WO2020129259A1 - 温度調整回路 - Google Patents

温度調整回路 Download PDF

Info

Publication number
WO2020129259A1
WO2020129259A1 PCT/JP2018/047375 JP2018047375W WO2020129259A1 WO 2020129259 A1 WO2020129259 A1 WO 2020129259A1 JP 2018047375 W JP2018047375 W JP 2018047375W WO 2020129259 A1 WO2020129259 A1 WO 2020129259A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
temperature
heat medium
control circuit
temperature control
Prior art date
Application number
PCT/JP2018/047375
Other languages
English (en)
French (fr)
Inventor
謙悟 青木
哲 宮本
歩 鵜野
豪士 大谷
大輔 駒澤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US17/415,364 priority Critical patent/US11888139B2/en
Priority to CN201880100256.6A priority patent/CN113195290B/zh
Priority to PCT/JP2018/047375 priority patent/WO2020129259A1/ja
Priority to JP2020561133A priority patent/JP7042362B2/ja
Publication of WO2020129259A1 publication Critical patent/WO2020129259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a temperature adjustment circuit that adjusts the temperature of a battery or the like.
  • An electric vehicle including a coupling path that is coupled to form a coupling circuit, a switching unit that can switch between a circulation state in which the heat medium circulates in the coupling circuit, and a non-circulation state in which the heat medium does not circulate in the coupling circuit.
  • Temperature regulation circuits are known.
  • a cooling circuit that cools a battery a cooling circuit that cools an inverter, a first refrigerant pump that is provided in the cooling circuit that cools the battery, and a second refrigerant pump that is provided in a cooling circuit that cools the inverter.
  • a switching valve and a temperature regulation circuit are described.
  • Patent Document 1 in this temperature adjustment circuit, when the outside air temperature is lower than a predetermined temperature, a circulating state is set, while when the outside air temperature is equal to or higher than a predetermined temperature, a non-circulating state is set to improve temperature adjustment accuracy. It is described to increase.
  • Patent Document 2 discloses a device that includes two heat exchangers connected in parallel and cools the battery with one of the heat exchangers.
  • the temperature adjustment circuit disclosed in Patent Document 1 the heat medium passes through the first cooler and the second cooler in the circulating state, so that there is a problem that the pressure loss increases.
  • the temperature adjustment circuit disclosed in Patent Document 2 is a device that cools a battery, and does not cool two cooling targets by using one coupling circuit.
  • the present invention provides a temperature adjusting circuit that cools two objects to be cooled by one coupling circuit, but can reduce the pressure loss when the heat medium is circulated in the circulating state.
  • the present invention is A first pump that supplies a heat medium to a first cooling target; and a first heat exchange circuit that includes a first heat exchange unit that exchanges heat between the heat medium and the air-conditioning refrigerant, A second temperature adjustment circuit including a second pump that supplies the heat medium to a second object to be cooled, and a second heat exchange unit that exchanges heat between the heat medium and the outside air; A first coupling passage that connects the first connecting portion of the first temperature adjusting circuit and the first connecting portion of the second temperature adjusting circuit; A second coupling passage that connects the second connecting portion of the first temperature adjusting circuit and the second connecting portion of the second temperature adjusting circuit; A switching unit that switches between a circulating state in which the heat medium circulates through a coupling circuit in which the first temperature control circuit and the second temperature control circuit are coupled and a non-circulation state in which the heat medium does not circulate in the coupling circuit.
  • the first heat exchanging unit may be arranged such that the second connecting unit of the first temperature adjusting circuit and the first temperature adjusting circuit of the first temperature adjusting circuit in the flow direction of the heat medium of the first temperature adjusting circuit in the non-circulation state. It is arranged between one connection part.
  • the first temperature adjusting circuit and the second temperature adjusting circuit form a connecting circuit via the first connecting passage and the second connecting passage, two cooling targets are cooled by one connecting circuit. be able to. Further, when the heat medium is circulated in the circulation state, the heat medium is circulated without passing through the first heat exchange section, so that the pressure loss can be reduced.
  • a temperature adjustment circuit 1 for an electric vehicle includes a first temperature adjustment circuit 4 that exchanges heat with a battery 2 and a charger 3, and a power converter that supplies electric power to a motor 105 (see FIG. 6).
  • the heat medium is a liquid medium such as water, a radiator liquid, and a coolant liquid.
  • the first temperature adjustment circuit 4 is arranged on the first pump EWP1 for circulating the heat medium in the circuit, the battery 2 and the charger 3 arranged on the downstream side of the first pump EWP1, and the downstream side of the charger 3.
  • the first electromagnetic cutoff valve EWV1 and the first electromagnetic cutoff valve EWV1 disposed downstream of the first electromagnetic cutoff valve EWV1 and upstream of the first pump EWP1 are heat-exchanged by heat exchange through the air conditioning refrigerant circulating in the air conditioning circuit AC of the electric vehicle.
  • a chiller 11 for cooling the medium.
  • the air conditioning circuit AC includes a compressor 20, a condenser 21, an evaporator 22, and shutoff valves 23 and 24.
  • the compressor 20, the condenser 21, and the evaporator 22 are connected in series, and the evaporator 22 and the chiller 11 are connected in parallel. Has been done.
  • the flow path to the evaporator 22 and the flow path to the chiller 11 are configured to be switchable by the shutoff valves 23 and 24.
  • the heat medium discharged by the first pump EWP1 is transferred to the battery 2, the charger 3, It can be circulated in the order of the chiller 11.
  • the shutoff valve 24 of the air conditioning circuit AC By opening the shutoff valve 24 of the air conditioning circuit AC in the separate mode, the heat medium cooled by the chiller 11 exchanges heat with the battery 2 and the charger 3, and the battery 2 and the charger 3 are appropriately cooled. ..
  • the battery 2 and the charger 3 can be cooled simultaneously, so that the battery 2 and the charger that generate heat during charging 3 can be cooled efficiently. Further, the battery 2 and the charger 3 can be arranged close to each other, and the cooling pipe can be shortened.
  • the second temperature control circuit 6 is provided with a second pump EWP2 that circulates a heat medium in the circuit, a check valve CV arranged downstream of the second pump EWP2, and a downstream side of the check valve CV.
  • the power conversion device 5, a buffer tank 13 arranged on the downstream side of the power conversion device 5, and a radiator 12 arranged on the downstream side of the buffer tank 13 for cooling the heat medium by heat exchange with the outside air.
  • the power conversion device 5 includes at least one of an inverter that converts DC power into AC power and AC power into DC power, and a DC-DC converter that steps up or steps down DC voltage.
  • the heat medium discharged by the second pump EWP2 can be circulated in the order of the power conversion device 5, the buffer tank 13, and the radiator 12. it can. Thereby, the heat medium cooled by the radiator 12 exchanges heat with the power conversion device 5, and the power conversion device 5 is appropriately cooled.
  • the second pump EWP2 since the second pump EWP2 is arranged on the downstream side of the radiator 12, heat generation due to the operation of the second pump EWP2 can be efficiently suppressed.
  • the second pump EWP2 can be used in a limited temperature range, a highly versatile pump can be used. Further, the air bleeding efficiency can be improved by providing the buffer tank 13 on the downstream side of the power converter 5 that generates a large amount of heat.
  • the coupling passages 8 and 9 include a first coupling passage 8 and a second coupling passage 9.
  • the first connecting passage 8 connects the first connecting portion 14 of the second temperature adjusting circuit 6 and the first connecting portion 15 of the first temperature adjusting circuit 4.
  • the second connecting passage 9 connects the second connecting portion 16 of the second temperature adjusting circuit 6 and the second connecting portion 17 of the first temperature adjusting circuit 4.
  • the first connecting portion 14 and the second connecting portion 16 of the second temperature adjusting circuit 6 are located on the downstream side of the second pump EWP2 in the second temperature adjusting circuit 6 and on the upstream side of the power conversion device 5.
  • a check valve CV is provided between the first connecting portion 14 and the second connecting portion 16 of the second temperature control circuit 6.
  • the first connecting portion 15 of the first temperature adjusting circuit 4 is located on the downstream side of the chiller 11 in the first temperature adjusting circuit 4 and on the upstream side of the first pump EWP1.
  • the second connecting portion 17 of the first temperature adjusting circuit 4 is located on the downstream side of the charger 3 in the first temperature adjusting circuit 4 and on the upstream side of the first electromagnetic cutoff valve EWV1.
  • the passage between the first connecting portion 15 and the second connecting portion 17 in the first temperature adjusting circuit 4, that is, the passage in which the first electromagnetic cutoff valve EWV1 and the chiller 11 are arranged in the first temperature adjusting circuit 4 is a coupling circuit. 7 functions as a branch passage 18 that bypasses a part thereof.
  • the second electromagnetic cutoff valve EWV2 is provided between the first connecting portion 14 of the second temperature adjusting circuit 6 and the first connecting portion 15 of the first temperature adjusting circuit 4, that is, in the first coupling passage 8.
  • the heat medium is circulated by driving at least one of the first pump EWP1 and the second pump EWP2.
  • the first electromagnetic cutoff valve EWV1 is closed to stop the circulation of the heat medium via the branch passage 18, and the second electromagnetic cutoff valve EWV2 is opened.
  • the heat medium discharged from the first pump EWP1 or the second pump EWP2 circulates in the order of the battery 2, the charger 3, the power conversion device 5, the buffer tank 13, and the radiator 12, and the battery 2, the charger 3 and The power conversion device 5 is cooled.
  • the battery 2 having a low management temperature can be preferentially cooled.
  • the heat medium is circulated without passing through the chiller 11, so that the pressure loss can be reduced.
  • the first temperature adjusting circuit 4 and the second temperature adjusting circuit 6 are connected via the connecting passages 8 and 9, the thermal expansion of the heat medium in the two temperature adjusting circuits 4 and 6 is caused.
  • One buffer tank 13 can absorb the change in pressure and the change in flow rate due to.
  • the first electromagnetic cutoff valve EWV1 is opened.
  • the second electromagnetic cutoff valve EWV2 is closed, and the first pump EWP1 and the second pump EWP2 are driven.
  • the heat medium circulates through the temperature control circuits 4 and 6 separately to cool the objects to be cooled in the temperature control circuits 4 and 6.
  • the first temperature control circuit 4 and the second temperature adjusting circuit 6 are connected to each other via the second connecting passage 9, even if the heat medium in the first temperature adjusting circuit 4 thermally expands, they are connected to each other via the second connecting passage 9.
  • the buffer tank 13 in the second temperature control circuit 6 can absorb a pressure change and a flow rate change due to thermal expansion.
  • the first electromagnetic shutoff valve EWV1 since the first electromagnetic shutoff valve EWV1 is provided between the second connecting portion 17 of the first temperature adjusting circuit 4 and the chiller 11, the first electromagnetic shutoff valve EWV1 fails ( Even if (fixed), the heat medium flows through the second coupling passage 9 in the series mode, so that the battery 2, the charger 3, and the power conversion device 5 can be cooled. Further, since the second electromagnetic cutoff valve EWV2 is provided between the first connection portion 14 of the second temperature adjustment circuit 6 and the first connection portion 15 of the first temperature adjustment circuit 4, the second electromagnetic cutoff valve EWV2 fails. Even if (fixed), the battery 2 and the charger 3 can be cooled by the first temperature control circuit 4 and the power conversion device 5 can be cooled by the second temperature control circuit 6 in the separate mode.
  • the control device 10 inputs the temperature information of the battery 2, the power conversion device 5 and the like, and the rotation speed information of the first pump EWP1 and the second pump EWP2, and based on the judgment according to these input information, By controlling the 1st pump EWP1, the 2nd pump EWP2, the 1st electromagnetic cutoff valve EWV1, and the 2nd electromagnetic cutoff valve EWV2, the temperature adjustment circuit 1 is operated appropriately.
  • control device 10 closes the first electromagnetic shutoff valve EWV1 and opens the second electromagnetic shutoff valve EWV2 in the series mode, and opens the first electromagnetic shutoff valve EWV1 in the separate mode. And the second electromagnetic shutoff valve EWV2 is closed.
  • FIG. 6 is a perspective view showing a schematic configuration of an electric vehicle 100 in which the temperature adjustment circuit 1 of the present embodiment can be used.
  • the electric vehicle 100 may be an electric vehicle having only an electric motor as a drive source, a fuel cell vehicle, or a hybrid vehicle having an electric motor and an internal combustion engine.
  • an electric vehicle will be described as an example.
  • the vehicle body 101 of the electric vehicle 100 is equipped with a battery case 103 that accommodates the battery 2 in the underfloor portion of the passenger compartment 102.
  • a motor room 104 is provided in the front part of the electric vehicle 100. In the motor room 104, a motor 105, a power converter 5, a branch unit 106, a charger 3 and the like are provided.
  • the rotational driving force of the motor 105 is transmitted to the shaft 107.
  • the front wheels 108 of the electric vehicle 100 are connected to both ends of the shaft 107.
  • the power conversion device 5 is arranged on the upper side of the motor 105 and is fastened and fixed directly to the case of the motor 105.
  • the power conversion device 5 is electrically connected to the connector of the battery case 103 by the power cable 111. Further, the power conversion device 5 is electrically connected to the motor 105 by, for example, a three-phase bus bar.
  • the power conversion device 5 drives and controls the motor 105 with the power supplied from the battery 2.
  • the branch unit 106 and the charger 3 are arranged in parallel on the left and right.
  • the branching unit 106 and the charger 3 are arranged above the power conversion device 5.
  • the branching unit 106 and the charger 3 are arranged in a state of being separated from the power conversion device 5.
  • the branch unit 106 and the battery case 103 are electrically connected by a cable 110 having connectors at both ends.
  • the branch unit 106 is electrically connected to the charger 3.
  • the charger 3 is connected to a general external power source such as a household power source to charge the battery 2.
  • the charger 3 and the branch unit 106 are electrically connected by a cable (not shown) having connectors at both ends.
  • the charger 3 is cooled by the first temperature adjustment circuit 4, but the charger 3 may be cooled by the second temperature adjustment circuit 6. In this way, the battery 2 and the charger 3 can be separated and cooled, so that only the battery 2 can be preferentially cooled.
  • the buffer tank 13 is arranged on the downstream side of the power converter 5 and on the upstream side of the radiator 12, but the buffer tank 13 is arranged on the downstream side of the radiator 12 and in the second pump EWP2. It may be arranged on the upstream side.
  • the heat resistance of the buffer tank 13 can be lowered by disposing the buffer tank 13 on the downstream side of the radiator 12 in which the temperature of the heat medium is low. Further, when the heat medium is injected from the buffer tank 13, the second pump EWP2 is located downstream of the buffer tank 13, so that the heat medium injection time can be shortened.
  • the first pump EWP1 is arranged between the first connection portion 15 of the first temperature adjustment circuit 4 and the battery 2 in the heat medium flow direction in the separate mode.
  • the first pump EWP1 is provided between the second connecting portion 17 of the first temperature adjusting circuit 4 and the first connecting portion 15 of the first temperature adjusting circuit 4, that is, in the branch passage 18. May be arranged.
  • the first pump EWP1, the chiller 11, the battery 2, and the charger 3 may be arranged in this order in the heat medium flow direction in the separate mode. In this way, the heat medium can be supplied from the chiller 11 to the battery 2 and the charger 3 without being affected by the heat of the first pump EWP1 in the series mode.
  • a first pump (first pump EWP1) that supplies a heat medium to a first cooling target (battery 2), and a first heat exchange section (chiller 11) that performs heat exchange between the heat medium and the air-conditioning refrigerant. ), a first temperature control circuit (first temperature control circuit 4), A second pump (second pump EWP2) that supplies the heat medium to a second cooling target (power conversion device 5); and a second heat exchange unit (radiator 12) that performs heat exchange between the heat medium and the outside air, A second temperature control circuit (second temperature control circuit 6) including A first coupling passage (first coupling passage) that connects the first connecting portion (first connecting portion 15) of the first temperature adjusting circuit and the first connecting portion (first connecting portion 14) of the second temperature adjusting circuit.
  • the first heat exchanging unit may be arranged such that the second connecting unit of the first temperature adjusting circuit and the first temperature adjusting circuit of the first temperature adjusting circuit in the flow direction of the heat medium of the first temperature adjusting circuit in the non-circulation state.
  • a temperature adjustment circuit arranged between the connection part and the connection part.
  • the first temperature adjusting circuit and the second temperature adjusting circuit form a connecting circuit via the first connecting passage and the second connecting passage, two cooling targets are cooled by one connecting circuit. can do. Further, when the heat medium is circulated in the circulation state, the heat medium is circulated without passing through the first heat exchange section, so that the pressure loss can be reduced.
  • the temperature adjusting circuit according to (1), The switching unit, A first shutoff valve provided between the second connection part and the first heat exchange part of the first temperature control circuit in the flow direction of the heat medium of the first temperature control circuit in the non-circulation state ( A first electromagnetic shutoff valve EWV1), A second cutoff provided between the first connection part of the second temperature control circuit and the first connection part of the first temperature control circuit in the flow direction of the heat medium of the coupling circuit in the circulation state. And a valve (second electromagnetic cutoff valve EWV2).
  • the first shutoff valve is provided between the second connection portion and the first heat exchange portion of the first temperature control circuit, the circulating state is maintained even if the first shutoff valve fails (sticks). At the heat medium flows through the second coupling passage. Therefore, the first cooling target and the second cooling target can be cooled.
  • the second cutoff valve is provided between the first connection part of the second temperature control circuit and the first connection part of the first temperature control circuit, even if the second cutoff valve fails (sticks), non-circulation occurs. In the state, the first temperature control circuit can cool the first cooling target, and the second temperature control circuit can cool the second cooling target.
  • the temperature adjusting circuit includes a control device (control device 10) that controls the first cutoff valve and the second cutoff valve, The control device is The first cutoff valve is closed and the second cutoff valve is opened so that the circulation state is achieved.
  • a temperature adjusting circuit that brings the first shutoff valve into an open state and controls the second shutoff valve into a closed state to bring it into the non-circulation state.
  • the circulating state and the non-circulating state can be switched by switching the open state and the closed state of the first shutoff valve and the second shutoff valve.
  • the temperature adjusting circuit according to any one of (1) to (3),
  • the first cooling target is a battery (battery 2)
  • the second cooling target is a power conversion device (power conversion device 5), In the circulation state, the temperature adjustment circuit in which the heat medium flows in the order of the second cooling target, the second heat exchange unit, and the first cooling target.
  • the temperature adjusting circuit according to (4), The first temperature adjustment circuit further includes a charger (charger 3).
  • the battery and the charger can be cooled at the same time, the battery and the charger which generate heat during charging can be efficiently cooled. Further, the battery and the charger can be arranged close to each other, and the cooling pipe can be shortened.
  • the temperature adjusting circuit according to (4), The said 2nd temperature adjustment circuit is a temperature adjustment circuit further equipped with a charger (charger 3).
  • the battery and the charger can be separated and cooled, and only the battery can be preferentially cooled.
  • the temperature adjusting circuit includes a buffer on the downstream side of the second cooling target and on the upstream side of the second heat exchange unit in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state.
  • a temperature adjusting circuit further including a tank (buffer tank 13).
  • the air bleeding efficiency can be improved by providing the buffer tank on the downstream side of the power converter that generates a large amount of heat.
  • the temperature adjusting circuit according to any one of (4) to (6),
  • the second temperature control circuit includes a buffer tank on the downstream side of the second heat exchange section and on the upstream side of the second pump in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state. And a temperature control circuit.
  • the heat resistance of the buffer tank can be lowered by providing the buffer tank on the downstream side of the second heat exchange section where the temperature of the heat medium is low. Further, when the heat medium is injected from the buffer tank, the second pump is provided downstream of the buffer tank, so that the time for injecting the heat medium can be shortened.
  • the temperature adjustment circuit according to any one of (1) to (8), In the second temperature control circuit, the second pump is downstream of the second heat exchange unit in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state, and the first connection. A temperature adjustment circuit located upstream of the unit.
  • the second pump since the second pump is arranged on the downstream side of the second heat exchange section, it is possible to efficiently suppress heat generation due to the operation of the second pump. Moreover, since the second pump can be used in a limited temperature range, the second pump having high versatility can be used.
  • thermocontrol circuit (10) The temperature adjusting circuit according to any one of (1) to (9), In the first temperature control circuit, the first pump, the first heat exchange unit, and the first cooling target are arranged in this order in the flow direction of the heat medium of the first temperature control circuit in the non-circulation state. Temperature control circuit.
  • the heat medium can be supplied from the first heat exchange unit to the first cooling target without being affected by the heat of the first pump.
  • the temperature adjusting circuit according to any one of (1) to (10), In the first temperature control circuit, in the non-circulation state, in the flow direction of the heat medium of the first temperature control circuit, the first pump is connected to the second connection portion of the first temperature control circuit and the first temperature control circuit.
  • a temperature adjustment circuit arranged between the heat exchange section and the heat exchange section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

温度調整回路1は、バッテリ(2)及びチラー(11)を備える第1温度調節回路(4)と、電力変換装置(5)及びラジエータ(12)を備える第2温度調節回路(6)と、温度調節回路(4、6)の第1接続部(14、15)同士を接続する第1結合通路(8)と、温度調節回路(4、6)の第2接続部(16、17)同士を接続する第2結合通路(9)と、第1温度調節回路(4)と第2温度調節回路(6)とを結合した結合回路(7)を熱媒体が循環するシリーズモードと、熱媒体が結合回路(7)を循環しないセパレートモードと、を切り替える第1電磁遮断弁(EWV1)及び第2電磁遮断弁(EWV2)と、を備える。チラー(11)は、セパレートモードにおける第1温度調節回路(4)の熱媒体の流れ方向において、第1温度調節回路(4)の第2接続部(17)と第1温度調節回路(4)の第1接続部(15)との間に配置される。

Description

温度調整回路
 本発明は、バッテリなどの温度調整を行う温度調整回路に関する。
 第1温度調節回路と、第2温度調節回路と、第1温度調節回路及び第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、第1温度調節回路と第2温度調節回路とを結合して結合回路を形成する結合通路と、熱媒体が結合回路を循環する循環状態と、熱媒体が結合回路を循環しない非循環状態とを切替可能な切替部と、を備える電動車両用の温度調整回路が知られている。
 例えば、特許文献1には、バッテリを冷却する冷却回路と、インバータを冷却する冷却回路と、バッテリを冷却する冷却回路に設けられる第1冷媒ポンプと、インバータを冷却する冷却回路に設けられる第2冷媒ポンプと、バッテリ及びインバータを同一回路で温度調整する状態(以下、循環状態とも呼ぶ。)とバッテリ及びインバータを別々の回路で温度調整する状態(以下、非循環状態とも呼ぶ。)とを切り換える切換バルブと、を備える温度調整回路が記載されている。特許文献1では、この温度調整回路において、外気温度が所定温度未満である場合、循環状態とする一方、外気温度が所定温度以上である場合、非循環状態とすることにより、温度調整の精度を高めることが記載されている。
 また、特許文献2には、並列に接続される2つの熱交換器を備え、いずれか一方の熱交換器でバッテリを冷却する装置が開示されている
日本国特開2013-188098号公報 日本国特許第5336033号公報
 しかしながら、特許文献1に示される温度調整回路では、循環状態において熱媒体が第1の冷却器及び第2の冷却器を通るので、圧損が増大するという課題があった。また、特許文献2に示される温度調整回路では、バッテリを冷却する装置であって、2つの冷却対象を1つの結合回路を利用して冷却するものではない。
 本発明は、2つの冷却対象を1つの結合回路で冷却するものでありながら、循環状態において熱媒体を循環させるときの圧損を低減できる温度調整回路を提供する。
 本発明は、
 第1冷却対象に熱媒体を供給する第1ポンプ、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部、を備える第1温度調節回路と、
 第2冷却対象に前記熱媒体を供給する第2ポンプ、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部、を備える第2温度調節回路と、
 前記第1温度調節回路の第1接続部と前記第2温度調節回路の第1接続部とを接続する第1結合通路と、
 前記第1温度調節回路の第2接続部と前記第2温度調節回路の第2接続部とを接続する第2結合通路と、
 前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路を前記熱媒体が循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える、切替部と、を備え、
 前記第1熱交換部は、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている。
 本発明によれば、第1結合通路及び第2結合通路を介して第1温度調節回路と第2温度調節回路とが結合回路を構成するので、2つの冷却対象を1つの結合回路で冷却することができる。また、循環状態において熱媒体を循環させるとき、熱媒体が第1熱交換部を経由せずに循環されるので、圧損を低減できる。
本発明の一実施形態の温度調整回路の構成を示す回路図である。 図1の温度調整回路においてセパレートモード時の熱媒体の流れを示す説明図である。 図1の温度調整回路においてシリーズモード時の熱媒体の流れを示す説明図である。 本実施形態の第1変形例の温度調整回路の構成を示す回路図である。 本実施形態の第2変形例の温度調整回路の構成を示す回路図である。 本実施形態の温度調整回路が使用可能な電動車両の概略構成を示す斜視図である。
 以下、本発明の一実施形態について、図1~図3を参照して説明する。
[温度調整回路]
 図1に示すように、電動車両用の温度調整回路1は、バッテリ2及び充電器3と熱交換する第1温度調節回路4と、モータ105(図6参照)に電力を供給する電力変換装置5と熱交換する第2温度調節回路6と、第1温度調節回路4と第2温度調節回路6とを結合して結合回路7を形成する結合通路8、9と、熱媒体が結合回路7を循環するシリーズモード(循環状態)と、熱媒体が結合回路7を循環せず、別々の温度調節回路4、6を循環するセパレートモード(非循環状態)とを切替可能な第1電磁遮断弁EWV1及び第2電磁遮断弁EWV2と、電磁遮断弁EWV1、EWV2などを制御する制御装置10と、を備える。なお、熱媒体は、水、ラジエータ液、クーラント液等の液状媒体である。
[第1温度調節回路]
 第1温度調節回路4は、該回路に熱媒体を循環させる第1ポンプEWP1と、第1ポンプEWP1の下流側に配置されるバッテリ2及び充電器3と、充電器3の下流側に配置される第1電磁遮断弁EWV1と、第1電磁遮断弁EWV1の下流側で、且つ第1ポンプEWP1の上流側に配置され、電動車両の空調回路ACを循環する空調用冷媒との熱交換によって熱媒体を冷却するチラー11と、を備える。
 空調回路ACは、コンプレッサ20、コンデンサ21、エバポレータ22、及び遮断弁23、24を備え、コンプレッサ20と、コンデンサ21と、エバポレータ22とが直列に接続され、エバポレータ22とチラー11とが並列に接続されている。空調回路ACでは、エバポレータ22への流路とチラー11への流路が、遮断弁23、24によって切り替え可能に構成されている。
 図2に示すように、セパレートモードでは、第1電磁遮断弁EWV1の開弁状態で第1ポンプEWP1を駆動することにより、該第1ポンプEWP1が吐出する熱媒体をバッテリ2、充電器3、チラー11の順番で循環させることができる。セパレートモードにおいて空調回路ACの遮断弁24を開状態とすることで、チラー11によって冷却された熱媒体がバッテリ2及び充電器3と熱交換し、バッテリ2及び充電器3が適切に冷却される。第1ポンプEWP1が吐出する熱媒体をバッテリ2、充電器3、チラー11の順番で循環させることで、バッテリ2と充電器3とを同時に冷却できるので、充電中に発熱するバッテリ2及び充電器3を効率的に冷却することができる。また、バッテリ2と充電器3とを近接配置することができ、冷却配管を短くできる。
[第2温度調節回路]
 第2温度調節回路6は、該回路に熱媒体を循環させる第2ポンプEWP2と、第2ポンプEWP2の下流側に配置される逆止弁CVと、逆止弁CVの下流側に配置される電力変換装置5と、電力変換装置5の下流側に配置されるバッファタンク13と、バッファタンク13の下流側に配置され、外気との熱交換によって熱媒体を冷却するラジエータ12と、を備える。なお、電力変換装置5は、直流電力を交流電力に変換するとともに交流電力を直流電力に変換するインバータ、及び直流電圧を昇圧又は降圧するDC-DCコンバータの少なくとも一方を含む。
 図2に示すように、セパレートモードでは、第2ポンプEWP2を駆動することにより、該第2ポンプEWP2が吐出する熱媒体を電力変換装置5、バッファタンク13、ラジエータ12の順番で循環させることができる。これにより、ラジエータ12によって冷却された熱媒体が電力変換装置5と熱交換し、電力変換装置5が適切に冷却される。また、第2ポンプEWP2は、ラジエータ12の下流側に配置されるため、第2ポンプEWP2の運転による発熱を効率的に抑えることができる。また、第2ポンプEWP2を限られた温度域で使用できるため、汎用性の高いポンプを使用することができる。また、発熱の大きい電力変換装置5の下流側にバッファタンク13を設けることで、エア抜き効率を向上させることができる。
[結合回路]
 結合通路8、9は、第1結合通路8と第2結合通路9とを含む。第1結合通路8は、第2温度調節回路6の第1接続部14と第1温度調節回路4の第1接続部15とを結合する。第2結合通路9は、第2温度調節回路6の第2接続部16と第1温度調節回路4の第2接続部17とを結合する。第2温度調節回路6の第1接続部14及び第2接続部16は、第2温度調節回路6における第2ポンプEWP2の下流側で、且つ電力変換装置5の上流側に位置する。第2温度調節回路6の第1接続部14と第2接続部16との間には、逆止弁CVが設けられている。第1温度調節回路4の第1接続部15は、第1温度調節回路4におけるチラー11の下流側で、且つ第1ポンプEWP1の上流側に位置する。第1温度調節回路4の第2接続部17は、第1温度調節回路4における充電器3の下流側で、且つ第1電磁遮断弁EWV1の上流側に位置する。
 第1温度調節回路4における第1接続部15と第2接続部17との間の通路、即ち第1温度調節回路4において第1電磁遮断弁EWV1及びチラー11が配置される通路は、結合回路7において、その一部をバイパスする分岐通路18として機能する。また、第2電磁遮断弁EWV2は、第2温度調節回路6の第1接続部14と第1温度調節回路4の第1接続部15との間、即ち第1結合通路8に設けられる。
 図3に示すように、熱媒体が結合回路7を循環するシリーズモードでは、第1ポンプEWP1及び第2ポンプEWP2のうち少なくともいずれか一方の駆動によって熱媒体を循環させる。また、シリーズモードでは、第1電磁遮断弁EWV1を閉弁して分岐通路18を経由した熱媒体の循環を停止するとともに、第2電磁遮断弁EWV2を開弁状態とする。これにより、第1ポンプEWP1又は第2ポンプEWP2から吐出される熱媒体がバッテリ2、充電器3、電力変換装置5、バッファタンク13、ラジエータ12の順番で循環し、バッテリ2、充電器3及び電力変換装置5が冷却される。このとき、ラジエータ12を通過した熱媒体を、電力変換装置5よりも先にバッテリ2に流すことができるので、管理温度の低いバッテリ2を優先的に冷却することができる。また、シリーズモードでは、熱媒体がチラー11を経由せずに循環されるので、圧損を低減できる。また、シリーズモードでは、結合通路8、9を介して第1温度調節回路4及び第2温度調節回路6が結合されているので、2つの温度調節回路4、6内における熱媒体の熱膨張などに伴う圧力変化や流量変化を1つのバッファタンク13で吸収することができる。
 一方、図2に示すように、熱媒体が結合回路7を循環せず、第1温度調節回路4及び第2温度調節回路6を別々に循環するセパレートモードでは、第1電磁遮断弁EWV1を開弁状態、第2電磁遮断弁EWV2を閉弁状態にするとともに、第1ポンプEWP1及び第2ポンプEWP2を駆動させる。これにより、熱媒体が各温度調節回路4、6を別々に循環して各温度調節回路4、6内の冷却対象が冷却されることになるが、セパレートモードであっても第1温度調節回路4と第2温度調節回路6は第2結合通路9を介して結合されているので、仮に第1温度調節回路4内の熱媒体が熱膨張したとしても、第2結合通路9を介して結合された第2温度調節回路6内のバッファタンク13で熱膨張に伴う圧力変化や流量変化を吸収することができる。
 そして、このような温度調整回路1では、第1電磁遮断弁EWV1が第1温度調節回路4の第2接続部17とチラー11との間に設けられるので、第1電磁遮断弁EWV1が故障(固着)しても、シリーズモードにおいて熱媒体が第2結合通路9を介して流れるので、バッテリ2、充電器3及び電力変換装置5を冷却することができる。また、第2電磁遮断弁EWV2が第2温度調節回路6の第1接続部14と第1温度調節回路4の第1接続部15との間に設けられるので、第2電磁遮断弁EWV2が故障(固着)しても、セパレートモードにおいて第1温度調節回路4でバッテリ2及び充電器3を冷却でき、また、第2温度調節回路6で電力変換装置5を冷却することができる。
[制御装置]
 制御装置10は、バッテリ2、電力変換装置5等の温度情報と、第1ポンプEWP1及び第2ポンプEWP2の回転数情報と、を入力し、これらの入力情報に応じた判断に基づいて、第1ポンプEWP1、第2ポンプEWP2、第1電磁遮断弁EWV1及び第2電磁遮断弁EWV2を制御することで、温度調整回路1を適切に動作させる。
 そして、制御装置10は、シリーズモードにおいて、第1電磁遮断弁EWV1を閉弁状態にするとともに第2電磁遮断弁EWV2を開弁状態とし、セパレートモードにおいて、第1電磁遮断弁EWV1を開弁状態にするとともに第2電磁遮断弁EWV2を閉弁状態とする。
 図6は、本実施形態の温度調整回路1が使用可能な電動車両100の概略構成を示す斜視図である。電動車両100は、駆動源として電動機のみを有する電気自動車、燃料電池車であってもよく、電動機及び内燃機関を有するハイブリッド自動車でもよいが、以下の説明では、電気自動車を例に説明する。
 電動車両100の車体101には、車室102の床下部分にバッテリ2を収容するバッテリケース103が搭載されている。電動車両100の前部には、モータルーム104が設けられている。モータルーム104内には、モータ105、電力変換装置5、分岐ユニット106、充電器3等が設けられている。
 モータ105の回転駆動力は、シャフト107に伝達される。シャフト107の両端部には、電動車両100の前輪108が接続されている。電力変換装置5は、モータ105の上側に配置されてモータ105のケースに直接、締結固定されている。電力変換装置5は、電源ケーブル111でバッテリケース103のコネクタに電気的に接続されている。また、電力変換装置5は、例えば三相バスバーによりモータ105に電気的に接続されている。電力変換装置5は、バッテリ2から供給される電力によりモータ105を駆動制御する。
 分岐ユニット106および充電器3は、左右に並列して配置されている。分岐ユニット106および充電器3は、電力変換装置5の上方に配置されている。分岐ユニット106および充電器3は、電力変換装置5と離間した状態で配置されている。分岐ユニット106とバッテリケース103とは、両端にコネクタを有するケーブル110により電気的に接続されている。
 分岐ユニット106は、充電器3に電気的に接続されている。充電器3は、家庭用電源等の一般的な外部電源に接続して、バッテリ2に対して充電を行う。充電器3と分岐ユニット106とは、両端にコネクタを有する不図示のケーブルにより電気的に接続されている。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記実施形態では、充電器3を第1温度調節回路4で冷却しているが、充電器3を第2温度調節回路6で冷却するようにしてもよい。このようにすると、バッテリ2と充電器3とを切り離して冷却できるので、バッテリ2のみを優先して冷却することが可能になる。
 また、上記実施形態では、バッファタンク13が電力変換装置5の下流側、且つ、ラジエータ12の上流側に配置されていたが、バッファタンク13がラジエータ12の下流側、且つ、第2ポンプEWP2の上流側に配置されていてもよい。バッファタンク13を、熱媒体の温度が低いラジエータ12の下流側に配置することで、バッファタンク13の耐熱性を下げることができる。また、バッファタンク13から熱媒体を注入するに際し、バッファタンク13の下流に第2ポンプEWP2があることで、熱媒体の注入時間を短縮できる。
 また、上記実施形態の第1温度調節回路4では、セパレートモードにおける熱媒体流れ方向において、第1ポンプEWP1が、第1温度調節回路4の第1接続部15とバッテリ2との間に配置されているが、例えば図4に示すように、第1温度調節回路4の第2接続部17と第1温度調節回路4の第1接続部15との間、即ち分岐通路18に第1ポンプEWP1を配置してもよい。このようにすると、シリーズモードにおいて第2ポンプEWP2のみで熱媒体を循環させるとき、熱媒体が第1ポンプEWP1及びチラー11を経由せずに循環されるので、圧損を低減できる。
 また、例えば図5に示すように、セパレートモードにおける熱媒体流れ方向において、第1ポンプEWP1、チラー11、バッテリ2及び充電器3がこの順に配置されるようにしてもよい。このようにすると、シリーズモードにおいて第1ポンプEWP1による熱の影響を受けずにチラー11から熱媒体をバッテリ2及び充電器3に供給することができる。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 第1冷却対象(バッテリ2)に熱媒体を供給する第1ポンプ(第1ポンプEWP1)、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部(チラー11)、を備える第1温度調節回路(第1温度調節回路4)と、
 第2冷却対象(電力変換装置5)に前記熱媒体を供給する第2ポンプ(第2ポンプEWP2)、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部(ラジエータ12)、を備える第2温度調節回路(第2温度調節回路6)と、
 前記第1温度調節回路の第1接続部(第1接続部15)と前記第2温度調節回路の第1接続部(第1接続部14)とを接続する第1結合通路(第1結合通路8)と、
 前記第1温度調節回路の第2接続部(第2接続部17)と前記第2温度調節回路の第2接続部(第2接続部16)とを接続する第2結合通路(第2結合通路9)と、
 前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路(結合回路7)を前記熱媒体が循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える、切替部(第1電磁遮断弁EWV1、第2電磁遮断弁EWV2)と、を備え、
 前記第1熱交換部は、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている、温度調整回路。
 (1)によれば、第1結合通路及び第2結合通路を介して第1温度調節回路と第2温度調節回路とが結合回路を構成するので、2つの冷却対象を1つの結合回路で冷却することができる。また、循環状態において熱媒体を循環させるとき、熱媒体が第1熱交換部を経由せずに循環されるので、圧損を低減できる。
 (2) (1)に記載の温度調整回路であって、
 前記切替部は、
 前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1温度調節回路の前記第2接続部と前記第1熱交換部との間に設けられる第1遮断弁(第1電磁遮断弁EWV1)と、
 前記循環状態における前記結合回路の前記熱媒体の流れ方向において、前記第2温度調節回路の前記第1接続部と前記第1温度調節回路の前記第1接続部との間に設けられる第2遮断弁(第2電磁遮断弁EWV2)と、を備える、温度調整回路。
 (2)によれば、第1遮断弁が第1温度調節回路の第2接続部と第1熱交換部との間に設けられるので、第1遮断弁が故障(固着)しても循環状態において熱媒体が第2結合通路を介して流れる。したがって、第1冷却対象及び第2冷却対象を冷却することができる。また、第2遮断弁が第2温度調節回路の第1接続部と第1温度調節回路の第1接続部との間に設けられるので、第2遮断弁が故障(固着)しても非循環状態において第1温度調節回路で第1冷却対象を冷却でき、また、第2温度調節回路で第2冷却対象を冷却することができる。
 (3) (2)に記載の温度調整回路であって、
 温度調整回路は、前記第1遮断弁及び前記第2遮断弁を制御する制御装置(制御装置10)を備え、
 前記制御装置は、
 前記第1遮断弁を閉弁状態にするとともに前記第2遮断弁を開弁状態とするように制御することで前記循環状態とし、
 前記第1遮断弁を開弁状態にするとともに前記第2遮断弁を閉弁状態とするように制御することで前記非循環状態とする、温度調整回路。
 (3)によれば、第1遮断弁及び第2遮断弁の開弁状態と閉弁状態とを切り替えることで、循環状態と非循環状態とを切り替えることができる。
 (4) (1)~(3)のいずれかに記載の温度調整回路であって、
 前記第1冷却対象は、バッテリ(バッテリ2)であり、
 前記第2冷却対象は、電力変換装置(電力変換装置5)であり、
 前記循環状態では、前記第2冷却対象、前記第2熱交換部、及び前記第1冷却対象の順に前記熱媒体が流れる、温度調整回路。
 (4)によれば、循環状態において第2熱交換部を通過した熱媒体を、電力変換装置よりも先にバッテリに流すことができるので、管理温度の低いバッテリを優先的に冷却することができる。
 (5)(4)に記載の温度調整回路であって、
 前記第1温度調節回路は、充電器(充電器3)をさらに備える、温度調整回路。
 (5)によれば、バッテリと充電器とを同時に冷却できるので、充電中に発熱するバッテリ及び充電器を効率的に冷却することができる。また、バッテリと充電器とを近接配置することができ、冷却配管を短くできる。
 (6) (4)に記載の温度調整回路であって、
 前記第2温度調節回路は、充電器(充電器3)をさらに備える、温度調整回路。
 (6)によれば、バッテリと充電器と切り離して冷却でき、バッテリのみを優先して冷却することができる。
 (7) (4)~(6)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2冷却対象の下流側、且つ、前記第2熱交換部の上流側にバッファタンク(バッファタンク13)をさらに備える、温度調整回路。
 (7)によれば、発熱の大きい電力変換装置の下流側にバッファタンクを設けることで、エア抜き効率を向上させることができる。
 (8) (4)~(6)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第2ポンプの上流側にバッファタンクをさらに備える、温度調整回路。
 (8)によれば、熱媒体の温度が低い第2熱交換部の下流側にバッファタンクを設けることで、バッファタンクの耐熱性を下げることができる。また、バッファタンクから熱媒体を注入するに際し、バッファタンクの下流に第2ポンプがあることで、熱媒体の注入時間を短縮できる。
 (9) (1)~(8)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路では、前記第2ポンプが、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第1接続部の上流側に配置されている、温度調整回路。
 (9)によれば、第2ポンプは、第2熱交換部の下流側に配置されるため、第2ポンプの運転による発熱を効率的に抑えることができる。また、第2ポンプを限られた温度域で使用できるため、汎用性の高い第2ポンプを使用することができる。
 (10) (1)~(9)のいずれかに記載の温度調整回路であって、
 前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプ、前記第1熱交換部、及び前記第1冷却対象がこの順に配置されている、温度調整回路。
 (10)によれば、第1ポンプによる熱の影響を受けずに第1熱交換部から熱媒体を第1冷却対象に供給することができる。
 (11) (1)~(10)のいずれかに記載の温度調整回路であって、
 前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプが、前記第1温度調節回路の前記第2接続部と前記第1熱交換部との間に配置されている、温度調整回路。
 (11)によれば、循環状態において第2ポンプのみで熱媒体を循環させるとき、熱媒体が第1ポンプ及び第1熱交換部を経由せずに循環されるので、圧損を低減できる。
1 温度調整回路
2 バッテリ(第1冷却対象)
3 充電器
4 第1温度調節回路
5 電力変換装置(第2冷却対象)
6 第2温度調節回路
7 結合回路
8 第1結合通路
9 第2結合通路
10 制御装置
11 チラー(第1熱交換部)
12 ラジエータ(第2熱交換部)
13 バッファタンク
14 第2温度調節回路の第1接続部
15 第1温度調節回路の第1接続部
16 第2温度調節回路の第2接続部
17 第1温度調節回路の第2接続部
EWP1 第1ポンプ
EWP2 第2ポンプ
EWV1 第1電磁遮断弁
EWV2 第2電磁遮断弁

Claims (11)

  1.  第1冷却対象に熱媒体を供給する第1ポンプ、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部、を備える第1温度調節回路と、
     第2冷却対象に前記熱媒体を供給する第2ポンプ、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部、を備える第2温度調節回路と、
     前記第1温度調節回路の第1接続部と前記第2温度調節回路の第1接続部とを接続する第1結合通路と、
     前記第1温度調節回路の第2接続部と前記第2温度調節回路の第2接続部とを接続する第2結合通路と、
     前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路を前記熱媒体が循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える、切替部と、を備え、
     前記第1熱交換部は、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている、温度調整回路。
  2.  請求項1に記載の温度調整回路であって、
     前記切替部は、
     前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1温度調節回路の前記第2接続部と前記第1熱交換部との間に設けられる第1遮断弁と、
     前記循環状態における前記結合回路の前記熱媒体の流れ方向において、前記第2温度調節回路の前記第1接続部と前記第1温度調節回路の前記第1接続部との間に設けられる第2遮断弁と、を備える、温度調整回路。
  3.  請求項2に記載の温度調整回路であって、
     温度調整回路は、前記第1遮断弁及び前記第2遮断弁を制御する制御装置を備え、
     前記制御装置は、
     前記循環状態において、前記第1遮断弁を閉弁状態にするとともに前記第2遮断弁を開弁状態とし、
     前記非循環状態において、前記第1遮断弁を開弁状態にするとともに前記第2遮断弁を閉弁状態とする、温度調整回路。
  4.  請求項1~3のいずれか1項に記載の温度調整回路であって、
     前記第1冷却対象は、バッテリであり、
     前記第2冷却対象は、電力変換装置であり、
     前記循環状態では、前記第2冷却対象、前記第2熱交換部、及び前記第1冷却対象の順に前記熱媒体が流れる、温度調整回路。
  5.  請求項4に記載の温度調整回路であって、
     前記第1温度調節回路は、充電器をさらに備える、温度調整回路。
  6.  請求項4に記載の温度調整回路であって、
     前記第2温度調節回路は、充電器をさらに備える、温度調整回路。
  7.  請求項4~6のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2冷却対象の下流側、且つ、前記第2熱交換部の上流側にバッファタンクをさらに備える、温度調整回路。
  8.  請求項4~6のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第2ポンプの上流側にバッファタンクをさらに備える、温度調整回路。
  9.  請求項1~8のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路では、前記第2ポンプが、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第1接続部の上流側に配置されている、温度調整回路。
  10.  請求項1~9のいずれか1項に記載の温度調整回路であって、
     前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプ、前記第1熱交換部、及び前記第1冷却対象がこの順に配置されている、温度調整回路。
  11.  請求項1~10のいずれか1項に記載の温度調整回路であって、
     前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプが、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている、温度調整回路。
PCT/JP2018/047375 2018-12-21 2018-12-21 温度調整回路 WO2020129259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/415,364 US11888139B2 (en) 2018-12-21 2018-12-21 Temperature adjustment circuit
CN201880100256.6A CN113195290B (zh) 2018-12-21 2018-12-21 温度调整回路
PCT/JP2018/047375 WO2020129259A1 (ja) 2018-12-21 2018-12-21 温度調整回路
JP2020561133A JP7042362B2 (ja) 2018-12-21 2018-12-21 温度調整回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047375 WO2020129259A1 (ja) 2018-12-21 2018-12-21 温度調整回路

Publications (1)

Publication Number Publication Date
WO2020129259A1 true WO2020129259A1 (ja) 2020-06-25

Family

ID=71102679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047375 WO2020129259A1 (ja) 2018-12-21 2018-12-21 温度調整回路

Country Status (4)

Country Link
US (1) US11888139B2 (ja)
JP (1) JP7042362B2 (ja)
CN (1) CN113195290B (ja)
WO (1) WO2020129259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247577B2 (en) * 2019-09-04 2022-02-15 Honda Motor Co., Ltd. Vehicle
JP2022052965A (ja) * 2020-09-24 2022-04-05 本田技研工業株式会社 温調装置及び車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (ja) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd ハイブリッド型電気自動車の冷却装置
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2008290636A (ja) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd ハイブリッドカー
WO2009110352A1 (ja) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 車両用バッテリ冷却装置
JP2012193673A (ja) * 2011-03-16 2012-10-11 Aisin Seiki Co Ltd エンジン冷却回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884058B1 (fr) 2005-04-05 2016-07-15 Valeo Systemes Thermiques Branche Thermique Habitacle Dispositif de maintien a une temperature de consigne d'une batterie d'un vehicule a motorisation electrique par fluide caloporteur
JP5912689B2 (ja) 2012-03-12 2016-04-27 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド電気自動車の冷却装置
US9844995B2 (en) 2015-04-28 2017-12-19 Atieva, Inc. EV muti-mode thermal control system
US20160318409A1 (en) 2015-04-28 2016-11-03 Atieva, Inc. EV Muti-Mode Thermal Control System
US20160318410A1 (en) 2015-04-28 2016-11-03 Atieva, Inc. EV Muti-Mode Thermal Control System
EP3088230B1 (en) * 2015-04-28 2018-12-05 Atieva, Inc. Electric vehicle multi-mode thermal control system
US9950638B2 (en) * 2015-07-10 2018-04-24 Ford Global Technologies, Llc Preconditioning an electric vehicle
CN106898841B (zh) 2017-03-07 2019-07-05 重庆长安汽车股份有限公司 混合动力汽车电池包热管理***
CN108556660B (zh) 2018-04-16 2020-10-09 安徽江淮汽车集团股份有限公司 一种电动汽车热管理***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (ja) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd ハイブリッド型電気自動車の冷却装置
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2008290636A (ja) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd ハイブリッドカー
WO2009110352A1 (ja) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 車両用バッテリ冷却装置
JP2012193673A (ja) * 2011-03-16 2012-10-11 Aisin Seiki Co Ltd エンジン冷却回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247577B2 (en) * 2019-09-04 2022-02-15 Honda Motor Co., Ltd. Vehicle
JP2022052965A (ja) * 2020-09-24 2022-04-05 本田技研工業株式会社 温調装置及び車両
JP7158445B2 (ja) 2020-09-24 2022-10-21 本田技研工業株式会社 温調装置及び車両

Also Published As

Publication number Publication date
JPWO2020129259A1 (ja) 2021-11-11
US20220069385A1 (en) 2022-03-03
US11888139B2 (en) 2024-01-30
JP7042362B2 (ja) 2022-03-28
CN113195290B (zh) 2024-05-07
CN113195290A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
JP6743844B2 (ja) 冷却水回路
JP7260986B2 (ja) 車両の熱管理システム
JP7185469B2 (ja) 車両の熱管理システム
JP7202124B2 (ja) 車両の熱管理システム
US11394064B2 (en) Temperature adjustment circuit and control method thereof
JP6997883B2 (ja) 温度調整回路
US20190047361A1 (en) Hvac system of vehicle
KR102522330B1 (ko) 차량용 배터리의 열관리 시스템
JP2002352867A (ja) 電気自動車のバッテリ温度制御装置
US11447036B2 (en) Temperature adjustment circuit and control method thereof
US11712981B2 (en) Vehicle
WO2019022023A1 (ja) 冷却水回路
US12034136B2 (en) Vehicle
JP7042362B2 (ja) 温度調整回路
KR20220049648A (ko) 구동모터 과냉각 시스템 및 이의 제어방법
WO2022107381A1 (ja) 温調装置
KR20190092801A (ko) 전기자동차용 캐빈 히터 예열시스템
WO2022107428A1 (ja) 温調装置
JP2022042435A (ja) 電動車両用の熱マネージメントシステム
CN117863825A (zh) 集成式热管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943395

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020561133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943395

Country of ref document: EP

Kind code of ref document: A1