WO2020130008A1 - Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package - Google Patents

Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package Download PDF

Info

Publication number
WO2020130008A1
WO2020130008A1 PCT/JP2019/049510 JP2019049510W WO2020130008A1 WO 2020130008 A1 WO2020130008 A1 WO 2020130008A1 JP 2019049510 W JP2019049510 W JP 2019049510W WO 2020130008 A1 WO2020130008 A1 WO 2020130008A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
group
warp
weft
glass cloth
Prior art date
Application number
PCT/JP2019/049510
Other languages
French (fr)
Japanese (ja)
Inventor
芳克 白男川
辰徳 金子
周治 合津
垣谷 稔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020561478A priority Critical patent/JPWO2020130008A1/en
Publication of WO2020130008A1 publication Critical patent/WO2020130008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a composite material and its manufacturing method, a prepreg, a laminated board, a printed wiring board, and a semiconductor package.
  • a multilayer printed wiring board it is important to have high electrical connection reliability between wiring patterns of multiple layers formed with a fine wiring pitch and excellent high-frequency characteristics, and high connection reliability with semiconductor chips. Sex is required.
  • a laser via used for the interlayer connection is required to have a small diameter.
  • dimensional stability of the substrate is one of important characteristics.
  • Patent Document 1 discloses a core made of a base material having a first surface and a second surface, which includes a thermosetting resin that is pre-cured for the purpose of improving the conformity between layers in a multilayer printed wiring board.
  • a prepreg characterized by comprising a first adhesive layer and a second adhesive layer formed on each of the first surface and the second surface of the core.
  • the prepreg of Patent Document 1 has a problem that it is inferior in wiring embedding property and the like because it contains a thermosetting resin that has been cured in advance as a core. Further, the prepreg of Patent Document 1 requires a plurality of layers having different degrees of curing, and thus requires a complicated production process, and a prepreg having a small variation in dimensional change obtained by a simpler method is desired. There is.
  • the present invention is used for a composite material having a small variation in dimensional change and a method for manufacturing the same, a laminated board and a method for manufacturing the same, a printed wiring board and a semiconductor package, and a method for manufacturing the composite material.
  • the purpose is to provide prepreg.
  • a method for producing a composite material which comprises a step of heating a prepreg containing a glass cloth and a thermosetting resin composition to 200° C. or higher,
  • the average filament diameter ratio (weft/warp) of the weft and warp constituting the glass cloth is more than 1.00, and the weave density ratio of warp and weft (warp/weft) is more than 1.00.
  • thermosetting resin composition is derived from (A) a maleimide compound having an N-substituted maleimide group, (B) an epoxy resin, and (C) a structural unit derived from an aromatic vinyl compound and maleic anhydride.
  • the method for producing a composite material according to the above [2], wherein the thermosetting resin composition further contains (D) silica treated with an aminosilane coupling agent.
  • [11] A printed wiring board obtained by using the laminated board as described in [10] above.
  • [12] A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to [11].
  • thermosetting resin composition is derived from (A) a maleimide compound having an N-substituted maleimide group, (B) an epoxy resin having at least two epoxy groups in one molecule, and (C) an aromatic vinyl compound.
  • a composite material having a small variation in dimensional change and a method for manufacturing the same a laminated board using the composite material, a method for manufacturing the same, a printed wiring board and a semiconductor package, and a prepreg used for the method for manufacturing the composite material are provided.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. Further, the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value and the upper limit value of the other numerical range, respectively. Further, each component and material exemplified in the present specification may be used alone or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. Means The present invention also includes an embodiment in which the items described in the present specification are arbitrarily combined.
  • the method for producing a composite material of the present embodiment is a method for producing a composite material having a step of heating a prepreg containing a glass cloth and a thermosetting resin composition to 200° C. or higher, In the glass cloth, the average filament diameter ratio of the weft and the warp (weft/warp) is more than 1.00, and the weave density ratio of the warp and the weft (warp/weft) is more than 1.00.
  • a method for manufacturing a composite material is referred to as “glass cloth (g)”, and the prepreg will be referred to as “prepreg (p)” to distinguish them from other objects.
  • the glass cloth (g) used in the manufacturing method of the present embodiment has an average filament diameter ratio (weft/warp) of more than 1.00 and a weave density ratio of warp and weft (warp/weft) of 1. It has a characteristic of more than 00, which makes it possible to increase the strength in the weft direction while maintaining an appropriate thickness. It is presumed that this suppresses the generation of stress due to the tension applied in the warp direction during the production of the glass cloth, and makes the dimensional change in the composite material production process uniform.
  • the degree of uniformity of the amount of dimensional change tends to be significantly increased by combining the glass cloth (g) and the thermosetting resin composition and performing high temperature curing at 200° C. or higher.
  • the degree of uniforming of the dimensional change amount due to high temperature curing in the present embodiment is larger than that in the case of using a glass cloth other than the glass cloth (g).
  • the thermosetting resin tends to undergo uniform curing shrinkage when cured at high temperature and reduce dimensional variation, but the glass cloth containing the uneven stress is heated at high temperature. Then, the dimensions change nonuniformly in order to release the stress.
  • the prepreg (p) used in the manufacturing method of the present embodiment contains glass cloth (g) and a thermosetting resin composition.
  • the glass cloth (g) has an average filament diameter ratio (weft/warp) of the weft and the warp of more than 1.00 and a weaving density ratio of the warp and the weft (warp/weft) of more than 1.00. It is a thing.
  • the physical properties of the glass cloth such as the average filament diameter of the warp and the weft, the woven density, and the thickness of the glass cloth described later can be measured in accordance with JIS R3240.
  • the average filament diameter ratio (weft/warp) of the weft and the warp in the glass cloth (g) is more than 1.00 and preferably 1.02 to 1.30 from the viewpoint of reducing the variation in the dimensional change amount. , 1.05 to 1.20 are more preferable, and 1.10 to 1.15 are further preferable.
  • the average filament diameter of the warp in the glass cloth (g) is 2.0 to 2.0 in a state where the above average filament diameter ratio (weft/warp) is satisfied from the viewpoint of keeping the strength of the glass cloth good and reducing the thickness. 10 ⁇ m is preferable, 3.0 to 8.0 ⁇ m is more preferable, 3.5 to 6.0 ⁇ m is further preferable, and 4.0 to 5.0 ⁇ m is particularly preferable.
  • the average filament diameter of the weft in the glass cloth (g) is 2.0 to 2.0 in a state where the above average filament diameter ratio (weft/warp) is satisfied, from the viewpoint of thinning while maintaining the strength of the glass cloth good. 10 ⁇ m is preferable, 3.0 to 8.0 ⁇ m is more preferable, 4.0 to 6.0 ⁇ m is further preferable, and 4.5 to 5.5 ⁇ m is particularly preferable.
  • the number of filaments per warp and weft of the glass cloth (g) is preferably 40 to 400, more preferably 50 to 300, and more preferably 60 to 400 from the viewpoint of thinning while maintaining good strength of the glass cloth. 200 is more preferable, and 80 to 150 is particularly preferable.
  • the weaving density ratio of the warp to the weft (warp/weft) in the glass cloth (g) is more than 1.00, preferably 1.10 to 1.50, from the viewpoint of reducing variation in the dimensional change. 20 to 1.35 is more preferable, and 1.25 to 1.30 is further preferable.
  • the weaving density of the warp in the glass cloth (g) is 40 to 100 yarns/25 mm in a state where the above weaving density ratio (warp/weft) is satisfied from the viewpoint of keeping the strength of the glass cloth good and making it thin. Is preferable, 50 to 90 lines/25 mm is more preferable, 60 to 85 lines/25 mm is further preferable, and 70 to 80 lines/25 mm is particularly preferable.
  • the weaving density of the glass cloth (g) is 40 to 90 yarns/25 mm in a state where the above weaving density ratio (warp/weft) is satisfied from the viewpoint of keeping the strength of the glass cloth good and making it thin. Is preferable, 45 to 80 lines/25 mm is more preferable, 50 to 70 lines/25 mm is further preferable, and 55 to 65 lines/25 mm is particularly preferable.
  • the thickness of the glass cloth (g) is preferably 3 to 80 ⁇ m, more preferably 5 to 50 ⁇ m, further preferably 10 to 40 ⁇ m, and 15 to 30 ⁇ m from the viewpoint of making the glass cloth thinner while keeping the strength of the glass cloth good. Particularly preferred, 20 to 28 ⁇ m is most preferred.
  • the glass cloth that is surface-treated with a silane coupling agent or the like or is mechanically opened is suitable in terms of reduction of variation in dimensional change, heat resistance, moisture resistance, workability, and the like.
  • the type of filament (single fiber) forming the glass cloth is not particularly limited, and examples thereof include E glass, S glass, C glass, D glass, T glass, NE glass, A glass, H glass, and quartz glass.
  • thermosetting resin composition The thermosetting resin composition contained in the prepreg (p) used in the manufacturing method of the present embodiment is not particularly limited, and may be appropriately selected from conventionally known insulating resin materials according to desired characteristics.
  • the thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin, and as the thermosetting resin, a maleimide compound, an epoxy resin, a phenol resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, Examples thereof include oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, triazine resin and melamine resin. These may be used alone or in combination of two or more. Among these, maleimide compounds and epoxy resins are preferable from the viewpoints of heat resistance, moldability and electric insulation.
  • the thermosetting resin composition preferably contains (A) a maleimide compound having an N-substituted maleimide group, from the viewpoint of obtaining excellent copper foil adhesion, low thermal expansion, dielectric properties, and the like.
  • A a maleimide compound having an N-substituted maleimide group, from the viewpoint of obtaining excellent copper foil adhesion, low thermal expansion, dielectric properties, and the like.
  • the maleimide compound (A) is preferably a maleimide compound (a1) having at least two N-substituted maleimide groups (hereinafter, also referred to as “maleimide compound (a1)”).
  • maleimide compound (a1) a maleimide compound having an aliphatic hydrocarbon group (provided that an aromatic hydrocarbon group does not exist) between any two maleimide groups among a plurality of maleimide groups (hereinafter, referred to as " (Also referred to as "aliphatic hydrocarbon group-containing maleimide"), a maleimide compound containing an aromatic hydrocarbon group between any two maleimide groups of a plurality of maleimide groups (hereinafter referred to as "aromatic hydrocarbon group-containing maleimide”).
  • the aromatic hydrocarbon group-containing maleimide is preferable from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like.
  • the maleimide compound (a1) is preferably a maleimide compound having 2 to 5 N-substituted maleimide groups in one molecule, and a maleimide compound having 2 N-substituted maleimide groups in one molecule.
  • an aromatic hydrocarbon group-containing maleimide represented by any of the following general formulas (a1-1) to (a1-4) is more preferable, and an aromatic hydrocarbon represented by the following general formula (a1-2) Hydrocarbon group-containing maleimides are particularly preferred.
  • the maleimide compound (A) may be used alone or in combination of two or more.
  • R A1 to R A3 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X A1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, —C( ⁇ O)—, —S—, —SS— or a sulfonyl group.
  • p, q, and r are each independently an integer of 0 to 4.
  • s is an integer of 0 to 10.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A1 to R A3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n- Examples thereof include a pentyl group.
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group, from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like. It is an ethyl group.
  • alkylene group having 1 to 5 carbon atoms represented by X A1 examples include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, and 1,5-pentamethylene group.
  • the alkylene group is preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a methylene group, from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness and the like.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group.
  • an isopropylidene group is preferable from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like.
  • X A1 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms. More preferable ones are as described above.
  • p, q, and r are each independently an integer of 0 to 4, and from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, etc., each is preferably an integer of 0 to 2; It is preferably 0 or 1, and more preferably 0.
  • s is an integer of 0 to 10, and from the viewpoint of easy availability, it is preferably an integer of 0 to 5, and more preferably an integer of 0 to 3.
  • maleimide compound (a1) examples include N,N'-ethylene bismaleimide, N,N'-hexamethylene bismaleimide, bis(4-maleimidocyclohexyl)methane, and 1,4-bis(maleimidomethyl).
  • Maleimides containing aliphatic hydrocarbon groups such as cyclohexane; N,N'-(1,3-phenylene)bismaleimide, N,N'-[1,3-(2-methylphenylene)]bismaleimide, N,N' -[1,3-(4-Methylphenylene)]bismaleimide, N,N'-(1,4-phenylene)bismaleimide, bis(4-maleimidophenyl)methane, bis(3-methyl-4-maleimidophenyl) ) Methane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, bis(4-maleimidophenyl) ether, bis(4-maleimidophenyl) sulfone, bis(4-maleimidophenyl) ) Sulfide, bis(4-maleimidophenyl)ketone, 1,4-bis(4-maleimid
  • bis(4-maleimidophenyl)methane, bis(4-maleimidophenyl)sulfone, bis(4-maleimidophenyl)sulfide, bis(4 -Maleimidophenyl)disulfide, N,N'-(1,3-phenylene)bismaleimide and 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane are preferable, and bis is preferable from the viewpoint of being inexpensive.
  • (4-maleimidophenyl)methane and N,N′-(1,3-phenylene)bismaleimide are preferred.
  • the (A) maleimide compound is a compound obtained by reacting the maleimide compound (a1) with at least one member selected from the group consisting of a monoamine compound (a2) and a diamine compound (a3) (hereinafter, referred to as “modified maleimide compound”). Also referred to as "compound”), a compound obtained by reacting a maleimide compound (a1), a monoamine compound (a2) and a diamine compound (a3), a maleimide compound (a1) and a diamine compound (a3). The compound obtained by the reaction is more preferable.
  • the monoamine compound (a2) is not particularly limited as long as it is a compound having one amino group, but from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, etc., a monoamine compound having an acidic substituent is preferable.
  • a monoamine compound represented by general formula (a2-1) shown below is more preferable.
  • R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group and a sulfonic acid group.
  • R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • t is an integer of 1 to 5
  • u is an integer of 0 to 4, and satisfies 1 ⁇ t+u ⁇ 5.
  • t is an integer of 2 to 5
  • a plurality of R A4 may be the same or different.
  • u is an integer of 2 to 4
  • a plurality of R A5 may be the same or different.
  • the acidic substituent represented by R A4 is preferably a hydroxyl group or a carboxy group from the viewpoint of solubility and reactivity, and more preferably a hydroxyl group in consideration of heat resistance.
  • t is an integer of 1 to 5, and is preferably an integer of 1 to 3, more preferably 1 or 2, and further preferably 1 from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like. ..
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an n-pentyl group. ..
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the halogen atom represented by R A5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • u is an integer of 0 to 4, and is preferably an integer of 0 to 3, more preferably an integer of 0 to 2 and still more preferably 0 from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness and the like. Alternatively, it is 1, and particularly preferably 0.
  • Examples of the monoamine compound (a2) include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, m- Aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like can be mentioned.
  • o-aminophenol, m-aminophenol, and p-aminophenol are preferable from the viewpoint of heat resistance, and p-aminophenol is more preferable in view of dielectric properties, low thermal expansion, and manufacturing cost.
  • the monoamine compound (a2) may be used alone or in combination of two or more.
  • the diamine compound (a3) is not particularly limited as long as it is a compound having two amino groups, but from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesion, etc., the following general formula (a3-1) It is preferable that it is a diamine compound represented by or a modified siloxane compound having an amino group at the molecular end described later.
  • X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—.
  • R A6 and R A7 each independently represent an alkyl group having 1 to 5 carbon atoms, a halogen atom or a hydroxyl group. , Carboxy group or sulfonic acid group.
  • v and w are each independently an integer of 0 to 4.
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms represented by X A2 include methylene group, ethylene group, propylene group and propylidene group. As X A2 , a methylene group is preferable.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A6 and R A7 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, etc. Are listed.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • v and w are preferably integers of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • modified siloxane compound having an amino group at the molecular end examples include a diamine compound represented by the following general formula (a3-2).
  • R A8 to R A11 each independently represent an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a phenyl group having a substituent.
  • R A12 and R A13 are Each independently represents a divalent organic group, and m is an integer of 2 to 100.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A8 to R A11 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. Are listed.
  • As the alkyl group an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • Examples of the substituent in the phenyl group having a substituent include an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, and the like.
  • Examples of the alkyl group having 1 to 5 carbon atoms include those mentioned above.
  • Examples of the alkenyl group having 2 to 5 carbon atoms include vinyl group and allyl group.
  • Examples of the alkynyl group having 2 to 5 carbon atoms include ethynyl group and propargyl group.
  • Examples of the divalent organic group represented by R A12 and R A13 include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group in which these are combined.
  • Examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms such as methylene group, ethylene group and propylene group.
  • alkenylene group examples include alkenylene groups having 2 to 10 carbon atoms.
  • alkynylene group examples include alkynylene groups having 2 to 10 carbon atoms.
  • arylene group examples include arylene groups having 6 to 20 carbon atoms such as phenylene group and naphthylene group.
  • R A12 and R A13 are preferably an alkylene group or an arylene group.
  • m is preferably an integer of 2 to 50, more preferably an integer of 3 to 40, further preferably an integer of 5 to 30.
  • diamine compound (a3) examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylpropane and 2,2′-bis(4,4′).
  • the diamine compound (a3) may be used alone or in combination of two or more.
  • the reaction of the maleimide compound (a1) with at least one selected from the group consisting of the monoamine compound (a2) and the diamine compound (a3) is preferably carried out in the presence of an organic solvent at a reaction temperature of 70 to 200° C. It is preferable to carry out the reaction by reacting for 1 to 10 hours.
  • the reaction temperature is more preferably 70 to 160° C., further preferably 70 to 130° C., and particularly preferably 80 to 120° C.
  • the reaction time is more preferably 1 to 8 hours, further preferably 2 to 6 hours.
  • the amounts of the three used are the components (a2) and (The relationship between the sum of —NH 2 group equivalents (primary amino group equivalents) possessed by at least one selected from the group consisting of a3) and the maleimide group equivalent of (a1) satisfies the following formula: Is preferred.
  • the modified maleimide compound is a compound obtained by reacting the component (a1) with the component (a2) and the component (a3), it is derived from the structural unit derived from the component (a2) and the component (a3).
  • the ratio [(a3) component/(a2) component] (molar ratio) with the structural unit is preferably 0.9 to 5.0, more preferably 1.0 to 4.5, and further preferably 1.0 to It is 4.0.
  • the weight average molecular weight (Mw) of the modified maleimide compound is preferably 400 to 3,500, more preferably 600 to 2,000, and further preferably 800 to 1,500.
  • the weight average molecular weight in the present specification is a value measured by a gel permeation chromatography (GPC) method (standard polystyrene conversion) using tetrahydrofuran as an eluent, and more specifically described in Examples. It is the value measured by the method.
  • Epoxy resin examples include glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxy resins. Among these, a glycidyl ether type epoxy resin is preferable.
  • Epoxy resin is classified into various epoxy resins depending on the difference in the main skeleton, and among the above types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc.
  • Bisphenol epoxy resin bisphenol A novolac type epoxy resin and bisphenol F novolac type epoxy resin
  • stilbene type epoxy resin triazine skeleton containing epoxy resin
  • fluorene skeleton containing epoxy resin fluorene skeleton containing epoxy resin
  • naphthalene type epoxy resin anthracene type epoxy resin
  • triphenylmethane Type epoxy resin biphenyl type epoxy resin
  • xylylene type epoxy resin alicyclic epoxy resin such as dicyclopentadiene type epoxy resin.
  • the epoxy resin (B) one type may be used alone, or two or more types may be used in combination.
  • the epoxy equivalent of the (B) epoxy resin is preferably 100 to 500 g/eq, more preferably 120 to 400 g/eq, further preferably 140 to 300 g/eq, and particularly preferably 170 to 240 g/eq.
  • the epoxy equivalent is the mass of the resin per epoxy group (g/eq), and can be measured according to the method specified in JIS K 7236 (2001). Specifically, using an automatic titrator "GT-200 type" manufactured by Mitsubishi Chemical Analytech Co., Ltd., 2 g of epoxy resin was weighed in a 200 ml beaker, 90 ml of methyl ethyl ketone was added dropwise, and the mixture was dissolved in an ultrasonic cleaner and iced. It is determined by adding 10 ml of acetic acid and 1.5 g of cetyltrimethylammonium bromide and titrating with a 0.1 mol/L perchloric acid/acetic acid solution.
  • the component (C) is a copolymer resin having a structural unit derived from a substituted vinyl compound and a structural unit derived from maleic anhydride (hereinafter, also referred to as “(C) copolymer resin”).
  • the substituted vinyl compound include aromatic vinyl compounds, aliphatic vinyl compounds and functional group-substituted vinyl compounds.
  • the aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like.
  • Examples of the aliphatic vinyl compound include propylene, butadiene, isobutylene and the like.
  • Examples of the functional group-substituted vinyl compound include acrylonitrile; compounds having a (meth)acryloyl group such as methyl acrylate and methyl methacrylate. Among these, aromatic vinyl compounds are preferable, and styrene is more preferable.
  • a structural unit derived from a substituted vinyl compound is represented by the following general formula (Ci)
  • a structural unit derived from maleic anhydride is represented by the following formula (C-ii):
  • R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. It is an aryl group, a hydroxyl group or a (meth)acryloyl group, and x is an integer of 0 to 3. However, when x is 2 or 3, a plurality of R C2 's may be the same or different. May be.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R C1 and R C2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. Are listed.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkenyl group having 2 to 5 carbon atoms represented by R C2 include an allyl group and a crotyl group.
  • the alkenyl group is preferably an alkenyl group having 3 or 4 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group and a biphenylyl group.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms.
  • x is preferably 0 or 1, more preferably 0.
  • the above molar ratio is at least the above lower limit, the effect of improving the dielectric properties tends to be sufficient, and when it is at most the above upper limit, the compatibility tends to be good.
  • the total content of the structural unit derived from the substituted vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably Is 90% by mass or more, particularly preferably substantially 100% by mass.
  • the weight average molecular weight (Mw) of the (C) copolymer resin is preferably 4,500 to 18,000, more preferably 6,000 to 17,000, further preferably 8,000 to 16,000, particularly preferably It is 8,000 to 15,000.
  • the thermosetting resin composition may further contain (D) an inorganic filler.
  • an inorganic filler silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate. , Calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay such as calcined clay, talc, aluminum borate, silicon carbide, quartz powder, short glass fibers, glass fine powder, hollow glass, etc. ..
  • Preferable examples of the glass include E glass, T glass, and D glass.
  • silica is preferable from the viewpoint of dielectric properties, heat resistance and low thermal expansion.
  • examples of the silica include, for example, precipitated silica having a high water content produced by a wet method, and dry method silica produced by a dry method containing almost no bound water, and the like, as the dry method silica, due to a difference in production method. , Crushed silica, fumed silica, fused spherical silica, etc.
  • fused spherical silica is preferable from the viewpoint of low thermal expansion and fluidity when filled in a resin.
  • the average particle size of the inorganic filler (D) is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m, and further preferably 0.5 to 2 ⁇ m.
  • the average particle size is 0.1 ⁇ m or more, the fluidity at the time of highly filling the resin can be kept good, and when the average particle size is 10 ⁇ m or less, the probability of inclusion of coarse particles is reduced, and defects due to the coarse particles are reduced. Occurrence can be suppressed.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve based on the particle diameter is calculated with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with a conventional particle size distribution measuring device.
  • the aminosilane-based coupling agent may have one amino group, may have two amino groups, or may have three or more amino groups, but usually one amino group or I have two.
  • Examples of the aminosilane coupling agent having one amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and 3-triethoxysilyl-N- (1,3-Dimethyl-butylidene)propylamine, 2-propynyl[3-(trimethoxysilyl)propyl]carbamate and the like can be mentioned.
  • aminosilane coupling agent having two amino groups examples include N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 1- Examples include [3-(trimethoxysilyl)propyl]urea and 1-[3-(triethoxysilyl)propyl]urea.
  • the aminosilane coupling agent may be used alone or in combination of two or more.
  • the thermosetting resin composition may further contain (E) a curing agent.
  • a curing agent dicyandiamide; chain aliphatic amines other than dicyandiamide, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, tetramethylguanidine, and triethanolamine; Isophoronediamine, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, bis(4-amino-3-methyldicyclohexyl)methane, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)-2,4,8 Cyclic aliphatic amines such as 10-tetraoxaspiro[5.5]undecane; aromatic amines such as xylenediamine
  • the thermosetting resin composition may further contain (F) thermoplastic elastomer.
  • thermoplastic elastomer examples include styrene elastomer, olefin elastomer, urethane elastomer, polyester elastomer, polyamide elastomer, acrylic elastomer, silicone elastomer, and derivatives thereof. Of these, styrene elastomers are preferable.
  • the thermoplastic elastomer (F) one type may be used alone, or two or more types may be used in combination. However, in this embodiment, the component (C) is not included in the definition of the thermoplastic elastomer (F).
  • the thermoplastic elastomer preferably has a reactive functional group at the molecular end or in the molecular chain.
  • the reactive functional group include epoxy group, hydroxyl group, carboxy group, amino group, amide group, isocyanate group, acryl group, methacryl group, vinyl group and the like.
  • styrene elastomer examples include styrene-butadiene copolymers such as styrene-butadiene-styrene block copolymers; styrene-isoprene copolymers such as styrene-isoprene-styrene block copolymers; styrene-ethylene-butylene-styrene block copolymers, styrene- Examples thereof include ethylene-propylene-styrene block copolymer.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene and the like can be used in addition to styrene.
  • styrene-butadiene copolymers and styrene-isoprene copolymers are preferable, and hydrogenated styrene-butadiene copolymer resins and hydrogenated styrene-isoprene copolymers obtained by hydrogenating the double bond portion of these copolymers.
  • Hydrogenated styrene thermoplastic elastomers such as resins are more preferable.
  • the thermosetting resin composition may further contain (G) a curing accelerator from the viewpoint of accelerating the curing reaction.
  • a curing accelerator an organic phosphorus compound such as triphenylphosphine; imidazoles and derivatives thereof; nitrogen-containing compounds such as secondary amines, tertiary amines and quaternary ammonium salts; dicumyl Peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, ⁇ , ⁇ '- Examples thereof include organic peroxides such as bis(t-butylperoxy)diisopropylbenzene; organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, and cobalt octylate. Among these, organic phosphorus compounds are preferable. As
  • the content of each component in the thermosetting resin composition is not particularly limited, but may be in the range described below, for example.
  • the thermosetting resin composition contains the component (A)
  • its content is preferably 10 to 90 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition, It is preferably 20 to 85 parts by mass, more preferably 40 to 80 parts by mass.
  • the content of the component (A) is at least the above lower limit, heat resistance, relative dielectric constant, glass transition temperature and low thermal expansion tend to be excellent.
  • the fluidity and moldability tend to be excellent.
  • thermosetting resin composition contains the component (B)
  • its content is preferably 5 to 50 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. It is preferably 10 to 40 parts by mass, more preferably 20 to 35 parts by mass.
  • the content of the component (B) is at least the above lower limit, heat resistance, glass transition temperature and low thermal expansion tend to be excellent.
  • the thermosetting resin composition contains the component (C)
  • its content is preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition.
  • the amount is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass.
  • the content of the component (C) is at least the above lower limit, heat resistance and relative permittivity tend to be excellent.
  • heat resistance, copper foil adhesiveness and low thermal expansion tend to be excellent.
  • the thermosetting resin composition contains the component (D)
  • its content is preferably 30 to 200 parts by mass, more preferably 30 to 200 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. It is preferably 40 to 150 parts by mass, more preferably 45 to 120 parts by mass.
  • the content of the component (D) is at least the above lower limit, the low thermal expansion tends to be excellent.
  • thermosetting resin composition contains the component (E)
  • its content is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. , More preferably 0.5 to 5 parts by mass, further preferably 1 to 3 parts by mass.
  • the content of the component (E) is at least the above lower limit, the copper foil adhesiveness and low thermal expansion tend to be excellent.
  • the heat resistance tends to be excellent.
  • thermosetting resin composition contains the component (F)
  • its content is preferably 2 to 30 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition.
  • the amount is preferably 5 to 20 parts by mass, more preferably 7 to 15 parts by mass.
  • the content of the component (F) is at least the above lower limit value, the relative dielectric constant tends to be excellent.
  • heat resistance and copper foil adhesiveness tend to be excellent.
  • the thermosetting resin composition contains the component (G)
  • its content is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. , More preferably 0.1 to 3 parts by mass, still more preferably 0.2 to 1 part by mass.
  • thermosetting resin composition is a flame retardant, a colorant, an antioxidant, a reducing agent, a UV absorber, an optical brightener, an adhesion improver, and an organic filler within a range that does not impair the effects of the present invention. It may contain other components such as. For each of these, one kind may be contained alone, or two or more kinds may be contained.
  • thermosetting resin composition used in the production method of the present embodiment is not particularly limited, but for example, the above thermosetting resin composition is impregnated or coated on a glass cloth (g) and semi-cured by heating or the like ( It can be manufactured in the B stage).
  • the thermosetting resin composition may be in the form of a varnish diluted with an organic solvent such as methyl ethyl ketone.
  • concentration of nonvolatile components in the varnish is, for example, 40 to 80% by mass, preferably 50 to 75% by mass.
  • the drying conditions after impregnation are not particularly limited, but the heating temperature is, for example, 120 to 200° C., preferably 140 to 180° C., and the heating time is, for example, 30 seconds to 30 minutes, preferably 1 to 10 minutes. is there.
  • the thickness of the prepreg (p) is preferably 3 to 80 ⁇ m, more preferably 5 to 50 ⁇ m, further preferably 10 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m, from the viewpoint of keeping the strength good and thinning.
  • the content of the thermosetting resin composition in the prepreg (p) is preferably 50 to 90% by mass, more preferably 60 to 80% by mass, and more preferably 65 to 75% by mass in terms of the solid content of the thermosetting resin composition. % Is more preferable.
  • the solid content in the present embodiment refers to components in the composition other than volatile substances such as water and a solvent described later. That is, the solid content does not necessarily mean that it is solid, including liquid, starch syrup and wax at room temperature around 25°C.
  • the method for manufacturing the composite material of the present embodiment has a step of heating the prepreg (p) containing the glass cloth (g) and the thermosetting resin composition to 200° C. or higher.
  • the “step of heating to 200° C. or higher” means that the product temperature (that is, prepreg) becomes 200° C. or higher.
  • the heating device to be used may be set to 200° C. or higher.
  • the heating temperature in the heating step is preferably 202° C. or higher, more preferably 205° C. or higher. Further, the heating temperature is preferably 300° C. or lower, and more preferably 250° C.
  • the heating time in the heating step is not particularly limited, but from the viewpoint of productivity and dimensional stability, it is preferably 15 to 300 minutes, more preferably 30 to 200 minutes, and further preferably 60 to 90 minutes.
  • the pressing pressure in the heating step is preferably 0.2 to 10 MPa, more preferably 1 to 6 MPa, and further preferably 2 to 4 MPa from the viewpoint of productivity and dimensional stability.
  • a known molding method for a laminated plate for electric insulating material and a multilayer plate can be applied, and for example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine or the like can be used. ..
  • the composite material of the present embodiment is a composite material manufactured by the method of manufacturing the composite material of the present embodiment. That is, the composite material of the present embodiment is manufactured through a step of heating the prepreg (p) containing the glass cloth (g) and the thermosetting resin composition to 200° C. or higher, and, for example, Examples include a cured product obtained by heating one or two or more layers of prepreg (p) to 200° C. or higher, a laminated plate containing these cured products, and the like.
  • the manufacturing method of the laminated board of the present embodiment A method for producing a laminate having two or more insulating layers, or a laminate having one or more insulating layers and one or more metal foils,
  • the insulating layer is a composite material, It is a method for manufacturing a laminated plate, in which the composite material is formed by the method for manufacturing a composite material according to the present embodiment.
  • the laminated board of the present embodiment may be one in which at least one prepreg (p) is laminated, and examples thereof include the following aspects (1) to (5).
  • a metal-clad laminate obtained by laminating and molding a metal foil on one surface or both surfaces of one layer of a prepreg (p).
  • the metal of the metal foil is not particularly limited as long as it is used for an electric insulating material, but from the viewpoint of conductivity, preferably copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, It is preferably tungsten, iron, titanium, chromium, or an alloy containing at least one of these metal elements, more preferably copper or amylnium, and further preferably copper.
  • the thickness of the metal foil is not particularly limited and can be appropriately selected depending on the application of the printed wiring board.
  • the thickness of the metal foil is preferably 0.5 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, further preferably 5 to 50 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
  • the plurality of prepregs may be only prepreg (p), or prepreg (p) and a prepreg other than prepreg (p) may be used in combination.
  • the prepreg (p) is used from the viewpoint of dimensional stability.
  • the morphology and composition of the plurality of prepregs (p) may be the same or different.
  • the laminated plate of the present embodiment is obtained by stacking one or more layers of prepreg (p) and a metal foil or the like so as to have a desired structure, and laminating and molding.
  • Various conditions such as a heating temperature, a heating time, a press pressure, and an apparatus used for the lamination molding are the same as the above-mentioned manufacturing conditions of the composite material.
  • the thickness of the laminated plate of the present embodiment is not particularly limited and may be appropriately determined depending on the application of the laminated plate, but is, for example, 0.03 to 1.6 mm.
  • the printed wiring board of this embodiment is a printed wiring board using the laminated board of this embodiment.
  • the printed wiring board of the present embodiment can be manufactured, for example, by subjecting the copper foil of the copper-clad laminate, which is one aspect of the laminate of the present embodiment, to circuit processing.
  • Circuit processing for example, after forming a resist pattern on the surface of the copper foil, remove unnecessary portions of the copper foil by etching, after removing the resist pattern, to form the necessary through holes by drilling, after forming the resist pattern again, It can be performed by performing plating for electrical connection to the through hole and finally removing the resist pattern.
  • the step of laminating and circuit-processing a copper clad laminate on the surface of the obtained printed wiring board under the same conditions as above can be repeated a necessary number of times to obtain a multilayer printed wiring board.
  • the semiconductor package of the present embodiment has a semiconductor element mounted on the printed wiring board of the present embodiment.
  • the semiconductor package of this embodiment can be manufactured by mounting a semiconductor chip, a memory, etc. at a predetermined position on the printed wiring board of this embodiment.
  • the above-mentioned three hole distances in the warp direction X of the glass cloth and the three hole holes in the weft direction Y of the glass cloth were performed in the same procedure as described above. The respective distances were measured, and this was designated as "dimensional value after lamination”. Further, for each interhole distance, "initial dimension value"-"post-stacking dimension value” was obtained, and this was set as "dimension change amount S" of each interhole distance. Then, the average value S(x) ave , the maximum value S(x) max, and the minimum value S( of the dimensional change amounts of the three hole distances (1-7, 2-6, 3-5) in the warp direction X are calculated.
  • the values S(y) min are calculated respectively, and the difference between the maximum value and the average value (maximum value-average value) and the difference between the average value and the minimum value (average value-minimum) are obtained for each of the warp direction X and the weft direction Y. Value), and the difference between the maximum value and the minimum value (maximum value-minimum value) was used as an index for evaluation of dimensional variation.
  • Preparation of prepreg Production example 1 (Prepreg 1) In producing the prepreg 1, the following components were prepared.
  • Component (B) Cresol novolac type epoxy resin (manufactured by DIC Corporation)
  • the above component (A) is 45 parts by mass
  • the component (B) is 30 parts by mass
  • the component (C) is 25 parts by mass
  • the component (D) is the total amount of the resin components [(A) to (C) Total] 50 parts by mass with respect to 100 parts by mass
  • 2 parts by mass of the component (E) are blended with 100 parts by mass of the total amount of the resin components, and methyl ethyl ketone is added so that the nonvolatile content of the solution becomes 67% by mass.
  • a resin varnish was prepared.
  • the blending amount of each of the above-mentioned components is all parts by mass of a solid content, and in the case of a solution (excluding an organic solvent) or a dispersion liquid, a solid content conversion amount.
  • the obtained resin varnish was impregnated in glass cloth 1 shown in Table 1 and dried at 160° C. for 4 minutes to obtain prepreg 1.
  • Production example 2 (Prepreg 2) A prepreg 2 was produced in the same manner as in Production Example 1, except that the glass cloth in Production Example 1 was changed from the glass cloth 1 shown in Table 1 to the glass cloth 2.
  • Example 1 Comparative Examples 1 to 3 (Preparation of double-sided copper clad laminate) 18 ⁇ m copper foil “3EC-VLP-18” (manufactured by Mitsui Kinzoku Co., Ltd.) was overlaid on both surfaces of the prepreg shown in Table 2 and heat-pressed under the molding conditions shown in Table 2 to give a thickness of 0.05 mm. A double-sided copper clad laminate was prepared.
  • the laminated body of Example 1 manufactured by the manufacturing method of the present embodiment has a small variation in dimensional change.
  • the laminated plates of Comparative Examples 1 and 2 using the glass cloth 2 that does not satisfy the average filament diameter ratio and the weave density ratio, and the laminated plate of Comparative Example 3 in which the molding temperature is less than 200° C. was great.
  • the glass cloth 2 that does not satisfy the average filament diameter ratio and the weave density ratio is used, by changing from the low temperature condition (Comparative Example 1) to the high temperature condition (Comparative Example 2), the variation in the dimensional change amount in the X direction is varied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

Provided is a method of manufacturing a composite material, the method comprising a step for heating a prepreg containing glass cloth and a thermosetting resin composition to 200°C or higher, wherein an average filament diameter ratio (warp /weft) of warp and weft constituting the glass cloth is more than 1.00, and a weave density ratio (warp /weft) of warp and weft is more than 1.00. Also provided are a composite material obtained by the manufacturing method, a laminated board using the composite material and a method of manufacturing the laminated board, a printed wiring board and a semiconductor package, and a prepreg for use in a method for manufacturing the composite material.

Description

複合材及びその製造方法、プリプレグ、積層板、プリント配線板並びに半導体パッケージComposite material and manufacturing method thereof, prepreg, laminated board, printed wiring board and semiconductor package
 本発明は、複合材及びその製造方法、プリプレグ、積層板、プリント配線板並びに半導体パッケージに関する。 The present invention relates to a composite material and its manufacturing method, a prepreg, a laminated board, a printed wiring board, and a semiconductor package.
 近年、電子機器の小型化、軽量化及び多機能化が一段と進み、これに伴い、LSI(Large Scale Integration)、チップ部品等の高集積化が進み、その形態も多ピン化及び小型化へと急速に変化している。このため、電子部品の実装密度を向上するために、多層プリント配線板の微細配線化の開発が進められている。これらの要求に合致する多層プリント配線板の製造手法として、例えば、プリプレグ等を絶縁層として用い、必要な部分のみ、例えばレーザ照射によって形成したビアホール(以下、「レーザービア」ともいう)で接続しながら配線層を形成するビルドアップ方式の多層プリント配線板が、軽量化、小型化及び微細配線化に適した手法として主流になりつつある。 In recent years, electronic devices have become smaller, lighter and more multifunctional, and along with this, high integration of LSIs (Large Scale Integration), chip components, etc. has progressed, and their form has also become multi-pin and miniaturized. It is changing rapidly. Therefore, in order to improve the mounting density of electronic components, development of fine wiring for a multilayer printed wiring board is underway. As a method for manufacturing a multilayer printed wiring board that meets these requirements, for example, prepreg or the like is used as an insulating layer, and only necessary portions are connected by, for example, via holes formed by laser irradiation (hereinafter, also referred to as “laser vias”). On the other hand, a build-up type multilayer printed wiring board for forming a wiring layer is becoming mainstream as a method suitable for weight reduction, downsizing and fine wiring.
 多層プリント配線板では微細な配線ピッチで形成された複数層の配線パターン間の高い電気的接続信頼性及び優れた高周波特性を備えていることが重要であり、また、半導体チップとの高い接続信頼性が要求される。特に、近年、多機能型携帯電話端末等のマザーボードにおいて、薄型化及び配線の高密度化が著しく、その層間接続に供されるレーザビアには、小径化が求められている。
 小径なレーザビアで層間接続する場合、基板の寸法安定性が重要な特性の1つとして挙げられる。多層配線化する際、各基板には、複数回の熱量及び積層時の応力が加えられることになる。したがって、基板自体の寸法バラつき、特に、熱履歴等による各基板の寸法変化量のバラつきが大きい場合、積層する毎にレーザビアの位置ずれが発生し、接続信頼性の低下等の不良の原因となり得る。このことから、寸法変化量のバラつきが小さい基板が求められている。
In a multilayer printed wiring board, it is important to have high electrical connection reliability between wiring patterns of multiple layers formed with a fine wiring pitch and excellent high-frequency characteristics, and high connection reliability with semiconductor chips. Sex is required. In particular, in recent years, in a mother board of a multifunctional mobile phone terminal or the like, thinning and wiring density have been remarkably increased, and a laser via used for the interlayer connection is required to have a small diameter.
When interlayer connection is performed with a laser via having a small diameter, dimensional stability of the substrate is one of important characteristics. When a multilayer wiring is formed, a heat quantity and stress at the time of stacking are applied to each substrate a plurality of times. Therefore, when the dimensional variation of the substrates themselves, especially the dimensional variation of each substrate due to heat history or the like is large, a laser via position shift occurs every stacking, which may cause a failure such as deterioration of connection reliability. .. For this reason, there is a demand for a substrate having a small variation in dimensional change.
 例えば、特許文献1には、多層プリント配線板における層間の合致性を高めることを目的として、予め硬化させた熱硬化性樹脂を含み、第1面と第2面を有する基材からなるコアと、該コアの第1面と第2面のそれぞれに形成した第1の接着剤層と第2の接着剤層とからなることを特徴とするプリプレグが開示されている。 For example, Patent Document 1 discloses a core made of a base material having a first surface and a second surface, which includes a thermosetting resin that is pre-cured for the purpose of improving the conformity between layers in a multilayer printed wiring board. Disclosed is a prepreg characterized by comprising a first adhesive layer and a second adhesive layer formed on each of the first surface and the second surface of the core.
特開2002-103494号公報JP 2002-103494 A
 しかしながら、特許文献1のプリプレグは、コアとして予め硬化させた熱硬化性樹脂を含むため、配線埋め込み性等に劣るという問題があった。また、特許文献1のプリプレグは、硬化度の異なる複数の層を必要とすることから煩雑な生産工程が必要であり、より簡便な方法で得られる寸法変化量のバラつきが小さいプリプレグが望まれている。 However, the prepreg of Patent Document 1 has a problem that it is inferior in wiring embedding property and the like because it contains a thermosetting resin that has been cured in advance as a core. Further, the prepreg of Patent Document 1 requires a plurality of layers having different degrees of curing, and thus requires a complicated production process, and a prepreg having a small variation in dimensional change obtained by a simpler method is desired. There is.
 そこで、本発明は、寸法変化量のバラつきが小さい複合材及びその製造方法、該複合材を用いた積層板及びその製造方法、プリント配線板及び半導体パッケージ、並びに該複合材の製造方法に用いられるプリプレグを提供することを目的とする。 Therefore, the present invention is used for a composite material having a small variation in dimensional change and a method for manufacturing the same, a laminated board and a method for manufacturing the same, a printed wiring board and a semiconductor package, and a method for manufacturing the composite material. The purpose is to provide prepreg.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、下記の本発明によって、上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明は、下記[1]~[13]に関する。
[1]ガラスクロスと熱硬化性樹脂組成物とを含有するプリプレグを、200℃以上に加熱する工程を有する複合材の製造方法であって、
 前記ガラスクロスを構成する緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸との織密度比(経糸/緯糸)が1.00超である、複合材の製造方法。
[2]前記熱硬化性樹脂組成物が、(A)N-置換マレイミド基を有するマレイミド化合物、(B)エポキシ樹脂、及び(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂を含有するものである、上記[1]に記載の複合材の製造方法。
[3]前記熱硬化性樹脂組成物が、さらに、(D)アミノシラン系カップリング剤で処理されたシリカを含有するものである、上記[2]に記載の複合材の製造方法。
[4]前記平均フィラメント径比(緯糸/経糸)が、1.02~1.30である、上記[1]~[3]のいずれかに記載の複合材の製造方法。
[5]前記織密度比(経糸/緯糸)が、1.10~1.50である、上記[1]~[4]のいずれかに記載の複合材の製造方法。
[6]前記ガラスクロスの厚さが、5~50μmである、上記[1]~[5]のいずれかに記載の複合材の製造方法。
[7]前記ガラスクロスの目付が、12~35g/mである、上記[1]~[6]のいずれかに記載の複合材の製造方法。
[8]2層以上の絶縁層を有する積層板、又は1層以上の絶縁層と1層以上の金属箔とを有する積層板の製造方法であって、
 前記絶縁層が複合材であり、
 該複合材を、上記[1]~[7]のいずれかに記載の複合材の製造方法によって形成する、積層板の製造方法。
[9]上記[1]~[7]のいずれかに記載の複合材の製造方法によって製造される複合材。
[10]上記[9]に記載の複合材を含有する積層板。
[11]上記[10]に記載の積層板を用いてなるプリント配線板。
[12]上記[11]に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
[13]ガラスクロスと熱硬化性樹脂組成物とを含有するプリプレグであって、
 前記ガラスクロスにおける、緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸との織密度比(経糸/緯糸)が1.00超であり、
 前記熱硬化性樹脂組成物が、(A)N-置換マレイミド基を有するマレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、及び(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂を含有するものである、プリプレグ。
As a result of intensive studies to solve the above problems, the present inventors have found that the following problems can be solved by the present invention, and have completed the present invention.
The present invention relates to the following [1] to [13].
[1] A method for producing a composite material, which comprises a step of heating a prepreg containing a glass cloth and a thermosetting resin composition to 200° C. or higher,
The average filament diameter ratio (weft/warp) of the weft and warp constituting the glass cloth is more than 1.00, and the weave density ratio of warp and weft (warp/weft) is more than 1.00. There is a method of manufacturing a composite material.
[2] The thermosetting resin composition is derived from (A) a maleimide compound having an N-substituted maleimide group, (B) an epoxy resin, and (C) a structural unit derived from an aromatic vinyl compound and maleic anhydride. The method for producing the composite material according to the above [1], which comprises a copolymer resin having a structural unit
[3] The method for producing a composite material according to the above [2], wherein the thermosetting resin composition further contains (D) silica treated with an aminosilane coupling agent.
[4] The method for producing a composite material according to any one of the above [1] to [3], wherein the average filament diameter ratio (weft/warp) is 1.02 to 1.30.
[5] The method for producing a composite material according to any one of the above [1] to [4], wherein the woven density ratio (warp/weft) is 1.10 to 1.50.
[6] The method for producing a composite material according to any one of the above [1] to [5], wherein the glass cloth has a thickness of 5 to 50 μm.
[7] The method for producing a composite material according to any one of the above [1] to [6], wherein the basis weight of the glass cloth is 12 to 35 g/m 2 .
[8] A method for producing a laminate having two or more insulating layers, or a laminate having one or more insulating layers and one or more metal foils,
The insulating layer is a composite material,
A method for producing a laminated plate, wherein the composite material is formed by the method for producing a composite material according to any one of the above [1] to [7].
[9] A composite material produced by the method for producing a composite material according to any one of the above [1] to [7].
[10] A laminated board containing the composite material according to the above [9].
[11] A printed wiring board obtained by using the laminated board as described in [10] above.
[12] A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to [11].
[13] A prepreg containing a glass cloth and a thermosetting resin composition,
In the glass cloth, the average filament diameter ratio of the weft and the warp (weft/warp) is more than 1.00, and the weaving density ratio of the warp and the weft (warp/weft) is more than 1.00. ,
The thermosetting resin composition is derived from (A) a maleimide compound having an N-substituted maleimide group, (B) an epoxy resin having at least two epoxy groups in one molecule, and (C) an aromatic vinyl compound. A prepreg, which contains a copolymer resin having a structural unit having a structural unit and a structural unit derived from maleic anhydride.
 本発明により、寸法変化量のバラつきが小さい複合材及びその製造方法、該複合材を用いた積層板及びその製造方法、プリント配線板及び半導体パッケージ、並びに該複合材の製造方法に用いられるプリプレグを提供することができる。 According to the present invention, a composite material having a small variation in dimensional change and a method for manufacturing the same, a laminated board using the composite material, a method for manufacturing the same, a printed wiring board and a semiconductor package, and a prepreg used for the method for manufacturing the composite material are provided. Can be provided.
寸法変化量のバラつきの評価試験サンプルを示す模式図である。It is a schematic diagram which shows the evaluation test sample with the variation of a dimensional change amount.
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値及び上限値と任意に組み合わせられる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
In the numerical ranges described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. Further, the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value and the upper limit value of the other numerical range, respectively.
Further, each component and material exemplified in the present specification may be used alone or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. Means
The present invention also includes an embodiment in which the items described in the present specification are arbitrarily combined.
[複合材及びその製造方法]
 本実施形態の複合材の製造方法は、ガラスクロスと熱硬化性樹脂組成物とを含有するプリプレグを、200℃以上に加熱する工程を有する複合材の製造方法であって、
 前記ガラスクロスにおける、緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸との織密度比(経糸/緯糸)が1.00超である、複合材の製造方法である。
 以下、本実施形態の製造方法に使用するガラスクロスを、「ガラスクロス(g)」、プリプレグを、「プリプレグ(p)」と称し、他の物と区別する。
[Composite Material and Manufacturing Method Thereof]
The method for producing a composite material of the present embodiment is a method for producing a composite material having a step of heating a prepreg containing a glass cloth and a thermosetting resin composition to 200° C. or higher,
In the glass cloth, the average filament diameter ratio of the weft and the warp (weft/warp) is more than 1.00, and the weave density ratio of the warp and the weft (warp/weft) is more than 1.00. , A method for manufacturing a composite material.
Hereinafter, the glass cloth used in the manufacturing method of the present embodiment will be referred to as “glass cloth (g)”, and the prepreg will be referred to as “prepreg (p)” to distinguish them from other objects.
 本実施形態の製造方法によると寸法変化量のバラつきが小さい複合材を得ることができる。その理由については定かではないが、次のように推測される。
 本実施形態の製造方法に用いるガラスクロス(g)は、平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸の織密度比(経糸/緯糸)が1.00超という特徴を有し、これによって、適度な厚みを維持したまま、緯糸方向を強度が高められる。そのことにより、ガラスクロス製造時における経糸方向に付与される張力に起因する応力の発生が抑制され、複合材の製造過程における寸法変化量が均一化したものと推測される。
 さらに、寸法変化量の均一化の度合いは、ガラスクロス(g)と熱硬化性樹脂組成物とを組み合わせて、200℃以上の高温硬化をすることによって、顕著に高まる傾向にある。なお、本実施形態における高温硬化による寸法変化量の均一化の度合いは、ガラスクロス(g)以外のガラスクロスを用いた場合よりも大きい。ここで、熱硬化性樹脂は、高温硬化することで均一な硬化収縮が生じ、寸法バラつきも低減する傾向にあると考えられるが、不均一な応力を内在しているガラスクロスは、高温に加熱すると、該応力を開放するために不均一に寸法が変化する。したがって、従来のガラスクロスを用いた場合に高温硬化をしても、熱硬化性樹脂の均一な硬化収縮と、ガラスクロスの不均一な収縮が競合して生じ、均一な寸法変化量が得られなかったと考えられる。一方、本実施形態の製造方法に用いるガラスクロス(g)は不均一な応力の発生が抑制されたものであるため、高温硬化による熱硬化性樹脂による均一な収縮が効果的に発現し、寸法変化量が顕著に均一化したものと推測される。
 以下、最初に本実施形態の複合材の製造方法に用いる各部材について説明し、その後、好適な製造条件について説明する。
According to the manufacturing method of the present embodiment, it is possible to obtain a composite material with a small variation in the amount of dimensional change. The reason for this is not clear, but it is speculated as follows.
The glass cloth (g) used in the manufacturing method of the present embodiment has an average filament diameter ratio (weft/warp) of more than 1.00 and a weave density ratio of warp and weft (warp/weft) of 1. It has a characteristic of more than 00, which makes it possible to increase the strength in the weft direction while maintaining an appropriate thickness. It is presumed that this suppresses the generation of stress due to the tension applied in the warp direction during the production of the glass cloth, and makes the dimensional change in the composite material production process uniform.
Furthermore, the degree of uniformity of the amount of dimensional change tends to be significantly increased by combining the glass cloth (g) and the thermosetting resin composition and performing high temperature curing at 200° C. or higher. The degree of uniforming of the dimensional change amount due to high temperature curing in the present embodiment is larger than that in the case of using a glass cloth other than the glass cloth (g). Here, it is considered that the thermosetting resin tends to undergo uniform curing shrinkage when cured at high temperature and reduce dimensional variation, but the glass cloth containing the uneven stress is heated at high temperature. Then, the dimensions change nonuniformly in order to release the stress. Therefore, even if the conventional glass cloth is used for high-temperature curing, uniform shrinkage of the thermosetting resin and uneven shrinkage of the glass cloth compete with each other, and a uniform dimensional change amount can be obtained. It is thought that there was not. On the other hand, since the glass cloth (g) used in the manufacturing method of the present embodiment suppresses the generation of uneven stress, uniform shrinkage due to the thermosetting resin due to high temperature curing is effectively exhibited, and It is presumed that the amount of change was significantly uniform.
Hereinafter, first, each member used in the method for manufacturing the composite material of the present embodiment will be described, and thereafter, suitable manufacturing conditions will be described.
<プリプレグ(p)>
 本実施形態の製造方法に用いられるプリプレグ(p)は、ガラスクロス(g)と熱硬化性樹脂組成物とを含有するものである。
<Prepreg (p)>
The prepreg (p) used in the manufacturing method of the present embodiment contains glass cloth (g) and a thermosetting resin composition.
(ガラスクロス(g))
 ガラスクロス(g)は、緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸の織密度比(経糸/緯糸)が1.00超のものである。
 なお、本実施形態において、経糸及び緯糸の平均フィラメント径、織密度、後述するガラスクロスの厚さ等のガラスクロスの物性は、JIS R 3240に準拠して測定することができる。
(Glass cloth (g))
The glass cloth (g) has an average filament diameter ratio (weft/warp) of the weft and the warp of more than 1.00 and a weaving density ratio of the warp and the weft (warp/weft) of more than 1.00. It is a thing.
In the present embodiment, the physical properties of the glass cloth such as the average filament diameter of the warp and the weft, the woven density, and the thickness of the glass cloth described later can be measured in accordance with JIS R3240.
〔平均フィラメント径比(緯糸/経糸)〕
 ガラスクロス(g)における、緯糸と経糸との平均フィラメント径比(緯糸/経糸)は、寸法変化量のバラつきを小さくする観点から、1.00超であり、1.02~1.30が好ましく、1.05~1.20がより好ましく、1.10~1.15がさらに好ましい。
[Average filament diameter ratio (weft/warp)]
The average filament diameter ratio (weft/warp) of the weft and the warp in the glass cloth (g) is more than 1.00 and preferably 1.02 to 1.30 from the viewpoint of reducing the variation in the dimensional change amount. , 1.05 to 1.20 are more preferable, and 1.10 to 1.15 are further preferable.
〔平均フィラメント径〕
 ガラスクロス(g)における、経糸の平均フィラメント径は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、上記平均フィラメント径比(緯糸/経糸)を充足した状態において、2.0~10μmが好ましく、3.0~8.0μmがより好ましく、3.5~6.0μmがさらに好ましく、4.0~5.0μmが特に好ましい。
 ガラスクロス(g)における、緯糸の平均フィラメント径は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、上記平均フィラメント径比(緯糸/経糸)を充足した状態において、2.0~10μmが好ましく、3.0~8.0μmがより好ましく、4.0~6.0μmがさらに好ましく、4.5~5.5μmが特に好ましい。
[Average filament diameter]
The average filament diameter of the warp in the glass cloth (g) is 2.0 to 2.0 in a state where the above average filament diameter ratio (weft/warp) is satisfied from the viewpoint of keeping the strength of the glass cloth good and reducing the thickness. 10 μm is preferable, 3.0 to 8.0 μm is more preferable, 3.5 to 6.0 μm is further preferable, and 4.0 to 5.0 μm is particularly preferable.
The average filament diameter of the weft in the glass cloth (g) is 2.0 to 2.0 in a state where the above average filament diameter ratio (weft/warp) is satisfied, from the viewpoint of thinning while maintaining the strength of the glass cloth good. 10 μm is preferable, 3.0 to 8.0 μm is more preferable, 4.0 to 6.0 μm is further preferable, and 4.5 to 5.5 μm is particularly preferable.
〔フィラメント本数〕
 ガラスクロス(g)の経糸及び緯糸1本当たりのフィラメント本数は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、40~400本が好ましく、50~300本がより好ましく、60~200本がさらに好ましく、80~150本が特に好ましい。
[Number of filaments]
The number of filaments per warp and weft of the glass cloth (g) is preferably 40 to 400, more preferably 50 to 300, and more preferably 60 to 400 from the viewpoint of thinning while maintaining good strength of the glass cloth. 200 is more preferable, and 80 to 150 is particularly preferable.
〔織密度比(経糸/緯糸)〕
 ガラスクロス(g)における、経糸と緯糸の織密度比(経糸/緯糸)は、寸法変化量のバラつきを小さくする観点から、1.00超であり、1.10~1.50が好ましく、1.20~1.35がより好ましく、1.25~1.30がさらに好ましい。
[Weave density ratio (warp/weft)]
The weaving density ratio of the warp to the weft (warp/weft) in the glass cloth (g) is more than 1.00, preferably 1.10 to 1.50, from the viewpoint of reducing variation in the dimensional change. 20 to 1.35 is more preferable, and 1.25 to 1.30 is further preferable.
〔織密度〕
 ガラスクロス(g)における、経糸の織密度は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、上記織密度比(経糸/緯糸)を充足した状態において、40~100本/25mmが好ましく、50~90本/25mmがより好ましく、60~85本/25mmがさらに好ましく、70~80本/25mmが特に好ましい。
 ガラスクロス(g)における、緯糸の織密度は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、上記織密度比(経糸/緯糸)を充足した状態において、40~90本/25mmが好ましく、45~80本/25mmがより好ましく、50~70本/25mmがさらに好ましく、55~65本/25mmが特に好ましい。
[Weave density]
The weaving density of the warp in the glass cloth (g) is 40 to 100 yarns/25 mm in a state where the above weaving density ratio (warp/weft) is satisfied from the viewpoint of keeping the strength of the glass cloth good and making it thin. Is preferable, 50 to 90 lines/25 mm is more preferable, 60 to 85 lines/25 mm is further preferable, and 70 to 80 lines/25 mm is particularly preferable.
The weaving density of the glass cloth (g) is 40 to 90 yarns/25 mm in a state where the above weaving density ratio (warp/weft) is satisfied from the viewpoint of keeping the strength of the glass cloth good and making it thin. Is preferable, 45 to 80 lines/25 mm is more preferable, 50 to 70 lines/25 mm is further preferable, and 55 to 65 lines/25 mm is particularly preferable.
〔ガラスクロス(g)の厚さ〕
 ガラスクロス(g)の厚さは、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、3~80μmが好ましく、5~50μmがより好ましく、10~40μmがさらに好ましく、15~30μmが特に好ましく、20~28μmが最も好ましい。
[Thickness of glass cloth (g)]
The thickness of the glass cloth (g) is preferably 3 to 80 μm, more preferably 5 to 50 μm, further preferably 10 to 40 μm, and 15 to 30 μm from the viewpoint of making the glass cloth thinner while keeping the strength of the glass cloth good. Particularly preferred, 20 to 28 μm is most preferred.
〔目付〕
 ガラスクロス(g)の目付は、ガラスクロスの強度を良好に保ちつつ、薄型化する観点から、5~50g/mが好ましく、12~35g/mがより好ましく、16~32g/mがさらに好ましく、20~30g/mが特に好ましく、22~28g/mが最も好ましい。
[Unit weight]
Glass basis weight cross (g), while maintaining good strength of the glass cloth, from the viewpoint of thinning, preferably 5 ~ 50g / m 2, more preferably 12 ~ 35g / m 2, 16 ~ 32g / m 2 Is more preferable, 20 to 30 g/m 2 is particularly preferable, and 22 to 28 g/m 2 is most preferable.
 ガラスクロスは、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、寸法変化量のバラつき低減、耐熱性、耐湿性、加工性等の面から好適である。
 ガラスクロスを構成するフィラメント(単繊維)の種類としては特に限定されず、Eガラス、Sガラス、Cガラス、Dガラス、Tガラス、NEガラス、Aガラス、Hガラス、石英ガラス等が挙げられる。
The glass cloth that is surface-treated with a silane coupling agent or the like or is mechanically opened is suitable in terms of reduction of variation in dimensional change, heat resistance, moisture resistance, workability, and the like.
The type of filament (single fiber) forming the glass cloth is not particularly limited, and examples thereof include E glass, S glass, C glass, D glass, T glass, NE glass, A glass, H glass, and quartz glass.
(熱硬化性樹脂組成物)
 本実施形態の製造方法に用いるプリプレグ(p)が含有する熱硬化性樹脂組成物は、特に限定されず、所望する特性に応じて従来公知の絶縁樹脂材料の中から適宜選択してもよい。
 熱硬化性樹脂組成物は、熱硬化性樹脂を含有するものであれば特に限定されず、熱硬化性樹脂としては、マレイミド化合物、エポキシ樹脂、フェノール樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、耐熱性、成形性及び電気絶縁性の観点から、マレイミド化合物、エポキシ樹脂が好ましい。
(Thermosetting resin composition)
The thermosetting resin composition contained in the prepreg (p) used in the manufacturing method of the present embodiment is not particularly limited, and may be appropriately selected from conventionally known insulating resin materials according to desired characteristics.
The thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin, and as the thermosetting resin, a maleimide compound, an epoxy resin, a phenol resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, Examples thereof include oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, triazine resin and melamine resin. These may be used alone or in combination of two or more. Among these, maleimide compounds and epoxy resins are preferable from the viewpoints of heat resistance, moldability and electric insulation.
 上記熱硬化性樹脂組成物は、優れた銅箔接着性、低熱膨張性、誘電特性等を得る観点から、(A)N-置換マレイミド基を有するマレイミド化合物を含有するものが好ましく、さらに、(B)エポキシ樹脂、(C)置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(D)無機充填材、(E)硬化剤、(F)熱可塑性エラストマー及び(G)硬化促進剤からなる群から選択される1種以上を含有するものがより好ましい。
 以下、各成分の好適な態様について詳細に説明する。
The thermosetting resin composition preferably contains (A) a maleimide compound having an N-substituted maleimide group, from the viewpoint of obtaining excellent copper foil adhesion, low thermal expansion, dielectric properties, and the like. B) Epoxy resin, (C) Copolymer resin having structural unit derived from substituted vinyl compound and structural unit derived from maleic anhydride, (D) inorganic filler, (E) curing agent, (F) thermoplastic Those containing at least one selected from the group consisting of elastomers and (G) curing accelerators are more preferable.
Hereinafter, the suitable aspect of each component is demonstrated in detail.
〔(A)マレイミド化合物〕
 (A)マレイミド化合物は、少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(a1)(以下、「マレイミド化合物(a1)」ともいう)が好ましい。
 マレイミド化合物(a1)としては、複数のマレイミド基のうちの任意の2個のマレイミド基の間に脂肪族炭化水素基を有する(但し、芳香族炭化水素基は存在しない)マレイミド化合物(以下、「脂肪族炭化水素基含有マレイミド」ともいう)、複数のマレイミド基のうちの任意の2個のマレイミド基の間に芳香族炭化水素基を含有するマレイミド化合物(以下、「芳香族炭化水素基含有マレイミド」ともいう)が挙げられる。これらの中でも、高耐熱性、低比誘電率、高銅箔接着性等の観点から、芳香族炭化水素基含有マレイミドが好ましい。
 同様の観点から、マレイミド化合物(a1)は、1分子中に2個~5個のN-置換マレイミド基を有するマレイミド化合物が好ましく、1分子中に2個のN-置換マレイミド基を有するマレイミド化合物がより好ましく、下記一般式(a1-1)~(a1-4)のいずれかで表される芳香族炭化水素基含有マレイミドがさらに好ましく、下記一般式(a1-2)で表される芳香族炭化水素基含有マレイミドが特に好ましい。
 (A)マレイミド化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
[(A) Maleimide compound]
The maleimide compound (A) is preferably a maleimide compound (a1) having at least two N-substituted maleimide groups (hereinafter, also referred to as “maleimide compound (a1)”).
As the maleimide compound (a1), a maleimide compound having an aliphatic hydrocarbon group (provided that an aromatic hydrocarbon group does not exist) between any two maleimide groups among a plurality of maleimide groups (hereinafter, referred to as " (Also referred to as "aliphatic hydrocarbon group-containing maleimide"), a maleimide compound containing an aromatic hydrocarbon group between any two maleimide groups of a plurality of maleimide groups (hereinafter referred to as "aromatic hydrocarbon group-containing maleimide"). Also called). Among these, the aromatic hydrocarbon group-containing maleimide is preferable from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like.
From the same viewpoint, the maleimide compound (a1) is preferably a maleimide compound having 2 to 5 N-substituted maleimide groups in one molecule, and a maleimide compound having 2 N-substituted maleimide groups in one molecule. Is more preferable, and an aromatic hydrocarbon group-containing maleimide represented by any of the following general formulas (a1-1) to (a1-4) is more preferable, and an aromatic hydrocarbon represented by the following general formula (a1-2) Hydrocarbon group-containing maleimides are particularly preferred.
The maleimide compound (A) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、RA1~RA3は、各々独立に、炭素数1~5の脂肪族炭化水素基を示す。XA1は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-、-C(=O)-、-S-、-S-S-又はスルホニル基を示す。p、q及びrは、各々独立に、0~4の整数である。sは、0~10の整数である。
 RA1~RA3が示す炭素数1~5の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、高耐熱性、低比誘電率、高銅箔接着性等の観点から、好ましくは炭素数1~3の脂肪族炭化水素基であり、より好ましくはメチル基、エチル基である。
In the above formula, R A1 to R A3 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms. X A1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, —C(═O)—, —S—, —SS— or a sulfonyl group. p, q, and r are each independently an integer of 0 to 4. s is an integer of 0 to 10.
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A1 to R A3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n- Examples thereof include a pentyl group. The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group, from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like. It is an ethyl group.
 XA1が示す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高耐熱性、低比誘電率、高銅箔接着性等の観点から、好ましくは炭素数1~3のアルキレン基であり、より好ましくはメチレン基である。
 XA1が示す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高耐熱性、低比誘電率、高銅箔接着性等の観点から、イソプロピリデン基が好ましい。
 XA1としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基が好ましい。より好ましいものは前述の通りである。
 p、q及びrは、各々独立に、0~4の整数であり、高耐熱性、低比誘電率、高銅箔接着性等の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 sは、0~10の整数であり、入手容易性の観点から、好ましくは0~5の整数、より好ましくは0~3の整数である。
Examples of the alkylene group having 1 to 5 carbon atoms represented by X A1 include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, and 1,5-pentamethylene group. To be The alkylene group is preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a methylene group, from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness and the like.
Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group. Among these, an isopropylidene group is preferable from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like.
Among the above options, X A1 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms. More preferable ones are as described above.
p, q, and r are each independently an integer of 0 to 4, and from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, etc., each is preferably an integer of 0 to 2; It is preferably 0 or 1, and more preferably 0.
s is an integer of 0 to 10, and from the viewpoint of easy availability, it is preferably an integer of 0 to 5, and more preferably an integer of 0 to 3.
 マレイミド化合物(a1)としては、具体的には、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(マレイミドメチル)シクロヘキサン等の脂肪族炭化水素基含有マレイミド;N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ビス(3-マレイミドフェノキシ)ビフェニル、4,4’-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等の芳香族炭化水素基含有マレイミドなどが挙げられる。
 これらの中でも、反応率が高く、より高耐熱性化できるという観点からは、ビス(4-マレイミドフェニル)メタン、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ジスルフィド、N,N’-(1,3-フェニレン)ビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましく、安価であるという観点からは、ビス(4-マレイミドフェニル)メタン、N,N’-(1,3-フェニレン)ビスマレイミドが好ましい。
Specific examples of the maleimide compound (a1) include N,N'-ethylene bismaleimide, N,N'-hexamethylene bismaleimide, bis(4-maleimidocyclohexyl)methane, and 1,4-bis(maleimidomethyl). Maleimides containing aliphatic hydrocarbon groups such as cyclohexane; N,N'-(1,3-phenylene)bismaleimide, N,N'-[1,3-(2-methylphenylene)]bismaleimide, N,N' -[1,3-(4-Methylphenylene)]bismaleimide, N,N'-(1,4-phenylene)bismaleimide, bis(4-maleimidophenyl)methane, bis(3-methyl-4-maleimidophenyl) ) Methane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, bis(4-maleimidophenyl) ether, bis(4-maleimidophenyl) sulfone, bis(4-maleimidophenyl) ) Sulfide, bis(4-maleimidophenyl)ketone, 1,4-bis(4-maleimidophenyl)cyclohexane, 1,4-bis(maleimidomethyl)cyclohexane, 1,3-bis(4-maleimidophenoxy)benzene, 1 ,3-bis(3-maleimidophenoxy)benzene, bis[4-(3-maleimidophenoxy)phenyl]methane, bis[4-(4-maleimidophenoxy)phenyl]methane, 1,1-bis[4-(3 -Maleimidophenoxy)phenyl]ethane, 1,1-bis[4-(4-maleimidophenoxy)phenyl]ethane, 1,2-bis[4-(3-maleimidophenoxy)phenyl]ethane, 1,2-bis[ 4-(4-maleimidophenoxy)phenyl]ethane, 2,2-bis[4-(3-maleimidophenoxy)phenyl]propane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, 2, 2-bis[4-(3-maleimidophenoxy)phenyl]butane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]butane, 2,2-bis[4-(3-maleimidophenoxy)phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 4,4'-bis(3-maleimidophenoxy)biphenyl, 4,4'-bis(4-maleimidophenoxy)biphenyl, bis[4-(3-maleimidophenoxy)phenyl]ketone , Bis[4-(4-maleimidophenoxy)phenyl]ketone, bis(4-maleimidophenyl)disulfide, bis[4-(3-maleimidophenoxy)phenyl]sulfide, bis[4-(4-maleimidophenoxy)phenyl] Sulfide, bis[4-(3-maleimidophenoxy)phenyl]sulfoxide, bis[4-(4-maleimidophenoxy)phenyl]sulfoxide, bis[4-(3-maleimidophenoxy)phenyl]sulfone, bis[4-(4 -Maleimidophenoxy)phenyl] sulfone, bis[4-(3-maleimidophenoxy)phenyl]ether, bis[4-(4-maleimidophenoxy)phenyl]ether, 1,4-bis[4-(4-maleimidophenoxy)] -Α,α-Dimethylbenzyl]benzene, 1,3-bis[4-(4-maleimidophenoxy)-α,α-dimethylbenzyl]benzene, 1,4-bis[4-(3-maleimidophenoxy)-α ,Α-Dimethylbenzyl]benzene, 1,3-bis[4-(3-maleimidophenoxy)-α,α-dimethylbenzyl]benzene, 1,4-bis[4-(4-maleimidophenoxy)-3,5 -Dimethyl-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, 1,4-bis[4- (3-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(3-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl] Examples thereof include aromatic hydrocarbon group-containing maleimides such as benzene and polyphenylmethane maleimide.
Among them, bis(4-maleimidophenyl)methane, bis(4-maleimidophenyl)sulfone, bis(4-maleimidophenyl)sulfide, bis(4 -Maleimidophenyl)disulfide, N,N'-(1,3-phenylene)bismaleimide and 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane are preferable, and bis is preferable from the viewpoint of being inexpensive. (4-maleimidophenyl)methane and N,N′-(1,3-phenylene)bismaleimide are preferred.
 (A)マレイミド化合物は、上記マレイミド化合物(a1)と、モノアミン化合物(a2)及びジアミン化合物(a3)からなる群から選択される1種以上とを反応させて得られる化合物(以下、「変性マレイミド化合物」ともいう)であることが好ましく、マレイミド化合物(a1)とモノアミン化合物(a2)とジアミン化合物(a3)とを反応させて得られる化合物、マレイミド化合物(a1)とジアミン化合物(a3)とを反応させて得られる化合物がより好ましい。 The (A) maleimide compound is a compound obtained by reacting the maleimide compound (a1) with at least one member selected from the group consisting of a monoamine compound (a2) and a diamine compound (a3) (hereinafter, referred to as “modified maleimide compound”). Also referred to as "compound"), a compound obtained by reacting a maleimide compound (a1), a monoamine compound (a2) and a diamine compound (a3), a maleimide compound (a1) and a diamine compound (a3). The compound obtained by the reaction is more preferable.
(モノアミン化合物(a2))
 モノアミン化合物(a2)は、アミノ基を1つ有する化合物であれば特に制限はないが、高耐熱性、低比誘電率、高銅箔接着性等の観点から、酸性置換基を有するモノアミン化合物が好ましく、下記一般式(a2-1)で表されるモノアミン化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
(Monoamine compound (a2))
The monoamine compound (a2) is not particularly limited as long as it is a compound having one amino group, but from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, etc., a monoamine compound having an acidic substituent is preferable. A monoamine compound represented by general formula (a2-1) shown below is more preferable.
Figure JPOXMLDOC01-appb-C000002
 上記一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。
 RA4が示す酸性置換基としては、溶解性及び反応性の観点から、好ましくは水酸基、カルボキシ基であり、耐熱性も考慮すると、より好ましくは水酸基である。
 tは1~5の整数であり、高耐熱性、低比誘電率、高銅箔接着性等の観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。
 RA5が示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RA5が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 uは0~4の整数であり、高耐熱性、低比誘電率、高銅箔接着性等の観点から、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は1、特に好ましくは0である。
In the general formula (a2-1), R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group and a sulfonic acid group. R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom. t is an integer of 1 to 5, u is an integer of 0 to 4, and satisfies 1≦t+u≦5. However, when t is an integer of 2 to 5, a plurality of R A4 may be the same or different. In addition, when u is an integer of 2 to 4, a plurality of R A5 may be the same or different.
The acidic substituent represented by R A4 is preferably a hydroxyl group or a carboxy group from the viewpoint of solubility and reactivity, and more preferably a hydroxyl group in consideration of heat resistance.
t is an integer of 1 to 5, and is preferably an integer of 1 to 3, more preferably 1 or 2, and further preferably 1 from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness, and the like. ..
Examples of the alkyl group having 1 to 5 carbon atoms represented by R A5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an n-pentyl group. .. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the halogen atom represented by R A5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
u is an integer of 0 to 4, and is preferably an integer of 0 to 3, more preferably an integer of 0 to 2 and still more preferably 0 from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesiveness and the like. Alternatively, it is 1, and particularly preferably 0.
 モノアミン化合物(a2)としては、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等が挙げられる。これらの中でも、耐熱性の観点からは、o-アミノフェノール、m-アミノフェノール、p-アミノフェノールが好ましく、誘電特性、低熱膨張性及び製造コストも考慮すると、p-アミノフェノールがより好ましい。
 モノアミン化合物(a2)は1種を単独で使用してもよいし、2種以上を併用してもよい。
Examples of the monoamine compound (a2) include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, m- Aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like can be mentioned. Among these, o-aminophenol, m-aminophenol, and p-aminophenol are preferable from the viewpoint of heat resistance, and p-aminophenol is more preferable in view of dielectric properties, low thermal expansion, and manufacturing cost.
The monoamine compound (a2) may be used alone or in combination of two or more.
(ジアミン化合物(a3))
 ジアミン化合物(a3)は、アミノ基を2つ有する化合物であれば特に制限はないが、高耐熱性、低比誘電率、高銅箔接着性等の観点から、下記一般式(a3-1)で表されるジアミン化合物、及び後述する分子末端にアミノ基を有する変性シロキサン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
(Diamine compound (a3))
The diamine compound (a3) is not particularly limited as long as it is a compound having two amino groups, but from the viewpoint of high heat resistance, low relative dielectric constant, high copper foil adhesion, etc., the following general formula (a3-1) It is preferable that it is a diamine compound represented by or a modified siloxane compound having an amino group at the molecular end described later.
Figure JPOXMLDOC01-appb-C000003

(In the formula, X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—. R A6 and R A7 each independently represent an alkyl group having 1 to 5 carbon atoms, a halogen atom or a hydroxyl group. , Carboxy group or sulfonic acid group. v and w are each independently an integer of 0 to 4.)
 XA2が示す炭素数1~3の脂肪族炭化水素基としては、メチレン基、エチレン基、プロピレン基、プロピリデン基等が挙げられる。
 XA2としては、メチレン基が好ましい。
 RA6及びRA7が示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 v及びwは、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms represented by X A2 include methylene group, ethylene group, propylene group and propylidene group.
As X A2 , a methylene group is preferable.
Examples of the alkyl group having 1 to 5 carbon atoms represented by R A6 and R A7 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, etc. Are listed. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
v and w are preferably integers of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 上記分子末端にアミノ基を有する変性シロキサン化合物としては、下記一般式(a3-2)で表されるジアミン化合物が挙げられる。 Examples of the modified siloxane compound having an amino group at the molecular end include a diamine compound represented by the following general formula (a3-2).
Figure JPOXMLDOC01-appb-C000004

(一般式(a3-2)中、RA8~RA11は、各々独立に、炭素数1~5のアルキル基、フェニル基、又は置換基を有するフェニル基を示す。RA12及びRA13は、各々独立に、2価の有機基を表し、mは2~100の整数である。)
Figure JPOXMLDOC01-appb-C000004

(In the general formula (a3-2), R A8 to R A11 each independently represent an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a phenyl group having a substituent. R A12 and R A13 are Each independently represents a divalent organic group, and m is an integer of 2 to 100.)
 RA8~RA11が示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 置換基を有するフェニル基における置換基としては、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基等が挙げられる。該炭素数1~5のアルキル基としては、前記したものと同じものが挙げられる。該炭素数2~5のアルケニル基としては、ビニル基、アリル基等が挙げられる。炭素数2~5のアルキニル基としては、エチニル基、プロパルギル基等が挙げられる。
 RA12及びRA13が示す2価の有機基としては、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-又はこれらが組み合わされた2価の連結基等が挙げられる。該アルキレン基としては、メチレン基、エチレン基、プロピレン基等の炭素数1~10のアルキレン基が挙げられる。該アルケニレン基としては、炭素数2~10のアルケニレン基が挙げられる。該アルキニレン基としては、炭素数2~10のアルキニレン基が挙げられる。該アリーレン基としては、フェニレン基、ナフチレン基等の炭素数6~20のアリーレン基が挙げられる。
 これらの中でも、RA12及びRA13としては、アルキレン基、アリーレン基が好ましい。
 mは、好ましくは2~50の整数、より好ましくは3~40の整数、さらに好ましくは5~30の整数である。
Examples of the alkyl group having 1 to 5 carbon atoms represented by R A8 to R A11 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. Are listed. As the alkyl group, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
Examples of the substituent in the phenyl group having a substituent include an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, and the like. Examples of the alkyl group having 1 to 5 carbon atoms include those mentioned above. Examples of the alkenyl group having 2 to 5 carbon atoms include vinyl group and allyl group. Examples of the alkynyl group having 2 to 5 carbon atoms include ethynyl group and propargyl group.
Examples of the divalent organic group represented by R A12 and R A13 include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group in which these are combined. Examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms such as methylene group, ethylene group and propylene group. Examples of the alkenylene group include alkenylene groups having 2 to 10 carbon atoms. Examples of the alkynylene group include alkynylene groups having 2 to 10 carbon atoms. Examples of the arylene group include arylene groups having 6 to 20 carbon atoms such as phenylene group and naphthylene group.
Of these, R A12 and R A13 are preferably an alkylene group or an arylene group.
m is preferably an integer of 2 to 50, more preferably an integer of 3 to 40, further preferably an integer of 5 to 30.
 ジアミン化合物(a3)としては、具体的には、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルプロパン、2,2’-ビス(4,4’-ジアミノジフェニル)プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルエタン、3,3’-ジエチル-4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルチオエーテル、3,3’-ジヒドロキシ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、3,3’-ジブロモ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラクロロ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラブロモ-4,4’-ジアミノジフェニルメタン、上記した分子末端にアミノ基を有する変性シロキサン化合物等が挙げられる。これらの中でも、安価であるという観点から、4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、分子末端にアミノ基を有する変性シロキサン化合物が好ましい。
 ジアミン化合物(a3)は1種を単独で使用してもよいし、2種以上を併用してもよい。
Specific examples of the diamine compound (a3) include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylpropane and 2,2′-bis(4,4′). -Diaminodiphenyl)propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenyl Ethane, 3,3'-diethyl-4,4'-diaminodiphenylethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dihydroxy-4,4'-diaminodiphenylmethane, 2,2',6,6'-Tetramethyl-4,4'-diaminodiphenylmethane, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 3,3'-dibromo-4,4'-diaminodiphenylmethane , 2,2',6,6'-Tetrachloro-4,4'-diaminodiphenylmethane, 2,2',6,6'-Tetrabromo-4,4'-diaminodiphenylmethane, with an amino group at the end of the molecule The modified siloxane compound which it has, etc. are mentioned. Among these, 4,4′-diaminodiphenylmethane, 3,3′-diethyl-4,4′-diaminodiphenylmethane, and modified siloxane compounds having an amino group at the molecular end are preferable because they are inexpensive.
The diamine compound (a3) may be used alone or in combination of two or more.
 マレイミド化合物(a1)と、モノアミン化合物(a2)及びジアミン化合物(a3)からなる群から選択される1種以上との反応は、好ましくは有機溶剤の存在下、反応温度70~200℃で0.1~10時間反応させることにより実施することが好ましい。反応温度は、より好ましくは70~160℃、さらに好ましくは70~130℃、特に好ましくは80~120℃である。
 反応時間は、より好ましくは1~8時間、さらに好ましくは2~6時間である。
The reaction of the maleimide compound (a1) with at least one selected from the group consisting of the monoamine compound (a2) and the diamine compound (a3) is preferably carried out in the presence of an organic solvent at a reaction temperature of 70 to 200° C. It is preferable to carry out the reaction by reacting for 1 to 10 hours. The reaction temperature is more preferably 70 to 160° C., further preferably 70 to 130° C., and particularly preferably 80 to 120° C.
The reaction time is more preferably 1 to 8 hours, further preferably 2 to 6 hours.
 上記変性マレイミド化合物の製造における、(a1)成分と、(a2)成分及び(a3)成分からなる群から選択される1種との反応において、三者の使用量は、(a2)成分及び(a3)成分からなる群から選択される1種以上が有する-NH基当量(第1級アミノ基当量)の総和と、(a1)成分のマレイミド基当量との関係が、下記式を満たすことが好ましい。
   0.1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦10
 〔マレイミド基当量〕/〔-NH基当量の総和〕を0.1以上とすることにより、ゲル化及び耐熱性の低下が抑制され、また、10以下とすることにより、有機溶剤への溶解性、銅箔接着性及び耐熱性が良好となる。
 同様の観点から、より好ましくは、
   1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦9 を満たし、より好ましくは、
   2≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦8 を満たす。
 なお、変性マレイミド化合物が、(a1)成分と(a2)成分と(a3)成分とを反応させて得られる化合物である場合、(a2)成分に由来する構造単位と(a3)成分に由来する構造単位との比率[(a3)成分/(a2)成分](モル比)は、好ましくは0.9~5.0、より好ましくは1.0~4.5、さらに好ましくは1.0~4.0である。
In the reaction of the component (a1) with one selected from the group consisting of the component (a2) and the component (a3) in the production of the modified maleimide compound, the amounts of the three used are the components (a2) and ( The relationship between the sum of —NH 2 group equivalents (primary amino group equivalents) possessed by at least one selected from the group consisting of a3) and the maleimide group equivalent of (a1) satisfies the following formula: Is preferred.
0.1≦[maleimide group equivalent]/[sum of —NH 2 group equivalent]≦10
By setting [maleimide group equivalent]/[total of —NH 2 group equivalent] to 0.1 or more, gelation and deterioration of heat resistance are suppressed, and when 10 or less, dissolution in organic solvent Property, copper foil adhesion and heat resistance are improved.
From the same viewpoint, more preferably,
1≦[maleimide group equivalent]/[sum of —NH 2 group equivalents]≦9, more preferably,
2≦[maleimide group equivalent]/[sum of —NH 2 group equivalents]≦8 is satisfied.
When the modified maleimide compound is a compound obtained by reacting the component (a1) with the component (a2) and the component (a3), it is derived from the structural unit derived from the component (a2) and the component (a3). The ratio [(a3) component/(a2) component] (molar ratio) with the structural unit is preferably 0.9 to 5.0, more preferably 1.0 to 4.5, and further preferably 1.0 to It is 4.0.
 変性マレイミド化合物の重量平均分子量(Mw)は、好ましくは400~3,500、より好ましくは600~2,000、さらに好ましくは800~1,500である。なお、本明細書における重量平均分子量は、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)で測定された値であり、より具体的には実施例に記載の方法により測定された値である。 The weight average molecular weight (Mw) of the modified maleimide compound is preferably 400 to 3,500, more preferably 600 to 2,000, and further preferably 800 to 1,500. The weight average molecular weight in the present specification is a value measured by a gel permeation chromatography (GPC) method (standard polystyrene conversion) using tetrahydrofuran as an eluent, and more specifically described in Examples. It is the value measured by the method.
〔(B)エポキシ樹脂〕
 (B)エポキシ樹脂としては、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等が挙げられる。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 (B)エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニルアラルキルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールアルキルフェノール共重合ノボラック型エポキシ樹脂、ナフトールアラルキルクレゾール共重合ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;ナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などに分類される。
 (B)エポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
[(B) Epoxy resin]
Examples of the epoxy resin (B) include glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxy resins. Among these, a glycidyl ether type epoxy resin is preferable.
(B) Epoxy resin is classified into various epoxy resins depending on the difference in the main skeleton, and among the above types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. Bisphenol epoxy resin; biphenyl aralkyl novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, cresol novolac epoxy resin, naphthol alkylphenol copolymer novolac epoxy resin, naphthol aralkyl cresol copolymer novolac epoxy resin, Novolak type epoxy resins such as bisphenol A novolac type epoxy resin and bisphenol F novolac type epoxy resin; stilbene type epoxy resin; triazine skeleton containing epoxy resin; fluorene skeleton containing epoxy resin; naphthalene type epoxy resin; anthracene type epoxy resin; triphenylmethane Type epoxy resin; biphenyl type epoxy resin; xylylene type epoxy resin; alicyclic epoxy resin such as dicyclopentadiene type epoxy resin.
As the epoxy resin (B), one type may be used alone, or two or more types may be used in combination.
 (B)エポキシ樹脂のエポキシ当量は、好ましくは100~500g/eq、より好ましくは120~400g/eq、さらに好ましくは140~300g/eq、特に好ましくは170~240g/eqである。
 ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JIS K 7236(2001年)に規定された方法に従って測定することができる。具体的には、株式会社三菱ケミカルアナリテック製の自動滴定装置「GT-200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
The epoxy equivalent of the (B) epoxy resin is preferably 100 to 500 g/eq, more preferably 120 to 400 g/eq, further preferably 140 to 300 g/eq, and particularly preferably 170 to 240 g/eq.
Here, the epoxy equivalent is the mass of the resin per epoxy group (g/eq), and can be measured according to the method specified in JIS K 7236 (2001). Specifically, using an automatic titrator "GT-200 type" manufactured by Mitsubishi Chemical Analytech Co., Ltd., 2 g of epoxy resin was weighed in a 200 ml beaker, 90 ml of methyl ethyl ketone was added dropwise, and the mixture was dissolved in an ultrasonic cleaner and iced. It is determined by adding 10 ml of acetic acid and 1.5 g of cetyltrimethylammonium bromide and titrating with a 0.1 mol/L perchloric acid/acetic acid solution.
〔(C)共重合樹脂〕
 (C)成分は、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂(以下、「(C)共重合樹脂」ともいう)である。
 置換ビニル化合物としては、芳香族ビニル化合物、脂肪族ビニル化合物、官能基置換ビニル化合物等が挙げられる。芳香族ビニル化合物としては、スチレン、1-メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。脂肪族ビニル化合物としては、プロピレン、ブタジエン、イソブチレン等が挙げられる。官能基置換ビニル化合物としては、アクリロニトリル;メチルアクリレート、メチルメタクリレート等の(メタ)アクリロイル基を有する化合物などが挙げられる。これらの中でも、芳香族ビニル化合物が好ましく、スチレンがより好ましい。
 (C)成分としては、置換ビニル化合物に由来する構造単位として、下記一般式(C-i)で表される構造単位と、無水マレイン酸に由来する構造単位として、下記式(C-ii)で表される構造単位とを有する共重合樹脂が好ましい。
 (C)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
[(C) Copolymer resin]
The component (C) is a copolymer resin having a structural unit derived from a substituted vinyl compound and a structural unit derived from maleic anhydride (hereinafter, also referred to as “(C) copolymer resin”).
Examples of the substituted vinyl compound include aromatic vinyl compounds, aliphatic vinyl compounds and functional group-substituted vinyl compounds. Examples of the aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like. Examples of the aliphatic vinyl compound include propylene, butadiene, isobutylene and the like. Examples of the functional group-substituted vinyl compound include acrylonitrile; compounds having a (meth)acryloyl group such as methyl acrylate and methyl methacrylate. Among these, aromatic vinyl compounds are preferable, and styrene is more preferable.
As the component (C), a structural unit derived from a substituted vinyl compound is represented by the following general formula (Ci), and a structural unit derived from maleic anhydride is represented by the following formula (C-ii): A copolymer resin having a structural unit represented by
As the component (C), one type may be used alone, or two or more types may be used in combination.
Figure JPOXMLDOC01-appb-C000005

(式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005

(In the formula, R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. It is an aryl group, a hydroxyl group or a (meth)acryloyl group, and x is an integer of 0 to 3. However, when x is 2 or 3, a plurality of R C2 's may be the same or different. May be.)
 RC1及びRC2が示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RC2が示す炭素数2~5のアルケニル基としては、アリル基、クロチル基等が挙げられる。該アルケニル基としては、好ましくは炭素数3又は4のアルケニル基である。
 RC2が示す炭素数6~20のアリール基としては、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6~10のアリール基である。xは、好ましくは0又は1、より好ましくは0である。
Examples of the alkyl group having 1 to 5 carbon atoms represented by R C1 and R C2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. Are listed. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the alkenyl group having 2 to 5 carbon atoms represented by R C2 include an allyl group and a crotyl group. The alkenyl group is preferably an alkenyl group having 3 or 4 carbon atoms.
Examples of the aryl group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group and a biphenylyl group. The aryl group is preferably an aryl group having 6 to 10 carbon atoms. x is preferably 0 or 1, more preferably 0.
 (C)共重合樹脂中における、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[置換ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)は、好ましくは1~9、より好ましくは2~9、さらに好ましくは3~8である。上記モル比が上記下限値以上であると、誘電特性の改善効果が十分となる傾向にあり、上記上限値以下であれば、相溶性が良好となる傾向にある。
 (C)共重合樹脂中における、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との合計含有量は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは実質的に100質量%である。
 (C)共重合樹脂の重量平均分子量(Mw)は、好ましくは4,500~18,000、より好ましくは6,000~17,000、さらに好ましくは8,000~16,000、特に好ましくは8,000~15,000である。
(C) Content ratio of structural unit derived from substituted vinyl compound and structural unit derived from maleic anhydride in copolymer resin [Structural unit derived from substituted vinyl compound/Structural unit derived from maleic anhydride] (mol The ratio) is preferably 1 to 9, more preferably 2 to 9, and further preferably 3 to 8. When the above molar ratio is at least the above lower limit, the effect of improving the dielectric properties tends to be sufficient, and when it is at most the above upper limit, the compatibility tends to be good.
(C) The total content of the structural unit derived from the substituted vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably Is 90% by mass or more, particularly preferably substantially 100% by mass.
The weight average molecular weight (Mw) of the (C) copolymer resin is preferably 4,500 to 18,000, more preferably 6,000 to 17,000, further preferably 8,000 to 16,000, particularly preferably It is 8,000 to 15,000.
〔(D)無機充填材〕
 熱硬化性樹脂組成物は、さらに、(D)無機充填材を含有していてもよい。
 (D)無機充填材としては、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、ホウ酸アルミニウム、炭化ケイ素、石英粉末、ガラス短繊維、ガラス微粉末、中空ガラスなどが挙げられる。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。
 (D)無機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、誘電特性、耐熱性及び低熱膨張性の観点から、シリカが好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融球状シリカ等に分類される。これらの中でも、低熱膨張性及び樹脂に充填した際の流動性の観点から、溶融球状シリカが好ましい。
[(D) Inorganic filler]
The thermosetting resin composition may further contain (D) an inorganic filler.
(D) As the inorganic filler, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate. , Calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay such as calcined clay, talc, aluminum borate, silicon carbide, quartz powder, short glass fibers, glass fine powder, hollow glass, etc. .. Preferable examples of the glass include E glass, T glass, and D glass.
As the inorganic filler (D), one type may be used alone, or two or more types may be used in combination.
Among these, silica is preferable from the viewpoint of dielectric properties, heat resistance and low thermal expansion. Examples of the silica include, for example, precipitated silica having a high water content produced by a wet method, and dry method silica produced by a dry method containing almost no bound water, and the like, as the dry method silica, due to a difference in production method. , Crushed silica, fumed silica, fused spherical silica, etc. Among these, fused spherical silica is preferable from the viewpoint of low thermal expansion and fluidity when filled in a resin.
 (D)無機充填材の平均粒子径は、好ましくは0.1~10μm、より好ましくは0.3~8μm、さらに好ましくは0.5~2μmである。平均粒子径が0.1μm以上であると、樹脂に高充填した際の流動性を良好に保つことができ、10μm以下であると、粗大粒子の混入確率を低減し、粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。 The average particle size of the inorganic filler (D) is preferably 0.1 to 10 μm, more preferably 0.3 to 8 μm, and further preferably 0.5 to 2 μm. When the average particle size is 0.1 μm or more, the fluidity at the time of highly filling the resin can be kept good, and when the average particle size is 10 μm or less, the probability of inclusion of coarse particles is reduced, and defects due to the coarse particles are reduced. Occurrence can be suppressed. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve based on the particle diameter is calculated with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with a conventional particle size distribution measuring device.
 (D)無機充填材として、アミノシラン系カップリング剤で処理されたシリカを用いると、低熱膨張性が向上すると共に、前記(A)~(C)成分との密着性が向上することによりシリカの脱落が抑制されるため、過剰なデスミアによるレーザビア形状の変形等を抑制する効果が得られるために好ましい。 (D) When silica treated with an aminosilane coupling agent is used as the inorganic filler, the low thermal expansion property is improved, and the adhesiveness with the components (A) to (C) is improved, so that the silica This is preferable because the falling off is suppressed, and the effect of suppressing the deformation of the laser via shape due to excessive desmear can be obtained.
 アミノシラン系カップリング剤は、アミノ基を1つ有していてもよいし、2つ有していてもよいし、3つ以上有していてもよいが、通常は、アミノ基を1つ又は2つ有する。
 アミノ基を1つ有するアミノシラン系カップリング剤としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-プロピニル[3-(トリメトキシシリル)プロピル]カルバメート等が挙げられる。
 アミノ基を2つ有するアミノシラン系カップリング剤としては、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、1-[3-(トリメトキシシリル)プロピル]ウレア、1-[3-(トリエトキシシリル)プロピル]ウレア等が挙げられる。
 アミノシラン系カップリング剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
The aminosilane-based coupling agent may have one amino group, may have two amino groups, or may have three or more amino groups, but usually one amino group or I have two.
Examples of the aminosilane coupling agent having one amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and 3-triethoxysilyl-N- (1,3-Dimethyl-butylidene)propylamine, 2-propynyl[3-(trimethoxysilyl)propyl]carbamate and the like can be mentioned.
Examples of the aminosilane coupling agent having two amino groups include N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 1- Examples include [3-(trimethoxysilyl)propyl]urea and 1-[3-(triethoxysilyl)propyl]urea.
The aminosilane coupling agent may be used alone or in combination of two or more.
〔(E)硬化剤〕
 熱硬化性樹脂組成物は、さらに、(E)硬化剤を含有してもよい。(E)硬化剤としては、ジシアンジアミド;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ジエチルアミノプロピルアミン、テトラメチルグアニジン、トリエタノールアミン等の、ジシアンジアミドを除く鎖状脂肪族アミン;イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の環状脂肪族アミン;キシレンジアミン、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミンなどが挙げられる。
 (E)硬化剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
[(E) Curing agent]
The thermosetting resin composition may further contain (E) a curing agent. (E) As a curing agent, dicyandiamide; chain aliphatic amines other than dicyandiamide, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, tetramethylguanidine, and triethanolamine; Isophoronediamine, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, bis(4-amino-3-methyldicyclohexyl)methane, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)-2,4,8 Cyclic aliphatic amines such as 10-tetraoxaspiro[5.5]undecane; aromatic amines such as xylenediamine, phenylenediamine, diaminodiphenylmethane and diaminodiphenylsulfone.
As the curing agent (E), one type may be used alone, or two or more types may be used in combination.
〔(F)熱可塑性エラストマー〕
 熱硬化性樹脂組成物は、さらに、(F)熱可塑性エラストマーを含有してもよい。
 (F)熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー、これらの誘導体等が挙げられる。これらの中でも、スチレン系エラストマーが好ましい。
 (F)熱可塑性エラストマーは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 但し、本実施形態において、(F)熱可塑性エラストマーの定義には、上記(C)成分を含めないものとする。
[(F) Thermoplastic Elastomer]
The thermosetting resin composition may further contain (F) thermoplastic elastomer.
Examples of the thermoplastic elastomer (F) include styrene elastomer, olefin elastomer, urethane elastomer, polyester elastomer, polyamide elastomer, acrylic elastomer, silicone elastomer, and derivatives thereof. Of these, styrene elastomers are preferable.
As the thermoplastic elastomer (F), one type may be used alone, or two or more types may be used in combination.
However, in this embodiment, the component (C) is not included in the definition of the thermoplastic elastomer (F).
 (F)熱可塑性エラストマーは、分子末端又は分子鎖中に反応性官能基を有するものが好ましい。反応性官能基としては、エポキシ基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアナート基、アクリル基、メタクリル基、ビニル基等が挙げられる。これらの反応性官能基を分子末端又は分子鎖中に有することにより、相溶性が向上し、基板の耐熱性を向上させることが可能となる。これらの反応性官能基の中でも、金属箔との密着性の観点から、カルボキシ基、アミノ基、水酸基が好ましい。 (F) The thermoplastic elastomer preferably has a reactive functional group at the molecular end or in the molecular chain. Examples of the reactive functional group include epoxy group, hydroxyl group, carboxy group, amino group, amide group, isocyanate group, acryl group, methacryl group, vinyl group and the like. By having these reactive functional groups at the molecular end or in the molecular chain, the compatibility is improved and the heat resistance of the substrate can be improved. Among these reactive functional groups, a carboxy group, an amino group and a hydroxyl group are preferable from the viewpoint of adhesion to the metal foil.
 スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマー等のスチレン-ブタジエン共重合体;スチレン-イソプレン-スチレンブロックコポリマー等のスチレン-イソプレン共重合体;スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマーなどが挙げられる。スチレン系エラストマーの原料モノマーとしては、スチレンの他に、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。これらの中でも、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体が好ましく、これらの共重合体の二重結合部分を水素添加した水添スチレン-ブタジエン共重合樹脂、水添スチレン-イソプレン共重合樹脂等の水添スチレン系熱可塑性エラストマーがより好ましい。 Examples of the styrene elastomer include styrene-butadiene copolymers such as styrene-butadiene-styrene block copolymers; styrene-isoprene copolymers such as styrene-isoprene-styrene block copolymers; styrene-ethylene-butylene-styrene block copolymers, styrene- Examples thereof include ethylene-propylene-styrene block copolymer. As a raw material monomer for the styrene-based elastomer, styrene derivatives such as α-methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene and the like can be used in addition to styrene. Of these, styrene-butadiene copolymers and styrene-isoprene copolymers are preferable, and hydrogenated styrene-butadiene copolymer resins and hydrogenated styrene-isoprene copolymers obtained by hydrogenating the double bond portion of these copolymers. Hydrogenated styrene thermoplastic elastomers such as resins are more preferable.
〔(G)硬化促進剤〕
 熱硬化性樹脂組成物は、硬化反応を促進する観点から、さらに、(G)硬化促進剤を含有していてもよい。
 (G)硬化促進剤としては、トリフェニルホスフィン等の有機リン系化合物;イミダゾール類及びその誘導体;第二級アミン類、第三級アミン類、第四級アンモニウム塩等の含窒素化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩などが挙げられる。これらの中でも、有機リン系化合物が好ましい。
 (G)硬化促進剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
[(G) Curing accelerator]
The thermosetting resin composition may further contain (G) a curing accelerator from the viewpoint of accelerating the curing reaction.
(G) As a curing accelerator, an organic phosphorus compound such as triphenylphosphine; imidazoles and derivatives thereof; nitrogen-containing compounds such as secondary amines, tertiary amines and quaternary ammonium salts; dicumyl Peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, α,α'- Examples thereof include organic peroxides such as bis(t-butylperoxy)diisopropylbenzene; organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, and cobalt octylate. Among these, organic phosphorus compounds are preferable.
As the (G) curing accelerator, one type may be used alone, or two or more types may be used in combination.
(熱硬化性樹脂組成物の各成分の含有量)
 熱硬化性樹脂組成物中、各成分の含有量は、特に制限されないが、例えば、以下に記載する範囲とすることができる。
 熱硬化性樹脂組成物が(A)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは10~90質量部、より好ましくは20~85質量部、さらに好ましくは40~80質量部である。(A)成分の含有量が上記下限値以上であると、耐熱性、比誘電率、ガラス転移温度及び低熱膨張性に優れる傾向にある。一方、上記上限値以下であると、流動性及び成形性に優れる傾向にある。
 熱硬化性樹脂組成物が(B)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは5~50質量部、より好ましくは10~40質量部、さらに好ましくは20~35質量部である。(B)成分の含有量が上記下限値以上であると、耐熱性、ガラス転移温度及び低熱膨張性に優れる傾向にある。一方、上記上限値以下であると、耐熱性、比誘電率、ガラス転移温度及び低熱膨張性に優れる傾向にある。
 熱硬化性樹脂組成物が(C)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは2~40質量部、より好ましくは5~35質量部、さらに好ましくは10~30量部である。(C)成分の含有量が上記下限値以上であると、耐熱性及び比誘電率に優れる傾向にある。一方、上記上限値以下であると、耐熱性、銅箔接着性及び低熱膨張性に優れる傾向にある。
 熱硬化性樹脂組成物が(D)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは30~200質量部、より好ましくは40~150質量部、さらに好ましくは45~120質量部である。(D)成分の含有量が上記下限値以上であると、低熱膨張性に優れる傾向にある。一方、上記上限値以下であると、耐熱性、流動性及び成形性に優れる傾向にある。
 熱硬化性樹脂組成物が(E)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~5質量部、さらに好ましくは1~3質量部である。(E)成分の含有量が上記下限値以上であると、銅箔接着性及び低熱膨張性に優れる傾向にある。一方、上記上限値以下であると、耐熱性に優れる傾向にある。
 熱硬化性樹脂組成物が(F)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは2~30質量部、より好ましくは5~20質量部、さらに好ましくは7~15質量部である。(F)成分の含有量が、上記下限値以上であると、比誘電率に優れる傾向にある。一方、上記上限値以下であると、耐熱性及び銅箔接着性に優れる傾向にある。
 熱硬化性樹脂組成物が(G)成分を含有する場合、その含有量は、熱硬化性樹脂組成物に含有される樹脂成分総量100質量部に対して、好ましくは0.05~5質量部、より好ましくは0.1~3質量部、さらに好ましくは0.2~1質量部である。
(Content of each component of the thermosetting resin composition)
The content of each component in the thermosetting resin composition is not particularly limited, but may be in the range described below, for example.
When the thermosetting resin composition contains the component (A), its content is preferably 10 to 90 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition, It is preferably 20 to 85 parts by mass, more preferably 40 to 80 parts by mass. When the content of the component (A) is at least the above lower limit, heat resistance, relative dielectric constant, glass transition temperature and low thermal expansion tend to be excellent. On the other hand, when it is at most the above upper limit, the fluidity and moldability tend to be excellent.
When the thermosetting resin composition contains the component (B), its content is preferably 5 to 50 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. It is preferably 10 to 40 parts by mass, more preferably 20 to 35 parts by mass. When the content of the component (B) is at least the above lower limit, heat resistance, glass transition temperature and low thermal expansion tend to be excellent. On the other hand, when it is at most the above upper limit, heat resistance, relative dielectric constant, glass transition temperature and low thermal expansion tend to be excellent.
When the thermosetting resin composition contains the component (C), its content is preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. The amount is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass. When the content of the component (C) is at least the above lower limit, heat resistance and relative permittivity tend to be excellent. On the other hand, when it is at most the above upper limit, heat resistance, copper foil adhesiveness and low thermal expansion tend to be excellent.
When the thermosetting resin composition contains the component (D), its content is preferably 30 to 200 parts by mass, more preferably 30 to 200 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. It is preferably 40 to 150 parts by mass, more preferably 45 to 120 parts by mass. When the content of the component (D) is at least the above lower limit, the low thermal expansion tends to be excellent. On the other hand, when it is at most the above upper limit, heat resistance, fluidity and moldability tend to be excellent.
When the thermosetting resin composition contains the component (E), its content is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. , More preferably 0.5 to 5 parts by mass, further preferably 1 to 3 parts by mass. When the content of the component (E) is at least the above lower limit, the copper foil adhesiveness and low thermal expansion tend to be excellent. On the other hand, when it is at most the above upper limit, the heat resistance tends to be excellent.
When the thermosetting resin composition contains the component (F), its content is preferably 2 to 30 parts by mass, based on 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. The amount is preferably 5 to 20 parts by mass, more preferably 7 to 15 parts by mass. When the content of the component (F) is at least the above lower limit value, the relative dielectric constant tends to be excellent. On the other hand, when it is at most the above upper limit, heat resistance and copper foil adhesiveness tend to be excellent.
When the thermosetting resin composition contains the component (G), its content is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the resin components contained in the thermosetting resin composition. , More preferably 0.1 to 3 parts by mass, still more preferably 0.2 to 1 part by mass.
(その他の成分)
 熱硬化性樹脂組成物は、さらに、本発明の効果を損なわない範囲で、難燃剤、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填材等のその他の成分を含有していてもよい。これらは、各々について、1種を単独で含有させてもよいし、2種以上を含有させてもよい。
(Other ingredients)
The thermosetting resin composition is a flame retardant, a colorant, an antioxidant, a reducing agent, a UV absorber, an optical brightener, an adhesion improver, and an organic filler within a range that does not impair the effects of the present invention. It may contain other components such as. For each of these, one kind may be contained alone, or two or more kinds may be contained.
(プリプレグ(p)の製造方法)
 本実施形態の製造方法に用いるプリプレグ(p)の製造方法は特に限定されないが、例えば、上記熱硬化性樹脂組成物を、ガラスクロス(g)に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。
 ガラスクロス(g)に熱硬化性樹脂組成物を含浸又は塗工する際、熱硬化性樹脂組成物は、メチルエチルケトン等の有機溶剤によって希釈されたワニスの状態であってもよい。ワニス中の不揮発分濃度は、例えば、40~80質量%であり、好ましくは50~75質量%である。
 含浸後の乾燥条件は特に限定されないが、加熱温度は、例えば、120~200℃、好ましくは140~180℃であり、加熱時間は、例えば、30秒~30分間、好ましくは1~10分間である。
(Production method of prepreg (p))
The production method of the prepreg (p) used in the production method of the present embodiment is not particularly limited, but for example, the above thermosetting resin composition is impregnated or coated on a glass cloth (g) and semi-cured by heating or the like ( It can be manufactured in the B stage).
When the glass cloth (g) is impregnated or coated with the thermosetting resin composition, the thermosetting resin composition may be in the form of a varnish diluted with an organic solvent such as methyl ethyl ketone. The concentration of nonvolatile components in the varnish is, for example, 40 to 80% by mass, preferably 50 to 75% by mass.
The drying conditions after impregnation are not particularly limited, but the heating temperature is, for example, 120 to 200° C., preferably 140 to 180° C., and the heating time is, for example, 30 seconds to 30 minutes, preferably 1 to 10 minutes. is there.
 プリプレグ(p)の厚さは、強度を良好に保ちつつ、薄型化する観点から、3~80μmが好ましく、5~50μmがより好ましく、10~40μmがさらに好ましく、15~30μmが特に好ましい。 The thickness of the prepreg (p) is preferably 3 to 80 μm, more preferably 5 to 50 μm, further preferably 10 to 40 μm, and particularly preferably 15 to 30 μm, from the viewpoint of keeping the strength good and thinning.
 プリプレグ(p)中における熱硬化性樹脂組成物の含有量は、熱硬化性樹脂組成物の固形分換算で、50~90質量%が好ましく、60~80質量%がより好ましく、65~75質量%がさらに好ましい。なお、本実施形態における固形分とは、水分、後述する溶剤等の揮発する物質以外の組成物中の成分のことをいう。すなわち、固形分は、25℃付近の室温で液状、水飴状及びワックス状のものも含み、必ずしも固体であることを意味するものではない。 The content of the thermosetting resin composition in the prepreg (p) is preferably 50 to 90% by mass, more preferably 60 to 80% by mass, and more preferably 65 to 75% by mass in terms of the solid content of the thermosetting resin composition. % Is more preferable. In addition, the solid content in the present embodiment refers to components in the composition other than volatile substances such as water and a solvent described later. That is, the solid content does not necessarily mean that it is solid, including liquid, starch syrup and wax at room temperature around 25°C.
<複合材の製造条件>
 本実施形態の複合材の製造方法は、ガラスクロス(g)と熱硬化性樹脂組成物とを含有するプリプレグ(p)を、200℃以上に加熱する工程を有する。
 ここで、「200℃以上に加熱する工程」とは、製品温度(すなわち、プリプレグ)が200℃以上になることを意味する。製品温度を200℃以上とするためには、例えば、使用する加熱装置の設定を200℃以上にすればよい。
 上記加熱する工程における加熱温度は、生産性を高める観点から、202℃以上がより好ましく、205℃以上がさらに好ましい。また、加熱温度は、均一な硬化反応を生じさせる観点から、300℃以下が好ましく、250℃以下がより好ましい。
 上記加熱する工程における加熱時間は、特に限定されないが、生産性及び寸法安定性の観点から、15~300分間が好ましく、30~200分間がより好ましく、60~90分間がさらに好ましい。
 上記加熱する工程におけるプレス圧力は、生産性及び寸法安定性の観点から、0.2~10MPaが好ましく、1~6MPaがより好ましく、2~4MPaがさらに好ましい。
 上記加熱する工程には、電気絶縁材料用積層板及び多層板の公知の成形手法を適用することができ、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
<Composite material manufacturing conditions>
The method for manufacturing the composite material of the present embodiment has a step of heating the prepreg (p) containing the glass cloth (g) and the thermosetting resin composition to 200° C. or higher.
Here, the “step of heating to 200° C. or higher” means that the product temperature (that is, prepreg) becomes 200° C. or higher. In order to set the product temperature to 200° C. or higher, for example, the heating device to be used may be set to 200° C. or higher.
From the viewpoint of improving productivity, the heating temperature in the heating step is preferably 202° C. or higher, more preferably 205° C. or higher. Further, the heating temperature is preferably 300° C. or lower, and more preferably 250° C. or lower, from the viewpoint of causing a uniform curing reaction.
The heating time in the heating step is not particularly limited, but from the viewpoint of productivity and dimensional stability, it is preferably 15 to 300 minutes, more preferably 30 to 200 minutes, and further preferably 60 to 90 minutes.
The pressing pressure in the heating step is preferably 0.2 to 10 MPa, more preferably 1 to 6 MPa, and further preferably 2 to 4 MPa from the viewpoint of productivity and dimensional stability.
In the heating step, a known molding method for a laminated plate for electric insulating material and a multilayer plate can be applied, and for example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine or the like can be used. ..
 本実施形態の複合材は、本実施形態の複合材の製造方法によって製造される複合材である。すなわち、本実施形態の複合材は、ガラスクロス(g)と熱硬化性樹脂組成物とを含有するプリプレグ(p)を、200℃以上に加熱する工程を経て製造されるものであり、例えば、プリプレグ(p)1層又は2層以上を200℃以上に加熱して得られる硬化物、これらの硬化物を含む積層板などが挙げられる。 The composite material of the present embodiment is a composite material manufactured by the method of manufacturing the composite material of the present embodiment. That is, the composite material of the present embodiment is manufactured through a step of heating the prepreg (p) containing the glass cloth (g) and the thermosetting resin composition to 200° C. or higher, and, for example, Examples include a cured product obtained by heating one or two or more layers of prepreg (p) to 200° C. or higher, a laminated plate containing these cured products, and the like.
[積層板及びその製造方法]
 本実施形態の積層板の製造方法は、
 2層以上の絶縁層を有する積層板、又は1層以上の絶縁層と1層以上の金属箔とを有する積層板の製造方法であって、
 前記絶縁層が複合材であり、
 該複合材を、本実施形態の複合材の製造方法によって形成する、積層板の製造方法である。
[Laminate and its manufacturing method]
The manufacturing method of the laminated board of the present embodiment,
A method for producing a laminate having two or more insulating layers, or a laminate having one or more insulating layers and one or more metal foils,
The insulating layer is a composite material,
It is a method for manufacturing a laminated plate, in which the composite material is formed by the method for manufacturing a composite material according to the present embodiment.
 本実施形態の積層板は、プリプレグ(p)が1枚以上積層されたものであればよく、例えば、次の(1)~(5)の態様が挙げられる。
(1)プリプレグ(p)1層の一方の面又は両面に金属箔を重ねて積層成形されてなる金属張積層体。
(2)プリプレグ(p)を2層以上重ねて積層成形されてなる積層体。
(3)上記(2)の積層体の一方の面又は両面に金属箔が配された金属張積層体。
(4)上記(3)の金属張積層体をコア基板として、更に、1層以上のプリプレグ(p)を用いて多層化された積層板。
(5)上記(3)以外の金属張積層体をコア基板として、更に、1層以上のプリプレグ(p)を用いて多層化された積層板。
 なお、金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましく、銅、アミルニウムがより好ましく、銅がさらに好ましい。金属箔の厚みに特に制限はなく、プリント配線板の用途等により適宜選択できる。金属箔の厚みは、好ましくは0.5~150μm、より好ましくは1~100μm、さらに好ましくは5~50μm、特に好ましくは5~30μmである。
 本実施形態の複合材の製造方法においてプリプレグを複数使用する場合、複数のプリプレグは、プリプレグ(p)のみであってもよいし、プリプレグ(p)とプリプレグ(p)以外のプリプレグとを併用してもよいが、寸法安定性の観点からは、プリプレグ(p)のみであることが好ましい。また、複数のプリプレグ(p)の形態及び組成は、同一であっても、異なっていてもよい。
The laminated board of the present embodiment may be one in which at least one prepreg (p) is laminated, and examples thereof include the following aspects (1) to (5).
(1) A metal-clad laminate obtained by laminating and molding a metal foil on one surface or both surfaces of one layer of a prepreg (p).
(2) A laminated body formed by laminating and molding two or more layers of prepreg (p).
(3) A metal-clad laminate in which a metal foil is arranged on one side or both sides of the laminate of (2) above.
(4) A laminated board in which the metal-clad laminate of (3) above is used as a core substrate and further one or more layers of prepreg (p) are used to form a multilayer.
(5) A laminated board in which a metal-clad laminate other than the above-mentioned (3) is used as a core substrate and further one or more layers of prepreg (p) are used for multilayering.
The metal of the metal foil is not particularly limited as long as it is used for an electric insulating material, but from the viewpoint of conductivity, preferably copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, It is preferably tungsten, iron, titanium, chromium, or an alloy containing at least one of these metal elements, more preferably copper or amylnium, and further preferably copper. The thickness of the metal foil is not particularly limited and can be appropriately selected depending on the application of the printed wiring board. The thickness of the metal foil is preferably 0.5 to 150 μm, more preferably 1 to 100 μm, further preferably 5 to 50 μm, and particularly preferably 5 to 30 μm.
When using a plurality of prepregs in the method for manufacturing a composite material of the present embodiment, the plurality of prepregs may be only prepreg (p), or prepreg (p) and a prepreg other than prepreg (p) may be used in combination. However, from the viewpoint of dimensional stability, it is preferable that only the prepreg (p) is used. Moreover, the morphology and composition of the plurality of prepregs (p) may be the same or different.
 本実施形態の積層板は、1層以上のプリプレグ(p)と、金属箔等を所望の構成となるように重ね合わせ、積層成形することで得られる。積層成形の加熱温度、加熱時間、プレス圧力、使用装置等の諸条件は、上記した複合材の製造条件と同じである。
 本実施形態の積層板の厚さは、特に限定されず、積層板の用途に応じて適宜決定すればよいが、例えば、0.03~1.6mmである。
The laminated plate of the present embodiment is obtained by stacking one or more layers of prepreg (p) and a metal foil or the like so as to have a desired structure, and laminating and molding. Various conditions such as a heating temperature, a heating time, a press pressure, and an apparatus used for the lamination molding are the same as the above-mentioned manufacturing conditions of the composite material.
The thickness of the laminated plate of the present embodiment is not particularly limited and may be appropriately determined depending on the application of the laminated plate, but is, for example, 0.03 to 1.6 mm.
[プリント配線板]
 本実施形態のプリント配線板は、本実施形態の積層板を用いてなるプリント配線板である。
 本実施形態のプリント配線板は、例えば、本実施形態の積層板の一態様である銅張積層板の銅箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、銅箔表面にレジストパターンを形成後、エッチングにより不要部分の銅箔を除去し、レジストパターンを除去後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを除去して行うことができる。得られたプリント配線板の表面にさらに銅張積層板を上記と同様の条件で積層及び回路加工する工程を必要回数繰り返し、多層プリント配線板とすることができる。
[Printed wiring board]
The printed wiring board of this embodiment is a printed wiring board using the laminated board of this embodiment.
The printed wiring board of the present embodiment can be manufactured, for example, by subjecting the copper foil of the copper-clad laminate, which is one aspect of the laminate of the present embodiment, to circuit processing. Circuit processing, for example, after forming a resist pattern on the surface of the copper foil, remove unnecessary portions of the copper foil by etching, after removing the resist pattern, to form the necessary through holes by drilling, after forming the resist pattern again, It can be performed by performing plating for electrical connection to the through hole and finally removing the resist pattern. The step of laminating and circuit-processing a copper clad laminate on the surface of the obtained printed wiring board under the same conditions as above can be repeated a necessary number of times to obtain a multilayer printed wiring board.
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態のプリント配線板に半導体素子を搭載してなるものである。本実施形態の半導体パッケージは、本実施形態のプリント配線板の所定の位置に、半導体チップ、メモリ等を搭載して製造することができる。
[Semiconductor package]
The semiconductor package of the present embodiment has a semiconductor element mounted on the printed wiring board of the present embodiment. The semiconductor package of this embodiment can be manufactured by mounting a semiconductor chip, a memory, etc. at a predetermined position on the printed wiring board of this embodiment.
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。 Next, the present invention will be described in more detail by the following examples, but these examples do not limit the present invention in any sense.
[寸法変化量のバラつきの評価]
 各例で作製した両面銅張積層板について、面内に直径1.0mmの穴開けを図1の通りに実施した。図1に記載のとおり、ガラスクロスの経糸方向Xについての3つの穴間距離(1-7、2-6、3-5)及び緯糸方向Yについての3つの穴間距離(1-3、8-4、7-5)を画像測定機「QV-A808P1L-D」(Mitutoyo社製)を使用して測定し、これを「初期寸法値」とした。
 次に、各例で作製した4層銅張積層板について、上記と同様の手順にて、ガラスクロスの経糸方向Xについての上記3つの穴間距離、及び緯糸方向Yについての上記3つの穴間距離を、各々測定し、これを「積層後寸法値」とした。さらに、各穴間距離について、「初期寸法値」-「積層後寸法値」を求め、これを各穴間距離の「寸法変化量S」とした。
 そして、経糸方向Xについての3つの穴間距離(1-7、2-6、3-5)の寸法変化量の平均値S(x)ave、最大値S(x)max及び最小値S(x)min、並びに緯糸方向Yについての3つの穴間距離(1-3、8-4、7-5)の寸法変化量の平均値S(y)ave、最大値S(y)max及び最小値S(y)minを、それぞれ求め、経糸方向X及び緯糸方向Yそれぞれについて、最大値と平均値との差(最大値-平均値)、平均値と最小値との差(平均値-最小値)、最大値と最小値との差(最大値-最小値)を寸法バラつき評価の指標とした。
[Evaluation of variation in dimensional change amount]
The double-sided copper-clad laminates produced in each example were perforated with holes having a diameter of 1.0 mm as shown in FIG. As shown in FIG. 1, three hole distances (1-7, 2-6, 3-5) in the warp direction X and three hole distances (1-3, 8) in the weft direction Y of the glass cloth. -4, 7-5) was measured using an image measuring instrument “QV-A808P1L-D” (manufactured by Mitutoyo), and this was designated as “initial dimension value”.
Next, regarding the 4-layer copper-clad laminate produced in each example, the above-mentioned three hole distances in the warp direction X of the glass cloth and the three hole holes in the weft direction Y of the glass cloth were performed in the same procedure as described above. The respective distances were measured, and this was designated as "dimensional value after lamination". Further, for each interhole distance, "initial dimension value"-"post-stacking dimension value" was obtained, and this was set as "dimension change amount S" of each interhole distance.
Then, the average value S(x) ave , the maximum value S(x) max, and the minimum value S( of the dimensional change amounts of the three hole distances (1-7, 2-6, 3-5) in the warp direction X are calculated. x) min , and the average value S(y) ave , the maximum value S(y) max, and the minimum value of the dimensional changes of the three hole distances (1-3, 8-4, 7-5) in the weft direction Y. The values S(y) min are calculated respectively, and the difference between the maximum value and the average value (maximum value-average value) and the difference between the average value and the minimum value (average value-minimum) are obtained for each of the warp direction X and the weft direction Y. Value), and the difference between the maximum value and the minimum value (maximum value-minimum value) was used as an index for evaluation of dimensional variation.
[プリプレグの作製]
製造例1
(プリプレグ1)
 プリプレグ1を作製するに当たって、下記に示す各成分を準備した。
(A)成分:下記方法で製造したマレイミド化合物の溶液
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン、ビス(4-マレイミドフェニル)メタン、p-アミノフェノールびジメチルアセトアミドを入れ、変性マレイミド化合物として、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(Mw=1,370)のジメチルアセトアミド溶液を得て、(A)成分として用いた。
 なお、上記重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製]を用いて3次式で近似した。GPCの条件は、以下に示す。
 装置:(ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製])、
   (検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製])、
   (カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製])
 カラム;TSKgel SuperHZ2000+TSKgel SuperHZ2300(すべて東ソー株式会社製)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:20mg/5mL
 注入量:10μL
 流量:0.5mL/分
 測定温度:40℃
[Preparation of prepreg]
Production example 1
(Prepreg 1)
In producing the prepreg 1, the following components were prepared.
Component (A): Solution of maleimide compound produced by the following method 4,4′-diaminodiphenylmethane, bis(4-maleimide) was placed in a reaction vessel having a volume of 1 L equipped with a thermometer, a stirrer and a water content meter equipped with a reflux condenser. (Phenyl)methane, p-aminophenol and dimethylacetamide were added to obtain a dimethylacetamide solution of a maleimide compound (Mw=1,370) having an acidic substituent and an N-substituted maleimide group as a modified maleimide compound. ) Used as a component.
The weight average molecular weight (Mw) was converted from the calibration curve using standard polystyrene by gel permeation chromatography (GPC). Standard curve: standard polystyrene: TSKstandard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] Was approximated by a cubic equation. The conditions of GPC are shown below.
Device: (Pump: L-6200 type [manufactured by Hitachi High-Technologies Corporation]),
(Detector: L-3300 type RI [manufactured by Hitachi High-Technologies Corporation]),
(Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation])
Column: TSKgel SuperHZ2000+TSKgel SuperHZ2300 (all manufactured by Tosoh Corporation)
Column size: 6.0 x 40 mm (guard column), 7.8 x 300 mm (column)
Eluent: Tetrahydrofuran Sample concentration: 20 mg/5 mL
Injection volume: 10 μL
Flow rate: 0.5 mL/min Measuring temperature: 40°C
(B)成分:クレゾールノボラック型エポキシ樹脂(DIC株式会社製)
(C)成分:スチレン-無水マレイン酸共重合体(スチレン/無水マレイン酸モル比=4、Mw=11,000)
(D)成分:アミノシラン系カップリング剤により処理された溶融シリカ、平均粒子径:1.9μm、比表面積:5.8m/g
(E)成分:ジシアンジアミド
Component (B): Cresol novolac type epoxy resin (manufactured by DIC Corporation)
Component (C): Styrene-maleic anhydride copolymer (styrene/maleic anhydride molar ratio=4, Mw=11,000)
Component (D): fused silica treated with aminosilane coupling agent, average particle diameter: 1.9 μm, specific surface area: 5.8 m 2 /g
Component (E): dicyandiamide
 次に、上記(A)成分を45質量部、(B)成分を30質量部、(C)成分を25質量部、(D)成分を、樹脂成分総量〔(A)~(C)成分の総和〕100質量部に対して50質量部、(E)成分を、上記樹脂成分総量100質量部に対して、2質量部配合し、さらに溶液の不揮発分が67質量%になるようにメチルエチルケトンを追加し、樹脂ワニスを調製した。なお、上記した各成分の配合量は、いずれも固形分の質量部であり、溶液(有機溶剤を除く)又は分散液の場合は固形分換算量である。
 得られた各樹脂ワニスを、表1に示すガラスクロス1に含浸させ、160℃で4分間乾燥してプリプレグ1を得た。
Next, the above component (A) is 45 parts by mass, the component (B) is 30 parts by mass, the component (C) is 25 parts by mass, and the component (D) is the total amount of the resin components [(A) to (C) Total] 50 parts by mass with respect to 100 parts by mass, 2 parts by mass of the component (E) are blended with 100 parts by mass of the total amount of the resin components, and methyl ethyl ketone is added so that the nonvolatile content of the solution becomes 67% by mass. In addition, a resin varnish was prepared. In addition, the blending amount of each of the above-mentioned components is all parts by mass of a solid content, and in the case of a solution (excluding an organic solvent) or a dispersion liquid, a solid content conversion amount.
The obtained resin varnish was impregnated in glass cloth 1 shown in Table 1 and dried at 160° C. for 4 minutes to obtain prepreg 1.
製造例2
(プリプレグ2)
 製造例1において、ガラスクロスを、表1に示すガラスクロス1からガラスクロス2に変更したこと以外は、製造例1と同様にしてプリプレグ2を作製した。
Production example 2
(Prepreg 2)
A prepreg 2 was produced in the same manner as in Production Example 1, except that the glass cloth in Production Example 1 was changed from the glass cloth 1 shown in Table 1 to the glass cloth 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[積層板の作製]
実施例1、比較例1~3
(両面銅張積層板の作製)
 表2に記載のプリプレグの両面に18μmの銅箔「3EC-VLP-18」(三井金属株式会社製)を重ね、表2に記載の成形条件で加熱加圧成形し、厚さ0.05mmの両面銅張積層板を作製した。
[Production of laminated plate]
Example 1, Comparative Examples 1 to 3
(Preparation of double-sided copper clad laminate)
18 μm copper foil “3EC-VLP-18” (manufactured by Mitsui Kinzoku Co., Ltd.) was overlaid on both surfaces of the prepreg shown in Table 2 and heat-pressed under the molding conditions shown in Table 2 to give a thickness of 0.05 mm. A double-sided copper clad laminate was prepared.
(4層銅張積層板の作製)
 上記で作製した両面銅張積層板の両面の銅箔をエッチング除去して得られた樹脂板の両面に、表2に示すプリプレグを1枚ずつ重ね、さらに、該プリプレグに上記した銅箔を1枚ずつ重ねた。その後、表2に記載する成形条件で加熱加圧成形して4層銅張積層板(但し、内層は除去されたもの)を作製した。該4層銅張積層板を用いて、前記方法に従って、寸法変化量のバラつきを測定した。
(Preparation of 4-layer copper-clad laminate)
The prepregs shown in Table 2 are superposed one by one on both sides of the resin plate obtained by etching and removing the copper foils on both sides of the double-sided copper-clad laminate produced above, and further, the above-mentioned copper foil is placed on the prepreg. Layered one by one. Then, heat-press molding was performed under the molding conditions shown in Table 2 to prepare a 4-layer copper-clad laminate (however, the inner layer was removed). The 4-layer copper-clad laminate was used to measure the variation in the dimensional change according to the method described above.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2から、本実施形態の製造方法によって製造された実施例1の積層体は、寸法変化のバラつき量が小さいことが分かる。一方、平均フィラメント径比及び織密度比を満たさないガラスクロス2を用いた比較例1及び2の積層板、及び成形温度が200℃未満である比較例3の積層板は、寸法変化のバラつき量が大きかった。
 また、平均フィラメント径比及び織密度比を満たさないガラスクロス2を用いた場合、低温条件(比較例1)から、高温条件(比較例2)に変えることで、X方向の寸法変化量のバラつきは(S(x)max-S(x)min)は47ppm低減し、Y方向の寸法変化量のバラつきは(S(y)max-S(y)min)は22ppm低減している。一方、本実施形態の平均フィラメント径比及び織密度比を充足するガラスクロス1を用いた場合、低温条件(比較例3)から、高温条件(実施例1)に変えることで、X方向の寸法変化量のバラつきは(S(x)max-S(x)min)は86ppm低減し、Y方向の寸法変化量のバラつきは(S(y)max-S(y)min)は175ppm低減している。このことから、本実施形態の複合材の製造方法による寸法変化のバラつき量の低減量は、ガラスクロス(g)と、200℃以上の成形条件を組み合わせることで顕著に大きくなることが分かる。
From Table 2, it can be seen that the laminated body of Example 1 manufactured by the manufacturing method of the present embodiment has a small variation in dimensional change. On the other hand, the laminated plates of Comparative Examples 1 and 2 using the glass cloth 2 that does not satisfy the average filament diameter ratio and the weave density ratio, and the laminated plate of Comparative Example 3 in which the molding temperature is less than 200° C. Was great.
Further, when the glass cloth 2 that does not satisfy the average filament diameter ratio and the weave density ratio is used, by changing from the low temperature condition (Comparative Example 1) to the high temperature condition (Comparative Example 2), the variation in the dimensional change amount in the X direction is varied. (S(x) max −S(x) min ) is reduced by 47 ppm, and the variation in the dimensional change amount in the Y direction is reduced by (S(y) max −S(y) min ) by 22 ppm. On the other hand, when the glass cloth 1 satisfying the average filament diameter ratio and the weave density ratio of the present embodiment is used, the dimension in the X direction can be changed by changing the low temperature condition (Comparative Example 3) to the high temperature condition (Example 1). The variation in variation (S(x) max- S(x) min ) is reduced by 86 ppm, and the variation in dimensional variation in the Y direction is reduced by (S(y) max- S(y) min ) by 175 ppm. There is. From this, it is understood that the reduction amount of the variation in dimensional change by the method for manufacturing the composite material of the present embodiment is significantly increased by combining the glass cloth (g) and the molding condition of 200° C. or higher.
1~8 穴
X  経糸方向
Y  緯糸方向
1 to 8 holes X warp direction Y weft direction

Claims (13)

  1.  ガラスクロスと熱硬化性樹脂組成物とを含有するプリプレグを、200℃以上に加熱する工程を有する複合材の製造方法であって、
     前記ガラスクロスを構成する緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸との織密度比(経糸/緯糸)が1.00超である、複合材の製造方法。
    A method for producing a composite material, which comprises a step of heating a prepreg containing a glass cloth and a thermosetting resin composition to 200° C. or higher,
    The average filament diameter ratio (weft/warp) of the weft and the warp constituting the glass cloth is more than 1.00, and the weaving density ratio of the warp and the weft (warp/weft) is more than 1.00. There is a method of manufacturing a composite material.
  2.  前記熱硬化性樹脂組成物が、(A)N-置換マレイミド基を有するマレイミド化合物、(B)エポキシ樹脂、及び(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂を含有するものである、請求項1に記載の複合材の製造方法。 The thermosetting resin composition comprises a structural unit derived from (A) a maleimide compound having an N-substituted maleimide group, (B) an epoxy resin, and (C) an aromatic vinyl compound, and a structural unit derived from maleic anhydride. The method for producing a composite material according to claim 1, further comprising a copolymer resin having:
  3.  前記熱硬化性樹脂組成物が、さらに、(D)アミノシラン系カップリング剤で処理されたシリカを含有するものである、請求項2に記載の複合材の製造方法。 The method for producing a composite material according to claim 2, wherein the thermosetting resin composition further contains (D) silica treated with an aminosilane coupling agent.
  4.  前記平均フィラメント径比(緯糸/経糸)が、1.02~1.30である、請求項1~3のいずれか1項に記載の複合材の製造方法。 The method for producing a composite material according to any one of claims 1 to 3, wherein the average filament diameter ratio (weft/warp) is 1.02 to 1.30.
  5.  前記織密度比(経糸/緯糸)が、1.10~1.50である、請求項1~4のいずれか1項に記載の複合材の製造方法。 The method for producing a composite material according to any one of claims 1 to 4, wherein the woven density ratio (warp/weft) is 1.10 to 1.50.
  6.  前記ガラスクロスの厚さが、5~50μmである、請求項1~5のいずれか1項に記載の複合材の製造方法。 The method for producing a composite material according to any one of claims 1 to 5, wherein the glass cloth has a thickness of 5 to 50 μm.
  7.  前記ガラスクロスの目付が、12~35g/mである、請求項1~6のいずれか1項に記載の複合材の製造方法。 7. The method for producing a composite material according to claim 1, wherein the weight of the glass cloth is 12 to 35 g/m 2 .
  8.  2層以上の絶縁層を有する積層板、又は1層以上の絶縁層と1層以上の金属箔とを有する積層板の製造方法であって、
     前記絶縁層が複合材であり、
     該複合材を、請求項1~7のいずれか1項に記載の複合材の製造方法によって形成する、積層板の製造方法。
    A method for producing a laminate having two or more insulating layers, or a laminate having one or more insulating layers and one or more metal foils,
    The insulating layer is a composite material,
    A method for manufacturing a laminate, wherein the composite material is formed by the method for manufacturing a composite material according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の複合材の製造方法によって製造される複合材。 A composite material produced by the method for producing a composite material according to any one of claims 1 to 7.
  10.  請求項9に記載の複合材を含有する積層板。 A laminated board containing the composite material according to claim 9.
  11.  請求項10に記載の積層板を用いてなるプリント配線板。 A printed wiring board using the laminated board according to claim 10.
  12.  請求項11に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。 A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to claim 11.
  13.  ガラスクロスと熱硬化性樹脂組成物とを含有するプリプレグであって、
     前記ガラスクロスにおける、緯糸と経糸との平均フィラメント径比(緯糸/経糸)が、1.00超であり、かつ、経糸と緯糸との織密度比(経糸/緯糸)が1.00超であり、
     前記熱硬化性樹脂組成物が、(A)N-置換マレイミド基を有するマレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、及び(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂を含有するものである、プリプレグ。
    A prepreg containing a glass cloth and a thermosetting resin composition,
    In the glass cloth, the average filament diameter ratio of the weft and the warp (weft/warp) is more than 1.00, and the weaving density ratio of the warp and the weft (warp/weft) is more than 1.00. ,
    The thermosetting resin composition is derived from (A) an N-substituted maleimide group-containing maleimide compound, (B) an epoxy resin having at least two epoxy groups in one molecule, and (C) an aromatic vinyl compound. A prepreg containing a copolymerized resin having a structural unit which is represented by the formula and a structural unit derived from maleic anhydride.
PCT/JP2019/049510 2018-12-18 2019-12-18 Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package WO2020130008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561478A JPWO2020130008A1 (en) 2018-12-18 2019-12-18 Composite materials and their manufacturing methods, prepregs, laminated boards, printed wiring boards and semiconductor packages

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236631 2018-12-18
JP2018236631 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130008A1 true WO2020130008A1 (en) 2020-06-25

Family

ID=71101772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049510 WO2020130008A1 (en) 2018-12-18 2019-12-18 Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package

Country Status (3)

Country Link
JP (1) JPWO2020130008A1 (en)
TW (1) TW202039659A (en)
WO (1) WO2020130008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255141A1 (en) * 2021-06-02 2022-12-08 信越ポリマー株式会社 Adhesive composition
WO2022255137A1 (en) * 2021-06-02 2022-12-08 信越ポリマー株式会社 Adhesive composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267514A (en) * 1987-04-24 1988-11-04 Unitika Ltd Material for flexible printed circuit board
JPH055243A (en) * 1991-05-16 1993-01-14 Nitto Boseki Co Ltd Glass cloth and laminated sheet using the same
JPH07252747A (en) * 1994-03-11 1995-10-03 Nitto Boseki Co Ltd Glass woven fabric for printed wiring substrate and printed wiring substrate using the same
JPH09111577A (en) * 1995-10-16 1997-04-28 Nitto Boseki Co Ltd Glass cloth, prepreg, laminated board and multilayer printed circuit board
JPH10245743A (en) * 1997-02-27 1998-09-14 Nitto Boseki Co Ltd Glass fiber woven fabric for printed circuit board
JP2016222837A (en) * 2015-06-02 2016-12-28 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and printed wiring board
JP2018127750A (en) * 2017-02-10 2018-08-16 旭化成株式会社 Glass cloth, prepreg and printed wiring board
WO2018181286A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Method for producing prepreg, prepreg, laminate, printed wiring board and semiconductor package
JP2019104996A (en) * 2017-12-11 2019-06-27 旭化成株式会社 Glass cloth, prepreg, and printed circuit board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267514A (en) * 1987-04-24 1988-11-04 Unitika Ltd Material for flexible printed circuit board
JPH055243A (en) * 1991-05-16 1993-01-14 Nitto Boseki Co Ltd Glass cloth and laminated sheet using the same
JPH07252747A (en) * 1994-03-11 1995-10-03 Nitto Boseki Co Ltd Glass woven fabric for printed wiring substrate and printed wiring substrate using the same
JPH09111577A (en) * 1995-10-16 1997-04-28 Nitto Boseki Co Ltd Glass cloth, prepreg, laminated board and multilayer printed circuit board
JPH10245743A (en) * 1997-02-27 1998-09-14 Nitto Boseki Co Ltd Glass fiber woven fabric for printed circuit board
JP2016222837A (en) * 2015-06-02 2016-12-28 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and printed wiring board
JP2018127750A (en) * 2017-02-10 2018-08-16 旭化成株式会社 Glass cloth, prepreg and printed wiring board
WO2018181286A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Method for producing prepreg, prepreg, laminate, printed wiring board and semiconductor package
JP2019104996A (en) * 2017-12-11 2019-06-27 旭化成株式会社 Glass cloth, prepreg, and printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255141A1 (en) * 2021-06-02 2022-12-08 信越ポリマー株式会社 Adhesive composition
WO2022255137A1 (en) * 2021-06-02 2022-12-08 信越ポリマー株式会社 Adhesive composition

Also Published As

Publication number Publication date
TW202039659A (en) 2020-11-01
JPWO2020130008A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
KR101733646B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
KR101945076B1 (en) Resin composition, and prepreg and laminated sheet each produced using same
JP7459900B2 (en) Method for producing prepreg, prepreg, laminate, printed wiring board, and semiconductor package
US10876000B2 (en) Thermosetting resin composition, prepreg, laminated board, printed wiring board, and high speed communication-compatible module
WO2012099133A1 (en) Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
JP2014024926A (en) Thermosetting resin composition and prepreg, laminate sheet, and multilayer printed wiring board using the same
JP6428082B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
KR20210133974A (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP6606882B2 (en) Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board
WO2020130008A1 (en) Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package
JP6259557B2 (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP7435444B2 (en) Method for manufacturing copper-clad laminates, printed wiring boards, semiconductor packages, and copper-clad laminates
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
JP6848215B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
JP2019099710A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
JP2019099712A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
TW201835174A (en) Prepreg, laminate and printed wiring board
JP6988204B2 (en) Thermosetting resin composition, prepreg, laminated board, printed wiring board and high-speed communication compatible module
JP6164318B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2019099711A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
WO2024009861A1 (en) Copper-clad laminate, printed wiring board, and semiconductor package
JP7452417B2 (en) Resin varnish, prepreg, laminate, printed wiring board and semiconductor package
JP2021031504A (en) Thermosetting resin composition, prepreg, laminated sheet, printed wiring board and module adaptive to high-speed communication
WO2023013715A1 (en) Curable composition, prepreg, resin sheet, metal foil–clad laminate, and printed wiring board
CN118139742A (en) Resin-coated metal foil, printed wiring board, method for manufacturing the same, and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19898929

Country of ref document: EP

Kind code of ref document: A1