WO2020125731A1 - 一种功率管内核温度检测***与方法 - Google Patents

一种功率管内核温度检测***与方法 Download PDF

Info

Publication number
WO2020125731A1
WO2020125731A1 PCT/CN2019/126751 CN2019126751W WO2020125731A1 WO 2020125731 A1 WO2020125731 A1 WO 2020125731A1 CN 2019126751 W CN2019126751 W CN 2019126751W WO 2020125731 A1 WO2020125731 A1 WO 2020125731A1
Authority
WO
WIPO (PCT)
Prior art keywords
power tube
control unit
electronic control
information
voltage
Prior art date
Application number
PCT/CN2019/126751
Other languages
English (en)
French (fr)
Inventor
罗林健
陈锋
Original Assignee
苏州蓝石新动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州蓝石新动力有限公司 filed Critical 苏州蓝石新动力有限公司
Publication of WO2020125731A1 publication Critical patent/WO2020125731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Definitions

  • the present application relates to the technical field of temperature detection, and in particular, to a temperature detection system and method for the core of a power tube.
  • the purpose of this application includes providing a power tube core temperature detection system to alleviate the problem that the fluctuation state of the junction temperature cannot be accurately and timely reflected in the process of measuring the junction temperature of the power tube in the prior art.
  • the purpose of the present application also includes providing a method for detecting the temperature of the core of the power tube to solve the problem that the fluctuation state of the junction temperature cannot be accurately and timely reflected during the measurement of the junction temperature of the power tube in the prior art.
  • An embodiment of the present application provides a power tube core temperature detection system.
  • the system includes an electronic control unit and a plurality of power tubes, the electronic control unit is electrically connected to each of the power tubes, and the plurality of power tubes are configured To be electrically connected to a motor, the system also includes:
  • a voltage collection module electrically connected to the electronic control unit, and configured to collect the voltage drop information of the conductive target power tube;
  • a current collection module electrically connected to the electronic control unit, and configured to collect current information of the conductive target power tube;
  • the electric control unit is configured to calculate the internal resistance of the conductive target power tube according to the voltage drop information and the current information, and obtain the junction of the target power tube according to the internal resistance and a preset correspondence table temperature.
  • the electric control unit is a micro control unit (MCU), and the power tube is a metal oxide semi-field power tube (MOSFET) or an insulated gate power tube (IGBT).
  • MCU micro control unit
  • IGBT insulated gate power tube
  • the voltage collection module is a voltage sensor or a voltage drop sampling circuit.
  • the plurality of power tubes are configured to be electrically connected to different phase paths of a motor, respectively, and at least one target power tube on each phase path is connected to the voltage acquisition module, and the electric control unit is configured to control At least one target power tube in each phase path is turned on to drive the motor.
  • the multiple power tubes constitute an inverter bridge
  • the inverter bridge includes an upper bridge arm and a lower bridge arm
  • each of the power tubes is electrically connected to one of the voltage collection modules
  • the electronic control The unit is configured to calculate the internal resistance of the target power tube located in the upper bridge arm and/or the lower bridge arm.
  • the plurality of power tubes are connected to the motor through a phase line
  • the current collection module includes a phase line current sensor group
  • the phase line current sensor group includes a plurality of phase line current sensors, each of the phase lines The current sensors are installed on one phase line.
  • the power tubes located in the upper bridge arm and the lower bridge arm are configured not to be simultaneously turned on.
  • the plurality of power tubes are electrically connected to a power supply through a pair of main lines
  • the current collection module includes a main line current sensor, and the main line current sensor is installed on one of the main lines.
  • each of the power tubes is electrically connected to a power supply through a sub-line
  • the current collection module includes a sub-line current sensor group
  • the sub-line current sensor group includes a plurality of sub-line current sensors, each The sub-line current sensors are all installed on one sub-line.
  • the system further includes a power supply
  • the motor is a three-phase motor
  • each phase line of the three-phase motor is electrically connected to at least one power tube
  • the power supply is electrically connected to the plurality of power tubes connection.
  • An embodiment of the present application also proposes a power tube core temperature detection method, which is applied to a power tube core temperature detection system.
  • the method includes:
  • the voltage collection module collects the voltage drop information of the turned-on target power tube, and transmits the voltage drop information to the electronic control unit;
  • the current collection module collects current information of the turned-on target power tube, and transmits the current information to the electronic control unit;
  • the electronic control unit calculates the internal resistance of the target power tube according to the voltage drop information and the current information, and obtains the junction temperature of the power tube according to the internal resistance and a preset correspondence table.
  • the plurality of power tubes are configured to be electrically connected to different phase circuits of a motor, respectively, before the step of the voltage collecting module collecting voltage drop information of the conductive target power tube,
  • the above method also includes:
  • the electronic control unit controls at least one target power tube in each phase to be turned on.
  • the step of the electronic control unit controlling the conduction of at least one target power tube in each phase includes:
  • the electric control unit sends multiple pulse width modulation (PWM) signals to each target power tube, so that one of the target power tubes in each of the phase paths is turned on.
  • PWM pulse width modulation
  • each of the power tubes is set with a number
  • the method further includes :
  • the electronic control unit obtains the number of each turned-on target power tube
  • the method further includes:
  • the electric control unit obtains the voltage information transmitted by the plurality of voltage collection modules according to the number.
  • the step of the electronic control unit acquiring the number of each turned-on target power tube includes:
  • the electronic control unit obtains the number of each of the turned on target power tubes in the current state, and judges whether the voltage information or current information of each target power tube is valid.
  • the step of the electronic control unit acquiring the voltage information transmitted by the plurality of voltage collection modules according to the number includes:
  • the electronic control unit automatically rejects the invalid voltage information.
  • FIG. 1 shows a schematic block diagram of a power tube core temperature detection system provided by an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a module of a power tube core temperature detection system provided by an embodiment of the present application, with the electronic control unit removed.
  • FIG. 3 shows a circuit diagram of another power tube core temperature detection system provided by an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a first implementation method for measuring current of a power tube core temperature detection system provided by an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of a second implementation method for measuring current of a power tube core temperature detection system provided by an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of a third implementation method for measuring current in a power tube core temperature detection system provided by an embodiment of the present application.
  • FIG. 7 shows a flowchart of a power tube core temperature detection method provided by an embodiment of the present application.
  • Icon 100-power tube core temperature detection system; 110-electric control unit; 120-power tube; 130-voltage collection module; 140-current collection module; 150-three-phase motor; 160-power supply.
  • junction temperature of the power tube (that is, the internal temperature of the power tube during operation) is an important condition for judging that the power tube is in safe operation.
  • the working junction temperature limits the maximum output capacity of the controller. Therefore, the real-time measurement of the junction temperature of the power tube is very important during the operation of the power tube.
  • the measurement of the junction temperature of the power tube is mainly based on NTC (Thermistor Characteristic Curve), that is, the power tube and the thermistor are combined, and the thermistor is used to measure the junction temperature of the power tube.
  • NTC Thermistor Characteristic Curve
  • the NTC response time is slow during the measurement process, and the fluctuation state of the junction temperature cannot be accurately and timely reflected.
  • the temperature detection system of the core of the power tube provided in this embodiment can effectively alleviate the problem that the fluctuation state of the junction temperature cannot be accurately and timely reflected in the process of measuring the junction temperature of the power tube in the prior art.
  • the power tube core temperature detection system provided in this embodiment will be described in detail below.
  • an embodiment of the present application provides a power tube core temperature detection system 100, the system includes an electronic control unit 110 and a plurality of power tubes 120, wherein the electronic control unit 110 and each power tube 120 Connected, the multiple power tubes 120 are configured to be electrically connected to a motor, respectively, so that the electronic control unit 110 controls the operation of the motor through the conduction state of the different power tubes 120.
  • the system also includes a voltage collection module 130 and a current collection module 140, wherein the voltage collection module 130 and the current collection module 140 are electrically connected to the electronic control unit 110, and the current collection module 140 is configured to collect the corresponding target power tube
  • the voltage collection module 130 is configured to collect the voltage drop information of the corresponding target power tube 120 that is turned on.
  • the voltage collection module 130 and the current collection module 140 transmit the collected data to the electronic control unit 110, and the electronic control unit 110 calculates the internal resistance of the conductive target power tube 120 according to the voltage drop information and the current information, and according to the internal resistance
  • the junction temperature of the target power tube 120 is obtained from a preset correspondence table.
  • the number of voltage collection modules 130 can be configured according to the number of power tubes 120.
  • the number of voltage collection modules 130 is also configured as three, and each voltage collection module 130 is configured to collect the corresponding target power tube 120.
  • Current information In other embodiments of the present application, different numbers of combinations can be selected for configuration according to different specific circuit structures, and details are not described herein.
  • the electronic control unit 110 controls some of the power tubes 120 to be turned on to drive the motor to operate.
  • the target power tube 120 described in this embodiment is the turned on power tube 120, which can The power tube 120 whose current information and voltage drop information are measured.
  • the electronic control unit 110 uses an MCU (Microcontroller Unit), and the power tube 120 uses a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). IGBT (Insulated Gate Bipolar Transistor, insulated gate power tube), this embodiment does not make any limitation on this.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor, insulated gate power tube
  • the system provided in this embodiment further includes a motor and a power supply 160, each phase line of the motor is electrically connected to at least one power tube 120, the power supply 160 is electrically connected to a plurality of power tubes 120, and the electric control unit 110 controls differently
  • the power tube 120 is turned on to build a loop between the power supply 160, the power tube 120 and the motor, so that the motor operates.
  • the motor described in this application is a multi-phase motor, such as a two-phase motor, a three-phase motor 150, or a five-phase motor.
  • the motor is a three-phase motor 150, and each phase line of the three-phase motor 150 is The two power tubes 120 are electrically connected for description.
  • the six power tubes 120 are configured to be electrically connected to different phase circuits of the three-phase motor 150 respectively, and the two target power tubes 120 on each phase circuit are connected to a voltage collection module 130 and an electronic control unit 110 is configured to control the corresponding target power tube 120 in each phase to be turned on to drive the motor to run.
  • the six power tubes 120 are the first power tube, the second power tube, the third power tube, the fourth power tube, the fifth power tube and the sixth power tube, namely N1, N2, N3 , N4, N5, N6.
  • the first power and the fourth power tube constitute a first phase path a
  • the second power tube and the fifth power tube constitute a second phase path b
  • the third power tube and the sixth power tube constitute a third phase path c.
  • the number of power tubes 120 may be more or less.
  • 12 power tubes or other multiples of 6 power tubes may be used.
  • the power tube 120 When more power tubes are used, When the power tube 120 is connected, the number of power tubes 120 conducting on each phase path may be multiple.
  • the first phase path includes three power tubes 120, and the electronic control unit 110 can control two of the power tubes 120 is turned on, which is not limited in this embodiment.
  • six power tubes 120 constitute an inverter bridge
  • the inverter bridge includes an upper bridge arm and a lower bridge arm
  • the first power tube, the second power tube, and the third power tube respectively constitute three upper bridge arms
  • the fourth power tube, the fifth power tube, and the sixth power tube respectively constitute three lower bridge arms
  • the electronic control unit 110 is configured to control the upper bridge arm or the lower bridge arm in different phases to conduct, so as to achieve the corresponding measurement target The purpose of the internal resistance of the power tube 120.
  • the power tubes 120 located on the upper and lower arms cannot be turned on at the same time in the same phase path.
  • the voltage collection module 130 provided in this embodiment May be set according to actual needs. Taking the voltage collecting module 130 on all three lower bridge arms, and the three voltage collecting modules 130 as three voltage drop sampling circuits as an example, each voltage drop sampling circuit is configured to collect the corresponding one when the bridge arm is turned on. Pressure drop.
  • the voltage collection module 130 may be provided on all three upper bridge arms, or the voltage collection module 130 may be provided on three upper bridge arms and three lower bridge arms at the same time, and each power tube 120 is connected to one The corresponding voltage collecting module 130 is electrically connected, which is not limited in this embodiment.
  • this embodiment provides three collection methods, including:
  • the current collection module 140 includes a phase wire current sensor group, and the phase wire current sensor group includes multiple phase wires Current sensor, each phase line current sensor is installed on a phase line. That is, in this embodiment, the current collecting module 140 includes a first phase line current sensor H1, a second phase line current sensor H2, and a third phase line current sensor H3.
  • phase circuit described in this embodiment is a circuit directly connected to different phases of the three-phase motor 150. Since each phase circuit is connected to the corresponding power tube 120, the current information of the power tube 120 and the phase circuit The currents in are equal. When the current information of the phase circuit is collected, the current information of the power tube 120 connected to the phase circuit is collected.
  • the current flows into the three-phase motor 150 through the first power tube N1, and flows out through the fifth power tube N5 and the sixth power tube N6.
  • the current information collected by the sensor H1 is the current flowing through the first power tube N1
  • the current information collected by the second phase line current sensor H2 is the current flowing through the fifth power tube N5
  • the third phase line current sensor H3 The current information is the current flowing through the sixth power tube N6.
  • the target power tube 120 described in this embodiment refers to a power tube 120 that can collect both current information and voltage information.
  • the target power tube 120 is the fifth power tube N5 and the sixth power tube N6; and if the three upper bridge arms are respectively connected with the voltage collection module 130, then The target power tube 120 is the first power tube N1.
  • the electronic control unit 110 can send six PWM (Pulse Width Modulation) signals to each power tube 120, so that one power tube 120 in each phase path is turned on, and at the same time, in actual use
  • the PWM signal sent by the electronic control unit 110 will change in real time. For example, when the three lower bridge arms are connected to the voltage acquisition module 130, and when the power tubes N1, N5, and N6 are turned on, the fifth power can be measured at this time.
  • the electronic control unit 110 is further configured to obtain the junction temperature of the target power tube 120 according to a pre-stored correspondence table, where the correspondence table is the correspondence between the internal resistance and the junction temperature, and the internal resistance is used Listed in a one-to-one correspondence with junction temperature.
  • the above correspondence table may be pre-stored in the memory of the electronic control unit 110.
  • the electronic control unit 110 may also include a communication module, the correspondence table may be pre-stored in an external server or storage device, and the electronic control unit 110 may receive the external server or storage device through the communication module. , Modify, update or replace the corresponding table.
  • the electronic control unit 110 can control the power tubes N2, N3, and N4 to be turned on. At this time, current flows in from the second power tube N2 and the third power tube N3. After passing through the three-phase motor 150, The fourth power tube N4 flows out. At this time, the first phase line current sensor H1 collects the current information of the fourth power tube N4, and the electronic control unit 110 can receive the corresponding data to perform the internal resistance of the fourth power tube N4. After calculation, the junction temperature of the fourth power tube N4 is obtained through the correspondence table, thereby realizing the effect of obtaining the junction temperature of the power tube 120 of each channel in real time.
  • the six power tubes 120 are electrically connected to a power supply 160 through a pair of main lines, and the current collection module 140 includes a main line current sensor R1, and the main line current sensor R1 is installed therein One main line.
  • the main line described in this embodiment is a wire connected to the power supply 160.
  • the main line current sensor may be provided on the main line of the upper arm, or on the main line of the lower arm, or on the upper and lower arms
  • the main line current sensor is installed at the same time. In this embodiment, a case where the main line current sensor is installed on the main line of the lower arm is used as an example for description.
  • each of the six power tubes 120 is electrically connected to a power supply 160 through a sub-line
  • the current collection module 140 includes a sub-line current sensor group, and a sub-line current sensor group It includes multiple sub-line current sensors, and each sub-line current sensor is installed on a corresponding sub-line.
  • the sub-line described in this embodiment refers to a line connected to the power tube 120, and the sub-line in each phase is connected to the main line.
  • the current collection module 140 includes a first sub-line current sensor S1, a second sub-line current sensor S2, and a third sub-line current sensor S3. Similar to the first implementation, the current information of the target power tube can be collected through the sub-line current sensor, which will not be repeated in this embodiment.
  • the above implementations provided in this embodiment can also be used in combination, for example, the first implementation and the second implementation are combined to obtain the current information of the target power tube, or The first implementation mode is combined with the third implementation mode, or the three implementation modes are combined at the same time, which is not limited in this embodiment.
  • an embodiment of the present application provides a core temperature detection method for a power tube 120, which is applied to the power tube core temperature detection system 100 described in the first embodiment.
  • the method includes the following steps:
  • the electronic control unit 110 controls at least one target power tube 120 in each phase path to be turned on.
  • the electronic control unit 110 sends six PWM signals to the power tubes 120, so that one target power tube 120 in each phase path is turned on.
  • the electronic control unit 110 obtains the number of each turned-on target power tube 120.
  • each power tube 120 is provided with a number.
  • the electronic control unit 110 controls the power tube 120 to be turned on, the electronic control unit 110 can obtain the number of the target power tube 120 that is turned on in the current state. In order to determine whether the voltage information or current information is valid in the subsequent process of receiving current or voltage.
  • the voltage collection module 130 collects voltage drop information of the turned-on target power tube 120, and transmits the voltage drop information to the electronic control unit 110.
  • the current collection module 140 is configured to collect current information of the turned-on target power tube 120, and transmit the current information to the electronic control unit 110.
  • the electric control unit 110 obtains the voltage information transmitted by the plurality of voltage collection modules 130 according to the number.
  • the electronic control unit 110 when the voltage information is invalid information, the electronic control unit 110 will automatically reject the invalid voltage information.
  • the electronic control unit 110 calculates the internal resistance of the target power tube 120 according to the voltage drop information and the current information, and obtains the junction temperature of the power tube 120 according to the internal resistance and a preset correspondence table .
  • the present application provides a power tube core temperature detection system and method.
  • the system includes an electric control unit and a plurality of power tubes, the electric control unit is electrically connected to each power tube, and the multiple power tubes are configured as separate It is electrically connected to a motor, and the system also includes a voltage collection module and a current collection module.
  • the voltage collection module collects the voltage drop information of the turned-on target power tube, and the current collection module collects the turned-on target power tube.
  • the current information is then configured by the electronic control unit to calculate the internal resistance of the turned-on target power tube according to the voltage drop information and the current information, and to obtain the junction temperature of the target power tube according to the internal resistance and a preset correspondence table.
  • this application uses the method of measuring current information and voltage information to calculate the internal resistance of the target power tube, and then obtain the core temperature according to the internal resistance look-up table, directly using the current and voltage drop flowing through the power tube to obtain the junction temperature, so there will be no temperature difference problem. Accurately and timely reflect the fluctuation of junction temperature.
  • the present application provides a power tube core temperature detection system and method.
  • the system includes an electric control unit and a plurality of power tubes, the electric control unit is electrically connected to each power tube, and the multiple power tubes are configured to be electrically connected to a motor, respectively And, the system also includes a voltage collection module and a current collection module, through the voltage collection module to collect the voltage drop information of the target power tube, and through the current collection module, to collect the current information of the target power tube, and then use
  • the electronic control unit is configured to calculate the internal resistance of the turned-on target power tube according to the voltage drop information and the current information, and obtain the junction temperature of the target power tube according to the internal resistance and a preset correspondence table.
  • this application uses the method of measuring current information and voltage information to calculate the internal resistance of the target power tube, and then obtain the core temperature according to the internal resistance look-up table, directly using the current and voltage drop flowing through the power tube to obtain the junction temperature, so there will be no temperature difference problem. Accurately and timely reflect the fluctuation of junction temperature.
  • the present application provides a power tube core temperature detection system and method, which can effectively alleviate the problem that the fluctuation state of the junction temperature cannot be accurately and timely reflected in the process of measuring the junction temperature of the power tube in the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种功率管内核温度检测***,包括电控单元(110)与多个功率管(120),电控单元(110)与每个功率管(120)电连接,多个功率管(120)配置为分别与一电机(150)的相线电连接,并且,该***还包括电压采集模块(130)与电流采集模块(140),通过电压采集模块(130)采集导通的目标功率管(120)的压降信息,并通过电流采集模块(140),采集导通的目标功率管(120)的电流信息,然后利用电控单元(110)配置为依据压降信息与电流信息计算导通的目标功率管(120)的内阻,并依据内阻与预设定的对应表获取目标功率管(120)的结温。还公开了其检测方法。该功率管内核温度检测***与方法具有能够准确及时反映结温的波动状态的优点。

Description

一种功率管内核温度检测***与方法
相关申请交叉引用
本申请要求于2018年12月20日提交中国专利局的申请号为201811561504.5、名称为“一种功率管内核温度检测***与方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及温度检测技术领域,具体而言,涉及一种功率管内核温度检测***与方法。
背景技术
现有技术中功率管的内核与NTC(热敏电阻特性曲线)之间由于热阻存在温差,且两者的关系存在不准确性,使得在测量过程中NTC响应时间慢,且不能准确及时反映结温的波动状态。
发明内容
有鉴于此,本申请的目的包括提供一种功率管内核温度检测***,以缓解现有技术中在测量功率管结温的过程中不能准确及时反映结温的波动状态的问题。
本申请的目的还包括提供一种功率管内核温度检测方法,以解决现有技术中在测量功率管结温的过程中不能准确及时反映结温的波动状态的问题。
为了实现上述目的,本申请实施例采用的技术方案包括:
本申请实施例提出了一种功率管内核温度检测***,所述***包括电控单元与多个功率管,所述电控单元与每个所述功率管电连接,所述多个 功率管配置为分别与一电机电连接,所述***还包括:
电压采集模块,与所述电控单元电连接,配置为采集导通的目标功率管的压降信息;
电流采集模块,与所述电控单元电连接,配置为采集导通的目标功率管的电流信息;
所述电控单元配置为依据所述压降信息与所述电流信息计算导通的目标功率管的内阻,并依据所述内阻与预设定的对应表获取所述目标功率管的结温。
可选地,所述电控单元为微控制单元(MCU),所述功率管为金氧半场效功率管(MOSFET)或绝缘栅功率管(IGBT)。
可选地,所述电压采集模块为电压传感器或压降采样电路。
可选地,所述多个功率管配置为分别与一电机的不同相路电连接,且每个相路上的至少一个目标功率管连接有所述电压采集模块,所述电控单元配置为控制每个相路中的至少一个目标功率管导通,以驱动所述电机运转。
可选地,所述多个功率管组成逆变桥,所述逆变桥包括上桥臂与下桥臂,每个所述功率管均与一个所述电压采集模块电连接,所述电控单元配置为计算位于所述上桥臂和/或所述下桥臂的目标功率管的内阻。
可选地,所述多个功率管通过相线与电机连接,所述电流采集模块包括相线电流传感器组,所述相线电流传感器组包括多个相线电流传感器,每个所述相线电流传感器均安装于一条相线上。
可选地,在同一相路中,位于所述上桥臂和所述下桥臂的所述功率管 配置为不能同时导通。
可选地,所述多个功率管均通过一对主线与一电源电连接,所述电流采集模块包括主线电流传感器,所述主线电流传感器安装于其中一根所述主线上。
可选地,每个所述功率管均通过一条子线与一电源电连接,所述电流采集模块包括子线电流传感器组,所述子线电流传感器组包括多个子线电流传感器,每个所述子线电流传感器均安装于一条子线上。
可选地,所述***还包括电源,所述电机为三相电机,所述三相电机的每条相线分别与至少一个功率管电连接,所述电源分别与所述多个功率管电连接。
本申请实施例还提出了一种功率管内核温度检测方法,应用于功率管内核温度检测***,所述方法包括:
所述电压采集模块采集导通的目标功率管的压降信息,并将所述压降信息传输至所述电控单元;
所述电流采集模块采集导通的目标功率管的电流信息,并将所述电流信息传输至所述电控单元;
所述电控单元依据所述压降信息与所述电流信息计算目标功率管的内阻,并依据所述内阻与预设定的对应表获取所述功率管的结温。
可选地,在所述方法中,所述多个功率管配置为分别与一电机的不同相路电连接,在所述电压采集模块采集导通的目标功率管的压降信息的步骤之前,上述方法还包括:
所述电控单元控制每个相路中的至少一个目标功率管导通。
可选地,所述电控单元控制每个相路中的至少一个目标功率管导通的步骤包括:
所述电控单元发送多路脉冲宽度调制(PWM)信号至各目标功率管,以使每个所述相路中的一个所述目标功率管导通。
可选地,在所述方法中,每个所述功率管均设置有编号,在所述电控单元控制每个相路中的至少一个目标功率管导通的步骤之后,所述方法还包括:
所述电控单元获取每个导通的目标功率管的编号;
在所述电控单元依据所述压降信息与所述电流信息计算目标功率管的内阻的步骤之前,所述方法还包括:
所述电控单元依据所述编号获取所述多个电压采集模块传输的电压信息。
可选地,所述电控单元获取每个导通的目标功率管的编号的步骤包括:
所述电控单元获取在当前状态下,每个导通的所述目标功率管的编号,并对各所述目标功率管的电压信息或者电流信息是否有效进行判断。
可选地,所述电控单元依据所述编号获取所述多个电压采集模块传输的电压信息的步骤包括:
当所述电压信息为无效信息时,则所述电控单元自动剔除所述无效的电压信息。
附图说明
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例提供的功率管内核温度检测***的模块示意图。
图2示出了本申请实施例提供的功率管内核温度检测***的去除电控单元的模块示意图。
图3示出了本申请实施例提供的另一种功率管内核温度检测***的电路图。
图4示出了本申请实施例提供的功率管内核温度检测***的第一种测量电流实现方式的模块示意图。
图5示出了本申请实施例提供的功率管内核温度检测***的第二种测量电流实现方式的模块示意图。
图6示出了本申请实施例提供的功率管内核温度检测***的第三种测量电流实现方式的模块示意图。
图7示出了本申请实施例提供的功率管内核温度检测方法的流程图。
图标:100-功率管内核温度检测***;110-电控单元;120-功率管;130-电压采集模块;140-电流采集模块;150-三相电机;160-电源。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。下面结合附图,对本申请的一些实施方式作详 细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
功率管的结温(即功率管在运行过程中内部的温度)是判断功率管处于安全运行的重要条件,工作结温限制着控制器的最大输出能力。因此,功率管的运行过程中,对功率管的结温的实时测量至关重要。
目前,对于功率管的结温的测量主要采用基于NTC(热敏电阻特性曲线)进行测量,即将功率管与热敏电阻进行结合,利用热敏电阻测量功率管的结温。但是,由于功率管的内核与NTC之间由于热阻存在温差,且两者的关系的不准确性,使得在测量过程中NTC响应时间慢,且不能准确及时反映结温的波动状态。
本实施例提供的功率管内核温度检测***,能够有效缓解现有技术中在测量功率管结温的过程中不能准确及时反映结温的波动状态的问题。以下将对本实施例提供的功率管内核温度检测***进行详细介绍。请参阅图1与图2,本申请实施例提供了一种功率管内核温度检测***100,该***包括电控单元110与多个功率管120,其中电控单元110与每个功率管120电连接,多个功率管120配置为分别与一电机电连接,从而使电控单元110通过不同功率管120的导通状态控制该电机的运行。同时,该***还包括电压采集模块130与电流采集模块140,其中电压采集模块130、电流采集模块140均与电控单元110电连接,且电流采集模块140配置为采集导通的对应目标功率管120的电流信息,电压采集模块130配置为采集导通的对应目标功率管120的压降信息。同时电压采集模块130与电流采集模块140将采集到的数据传输至电控单元110,由电控单元110依据压降信息与电流信息计算导通的目标功率管120的内阻,并依据内阻与预设定的对应表获取目标功率管120的结温。
在本申请中,电压采集模块130的数量可以根据功率管120的数量进行配置。可选地,在本实施例中以功率管120的数量为3个为例,电压采集模块130的数量也各配置为3个,每个电压采集模块130配置为采集对应的目标功率管120的电流信息。在本申请其他实施例中,也可以根据不同的具体电路结构选择不同的数量组合进行配置,在此不作赘述。
需要说明的是,相当于传统的采用基于NTC(热敏电阻特性曲线)进行测量功率管120的结温的方式,利用流过目标功率管120电流信息与压降信息获取结温,不会存在温差问题,能够准确及时反映结温的波动状态。并且,电控单元110会控制上述多个功率管120中的其中部分功率管120导通,以带动电机运转,本实施例所述的目标功率管120为在导通的功率管120中,能够测量出其电流信息与压降信息的功率管120。
还需要说明的,在本实施中,电控单元110采用MCU(Microcontroller Unit,微控制单元),功率管120采用MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效功率管)或IGBT(Insulated Gate Bipolar Transistor,绝缘栅功率管),本实施例对此并不做任何限定。在各功率管120的运行过程中,在功率管120的内部会产生一定的温度,即结温或内核温度。电压采集模块130可以为电压传感器或压降采样电路。
可选地,本实施例提供的***还包括电机与电源160,电机每条相线分别与至少一个功率管120电连接,电源160分别与多个功率管120电连接,电控单元110控制不同的功率管120导通,以在电源160、功率管120以及电机之间搭建回路,从而使电机运转。并且,本申请所述的电机为多相电机,例如二相电机、三相电机150或者五相电机等,本实施例以电机为三相电机150,且三相电机150的每条相线与2个功率管120电连接进行说明。
可选地,参阅图1,6个功率管120配置为分别与三相电机150的不同相路电连接,且每个相路上的2个目标功率管120连接有电压采集模块130,电控单元110配置为控制每个相路中的对应目标功率管120导通,以驱动电机运转。
请再次参阅图1,其中六个功率管120分别为第一功率管、第二功率管、第三功率管、第四功率管、第五功率管以及第六功率管,即N1、N2、N3、N4、N5、N6。其中,第一功率与第四功率管组成第一相路a,第二功率管与第五功率管组成第二相路b,第三功率管与第六功率管组成第三相路c。显然,在其它的一些实施例中功率管120的数量也可以更多或者更少,例如,请参阅图3,可以采用12个功率管或其它6的倍数个功率管,其中,当采用更多的功率管120时,在每条相路上导通的功率管120的数量可能为多个,例如,在第一相路上包括三个功率管120,电控单元110可控制其中的两个功率管120导通,本实施例对此并不做任何限定。
可选地,6个功率管120组成逆变桥,逆变桥包括上桥臂与下桥臂,其中,第一功率管、第二功率管以及第三功率管分别组成三个上桥臂,第四功率管、第五功率管以及第六功率管分别组成三个下桥臂,其中,电控单元110配置为控制不同相路中上桥臂或者下桥臂导通,进而达到测量对应目标功率管120的内阻的目的。
需要说明的是,为了防止短路,在同一相路中,位于上下臂的功率管120不能同时导通。
需要说明的是,由于位于同一相路中的各功率管120的结温相差不大,而不同相路中的功率管120的结温可能相差较大,因此本实施例提供的电压采集模块130可能根据实际需要进行设置。以在三个下桥臂上均设置电压采集模块130,且三个电压采集模块130为三个电压降采样电路为例,每 个压降采样电路配置为采集对应的一个桥臂导通时的压降。可选地,可以在在三个上桥臂上均设置电压采集模块130,或者在三个上桥臂与三个下桥臂上同时设置电压采集模块130,且每个功率管120均与一个对应的电压采集模块130电连接,本实施例对此并不做任何限定。
对于电流的采集,本实施例提供了三种采集方法,其中:
作为本实施例的一种实现方式,请参阅图4,6个功率管120通过3条相线与电机连接,电流采集模块140包括相线电流传感器组,相线电流传感器组包括多个相线电流传感器,每个相线电流传感器均安装于一条相线上。即本实施方式中电流采集模块140包括第一相线电流传感器H1、第二相线电流传感器H2、第三相线电流传感器H3。
需要说明的是,本实施方式所述的相路为直接与三相电机150的不同相位连接的线路,其中,由于各相路与对应功率管120连接,因此功率管120的电流信息与相路中的电流相等,当采集该到相路的电流信息时,即采集到了与该相路连接的功率管120的电流信息。
例如,当功率管N1、N5、N6导通时,则电流通过第一功率管N1流入三相电机150,并经过第五功率管N5以及第六功率管N6流出,此时第一相线电流传感器H1采集的电流信息即为流经第一功率管N1的电流,第二相线电流传感器H2采集的电流信息即为流经第五功率管N5的电流,第三相线电流传感器H3采集的电流信息即为流经第六功率管N6的电流。同时,需要说明的是,本实施例所述的目标功率管120指既能对其采集电流信息,也能采集电压信息的功率管120,例如,在上述导通机制下,当三个下桥臂分别连接有电压采集模块130时,则此时目标功率管120为第五功率管N5与第六功率管N6;而此时若当三个上桥臂分别连接有电压采集模块130时,则目标功率管120为第一功率管N1。
可选地,电控单元110可以发送六路PWM(Pulse Width Modulation,脉冲宽度调制)信号至各功率管120,以使每个相路中的一个功率管120导 通,同时,在实际使用过程中,电控单元110发送的PWM信号会实时改变,例如,当三个下桥臂连接有电压采集模块130,且当功率管N1、N5、N6导通时,则此时能够测量出第五功率管N5和第六功率管N6的电流信息与压降信息,并且该信息会传输至电控单元110,电控单元110通过R=U/I的计算公式能够计算出此时第五功率管N5以及第六功率管N6的内阻,电控单元110还配置为依据预存储的对应表获取目标功率管120的结温,其中,对应表即为内阻与结温的对应关系,采用内阻与结温一一对应的方式进行罗列。其中,上述对应表可以预存储在电控单元110的存储器中。在本申请其他实施例中,也可以是电控单元110包括有通信模块,述对应表可以预存储在外部服务器或存储设备中,电控单元110可以通过通信模块接收来自该外部服务器或存储设备的数据,对该对应表进行修改,更新或替换。
可选地,在下一时间段内,电控单元110可以控制功率管N2、N3以及N4导通,此时电流从第二功率管N2与第三功率管N3流入,经过三相电机150后由第四功率管N4流出,此时第一相线电流传感器H1即采集的是第四功率管N4的电流信息,电控单元110即能够接收到相应的数据进行第四功率管N4的内阻的计算,进而通过对应表获取第四功率管N4的结温,进而实现了实时获取每一路的功率管120的结温的效果。
作为本实施例的另一种实现方式,请参阅图5,6个功率管120均通过一对主线与一电源160电连接,电流采集模块140包括主线电流传感器R1,主线电流传感器R1安装于其中一根主线上。
其中,本实施例所述的主线为与电源160连接的导线,主线电流传感器可以设置于上桥臂的主线上,也可以设置于下桥臂的主线上,或在上桥臂与下桥臂的主线上同时安装主线电流传感器。在本实施例中,以在下桥臂的主线上安装主线电流传感器为例进行说明,当功率管N1、N5、N6导通时,此时无法获取流经第五功率管N5或第六功率管N6的电流,而当功 率管N1、N2以及N6导通时,此时主线电流传感器R1即测量的为第六功率管N6的电流。
作为本实施例的另一种实现方式,请参阅图6,6个功率管120均各通过一条子线与一电源160电连接,电流采集模块140包括子线电流传感器组,子线电流传感器组包括多个子线电流传感器,每个子线电流传感器均安装于一条对应子线上。其中,本实施方式所述的子线指与功率管120连接的线路,且每个相路中的子线均与主线连接。且本实施方式中电流采集模块140包括第一子线电流传感器S1、第二子线电流传感器S2、第三子线电流传感器S3。与第一种实现方式类似,通过子线电流传感器能够采集目标功率管的电流信息,本实施例再次不做赘述。
并且,需要说明的是,本实施例提供的上述各实现方式,也可进行结合使用,例如,使用第一种实现方式与第二种实现方式进行结合,以获取目标功率管的电流信息,或者使用第一种实现方式与第三中实现方式进行结合,或者采用三种实现方式同时进行结合,本实施例对此并不做任何限定。
综上,不管哪种电流采样方式,都可以获取个相线上当前的相电流值,然后再采样对应桥臂上的导通压降,通过欧姆定律计算该桥臂的功率管的内核电阻,最后通过电阻温度曲线(即预设定的对应表)得到该功率管的内核温度值,即结温。
请参阅图7,本申请实施例提供了一种功率管120内核温度检测方法,应用于第一实施例所述的功率管内核温度检测***100,该方法包括以下步骤:
S101,所述电控单元110控制每个相路中的至少一个目标功率管120导通。
在本实施例中,以功率管120为6个为例进行说明,电控单元110会 发送六路PWM信号至功率管120,以使每个相路中的一个目标功率管120导通。
S102,所述电控单元110获取每个导通的目标功率管120的编号。
在本实施例中,每个功率管120均设置有编号,在电控单元110控制功率管120导通时,电控单元110能够获取在当前状态下,导通的目标功率管120的编号。以实现在后续接收电流或者电压的过程中,对电压信息或者电流信息是否有效进行判断。
例如,当编号为N1、N5、N6的各功率管120导通时,则编号为N2、N3、N4的各功率管120连接的电压采集模块130传输的数据为无效信息,此时需要剔除。
S103,所述电压采集模块130采集导通的目标功率管120的压降信息,并将所述压降信息传输至所述电控单元110。
S104,所述电流采集模块140配置为采集导通的目标功率管120的电流信息,并将所述电流信息传输至所述电控单元110。
需要说明的是,在对压降采样的过程中,当桥臂导通持续时刻非常短暂无法建立稳定的压降时,直接舍弃当前的压降采样,等后续时刻可用时再去采样,这样避免了采样点偏移造成控制性能的下降。
S105,所述电控单元110依据所述编号获取所述多个电压采集模块130传输的电压信息。
其中,当电压信息为无效信息时,则电控单元110会自动剔除无效的电压信息。
S106,所述电控单元110依据所述压降信息与所述电流信息计算目标 功率管120的内阻,并依据所述内阻与预设定的对应表获取所述功率管120的结温。
需要说明的是,由于内阻Rds随温度变化而变化,而温度不会突变,在几十个PWM周期内,即使无法得到Rds,仍然可以采用之前计算的Rds,从而获取结温。
综上所述,本申请提供了一种功率管内核温度检测***与方法,该***包括电控单元与多个功率管,电控单元与每个功率管电连接,多个功率管配置为分别与一电机电连接,并且,该***还包括电压采集模块与电流采集模块,通过电压采集模块采集导通的目标功率管的压降信息,并通过电流采集模块,采集导通的目标功率管的电流信息,然后利用电控单元配置为依据压降信息与电流信息计算导通的目标功率管的内阻,并依据内阻与预设定的对应表获取目标功率管的结温。由于本申请采用测量电流信息与电压信息的方式计算目标功率管内阻,然后依据内阻查表得到内核温度,直接利用流过功率管电流与压降获取结温,因此不会存在温差问题,能够准确及时反映结温的波动状态。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
相对现有技术,本申请具有以下有益效果:
本申请提供了一种功率管内核温度检测***与方法,该***包括电控单元与多个功率管,电控单元与每个功率管电连接,多个功率管配置为分别与一电机电连接,并且,该***还包括电压采集模块与电流采集模块,通过电压采集模块采集导通的目标功率管的压降信息,并通过电流采集模块,采集导通的目标功率管的电流信息,然后利用电控单元配置为依据压降信息与电流信息计算导通的目标功率管的内阻,并依据内阻与预设定的对应表获取目标功率管的结温。由于本申请采用测量电流信息与电压信息的方式计算目标功率管内阻,然后依据内阻查表得到内核温度,直接利用流过功率管电流与压降获取结温,因此不会存在温差问题,能够准确及时反映结温的波动状态。
工业实用性
有鉴于此,本申请提供了一种功率管内核温度检测***与方法,能够有效缓解现有技术中在测量功率管结温的过程中不能准确及时反映结温的波动状态的问题。

Claims (16)

  1. 一种功率管内核温度检测***,所述***包括电控单元与多个功率管,所述电控单元与每个所述功率管电连接,所述多个功率管配置为分别与一电机的相线电连接,其特征在于,所述***还包括:
    电压采集模块,与所述电控单元电连接,配置为采集导通的目标功率管的压降信息;
    电流采集模块,与所述电控单元电连接,配置为采集导通的所述目标功率管的电流信息;
    所述电控单元配置为依据所述压降信息与所述电流信息计算导通的所述目标功率管的内阻,并依据所述内阻与预设定的对应表获取所述目标功率管的结温。
  2. 如权利要求1所述的功率管内核温度检测***,其特征在于,所述电控单元为微控制单元(MCU),所述功率管为金氧半场效功率管(MOSFET)或绝缘栅功率管(IGBT)。
  3. 如权利要求1或2所述的功率管内核温度检测***,其特征在于,所述电压采集模块为电压传感器或压降采样电路。
  4. 如权利要求1至3中任一项所述的功率管内核温度检测***,其特征在于,所述多个功率管配置为分别与一电机的不同相路电连接,且每个相路上的至少一个目标功率管连接有所述电压采集模块,所述电控单元配置为控制每个相路中的至少一个目标功率管导通,以驱动所述电机运转。
  5. 如权利要求4所述的功率管内核温度检测***,其特征在于,所 述多个功率管组成逆变桥,所述逆变桥包括上桥臂与下桥臂,每个所述功率管均与一个所述电压采集模块电连接,所述电控单元配置为计算位于所述上桥臂和/或所述下桥臂的目标功率管的内阻。
  6. 如权利要求5所述的功率管内核温度检测***,其特征在于,所述多个功率管通过相线与电机连接,所述电流采集模块包括相线电流传感器组,所述相线电流传感器组包括多个相线电流传感器,每个所述相线电流传感器均安装于一条相线上。
  7. 如权利要求5或6所述的功率管内核温度检测***,其特征在于,在同一相路中,位于所述上桥臂和所述下桥臂的所述功率管配置为不能同时导通。
  8. 如权利要求5至7中任一项所述的功率管内核温度检测***,其特征在于,所述多个功率管均通过一对主线与一电源电连接,所述电流采集模块包括主线电流传感器,所述主线电流传感器安装于其中一根所述主线上。
  9. 如权利要求5至7中任一项所述的功率管内核温度检测***,其特征在于,每个所述功率管均通过一条子线与一电源电连接,所述电流采集模块包括子线电流传感器组,所述子线电流传感器组包括多个子线电流传感器,每个所述子线电流传感器均安装于一条子线上。
  10. 如权利要求1至9中任一项所述的功率管内核温度检测***,其特征在于,所述电机为三相电机,所述***还包括电源,所述三相电机的每条相线分别与至少一个功率管电连接,所述电源分别与所述多个功率管电连接。
  11. 一种功率管内核温度检测方法,其特征在于,应用于如权利要求1至10中任意一项所述的功率管内核温度检测***,所述方法包括以 下步骤:
    所述电压采集模块采集导通的目标功率管的压降信息,并将所述压降信息传输至所述电控单元;
    所述电流采集模块采集导通的所述目标功率管的电流信息,并将所述电流信息传输至所述电控单元;
    所述电控单元依据所述压降信息与所述电流信息计算所述目标功率管的内阻,并依据所述内阻与预设定的对应表获取所述功率管的结温。
  12. 如权利要求11所述的功率管内核温度检测方法,其特征在于,所述多个功率管配置为分别与一电机的不同相路电连接,在所述电压采集模块采集导通的目标功率管的压降信息的步骤之前,所述方法还包括:
    所述电控单元控制每个相路中的至少一个目标功率管导通。
  13. 如权利要求12所述的功率管内核温度检测方法,其特征在于,所述电控单元控制每个相路中的至少一个目标功率管导通的步骤包括:
    所述电控单元发送多路脉冲宽度调制(PWM)信号至各目标功率管,以使每个所述相路中的一个所述目标功率管导通。
  14. 如权利要求12或13所述的功率管内核温度检测方法,其特征在于,每个所述功率管均设置有编号,在所述电控单元控制每个相路中的至少一个目标功率管导通的步骤之后,所述方法还包括:
    所述电控单元获取每个导通的目标功率管的编号;
    在所述电控单元依据所述压降信息与所述电流信息计算目标功率管的内阻的步骤之前,所述方法还包括:
    所述电控单元依据所述编号获取所述多个电压采集模块传输的电压信息。
  15. 如权利要求14所述的功率管内核温度检测方法,其特征在于,所述电控单元获取每个导通的目标功率管的编号的步骤包括:
    所述电控单元获取在当前状态下,每个导通的所述目标功率管的编号,并对各所述目标功率管的电压信息或者电流信息是否有效进行判断。
  16. 如权利要求15所述的功率管内核温度检测方法,其特征在于,所述电控单元依据所述编号获取所述多个电压采集模块传输的电压信息的步骤包括:
    当所述电压信息为无效信息时,则所述电控单元自动剔除所述无效的电压信息。
PCT/CN2019/126751 2018-12-20 2019-12-19 一种功率管内核温度检测***与方法 WO2020125731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811561504.5 2018-12-20
CN201811561504.5A CN109443573A (zh) 2018-12-20 2018-12-20 一种功率管内核温度检测***与方法

Publications (1)

Publication Number Publication Date
WO2020125731A1 true WO2020125731A1 (zh) 2020-06-25

Family

ID=65560468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126751 WO2020125731A1 (zh) 2018-12-20 2019-12-19 一种功率管内核温度检测***与方法

Country Status (2)

Country Link
CN (1) CN109443573A (zh)
WO (1) WO2020125731A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443573A (zh) * 2018-12-20 2019-03-08 苏州蓝石新动力有限公司 一种功率管内核温度检测***与方法
CN111623904A (zh) * 2020-05-25 2020-09-04 北京新能源汽车股份有限公司 温度采集装置与电机控制器的功率模块的温度采集方法
CN114285353A (zh) * 2021-12-30 2022-04-05 广东威灵电机制造有限公司 开关管结温检测方法、电机控制器、电机控制***及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234162A (ja) * 1994-02-24 1995-09-05 Toshiba Corp 電力変換器の温度検出装置
CN1322940A (zh) * 2000-05-09 2001-11-21 丰田自动车株式会社 温度推定方法及其设备
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
CN104101442A (zh) * 2014-07-17 2014-10-15 贵阳新光电气有限公司 发电机转子绕组温度在线监测方法
CN105115620A (zh) * 2015-07-15 2015-12-02 广州日滨科技发展有限公司 三相同步门电机的绕组温度检测、及过热保护方法和***
CN109443573A (zh) * 2018-12-20 2019-03-08 苏州蓝石新动力有限公司 一种功率管内核温度检测***与方法
CN209131853U (zh) * 2018-12-20 2019-07-19 苏州蓝石新动力有限公司 一种功率管内核温度检测***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489357B2 (en) * 2008-07-25 2013-07-16 Delphi Technologies, Inc. Current and temperature sensing of standard field-effect transistors
CN105158667B (zh) * 2015-08-25 2017-11-07 同济大学 一种变流器功率二极管结温测量***与方法
CN204964053U (zh) * 2015-08-27 2016-01-13 广东美的制冷设备有限公司 Igbt模块温度检测电路和空调设备
CN105572558A (zh) * 2015-12-09 2016-05-11 浙江大学 一种功率二极管模块工作结温的在线检测***及其检测方法
CN107219016B (zh) * 2017-05-24 2019-05-17 湖南大学 计算igbt模块瞬态结温的方法和***
CN108981951A (zh) * 2018-08-16 2018-12-11 江苏镇安欣润电力科技有限公司 一种igbt温度检测电路及其检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234162A (ja) * 1994-02-24 1995-09-05 Toshiba Corp 電力変換器の温度検出装置
CN1322940A (zh) * 2000-05-09 2001-11-21 丰田自动车株式会社 温度推定方法及其设备
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
CN104101442A (zh) * 2014-07-17 2014-10-15 贵阳新光电气有限公司 发电机转子绕组温度在线监测方法
CN105115620A (zh) * 2015-07-15 2015-12-02 广州日滨科技发展有限公司 三相同步门电机的绕组温度检测、及过热保护方法和***
CN109443573A (zh) * 2018-12-20 2019-03-08 苏州蓝石新动力有限公司 一种功率管内核温度检测***与方法
CN209131853U (zh) * 2018-12-20 2019-07-19 苏州蓝石新动力有限公司 一种功率管内核温度检测***

Also Published As

Publication number Publication date
CN109443573A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020125731A1 (zh) 一种功率管内核温度检测***与方法
US11215657B2 (en) Real-time online prediction method for dynamic junction temperature of semiconductor power device
CN107219016B (zh) 计算igbt模块瞬态结温的方法和***
CN110765601B (zh) 一种基于igbt热电耦合模型的igbt结温估计方法
JP5009374B2 (ja) プロセス変数送信機における温度センサ構成の検出
CN105510793B (zh) 一种变流器igbt功率模块结温测量的自标定方法
CN107209222A (zh) 用于确定功率半导体模块的老化的方法以及设备和电路装置
CN107101741A (zh) 一种测温***及方法
US11287454B2 (en) Current sampling method and current sampling circuit
CN105158667B (zh) 一种变流器功率二极管结温测量***与方法
CN113098314B (zh) 一种igbt结温监测方法、装置及***
CN111505475B (zh) 一种功率半导体模块电热模型参数的标定方法及装置
CN103954872B (zh) 一种变压器温升测量装置及其测量方法
CN114829956A (zh) 用于估计电力半导体元件的结的参数的方法和电力单元
CN109375670A (zh) 无温度传感器的闭环温度控制***及闭环温度控制方法
CN105548660A (zh) 采样电阻校正电路、电流检测电路及驱动电路
CN103487158A (zh) 一种热电偶
KR101531018B1 (ko) 전력반도체소자의 불량 예측 방법
CN209131853U (zh) 一种功率管内核温度检测***
CN113030683A (zh) 一种测量功率开关器件温度的方法、介质及计算机设备
US20130163633A1 (en) Thermocouple welding test apparatus
CN115561609A (zh) 一种应用于SiC功率器件的温度采样方法、装置及***
CN114878869A (zh) 一种便携式变压器设备试验仪
CN115616367A (zh) 一种电力电子器件状态信息在线监测方法及***
CN108291843A (zh) 具有第一温度测量元件的半导体构件以及用于确定流过半导体构件的电流的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899675

Country of ref document: EP

Kind code of ref document: A1