WO2020129872A1 - カーボンナノチューブ分散液、及びその製造方法 - Google Patents

カーボンナノチューブ分散液、及びその製造方法 Download PDF

Info

Publication number
WO2020129872A1
WO2020129872A1 PCT/JP2019/049082 JP2019049082W WO2020129872A1 WO 2020129872 A1 WO2020129872 A1 WO 2020129872A1 JP 2019049082 W JP2019049082 W JP 2019049082W WO 2020129872 A1 WO2020129872 A1 WO 2020129872A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion liquid
carbon nanotubes
carbon nanotube
walled carbon
polymer dispersant
Prior art date
Application number
PCT/JP2019/049082
Other languages
English (en)
French (fr)
Inventor
寿始 高橋
兼司 近藤
Original Assignee
レジノカラー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レジノカラー工業株式会社 filed Critical レジノカラー工業株式会社
Priority to JP2020561393A priority Critical patent/JP7301881B2/ja
Publication of WO2020129872A1 publication Critical patent/WO2020129872A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a carbon nanotube dispersion liquid and a method for producing the same. More specifically, the present invention relates to a dispersion of single-walled carbon nanotubes having excellent dispersibility of carbon nanotubes, good stability over time, hard to reaggregate, and low viscosity, and a method for producing the same.
  • Carbon-based materials such as carbon black, graphite, and carbon nanotubes are known as one of industrial materials having excellent conductivity. Among them, carbon nanotubes are also very excellent in mechanical properties and thermal conductivity, and have recently attracted attention as industrial materials. Examples of the carbon nanotubes include multi-wall carbon nanotubes (also referred to as “MWCNT (Multi Wall Carbon Nanotube)”) and single-wall carbon nanotubes (also referred to as “SWCNT (Single Wall Carbon Nanotube)”).
  • MWCNT Multi Wall Carbon Nanotube
  • SWCNT Single Wall Carbon Nanotube
  • the single-walled carbon nanotube has a large specific surface area per unit mass as compared with the multi-walled carbon nanotube, and thus is excellent in that high conductivity can be imparted with a small addition amount.
  • Patent Document 1 discloses a carbon nanotube aggregate having a swelling ratio of 5 or more, and a dispersant having both an amine value and an acid value in a specific range. Is dispersed in a dispersion medium to obtain a dispersion of carbon nanotubes.
  • the dispersion liquid of single-walled carbon nanotubes is inferior in stability over time to the dispersion liquid of multi-walled carbon nanotubes, and particularly at high temperatures (40° C., etc.), it is easy to re-aggregate even once, so that the low temperature It had to be stored.
  • the dispersion liquid of carbon nanotubes has a low viscosity.
  • the present invention has excellent dispersibility of single-walled carbon nanotubes, good stability over time, and low viscosity that does not easily re-aggregate, an organic solvent dispersion liquid containing single-walled carbon nanotubes, and a method for producing the same.
  • the purpose is to provide.
  • the present inventor has conducted various studies on methods of dispersing carbon nanotubes containing single-walled carbon nanotubes in a dispersion medium.
  • an ultrasonic wave irradiation step is performed using at least single-walled carbon nanotubes, a polymer dispersant, and an organic solvent.
  • a dispersion is produced by a predetermined method including a dispersion step using a disperser that does not use a crushing medium, it has excellent dispersibility, good stability over time, is hard to re-aggregate, has low viscosity, and is an organic single-walled carbon nanotube. It has been found that a solvent dispersion can be easily produced.
  • a coating film excellent in both transparency and conductivity can be obtained by using a dispersion of single-walled carbon nanotubes obtained by the above-mentioned production method, and the present invention has been completed.
  • the present invention provides a dispersion liquid of carbon nanotubes containing at least carbon nanotubes, a polymer dispersant, and an organic solvent, wherein the dispersion liquid contains 0.01 to 10% by mass of carbon nanotubes. Is 75% by mass or more of single-walled carbon nanotubes having a minor axis of 0.1 to 50 nm and an aspect ratio of 100 or more, and the dispersion liquid is adjusted so that the content of the carbon nanotubes is 0.2% by mass.
  • the viscosity of the prepared liquid prepared in 1. is less than 500 mPa ⁇ s, which is a carbon nanotube dispersion liquid.
  • the particle diameter D50 of the carbon nanotubes is preferably less than 5 ⁇ m.
  • the particle diameter D90 of the carbon nanotubes is preferably less than 10 ⁇ m.
  • the dispersion liquid further contains a dispersion aid.
  • the polymer dispersant is preferably a cationic polymer dispersant.
  • the organic solvent is preferably at least one selected from the group consisting of an ester solvent, a ketone solvent, a glycol solvent, an alcohol solvent, and a nitrogen-containing polar solvent.
  • the coating film formed by the following method using the above dispersion has a total light transmittance of 90% or more and a surface resistance value of less than 1.0 ⁇ 10 9 ⁇ / ⁇ .
  • Method for forming coating film A resin composition having a solid content of 1% by mass, which is prepared by mixing the dispersion liquid, the butyl methacrylate resin and the organic solvent so that the concentration of the carbon nanotubes in the coating film is 8% by mass. Is prepared, and the above resin composition is applied onto a polyethylene terephthalate film using a bar coater having a wire diameter of 0.27 mil, and the applied material is dried to form a coating film.
  • the present invention also provides a step (1) of mixing at least a single-walled carbon nanotube having a minor axis of 0.1 to 50 nm and an aspect ratio of 100 or more, a polymer dispersant, and an organic solvent, and the above step ( A step (2) of irradiating the mixture obtained in 1) with ultrasonic waves, a step (3) of dispersing the ultrasonic irradiation product obtained in the step (2) by a disperser which does not use grinding media, and A method for producing a single-walled carbon nanotube dispersion, which comprises the step (4) of adding a polymer dispersant to the dispersion obtained in the above step (3) and irradiating the obtained mixture with ultrasonic waves. Is.
  • the method for producing a dispersion liquid preferably includes a step of washing the single-walled carbon nanotube with an inorganic acid or a solution containing an inorganic acid before the step (1).
  • step (1) it is preferable to further mix a dispersion aid.
  • the polymer dispersant is preferably a cationic polymer dispersant.
  • the organic solvent is preferably at least one selected from the group consisting of an ester solvent, a ketone solvent, a glycol solvent, an alcohol solvent, and a nitrogen-containing polar solvent. ..
  • the present invention it is possible to obtain a low-viscosity carbon nanotube dispersion having excellent dispersibility of carbon nanotubes including single-walled carbon nanotubes, good stability over time, and less likely to re-aggregate. Further, when the dispersion liquid of the present invention is used, high conductivity can be imparted with a small amount of addition, so that a coating film or the like excellent in both conductivity and transparency can be formed.
  • the dispersion liquid of the present invention can be preferably used as a conductive material.
  • Dispersion liquid The present invention is a dispersion liquid of carbon nanotubes containing at least carbon nanotubes, a polymer dispersant, and an organic solvent, wherein the dispersion liquid contains 0.01 to 10% by mass of carbon nanotubes. Is 75% by mass or more of single-walled carbon nanotubes having a minor axis of 0.1 to 50 nm and an aspect ratio of 100 or more, and the dispersion liquid is adjusted so that the content of the carbon nanotubes is 0.2% by mass.
  • the viscosity of the prepared liquid prepared in 1. is less than 500 mPa ⁇ s, which is a carbon nanotube dispersion liquid.
  • the dispersion liquid of the present invention is a low-viscosity organic solvent dispersion liquid of single-walled carbon nanotubes having excellent dispersibility, good stability over time, and hardly re-aggregated.
  • the dispersion of the present invention is an organic solvent dispersion of low-viscosity single-walled carbon nanotubes, which has excellent dispersibility, good stability over time, is difficult to re-aggregate, and has a short diameter and an aspect ratio within a predetermined range. This is because the single-walled carbon nanotubes are contained in a predetermined range amount and have a viscosity in a predetermined range.
  • the dispersion liquid of the present invention when used, a coating film having excellent conductivity and transparency can be formed.
  • the dispersion of the present invention can form a coating film excellent in conductivity and transparency by using a single-walled carbon nanotube as the carbon nanotube, which contains 75% by mass or more of the carbon nanotube, Compared with multi-walled carbon nanotubes, excellent conductivity can be obtained with a smaller amount of use, and very strong van der Waals force acts between particles, and while using single-walled carbon nanotubes with a large aspect ratio, low This is due to the fact that it is possible to stably maintain a good dispersed state in which there are few aggregates of carbon nanotubes due to viscosity.
  • Such a dispersion of the present invention can be produced by a specific production method described below, and the concentration of carbon nanotubes including single-walled carbon nanotubes is relatively high at 0.2% by mass in the dispersion.
  • concentration of carbon nanotubes including single-walled carbon nanotubes is relatively high at 0.2% by mass in the dispersion.
  • a dispersion having a relatively low viscosity which has excellent dispersibility of carbon nanotubes, good stability over time, and is less likely to re-aggregate.
  • a dispersion having a carbon nanotube content of 0.2% by mass has excellent dispersibility, good stability over time, is difficult to re-aggregate, and has a low viscosity, so that it can be widely mixed with other binder components. Can be prescribed. Further, it is possible to reduce the amount of solvent volatilized in the solvent volatilization step.
  • the dispersion of the present invention has a viscosity of 500 mPa ⁇ s prepared by preparing the dispersion so that the content of the carbon nanotubes (preferably single-walled carbon nanotubes) is 0.2% by mass. Is less than.
  • the viscosity is in the above range, the dispersibility of the carbon nanotubes is good, the stability over time is excellent, re-aggregation is difficult, and a low viscosity dispersion liquid can be obtained.
  • the filtration recovery rate of the dispersion liquid by its own weight can be increased. When the recovery rate is high, the dispersion liquid can be easily handled.
  • the viscosity of the prepared liquid is preferably 300 mPa ⁇ s or less, and more preferably 100 mPa ⁇ s or less, from the viewpoint of further increasing the filtration recovery rate by its own weight.
  • the viscosity of the dispersion liquid of the present invention is usually 5 mPa ⁇ s or more.
  • the same organic solvent as the organic solvent contained in the dispersion may be added to the dispersion, or the organic solvent may be partially removed. Then, a method of appropriately adjusting the concentration of carbon nanotubes to a predetermined value (0.2% by mass) can be given.
  • the method for removing the organic solvent is not particularly limited, and a known method such as vacuum distillation may be used.
  • the viscosity is a value obtained by measuring with a BII type viscometer (manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25° C. and a rotation speed of 60 rpm.
  • the recovery rate is preferably 75% or more, more preferably 80% or more, and further preferably 90% or more. If the recovery rate is low, there is a possibility that uniform mixing with another binder, increase in working time due to difficulty in accurate measurement, and increase in pressure resistance of the apparatus may result in reduction in production efficiency.
  • the dispersion liquid of the present invention contains at least carbon nanotubes, a polymer dispersant, and an organic solvent. Each component contained in the dispersion liquid of the present invention will be described below.
  • the carbon nanotubes used in the dispersion of the present invention include single-walled carbon nanotubes having a short diameter of 0.1 to 50 nm and an aspect ratio of 100 or more.
  • the single-walled carbon nanotube is a seamless cylindrical material formed of single-walled graphene.
  • the short diameter of the single-walled carbon nanotube is the diameter of the cylindrical single-walled carbon nanotube.
  • the minor axis is preferably 0.1 to 40 nm, more preferably 0.3 to 20 nm, and further preferably 0.5 to 10 nm.
  • the single-walled carbon nanotube has an aspect ratio of 100 or more.
  • the aspect ratio is the ratio of (B)/(A) when the diameter (minor axis) of the cylindrical single-walled carbon nanotube is A (nm) and the length (major axis) is B (nm). It is a value.
  • the aspect ratio is preferably 500 or more, more preferably 1500 or more.
  • the upper limit of the aspect ratio is preferably 200,000 or less, more preferably 10,000 or less.
  • the major axis is preferably 100 to 1,000,000 nm, more preferably 500 to 500,000 nm, further preferably 1,000 to 100,000 nm.
  • the major axis is the length of the single-walled carbon nanotube having a cylindrical shape.
  • the minor axis and major axis can be measured by an atomic force microscope (AFM), Raman spectroscopy (Raman), a transmission electron microscope (TEM), or the like.
  • AFM atomic force microscope
  • Raman spectroscopy Raman
  • TEM transmission electron microscope
  • a commercially available product may be used as the single-walled carbon nanotube.
  • Specific examples of commercially available single-walled carbon nanotubes that can be used in the present invention include TUBALL (registered trademark) (manufactured by OCSiAl) and ZEONANO (registered trademark) SG101 (manufactured by ZEON Nano Technology Co., Ltd.). Can be mentioned. Among them, TUBALL (registered trademark) (manufactured by OCSiAl) is preferable because the dispersibility of the dispersion liquid of the present invention can be further improved.
  • the single-walled carbon nanotubes may be used alone or in combination of two or more.
  • the carbon nanotubes used in the dispersion of the present invention may contain carbon nanotubes other than the above single-walled carbon nanotubes, for example, other carbon nanotubes such as multi-walled carbon nanotubes. Including the above.
  • the single-walled carbon nanotubes By containing the single-walled carbon nanotubes in an amount of 75% by mass or more, high conductivity can be imparted by adding a small amount of the dispersion liquid of the present invention to a resin and the like, and a coating film having both excellent transparency and conductivity Can be formed.
  • the multi-walled carbon nanotube is a carbon nanotube in which two or more single-walled carbon nanotubes having different diameters are coaxially stacked in a multi-layer.
  • the carbon nanotubes preferably contain 80% by mass or more of the single-walled carbon nanotubes, more preferably 90% by mass or more, further preferably 95% by mass or more, and particularly preferably 100% by mass.
  • one kind of carbon nanotube may be used, or two or more kinds thereof may be used in combination.
  • the dispersion liquid of the present invention contains 0.01 to 10% by mass of carbon nanotubes.
  • the content of carbon nanotubes in the dispersion is preferably 0.01 to 1% by mass, and more preferably 0.01 to 0.5% by mass.
  • the particle diameter D50 of the carbon nanotubes is preferably less than 5 ⁇ m.
  • the particle diameter D50 is more preferably less than 4 ⁇ m, further preferably less than 3 ⁇ m.
  • the lower limit of the particle diameter D50 is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more in order to prevent insufficient conductivity due to fiber breakage.
  • the particle diameter D90 of the carbon nanotubes is preferably less than 10 ⁇ m.
  • the particle diameter D90 is more preferably less than 8 ⁇ m, further preferably less than 5 ⁇ m.
  • the lower limit of the particle diameter D90 is not particularly limited, but is preferably 1.5 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more, in order to prevent that excellent conductivity due to fiber breakage cannot be obtained. It is particularly preferably 3.5 ⁇ m or more.
  • the particle diameters D50 and D90 are measured by a laser diffraction/scattering particle diameter distribution analyzer such as LA-950V2 (manufactured by Horiba, Ltd.) by appropriately diluting the dispersion liquid to a concentration at which particle size distribution can be measured. This is the value obtained.
  • LA-950V2 manufactured by Horiba, Ltd.
  • the polymer dispersant used in the present invention is not particularly limited as long as it can improve the dispersibility of carbon nanotubes, and includes nonionic polymer dispersants, anion polymer dispersants, and cationic high dispersants. Examples thereof include molecular dispersants, and among them, cationic polymer dispersants are preferable from the viewpoint that the dispersibility of carbon nanotubes can be further improved.
  • Examples of the cationic polymer dispersant include polymers having a basic functional group such as an amine group, and the like, for example, a basic functional group-containing copolymer; a high molecular weight unsaturated acid ester having a basic functional group.
  • Modified polyurethane, modified polyester, modified poly(meth)acrylate, modified polyacrylic acid salt, or (meth)acrylic copolymer polyethyleneimine; polyoxyethylenealkylamine; alkanolamine; alkylammonium salt or alkylacetalization Examples thereof include polyvinyl alcohol and the like.
  • the cationic polymer dispersant is a copolymer having a basic functional group, a (meth)acrylic resin having a basic functional group, in that the dispersibility of the single-walled carbon nanotube can be further improved. It is preferably a copolymer or an alkyl acetalized polyvinyl alcohol.
  • the polymer dispersant may be a linear, terminal-modified, block-type, or graft-type polymer.
  • the amine value of the polymer dispersant is preferably 0 mgKOH/g or more, more preferably 5 mgKOH/g or more, and 100 mgKOH/g from the viewpoint that the dispersibility of carbon nanotubes can be further improved. It is preferably not more than 75 mgKOH/g, more preferably not more than 50 mgKOH/g.
  • the amine value is preferably 0 to 100 mgKOH/g, more preferably 5 to 100 mgKOH/g, further preferably 5 to 75 mgKOH/g, and particularly preferably 5 to 50 mgKOH/g. preferable.
  • a commercially available product may be used as the polymer dispersant.
  • Specific examples of commercially available polymer dispersants that can be used in the present invention include Azisper PB821, PB822, PB824, PB881 (all manufactured by Ajinomoto Fine-Techno Co., Inc.), Efka (registered trademark) PX4320, PX4310, PX4300, PX4330, PX4340, PX4700, PX4701, PX4731, PX4732, PU4063, PA4400, PA4401, PA4403 (all manufactured by BASF), BYK-9077 (manufactured by BYK Chemie), S-REC BL-1, BL-2, BL-.
  • BL-10 BL-S (all manufactured by Sekisui Chemical Co., Ltd.) and the like.
  • Azisper PB821, Efka (registered trademark) PX4320, S-REC BL-10, and S-REC BL-S are preferable because the dispersibility of the dispersion liquid can be further improved.
  • the above polymer dispersants may be used alone or in combination of two or more.
  • the content of the polymer dispersant in the dispersion liquid of the present invention is preferably 1 to 10% by mass, more preferably 1 to 5% by mass, and further preferably 1 to 3% by mass. ..
  • Organic solvent used in the present invention is not particularly limited, and examples thereof include alcohol solvents (methanol, ethanol, butanol, isopropanol, phenol, etc.), amine solvents (triethylamine, trimethanolamine, etc.), ether solvents ( Dioxane, tetrahydrofuran, etc.), ether alcohol solvent (2-methoxyethanol, ethoxyethanol, methoxyethoxyethanol, phenylethanol, etc.), glycol solvent (ethylene glycol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, Propylene glycol monomethyl ether, etc.), ester solvents (methyl acetate, ethyl acetate, normal butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, butylene carbonate, etc
  • the ester solvent, the ketone solvent, the glycol solvent, the alcohol solvent, or the nitrogen-containing polar solvent is preferable in that the dispersibility of the single-walled carbon nanotube can be further improved, and the ester is preferably used.
  • a system solvent, a glycol solvent, or a ketone solvent is more preferable, and normal butyl acetate, propylene glycol monomethyl ether acetate, or methyl ethyl ketone is further preferable.
  • the above organic solvents may be used alone or in combination of two or more.
  • the content of the organic solvent in the dispersion liquid of the present invention is preferably 89 to 98% by mass, more preferably 93 to 98% by mass, and further preferably 95 to 98% by mass.
  • the dispersion liquid of the present invention may contain water or the like as a dispersion medium in addition to the above organic solvent, but the organic solvent is preferably contained in the dispersion medium in an amount of 95% by mass or more, and 98% by mass. % Or more is more preferable, and 100% by mass is further preferable.
  • the dispersion liquid of the present invention contains at least the above carbon nanotubes, a polymer dispersant, and an organic solvent, but may further contain other components.
  • the other components include a dispersion aid, a pH adjusting agent, a surface adjusting agent, and the like.
  • the above-mentioned dispersion liquid further contains a dispersion aid in that the wettability of the single-walled carbon nanotube can be further enhanced and the dispersibility (improvement of stability over time, suppression of re-aggregation, reduction of viscosity) can be improved. It is preferable.
  • the types and contents of the other components described above can be appropriately selected from known ones according to the purpose and application of the dispersion.
  • dispersion aid examples include phthalocyanine derivatives such as SOLSPERSE 5000 and SOLSPERSE 12000 (manufactured by Lubrizol), and azo derivatives such as SOLSPERSE 22000 (manufactured by Lubrizol).
  • the coating film formed by the method described below using the dispersion liquid of the present invention has a total light transmittance of 90% or more and a surface resistance value of less than 1.0 ⁇ 10 9 ⁇ / ⁇ . Is preferred.
  • the total light transmittance is preferably 93% or more, more preferably 95% or more.
  • the total light transmittance is measured using a haze meter such as Haze Meter HZ-2 (manufactured by Suga Test Instruments Co., Ltd.) by a method according to the total light transmittance standard (ISO 13468-1, JIS K 7361). It is the value obtained by
  • the surface resistance value is preferably less than 5.0 ⁇ 10 8 ⁇ / ⁇ , and more preferably less than 1.0 ⁇ 10 7 ⁇ / ⁇ .
  • the surface resistance value is a value obtained by measuring the current value flowing on the coating film surface at 20° C. using a resistivity meter such as Hiresta MCP-HT450 (manufactured by Mitsubishi Chemical Corporation).
  • the coating film for measuring the total light transmittance and the surface resistance value was prepared by mixing the dispersion liquid of the present invention, butyl methacrylate resin and an organic solvent so that the concentration of carbon nanotubes in the coating film was 8% by mass. Then, a resin composition having a solid content of 1% by mass is prepared, and the resin composition is applied onto a polyethylene terephthalate film using a bar coater having a wire diameter of 0.27 mil, and the applied material is dried. Can be formed.
  • the organic solvent include the same organic solvents as those contained in the dispersion of the present invention.
  • the method for drying the coating material is not particularly limited as long as the organic solvent in the coating material is sufficiently distilled off to form a coating film, depending on the type of the organic solvent used, heat drying, etc. It can be performed by appropriately selecting from known methods. The drying conditions can also be appropriately selected according to the type of organic solvent used and the like.
  • the dispersion of the present invention is not particularly limited as long as the dispersion satisfying the requirements of the above-mentioned dispersion of the present invention is manufactured, but for example, the following step (1 The method including (1) to (4) is preferable.
  • Step (1) At least a step of mixing single-walled carbon nanotubes having a minor axis of 0.1 to 50 nm and an aspect ratio of 100 or more, a polymer dispersant, and an organic solvent.
  • Step (2) Step ( Step of irradiating the mixture obtained in 1) with ultrasonic waves
  • Step (3) Step of dispersing the ultrasonic irradiation object obtained in Step (2) by a disperser which does not use grinding media
  • Step (4) Step A step of adding a polymer dispersant to the dispersion obtained in (3) and irradiating the obtained mixture with ultrasonic waves.
  • the single-walled carbon nanotube, the polymer dispersant, and the organic solvent are mixed in the step (1), and then the single-walled carbon is subjected to the ultrasonic treatment in the step (2).
  • Wetting the nanotubes sufficiently with an organic solvent and a polymeric dispersant makes the carbon nanotubes easier to disperse, and the dispersion using a disperser that does not use the grinding media in step (3) causes the fiber structure of the single-walled carbon nanotubes to change.
  • the single-walled carbon nanotubes are dispersed and stabilized by breaking them without breaking them, and further adding the polymer dispersant in the step (4) and performing ultrasonic treatment.
  • a single-walled carbon nanotube having a short diameter of 0.1 to 50 nm and an aspect ratio of 100 or more first, at least a single-walled carbon nanotube having a short diameter of 0.1 to 50 nm and an aspect ratio of 100 or more, a polymer dispersant, and an organic solvent are mixed. ..
  • At least the method for mixing the single-walled carbon nanotubes, the polymer dispersant, and the organic solvent is not particularly limited, and known mixing means such as using a stirring and mixing device such as a mixer or a dissolver can be used. Also, these components can be mixed in any order. For example, a solution in which a polymer dispersant is dissolved in an organic solvent may be prepared in advance, and this solution may be mixed with the single-walled carbon nanotube.
  • step (1) is a step of mixing the single-walled carbon nanotubes, the polymer dispersant, and the organic solvent, it does not mean that only these components are mixed, and the single-walled carbon nanotubes are not mixed.
  • multi-walled carbon nanotubes may be mixed.
  • Dispersion As the above-mentioned single-walled carbon nanotube, polymer dispersant, and organic solvent, the same ones as described in the above “1. Dispersion” can be mentioned.
  • the respective components are preferably mixed so as to have the content ratios described in the above "1. Dispersion”.
  • multi-walled carbon nanotubes are also mixed in addition to the single-walled carbon nanotubes, it is preferable to mix them so that the content ratio is as described in “1. Dispersion” above.
  • the step (1) it is preferable to further mix a dispersion aid in addition to the components described above.
  • a dispersion aid By further mixing the dispersion aid, the wettability of the single-walled carbon nanotube in the step (2) can be further enhanced, and a dispersion liquid having further excellent dispersibility can be produced.
  • the dispersion aid include the same as those described in "1. Dispersion" above.
  • the amount of the dispersion aid added is not particularly limited, but is preferably 10 to 100 parts by mass, more preferably 10 to 60 parts by mass, and 20 to 20 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube. It is more preferably 40 parts by mass.
  • the method for producing a dispersion liquid of the present invention preferably also includes a step of washing the single-walled carbon nanotubes with an inorganic acid or a solution containing an inorganic acid before the step (1).
  • impurities such as iron contained in the single-walled carbon nanotubes can be removed and the purity of the single-walled carbon nanotubes can be increased.
  • the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrogen peroxide and the like.
  • the solution containing the inorganic acid include a solution obtained by mixing the inorganic acid with water.
  • the above-mentioned washing step may be performed on the entire carbon nanotubes including multi-walled carbon nanotubes. preferable.
  • the method for washing the single-walled carbon nanotubes with an inorganic acid or a solution containing an inorganic acid is not particularly limited, and a known method can be used.
  • the mixture obtained in the above step (1) is irradiated with ultrasonic waves.
  • the ultrasonic irradiation method is not particularly limited, and it can be performed by a known method using an ultrasonic device or the like.
  • the amplitude is preferably 10 to 100 ⁇ m, more preferably 10 to 60 ⁇ m, and further preferably 10 to 40 ⁇ m.
  • the output is preferably 10 to 5000 W, more preferably 100 to 3000 W, and further preferably 200 to 1500 W.
  • the irradiation time is preferably 30 seconds or more, more preferably 60 seconds or more, further preferably 300 seconds or more, and the upper limit is not particularly limited, but it is preferably 600 seconds or less and 480 seconds or less. Is more preferable.
  • the temperature of the dispersion liquid during irradiation is not particularly limited, but is usually 20 to 80° C., preferably 30 to 70° C., and more preferably 40 to 60° C.
  • the ultrasonic irradiation is a process for the purpose of sufficiently wetting the carbon nanotubes with the organic solvent. Therefore, in the step (2), referring to the ultrasonic irradiation conditions, the carbon nanotubes are treated with an organic solvent. Can be set by appropriately setting the conditions for sufficiently wetting.
  • the ultrasonic irradiation product obtained in the above step (2) is dispersed by a disperser which does not use a grinding medium.
  • the disperser that does not use the grinding media include a mixer, a homogenizer, a dissolver, a roll mill, a kneader, a jet mill, and a nanomizer.
  • the jet mill is preferable, and the wet jet mill is more preferable.
  • the wet jet mill include a table-top type wet ultrahigh pressure atomization experimental device NVL-ES008-D manufactured by Yoshida Kikai Co., Ltd.
  • the processing pressure is preferably 50 to 300 MPa, more preferably 100 to 250 MPa, further preferably 150 to 200 MPa.
  • the shape of the gauge may be cross or straight, but is preferably cross.
  • Dispersion in the step (3) using a disperser that does not use the grinding media is preferably completed after confirming that the viscosity of the dispersion becomes higher than that of the dispersion immediately after the step (2).
  • a polymer dispersant is further added to the dispersion obtained in the above step (3), and the resulting mixture is irradiated with ultrasonic waves.
  • the polymer dispersant those similar to the polymer dispersants described in the above “1. Dispersion” are preferably mentioned, and the same as the polymer dispersants used in the step (1). It is preferable.
  • the amount of the polymer dispersant added may be appropriately adjusted so that the content of the polymer dispersant in the obtained dispersion becomes the content of the polymer dispersant described in “1. Dispersion”. However, it is preferable to add half each amount in step (1) and step (4).
  • the conditions for ultrasonic irradiation in step (4) are preferably the same as the conditions for ultrasonic irradiation in step (1) above, but the irradiation time may be set longer than in step (1).
  • the irradiation time in the step (4) is preferably 60 seconds or more, more preferably 120 seconds or more, further preferably 600 seconds or more, and the upper limit is not particularly limited, but it is preferably 1800 seconds or less. It is more preferably 1200 seconds or less.
  • the deposit is not attached to the side surface of the beaker when the obtained dispersion liquid is left for about 30 minutes.
  • the method for producing a dispersion liquid of the present invention may include steps other than the steps (1) to (4) and the step of washing the single-walled carbon nanotubes with an inorganic acid or a solution containing an inorganic acid.
  • steps other than the steps (1) to (4) and the step of washing the single-walled carbon nanotubes with an inorganic acid or a solution containing an inorganic acid examples include a cooling step using a heat exchanger.
  • the dispersion liquid of the present invention is a low-viscosity dispersion liquid having excellent dispersibility of carbon nanotubes including single-walled carbon nanotubes and hardly reaggregating. It also has excellent stability over time.
  • Use of the dispersion liquid of the present invention makes it possible to easily mix carbon nanotubes, including single-walled carbon nanotubes, with a resin, and to impart high conductivity to the resin with a small amount of addition, which is excellent.
  • a coating film or the like having transparency and conductivity can be formed.
  • Such a dispersion liquid of the present invention can be suitably used for applications where conductivity and transparency are required at the same time, and examples of the applications include semiconductors, primary batteries, secondary batteries, fuel cells, and optical devices. , Communication devices, conductive paints, transparent conductive films, and the like.
  • the dispersion liquid of the present invention is a dispersion liquid having excellent dispersibility of carbon nanotubes including single-walled carbon nanotubes, good stability over time, and being hard to reaggregate the carbon nanotubes.
  • the dispersion liquid of the present invention it is possible to produce a coating film having excellent conductivity and transparency.
  • the method for producing a dispersion of the present invention even when the concentration of the single-walled carbon nanotube is relatively high, the dispersion has excellent dispersibility, good stability over time, and low viscosity that does not easily re-aggregate. Can be suitably manufactured.
  • the dispersion liquid and the method for producing the same according to the present invention are very useful in semiconductors, primary batteries, secondary batteries, fuel cells, optical and electronic fields such as optical devices and communication devices, optical fields, conductive paints, transparent conductive films and the like. is there.
  • part means “part by mass”
  • % means “% by mass” unless otherwise specified.
  • Example 1 Preparation Example 1> Preparation of polymer dispersant solution 1
  • Polymer dispersant 1 (trade name: ADISPER PB821, solid content 100% by mass, basic functional group-containing copolymer, amine value 10 mgKOH/g) in a 500 cc stainless tank.
  • Ajinomoto Fine Techno Co., Ltd. and normal butyl acetate were mixed and dissolved with a dissolver (TK Homo Disper 2.5 type: manufactured by PRIMIX) in the following compounding ratio, and a polymer dispersant solution 1 having a solid content of 20% by mass was prepared.
  • TK Homo Disper 2.5 type manufactured by PRIMIX
  • ⁇ Production Example 1 Production of dispersion 1 (first step) In a 500 cc stainless tank different from the stainless tank used in Preparation Example 1, a single-walled carbon nanotube (TUBALL (registered trademark) SWCNT 93%, manufactured by OCSiAl, purity 93%, minor axis 1.6 ⁇ 0.4 nm, major axis) was used.
  • TABALL registered trademark
  • (Third step) Disperse the intermediate dispersion liquid 1-1 obtained in the second step in a wet jet mill (device name: desktop type wet ultra-high pressure atomization experimental device NVL-ES008-D, manufactured by Yoshida Kikai Co., Ltd.) under the following conditions. Thus, 95 g of the intermediate dispersion liquid 1-2 was obtained. Dispersion conditions: suction rate 300%, discharge rate 235%, processing pressure 150 MPa, cross nozzle used
  • Example 2 Preparation Example 2 Preparation of Polymer Dispersant Solution 2
  • Polymer dispersant 2 (trade name: Efka (registered trademark) PX 4320, solid content 50 mass%, acrylic block copolymer polymer, amine value 30 mgKOH/in a 500 cc stainless tank. g, manufactured by BASF) and normal butyl acetate are mixed and dissolved with a dissolver (TK homodisper 2.5 type: manufactured by PRIMIX) at the following compounding ratio, and 100 g of a polymer dispersant solution 2 having a solid content of 20% by mass. Obtained.
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 2-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • the intermediate dispersion liquid 2-2 obtained in the third step and the polymer dispersant solution 2 prepared in Preparation Example 2 were mixed at the following compounding ratio to obtain 100 g of the intermediate dispersion liquid 2-3. Further, the intermediate dispersion liquid 2-3 is irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions, whereby the single-walled carbon nanotube dispersion liquid 2 (single-walled carbon nanotubes) 100 g of a concentration of 0.2% by mass) was obtained.
  • Mixing ratio (mass ratio): Intermediate dispersion 2-2/polymer dispersant solution 2 95/5 Ultrasonic irradiation conditions: amplitude 30 ⁇ m, output 650 W, time 1 min
  • Example 3 Preparation Example 3 Preparation of Polymer Dispersant Solution 3
  • Polymer dispersant 3 (trade name: ADISPER PB821, solid content 100% by mass, basic functional group-containing copolymer, amine value 10 mgKOH/g) was prepared in a 500 cc stainless tank.
  • MEK methyl ethyl ketone
  • MEK methyl ethyl ketone
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 3-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • Example 4 Preparation Example 4 Preparation of Polymer Dispersant Solution 4
  • Polymer dispersant 4 (trade name: ADISPER PB821, solid content 100% by mass, basic functional group-containing copolymer, amine value 10 mgKOH/g) was placed in a 500 cc stainless tank.
  • Ajinomoto Fine Techno Co., Ltd. and propylene glycol monomethyl ether acetate (hereinafter, also referred to as “PMA”) are mixed and dissolved with a dissolver (TK Homo Disper 2.5 type: manufactured by PRIMIX) at the following mixing ratio, 100 g of a polymer dispersant solution 4 having a solid content of 20 mass% was obtained.
  • Mixing ratio (mass ratio): Polymer dispersant 4/PMA 20/80
  • ⁇ Production Example 4 Production of dispersion liquid 4 (first step) In a 500 cc stainless steel tank different from the stainless steel tank used in Preparation Example 4, single-walled carbon nanotubes (TUBALL (registered trademark) SWCNT 93%, manufactured by OCSiAl, purity 93%, minor axis 1.6 ⁇ 0.4 nm, major axis) 5 ⁇ m or more, aspect ratio 2500 or more, specific surface area 1070 m 2 /g (BET method), dispersion aid (trade name: SOLSPERSE 5000, phthalocyanine derivative, manufactured by Lubrizol), polymer dispersant solution 4, and PMA are described below.
  • TABALL registered trademark
  • SWCNT 93% manufactured by OCSiAl
  • purity 93% manufactured by OCSiAl
  • minor axis 1.6 ⁇ 0.4 nm, major axis
  • aspect ratio 2500 or more aspect ratio 2500 or more
  • specific surface area 1070 m 2 /g BET method
  • dispersion aid trade name
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 4-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • Example 5 Preparation Example 5 Preparation of Polymer Dispersant Solution 5
  • Polymer dispersant 5 (trade name: S-REC BL-10, solid content 100% by mass, alkyl acetalized polyvinyl alcohol, amine value 0 mgKOH/g, was added to a 500 cc stainless tank. Sekisui Chemical Co., Ltd.) and isopropanol (hereinafter, also referred to as “IPA”) were mixed and dissolved with a dissolver (TK homodisper 2.5 type: manufactured by PRIMIX) at the following mixing ratio, and solid content was 20% by mass. 100 g of the polymer dispersant solution 5 of was obtained.
  • ⁇ Production Example 5 Production of dispersion liquid 5 (first step) In a 500 cc stainless steel tank different from the stainless steel tank used in Preparation Example 5, single-walled carbon nanotubes (TUBALL (registered trademark) SWCNT 93%, manufactured by OCSiAl, purity 93%, minor axis 1.6 ⁇ 0.4 nm, major axis) 5 ⁇ m or more, aspect ratio 2500 or more, specific surface area 1070 m 2 /g (BET method), dispersion aid (trade name: SOLSPERSE 5000, phthalocyanine derivative, manufactured by Lubrizol), polymer dispersant solution 5, and IPA are described below.
  • TABALL registered trademark
  • SWCNT 93% manufactured by OCSiAl
  • purity 93% 1.6 ⁇ 0.4 nm, major axis
  • aspect ratio 2500 or more aspect ratio 2500 or more
  • specific surface area 1070 m 2 /g BET method
  • dispersion aid trade name: SOLSPERSE 5000, phthalocyanine
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 5-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • Example 6 Preparation Example 6 Preparation of Polymer Dispersant Solution 6
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 6-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • Example 7 Preparation Example 7 Preparation of Polymer Dispersant Solution 7
  • Polymer dispersant 7 (trade name: S-REC BL-S, solid content 100 mass %, alkyl acetalized polyvinyl alcohol, amine value 0 mgKOH/g, was added to a 500 cc stainless tank. Sekisui Chemical Co., Ltd.) and normal butyl acetate were mixed and dissolved with a dissolver (TK homodisper 2.5 type: manufactured by PRIMIX) at the following compounding ratio to obtain a polymer dispersant solution 7 having a solid content of 20% by mass. 100 g was obtained.
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 95 g of Intermediate Dispersion Liquid 7-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • (Third step) Disperse the intermediate dispersion liquid 7-1 obtained in the second step in a wet jet mill (device name: desktop type wet ultrahigh pressure atomization experimental device NVL-ES008-D, manufactured by Yoshida Kikai Co., Ltd.) under the following conditions. Thus, 95 g of the intermediate dispersion liquid 7-2 was obtained. Conditions: suction rate 300%, discharge rate 235%, processing pressure 150 MPa, use cross nozzle
  • TABALL registered trademark
  • ⁇ Production Example 9 Production of dispersion 9 (first step) In a 225 cc glass bottle, single-walled carbon nanotubes (TUBALL (registered trademark) SWCNT 93%, manufactured by OCSiAl, purity 93%, minor axis 1.6 ⁇ 0.4 nm, major axis 5 ⁇ m or more, aspect ratio 2500 or more, specific surface area 1070 m 2 / g (BET method)), a dispersion aid (trade name: SOLSPERSE 5000, a phthalocyanine derivative, manufactured by Lubrizol), a polymer dispersant solution 9, and normal butyl acetate are weighed at the following compounding ratio, and then 0.3 mm ⁇ zirconia 95 g of an intermediate dispersion liquid 9-1 of single-walled carbon nanotubes was obtained by adding beads and dispersing with a paint shaker (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 10 hours.
  • the mixed liquid obtained in the first step was irradiated with ultrasonic waves using an ultrasonic disperser (device name: GSD1200AT, manufactured by Sonic Technology Co., Ltd.) under the following conditions to obtain 100 g of Intermediate Dispersion Liquid 11-1.
  • Ultrasonic irradiation conditions amplitude 30 ⁇ m, output 650 W, time 1 min
  • ⁇ Viscosity> The obtained dispersion of single-walled carbon nanotubes was adjusted to 25° C., the viscosity at a rotation speed of 60 rpm was measured with a BII type viscometer (manufactured by Toki Sangyo Co., Ltd.), and the evaluation was performed according to the following criteria. It was Evaluation criteria ⁇ ⁇ : Less than 100 mPa ⁇ s ⁇ : 100 mPa ⁇ s or more, less than 300 mPa ⁇ s ⁇ : 300 mPa ⁇ s or more, less than 500 mPa ⁇ s ⁇ : 500 mPa ⁇ s or more
  • ⁇ Particle size> The obtained single-walled carbon nanotube dispersion is set with carbon black particles and various solvents with a laser diffraction/scattering particle size distribution measuring device (device name: LA-950V2, manufactured by Horiba, Ltd.). Then, the sample was diluted with various solvents to a concentration (about 100 to 500 times) at which the particle size distribution could be measured, and then measured, and evaluated according to the following criteria.
  • the various solvents are normal butyl acetate in Examples 1, 2, 7 and Comparative Examples 1 to 4, MEK in Example 3, and PMA in Example 4. In the case of Example 5, it is IPA, and in the case of Example 6, it is NMP.
  • Recovery rate 100 g of the obtained dispersion liquid of single-walled carbon nanotubes was dropped on a polyester mesh (10 cm ⁇ 10 cm) having an opening of 53 ⁇ m, the passing amount of the polyester mesh under its own weight was measured for 1 minute, and the recovery rate was calculated based on the following formula. It calculated and evaluated based on the following criteria.
  • Recovery rate (%) passing amount (g)/100 (g) ⁇ 100 Evaluation criteria ⁇ ⁇ : 90% or more ⁇ : 80% or more, less than 90% ⁇ : 75% or more, less than 80% ⁇ : less than 75%
  • the butyl methacrylate resin used was a resin solution that was mixed and dissolved in advance with various solvents to a solid content of 40% by mass.
  • Blending ratio (mass ratio): Single-walled carbon nanotube dispersion/resin solution (solid content 40%)/various solvents 40.0/0.24/59.76
  • the above-mentioned various solvents are normal butyl acetate in the case of Examples 1, 2, 7 and Comparative Examples 1 to 4, MEK in the case of Example 3, and PMA in the case of Example 4.
  • MEK in the case of Example 3
  • PMA in the case of Example 4.
  • it it is IPA
  • NMP NMP.
  • the physical properties of the used butyl methacrylate resin are as follows. Diinal BR-115: Molecular weight 55000, Tg 50°C Diinal BR-116: Molecular weight 45,000, Tg 50°C
  • a haze meter (device name: haze meter HZ-2, manufactured by Suga Test Instruments Co., Ltd.) was used to measure according to the total light transmittance standard (ISO 13468-1, JIS K7361) (single beam method, light source D65). The following criteria were evaluated.
  • At least single-walled carbon nanotubes, a polymeric dispersant and an organic solvent are mixed, and the resulting mixture is irradiated with ultrasonic waves to disperse, and then dispersed by a disperser without using grinding media. It was confirmed that by adding a dispersant and performing ultrasonic irradiation to disperse it, it is possible to produce a low-viscosity organic solvent dispersion of single-walled carbon nanotubes having excellent dispersibility and hardly re-aggregating. It was also confirmed that a coating film having excellent conductivity and transparency can be formed by using the dispersion liquid of the example produced by the method.
  • the dispersions of Examples have a low viscosity even after standing at 40° C. for 1 month, and single-walled carbon nanotubes are less likely to aggregate, forming a coating film excellent in transparency and conductivity. It was confirmed that it was possible to do so and that it was excellent in stability over time.

Abstract

本発明は、単層カーボンナノチューブの分散性に優れ、経時安定性が良く、再凝集しにくい低粘度の単層カーボンナノチューブを含む有機溶媒分散液、及び、その製造方法を提供することを目的とする。 本発明は、少なくとも、カーボンナノチューブ、高分子分散剤、及び有機溶媒を含むカーボンナノチューブの分散液であって、該分散液は、カーボンナノチューブを0.01~10質量%含み、該カーボンナノチューブは、短径が0.1~50nmであり、アスペクト比が100以上である単層カーボンナノチューブを75質量%以上含み、該カーボンナノチューブの含有量が0.2質量%となるように該分散液を調製した調製液の粘度が、500mPa・s未満であることを特徴とするカーボンナノチューブ分散液である。

Description

カーボンナノチューブ分散液、及びその製造方法
本発明は、カーボンナノチューブ分散液、及びその製造方法に関する。より詳しくは、カーボンナノチューブの分散性に優れ、経時安定性が良く、再凝集しにくく、低粘度である単層カーボンナノチューブの分散液、及びその製造方法に関する。
導電性に優れた工業的材料の一つとして、カーボンブラック、グラファイト、カーボンナノチューブ等のカーボン系材料が知られている。なかでも、カーボンナノチューブは、機械的性質や熱伝導性にも非常に優れ、工業的材料として、近年注目が高まっている。
カーボンナノチューブには、多層カーボンナノチューブ(「MWCNT(Multi Wall Carbon Nanotube)」とも称する。)や、単層カーボンナノチューブ(「SWCNT(Single Wall Carbon Nanotube)」とも称する。)等がある。
カーボンブラックや多層カーボンナノチューブを使用して樹脂等に導電性を付与するためには、これらを多量に添加する必要がある。しかしながら、カーボンブラックやカーボンナノチューブの添加量を多くすると、透明性が低下してしまうという問題がある。一方、単層カーボンナノチューブは、多層カーボンナノチューブと比較して、単位質量当たりの比表面積が大きいため、少ない添加量で高い導電性を付与することができる点で優れている。
カーボンナノチューブを樹脂と混合して使用する場合、分散媒中にカーボンナノチューブを分散させる必要がある。カーボンナノチューブを分散媒中に安定して分散させる方法として、例えば、特許文献1には、膨潤率が5以上のカーボンナノチューブ集合体と、特定範囲のアミン価と酸価の両方を有する分散剤とを、分散媒に分散させてカーボンナノチューブの分散体を得ることが記載されている。
特開2014-1083号公報
上記のとおり、導電性に優れたカーボンナノチューブを分散媒中に分散させる方法が知られているが、単層カーボンナノチューブは、微細な粒子であり、粒子間で非常に強いファンデルワールス力が働き、かつ、大きいアスペクト比を有する。このため、多層カーボンナノチューブよりも分散媒中に分散させるのが困難であり、従来のカーボンナノチューブの分散方法では、単層カーボンナノチューブを分散媒中に十分に分散させることは困難である。特に、分散媒として有機溶媒を使用する場合、単層カーボンナノチューブを十分に分散させるのは非常に困難であり、分散方法については未だ検討の余地があった。
また、単層カーボンナノチューブの分散液は、多層カーボンナノチューブの分散液と比較して、経時安定性に劣り、特に、高温下(40℃等)では一度分散しても再凝集しやすいため、低温保管する必要があった。
また、分散液中のカーボンナノチューブ含有量が高くなると、分散液の粘度が高くなって、分散液の流動性が低下する。そうすると、分散液を他のバインダー成分等と混合した際に均一に混合させることが困難になったり、分散液自体の正確な計量も困難になったりするため、当該混合液を調製するのに非常に時間がかかるという問題がある。また、上記混合液を用いて均一な塗工層を得ることも困難になる。また、高粘度の分散液を用いて製品を加工する際には、装置の耐圧化を高めることが必要になり、それが生産効率の低下を招くことになる。このような問題を避けるために、カーボンナノチューブの分散液は低粘度であることが好ましい。
しかしながら、現時点では、分散性に優れ、経時安定性が良く、再凝集しにくい、低粘度な単層カーボンナノチューブの有機溶媒分散液を得る方法については未だ充分に検討されていない。
本発明は、上記現状に鑑みて、単層カーボンナノチューブの分散性に優れ、経時安定性が良く、再凝集しにくい低粘度の、単層カーボンナノチューブを含む有機溶媒分散液、及びその製造方法を提供することを目的とする。
本発明者は、単層カーボンナノチューブを含むカーボンナノチューブの分散媒への分散方法について種々検討したところ、少なくとも、単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを用い、超音波照射工程と粉砕メディアを使用しない分散機による分散工程とを含む所定の方法により分散液を製造すると、分散性に優れ、経時安定性がよく、再凝集しにくい、低粘度な、単層カーボンナノチューブの有機溶媒分散液を容易に製造できることを見いだした。また、上記製造方法により得られる単層カーボンナノチューブの分散液を用いれば、透明性と導電性の両方に優れた塗膜が得られることも見いだし、本発明を完成するに至った。
すなわち、本発明は、少なくとも、カーボンナノチューブ、高分子分散剤、及び有機溶媒を含むカーボンナノチューブの分散液であって、上記分散液は、カーボンナノチューブを0.01~10質量%含み、上記カーボンナノチューブは、短径が0.1~50nmであり、アスペクト比が100以上である単層カーボンナノチューブを75質量%以上含み、上記カーボンナノチューブの含有量が0.2質量%となるように上記分散液を調製した調製液の粘度が、500mPa・s未満であることを特徴とするカーボンナノチューブ分散液である。
上記分散液において、上記カーボンナノチューブの粒子径D50が、5μm未満であることが好ましい。
上記分散液において、上記カーボンナノチューブの粒子径D90が、10μm未満であることが好ましい。
上記分散液において、更に、分散助剤を含むことが好ましい。
上記分散液において、上記高分子分散剤は、カチオン系高分子分散剤であることが好ましい。
上記分散液において、上記有機溶媒は、エステル系溶媒、ケトン系溶媒、グリコール系溶媒、アルコール系溶媒、及び、窒素含有極性溶媒からなる群より選択される少なくとも1種であることが好ましい。
上記分散液を使用して下記の方法で形成された塗膜の全光線透過率が90%以上であり、かつ、表面抵抗値が1.0×10Ω/□未満であることが好ましい。
塗膜の形成方法:塗膜中の上記カーボンナノチューブの濃度が8質量%となるように、上記分散液とメタクリル酸ブチル樹脂と上記有機溶媒を混合して、固形分1質量%の樹脂組成物を調製し、上記樹脂組成物を、ワイヤー径が0.27ミルであるバーコーターを用いてポリエチレンテレフタレートフィルム上に塗布し、塗布物を乾燥させて塗膜を形成する。
本発明はまた、少なくとも、短径が0.1~50nmでありアスペクト比が100以上である単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する工程(1)、上記工程(1)で得られた混合物に超音波を照射する工程(2)、上記工程(2)で得られた超音波照射物を、粉砕メディアを使用しない分散機により分散する工程(3)、及び、上記工程(3)で得られた分散物に高分子分散剤を添加し、得られた混合物に超音波を照射する工程(4)を含むことを特徴とする単層カーボンナノチューブ分散液の製造方法である。
上記分散液の製造方法において、上記工程(1)の前に、上記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄する工程を含むことが好ましい。
上記工程(1)において、更に分散助剤を混合することが好ましい。
上記分散液の製造方法において、上記高分子分散剤は、カチオン系高分子分散剤であることが好ましい。
上記分散液の製造方法において、上記有機溶媒は、エステル系溶媒、ケトン系溶媒、グリコール系溶媒、アルコール系溶媒、及び、窒素含有極性溶媒からなる群より選択される少なくとも1種であることが好ましい。
本発明によれば、単層カーボンナノチューブを含むカーボンナノチューブの分散性に優れ、経時安定性が良く、再凝集しにくい、低粘度なカーボンナノチューブ分散液を得ることができる。また、本発明の分散液を使用すると、少量の添加で高い導電性を付与することができるので、導電性及び透明性の両方に優れた塗膜等を形成することができる。本発明の分散液は、導電性材料として、好適に使用することができる。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
1.分散液
本発明は、少なくとも、カーボンナノチューブ、高分子分散剤、及び有機溶媒を含むカーボンナノチューブの分散液であって、上記分散液は、カーボンナノチューブを0.01~10質量%含み、上記カーボンナノチューブは、短径が0.1~50nmであり、アスペクト比が100以上である単層カーボンナノチューブを75質量%以上含み、上記カーボンナノチューブの含有量が0.2質量%となるように上記分散液を調製した調製液の粘度が、500mPa・s未満であることを特徴とするカーボンナノチューブ分散液である。
本発明の分散液は、分散性に優れ、経時安定性が良く、再凝集しにくい、低粘度の単層カーボンナノチューブの有機溶媒分散液である。本発明の分散液が分散性に優れ、経時安定性が良く、再凝集しにくい、低粘度の単層カーボンナノチューブの有機溶媒分散液であるのは、所定範囲の短径とアスペクト比を有する単層カーボンナノチューブを所定範囲量で含み、所定範囲の粘度を有することによる。
また、本発明の分散液を用いると、導電性及び透明性に優れた塗膜を形成することができる。
本発明の分散液が、導電性及び透明性に優れた塗膜を形成することができるのは、カーボンナノチューブとして、単層カーボンナノチューブを、カーボンナノチューブ中75質量%以上含むものを用いることで、多層カーボンナノチューブに比べて少ない使用量で優れた導電性を得ることができること、及び、粒子間で非常に強いファンデルワールス力が働き、またアスペクト比が大きい単層カーボンナノチューブを使用しながら、低粘度でカーボンナノチューブの凝集物が少ない良好な分散状態を安定的に維持できていることによる。
このような本発明の分散液は、後述する特定の製造方法により製造することができ、単層カーボンナノチューブを含むカーボンナノチューブの濃度が、分散液中0.2質量%と比較的高い状態であっても、カーボンナノチューブの分散性に優れ、経時安定性が良く、再凝集しにくい比較的低粘度の分散液を得ることができる。
カーボンナノチューブの含有量が0.2質量%である分散液が、分散性に優れ、経時安定性が良く、再凝集しにくく、低粘度であると、他のバインダー成分等と混合する際に広範囲の処方が可能である。また、溶媒揮発工程での溶媒の揮発量を減らすことが可能である。
本発明の分散液は、上記カーボンナノチューブ(好ましくは、単層カーボンナノチューブである。)の含有量が0.2質量%となるように上記分散液を調製した調製液の粘度が、500mPa・s未満である。
上記粘度が上記範囲であると、カーボンナノチューブの分散性が良好になり、経時安定性に優れ、再凝集しにくく、低粘度の分散液となりうる。また、分散液の自重での濾過回収率を高めることができる。上記回収率が高いと分散液の取り扱いが容易になる。上記調製液の粘度は、自重での濾過回収率がより一層高くなる点で、300mPa・s以下であることが好ましく、100mPa・s以下であることがより好ましい。なお、本発明の分散液の粘度は、通常、5mPa・s以上である。
上記分散液を調製して調製液を作製する方法としては、上記分散液に、上記分散液に含まれる有機溶媒と同様の有機溶媒を添加したり、又は、上記有機溶媒を一部除去したりして、所定のカーボンナノチューブの濃度(0.2質量%)となるよう適宜調製する方法が挙げられる。上記有機溶媒を除去する方法としては、特に限定されず、減圧蒸留等の公知の方法が挙げられる。
上記粘度は、BII型粘度計(東機産業株式会社製)を用いて、25℃、回転数60rpmの条件下で測定することにより得られる値である。
上記自重での濾過回収率は、単層カーボンナノチューブ分散液100gを、目開き53μmのポリエステルメッシュ(10cm×10cm)に滴下し、1分間での、自重でのポリエステルメッシュ通過量を測定し、下記の式に基づいて算出することにより求めることができる。
自重での濾過回収率(%)=〔1分間のポリエステルメッシュ通過量(g)/100(g)〕×100
上記回収率は、75%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
上記回収率が低いと、他のバインダーとの均一混合や、正確な計量が困難になることによる作業時間の増加、装置の耐圧化を高めることによる生産効率の低下を招くおそれがある。
本発明の分散液は、少なくとも、カーボンナノチューブ、高分子分散剤、及び有機溶媒を含む。以下に、本発明の分散液に含まれる各成分について説明する。
(カーボンナノチューブ)
本発明の分散液において使用されるカーボンナノチューブは、短径が0.1~50nmであり、アスペクト比が100以上である単層カーボンナノチューブを含む。
上記単層カーボンナノチューブは、単層のグラフェンから形成される継ぎ目のない円筒状物質である。
上記単層カーボンナノチューブの短径とは、円筒状である単層カーボンナノチューブの直径である。上記短径は、好ましくは0.1~40nmであり、より好ましくは0.3~20nmであり、更に好ましくは、0.5~10nmである。
また、上記単層カーボンナノチューブは、アスペクト比が100以上である。上記アスペクト比とは、円筒状である単層カーボンナノチューブの直径(短径)をA(nm)とし、長さ(長径)をB(nm)とした場合の、(B)/(A)の値である。
上記アスペクト比は、500以上が好ましく、1500以上がより好ましい。上記アスペクト比の上限としては、200000以下が好ましく、10000以下がより好ましい。
上記長径は、100~1000000nmであることが好ましく、500~500000nmであることがより好ましく、1000~100000nmであることが更に好ましい。上記長径とは、円筒状である単層カーボンナノチューブの長さである。
上記短径及び長径は、原子間力顕微鏡(AFM)、ラマン分光法(Raman)、透過型電子顕微鏡(TEM)等により測定することができる。
本発明においては、上記単層カーボンナノチューブとして、市販品を用いてもよい。本発明において使用することができる単層カーボンナノチューブの市販品の具体例としては、例えば、TUBALL(登録商標)(OCSiAl社製)、ZEONANO(登録商標)SG101(ゼオンナノテクノロジー株式会社製)等を挙げることができる。なかでも、本発明の分散液の分散性をより一層向上させることができる点で、TUBALL(登録商標)(OCSiAl社製)が好ましい。
上記単層カーボンナノチューブは、1種のみ使用してもよいし、2種以上組み合わせて使用してもよい。
本発明の分散液において使用するカーボンナノチューブは、上記単層カーボンナノチューブ以外のカーボンナノチューブ、例えば、多層カーボンナノチューブ等の他のカーボンナノチューブを含んでいてもよいが、上記単層カーボンナノチューブを75質量%以上含む。単層カーボンナノチューブを75質量%以上含むことにより、樹脂等に本発明の分散液を少量添加するだけで高い導電性を付与することができ、優れた透明性と導電性を兼ね備えた塗膜等を形成することができる。
上記多層カーボンナノチューブは、直径の異なる2本以上の単層カーボンナノチューブが同軸で多層に重なったカーボンナノチューブである。
上記カーボンナノチューブは、上記単層カーボンナノチューブを80質量%以上含むことが好ましく、90質量%以上含むことがより好ましく、95質量%以上含むことが更に好ましく、100質量%含むことが特に好ましい。
本発明の分散液において、カーボンナノチューブは、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
本発明の分散液は、カーボンナノチューブを0.01~10質量%含む。上記分散液におけるカーボンナノチューブの含有量は、0.01~1質量%であることが好ましく、0.01~0.5質量%であることがより好ましい。
本発明の分散液において、上記カーボンナノチューブの粒子径D50は、5μm未満であることが好ましい。上記カーボンナノチューブの粒子径D50が上記範囲であると、カーボンナノチューブの分散性がより一層良好になり、再凝集しにくい低粘度な分散液となりうる。上記粒子径D50は、4μm未満であることがより好ましく、3μm未満であることが更に好ましい。上記粒子径D50の下限値は、特に限定されないが、繊維破断により充分な導電性が得られないことを防ぐ為には0.5μm以上が好ましく、1μm以上がより好ましい。
また、上記カーボンナノチューブの粒子径D90は、10μm未満であることが好ましい。上記カーボンナノチューブの粒子径D90が10μm未満であると、カーボンナノチューブの分散性がより一層良好になり、再凝集しにくい低粘度の分散液となりうる。上記粒子径D90は、8μm未満であることがより好ましく、5μm未満であることが更に好ましい。上記粒子径D90の下限値は、特に限定されないが、繊維破断により優れた導電性が得られないことを防ぐ為には1.5μm以上が好ましく、2μm以上がより好ましく、3μm以上が更に好ましく、3.5μm以上が特に好ましい。
上記粒子径D50及びD90は、上記分散液を粒度分布測定可能な濃度に適宜希釈して、LA-950V2(株式会社堀場製作所製)等のレーザー回折/散乱式粒子径分布定装置により測定して得られる値である。
(高分子分散剤)
本発明において使用される高分子分散剤としては、カーボンナノチューブの分散性を向上させることができるものであれば特に限定されず、ノニオン系高分子分散剤、アニオン系高分子分散剤、カチオン系高分子分散剤等が挙げられるが、なかでもカーボンナノチューブの分散性をより一層向上させることができる点で、カチオン系高分子分散剤であることが好ましい。
上記カチオン系高分子分散剤としては、アミン基等の塩基性官能基を有する高分子等が挙げられ、例えば、塩基性官能基含有共重合体;塩基性官能基を有する高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、変性ポリアクリル酸塩、又は(メタ)アクリル系共重合体;ポリエチレンイミン;ポリオキシエチレンアルキルアミン;アルカノールアミン;アルキルアンモニウム塩、又はアルキルアセタール化ポリビニルアルコール等が挙げられる。
なかでも、単層カーボンナノチューブの分散性をより一層向させることができる点で、上記カチオン系高分子分散剤は、塩基性官能基含有共重合体、塩基性官能基を有する(メタ)アクリル系共重合体、又は、アルキルアセタール化ポリビニルアルコールであることが好ましい。
上記高分子分散剤は、直鎖状、末端変性型、ブロック型、又はグラフト型の高分子であってもよい。
上記高分子分散剤のアミン価は、カーボンナノチューブの分散性をより一層向上させることができる点で、0mgKOH/g以上であることが好ましく、5mgKOH/g以上であることがより好ましく、100mgKOH/g以下であることが好ましく、75mgKOH/g以下であることがより好ましく、50mgKOH/g以下であることが更に好ましい。上記アミン価は、0~100mgKOH/gであることが好ましく、5~100mgKOH/gであることがより好ましく、5~75mgKOH/gであることが更に好ましく、5~50mgKOH/gであることが特に好ましい。
本発明においては、上記高分子分散剤として、市販品を用いてもよい。本発明において使用することができる高分子分散剤の市販品の具体例としては、アジスパー PB821、PB822、PB824、PB881(いずれも、味の素ファインテクノ株式会社製)、Efka(登録商標)PX4320、PX4310、PX4300、PX4330、PX4340、PX4700、PX4701、PX4731、PX4732、PU4063、PA4400、PA4401、PA4403(いずれも、BASF社製)、BYK-9077(ビックケミー社製)、エスレックBL-1、BL-2、BL-5、BL-10、BL-S(いずれも、積水化学工業株式会社製)等が挙げられる。
なかでも、上記分散液の分散性をより一層向上させることができる点で、アジスパー PB821、Efka(登録商標)PX4320、エスレックBL-10、エスレックBL-Sが好ましい。
上記高分子分散剤は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
本発明の分散液における上記高分子分散剤の含有量は、1~10質量%であることが好ましく、1~5質量%であることがより好ましく、1~3質量%であることが更に好ましい。
(有機溶媒)
本発明において使用される有機溶媒としては、特に限定されず、例えば、アルコール系溶媒(メタノール、エタノール、ブタノール、イソプロパノール、フェノール等)、アミン系溶媒(トリエチルアミン、トリメタノールアミン等)、エーテル系溶媒(ジオキサン、テトラヒドロフラン等)、エーテルアルコール系溶媒(2-メトキシエタノール、エトキシエタノール、メトキシエトキシエタノール、フェニルエタノール等)、グリコール系溶媒(エチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等)、エステル系溶媒(酢酸メチル、酢酸エチル、酢酸ノルマルブチル等)、カーボネート系溶媒(エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ブチレンカーボネート等)、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、炭化水素系溶媒(トルエン、ベンゼン、キシレン、ヘキサン、シクロヘキサン等)、塩素含有炭化水素系溶媒(クロロホルム、ジクロロメタン、クロロベンゼン等)、低級カルボン酸(酢酸等)、窒素含有極性溶媒(N,N-ジメチルホルムアミド、ニトロメタン、N-メチルピロリドン等)、硫黄化合物系溶媒(ジメチルスルホキシド等)等を用いることができる。
なかでも、単層カーボンナノチューブの分散性をより一層向上させることができる点で、エステル系溶媒、ケトン系溶媒、グリコール系溶媒、アルコール系溶媒、又は、窒素含有極性溶媒であることが好ましく、エステル系溶媒、グリコール系溶媒、又は、ケトン系溶媒であることがより好ましく、酢酸ノルマルブチル、プロピレングリコールモノメチルエーテルアセテート、又は、メチルエチルケトンであることが更に好ましい。
上記有機溶媒は、1種のみ使用してもよいし、2種以上を混合して使用してもよい。
本発明の分散液における上記有機溶媒の含有量は、89~98質量%であることが好ましく、93~98質量%であることがより好ましく、95~98質量%であることが更に好ましい。
本発明の分散液は、分散媒として、上記有機溶媒の他に水等を含んでいてもよいが、上記有機溶媒は、分散媒中に95質量%以上含まれているのが好ましく、98質量%以上含まれているのがより好ましく、100質量%含まれているのが更に好ましい。
(他の成分)
本発明の分散液は、少なくとも、上記のカーボンナノチューブ、高分子分散剤、及び有機溶媒を含むものであるが、他の成分を更に含んでいてもよい。
上記他の成分としては、例えば、分散助剤、pH調整剤、表面調整剤等が挙げられる。なかでも、単層カーボンナノチューブの濡れをより一層高め、分散性(経時安定性の向上、再凝集抑制、低粘度化)を向上させることができる点で、上記分散液は分散助剤を更に含むことが好ましい。
上記他の成分の種類や含有量は、上記分散液の目的、用途に応じて、公知のものから適宜選択することができる。
上記分散助剤としては、例えば、SOLSPERSE 5000、SOLSPERSE 12000(Lubrizol社製)等のフタロシアニン誘導体、SOLSPERSE 22000(Lubrizol社製)等のアゾ誘導体等が挙げられる。
本発明の分散液を使用すれば、透明性及び導電性に優れた塗膜を形成することができる。
本発明の分散液を使用して後述する方法で形成された塗膜は、全光線透過率が90%以上であり、かつ、表面抵抗値が1.0×10Ω/□未満であることが好ましい。
上記全光線透過率は、93%以上であることが好ましく、95%以上であることがより好ましい。
上記全光線透過率は、ヘイズメーターHZ-2(スガ試験機株式会社製)等のヘイズメーターを用いて、全光線透過率規格(ISO 13468-1、JIS K 7361)に準じた方法により測定して得られる値である。
上記表面抵抗値は、5.0×10Ω/□未満であることが好ましく、1.0×10Ω/□未満であることがより好ましい。
上記表面抵抗値は、ハイレスタMCP-HT450(三菱化学株式会社製)等の抵抗率計を用いて、20℃で、塗膜表面を流れる電流値を測定することにより得られる値である。
上記全光線透過率と表面抵抗値を測定するための塗膜は、塗膜中のカーボンナノチューブの濃度が8質量%となるように、本発明の分散液とメタクリル酸ブチル樹脂と有機溶媒を混合して、固形分1質量%の樹脂組成物を調製し、上記樹脂組成物を、ワイヤー径が0.27ミルであるバーコーターを用いてポリエチレンテレフタレートフィルム上に塗布し、塗布物を乾燥させることにより、形成することができる。
上記有機溶媒としては、本発明の分散液に含まれる有機溶媒と同じ有機溶媒が挙げられる。
上記塗布物の乾燥方法は、塗布物中の有機溶媒が十分に留去されて塗膜が形成される方法であれば、特に限定されず、使用する有機溶媒の種類に応じて、加熱乾燥等の公知の方法から適宜選択して行うことができる。乾燥条件も、使用する有機溶媒の種類等に応じて適宜選択することができる。
2.分散液の製造方法
本発明の分散液は、上述した本発明の分散液の要件を満たす分散液が製造されることになる限り、その製造方法は特に制限されないが、例えば、下記の工程(1)~(4)を含む方法が好ましく挙げられる。
工程(1):少なくとも、短径が0.1~50nmでありアスペクト比が100以上である単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する工程
工程(2):工程(1)で得られた混合物に超音波を照射する工程
工程(3):工程(2)で得られた超音波照射物を、粉砕メディアを使用しない分散機により分散する工程
工程(4):工程(3)で得られた分散物に高分子分散剤を添加し、得られた混合物に超音波を照射する工程。
上記の工程(1)~(4)を含むことにより、分散性に優れ、経時安定性が良好で、再凝集しにくい低粘度な単層カーボンナノチューブを含む分散液を好適に製造することができる。このような、少なくとも、短径が0.1~50nmでありアスペクト比が100以上である単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する工程(1)、上記工程(1)で得られた混合物に超音波を照射する工程(2)、上記工程(2)で得られた超音波照射物を、粉砕メディアを使用しない分散機により分散する工程(3)、及び、上記工程(3)で得られた分散物に高分子分散剤を添加し、得られた混合物に超音波を照射する工程(4)を含むことを特徴とする単層カーボンナノチューブ分散液の製造方法もまた、本発明の一つである。
本発明の分散液の製造方法は、工程(1)で少なくとも、単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合した後、工程(2)の超音波処理により、単層カーボンナノチューブを有機溶媒と高分子分散剤で十分に濡らすことでカーボンナノチューブが分散しやすい状態にし、工程(3)の粉砕メディアを使用しない分散機を用いた分散により、単層カーボンナノチューブの繊維構造を破壊せずに解し、更に、工程(4)の高分子分散剤を添加して超音波処理することで、単層カーボンナノチューブを分散安定化させる方法である。
以下、各工程について、詳細に説明する。
工程(1)
本発明の分散液の製造方法においては、まず、少なくとも、短径が0.1~50nmでありアスペクト比が100以上である単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する。
少なくとも、上記単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する方法としては、特に限定されず、ミキサー、ディゾルバー等の攪拌混合装置を用いる等の公知の混合手段が挙げられる。また、これらの成分は、任意の順で混合することができる。例えば、高分子分散剤を有機溶媒に溶解させた溶液を予め調製し、この溶液と、単層カーボンナノチューブとを混合してもよい。
なお、工程(1)は、単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する工程であるが、これらの成分のみを混合することを意味するものではなく、カーボンナノチューブとして単層カーボンナノチューブに加えて多層カーボンナノチューブを混合してもよい。また、後述する分散助剤等の他の成分を混合してもよい。
上記単層カーボンナノチューブ、高分子分散剤、有機溶媒としては、いずれも上述の「1.分散液」において記載したものと同様のものが挙げられる。各成分は、上述の「1.分散液」において記載される含有割合となるように混合されることが好ましい。また、単層カーボンナノチューブに加えて多層カーボンナノチューブも混合する場合は、上述の「1.分散液」に記載される含有割合となるように混合することが好ましい。
また、上記工程(1)において、上述した成分に加えて、分散助剤を更に混合することが好ましい。分散助剤を更に混合することにより、工程(2)での単層カーボンナノチューブの濡れをより一層高め、分散性がより一層優れた分散液を製造することができる。
上記分散助剤としては、上述の「1.分散液」において記載したものと同様のものが挙げられる。
上記分散助剤の添加量としては、特に限定されないが、単層カーボンナノチューブ100質量部に対して10~100質量部であることが好ましく、10~60質量部であることがより好ましく、20~40質量部であることが更に好ましい。
本発明の分散液の製造方法においてはまた、上記工程(1)の前に、上記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄する工程を含むことが好ましい。
上記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄することにより、単層カーボンナノチューブに含まれる鉄等の不純物質を除去し、単層カーボンナノチューブの純度を高めることができる。
上記無機酸としては、塩酸、硫酸、硝酸、リン酸、過酸化水素等が挙げられる。
上記無機酸を含む溶液としては、上記無機酸と、水を混合した溶液等が挙げられる。
なお、本発明の分散液の製造方法において、原料として単層カーボンナノチューブに加えて多層カーボンナノチューブも使用される場合には、多層カーボンナノチューブも含んだカーボンナノチューブ全体について、上記洗浄工程を行うことが好ましい。
上記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄する方法としては、特に限定されず、公知の方法で行うことができる。
工程(2)
本発明の分散液の製造方法においては、次に、上記工程(1)で得られた混合物に超音波を照射する。
超音波照射の方法は、特に限定されず、超音波装置等を用いて公知の方法により行うことができる。
超音波照射の条件として、振幅は10~100μmであることが好ましく、10~60μmであることがより好ましく、10~40μmであることが更に好ましい。
出力は、10~5000Wであることが好ましく、100~3000Wであることがより好ましく、200~1500Wであることが更に好ましい。
照射時間は、30秒以上であることが好ましく、より好ましくは60秒以上、更に好ましくは300秒以上であり、上限は特に限定されないが、600秒以下であることが好ましく、480秒以下であることが更に好ましい。
照射時の分散液の温度は、特に限定されないが、通常20~80℃、好ましくは30~70℃、より好ましくは40~60℃である。
上述のとおり、超音波照射は、カーボンナノチューブを有機溶媒で十分に濡らすことを目的とする工程であるため、工程(2)は、上記超音波照射の条件を参考にして、カーボンナノチューブが有機溶媒で十分に濡れる条件を適宜設定して行うことができる。
工程(3)
本発明の分散液の製造方法においては、次いで、上記工程(2)で得られた超音波照射物を、粉砕メディアを使用しない分散機により分散する。
上記粉砕メディアを使用しない分散機としては、例えば、ミキサー、ホモジナイザー、ディソルバー、ロールミル、混練機、ジェットミル、ナノマイザー等が挙げられる。なかでも、ジェットミルが好ましく、湿式ジェットミルがより好ましい。
上記湿式ジェットミルとしては、例えば、吉田機械興業株式会社製の卓上型湿式超高圧微粒化実験装置NVL-ES008-D等が挙げられる。
工程(3)の分散において湿式ジェットミルを使用する場合、処理圧力は50~300MPaであることが好ましく、100~250MPaであることがより好ましく、150~200MPaであることが更に好ましい。
また、ゲージの形状としては、クロス又はストレートが挙げられるが、クロスであることが好ましい。
工程(3)における上記粉砕メディアを使用しない分散機による分散は、分散液の粘度が、工程(2)直後の分散液の粘度よりも大きくなるのを確認した後、終了することが好ましい。
工程(4)
本発明の分散液の製造方法においては、更に、上記工程(3)で得られた分散物に、高分子分散剤を添加し、得られた混合物に超音波を照射する。
上記高分子分散剤としては、上述の「1.分散液」において記載した高分子分散剤と同様のものが好ましく挙げられ、上記工程(1)で使用する高分子分散剤と同様のものであることが好ましい。
上記高分子分散剤の添加量としては、得られる分散液における上記高分子分散剤の含有量が、「1.分散液」において記載した高分子分散剤の含有量となるよう適宜調製すればよいが、工程(1)と工程(4)で半分量ずつ添加することが好ましい。
工程(4)における超音波照射の条件としては、上記工程(1)における超音波照射の条件と同様の条件が好ましく挙げられるが、工程(1)よりも照射時間を長く設定してもよい。
工程(4)における上記照射時間は、60秒以上であることが好ましく、より好ましくは120秒以上、更に好ましくは600秒以上であり、上限は特に限定されないが、1800秒以下であることが好ましく、1200秒以下であることがより好ましい。
また、工程(4)における超音波照射終了後は、得られた分散液を30分程放置した場合、ビーカー側面に析出物が付着しないことが好ましい。
以上の工程(1)~(4)を行うことにより、単層カーボンナノチューブの分散性に優れ、低粘度で、経時安定性が良く、単層カーボンナノチューブが再凝集しにくい分散液を容易に製造することができる。
本発明の分散液の製造方法は、上記工程(1)~(4)及び上記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄する工程以外の他の工程を含んでいてもよい。上記他の工程としては、熱交換器による冷却工程等が挙げられる。
3.用途
本発明の分散液は、上述のように、単層カーボンナノチューブを含むカーボンナノチューブの分散性に優れ、再凝集しにくい低粘度の分散液である。また、経時安定性にも優れる。本発明の分散液を用いれば、単層カーボンナノチューブを含むカーボンナノチューブを樹脂等に容易に混合させることができ、しかも少量の添加で樹脂等に高い導電性を付与することができるので、優れた透明性と導電性を有する塗膜等を形成することができる。
このような本発明の分散液は、導電性と透明性が同時に求められる用途に好適に使用することができ、上記用途としては、例えば、半導体、一次電池、二次電池、燃料電池、光学機器、通信機器、導電性塗料、透明導電膜等が挙げられる。
以上のとおり、本発明の分散液は、単層カーボンナノチューブを含むカーボンナノチューブの分散性に優れ、経時安定性が良く、上記カーボンナノチューブが再凝集しにくい低粘度な分散液である。本発明の分散液を使用すれば、導電性と透明性に優れた塗膜等を製造することができる。また、本発明の分散液の製造方法によれば、単層カーボンナノチューブの濃度が比較的高濃度であっても、分散性に優れ、経時安定性が良く、再凝集しにくい低粘度な分散液を好適に製造することができる。本発明の分散液及びその製造方法は、半導体、一次電池、二次電池、燃料電池、光学機器、通信機器等の電子・電気や光学分野、導電性塗料、透明導電膜等において非常に有用である。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
実施例1
<調製例1> 高分子分散剤溶液1の調製
500ccステンレスタンクに高分子分散剤1(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)と酢酸ノルマルブチルを、下記の配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液1を100g得た。
配合比(質量比):高分子分散剤1/酢酸ノルマルブチル=20/80
<製造例1> 分散液1の製造
(第1工程)
調製例1で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))と、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)と、調製例1で調製した高分子分散剤溶液1と、酢酸ノルマルブチルとを、下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液1/酢酸ノルマルブチル=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射して、中間分散液1-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液1-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させて、中間分散液1-2を95g得た。
分散条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液1-2と調製例1で作製した高分子分散剤溶液1を、下記配合比にて混合し、中間分散液1-3を100g得た。更に中間分散液1-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液1(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散液1-2/高分子分散剤溶液1=95/5
超音波照射条件:振幅30μm、出力:650W、時間1min
実施例2
<調製例2> 高分子分散剤溶液2の調製
500ccステンレスタンクに高分子分散剤2(商品名:Efka(登録商標)PX 4320、固形分50質量%、アクリルブロックコポリマー高分子、アミン価30mgKOH/g、BASF社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液2を100g得た。
配合比(質量比):高分子分散剤2/酢酸ノルマルブチル=40/60
<製造例2> 分散液2の製造
(第1工程)
調製例2で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、上記高分子分散剤溶液2、及び、酢酸ノルマルブチルを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液2/酢酸ノルマルブチル=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射して、中間分散液2-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液2-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させて、中間分散液2-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液2-2と調製例2で作製した高分子分散剤溶液2を、下記配合比にて混合し、中間分散液2-3を100g得た。更に中間分散液2-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液2(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体2-2/高分子分散剤溶液2=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
実施例3
<調製例3> 高分子分散剤溶液3の調製
500ccステンレスタンクに、高分子分散剤3(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)とメチルエチルケトン(以下、「MEK」とも称する。)を、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液3を100g得た。
配合比(質量比):高分子分散剤3/MEK=20/80
<製造例3> 分散液3の製造
(第1工程)
調製例3で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液3、及び、メチルエチルケトンを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液3/メチルエチルケトン=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液3-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液3-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液3-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液3-2と調製例3で作製した高分子分散剤溶液3を、下記配合比にて混合し、中間分散液3-3を100g得た。更に中間分散液3-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液3(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体3-2/高分子分散剤溶液3=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
実施例4
<調製例4> 高分子分散剤溶液4の調製
500ccステンレスタンクに、高分子分散剤4(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)とプロピレングリコールモノメチルエーテルアセテート(以下、「PMA」とも称する。)を、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液4を100g得た。
配合比(質量比):高分子分散剤4/PMA=20/80
<製造例4> 分散液4の製造
(第1工程)
調製例4で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液4、及び、PMAを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液4/PMA=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液4-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液4-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液4-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液4-2と調製例4で作製した高分子分散剤溶液4を、下記配合比にて混合し、中間分散液4-3を100g得た。更に中間分散液4-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液4(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体4-2/高分子分散剤溶液4=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
実施例5
<調製例5> 高分子分散剤溶液5の調製
500ccステンレスタンクに、高分子分散剤5(商品名:エスレックBL-10、固形分100質量%、アルキルアセタール化ポリビニルアルコール、アミン価0mgKOH/g、積水化学工業株式会社製)とイソプロパノール(以下、「IPA」とも称する。)を、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液5を100g得た。
配合比(質量比):高分子分散剤5/IPA=20/80
<製造例5> 分散液5の製造
(第1工程)
調製例5で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液5、及び、IPAを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液5/IPA=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液5-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液5-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液5-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液5-2と調製例5で作製した高分子分散剤溶液5を、下記配合比にて混合し、中間分散液5-3を100g得た。更に中間分散液5-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液5(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体5-2/高分子分散剤溶液5=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
実施例6
<調製例6> 高分子分散剤溶液6の調製
500ccステンレスタンクに、高分子分散剤6(商品名:エスレックBL-10、固形分100質量%、アルキルアセタール化ポリビニルアルコール、アミン価0mgKOH/g、積水化学工業株式会社製)とN-メチルピロリドン(以下、「NMP」とも称する。)を、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液6を100g得た。
配合比(質量比):高分子分散剤6/NMP=20/80
<製造例6> 分散液6の製造
(第1工程)
調製例6で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液6、及び、NMPを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液6/NMP=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液6-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液6-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液6-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液6-2と調製例6で作製した高分子分散剤溶液6を、下記配合比にて混合し、中間分散液6-3を100g得た。更に中間分散液6-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液6(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体6-2/高分子分散剤溶液6=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
実施例7
<調製例7> 高分子分散剤溶液7の調製
500ccステンレスタンクに、高分子分散剤7(商品名:エスレックBL-S、固形分100質量%、アルキルアセタール化ポリビニルアルコール、アミン価0mgKOH/g、積水化学工業株式会社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液7を100g得た。
配合比(質量比):高分子分散剤7/酢酸ノルマルブチル=20/80
<製造例7> 分散液7の製造
(第1工程)
調製例7で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液7、及び、酢酸ノルマルブチルを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液7/酢酸ノルマルブチル=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液7-1を95g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液7-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液7-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液7-2と調製例7で作製した高分子分散剤溶液7を、下記配合比にて混合し、中間分散液7-3を100g得た。更に中間分散液7-3に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液7(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体7-2/高分子分散剤溶液7=95/5
超音波照射条件:振幅30μm、出力650W、時間1min
比較例1
<調製例8> 高分子分散剤溶液8の調製
500ccステンレスタンクに、高分子分散剤8(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液8を100g得た。
配合比(質量比):高分子分散剤8/酢酸ノルマルブチル=20/80
<製造例8> 分散液8の製造
225ccガラス瓶に、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液8、及び、酢酸ノルマルブチルを下記配合比にて秤量後、0.3mmφジルコニアビーズを加えてペイントシェイカー(株式会社東洋精機製作所製)で10時間分散することにより、単層カーボンナノチューブの分散液8(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液8/酢酸ノルマルブチル=0.2/0.06/10/89.74
比較例2
<調製例9> 高分子分散剤溶液9の調製
500ccステンレスタンクに、高分子分散剤9(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液9を100g得た。
配合比(質量比):高分子分散剤9/酢酸ノルマルブチル=20/80
<製造例9> 分散液9の製造
(第1工程)
225ccガラス瓶に、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液9、及び、酢酸ノルマルブチルを下記配合比にて秤量後、0.3mmφジルコニアビーズを加えてペイントシェイカー(株式会社東洋精機製作所製)で10時間分散することにより、単層カーボンナノチューブの中間分散液9-1を95g得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液9/酢酸ノルマルブチル=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた中間分散液9-1と調製例9で作製した高分子分散剤溶液9を下記配合比にて混合し、中間分散液9-2を100g得た。更に中間分散液9-2に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することにより、単層カーボンナノチューブ分散液9(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散液9-1/高分子分散剤溶液9=95/5
条件 振幅:30[μm]、出力:650[W]、時間:1[min]
比較例3
<調製例10> 高分子分散剤溶液10の調製
500ccステンレスタンクに、高分子分散剤10(商品名:アジスパー PB821、アミン価10mgKOH/g、固形分100質量%、味の素ファインテクノ株式会社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液10を100g得た。
配合比(質量比):高分子分散剤10/酢酸ノルマルブチル=20/80
<製造例10> 分散液10の製造
(第1工程)
225ccガラス瓶に、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液10、及び、酢酸ノルマルブチルを下記配合比にて秤量後、0.3mmφジルコニアビーズを加えてペイントシェイカー(株式会社東洋精機製作所製)で10時間分散し、単層カーボンナノチューブの中間分散液10-1を95g得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液10/酢酸ノルマルブチル=0.2/0.06/5/89.74
(第2工程)
第1工程で得られた中間分散液10-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液10-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第3工程)
第2工程で得られた中間分散液10-2と調製例10で作製した高分子分散剤溶液10を、下記配合比にて混合し、単層カーボンナノチューブ分散液10(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
配合比(質量比):中間分散体10-2/高分子分散剤溶液10=95/5
比較例4
<調製例11> 高分子分散剤溶液11の調製
500ccステンレスタンクに、高分子分散剤11(商品名:アジスパー PB821、固形分100質量%、塩基性官能基含有共重合物、アミン価10mgKOH/g、味の素ファインテクノ株式会社製)と酢酸ノルマルブチルを、下記配合比にてディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で混合溶解し、固形分20質量%の高分子分散剤溶液11を100g得た。
配合比(質量比):高分子分散剤11/酢酸ノルマルブチル=20/80
<製造例11> 分散液11の製造
(第1工程)
調製例11で使用のステンレスタンクとは別の500ccステンレスタンクに、単層カーボンナノチューブ(TUBALL(登録商標)SWCNT 93%、OCSiAl社製、純度93%、短径1.6±0.4nm、長径5μm以上、アスペクト比2500以上、比表面積1070m/g(BET法))、分散助剤(商品名:SOLSPERSE 5000、フタロシアニン誘導体、Lubrizol社製)、高分子分散剤溶液11、及び、酢酸ノルマルブチルを下記配合比にて秤量混合し、ディゾルバー(TKホモディスパー2.5型:PRIMIX社製)で攪拌して、95gの混合液を得た。
配合比(質量比):単層カーボンナノチューブ/分散助剤/高分子分散剤溶液11/酢酸ノルマルブチル=0.2/0.06/10/89.74
(第2工程)
第1工程で得られた混合液に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射し、中間分散液11-1を100g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
(第3工程)
第2工程で得られた中間分散液11-1を、下記条件で湿式ジェットミル(装置名:卓上型湿式超高圧微粒化実験装置 NVL-ES008-D、吉田機械興業株式会社製)にて分散させ、中間分散液11-2を95g得た。
条件:吸込み速度300%、吐出速度235%、処理圧力150MPa、クロスノズル使用
(第4工程)
第3工程で得られた中間分散液11-2に、下記条件で超音波分散機(装置名:GSD1200AT、株式会社ソニックテクノロジー製)にて超音波を照射することで、単層カーボンナノチューブ分散液11(単層カーボンナノチューブ濃度0.2質量%)を100g得た。
超音波照射条件:振幅30μm、出力650W、時間1min
上記の実施例1~7及び比較例1~4で得られた分散液1~11の粘度、分散液中の単層カーボンナノチューブの粒子径、回収率、分散液を用いて形成した塗膜の全光線透過率及び表面抵抗値について、下記の方法にて評価を行った。結果を表1に示す。
<粘度>
得られた単層カーボンナノチューブの分散液を25℃に調整し、BII形粘度計(東機産業株式会社製)にて回転数60rpmの時の粘度を測定し、下記の基準にて評価を行った。
評価基準
◎◎:100mPa・s未満
◎:100mPa・s以上、300mPa・s未満
〇:300mPa・s以上、500mPa・s未満
×:500mPa・s以上
<粒子径>
得られた単層カーボンナノチューブの分散液を、レーザー回折/散乱式粒子径分布測定装置(装置名:LA-950V2、株式会社堀場製作所製)にて、粒子をカーボンブラック、溶媒を各種溶媒で設定し、各種溶媒で粒度分布測定可能な濃度(約100~500倍)に希釈したのち測定し、下記の基準にて評価を行った。なお、各種溶媒とは、実施例1、2、7及び比較例1~4の場合は、酢酸ノルマルブチルであり、実施例3の場合はMEKであり、実施例4の場合はPMAであり、実施例5の場合はIPAであり、実施例6の場合はNMPである。
評価基準
(D50)
◎:3μm未満
〇:3μm以上、5μm未満
×:5μm以上
(D90)
◎:8μm未満
〇:8μm以上、10μm未満
×:10μm以上
<回収率>
得られた単層カーボンナノチューブの分散液100gを、目開き53μmのポリエステルメッシュ(10cm×10cm)に滴下し、自重でのポリエステルメッシュ通過量を1分間測定し、下記の式に基づいて回収率を算出し、下記の基準にて評価を行った。
回収率(%)=通過量(g)/100(g)×100
評価基準
◎◎:90%以上
◎:80%以上、90%未満
〇:75%以上、80%未満
×:75%未満
<塗膜評価方法>
(塗膜形成用塗料の調製)
塗膜中の単層カーボンナノチューブの濃度が8.0質量%となるように下記配合比で、得られた単層カーボンナノチューブ分散液とメタクリル酸ブチル樹脂(商品名:ダイヤナールBR-115又はBR-116、三菱ケミカル株式会社製)と各種溶媒とを、攪拌機(装置名:あわとり練太郎ARE-310、株式会社シンキー製)にて混合し、塗膜形成用塗料(固形分1質量%)を調製した。
なお、メタクリル酸ブチル樹脂は、予め固形分40質量%になるように各種溶媒と混合して溶解させた樹脂溶液を用いた。
配合比(質量比):単層カーボンナノチューブ分散液/樹脂溶液(固形分40%)/各種溶媒=40.0/0.24/59.76
なお、上記各種溶媒とは、実施例1、2、7及び比較例1~4の場合は、酢酸ノルマルブチルであり、実施例3の場合はMEKであり、実施例4の場合はPMAであり、実施例5の場合はIPAであり、実施例6の場合はNMPである。
また、使用したメタクリル酸ブチル樹脂の物性は、下記のとおりである。
ダイヤナールBR-115:分子量55000、Tg50℃
ダイヤナールBR-116:分子量45000、Tg50℃
(塗膜の形成方法)
厚み100μmのPETフィルムに上記塗料を適量垂らし、バーコーター#3(太佑機材株式会社製)を用いて塗工後、その塗布フィルムを温度120℃のオーブンにて3分間乾燥させ、塗膜を作製した。
<全光線透過率の測定>
ヘイズメーター(装置名:ヘイズメーターHZ-2、スガ試験機株式会社製)を用いて、全光線透過率規格(ISO 13468-1、JIS K7361)に準じて測定し(シングルビーム法、光源D65)、下記の基準にて評価を行った。検出部位に何も塗布していない厚み100μmのPETフィルムをはさみ校正を行い、次いで、上記で得られた塗膜(塗布フィルム)を検出部位にはさみ測定した。
評価基準
◎:95%以上
〇:90%以上、95%未満
×:90%未満
<表面抵抗値の測定>
抵抗率計(装置名:ハイレスタMCP-HT450、三菱化学株式会社製)を用いて、得られた塗膜の塗布表面に電極(プローブ)を押し当て、20℃で、表面を流れる電流値を測定し、下記の基準にて評価を行った。
評価基準
◎:1.0×10Ω/□未満
〇:1.0×10Ω/□以上、1.0×10Ω/□未満
×:1.0×10Ω/□以上
<経時安定性>
また、上記で得られた分散液1~11を、40℃で1ヶ月間静置させた後、上記と同じ方法により、粘度、分散液中の単層カーボンナノチューブの粒子径、回収率、分散液を用いて形成した塗膜の全光線透過率及び表面抵抗値について、評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1より、少なくとも、単層カーボンナノチューブと高分子分散剤と有機溶媒を混合し、得られた混合物を超音波照射して分散させ、次いで粉砕メディアを使用しない分散機により分散させ、更に高分子分散剤を添加して超音波照射して分散させることにより、分散性に優れ、再凝集しにくい低粘度な単層カーボンナノチューブの有機溶媒分散液を製造することができることが確認された。また、当該方法で製造された実施例の分散液を用いれば、導電性と透明性が共に優れた塗膜を形成することができることが確認された。
また、表2より、実施例の分散液は、40℃で1ヶ月間静置した後も、粘度が低く、単層カーボンナノチューブが凝集しにくく、透明性及び導電性に優れた塗膜を形成することができ、経時安定性にも優れることが確認された。

Claims (12)

  1. 少なくとも、カーボンナノチューブ、高分子分散剤、及び有機溶媒を含むカーボンナノチューブの分散液であって、
    該分散液は、カーボンナノチューブを0.01~10質量%含み、
    該カーボンナノチューブは、短径が0.1~50nmであり、アスペクト比が100以上である単層カーボンナノチューブを75質量%以上含み、
    該カーボンナノチューブの含有量が0.2質量%となるように該分散液を調製した調製液の粘度が、500mPa・s未満である
    ことを特徴とするカーボンナノチューブ分散液。
  2. 前記カーボンナノチューブの粒子径D50が、5μm未満であることを特徴とする請求項1に記載のカーボンナノチューブ分散液。
  3. 前記カーボンナノチューブの粒子径D90が、10μm未満であることを特徴とする請求項1又は2に記載のカーボンナノチューブ分散液。
  4. 更に、分散助剤を含むことを特徴とする請求項1~3のいずれかに記載のカーボンナノチューブ分散液。
  5. 前記高分子分散剤は、カチオン系高分子分散剤であることを特徴とする請求項1~4のいずれかに記載のカーボンナノチューブ分散液。
  6. 前記有機溶媒は、エステル系溶媒、ケトン系溶媒、グリコール系溶媒、アルコール系溶媒、及び、窒素含有極性溶媒からなる群より選択される少なくとも1種であることを特徴とする請求項1~5のいずれかに記載のカーボンナノチューブ分散液。
  7. 前記カーボンナノチューブ分散液を使用して下記の方法で形成された塗膜の全光線透過率が90%以上であり、かつ、表面抵抗値が1.0×10Ω/□未満であることを特徴とする請求項1~6のいずれかに記載のカーボンナノチューブ分散液。
    塗膜の形成方法:塗膜中の該カーボンナノチューブの濃度が8質量%となるように、該分散液とメタクリル酸ブチル樹脂と該有機溶媒を混合して、固形分1質量%の樹脂組成物を調製し、該樹脂組成物を、ワイヤー径が0.27ミルであるバーコーターを用いてポリエチレンテレフタレートフィルム上に塗布し、塗布物を乾燥させて塗膜を形成する。
  8. 少なくとも、短径が0.1~50nmでありアスペクト比が100以上である単層カーボンナノチューブと、高分子分散剤と、有機溶媒とを混合する工程(1)、
    該工程(1)で得られた混合物に超音波を照射する工程(2)、
    該工程(2)で得られた超音波照射物を、粉砕メディアを使用しない分散機により分散する工程(3)、及び、
    該工程(3)で得られた分散物に高分子分散剤を添加し、得られた混合物に超音波を照射する工程(4)を含む
    ことを特徴とする単層カーボンナノチューブ分散液の製造方法。
  9. 前記工程(1)の前に、前記単層カーボンナノチューブを無機酸又は無機酸を含む溶液で洗浄する工程を含むことを特徴とする請求項8に記載の単層カーボンナノチューブ分散液の製造方法。
  10. 前記工程(1)において、更に分散助剤を混合することを特徴とする請求項8又は9に記載の単層カーボンナノチューブ分散液の製造方法。
  11. 前記高分子分散剤は、カチオン系高分子分散剤であることを特徴とする請求項8~10のいずれかに記載の単層カーボンナノチューブ分散液の製造方法。
  12. 前記有機溶媒は、エステル系溶媒、ケトン系溶媒、グリコール系溶媒、アルコール系溶媒、及び、窒素含有極性溶媒からなる群より選択される少なくとも1種であることを特徴とする請求項8~11のいずれかに記載の単層カーボンナノチューブ分散液の製造方法。
PCT/JP2019/049082 2018-12-17 2019-12-16 カーボンナノチューブ分散液、及びその製造方法 WO2020129872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561393A JP7301881B2 (ja) 2018-12-17 2019-12-16 カーボンナノチューブ分散液、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018235802 2018-12-17
JP2018-235802 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129872A1 true WO2020129872A1 (ja) 2020-06-25

Family

ID=71101342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049082 WO2020129872A1 (ja) 2018-12-17 2019-12-16 カーボンナノチューブ分散液、及びその製造方法

Country Status (3)

Country Link
JP (1) JP7301881B2 (ja)
TW (1) TW202033446A (ja)
WO (1) WO2020129872A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924826A (zh) * 2020-07-22 2020-11-13 中国科学院金属研究所 一种窄直径分布、高纯度金属性单壁碳纳米管的制备方法
JP2021187701A (ja) * 2020-05-28 2021-12-13 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ分散液およびその製造方法
CN113912876A (zh) * 2021-11-03 2022-01-11 江西铜业技术研究院有限公司 一种改性丙烯酸树脂用碳纳米管母液及其制备方法
CN114212776A (zh) * 2021-12-29 2022-03-22 东莞瑞泰新材料科技有限公司 一种改性碳纳米管粉体及其制备方法和应用
WO2022250461A1 (ko) * 2021-05-28 2022-12-01 주식회사 엘지에너지솔루션 도전재 분산액
KR20230029985A (ko) 2020-10-21 2023-03-03 아사히 가세이 가부시키가이샤 비수계 알칼리 금속 축전 소자 및 정극 도공액

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605861B (zh) * 2020-12-08 2022-10-11 上海沪正实业有限公司 基于高分子纳米填充因子的透明导电功能涂料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065964A (ja) * 2015-09-30 2017-04-06 東レ株式会社 カーボンナノチューブを含む分散液及びそれを用いた導電積層体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065964A (ja) * 2015-09-30 2017-04-06 東レ株式会社 カーボンナノチューブを含む分散液及びそれを用いた導電積層体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187701A (ja) * 2020-05-28 2021-12-13 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ分散液およびその製造方法
JP7291351B2 (ja) 2020-05-28 2023-06-15 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ分散液およびその製造方法
CN111924826A (zh) * 2020-07-22 2020-11-13 中国科学院金属研究所 一种窄直径分布、高纯度金属性单壁碳纳米管的制备方法
CN111924826B (zh) * 2020-07-22 2022-05-27 中国科学院金属研究所 一种窄直径分布、高纯度金属性单壁碳纳米管的制备方法
KR20230029985A (ko) 2020-10-21 2023-03-03 아사히 가세이 가부시키가이샤 비수계 알칼리 금속 축전 소자 및 정극 도공액
WO2022250461A1 (ko) * 2021-05-28 2022-12-01 주식회사 엘지에너지솔루션 도전재 분산액
CN113912876A (zh) * 2021-11-03 2022-01-11 江西铜业技术研究院有限公司 一种改性丙烯酸树脂用碳纳米管母液及其制备方法
CN114212776A (zh) * 2021-12-29 2022-03-22 东莞瑞泰新材料科技有限公司 一种改性碳纳米管粉体及其制备方法和应用

Also Published As

Publication number Publication date
TW202033446A (zh) 2020-09-16
JPWO2020129872A1 (ja) 2021-11-04
JP7301881B2 (ja) 2023-07-03

Similar Documents

Publication Publication Date Title
JP7301881B2 (ja) カーボンナノチューブ分散液、及びその製造方法
US10144638B2 (en) Methods of dispersing carbon nanotubes
Park et al. Synthesis and dispersion characteristics of multi‐walled carbon nanotube composites with poly (methyl methacrylate) prepared by in‐situ bulk polymerization
US20180215940A1 (en) Nanoplatelet dispersions, methods for their production and uses thereof
TWI761430B (zh) 石墨烯組合物、其製造方法、導電膜及散熱片
Preston et al. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity
JP7098076B1 (ja) カーボン材料分散液及びその使用
JP6972569B2 (ja) 酸化カーボンナノチューブおよびその分散液
JPWO2016204105A1 (ja) 金属ナノ微粒子製造用組成物
JP2005075661A (ja) カーボンナノチューブ分散溶液およびその製造方法
CN113421695A (zh) 一种水性碳纳米管分散液、导电浆料及其制备方法
TW201435002A (zh) 墨水組合物以及使用其之抗靜電薄膜
JP4182214B2 (ja) カーボンナノチューブ分散極性有機溶媒
JP2010235377A (ja) カーボンナノチューブ分散液
WO2024024162A1 (ja) カーボン材料分散液及びその使用
JP6631656B2 (ja) 高い透明性を有する無機酸化物分散体
JP4761183B2 (ja) カーボンナノチューブ分散ポリイミドおよびその製造方法
KR20210121726A (ko) 고분산 나노 카본 코팅 조성물
JP7262068B1 (ja) カーボン材料分散液及びその使用
US20070267602A1 (en) Method of Manufacturing Carbon Nanotubes Paste
JP7098077B1 (ja) カーボン材料分散液の製造方法
JP6952919B1 (ja) カーボン材料分散液
KR101118733B1 (ko) 디스플레이 전극 인쇄용 다중벽 탄소나노튜브가 함유된 은페이스트 제조방법
JP6851777B2 (ja) カーボンナノチューブ分散液
CN115595018A (zh) 一种石墨烯分散体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899427

Country of ref document: EP

Kind code of ref document: A1