracking based on micro-electromechanical sensors for spatial motion of bearing movable parts, and more particularly to a parameter acquisition and tracking system for spatial movement of bearing movable parts, and for bearing movable parts.
  • An object of the present invention is to provide a parameter collection and tracking system for the spatial motion of a bearing movable component, which can collect spatial motion parameters of at least one predetermined position of a bearing movable component in real time and send the spatial motion parameters Go to the designated device for processing.
  • Another object of the present invention is to provide a parameter collection and tracking method for the spatial movement of a bearing movable member and a bearing using the above technology.
  • the present invention adopts the following technical solutions.
  • the present invention provides a parameter collection and tracking system for the spatial movement of a bearing movable component as follows, including: a parameter collection module attached to the bearing movable component and used to collect the bearing Spatial motion parameters of at least one predetermined position of the movable part; and a parameter sending module, the parameter sending module is in data communication with the parameter collecting module for transmitting the spatial motion parameters collected by the parameter collecting module and/or Or used to store the spatial motion parameters.
  • the parameter acquisition module includes at least one parameter acquisition and sensing unit based on a micro-electromechanical system.
  • each of the parameter collection and sensing units is used to collect the spatial motion parameters of its location in real time.
  • the parameter collection and tracking system further includes a control module and a power supply module
  • the control module is in data communication with the parameter collection module and the parameter transmission module, and is used to implement the parameter collection module and the The operation of the parameter transmission module is controlled; and the power supply module is electrically connected to the parameter collection module, the parameter transmission module and the control module, so that the power supply module transmits the parameter collection module and the parameter The module and the control module are powered.
  • the parameter collection and tracking system further includes a parameter receiving module and a parameter processing module located outside the movable part of the bearing, the parameter receiving module is in data communication with the parameter transmitting module to receive the parameter transmission A signal of the module containing the spatial motion parameter, the parameter processing module is in data communication with the parameter receiving module for processing the signal received by the parameter receiving module.
  • the parameter processing module includes a signal amplifying unit for performing signal amplification on the signal and a signal filtering unit for performing signal filtering on the signal.
  • the present invention also provides a bearing including: a bearing movable component; at least one sensor, the at least one sensor is attached to the bearing movable component and is used to collect at least one predetermined position of the bearing movable component Spatial motion parameters; and a signal transmitter that is in data communication with the at least one sensor for transmitting the spatial motion parameters collected by the at least one sensor and/or for storing the spatial motion parameter.
  • the at least one sensor is a motion sensor based on a micro-electromechanical system.
  • each of the sensors is used to collect the spatial motion parameters of its location in real time.
  • the motion sensor includes at least one of an accelerometer, a gyroscope, and a geomagnetic field sensor.
  • the bearing further includes a central processor and a power supply
  • the central processor is in data communication with both the at least one sensor and the signal transmitter, and is used to implement the at least one sensor and the signal transmitter Control of the operation of the power supply
  • the power supply is used to electrically connect the at least one sensor, the signal transmitter, and the central processing unit, so that the power supply controls the at least one sensor, the signal transmitter, and the The central processor supplies power.
  • the at least one sensor, the signal transmitter, the central processor, and the power supply are attached to the bearing movable member in a manner that does not affect the normal movement of the bearing movable member.
  • the movable part of the bearing includes a rolling body and a cage of the bearing.
  • the rolling element is a roller
  • the roller includes an outer peripheral surface capable of contacting the raceway of the bearing and end surfaces located at both axial end portions of the roller, and the roller Mounting recesses are formed on the end surfaces of both axial end portions, and each of the mounting recesses accommodates and mounts one sensor.
  • the senor is provided at a first predetermined position at one axial end of the roller and at a second predetermined position at the other axial end of the roller, so that the sensor can collect the first The spatial motion parameter of the predetermined position and the spatial motion parameter of the second predetermined position.
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are arranged symmetrically with respect to the geometric center of the roller.
  • the rolling body is a ball, and an installation cavity is formed inside the ball, and the sensor is provided in the installation cavity, so that the sensor can collect spatial motion parameters of the geometric center of the ball.
  • the invention also provides a parameter collection and tracking method for spatial motion of a movable bearing component, which includes: collecting spatial motion parameters of at least one predetermined position of the movable bearing component; and transmitting and processing the spatial motion parameters and /Or temporarily store the spatial motion parameters for delayed transmission and processing.
  • the processing of the spatial motion parameter includes performing signal amplification and signal filtering on the signal containing the parameter and establishing a time-dependent parameter curve using the obtained parameter.
  • collecting spatial motion parameters of at least one predetermined position of the movable part of the bearing includes: when the movable part of the bearing is a roller, respectively collecting a first predetermined position of an axial end of the roller And the spatial motion parameter at the second predetermined position of the other axial end of the roller.
  • the spatial motion parameters include spatial position parameters
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center when the predetermined time
  • the linear values of the spatial position parameters of the first predetermined position collected on the points on the three spatial coordinate axes are x1, y1, and z1, respectively, and the spatial position parameters of the second predetermined position collected on the three spatial coordinate axes
  • the linear values of the spatial position parameters of the geometric center of the roller on the three spatial coordinate axes are (x1+x2)/2, (y1+y2)/2 , (Z1+z2)/2.
  • the spatial motion parameter includes a spatial angle parameter
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center, when at a predetermined time
  • the rotation angle values of the spatial angle parameters of the first predetermined position collected around the three spatial coordinate axes are ⁇ 1, ⁇ 1, ⁇ 1 and the spatial angle parameters of the second predetermined position collected around the three coordinate axes
  • the rotation angle values are ⁇ 2, ⁇ 2, and ⁇ 2
  • the rotation angle values of the spatial angle parameter of the geometric center of the roller around the three coordinate axes are ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2.
  • collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing includes: collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing in real time through a sensor based on a micro-electromechanical system.
  • the present invention provides a parameter acquisition and tracking system for the spatial movement of a bearing movable component, which includes a MEMS-based parameter acquisition module and a parameter transmission module attached to the bearing movable component .
  • the spatial motion parameters at the predetermined position of the movable part of the bearing can be collected in real time through the parameter collection module; on the other hand, the spatial motion parameters can be preferably sent to the designated device in real time through the parameter transmission module, and then the designated device Based on these spatial motion parameters, the spatial motion state of the bearing movable component is obtained, so that the motion characteristics of the bearing movable component can be summarized and analyzed.
  • the present invention also provides a parameter collection and tracking method for the spatial motion of the bearing movable component, which can track the spatial motion state of the bearing movable component by collecting the spatial motion parameters of the bearing movable component.
  • the present invention also provides a bearing using the above technology.
  • FIG. 1 shows a structural block diagram of a parameter acquisition and tracking system for spatial movement of a bearing movable component according to the present invention.
  • Figure 2a shows a schematic cross-sectional view of an example of a movable bearing member (cylindrical roller) using the system in Figure 1;
  • Figure 2b shows a cross-sectional perspective view of the cylindrical roller in Figure 2a;
  • Figure 2c shows An illustrative schematic diagram of acquiring the spatial position parameter and the spatial angle parameter around the centroid of the first predetermined position and the second predetermined position based on the cylindrical roller in FIG. 2a is shown.
  • 2d and 2e show explanatory diagrams of the inclination angle and the skew angle of the geometric center (center of mass) of the cylindrical roller in FIG. 2a.
  • FIG. 3 shows a schematic structural view of a tapered roller bearing using the cylindrical rollers in FIGS. 2a to 2c.
  • FIGS. 4a to 4c show graphs showing the time-dependent changes of three linear displacements, tilt angles, and skew angles based on simulation calculations of the geometric center of a cylindrical roller.
  • the parameter acquisition and tracking system for the spatial movement of a bearing movable part is used for a bearing movable part 1 such as a rolling element and a cage and includes a power supply module 11, a parameter acquisition module 12, The control module 13, the parameter sending module 14, the parameter receiving module 21 and the parameter processing module 22 (the last two constitute the base station 2).
  • the movable member 1 of the bearing may be a rolling body accommodated in a raceway between the outer ring and the inner ring of the bearing, and the rolling body may be a ball or a cylindrical roller 1a (as shown in FIGS. 2a to 2a). (Shown in FIG. 2c), tapered rollers, needle rollers, etc.; the movable member 1 of the bearing may be a cage that holds the rolling elements.
  • the power supply module 11 is attached to the bearing movable component 1 and the power supply module 11 is electrically connected to the parameter collection module 12, the control module 13, and the parameter transmission module 14, so that the power supply module 11 has 13 and the parameter sending module 14 supply power, so as to ensure the electric energy required for the parameter collection module 12, the control module 13 and the parameter sending module 14 to work normally.
  • the power supply module 11 is preferably a micro battery and adopts a wireless charging method. Since the service life of bearings is generally long, in order to meet the long-term normal operation of the entire system, a battery with higher performance is required. The power supply module 11 can also realize the automatic sleep and wake-up functions of the entire system, and automatically sleep when the bearing is detected to be at a standstill, which can reduce the overall power consumption of the system.
  • the parameter collection module 12 is a microelectromechanical system (MEMS)-based sensor for collecting spatial motion parameters of a predetermined position of the bearing movable member 1 in real time, so the size of the parameter collection module 12 can be very small.
  • the parameter collection module 12 is attached to the bearing movable component 1, preferably disposed inside the bearing movable component 1 and a parameter collection module 12 is used to collect spatial motion parameters of a predetermined position of the bearing movable component 1 in real time.
  • the parameter acquisition module 12 preferably includes a (three-axis) accelerometer, a (three-axis) gyroscope, and a (three-axis) geomagnetic field sensor.
  • the sensor selected here has high enough performance to achieve complete parameter measurement and signal acquisition, and It can resist aliasing and noise; and the sensor used here has low power consumption, which can ensure that the function continues to be effective before the bearing fails.
  • control module 13 is attached to the bearing movable member 1 and the control module 13 is in data communication with both the parameter acquisition module 12 and the parameter transmission module 14.
  • the control module 13 can control the parameter collection module 12 to realize real-time collection of spatial motion parameters, and the control module 13 can perform preliminary processing on these parameters.
  • the control module 13 can also control the parameter sending module 14 to transmit the collected spatial motion parameters to the parameter receiving module 21 in real time or temporarily store the collected spatial motion parameters for delayed transmission.
  • the parameter transmission module 14 is attached to the bearing movable member 1 and directly communicates with the control module 13, thereby achieving indirect data communication with the parameter acquisition module 12 for the parameter reception module 21 of the base station 2
  • the parameter sending module 14 uses existing wireless transmission technologies, such as Bluetooth, wifi, and so on.
  • the parameter sending module 14 can also be used as a parameter temporary storage to temporarily store the collected spatial motion parameters.
  • the base station 2 including the parameter receiving module 21 and the parameter processing module 22 in data communication with each other is located outside the bearing where the bearing movable member 1 is located.
  • the parameter receiving module 21 corresponds to the parameter sending module 14 to receive the parameter signal from the parameter sending module 14.
  • the parameter processing module 22 includes a module for modeling and analyzing parameters, and at least an amplifier and a filter. In this way, in addition to the necessary modeling and analysis of the parameter signal, the parameter processing module 22 can also perform other processing including amplification and filtering on the parameter signal received by the parameter receiving module 21.
  • the axial and radial directions refer to the axial and radial directions of the cylindrical roller, respectively; and one end of the axial direction refers to the left end portion in FIG. 2a, and the other axial end portion refers to Right end in Figure 2a.
  • the movable bearing member 1 of the spatial motion tracking system using a bearing rolling element is a cylindrical roller 1a.
  • the cylindrical roller 1a has a cylindrical shape as a whole and includes an outer peripheral surface in contact with the raceway of the bearing and end surfaces on both ends of the roller in the axial direction A (ie, both axial ends).
  • Mounting recesses 1c are formed on the end surfaces of the ends, and the power supply 11a, the central processing unit 13a, the sensor 12a, and the signal transmitter 14a are sequentially installed in the mounting recesses 1c.
  • the dimension of the mounting recess 1c in the radial direction R is smaller than the dimension of the corresponding end surface in the radial direction R, and the central axis of the mounting recess 1c is consistent with the central axis of the cylindrical roller 1a.
  • each mounting recess 1c toward the opening of the mounting recess 1c, a power supply 11a, a central processing unit 13a, a sensor 12a, and a signal transmitter 14a are provided in this order, so that the signal transmitter 14a does not exceed the signal transmitter 14a
  • the end face corresponding to the mounting recess 1c is provided so that the power supply 11a, the CPU 13a, the sensor 12a, and the signal generator 14a are attached to the cylindrical roller 1a in such a manner as not to affect the normal movement of the cylindrical roller 1a.
  • the tapered roller bearing using the cylindrical roller 1a includes an outer ring 2a and an inner ring 4a opposed to each other, and a raceway for accommodating the cylindrical roller 1a is formed between the outer ring 2a and the inner ring 4a.
  • a plurality of prior art cylindrical rollers and at least one cylindrical roller 1a of the present invention described above are held in a raceway by a cage 3a.
  • the spatial motion parameters of the at least one cylindrical roller 1a of the present invention can be collected in real time.
  • the spatial motion parameters include the parameters of 6 degrees of freedom in space (as shown in FIGS.
  • the parameter collection and tracking method based on the spatial motion of the cylindrical roller 1a includes the following processes:
  • the sensors 12a installed in the mounting recesses 1c at both ends of the axial direction of the cylindrical roller 1a respectively measure the spatial motion parameters of the first predetermined position P1 of the axial one end of the cylindrical roller 1a and the axial direction of the roller in real time
  • the spatial motion parameters are sent to the parameter receiving module 21 of the base station 2 through the signal transmitter 14a, and the parameter processing module 22 of the base station 2 uses the parameter signal received by the parameter receiving module 21 to track The spatial motion parameter of the geometric center of the roller at any moment.
  • the first predetermined position P1 and the second predetermined position P2 are generally points on each sensor 12a, preferably the geometric center of the sensor 12a. Further, the first predetermined position P1 and the second predetermined position P2 are arranged symmetrically with respect to the geometric center on the center axis of the roller. In this way, it is possible to conveniently calculate the spatial motion parameter at any time of the geometric center of the roller via the spatial motion parameter of the first predetermined position P1 and the spatial motion parameter of the second predetermined position P2 collected in real time. As mentioned above, taking the spatial position parameter and the spatial angle parameter around the geometric center (center of mass) as an example to illustrate how to obtain the spatial motion parameter.
  • the linear value (offset) of the spatial position parameter of the first predetermined position P1 collected at the predetermined time point on the three spatial coordinate axes is x1, y1, z1, respectively, and the collected second
  • the linear values of the spatial position parameters of the predetermined position P2 on the three spatial coordinate axes are x2, y2, and z2, respectively
  • the linear values of the spatial position parameters of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes are: (x1+x2)/2, (y1+y2)/2, (z1+z2)/2.
  • the spatial angle parameter of the first predetermined position P1 collected at a predetermined time point is a rotation angle value of ⁇ 1, ⁇ 1, ⁇ 1 around the three spatial coordinate axes and the spatial angle parameter of the second predetermined position P2 collected
  • the rotation angle values around the three coordinate axes are ⁇ 2, ⁇ 2, and ⁇ 2
  • the spatial angle parameter of the geometric center of the cylindrical roller 1a around the three coordinate axes is ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1 + ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2.
  • the inclination angle ⁇ generated in the yz plane and the skew angle ⁇ generated in the xy plane have very important reference significance.
  • the curve of the spatial position parameter of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes can be established with the curve calculated by simulation in FIG. 4a
  • the reference curve of the spatial position parameter of the geometric center of the cylindrical roller 1a is compared for verification and analysis to obtain the desired result.
  • the curve created by the values of the inclination angle ⁇ and the skew angle ⁇ of the geometric center of the cylindrical roller 1a and the inclination of the geometric center of the cylindrical roller 1a in FIGS. 4b and 4c obtained by simulation calculation
  • the reference curves of the angle and the skew angle are compared for verification and analysis to obtain the desired result.
  • a mounting cavity for the power supply 11a, the sensor 12a, the central processor 13a, and the signal transmitter 14a may be formed inside the ball so that the sensor 12a measures the spatial motion parameter of the geometric center of the ball .
  • the technical solution of the present invention can evaluate the running state of the bearing based on the parameter signal processed by the original signal. Under certain bearing operating conditions, the motion characteristics of the movable parts of the bearing have certain regularities, such as the geometric center trajectory of the rolling element and the rotation angle around the geometric center.
  • the tracking system of the present invention can continuously collect and establish the motion law database of the movable part of the bearing in the early stage, and based on the database, the specific motion characteristics of the movable part of the bearing corresponding to the specific failure mode can be obtained.
  • the tracking system according to the present invention can continuously realize the monitoring of the movable parts of the bearing, and can ensure the safety and predictability of the service life of the bearing. On the one hand, it can monitor the working status of bearings, and find a reliable basis for bearing design and development. Verify and correct the established bearing dynamics numerical simulation model (reference curve). On the other hand, the system according to the present invention can be directly applied to the actual working process of the bearing to realize real-time healthy maintenance of the bearing and early warning of the abnormal working bearing. In addition, the system according to the present invention is modularized to facilitate installation and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)

Abstract

La présente invention concerne un système d'acquisition et de suivi de paramètres pour un mouvement spatial d'un élément mobile de palier, un procédé d'acquisition et de suivi de paramètres pour un mouvement spatial d'un élément mobile de palier, et un palier. Le système de suivi est pourvu d'un module d'acquisition de paramètres (12) et d'un module d'envoi de paramètres (14) sur la base d'un microsystème électromécanique sur un élément mobile de palier (1). Ainsi, d'une part, des paramètres de mouvement spatial à un emplacement prédéfini de l'élément mobile de palier peuvent être acquis en temps réel par le module d'acquisition de paramètres (12), d'autre part, les paramètres de mouvement spatial peuvent également être envoyés, de préférence, à un dispositif désigné en temps réel par le module d'envoi de paramètres (14), de plus, l'état de mouvement spatial de l'élément mobile de palier peut être obtenu sur la base des paramètres de mouvement spatial au moyen du dispositif désigné, de telle sorte que les caractéristiques de mouvement de l'élément mobile de palier peuvent être résumées et analysées.
PCT/CN2018/125037 2018-12-28 2018-12-28 Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier WO2020133265A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097264.XA CN112654797B (zh) 2018-12-28 2018-12-28 用于轴承可动部件的空间运动的参数采集及跟踪***、用于轴承可动部件的空间运动的参数采集及跟踪方法及轴承
PCT/CN2018/125037 WO2020133265A1 (fr) 2018-12-28 2018-12-28 Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125037 WO2020133265A1 (fr) 2018-12-28 2018-12-28 Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier

Publications (1)

Publication Number Publication Date
WO2020133265A1 true WO2020133265A1 (fr) 2020-07-02

Family

ID=71125797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125037 WO2020133265A1 (fr) 2018-12-28 2018-12-28 Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier

Country Status (2)

Country Link
CN (1) CN112654797B (fr)
WO (1) WO2020133265A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031965A (zh) * 2022-03-29 2022-09-09 南京航空航天大学 用于模拟高速旋转机械中轴承打滑的试验台及设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509310A (en) * 1994-03-18 1996-04-23 Reliance Electric Industrial Company Bearing assemblies including proximity probes
CN101105202A (zh) * 2007-08-10 2008-01-16 重庆大学 带复合传感器的智能轴承
CN101819091A (zh) * 2010-03-25 2010-09-01 重庆大学 组合式智能监测轴承
DE102012202522A1 (de) * 2012-02-20 2013-08-22 Schaeffler Technologies AG & Co. KG Sensorlager
CN204437086U (zh) * 2014-12-29 2015-07-01 朱桂林 一种带复合传感器的智能轴承
CN105605109A (zh) * 2016-02-25 2016-05-25 重庆大学 可获取角域振动信号的传感器集成滑环式轴承结构
CN105972088A (zh) * 2016-07-19 2016-09-28 林德庆 一种带mems传感器的智能轴承

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335776C2 (de) * 1992-10-24 1996-11-28 Klaus Juergen Nord Verfahren zum Erzeugen elektrischer Energie im Bereich bewegter technischer Rollkörper und Vorrichtung hierzu
JP2003139140A (ja) * 2001-11-02 2003-05-14 Matsushita Electric Ind Co Ltd 軸受装置ならびにヘッド支持装置およびディスク装置
NL1024372C2 (nl) * 2003-09-24 2005-03-29 Skf Ab Werkwijze en sensoropstelling voor belastingmeting op een lager met rollend element gebaseerd op modale vervorming.
DE102007011718A1 (de) * 2007-03-10 2008-09-11 Schaeffler Kg Wälzlager, insbesondere Kugelrollenlager
FR2917476B1 (fr) * 2007-06-12 2010-02-26 Skf Ab Dispositif de roulement instrumente a indexation
FR2935485B1 (fr) * 2008-08-28 2010-09-10 Roulements Soc Nouvelle Systeme et procede de mesure du mouvement axial d'une piece mobile en rotation
JP5540728B2 (ja) * 2010-01-25 2014-07-02 株式会社ジェイテクト ころ軸受装置
DE102011085711A1 (de) * 2011-11-03 2013-05-08 Schaeffler Technologies AG & Co. KG Wälzlager mit Kraftmesseinrichtung
DE102012200779B4 (de) * 2012-01-20 2014-12-18 Aktiebolaget Skf Wälzkörper
DE102012200778A1 (de) * 2012-01-20 2013-07-25 Aktiebolaget Skf Vorrichtung mit wenigstens einem Wälzkörperelement und Verfahren zur Ausgabe eines Signals
CN102680123A (zh) * 2012-05-30 2012-09-19 西安交通大学 一种保持架温度及应力在线监测***及其方法
DE102015216472B4 (de) * 2015-08-28 2018-05-17 Aktiebolaget Skf Lageranordnung mit einem Sensorwälzkörper
DE102017210289A1 (de) * 2016-06-29 2018-01-04 Aktiebolaget Skf Rolle mit integrierter Lastdruckzelle
DE102017208871A1 (de) * 2017-05-24 2018-11-29 Aktiebolaget Skf Wälzlagerung
CN107605974A (zh) * 2017-10-24 2018-01-19 无锡民联汽车零部件有限公司 无线式环绕压力检测型轴承
CN108343678A (zh) * 2018-04-13 2018-07-31 无锡民联汽车零部件有限公司 具有通孔滚子光电转速检测的汽车轴承

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509310A (en) * 1994-03-18 1996-04-23 Reliance Electric Industrial Company Bearing assemblies including proximity probes
CN101105202A (zh) * 2007-08-10 2008-01-16 重庆大学 带复合传感器的智能轴承
CN101819091A (zh) * 2010-03-25 2010-09-01 重庆大学 组合式智能监测轴承
DE102012202522A1 (de) * 2012-02-20 2013-08-22 Schaeffler Technologies AG & Co. KG Sensorlager
CN204437086U (zh) * 2014-12-29 2015-07-01 朱桂林 一种带复合传感器的智能轴承
CN105605109A (zh) * 2016-02-25 2016-05-25 重庆大学 可获取角域振动信号的传感器集成滑环式轴承结构
CN105972088A (zh) * 2016-07-19 2016-09-28 林德庆 一种带mems传感器的智能轴承

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031965A (zh) * 2022-03-29 2022-09-09 南京航空航天大学 用于模拟高速旋转机械中轴承打滑的试验台及设计方法

Also Published As

Publication number Publication date
CN112654797A (zh) 2021-04-13
CN112654797B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Liu et al. A mobile force plate and three-dimensional motion analysis system for three-dimensional gait assessment
CN103615663B (zh) 管道内况检测机器人
WO2018084307A1 (fr) Dispositif de vérification d'état d'objet d'intégration, dispositif de vérification de fonctionnement, et procédé de vérification d'état d'objet d'intégration
CN102749099B (zh) 可实现球磨机介质运动测量的检测球
US11932050B2 (en) Wheel hub
CN110737243B (zh) 一种基于nc代码触发的机床多源数据采集***及方法
WO2020133265A1 (fr) Système d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, procédé d'acquisition et de suivi de paramètres pour mouvement spatial d'élément mobile de palier, et palier
JP7406627B2 (ja) プレスパンチに取り付けられた測定装置によって錠剤プレス機を好ましくは継続的な動作中に監視する装置及び方法
CN109740270A (zh) 基于接触力与力矩预测和分析的大长径比轴孔装配***及方法
CN208751608U (zh) 用于轴承座内部监控的检测机构
Hasibuzzaman et al. Vibration Measurement & analysis using arduino based accelerometer
CN108803598A (zh) 一种极地机器人群操作***及协同方法
CN109238273A (zh) 一种过山车运动状态监测方法和装置
CN108871778B (zh) 用于数据可输出的轴承座的检测机构
WO2022151816A1 (fr) Dispositif formant robot et son procédé de commande
CN110864739A (zh) 基于无线物联网的设备监测分析***及其监测分析方法
CN115046578A (zh) 一种融合多传感组件的电路结构及包含该电路结构的终端
CN211687824U (zh) 微小机械位移检测仪
CN107063294A (zh) 一种举高消防车臂架的运动状态检测***
Eriksson et al. Wireless vertical displacement measurment during running using an accelerometer and a mobile phone
CN206111183U (zh) 具有惯性传感器的管片拼装机空间姿态测量装置及盾构机
CN214473461U (zh) 用于往复冲击机构的微型无线加速度实时检测***
CN216012137U (zh) 一种测量装置及测量***
CN111879525A (zh) 一种量化挖掘机整车稳定性的测试评价***及方法
CN110855797A (zh) 一种基于动作识别的绵羊行为监测***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944455

Country of ref document: EP

Kind code of ref document: A1