WO2020122249A1 - Led発光装置 - Google Patents

Led発光装置 Download PDF

Info

Publication number
WO2020122249A1
WO2020122249A1 PCT/JP2019/049034 JP2019049034W WO2020122249A1 WO 2020122249 A1 WO2020122249 A1 WO 2020122249A1 JP 2019049034 W JP2019049034 W JP 2019049034W WO 2020122249 A1 WO2020122249 A1 WO 2020122249A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
terminal
led
voltage
resistor
Prior art date
Application number
PCT/JP2019/049034
Other languages
English (en)
French (fr)
Inventor
圭亮 堺
Original Assignee
シチズン電子株式会社
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン電子株式会社, シチズン時計株式会社 filed Critical シチズン電子株式会社
Priority to CN201980081634.5A priority Critical patent/CN113170552B/zh
Priority to JP2020559351A priority patent/JP6921340B2/ja
Publication of WO2020122249A1 publication Critical patent/WO2020122249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]

Definitions

  • the LED light-emitting device shown in FIG. 18 of Patent Document 1 uses an operational amplifier to adjust the upper limit current flowing in the LED according to the effective value. That is, an LED light emitting device using an operational amplifier is provided with a DC power supply circuit for driving the operational amplifier, a reference voltage source, and a mounting area and wiring for these, in addition to a power supply for supplying a current to the LED. There is a problem that the power supply circuit becomes complicated and becomes large in size.
  • the disclosed LED light-emitting device further includes a parallel capacitor connected in parallel to the LED string, and a backflow prevention diode arranged between the first stage anode and the parallel capacitor of the LED string and the rectifier circuit. ..
  • FIG. 3 is a waveform diagram in the circuit of the LED light emitting device shown in FIGS. 1 and 2.
  • It is a circuit diagram of an LED light emitting device shown as a second embodiment. It is a wave form diagram in the circuit of the LED light-emitting device shown in FIG. It is a circuit diagram of the LED light-emitting device shown as 3rd Embodiment. It is a wave form diagram in the circuit of the LED light-emitting device shown in FIG. It is a circuit diagram of the LED light-emitting device shown as 4th Embodiment.
  • FIG. 17A is a perspective view of the LED light emitting device shown in FIG. 17,
  • FIG. 17B is a plan view of the LED light emitting device shown in FIG. 17, and
  • FIG. 17C is a side view of the LED light emitting device shown in FIG. It is a figure.
  • the rectifier circuit 101 performs full-wave rectification on the AC voltage supplied from the commercial AC power supply 100 and outputs it to the load.
  • the load of the rectifier circuit 101 is a resistor, the voltage between the output terminals of the rectifier circuit 101 has a full-wave rectified waveform.
  • the smoothing circuit 12 has a first smoothing resistor 21, a second smoothing resistor 22, and a smoothing capacitor 23.
  • the left end of the first smoothing resistor 21 has a voltage input terminal, the right end has a first reference voltage output terminal, and a second reference voltage output terminal.
  • the lower ends of the smoothing resistor 22 and the smoothing capacitor 23 become the ground terminals of the smoothing circuit 12 (see FIGS. 1 and 2).
  • the smoothing circuit 12 generates a first reference voltage obtained by smoothing a voltage (voltage that changes in synchronization with the full-wave rectified waveform) input via the first smoothing resistor 21, and generates the first reference voltage as a first reference voltage. Output from the reference voltage output terminal.
  • One end (voltage input terminal) of the first smoothing resistor 21 is connected to the second terminal that is the cathode of the LED 110 at the final stage of the LED string 11, and the other end (first reference voltage output terminal) of the first smoothing resistor 21 is connected.
  • the second smoothing resistor 22 and the smoothing capacitor 23 are connected to one end thereof.
  • the second smoothing resistor 22 is connected in series with the first smoothing resistor 21, and the smoothing capacitor 23 is connected in parallel with the second smoothing resistor 22.
  • the voltage of the first reference voltage output terminal which is the other end of the first smoothing resistor 21, the one ends of the second smoothing resistor 22 and the smoothing capacitor 23, becomes the first reference voltage.
  • the smoothing circuit 12 charges the smoothing capacitor 23 via the first smoothing resistor 21 and discharges the charge charged on the smoothing capacitor 23 via the second smoothing resistor 22.
  • the first reference voltage output from the first reference voltage output terminal of the smoothing circuit 12 divides the voltage output from the first output terminal of the LED string 11 by the first smoothing resistor 21 and the second smoothing resistor 22, It can be said that the averaged voltage. That is, the first reference voltage changes according to the change in the effective value of the commercial AC power supply 100. When the effective value of the commercial AC power supply 100 is high, the first reference voltage is high, and when the effective value of the commercial AC power supply 100 is low, the first reference voltage is low.
  • the first current limiting circuit 13 includes a first FET 30 (first current limiting element), a first pull-up resistor 31, a first input resistor 32, a first output resistor 33, a first detecting resistor 34, and a first detecting resistor 34. It has a transistor 35 (first control element) and a first chattering prevention capacitor 36.
  • the first current input terminal is connected to the second terminal of the LED array 11, and the first current output terminal is connected to the terminal to which the current of the rectifier circuit returns, and the preset upper limit current (first reference value)
  • the upper limit current set when the voltage input terminal is opened) is adjusted by the first reference voltage that changes according to the full-wave rectified voltage (or the effective value of the commercial power supply). At this time, the first current having a rectangular pulse waveform flows through each of the plurality of LEDs 110.
  • FIGS. 3A and 3B are explanatory diagrams of a current flowing through the LED light emitting device 1.
  • FIG. 3A shows a full-wave rectified waveform for one cycle
  • FIG. 3B shows a current flowing through the LED string 11.
  • the vertical axis V is voltage and the horizontal axis t is time.
  • the vertical axis I is the current and the horizontal axis t is the time.
  • the horizontal axes t in FIGS. 3A and 3B correspond to each other. Further, in describing FIG. 3, reference is made to FIGS. 1 and 2 without giving special instructions.
  • the current flowing through the first smoothing resistor 21, the second smoothing resistor 22, the first pull-up resistor 31, the first input resistor 32, and the first output resistor 33 flows through the drain current of the first FET 30 and the first detection resistor 34. Remarkably smaller than the current. Therefore, the current flowing through the smoothing circuit 12 and the first current limiting circuit 13 will be described in the case where it is specified explicitly, and the operation of the LED light emitting device 1 will be described with reference to the voltages of the smoothing circuit 12 and the first current limiting circuit 13. To be done.
  • the full-wave rectified waveform 201 shows a state where the effective value is 100V (normal state)
  • the full-wave rectified waveform 202 shows a state where the effective value is 120V
  • the full-wave rectified waveform 203 shows The effective value is 80V.
  • the full-wave rectified waveform 201 having an effective value of 100 V is in a standard state, and the full-wave rectified waveforms 202 and 203 are in a state in which the voltage of the commercial AC power supply 100 fluctuates for some reason.
  • the current waveform 204 shows the current flowing through the LED light emitting device 1 according to the full-wave rectified waveform 201 shown in FIG.
  • Current waveforms 205 and 206 indicate currents flowing through the LED light emitting device 1 corresponding to the full-wave rectified waveforms 202 and 203, respectively.
  • the current waveform 205 has a larger duty than the current waveform 204, while the peak value is the current waveform. It is lower than 204. That is, when the full-wave rectified waveform 202 is applied to the LED string 11, the LED light-emitting device 1 has a longer lighting period for the plurality of LEDs 110 included in the LED string 11 as compared to the normal state, while The brightness when the plurality of included LEDs 110 are turned on is reduced. As a result, the LED light emitting device 1 makes the brightness substantially the same when the voltage waveform applied to the LED array 11 is the full-wave rectified waveform 201 and the full-wave rectified waveform 202.
  • the first reference voltage which is the voltage at the first reference voltage output terminal of the smoothing circuit 12 becomes the full-wave rectified waveform 201. Is higher than when it is applied to the LED string 11.
  • the potential difference from the second reference voltage which is the base voltage of the first transistor 35 maintained at 0.6V, increases, and the current flowing through the first input resistor 32 increases. Since the current flowing through the first output resistor 33 increases as the current flowing through the first input resistor 32 increases, the voltage drop ⁇ in the first output resistor 33 is caused by the full-wave rectified waveform 201 in the LED string 11. Greater than when applied.
  • the first current I lim flowing through the first detection resistor 34 is calculated from the second reference voltage V be , which is 0.6 V, and the resistance value R sen of the first detection resistor 34.
  • the first current I lim decreases as the voltage drop ⁇ in the first output resistor 33 increases.
  • the first FET 30, the first pull-up resistor 31, and the first detection resistor 34 which directly connect one end of the first detection resistor 34 to the base of the first transistor 35, not via the first input resistor 32 and the first output resistor 33.
  • the circuit including the first transistor 35 and the first transistor 35 is a well-known current limiting circuit.
  • the commercial AC Information about the effective value of the power supply 100 is fed back. That is, the first current limiting circuit 13 becomes a current limiting circuit of the LED array 11 in which the effective value of the commercial AC power supply 100 is reflected.
  • the first input resistor 32 and the first output resistor 33 form a so-called voltage adding circuit.
  • the LED light emitting device 1 has the passive components such as the first smoothing resistor 21, the second smoothing resistor 22, the smoothing capacitor 23, the first input resistor 32, and the first output resistor 33, which have been known so far.
  • the current limiting circuit has a function of canceling a change in the effective value of the commercial AC power supply 100.
  • the LED current can be adjusted in the opposite direction to the change in the effective value without preparing a new DC power source, and fluctuations in brightness linked to the effective value can be prevented. I can now suppress it.
  • FIG. 4 is a circuit diagram of the LED light emitting device 2.
  • the same members as those of the LED light emitting device 1 of FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.
  • 5A and 5B are explanatory diagrams of a current flowing through the LED light emitting device 2, where FIG. 5A shows a full-wave rectified waveform for one cycle, and FIG.
  • FIG. 5B shows a current flowing through the LED string 11.
  • the vertical axis V is voltage and the horizontal axis t is time.
  • the vertical axis I is the current and the horizontal axis t is the time.
  • the horizontal axes t in FIGS. 5A and 5B are in agreement. Further, when explaining the operation of the LED light emitting device 2 with reference to FIG. 5, FIG. 4 will be referred to without giving a special instruction.
  • the number of LEDs 110 included in the first LED row 11a and the second LED row 11b may be the same or different.
  • the final-stage LED 110 of the first LED row 11a is an LED other than the final-stage LED of the plurality of LEDs included in the LED row 11, and is also referred to as a second connection LED.
  • the cathode of the second connection LED and the anode of the first-stage LED of the second LED array 11b form a third terminal and are connected to the second current input terminal of the second current limiting circuit 14.
  • the components (second FET 40, second chattering prevention capacitor 46, etc.) denoted by reference numerals 40 to 46 are respectively the components (first FET 30, first pull-up resistor 31, first chattering prevention capacitor 36, etc.) denoted by reference numerals 30 to 36. ) And the correspondence.
  • the second FET 40 limits the upper limit value of the current value flowing through the first LED string 11a by canceling the variation in the effective value of the commercial AC power supply 100, similarly to the first FET 30.
  • the second current limiting circuit 14 when a current starts flowing through the second LED string 11b, the voltage at one end (first current input terminal) of the second detection resistor 44 rises and the second FET 40 is cut off.
  • FIG. 5A is different from FIG. 3A in that the threshold value Vt1 of the first LED row 11a is shown.
  • the full-wave rectified waveforms 201, 202, and 203 in FIG. 5A are the same as the full-wave rectified waveforms 201, 202, and 203 in FIG.
  • current waveforms 214, 215, and 216 show currents flowing through the LED light emitting device 2 corresponding to the full-wave rectified waveforms 201, 202, and 203 shown in FIG. 5A, respectively.
  • the current waveform 214 in the normal state is 0 (A) during the period when the voltage of the full-wave rectified waveform 201 is lower than the threshold value Vt1.
  • the second current starts flowing through the first LED string 11a, and the current waveform 214 rises sharply.
  • the second current limiting circuit 14 functions as a current limiting circuit and the current waveform 214 becomes flat.
  • the current waveform 214 suddenly rises.
  • the first current flows through the first LED row 11a and the second LED row 11b, the second FET 40 of the second current limiting circuit 14 is cut off, and the second FET 40 is turned off. The current path through it is cut off.
  • the current waveform 214 becomes flat at a higher value due to the current limitation of the second FET 40. In the phase where the voltage of the full-wave rectified waveform 201 drops, the reverse process is followed.
  • the current waveforms 215 and 216 of the LED array 11 are stepwise rectangular waves even for the full-wave rectified waveforms 202 and 203 having different effective values.
  • the current waveform 215 has a longer peak period during which the LED 110 is lit while the current waveform 215 has a lower peak value.
  • the LED light-emitting device 2 has a longer lighting period of the LED string 11 than in the normal state, but at the time of lighting the LED string 11. The brightness is reduced.
  • the LED light emitting device 2 makes the brightness of the LED light emitting device 2 substantially the same when the voltage waveform applied to the LED string 11 is the full-wave rectified waveform 201 and the case where the voltage waveform is the full-wave rectified waveform 202.
  • the LED light-emitting device 2 When the full-wave rectified waveform 203 having an effective value smaller than that of the full-wave rectified waveform 201 is applied to the LED row 11, the LED light-emitting device 2 has a shorter lighting period of the LED row 11 than the normal state, while the LED row 11 has a shorter lighting period. The brightness at the time of lighting increases.
  • the LED light emitting device 2 makes the brightness substantially the same when the voltage waveform applied to the LED array 11 is the full-wave rectified waveform 201 and the full-wave rectified waveform 203.
  • the first reference voltage terminal that outputs the first reference voltage is directly connected to each of the first input resistor 32 and the second input resistor 42. Further, in the LED light emitting device 2, the first detection resistor 34 and the second detection resistor 44 are connected in series.
  • both the smoothing circuit 12 and the first current limiting circuit 13 are offset by the voltage at one end of the second detection resistor 44. Since the smoothing circuit 12 and the first current limiting circuit 13 are offset by the same voltage, the first current I lim flowing through the first detection resistor 34 is equal to the second reference voltage V be , the voltage drop ⁇ at the first output resistor 33, and The relationship of Expression (1) is satisfied with the resistance value R sen of the first detection resistor 34.
  • the first reference voltage terminal is directly connected to the first input resistor 32 and the second input resistor 42, and the first detection resistor 34 and the second detection resistor 44 are connected in series,
  • the first current and the second current can be defined by the equation (1).
  • the first output resistance 33, the first detection resistance 34, the second output resistance 43, and the second detection resistance 44 are The first current and the second current can be easily defined by setting the resistance value to a desired value.
  • FIG. 6 is a circuit diagram of the LED light emitting device 3.
  • the same members as those of the LED light emitting devices 1 and 2 described with reference to FIGS. 1, 2, and 4 are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 7 is an explanatory diagram of a current flowing through the LED light emitting device 3, where (a) shows a full-wave rectified waveform for one cycle, and (b) shows a current output by the rectifier circuit 101.
  • FIG. 7A is the same as FIG. 5A, in which the vertical axis V is voltage and the horizontal axis t is time.
  • FIG. 7B the vertical axis I is the current and the horizontal axis t is the time.
  • the horizontal axes t in FIGS. 7A and 7B coincide with each other. Further, when explaining the operation of the LED light emitting device 3 with reference to FIG. 7, reference is made to FIG. 6 without giving a special instruction.
  • the difference between the LED light emitting device 3 shown in FIG. 6 and the LED light emitting device 2 shown in FIG. 4 is that in the LED light emitting device 2, a first parallel capacitor 47 connected in parallel to the first LED row 11a and the second LED row 11b, Having the second parallel capacitor 37 may be mentioned. Further, the difference between the LED light emitting device 3 and the LED light emitting device 2 is that the first backflow prevention diode 38 and the second backflow prevention diode 48 are provided at the anodes of the LEDs 110 in the first stage of the first LED row 11a and the second LED row 11b. Be done.
  • the current waveforms 224, 225, and 226 shown in FIG. 7B are currents output by the rectifier circuit 101 corresponding to the full-wave rectified waveforms 201, 202, and 203 shown in FIG. 7A.
  • the first backflow prevention diode 48 prevents the electric charge received by the first parallel capacitor 47 from flowing back to the rectifier circuit 101, and the second backflow prevention diode 38 detects the electric charge received by the second parallel capacitor 37 by the first charge. The backflow to the two-current limiting circuit 14 is prevented.
  • FIG. 8 is a circuit diagram of the LED light emitting device 4.
  • the same members as those of the LED light emitting devices 1 to 3 described with reference to FIGS. 1, 2, 4, and 6 are designated by the same reference numerals, and the description thereof will be omitted.
  • 9A and 9B are explanatory diagrams of a current flowing through the LED light emitting device 4, where FIG. 9A illustrates a full-wave rectified waveform for one cycle, and FIG. 9B illustrates a current output by the rectifier circuit 101.
  • 9A is the same as FIG. 5A and FIG.
  • the vertical axis V is voltage
  • the horizontal axis t is time
  • the vertical axis I is the current
  • the horizontal axis t is the time.
  • the horizontal axes t in FIGS. 9A and 9B match each other. Further, when explaining the operation of the LED light emitting device 4 with reference to FIG. 9, FIG. 8 will be referred to without giving a special instruction.
  • the difference between the LED light emitting device 4 shown in FIG. 8 and the LED light emitting device 3 shown in FIG. 6 is that in the LED light emitting device 3, a first transistor 35 and a second transistor 45, which are connected in parallel between the collector and the emitter, respectively. It can be mentioned that the first parallel resistance 39 and the second parallel resistance 49 are included.
  • Current waveforms 221, 222, 223 shown in FIG. 9B are currents output by the rectifier circuit 101 corresponding to the full-wave rectified waveforms 201, 202, 203 shown in FIG. 9A.
  • the number of LEDs 110 included in the first LED row 11a, the second LED row 11b, and the third LED row 11c may be the same or different.
  • the final-stage LED 110 of the first LED row 11a is an LED other than the final-stage LED of the plurality of LEDs included in the LED row 11, and is also referred to as a third connection LED.
  • the cathode of the third connection LED is the fourth terminal connected to the anode of the LED in the first stage of the second LED string 11b and the third current limiting circuit 15.
  • the LED 110 at the final stage of the second LED row 11b is also referred to as a second connection LED.
  • the cathode of the second connection LED is the third terminal connected to the anode of the first-stage LED of the third LED string 11c and the second current limiting circuit 14.
  • the third current limiting circuit 15 includes a third FET 50, a third pull-up resistor 51, a third input resistor 52, a third output resistor 53, a third detection resistor 54, a third transistor 55, and a third chattering. And a prevention capacitor 56.
  • the third current limiting circuit 15 is connected to the fourth terminal and the first reference voltage output terminal, and the third current smoothed according to the first reference voltage is the first-stage LED of the plurality of LEDs 110 included in the LED string 11. And limiting the third current to flow through each of the LEDs between and the third connected LED.
  • Each of the third FET 50 to the third chattering prevention capacitor 56 has a correspondence relationship with the first FET 30 to the first chattering prevention capacitor 36.
  • the third FET 50 limits the upper limit value of the current value flowing through the first LED array 11a by canceling the effective value fluctuation of the commercial AC power supply 100, similarly to the first FET 30.
  • the third current limiting circuit 15 when a current starts to flow in the second LED string 11b, the voltage at one end of the third detection resistor 54 rises and the third FET 50 is cut off.
  • FIG. 11 is a circuit diagram of the LED light emitting device 6 according to the sixth embodiment.
  • the LED light emitting device 6 according to the sixth embodiment is different from the LED light emitting device 1 in that the LED light emitting device 6 includes a first current limiting circuit 13a instead of the first current limiting circuit 13.
  • the components and functions of the LED light-emitting device 6 other than the first current limiting circuit 13a are the same as the components and functions of the LED light-emitting device 1 denoted by the same reference numerals, and thus detailed description thereof will be omitted here. ..
  • the first current limiting circuit 13 a differs from the first current limiting circuit 13 in that the first detection resistor 34 and the smoothing circuit 12 are not connected and the first chattering prevention capacitor 36 is not provided.
  • one end of the first detection resistor 34 is connected to the source of the first FET 30 and the other end of the first output resistor 33, and the other end of the first detection resistor 34 is the ground terminal of the smoothing circuit 12. And the terminal of the rectifier circuit 101 to which the current returns.
  • the smoothing circuit 12 is connected to the second terminal of the LED array 11, but if the first reference voltage output by the smoothing circuit 12 changes in conjunction with the effective value of the commercial AC power supply 100. Since it is good, the smoothing circuit 12 may be connected to a terminal other than the second terminal of the LED array 11. For example, the smoothing circuit 12 may be connected to the first terminal of the LED array 11 or may be connected to the third terminal which is the connection point of the first LED array 11a and the second LED array 11b. The other ends of the second smoothing resistor 22 and the smoothing capacitor 23 included in the smoothing circuit 12 may be connected to the ground.
  • FIG. 12 is a circuit diagram of the LED light emitting device 7 according to the seventh embodiment.
  • the LED light emitting device 7 according to the seventh embodiment is different from the LED light emitting device 1 in the connection relationship between the rectifying circuit 101 and the LED array 11 and the smoothing circuit 12.
  • the configurations and functions of the components of the LED light-emitting device 7 other than the connection relationship between the rectifying circuit 101 and the LED array 11 and the smoothing circuit 12 are the same as those of the components of the LED light-emitting device 1 denoted by the same reference numerals. Since they are the same, detailed description is omitted here.
  • the smoothing circuit 12 is connected not to the second terminal of the LED string 11 but to the terminal that outputs the current of the rectifying circuit 101 and the first terminal of the LED string 11.
  • the first reference voltage is supplied without being affected by the voltage drop in the LED string 11. Since it can be generated, the first reference voltage can be made higher than that of the LED light emitting device 1.
  • FIG. 13 is a circuit diagram of the LED light emitting device 8 according to the eighth embodiment.
  • the LED light emitting device 8 according to the eighth embodiment is different from the LED light emitting device 1 in that it has a smoothing circuit 12a instead of the smoothing circuit 12.
  • the configurations and functions of the components of the LED light emitting device 8 other than the smoothing circuit 12a are the same as the configurations and functions of the components of the LED light emitting device 1 designated by the same reference numerals, and thus detailed description thereof is omitted here.
  • the smoothing circuit 12 a includes a first switching diode 24, a third smoothing resistor 25, a fourth smoothing resistor 26, a second smoothing capacitor 27, a second diode 28, a first smoothing resistor 21, a second smoothing resistor 22 and a smoothing capacitor 23. In addition to that, the smoothing circuit 12 is different.
  • FIG. 14( a) is a diagram showing the change over time in the voltage of the first terminal of the LED string 11 per cycle
  • FIG. 14( b) is a diagram showing the change in the voltage of the second terminal of the LED string 11 per cycle. It is a figure which shows a time-dependent change.
  • the horizontal axis represents time
  • the horizontal axes in FIGS. 14A and 14B correspond to each other.
  • the vertical axis in FIGS. 14A and 14B represents voltage.
  • each of waveforms 901 to 905 shows the voltage rectified by the rectifier circuit 101 when the AC voltage input to the rectifier circuit 101 changes.
  • a waveform 901 shows a state where the effective value of the AC voltage is the lowest, and a waveform 905 shows a state where the effective value of the AC voltage is the highest.
  • each of the waveforms 911 to 915 indicates the voltage of the second terminal of the LED string 11 corresponding to each of the waveforms 901 to 905.
  • Each of the waveforms 911 to 915 is 0V until the voltage indicated by the waveforms 901 to 905 exceeds the threshold voltage at which the LEDs 110 included in the LED string 11 start emitting light.
  • Each of the waveforms 911-915 rises when the threshold voltage is exceeded by the voltage represented by the waveforms 901-905.
  • the peak value of the waveform 911 corresponding to the waveform 901 is the lowest, and the peak value of the waveform 915 corresponding to the waveform 905 is the highest.
  • FIG. 15 is a diagram showing the relationship between the effective value of the AC voltage input to the LED light emitting device 8 and the voltage smoothed by the smoothing circuit 12a.
  • the horizontal axis represents the effective value of the AC voltage input to the LED light emitting device 8
  • the vertical axis represents the voltage smoothed by the smoothing circuit 12a.
  • the first reference voltage 930 is the voltage at one end of the first input resistor 32, which is indicated by Vfb in FIG.
  • the first smoothed voltage 931 is the voltage at one end of the smoothing capacitor 23 indicated by Vk1 in FIG. 13, and the second smoothed voltage 932 is the voltage at the one end of the second smoothing capacitor 27 indicated by Vin1 in FIG.
  • the first smoothed voltage 931 becomes 0 V when the effective value of the AC voltage matches the threshold voltage at which the LEDs 110 included in the LED string 11 start emitting light.
  • the second smoothed voltage 932 becomes 0V when the effective value of the AC voltage becomes 0V.
  • the first reference voltage 930 is a voltage dropped from the first smoothed voltage 931 by the forward voltage of the first switching diode 24.
  • the first reference voltage 930 is a voltage dropped from the second smoothed voltage 932 by the forward voltage of the second switching diode 28.
  • FIG. 16 is a circuit diagram of the LED light emitting device 9 according to the ninth embodiment.
  • the LED light emitting device 9 according to the ninth embodiment is different from the LED light emitting device 1 in that the smoothing circuit 12b is provided instead of the smoothing circuit 12.
  • the configurations and functions of the components of the LED light emitting device 9 other than the smoothing circuit 12b are the same as the configurations and functions of the components of the LED light emitting device 1 denoted by the same reference numerals, and thus detailed description thereof will be omitted here.
  • the smoothing circuit 12b differs from the smoothing circuit 12 in that it has an arithmetic circuit 29.
  • the configurations and functions of the components of the smoothing circuit 12b other than the arithmetic circuit 29 are the same as the configurations and functions of the components of the smoothing circuit 12 designated by the same reference numerals, and thus detailed description thereof is omitted here.
  • the arithmetic circuit 29 is, for example, an MPU (microprocessor unit), corrects the voltage of the second terminal of the LED string 11 based on various data, and calculates the first reference voltage supplied to the first current limiting circuit 13. ..
  • the arithmetic circuit 29 includes a voltage that is full-wave rectified by the rectifying circuit 101, a voltage of a terminal other than the second terminal of the LED array 11, an output voltage of an illuminance sensor that indicates the light intensity of light outside the LED light-emitting device 9, and a temperature.
  • the first reference voltage is calculated based on the output voltage of the thermistor and the like.
  • FIG. 17 is a circuit diagram of the LED light emitting device 10 according to the tenth embodiment.
  • the LED light emitting device 10 according to the tenth embodiment includes a rectifying circuit 101, an LED array 11, a smoothing circuit 12, a first current limiting circuit 13b, a second current limiting circuit 14, and a third current limiting circuit 15. , A fourth current limiting circuit 16, a fifth current limiting circuit 17, and a sixth current limiting circuit 18.
  • the LED light emitting device 10 further includes an overcurrent prevention circuit 19. Since the configuration and function of the rectifier circuit 101 have been described with reference to FIG. 1 and the like, detailed description thereof will be omitted here.
  • the LED row 11 includes a first LED row 11d, a second LED row 11e, a third LED row 11f, a fourth LED row 11g, a fifth LED row 11h, and a sixth LED row 11i.
  • the first LED group 11d includes a first LED group 111, a second LED group 112, a parallel switching element 113, a first series switching element 114, a second series switching element 115, a first parallel capacitor 116, and a first parallel capacitor 116. It has one backflow prevention diode 117 and a first parallel resistor 118.
  • Each of the first LED group 111 and the second LED group 112 has a plurality of LEDs 110 connected in series.
  • the parallel switching element 113, the first series switching element 114, and the second series switching element 115 are disconnectable wiring elements also called jumpers.
  • the parallel switching element 113 is arranged between the final stage cathode of the first LED group 111 and the initial stage anode of the second LED group 112.
  • the first series switching element 114 has a first stage anode of the second LED group 112, and a first branch point at which wirings connected to the first stage anode of the first LED group 111 and the first stage anode of the second LED group 112 branch. Is placed between.
  • the second series switching element 115 has a second cathode in which the wiring connected to each of the cathode in the final stage of the first LED group 111, the cathode in the final stage of the first LED group 111, and the cathode in the final stage of the second LED group 112 is branched. It is placed between the junction and the branch point.
  • the LED light emitting device 10 has a configuration in which the first LED group 11d is arranged such that the first LED group 111 and the second LED can be switched in series and parallel so that the input AC voltage is compatible with both 100V and 200V. be able to.
  • the configurations and functions of the first parallel capacitor 116 and the first backflow prevention diode 117 are similar to the configurations and functions of the first parallel capacitor 37 and the first backflow prevention diode 38 described with reference to FIG. Detailed description is omitted.
  • the first parallel resistor 118 is connected in parallel with the first LED group 111 and the second LED group 112 together with the first parallel capacitor 116.
  • each of the second LED row 11e to the sixth LED row 11i has the same configuration and function as the first LED row 11d, detailed description thereof will be omitted here. Since the smoothing circuit 12 has been described with reference to FIG. 1 and the like, detailed description thereof will be omitted here.
  • the first current limiting circuit 13b In the first current limiting circuit 13b, four circuits having the same configuration as the first current limiting circuit 13 described with reference to FIG. 1 and the like are connected in parallel.
  • the first current limiting circuit 13b is configured such that four circuits having the same configuration as the first current limiting circuit 13 are connected in parallel to reduce the current flowing through each of the FETs and the LED light emitting device 10 emits light. The increase in the temperature of the FET is reduced.
  • each of the second current limiting circuit 14 to the sixth current limiting circuit 18 has the same configuration and function as the first current limiting circuit 13 described with reference to FIG. 1 and the like, detailed description thereof is omitted here. To do.
  • the overcurrent prevention circuit 19 has a current limiting resistor 91, a Zener diode 92, and a current limiting FET 93.
  • the current limiting resistor 91 has one end connected between the terminal for outputting the current of the rectifying circuit 101 and the anode of the first-stage LED of the plurality of LEDs included in the LED array 11.
  • the cathode is connected to the other end of the current limiting resistor 91, and the anode is connected to the terminal to which the current of the rectifier circuit 101 returns.
  • the gate of the current limiting FET 93 is connected to the other end of the current limiting resistor 91, the drain is connected to the first current limiting circuit 13d through the second current limiting circuit 14 to the sixth current limiting circuit 18, and the current limiting FET 93 of the rectifying circuit 101 is connected.
  • the source is connected to the terminal where the current returns.
  • the voltage for full-wave rectification by the rectifier circuit becomes higher than the Zener voltage of the Zener diode 92, which is 12 V in one example, and when the Zener current flows through the Zener diode 92, the current limiting FET 93 turns on. While the Zener current flows through the Zener diode 92, the current limiting FET 93 functions as a current limiting element that limits the current so that a current equal to or larger than the drain current when the gate voltage matches the Zener voltage of the Zener diode 92 does not flow.
  • the LED light-emitting device 10 has the overcurrent prevention circuit 19 having the current limiting FET 93 that functions as a current limiting element, so that even when an overvoltage is applied to the input of the rectifier circuit 101, the LED light emitting device 10 is provided with a plurality of LEDs 110 included in the LED string 11.
  • the flowing current can be limited.
  • the withstand voltage of the FET is twice as large as the breakdown voltage of the FET and is included in the LED string. Is a voltage obtained by adding the voltage drop due to the LED 110.
  • FIG. 18A is a perspective view of the LED light emitting device 9
  • FIG. 18B is a plan view of the LED light emitting device 9
  • FIG. 18C is a side view of the LED light emitting device 10. ..
  • the LED light emitting device 10 has a circuit board 90 on which various components, which are discrete products forming the LED light emitting device 9 such as an LED, an electrolytic capacitor, a resistor, and a FET, are mounted.
  • the LED 110, the FET 30, the first parallel capacitor 116, which is an electrolytic capacitor, and the like are mounted on the circuit board 90.
  • the LED 110 is arranged outside the circuit board 90, the FET 30 and the resistor are arranged inside the LED 110, and the first parallel capacitor 116 is arranged inside the FET 30 and the resistor.
  • a heat sink 95 is arranged on the back surface of the area of the circuit board 90 where the LED 110, the FET 30, the resistor and the like are arranged.
  • the LED 110 is arranged on the outer periphery of the circuit board 90, and the first parallel capacitor 116 having a high height is arranged at the center of the circuit board 90, so that the light emitted by the LED 110 is generated by the first parallel capacitor. There is a low risk that the light-emission efficiency will be reduced by blocking 116. Further, in the LED light emitting device 10, by arranging the same elements collectively in a predetermined area, efficient wiring can be performed.
  • the LED light emitting device 10 arranges the heat generating components such as the LED and the FET 30 on the heat sink 95 while ensuring the wiring route at the center of the circuit board 90, thereby ensuring the heat radiation property and maintaining the LED light emitting device 10. It is possible to minimize the size of the light emitting device installed.
  • FIG. 19 is a circuit diagram 10 ′ of an LED light emitting device according to a modification of the LED light emitting device 10 according to the tenth embodiment.
  • An LED light emitting device 10 ′ according to a modified example of the LED light emitting device 10 differs from the LED light emitting device 10 in that it has a first current limiting circuit 13 c instead of the first current limiting circuit 13 b.
  • the configurations and functions of the components of the LED light emitting device 10' other than the first current limiting circuit 13c are the same as the configurations and functions of the components of the LED light emitting device 10 denoted by the same reference numerals, and thus detailed description thereof is omitted here. To do.
  • the first current limiting circuit 13c is different from the first current limiting circuit 13 in that it has four first FETs 30 connected in parallel instead of the single first FET 30.
  • the first current limiting circuit 13c has the four first FETs 30 connected in parallel, so that the current flowing through each of the first FETs 30 is reduced, and the temperature rise of the FETs while the LED light emitting device 10' emits light is reduced. To do.
  • the first current limiting element included in the first current limiting circuit is the FET, but the LED light emitting device according to the embodiment has the transistor as the first current limiting element instead of the FET. Good.
  • the transistor is used as the F first current limiting element, the first current input terminal connected to the second terminal is the collector and the second terminal through which the first current flows is the emitter. .. Further, the first control terminal that controls the first current according to the applied voltage is the base.
  • the first control element included in the first current limiting circuit is a transistor, but the LED light emitting device according to the embodiment has a configuration corresponding to the variable resistance portion and the second reference voltage terminal.
  • the element to be included may be included as the first control element instead of the transistor.
  • the LED light emitting device according to the embodiment may include a shunt regulator as the first control element.
  • the LED light emitting device may have the following modes.
  • Rectifier circuit for full-wave rectification of commercial AC power supply An LED string that is connected to a rectifier circuit and has a plurality of LEDs connected in series, A current limiting element connected to the LED string, A current detection resistor connected to the current limiting element, An integrating circuit including a capacitor and two resistors, which is connected to the LED string, An adder unit that includes two resistors and adds the output voltage of the integrating circuit and the voltage at one end of the current detection resistor;
  • An LED light-emitting device comprising: a transistor and a resistor, the base of the transistor being connected to the adder, and the collector of the transistor being connected to the resistor and the control terminal of the current limiting element.
  • the LED row includes a first partial LED row and a second partial LED row, The first partial LED row and the second partial LED row are serially connected in order from the rectifier circuit side, Another current limiting element connected to a connection point between the first partial LED string and the second partial LED string, Another current detection resistor connected to another current limiting element, Another adder including two resistors and adding the output voltage of the integrating circuit and the voltage at one end of the other current detection resistor, Another inverting amplifier including a transistor and a resistor, the base of the transistor connected to the other adder, and the collector of the transistor connected to the resistor and the control terminal of the other current limiting element.
  • the LED light emitting device (1), wherein the current flowing through the second partial LED string flows into another current detection circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

LED発光装置は、電流を出力する端子と電流が戻る端子を有する整流回路と、第1端子と第2端子を有するLED列と、電圧入力端子及び第1基準電圧出力端子を備える平滑回路と、第1電流入力端子、第1電流出力端子及び第1基準電圧入力端子を備える第1電流制限回路と、を備え、電流を出力する端子は、第1端子に接続し、第2端子は、第1電流入力端子に接続し、電圧入力端子は、電流を出力する端子から第2端子に至る電流経路に接続し、第1基準電圧出力端子は、第1基準電圧入力端子に接続し、第1電流出力端子は、電流が戻る端子に接続し、整流回路は、交流電圧を全波整流し、平滑回路は、電圧入力端子の電圧を平滑し、平滑した電圧を第1基準電圧出力端子から出力し、第1電流制限回路は、LED列に含まれるLEDが発光しているとき、第1電流入力端子に流れる電流が第1基準電圧入力端子の電圧で調整される。

Description

LED発光装置
 本発明は、LED発光装置に関する。
 商用交流電源が供給する電圧の実効値は、様々な原因で変動することがある。しかしながら、商用交流電源の実効値変動にかかわらず、LED発光装置の明るさは一定であることが望まれる。
 LED発光装置は、AC駆動型とDC駆動型に分類されることがある。これまで、AC駆動型のLED発光装置は、LEDが直列接続したLED列に交流電圧(又は全波整流波形)を印加し、LED列に流れる電流が周期的に変化するものとしてきた。同様に、DC駆動型のLED発光装置は、LED列に整流・平滑した電圧を印加し、LED列に流れる電流が一定になるものとしてきた。
 しかしながら、最近では、主にフリッカ対策として、AC駆動型のLED発光装置でもLED列に安定した電流を流すようになり、前述の分類基準が相応しくなくなってきている。そこで、本明細書では、これまでの技術的発展を鑑みて、DC-DCコンバータを備えていないLED発光装置をAC駆動型のLED発光装置と呼び、DC-DCコンバータを備えているLED発光装置をDC駆動型のLED発光装置と呼ぶ。
 DC駆動型のLED発光装置に内蔵されたDC-DCコンバータは、整流回路及び平滑用コンデンサによって商用交流電源から生成される比較的リップルの多い直流電圧を、基準電圧源の電圧を参照しながら昇圧又は降圧によって安定化し、この安定した直流電圧によりLEDを駆動する。すなわち、DC駆動型のLED発光装置は、DC-DCコンバータが正常に動作するとき、商用交流電源の実効値が変動するか否かにかかわらず、明るさが変化しない。しかしながら、DC駆動型のLED発光装置は、DC-DCコンバータを有するため、電源回路が複雑化すると共に大型化・重量化するという課題がある。
 一方、多くのAC駆動型のLED発光装置は、商用交流電源を全波整流し、全波整流した電圧(全波整流波形)を直接的にLED列に印加するので、電源回路が簡単であるという有利な特徴を備えている。しかしながら、単純に全波整流波形をLED列に印加するだけのAC駆動型のLED発光装置では、商用交流電源の実効値の変化に応じてLEDに供給する電流が変動することから、明るさが変化してしまう。つまり、このようなAC駆動型のLED発光装置では、商用交流電源の実効値の変化に応じて、LEDに流れる電流が増減すると共に、LEDが発光する点灯期間(以下、全波整流波形の1周期に対する点灯期間の割合を「デューティ」と呼ぶ。)が増減する。また、電流制限回路を追加し、各LEDに流れる電流の上限値が設定される場合でも、デューティは、商用交流電源の実効値の変化に応じて増減し、明るさが変化する。例えば、商用交流電源の実効値が増加したとき、デューティも増加し、LEDはより明るく点灯する。
 そこで、この不具合を解消するため、国際公開第2017/057401号(以下「特許文献1」と呼ぶ)には、商用交流電源の実効値に応じてデューティが変動しても、明るさがほぼ一定になるAC駆動型のLED発光装置が提案されている。特許文献1の図1に記載されたLED発光装置は、対策前は矩形波であった電流波形の頂部に窪みを設け(特許文献1の図2参照)、全波整流波形の振幅が大きくなり、デューティが増加したときに、全波整流波形の形状に応答して窪みを大きくしてLEDに流れる電流を減らしている。すなわち、特許文献1の図1に記載されたLED発光装置は、デューティが増加するときにLEDに流れる電流(瞬時値)を減少し、デューティが減少するときにLEDに流れる電流を増加することで、LEDに流れる平均電流(明るさ)を一定にしている。
 ところが、特許文献1の図1に記載されたLED発光装置は、電流波形が頂部の窪んだ矩形波となるため、THD(全高調波歪率)が大きくなる。そこで、THDを軽減するため特許文献1の図18には、商用交流電源の実効値の変化に応じて、LED電流の形状を矩形にしながら上限値を調整する(特許文献1の図19参照)LED発光装置が記載されている。一般に実効値は全波整流波形の1周期に比べ著しく長い期間で変化するので、実効値に応じて上限電流を調整する特許文献1の図18に記載されたLED発光装置では、LED電流が窪みのない矩形波となる。この結果、特許文献1の図18に記載されたLED発光装置は、特許文献1の図1に記載されたLED発光装置に比べ、THDが減少する。
 特許文献1の図18に記載されたLED発光装置は、実効値に応じてLEDに流れる上限電流を調整するためオペアンプを使用していた。すなわち、オペアンプを使用するLED発光装置は、LEDに電流を供給する電源以外に、オペアンプを駆動するための直流電源回路や基準電圧源、及びこれらのための実装領域や配線を備えることになり、電源回路が複雑化すると共に、大型化するという課題がある。
 そこで、本開示は、この課題に鑑みて為されたものであり、新たな直流電源を準備しなくても実効値の変化と反対方向にLED電流を調整できるLED発光装置を提供することを目的とする。
 上記目的を解決するため、開示されるLED発光装置は、電流を出力する端子と電流が戻る端子を有する整流回路と、第1端子と第2端子を有するLED列と、電圧入力端子及び第1基準電圧出力端子を備える平滑回路と、第1電流入力端子、第1電流出力端子及び第1基準電圧入力端子を備える第1電流制限回路と、を備え、電流を出力する端子は、第1端子に接続し、第2端子は、第1電流入力端子に接続し、電圧入力端子は、電流を出力する端子から第2端子に至る電流経路に接続し、第1基準電圧出力端子は、第1基準電圧入力端子に接続し、第1電流出力端子は、電流が戻る端子に接続し、整流回路は、交流電圧を全波整流し、平滑回路は、電圧入力端子の電圧を平滑し、平滑した電圧を第1基準電圧出力端子から出力し、第1電流制限回路は、LED列に含まれるLEDが発光しているとき、第1電流入力端子に流れる電流が第1基準電圧入力端子の電圧で調整されることを特徴とする。
 さらに、開示されるLED発光装置では、第1電流制限回路は、第1制御端子に印加される電圧に応じて第1電流入力端子から第1電流出力端子の間を流れる第1電流を制御する第1電流制限素子と、第1電流入力端子に一端が接続し、第1制御端子に他端が接続する第1プルアップ抵抗と、第1基準電圧入力端子に一端が接続する第1入力抵抗と、第1入力抵抗の他端に一端が接続し、第1電流制限素子の電流出力端子に他端が接続する第1出力抵抗と、第1電流出力端子の他端に一端が接続する第1検出抵抗と、第1プルアップ抵抗に可変抵抗部が直列接続される第1制御素子と、を備え、第1制御素子は、第1入力抵抗の他端及び第1出力抵抗の一端に接続する第2基準電圧端子を有し、第2基準電圧端子の電圧が第2基準電圧と一致するように可変抵抗部の抵抗を変化して第1制御端子の電圧を制御することが好ましい。
 さらに、開示されるLED発光装置では、第1制御素子の可変抵抗部に並列接続された第1並列抵抗を更に有することが好ましい。
 さらに、開示されるLED発光装置では、第1電流制限回路は、第1出力抵抗に並列接続されたチャタリング防止コンデンサを更に有することが好ましい。
 さらに、開示されるLED発光装置は、並列接続された複数の第1電流制限回路を有することが好ましい。
 さらに、開示されるLED発光装置では、第1電流制限素子は、並列接続された複数のFETを含むことが好ましい。
 さらに、開示されるLED発光装置は、複数のLEDの最終段のLED以外のLEDである第2接続LEDのカソードに接続する第3端子と、第1電流入力端子、第2電流入力端子、第1基準電圧入力端子、及び第2電流出力端子を備える第2電流制限回路を更に有し、第1電流入力端子は、第1電流制限回路の第1電流出力端子と接続し、第2電流入力端子は、第3端子と接続し、第1基準電圧入力端子は、平滑回路の第1基準電圧出力端子に接続し、第2電流出力端子は、第1電流入力端子及び第2電流入力端子から流入した電流を出力し、第1電圧基準電圧入力端子の電圧は、第2電流入力端子に流れる電流を調整することが好ましい。
 さらに、開示されるLED発光装置では、第2制御端子に印加される電圧に応じて、第2電流入力端子から流れ込む第2電流を制御する第2電流制限素子と、第2電流入力端子に一端が接続し、第2制御端子に他端が接続する第2プルアップ抵抗と、第1基準電圧入力端子に一端が接続する第2入力抵抗と、第2入力抵抗の他端に一端が接続し、第1電流入力端子に他端が接続する第2出力抵抗と、第2電流制限素子の電流出力端子及び第1電流入力端子に一端が接続し、他端が第2電流出力端子に接続する第2検出抵抗と、第2プルアップ抵抗に可変抵抗部が直列接続される第2制御素子と、を有し、第2制御素子は、第2入力抵抗の他端及び第2出力抵抗の一端に接続する第2基準電圧端子を有し、第2基準電圧端子の電圧が第2基準電圧と一致するように可変抵抗部の抵抗を変化して第2制御端子の電圧を制御することが好ましい。
 さらに、開示されるLED発光装置は、整流回路の電流を出力する端子と複数のLEDの初段のLEDのアノードとの間に一端が接続する電流制限抵抗と、電流制限抵抗の他端にカソードが接続し、整流回路の電流が戻る端子にアノードが接続するツェナーダイオードと、電流制限抵抗の他端にゲートが接続し、第1電流制限回路にソースが接続し、整流回路の電流が戻る端子にドレインが接続する電流制限FETと、を有する過電流防止回路を更に有することが好ましい。
 さらに、開示されるLED発光装置では、LED列は、直列接続された複数のLEDを含む第1LED群と、直列接続された複数のLEDを含む第2LED群と、第1LED群の初段のアノード及び第2LED群の初段のアノードのそれぞれに接続する配線が分岐する第1分岐点と、第1LED群の最終段のカソード及び第2LED群の最終段のカソードのそれぞれに接続する配線が分岐する第2分岐点と、第1LED群の最終段のカソードと第2LED群の初段のアノードとの間に切断可能に配置された並列用切換素子と、第2LED群の初段のアノードと第1分岐点との間に切断可能に配置された第1直列用切換素子と、第1LED群の最終段のカソードと第2分岐点との間に切断可能に配置された第2直列用切換素子とを有することが好ましい。
 さらに、開示されるLED発光装置は、LED列に並列接続された並列コンデンサと、LED列の初段のアノード及び並列コンデンサと整流回路との間に配置された逆流防止ダイオードとを更に有することが好ましい。
 開示されるLED発光装置は、良く知られた電流制限回路の負帰還制御部に、商用電源の実効値変動に係る情報を重畳し、電流制限回路の上限電流を調整する。すなわち、これまでの電流制限回路は、流入する電流について負帰還制御して上限電流を制限していたところ、開示されるLED発光装置では、実効値変動に係る情報を第1基準電圧として提供する平滑回路を設け、電流制限回路の負帰還部に第1基準電圧を加算することで、電流制限回路に流入する電流に係る情報及び実効値に係る情報に基づく負帰還制御を行い、電流制限回路の上限電流を設定している。このとき、平滑回路は、良く知られているように抵抗やコンデンサで構成できる。また、負帰還部に第1基準電圧を加算することは、抵抗のネットワークで実現できる。さらに、負帰還制御部を構成する反転増幅器は、LED列に電流が流れないとき電流制限素子を制御しなくて良いため、電源をLED列からとることができる。この結果、開示されるLED発光装置は、新たな直流電源を準備しなくても実効値の変化と反対方向にLED電流を調整できる。
第1実施形態としてLED発光装置のブロック図である。 図1に示すLED発光装置の回路図である。 図1及び2に示すLED発光装置の回路における波形図である。 第2実施形態として示すLED発光装置の回路図である。 図4に示すLED発光装置の回路における波形図である。 第3実施形態として示すLED発光装置の回路図である。 図6に示すLED発光装置の回路における波形図である。 第4実施形態として示すLED発光装置の回路図である。 図8に示すLED発光装置の回路における波形図である。 第5実施形態に係るLED発光装置の回路図である。 第6実施形態に係るLED発光装置の回路図である。 第7実施形態に係るLED発光装置の回路図である。 第8実施形態に係るLED発光装置の回路図である。 (a)は、LED列の入力端子の電圧の1周期当たりの経時変化を示す図であり、(b)は、LED列の出力端子の電圧の1周期当たりの経時変化を示す図である。 図13に示すLED発光装置に入力される交流電圧の実効値と、平滑回路によって平滑化された電圧との関係を示す図である。 第9実施形態に係るLED発光装置の回路図である。 第10実施形態に係るLED発光装置の回路図である。 (a)は、図17に示すLED発光装置の斜視図であり、(b)は、図17に示すLED発光装置の平面図であり、(c)は、図17に示すLED発光装置の側面図である。 第10実施形態に係るLED発光装置の変形例に係るLED発光装置の回路図である。
 以下、図1~19を参照しながら好適な実施形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。
 (第1実施形態)
 図1は、第1実施形態として示すLED発光装置1のブロック図であり、図2は、LED発光装置1の回路図である。図1及び2に示すように、LED発光装置1は、整流回路101と、LED列11と、平滑回路12と、第1電流制限回路13とを有する。説明のため、図2において、LED発光装置1に交流電圧を供給する商用交流電源100が記される(以下同様)。
 整流回路101は、4個のダイオード10a、10b、10c、10dを有し、商用交流電源100が供給する交流電圧を全波整流する。商用交流電源100は、ダイオード10a、10bのアノード及びダイオード10c、10dのカソード(整流回路101の入力端子)に接続する。ダイオード10a、10bのカソードは、整流回路101の電流を出力する端子であり、ダイオード10c、10dのアノードは、整流回路101の電流が戻る端子であり、LED発光装置1のグランドレベルになる。整流回路101は、商用交流電源100から供給される交流電圧を全波整流し、負荷に出力する。整流回路101の負荷が抵抗であるとき、整流回路101の出力端子の間の電圧は、全波整流波形となる。
 LED列11は、直列接続した複数のLED110を含み、初段のLED110のアノード(以下「第1端子」という)は、整流回路101の電流を出力する端子と接続する。なお、LED列11の最終段のLED110のカソードを「第2端子」とする。LED列11の第1端子には、整流回路101が全波整流した電圧が印加される。
 平滑回路12は、第1平滑抵抗21と、第2平滑抵抗22と、平滑コンデンサ23とを有し、第1平滑抵抗21の左端が電圧入力端子、右端が第1基準電圧出力端子、第2平滑抵抗22及び平滑コンデンサ23の下端が平滑回路12のグランド端子となる(図1及び図2参照)。 平滑回路12は、第1平滑抵抗21を介して入力する電圧(全波整流波形と同期して変動する電圧)を平滑化した第1基準電圧を生成し、生成した第1基準電圧を第1基準電圧出力端子から出力する。第1平滑抵抗21の一端(電圧入力端子)は、LED列11の最終段のLED110のカソードである第2端子に接続し、第1平滑抵抗21の他端(第1基準電圧出力端子)は、第2平滑抵抗22及び平滑コンデンサ23の一端に接続する。第2平滑抵抗22は、第1平滑抵抗21に直列接続し、平滑コンデンサ23は、第2平滑抵抗22に並列接続する。第1平滑抵抗21の他端、第2平滑抵抗22及び平滑コンデンサ23の一端である第1基準電圧出力端子の電圧が第1基準電圧となる。また、平滑回路12は、第1平滑抵抗21を介して平滑コンデンサ23に電荷を充電し、第2平滑抵抗22を介して平滑コンデンサ23に充電された電荷を放電する。平滑回路12の第1基準電圧出力端子から出力される第1基準電圧は、LED列11の第1出力端子から出力される電圧を第1平滑抵抗21と第2平滑抵抗22で分圧し、これを平均化した電圧とも言える。すなわち、第1基準電圧は、商用交流電源100の実効値の変化に応じて変化する。商用交流電源100の実効値が高くなると、第1基準電圧は高くなり、商用交流電源100の実効値が低くなると、第1基準電圧は低くなる。
 第1電流制限回路13は、第1FET30(第1電流制限素子)と、第1プルアップ抵抗31と、第1入力抵抗32と、第1出力抵抗33と、第1検出抵抗34と、第1トランジスタ35(第1制御素子)と、第1チャタリング防止コンデンサ36とを有する。第1電流制限回路13は、第1電流入力端子がLED列11の第2端子、及び第1電流出力端子が整流回路の電流が戻る端子に接続し、予め設定された上限電流(第1基準電圧入力端子をオープンとしたとき設定される上限電流)が、全波整流された電圧(又は商用電源の実効値)に応じて変化する第1基準電圧により調整される。このとき、パルス波形が矩形状の第1電流が複数のLED110のそれぞれに流れる。
 第1電流制限回路13は、新たな直流電源から電力が供給されるオペアンプを使用することなく、FET、抵抗、トランジスタ及びコンデンサ等のいわゆるディスクリート品で構成され、整流回路101からLED列11を介して印加される電圧によって駆動される。
 第1FET30のゲートは、第1プルアップ抵抗31及び第1トランジスタ35のコレクタに接続する。第1FET30のドレイン(第1電流入力端子を構成する)は、LED列11の第2端子及び第1平滑抵抗21の一端に接続する。第1FET30のドレインは、LED列11から電流が入力される第1電流入力端子であり、第1FET30のソースは、ドレインとの間に第1電流が流れる第1FETの電流出力端子である。また、第1FET30のゲートは、印加される電圧に応じて第1電流を制御する第1制御端子である。
 第1プルアップ抵抗31の一端(第1FET30のドレインとともに第1電流入力端子を構成する)は、LED列11の第2端子に接続し、第1プルアップ抵抗31の他端は、第1FET30のゲート及び第1トランジスタ35のコレクタに接続する。
 第1入力抵抗32の一端(第1基準電圧入力端子)は、平滑回路12の第1基準電圧出力端子に接続し、第1入力抵抗32の他端は、第1出力抵抗33の一端に接続する。第1出力抵抗33の他端は、第1検出抵抗34の一端と接続する。
 第1検出抵抗34の一端は、第1FET30のソース及び平滑回路12の平滑回路のグランド端子に接続し、第1検出抵抗34の他端(第1電流出力端子を構成する)は、整流回路101の電流が戻る端子に接続する。なお、平滑回路12のグランド端子は、整流回路101の電流が戻る端子に接続しても良いが、この場合に比べて、第1検出抵抗34の他端に接続することで負帰還制御に係る応答性を改善している。
 第1トランジスタ35のコレクタは、第1プルアップ抵抗31の他端及び第1FET30のゲートに接続し、第1トランジスタ35のエミッタは、整流回路101の電流が戻る端子及び第1検出抵抗34の他端に接続する。第1トランジスタ35のベースは、第1入力抵抗32の他端及び第1出力抵抗33の一端に接続し、第2基準電圧端子を構成する。
 第1トランジスタ35のベースの電圧は、負帰還が正常に動作するとき、整流回路101の電流が戻る端子の電圧であるグランド電圧から第1トランジスタ35のベース-エミッタ間電圧(約0.6V)分高い電圧である。なお、ベース-エミッタ間電圧が第2基準電圧となる。
 第1トランジスタ35のコレクタ-エミッタ間は、第1プルアップ抵抗31と直列接続される可変抵抗部である。第1トランジスタ35(第1制御素子)は、ベースである第2基準電圧端子の電圧が第2基準電圧(約0.6V)となるように可変抵抗部の抵抗を変化させて、第1FET30のゲートの電圧を制御する。
 第1チャタリング防止コンデンサ36は、第1出力抵抗33に並列接続し、第1FET30の動作と第1トランジスタ35の動作とのタイミングのずれに起因してチャタリングが発生することを防止する。
 次に、図3を参照して図1及び2に示したLED発光装置1の動作を説明する。図3は、LED発光装置1に流れる電流の説明図であり、(a)は、一周期分の全波整流波形を示し、(b)は、LED列11に流れる電流を示す。図3(a)において、縦軸Vは、電圧であり、横軸tは、時間である。図3(b)において、縦軸Iは、電流であり、横軸tは、時間である。なお、図3(a)、3(b)の横軸tは対応している。また、図3の説明にあたり、特別な指示をすることなく図1及び2を参照する。
 なお、第1平滑抵抗21、第2平滑抵抗22、第1プルアップ抵抗31、第1入力抵抗32及び第1出力抵抗33に流れる電流は、第1FET30のドレイン電流及び第1検出抵抗34を流れる電流に比べ著しく小さい。そこで、平滑回路12及び第1電流制限回路13に流れる電流は、特別に明示する場合に説明され、平滑回路12及び第1電流制限回路13の電圧を参照してLED発光装置1の動作が説明される。
 図3(a)において、全波整流波形201は、実効値が100V(通常状態)の状態を示し、全波整流波形202は、実効値が120Vの状態を示し、全波整流波形203は、実効値が80Vの状態を示す。実効値100Vの全波整流波形201が標準的な状態であり、全波整流波形202及び203は何らかの原因で商用交流電源100の電圧が変動した状態である。
 図3(a)において、電圧Vtは、LED列11に含まれる複数のLED110の全てが発光する電圧である閾値電圧(以下「閾値Vt」という)を示す。LED列11に印加される電圧が閾値Vt未満であるとき、LED列11の含まれるLED110に電流が流れず、LED列11に印加される電圧が閾値Vt以上であるとき、LED列11の含まれるLED110に電流が流れる。閾値Vtは、LED列11において直列接続する各LED110の順方向電圧ドロップを合計した電圧である。また、LED列11において、各LED110の特性が全て等しいとき、閾値Vtは、LED110の順方向ドロップとLED110の直列段数の積である。
 図3(b)において、電流波形204は、図3(a)で示した全波整流波形201に応じてLED発光装置1に流れる電流を示す。電流波形205、206は、それぞれ全波整流波形202、203に対応してLED発光装置1に流れる電流を示す。
 図3(b)に示すように、電流波形204が示す電流は、全波整流波形201の電圧が閾値Vtより低い期間で0(A)である。全波整流波形201の電圧が上昇する位相では、電流波形204が示す電流は、全波整流波形201の電圧が閾値Vtまで上昇すると急激に増加する。全波整流波形201の電圧が閾値Vtよりも高い位相では、電流波形204が示す電流は、上限値が制限されて一定値になる(全波整流波形201の電圧が閾値Vtよりも高い位相では、電流波形204の形状が平坦となる)。全波整流波形201の電圧が下降する位相では、電流波形204が示す電流は、全波整流波形201の電圧が閾値Vtまで下降すると急激に減少する。全波整流波形201の1周期に対応するLED列11の電流波形204の形状は、略矩形となる。
 同様に、実効値が異なる全波整流波形202、203に対しても、LED列11の電流波形205、206の形状は略矩形となる。
 しかしながら、LED列11に全波整流波形201より実効値の大きい全波整流波形202が印加されると、電流波形205は、電流波形204に比べ、デューティが大きくなる一方で、ピーク値が電流波形204に比べて低下する。すなわち、全波整流波形202がLED列11に印加されるとき、LED発光装置1は、通常状態に比べ、LED列11に含まれる複数のLED110の点灯期間が長くなる一方で、LED列11に含まれる複数のLED110の点灯時における輝度を低下させる。この結果、LED発光装置1は、LED列11に印加する電圧波形が全波整流波形201の場合と全波整流波形202の場合とで、明るさを略同一にする。
 全波整流波形201より実効値の大きい全波整流波形202がLED列11に印加されると、平滑回路12の第1基準電圧出力端子の電圧である第1基準電圧は、全波整流波形201がLED列11に印加されるときよりも上昇する。第1基準電圧が上昇すると、0.6Vで維持される第1トランジスタ35のベースの電圧である第2基準電圧との電位差が大きくなり、第1入力抵抗32を流れる電流が大きくなる。第1入力抵抗32を流れる電流が大きくなることに応じて、第1出力抵抗33に流れる電流が大きくなるので、第1出力抵抗33における電圧降下δは、全波整流波形201がLED列11に印加されるときよりも大きい。第1検出抵抗34に流れる第1電流Ilimは、0.6Vである第2基準電圧Vbe及び第1検出抵抗34の抵抗値Rsenから
Figure JPOXMLDOC01-appb-M000001
 で示される。第1電流Ilimは、第1出力抵抗33における電圧降下δが大きくなることに応じて小さくなる。
 LED列11に全波整流波形201より実効値の小さい全波整流波形203が印加されるとき、電流波形206は、電流波形204に比べ、デューティが小さくなる一方でピーク値が上昇する。LED列11に印加される電圧波形が全波整流波形203である場合、通常状態に比べ、LED列11に含まれるLED110の点灯期間が短くなる一方で、LED列11に含まれるLED110の点灯時における輝度が電流波形204に比べて増加する。この結果、LED発光装置1は、LED列11に含まれる複数のLED110に印加する全波整流波形201の場合と全波整流波形203の場合とで、LED発光装置1の明るさを略同一にする。
 全波整流波形201より実効値の小さい全波整流波形203がLED列11に印加されると、第1基準電圧は、全波整流波形201がLED列11に印加されるときよりも下降する。第1基準電圧が下降すると、0.6Vで維持される第1トランジスタ35のベースの電圧である第2基準電圧との電位差が小さくなり、第1入力抵抗32を流れる電流が小さくなる。第1入力抵抗32を流れる電流が小さくなることに応じて、第1出力抵抗33に流れる電流が小さくなるので、第1出力抵抗33における電圧降下δは、全波整流波形201がLED列11に印加されるときよりも小さい。式(1)に示すように、第1電流Ilimは、第1出力抵抗33における電圧降下δが小さくなることに応じて大きくなる。
 LED発光装置1は、平滑回路12により得られるLED列11の第2端子の平均的な電圧と、第1検出抵抗34の一端の電圧により、第1FET30に負帰還(ネガティブフィードバック)を掛ける。負帰還の基準となる第2基準電圧は、グランドから第1トランジスタ35のベース-エミッタ間電圧(約0.6V)だけ高い電圧であり、負帰還が正常に掛かるとき、第2基準電圧は、約0.6Vである。商用交流電源100の実効値が増加して、整流回路101からLED列11に電流が流れ込む期間が長くなるとき、第1FET30に流れる電流の上限値が減少する。反対に、商用交流電源100の実効値が減少して、整流回路101からLED列11に電流が流れ込む期間が短くなると、第1FET30に流れる電流の上限値が増加する。
 なお、第1入力抵抗32及び第1出力抵抗33を介さず、第1検出抵抗34の一端を第1トランジスタ35のベースに直接接続する第1FET30、第1プルアップ抵抗31、第1検出抵抗34及び第1トランジスタ35からなる回路は、良く知られた電流制限回路である。LED発光装置1では、この良く知られた電流制限回路に第1入力抵抗32及び第1出力抵抗33を加えることにより、第1FET30に第1検出抵抗34で検出した電流の情報に加え、商用交流電源100の実効値に係る情報をフィードバックする。すなわち、第1電流制限回路13は、商用交流電源100の実効値が反映されたLED列11の電流制限回路となる。第1入力抵抗32及び第1出力抵抗33は、いわゆる電圧加算回路を構成している。
 以上のように、LED発光装置1は、第1平滑抵抗21、第2平滑抵抗22、平滑コンデンサ23、第1入力抵抗32及び第1出力抵抗33等の受動部品を追加し、これまで知られてきた電流制限回路に、商用交流電源100の実効値の変化を打ち消す機能を与えた。つまり、LED発光装置1は、受動部品だけで構成した結果、新たな直流電源を準備しなくても実効値の変化と反対方向にLED電流を調整でき、実効値に連動する明るさの変動を抑圧することができるようになった。
 (第2実施形態)
 AC駆動型のLED発光装置では、LED列の中間点にバイパス回路を設け、点灯期間を広げ、明るさの向上と、フリッカ及びTHDの低減とを図ることがある。そこで、図4及び図5を参照して、第2実施形態として、バイパス回路として機能する第2電流制限回路14を備えたLED発光装置2を説明する。図4は、LED発光装置2の回路図である。なお、図2のLED発光装置1と同じ部材については同じ番号を付し、説明は省略する。図5は、LED発光装置2に流れる電流の説明図であり、(a)は、一周期分の全波整流波形、(b)は、LED列11に流れる電流を示している。図5(a)において、縦軸Vは、電圧、横軸tは、時間である。図5(b)において、縦軸Iは、電流、横軸tは、時間である。なお図5(a)、5(b)の横軸tは一致している。また、図5により、LED発光装置2の動作を説明するとき、特別な指示をすることなく図4を参照する。
 図4に示すLED発光装置2と図1及びに示すLED発光装置1との差異として、LED発光装置2において、LED列11が第1LED列11aと第2LED列11bとを含むことが挙げられる。また、LED発光装置2とLED発光装置1との差異として、第1LED列11aと第2LED列11bの接続点とグランドとの間に第2電流制限回路14を設けたことが挙げられる。第2電流制限回路14以外のLED発光装置2の構成要素の構成及び機能は、同一符号が付されたLED発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 第1LED列11a及び第2LED列11bに含まれるLED110の数は、同一でもよく相違してもよい。第1LED列11aの最終段のLED110は、LED列11に含まれる複数のLEDの最終段のLED以外のLEDであり、第2接続LEDとも称される。第2接続LEDのカソード及び第2LED列11bの初段のLEDのアノードは、第3端子を構成し、第2電流制限回路14の第2電流入力端子に接続する。
 図4に示すように、第2電流制限回路14は、第2FET40と、第2プルアップ抵抗41と、第2入力抵抗42と、第2出力抵抗43と、第2検出抵抗44と、第2トランジスタ45と、第2チャタリング防止コンデンサ46とを有する。前述のように、第2電流制限回路14の第2電流入力端子は、LED列11の第3端子と接続する。この第2電流入力端子は、第2FET40のドレインと第2プルアップ抵抗41の上端とを含む。第2入力抵抗42の右端は、第1基準電圧入力端子を構成し、平滑回路12の第1電圧基準電圧出力端子及び第1電流制限回路13の第1基準電圧入力端子と接続している。第2検出抵抗44の右端は、第1電流入力端子を構成し、第1電流制限回路13の第1電流出力端子と接続している。第2検出抵抗44の左端は、第2電流出力端子を構成し、整流回路101の電流が戻る端子と接続している。 LED発光装置2では、第3端子から第2電流入力端子に流れ込む電流を第2電流とする。第2電流は、第1基準電圧及び第1電流により制限される。
 符号40~46で示した部品(第2FET40、第2チャタリング防止コンデンサ46等)のそれぞれは、符号30~36で示した部品(第1FET30、第1プルアップ抵抗31、第1チャタリング防止コンデンサ36等)と対応関係にある。第2FET40は、第1FET30と同様に商用交流電源100の実効値変動を打ち消すようにして、第1LED列11aに流れる電流値の上限値を制限する。なお、第2電流制限回路14では、第2LED列11bに電流が流れ始めると、第2検出抵抗44の一端(第1電流入力端子)の電圧が上昇し、第2FET40がカットオフする。
 図5(a)は、第1LED列11aの閾値Vt1が示されることが図3(a)と相違する。図5(a)における全波整流波形201、202、203は、図3(a)における全波整流波形201、202、203と同一である。図5(b)において電流波形214、215、216は、それぞれ図5(a)で示した全波整流波形201、202、203に対応してLED発光装置2に流れる電流を示す。
 図5(b)に示すように、通常状態の電流波形214は、全波整流波形201の電圧が閾値Vt1より低い期間では0(A)である。全波整流波形201の電圧が上昇し、閾値Vt1まで上昇すると、第1LED列11aに第2電流が流れる始め、電流波形214は急激に立ち上がる。全波整流波形201の電圧が閾値Vt1以上であり、且つ、閾値Vt未満である期間では、第2電流制限回路14が電流制限回路として機能し、電流波形214が平坦になる。全波整流波形201の電圧が閾値Vtまで上昇すると、電流波形214は急激に立ち上がる。全波整流波形201の電圧が閾値Vt以上となる期間では、第1LED列11a及び第2LED列11bに第1電流が流れ、第2電流制限回路14の第2FET40がカットオフして、第2FET40を介する電流経路が遮断される。全波整流波形201の電圧が閾値Vt以上となる期間では、第2FET40の電流制限により電流波形214が、より高い値で平坦になる。全波整流波形201の電圧が下降する位相では、逆の過程を辿る。
 同様に、実効値が異なる全波整流波形202、203に対しても、LED列11の電流波形215、216は、段状の矩形波となる。
 しかしながら、全波整流波形201より実効値の大きい全波整流波形202がLED列11に印加される場合、電流波形215は、LED110が点灯する期間が広がる一方で、それぞれの期間におけるピーク値が低下する。すなわち、LED列11に印加される電圧波形が全波整流波形202の場合、LED発光装置2は、通常状態に比べ、LED列11の点灯期間が長くなる一方で、LED列11の点灯時における輝度を低下している。この結果、LED発光装置2は、LED列11に印加される電圧波形が全波整流波形201の場合と全波整流波形202の場合とで、LED発光装置2の明るさを略同一にする。
 全波整流波形201より実効値の小さい全波整流波形203をLED列11に印加する場合、LED発光装置2は、通常状態に比べ、LED列11の点灯期間が短くなる一方で、LED列11の点灯時における輝度が増加する。LED発光装置2は、LED列11に印加する電圧波形が全波整流波形201の場合と全波整流波形203の場合とで、明るさを略同一にする。
 LED発光装置2では、第1基準電圧を出力する第1基準電圧端子は、第1入力抵抗32及び第2入力抵抗42のそれぞれに直接接続される。また、LED発光装置2では、第1検出抵抗34及び第2検出抵抗44は、直列接続される。第1FET30に第1電流が流れるとき、平滑回路12及び第1電流制限回路13の双方は、第2検出抵抗44の一端の電圧によりオフセットされる。平滑回路12及び第1電流制限回路13が同一電圧でオフセットされるので、第1検出抵抗34に流れる第1電流Ilimは、第2基準電圧Vbe、第1出力抵抗33における電圧降下δ及び第1検出抵抗34の抵抗値Rsenとの間で式(1)の関係を充足する。また、第2FET40に第2電流が流れるとき、第1検出抵抗34に電流が流れないので、第2検出抵抗44に流れる第2電流Ilimは、第2基準電圧Vbe、第2出力抵抗43における電圧降下δ及び第2検出抵抗44の抵抗値Rsenとの間で式(1)の関係を充足する。
 LED発光装置2は、第1基準電圧端子は、第1入力抵抗32及び第2入力抵抗42に直接接続され、且つ、第1検出抵抗34及び第2検出抵抗44が直列接続されることで、第1電流及び第2電流が式(1)により規定できる。LED発光装置2は、第1電流及び第2電流が式(1)により規定することができるので、第1出力抵抗33、第1検出抵抗34、第2出力抵抗43及び第2検出抵抗44の抵抗値を所望の値に設定することで、第1電流及び第2電流を容易に規定できる。
(第3実施形態)
 AC駆動型のLED発光装置では、コンデンサを追加して、フリッカを改善することがある。そこで、図6及び図7により、第3実施形態として、フリッカ対策を施したLED発光装置3を説明する。図6は、LED発光装置3の回路図である。なお、図1、図2、図4を参照して説明されたLED発光装置1及び2と同じ部材については同じ番号を付し、説明は省略する。図7は、LED発光装置3に流れる電流の説明図であり、(a)は、一周期分の全波整流波形、(b)は、整流回路101が出力する電流を示している。図7(a)は、図5(a)と同じものであり、縦軸Vは、電圧、横軸tは、時間である。図7(b)において、縦軸Iは、電流、横軸tは、時間である。なお図7(a)、(b)の横軸tは一致している。また、図7によりLED発光装置3の動作を説明するとき、特別な指示をすることなく図6を参照する。
 図6に示すLED発光装置3と図4に示すLED発光装置2との差異として、LED発光装置2において、第1LED列11a及び第2LED列11bにそれぞれに並列接続された第1並列コンデンサ47及び第2並列コンデンサ37を有することが挙げられる。また、LED発光装置3とLED発光装置2との差異として、第1LED列11a及び第2LED列11bの初段のLED110のアノードに第1逆流防止ダイオード38及び第2逆流防止ダイオード48を有することが挙げられる。図7(b)に示す電流波形224、225、226は、図7(a)に示す全波整流波形201、202、203に対応して整流回路101が出力する電流である。
 図7(a)で示す全波整流波形201~203が閾値電圧Vt1に達しない期間、整流回路101から第1LED列11aに電流が流れ込まない。このとき、一例では電解コンデンサである第1並列コンデンサ47が放電し、第1並列コンデンサ47の放電により第1LED列11aが点灯する。同様に、図7(a)で示す全波整流波形201等が閾値電圧Vtに達しない期間、整流回路101から第1LED列11aを経て第2LED列11bに電流が流れ込まない。このとき、第2並列コンデンサ37が放電し、第2並列コンデンサ37の放電により第2LED列11bが点灯する。すなわち、LED発光装置3において追加された第1並列コンデンサ47及び第2並列コンデンサ37は、LED発光装置2においてLED列11が消灯する不点灯期間を消滅させ、フリッカを低減する。
 第1逆流防止ダイオード48は、第1並列コンデンサ47に受電された電荷が整流回路101に逆流することを防止し、第2逆流防止ダイオード38は、第2並列コンデンサ37に受電された電荷が第2電流制限回路14に逆流することを防止する。
 (第4実施形態)
 図8及び図9により、第4実施形態として、第3実施形態であるLED発光装置3にTHD対策を施したLED発光装置4を説明する。図8は、LED発光装置4の回路図である。なお、図1、図2、図4、図6を参照して説明されたLED発光装置1~3と同じ部材については同じ番号を付し、説明は省略する。図9は、LED発光装置4に流れる電流の説明図であり、(a)は、一周期分の全波整流波形、(b)は、整流回路101が出力する電流を示している。図9(a)は、図5(a)、図7(a)と同じものであり、縦軸Vは、電圧、横軸tは、時間である。図9(b)において、縦軸Iは、電流、横軸tは、時間である。なお図9(a)、(b)の横軸tは一致している。また、図9によりLED発光装置4の動作を説明するとき、特別な指示をすることなく図8を参照する。
 図8に示すLED発光装置4と図6に示すLED発光装置3との差異として、LED発光装置3において、第1トランジスタ35、第2トランジスタ45のコレクタ-エミッタ間にそれぞれに並列接続された第1並列抵抗39及び第2並列抵抗49を有することが挙げられる。図9(b)に示す電流波形221、222、223は、図9(a)に示す全波整流波形201、202、203に対応して整流回路101が出力する電流である。
 第1並列抵抗39及び第2並列抵抗49は、図7(b)に示す電流波形224、225、226と比較して、図9(b)に示すように電流波形234、235、236の肩の部分を丸くする。すなわち、LED発光装置4は、第1並列抵抗39及び第2並列抵抗49が追加されたことにより、LED発光装置3よりもTHDが改善される。
 (第5実施形態)
 図10は、第5実施形態に係るLED発光装置5の回路図である。第5実施形態に係るLED発光装置5は、LED列11が第3LED列11cを更に含むこと、及び第3電流制限回路15、第3並列コンデンサ57及び第3逆流防止ダイオード58を有することが第3実施形態に係るLED発光装置3と相違する。第3電流制限回路15、第3並列コンデンサ57及び第3逆流防止ダイオード58以外のLED発光装置5の構成要素の構成及び機能は、同一符号が付されたLED発光装置3の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 第1LED列11a、第2LED列11b及び第3LED列11cに含まれるLED110の数は、同一でもよく相違してもよい。第1LED列11aの最終段のLED110は、LED列11に含まれる複数のLEDの最終段のLED以外のLEDであり、第3接続LEDとも称される。第3接続LEDのカソードは、第2LED列11bの初段のLEDのアノード及び第3電流制限回路15に接続する第4端子である。第2LED列11bの最終段のLED110は、第2接続LEDとも称される。第2接続LEDのカソードは、第3LED列11cの初段のLEDのアノード及び第2電流制限回路14に接続する第3端子である。
 第3電流制限回路15は、第3FET50と、第3プルアップ抵抗51と、第3入力抵抗52と、第3出力抵抗53と、第3検出抵抗54と、第3トランジスタ55と、第3チャタリング防止コンデンサ56とを有する。第3電流制限回路15は、第4端子及び第1基準電圧出力端子に接続し、第1基準電圧に応じて平滑された第3電流が、LED列11に含まれる複数のLED110の初段のLEDと第3接続LEDの間のLEDのそれぞれに流れるように、第3電流を制限する。
 第3トランジスタ55及び第3チャタリング防止コンデンサ56の構成及び機能は、第2トランジスタ45及び第2チャタリング防止コンデンサ46と同様なので、ここでは詳細な説明は省略する。
 第3FET50~第3チャタリング防止コンデンサ56のそれぞれは、第1FET30~第1チャタリング防止コンデンサ36と対応関係にある。第3FET50は、第1FET30と同様に商用交流電源100の実効値変動を打ち消すようにして、第1LED列11aに流れる電流値の上限値を制限する。第3電流制限回路15では、第2LED列11bに電流が流れ始めると、第3検出抵抗54の一端の電圧が上昇し、第3FET50がカットオフする。
 (第6実施形態)
 図11は、第6実施形態に係るLED発光装置6の回路図である。第6実施形態に係るLED発光装置6は、第1電流制限回路13aを第1電流制限回路13の代わりに有することがLED発光装置1と相違する。第1電流制限回路13a以外のLED発光装置6の構成要素の構成及び機能は、同一符号が付されたLED発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 第1電流制限回路13aは、第1検出抵抗34と平滑回路12との間の接続関係、及び第1チャタリング防止コンデンサ36を有さないことが第1電流制限回路13と相違する。第1電流制限回路13aでは、第1検出抵抗34の一端は、第1FET30のソース及び第1出力抵抗33の他端に接続し、第1検出抵抗34の他端は、平滑回路12のグランド端子及び整流回路101の電流が戻る端子に接続する。
 (第7実施形態)
 LED発光装置1~6では、平滑回路12をLED列11の第2端子に接続するが、平滑回路12が出力する第1基準電圧は、商用交流電源100の実効値に連動して変化すれば良いので、平滑回路12は、LED列11の第2端子以外の端子に接続しても良い。例えば、平滑回路12は、LED列11の第1端子に接続しても良く、第1LED列11aと第2LED列11bの接続点である第3端子に接続しても良い。また、平滑回路12に含まれる第2平滑抵抗22、平滑コンデンサ23の他端は、グランドに接続しても良い。
 図12は、第7実施形態に係るLED発光装置7の回路図である。第7実施形態に係るLED発光装置7は、整流回路101及びLED列11と平滑回路12との間の接続関係がLED発光装置1と相違する。整流回路101及びLED列11と平滑回路12との間の接続関係以外のLED発光装置7の構成要素の構成及び機能は、同一符号が付されたLED発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 平滑回路12は、LED列11の第2端子ではなく、整流回路101の電流を出力する端子及びLED列11の第1端子に接続される。LED発光装置7は、平滑回路12が整流回路101の電流を出力する端子及びLED列11の第1端子に接続されるので、LED列11における電圧降下の影響を受けることなく第1基準電圧を生成できるので、LED発光装置1よりも第1基準電圧を高くできる。
 (第8実施形態)
 図13は、第8実施形態に係るLED発光装置8の回路図である。第8実施形態に係るLED発光装置8は、平滑回路12aを平滑回路12の代わりに有することがLED発光装置1と相違する。平滑回路12a以外のLED発光装置8の構成要素の構成及び機能は、同一符号が付されたLED発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 平滑回路12aは、第1切換ダイオード24、第3平滑抵抗25、第4平滑抵抗26、第2平滑コンデンサ27、第2ダイオード28を、第1平滑抵抗21、第2平滑抵抗22及び平滑コンデンサ23に加えて有することが平滑回路12と相違する。
 図14(a)は、LED列11の第1端子の電圧の1周期当たりの経時変化を示す図であり、図14(b)は、LED列11の第2端子の電圧の1周期当たりの経時変化を示す図である。図14(a)及び14(b)において、横軸は時間を示し、図14(a)及び14(b)のそれぞれの横軸が示す時間は互いに対応する。図14(a)及び14(b)の縦軸は、電圧示す。
 図14(a)において、波形901~905のそれぞれは、整流回路101に入力される交流電圧が変動したときの整流回路101によって整流された電圧を示す。波形901は、交流電圧の実効値が最も低い状態を示し、波形905は、交流電圧の実効値が最も高い状態を示す。
 図14(b)において、波形911~915のそれぞれは、波形901~905のそれぞれに対応するLED列11の第2端子の電圧を示す。波形911~915のそれぞれは、LED列11に含まれるLED110が発光を開始する閾値電圧を波形901~905が示す電圧が超えるまでは0Vである。波形911~915のそれぞれは、閾値電圧を波形901~905が示す電圧が超えると、上昇する。波形901に対応する波形911のピーク値は、最も低く、波形905に対応する波形915のピーク値は、最も高い。
 図15は、LED発光装置8に入力される交流電圧の実効値と、平滑回路12aによって平滑化された電圧との関係を示す図である。図15において、横軸は、LED発光装置8に入力される交流電圧の実効値を示し、縦軸は、平滑回路12aによって平滑化された電圧を示す。
 第1基準電圧930は、図13においてVfbで示される第1入力抵抗32の一端の電圧である。第1平滑電圧931は、図13においてVk1で示される平滑コンデンサ23の一端の電圧であり、第2平滑電圧932は、図13においてVin1で示される第2平滑コンデンサ27の一端の電圧である。第1平滑電圧931は、LED列11に含まれるLED110が発光を開始する閾値電圧に交流電圧の実効値が一致したときに0Vになる。また、第2平滑電圧932は、交流電圧の実効値が0Vになるときに0Vになる。
 第1平滑電圧931が第2平滑電圧932よりも高いとき、第1基準電圧930は、第1平滑電圧931から第1切換ダイオード24の順電圧だけ電圧降下した電圧である。第1平滑電圧931が第2平滑電圧932よりも低いとき、第1基準電圧930は、第2平滑電圧932から第2切換ダイオード28の順電圧だけ電圧降下した電圧である。
 (第9実施形態)
 図16は、第9実施形態に係るLED発光装置9の回路図である。第9実施形態に係るLED発光装置9は、平滑回路12bを平滑回路12の代わりに有することがLED発光装置1と相違する。平滑回路12b以外のLED発光装置9の構成要素の構成及び機能は、同一符号が付されたLED発光装置1の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 平滑回路12bは、演算回路29を有することが平滑回路12と相違する。演算回路29以外の平滑回路12bの構成要素の構成及び機能は、同一符号が付された平滑回路12の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 演算回路29は、例えばMPU(microprocessor unit)であり、種々のデータに基づいてLED列11の第2端子の電圧を補正して、第1電流制限回路13に供給する第1基準電圧を演算する。演算回路29は、整流回路101によって全波整流された電圧、LED列11の第2端子以外の端子の電圧、LED発光装置9の外部の光の光強度を示す照度センサの出力電圧、及び温度を示すサーミスタの出力電圧等に基づいて第1基準電圧を演算する。
 (第10実施形態)
 図17は、第10実施形態に係るLED発光装置10の回路図である。第10実施形態に係るLED発光装置10は、整流回路101と、LED列11と、平滑回路12と、第1電流制限回路13bと、第2電流制限回路14と、第3電流制限回路15と、第4電流制限回路16と、第5電流制限回路17と、第6電流制限回路18とを有する。また、LED発光装置10は、過電流防止回路19を更に有する。整流回路101の構成及び機能は、図1等を参照して説明したので、ここでは詳細な説明は省略する。
 LED列11は、第1LED列11dと、第2LED列11eと、第3LED列11fと、第4LED列11gと、第5LED列11hと、第6LED列11iとを含む。第1LED列11dは、第1LED群111、第2LED群112と、並列用切換素子113と、第1直列用切換素子114と、第2直列用切換素子115と、第1並列コンデンサ116と、第1逆流防止ダイオード117と、第1並列抵抗118とを有する。
 第1LED群111及び第2LED群112のそれぞれは、直列接続された複数のLED110を有する。並列用切換素子113、第1直列用切換素子114及び第2直列用切換素子115は、ジャンパーとも称される切断可能な配線素子である。並列用切換素子113は、第1LED群111の最終段のカソードと第2LED群112の初段のアノードとの間に配置される。第1直列用切換素子114は、第2LED群112の初段のアノードと、第1LED群111の初段のアノード及び第2LED群112の初段のアノードのそれぞれに接続する配線が分岐する第1分岐点との間に配置される。第2直列用切換素子115は、第1LED群111の最終段のカソードと、第1LED群111の最終段のカソード及び第2LED群112の最終段のカソードのそれぞれに接続する配線が分岐する第2分岐点との間に配置される。
 並列用切換素子113が切断され、且つ、第1直列用切換素子114及び第2直列用切換素子115が切断されないとき、第1LED群111及び第2LED群112は、並列接続される。一方、並列用切換素子113が切断されず、且つ、第1直列用切換素子114及び第2直列用切換素子115が切断されるとき、第1LED群111及び第2LED群112は、直列接続される。
 LED発光装置10は、第1LED列11dが第1LED群111及び第2LEDを直並列切換可能に配置することで、入力される交流電圧が100V及び200Vの何れの場合にも対応可能な構成とすることができる。
 第1並列コンデンサ116及び第1逆流防止ダイオード117の構成及び機能は、図6等を参照して説明された第1並列コンデンサ37及び第1逆流防止ダイオード38の構成及び機能と同様なので、ここでは詳細な説明は省略する。第1並列抵抗118は、第1並列コンデンサ116と共に第1LED群111及び第2LED群112に並列接続される。
 第2LED列11e~第6LED列11iのそれぞれは、第1LED列11dと同一の構成及び機能を有するので、ここでは詳細な説明は省略する。また、平滑回路12は、図1等を参照して説明されたので、ここでは詳細な説明は省略する。
 第1電流制限回路13bは、図1等を参照して説明された第1電流制限回路13と同一の構成を有する4個の回路が並列接続される。第1電流制限回路13bは、第1電流制限回路13と同一の構成を有する4個の回路が並列接続されることで、FETのそれぞれに流れる電流を低減し、LED発光装置10が発光する間のFETの温度の上昇を低減する。
 第2電流制限回路14~第6電流制限回路18のそれぞれは、図1等を参照して説明された第1電流制限回路13と同様の構成及び機能を有するので、ここでは詳細な説明は省略する。
 過電流防止回路19は、電流制限抵抗91と、ツェナーダイオード92と、電流制限FET93とを有する。電流制限抵抗91は、整流回路101の電流を出力する端子とLED列11に含まれる複数のLEDの初段のLEDのアノードとの間に一端が接続する。ツェナーダイオード92は、電流制限抵抗91の他端にカソードが接続し、整流回路101の電流が戻る端子にアノードが接続する。電流制限FET93は、電流制限抵抗91の他端にゲートが接続し、第2電流制限回路14~第6電流制限回路18を介して第1電流制限回路13dにドレインが接続し、整流回路101の電流が戻る端子にソースが接続する。
 過電流防止回路19では、一例では12Vであるツェナーダイオード92のツェナー電圧よりも整流回路が全波整流する電圧が高くなり、ツェナーダイオード92にツェナー電流が流れると、電流制限FET93がオンする。ツェナーダイオード92にツェナー電流が流れる間、電流制限FET93は、ゲート電圧がツェナーダイオード92のツェナー電圧に一致したときのドレイン電流以上の電流が流れないように電流を制限する電流制限素子として機能する。
 LED発光装置10は、電流制限素子として機能する電流制限FET93を有する過電流防止回路19を有することで、整流回路101の入力に過電圧が印加された場合でもLED列11に含まれる複数のLED110に流れる電流を制限することができる。第1電流制限回路13b~第6電流制限回路18のそれぞれのFETのドレイン電圧がブレークダウン電圧に達したときのFETの耐電圧は、FETのブレークダウン電圧の2倍にLED列に含まれる複数のLED110による電圧降下分を加算した電圧である。
 図18(a)は、LED発光装置9の斜視図であり、図18(b)は、LED発光装置9の平面図であり、図18(c)は、LED発光装置10の側面図である。
 LED発光装置10は、LED、電解コンデンサ、抵抗及びFET等のLED発光装置9を形成するディスクリート品である種々の構成要素が搭載される回路基板90を有する。回路基板90には、LED110、FET30及び電解コンデンサである第1並列コンデンサ116等が搭載される。
 回路基板90の外側には、LED110が配置され、LED110の内側には、FET30及び抵抗等が配置され、FET30及び抵抗等の内側には、第1並列コンデンサ116が配置される。回路基板90のLED110、FET30及び抵抗等が配置される領域の裏面にはヒートシンク95が配置される。
 LED発光装置10は、LED110を回路基板90の外周に配置し、且つ、高さが高い第1並列コンデンサ116を回路基板90の中心に配置することで、LED110が発した光を第1並列コンデンサ116が遮って発光効率が低下するおそれが低い。また、LED発光装置10は、同一の素子を所定の領域に集めて配置することで、効率的な配線が可能になる。
 また、LED発光装置10は、回路基板90の中心の配線経路を確保しつつ、LED及びFET30等の発熱部品をヒートシンク95上に配置することで、放熱性は担保しつつ、LED発光装置10を搭載する発光器具のサイズの最小化が可能になる。
 図19は、第10実施形態に係るLED発光装置10の変形例に係るLED発光装置の回路図10´である。LED発光装置10の変形例に係るLED発光装置10´は、第1電流制限回路13cを第1電流制限回路13bの代わりに有することがLED発光装置10と相違する。第1電流制限回路13c以外のLED発光装置10´の構成要素の構成及び機能は、同一符号が付されたLED発光装置10の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。
 第1電流制限回路13cは、並列接続された4個の第1FET30を単一の第1FET30の代わりに有することが第1電流制限回路13と相違する。第1電流制限回路13cは、並列接続された4個の第1FET30を有することで、第1FET30のそれぞれに流れる電流を低減し、LED発光装置10´が発光する間のFETの温度の上昇を低減する。
 (実施形態に係るLED発光装置の変形例)
 説明された実施形態では、第1電流制限回路が有する第1電流制限素子は、FETであるが、実施形態に係るLED発光装置は、トランジスタをFETの代わりに第1電流制限素子として有してもよい。トランジスタをF第1電流制限素子として使用するとき、第2端子に接続する第1電流入力端子はコレクタであり、第1電流入力端子との間に第1電流が流れる第2端子はエミッタである。また、印加される電圧に応じて第1電流を制御する第1制御端子は、ベースである。
 また、説明された実施形態では、第1電流制限回路が有する第1制御素子は、トランジスタであるが、実施形態に係るLED発光装置は、可変抵抗部及び第2基準電圧端子に対応する構成を有する素子をトランジスタの代わりに第1制御素子として有してもよい。例えば、実施形態に係るLED発光装置は、シャントレギュレータを第1制御素子として有してもよい。
 なお、実施形態に係るLED発光装置は、以下に示す態様であってもよい。
(1)商用交流電源を全波整流する整流回路と、
 整流回路と接続し、複数のLEDが直列接続したLED列と、
 LED列と接続する電流制限素子と、
 電流制限素子と接続する電流検出抵抗と、
 コンデンサ及び2個の抵抗を含み、LED列に接続する積分回路と、
 2個の抵抗を含み、積分回路の出力電圧と電流検出抵抗の一端の電圧を加算する加算部と、
 トランジスタ及び抵抗を含み、トランジスタのベースが加算部に接続し、トランジスタのコレクタが抵抗及び電流制限素子の制御端子に接続する反転増幅器とを備える
 ことを特徴とするLED発光装置。
(2)LED列は、第1部分LED列と第2部分LED列を含み、
 第1部分LED列と第2部分LED列は、順に整流回路側から直列接続し、
 第1部分LED列と第2部分LED列の接続点に接続する他の電流制限素子と、
 他の電流制限素子に接続する他の電流検出抵抗と、
 2つの抵抗を含み、積分回路の出力電圧と他の電流検出抵抗の一端の電圧を加算する他の加算部と、
 トランジスタ及び抵抗を含み、トランジスタのベースが他の加算部に接続し、トランジスタのコレクタが抵抗及び他の電流制限素子の制御端子に接続する他の反転増幅器とを備え、
 第2部分LED列を流れる電流が、他の電流検出回路に流れ込む
 ことを特徴とする(1)に記載のLED発光装置。
(3)反転増幅器に含まれるトランジスタ及び他の反転増幅器に含まれるトランジスタは、それぞれコレクタとエミッタ間に抵抗を並列接続している
 ことを特徴とする(1)又は(2)に記載のLED発光装置。

Claims (11)

  1.  電流を出力する端子と電流が戻る端子を有する整流回路と、
     第1端子と第2端子を有するLED列と、
     電圧入力端子及び第1基準電圧出力端子を備える平滑回路と、
     第1電流入力端子、第1電流出力端子及び第1基準電圧入力端子を備える第1電流制限回路と、を備え、
     前記電流を出力する端子は、前記第1端子に接続し、
     前記第2端子は、前記第1電流入力端子に接続し、
     前記電圧入力端子は、前記電流を出力する端子から前記第2端子に至る電流経路に接続し、
     前記第1基準電圧出力端子は、前記第1基準電圧入力端子に接続し、
     前記第1電流出力端子は、前記電流が戻る端子に接続し、
     前記整流回路は、交流電圧を全波整流し、
     前記平滑回路は、前記電圧入力端子の電圧を平滑し、平滑した電圧を前記第1基準電圧出力端子から出力し、
     前記第1電流制限回路は、前記LED列に含まれるLEDが発光しているとき、前記第1電流入力端子に流れる電流が前記第1基準電圧入力端子の電圧で調整される、
    ことを特徴とする、LED発光装置。
  2.  前記第1電流制限回路は、
     第1制御端子に印加される電圧に応じて前記第1電流入力端子から前記第1電流出力端子の間を流れる第1電流を制御する第1電流制限素子と、
     前記第1電流入力端子に一端が接続し、前記第1制御端子に他端が接続する第1プルアップ抵抗と、
     前記第1基準電圧入力端子に一端が接続する第1入力抵抗と、
     前記第1入力抵抗の他端に一端が接続し、前記第1電流制限素子の電流出力端子に他端が接続する第1出力抵抗と、
     前記第1電流出力端子の他端に一端が接続する第1検出抵抗と、
     前記第1プルアップ抵抗に可変抵抗部が直列接続される第1制御素子と、を備え、
     前記第1制御素子は、前記第1入力抵抗の他端及び前記第1出力抵抗の一端に接続する第2基準電圧端子を有し、前記第2基準電圧端子の電圧が第2基準電圧と一致するように前記可変抵抗部の抵抗を変化して前記第1制御端子の電圧を制御する、請求項1に記載のLED発光装置。
  3.  前記第1制御素子の前記可変抵抗部に並列接続された第1並列抵抗を更に有する、請求項2に記載のLED発光装置。
  4.  前記第1電流制限回路は、前記第1出力抵抗に並列接続されたチャタリング防止コンデンサを更に有する、請求項2又は3に記載のLED発光装置。
  5.  並列接続された複数の前記第1電流制限回路を有する、請求項2~4の何れか一項に記載のLED発光装置。
  6.  前記第1電流制限素子は、並列接続された複数のFETを含む、請求項2~4の何れか一項に記載のLED発光装置。
  7.  前記複数のLEDの最終段のLED以外のLEDである第2接続LEDのカソードに接続する第3端子と、
     第1電流入力端子、第2電流入力端子、第1基準電圧入力端子、及び第2電流出力端子を備える第2電流制限回路を更に有し、
     前記第1電流入力端子は、前記第1電流制限回路の第1電流出力端子と接続し、
     前記第2電流入力端子は、前記3端子と接続し、
     前記第1基準電圧入力端子は、前記平滑回路の前記第1基準電圧出力端子に接続し、
     前記2電流出力端子は、前記第1電流入力端子及び前記第2電流入力端子から流入した電流を出力し、
     前記第1電圧基準電圧入力端子の電圧は、前記第2電流入力端子に流れる電流を調整する、請求項1~6の何れか一項に記載のLED発光装置。
  8.  前記第2電流制限回路は、
     第2制御端子に印加される電圧に応じて、前記第2電流入力端子から流れ込む第2電流を制御する第2電流制限素子と、
     前記第2電流入力端子に一端が接続し、前記第2制御端子に他端が接続する第2プルアップ抵抗と、
     前記第1基準電圧入力端子に一端が接続する第2入力抵抗と、
     前記第2入力抵抗の他端に一端が接続し、前記第1電流入力端子に他端が接続する第2出力抵抗と、
     前記第2電流制限素子の電流出力端子及び前記第1電流入力端子に一端が接続し、他端が前記第2電流出力端子に接続する第2検出抵抗と、
     前記第2プルアップ抵抗に可変抵抗部が直列接続される第2制御素子と、を有し、
     前記第2制御素子は、前記第2入力抵抗の他端及び前記第2出力抵抗の一端に接続する第2基準電圧端子を有し、前記第2基準電圧端子の電圧が第2基準電圧と一致するように前記可変抵抗部の抵抗を変化して前記第2制御端子の電圧を制御する、請求項7に記載のLED発光装置。
  9.  前記整流回路の電流を出力する端子と前記複数のLEDの初段のLEDのアノードとの間に一端が接続する電流制限抵抗と、
     前記電流制限抵抗の他端にカソードが接続し、前記整流回路の電流が戻る端子にアノードが接続するツェナーダイオードと、
     前記電流制限抵抗の他端にゲートが接続し、前記第1電流制限回路にソースが接続し、前記整流回路の電流が戻る端子にドレインが接続する電流制限FETと、
     を有する過電流防止回路を更に有する、請求項1~8の何れか一項に記載のLED発光装置。
  10.  前記LED列は、
     直列接続された複数のLEDを含む第1LED群と、
     直列接続された複数のLEDを含む第2LED群と、
     前記第1LED群の初段のアノード及び前記第2LED群の初段のアノードのそれぞれに接続する配線が分岐する第1分岐点と、
     前記第1LED群の最終段のカソード及び前記第2LED群の最終段のカソードのそれぞれに接続する配線が分岐する第2分岐点と、
     前記第1LED群の最終段のカソードと前記第2LED群の初段のアノードとの間に切断可能に配置された並列用切換素子と、
     前記第2LED群の初段のアノードと前記第1分岐点との間に切断可能に配置された第1直列用切換素子と、
     前記第1LED群の最終段のカソードと前記第2分岐点との間に切断可能に配置された第2直列用切換素子と、
     を有する、請求項1~9の何れか一項に記載のLED発光装置。
  11.  前記LED列に並列接続された並列コンデンサと、
     前記LED列の初段のアノード及び前記並列コンデンサと前記整流回路との間に配置された逆流防止ダイオードと、
     を更に有する、請求項1~10の何れか一項に記載のLED発光装置。
PCT/JP2019/049034 2018-12-13 2019-12-13 Led発光装置 WO2020122249A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980081634.5A CN113170552B (zh) 2018-12-13 2019-12-13 Led发光装置
JP2020559351A JP6921340B2 (ja) 2018-12-13 2019-12-13 Led発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233351 2018-12-13
JP2018-233351 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122249A1 true WO2020122249A1 (ja) 2020-06-18

Family

ID=71076917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049034 WO2020122249A1 (ja) 2018-12-13 2019-12-13 Led発光装置

Country Status (3)

Country Link
JP (1) JP6921340B2 (ja)
CN (1) CN113170552B (ja)
WO (1) WO2020122249A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161937A (ja) * 2012-02-03 2013-08-19 Nichia Chem Ind Ltd 発光ダイオード駆動装置
WO2013137410A1 (ja) * 2012-03-16 2013-09-19 シチズンホールディングス株式会社 Led駆動回路
US20130264960A1 (en) * 2012-04-05 2013-10-10 Janghwan Cho Light emitting diode driving apparatus
WO2016163533A1 (ja) * 2015-04-08 2016-10-13 シチズンホールディングス株式会社 Led駆動回路
US20170280525A1 (en) * 2016-03-25 2017-09-28 New Energies & Alternative Technologies, Inc. Led driver circuits

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015888A (ja) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp 蛍光ランプ点灯装置及び照明器具
JP4491561B2 (ja) * 2002-08-29 2010-06-30 株式会社東研 Ledを用いたサイン表示装置の交流用led点灯回路
JP2008166192A (ja) * 2006-12-28 2008-07-17 Atex Co Ltd Led駆動電源回路
JP2010154656A (ja) * 2008-12-25 2010-07-08 Sanken Electric Co Ltd 直流電源回路、及びled照明装置
JP6077204B2 (ja) * 2011-09-09 2017-02-08 シチズン時計株式会社 Led駆動回路
US9380657B2 (en) * 2011-10-04 2016-06-28 Citizen Holdings Co., Ltd. LED lighting device
DE102011088407A1 (de) * 2011-12-13 2013-06-13 Osram Gmbh Schaltungsanordnung und Verfahren zum Betrieb einer LED-Kette sowie Beleuchtungsvorrichtung mit einer solchen Schaltungsanordnung und einer LED-Kette
JP6186724B2 (ja) * 2012-12-27 2017-08-30 日亜化学工業株式会社 発光ダイオード駆動装置
JP6501175B2 (ja) * 2014-07-29 2019-04-17 パナソニックIpマネジメント株式会社 点灯装置、照明装置及び照明器具
JP6403494B2 (ja) * 2014-08-26 2018-10-10 シチズン時計株式会社 Led駆動回路
CN108370623A (zh) * 2015-08-31 2018-08-03 万斯创新公司 可调光模拟ac电路
DE112016004396T5 (de) * 2015-09-28 2018-06-14 Citizen Electronics Co., Ltd. LED-Treiberschaltung
KR101618544B1 (ko) * 2015-10-21 2016-05-10 (주)유양디앤유 플리커리스 led 드라이버 장치
JP6818013B2 (ja) * 2016-04-05 2021-01-20 シチズン時計株式会社 Led駆動回路
JP2018073742A (ja) * 2016-11-02 2018-05-10 岩崎電気株式会社 照明用電源装置及び照明装置
JP6848396B2 (ja) * 2016-11-30 2021-03-24 日亜化学工業株式会社 発光ダイオード駆動装置及びこれを用いた照明、漁灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161937A (ja) * 2012-02-03 2013-08-19 Nichia Chem Ind Ltd 発光ダイオード駆動装置
WO2013137410A1 (ja) * 2012-03-16 2013-09-19 シチズンホールディングス株式会社 Led駆動回路
US20130264960A1 (en) * 2012-04-05 2013-10-10 Janghwan Cho Light emitting diode driving apparatus
WO2016163533A1 (ja) * 2015-04-08 2016-10-13 シチズンホールディングス株式会社 Led駆動回路
US20170280525A1 (en) * 2016-03-25 2017-09-28 New Energies & Alternative Technologies, Inc. Led driver circuits

Also Published As

Publication number Publication date
JPWO2020122249A1 (ja) 2021-09-02
JP6921340B2 (ja) 2021-08-18
CN113170552B (zh) 2023-07-14
CN113170552A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US8471495B2 (en) Light-emitting diode driving apparatus and light-emitting diode lighting controlling method
AU2010318418B2 (en) Light-emitting diode drive device and light-emitting diode illumination control method
US9791110B2 (en) High efficiency driver circuit with fast response
EP3127399B1 (en) Boost then floating buck mode converter for led driver using common swith control signal
US7919928B2 (en) Boost LED driver not using output capacitor and blocking diode
US8680782B2 (en) Light-emitting diode driving apparatus
US9112420B2 (en) Current regulation apparatus
KR20130069516A (ko) Led 구동장치
US8547027B2 (en) LED drive circuit
KR101905343B1 (ko) 저입력 및 저출력 리플을 갖는 벅 컨트롤러를 사용하는 플로팅 출력 전압 부스트 벅 조절기
CN104661400B (zh) 驱动多个输出的***及方法
US10244596B2 (en) LED drive circuit having improved flicker performance and LED lighting device including the same
US10334681B2 (en) Device for driving light emitting element
JP6824175B2 (ja) Led駆動回路
US9532412B2 (en) Lighting apparatus capable of reducing flicker
JP2016006761A (ja) Led駆動装置
WO2020122249A1 (ja) Led発光装置
KR101451498B1 (ko) 발광 소자 구동 장치 및 발광 소자 구동 방법
KR20110139553A (ko) 조명용 역률 보상 회로 및 구동 방법
KR101807103B1 (ko) 교류 직접 구동 엘이디 장치
US9407152B2 (en) Current regulation apparatus
KR101537990B1 (ko) 스위치 제어를 이용한 엘이디 조명 장치
US9930735B1 (en) Low-flicker light-emitting diode lighting device
JP5611174B2 (ja) 電源装置及び照明装置
JP7133787B2 (ja) 点灯システム、照明制御システム、及び照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896123

Country of ref document: EP

Kind code of ref document: A1