WO2020119615A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2020119615A1
WO2020119615A1 PCT/CN2019/123930 CN2019123930W WO2020119615A1 WO 2020119615 A1 WO2020119615 A1 WO 2020119615A1 CN 2019123930 W CN2019123930 W CN 2019123930W WO 2020119615 A1 WO2020119615 A1 WO 2020119615A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
data packet
terminal device
network device
base station
Prior art date
Application number
PCT/CN2019/123930
Other languages
English (en)
French (fr)
Inventor
耿婷婷
严乐
晋英豪
张宏卓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19895012.3A priority Critical patent/EP3883316A4/en
Priority to JP2021532926A priority patent/JP7270737B2/ja
Publication of WO2020119615A1 publication Critical patent/WO2020119615A1/zh
Priority to US17/342,619 priority patent/US20210298092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method, device, and computer-readable storage medium.
  • a low-frequency supplementary uplink (SUL) carrier is introduced.
  • a cell includes at least one first uplink carrier and at least one SUL carrier.
  • the frequency of the first uplink carrier is higher than the frequency of the SUL carrier.
  • the coverage of the SUL and the coverage of the DL carrier are relatively consistent.
  • the present application provides a communication method, device, and computer-readable storage medium, which can implement rapid transmission of uplink data packets under the introduction of a SUL scenario.
  • a communication method including: receiving an uplink data transmission threshold from a first network device, the uplink data transmission threshold including a first transmission threshold and a second transmission threshold, or including a second transmission threshold, according to The uplink data transmission threshold and the size of the uplink data packet to be transmitted determine that the uplink data packet is quickly transmitted on the first uplink carrier or SUL carrier of the first network device in the non-connected state.
  • the first network device in the embodiment of the present application may be understood as a target base station.
  • the first transmission threshold is used to indicate the maximum data packet size that the terminal device supports for transmission on the first uplink carrier in the non-connected state.
  • the second transmission threshold is used to indicate the maximum data packet size that the terminal device supports for transmission on the supplemental uplink SUL carrier in the disconnected state.
  • the frequency of the first uplink carrier is higher than the SUL carrier.
  • the first uplink carrier may be, for example, a new radio uplink (NRUL) carrier.
  • the second transmission threshold is greater than the first transmission threshold
  • the size of the uplink data packet to be transmitted is greater than the first transmission threshold
  • the terminal device determines to transmit the uplink data packet on the SUL carrier of the first network device in the non-connected state.
  • the terminal device when the size of the uplink data packet to be transmitted is smaller than a smaller value of the first transmission threshold and the second transmission threshold, In the non-connected state, the terminal device transmits the uplink data packet on the first uplink carrier or SUL carrier of the first network device.
  • the size of the uplink data packet to be transmitted is smaller than the smaller value of the first transmission threshold and the second transmission threshold , Determining that the uplink data packet is transmitted on the first uplink carrier or the SUL carrier of the first network device in the non-connected state.
  • the terminal device receives a downlink signal quality threshold from the first network device; the terminal device determines, based on the downlink signal quality threshold, In the non-connected state, the uplink data packet is transmitted on the first uplink carrier or SUL carrier of the first network device.
  • the terminal device determines to send the uplink data packet through a random access process in the non-connected state.
  • the terminal device determines to send the message 1 and the uplink data packet to be transmitted in the non-connected state; or,
  • a message 5 is sent, and the message 5 carries the uplink data packet to be transmitted.
  • the terminal device further includes: the terminal device receives first indication information from the first network device, and the first indication information is used to indicate the terminal In the non-connected state, the device uses a first key to transmit the uplink data packet, where the first key is a key determined by the terminal device according to at least one of the following information:
  • Cell information of the first network device includes cell frequency information and/or physical cell identification of the first network device, and the first network device is a target for random access of the terminal device Network equipment;
  • the terminal device may use the key related to the source base station to transmit the uplink data packet. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • the method further includes: the terminal device receives a random access configuration from the first network device; the terminal device determines to be in the non-connected state , Transmitting the uplink data packet on the first uplink carrier or the SUL carrier of the first network device according to the random access configuration.
  • the random access configuration includes at least one of the following: random access preamble information and random access resources.
  • the random access configuration includes a random access configuration corresponding to at least one coverage enhancement level.
  • the uplink data transmission threshold includes at least one uplink data transmission threshold corresponding to the coverage enhancement level.
  • the above-mentioned different CE levels may correspond to different maximum data transmission repetition times and/or modulation modes to achieve a balance between coverage and capacity.
  • the terminal device further includes: the terminal device receives third indication information from the first network device, and the third indication information is used to indicate the terminal The device receives the downlink data packet to be transmitted; the second indication information of the terminal device determines that the downlink data packet to be transmitted is received from the first network device in the non-connected state.
  • the method further includes: the terminal device receives fourth indication information from the first network device, and the fourth indication information is used to indicate the terminal The device uses the first key to decrypt the downlink data packet.
  • a communication method including: a first network device sends an uplink data transmission threshold to a terminal device, where the uplink data transmission threshold includes a first transmission threshold and a second transmission threshold, or includes a second transmission threshold, wherein, the first transmission threshold is used to indicate the maximum data packet size supported by the terminal device on the first uplink carrier in the non-connected state, and the second transmission threshold is used to indicate the terminal In the non-connected state, the maximum packet size supported for transmission on the supplemental uplink SUL carrier in the non-connected state, the frequency of the first uplink carrier is higher than that of the SUL carrier; the first network device is in Receiving the uplink data packet transmitted by the terminal device in the non-connected state on the first uplink carrier or the SUL carrier.
  • the method further includes: the first network device sends a downlink signal quality threshold to the terminal device, and the downlink signal quality threshold is used by the terminal device. It is determined that the uplink data packet is transmitted on the first uplink carrier or the SUL carrier in the non-connected state.
  • the method further includes: the first network device sends a random access configuration to the terminal device, and the random access configuration is used for the terminal device In the non-connected state, the uplink data packet is transmitted on the first uplink carrier or the SUL carrier according to the random access configuration.
  • the random access configuration includes at least one of the following: random access preamble information and random access resources.
  • the random access configuration includes a random access configuration corresponding to at least one coverage enhancement level.
  • the above-mentioned different CE levels may correspond to different maximum data transmission repetition times and/or modulation modes to achieve a balance between coverage and capacity.
  • the method further includes: the first network device sends second indication information to the terminal device, where the second indication information is used to indicate the terminal In the non-connected state, the device uses the first key to quickly transmit the uplink data packet.
  • the first key in the embodiment of the present application may be a key determined by the terminal device according to at least one of the following information: a key used by the terminal device in the second network device, the second network
  • the device is a source network device that configures the terminal device to enter the non-connected state; cell information of the first network device, the cell information includes cell frequency information and/or physical cell identification of the first network device ,
  • the first network device is a target network device for random access by the terminal device; the next hop chain count value NCC.
  • the terminal device may use the key related to the source base station to quickly transmit the uplink data packet. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • the method further includes: the first network device receives a second message sent by the second network device, and the second message includes the uplink data A receiving address of the packet; the first network device forwards the received uplink data packet quickly transmitted by the terminal device to the second network device according to the receiving address.
  • the method before the first network device receives the second message sent by the second network device, the method further includes: The second network device sends a first message, where the first message includes third indication information, where the third indication information is used to instruct the second network device to send and receive an address, or to instruct the terminal device Use the first key to quickly transmit the uplink data packet, and the receiving address is that the first network device sends the uplink that the terminal device transmits in the non-connected state to the second network device The address of the packet.
  • a communication method including: a second network device receives an uplink data packet to be transmitted sent by a first network device; and the second network device receives third indication information sent by the first network device The third indication information is used to indicate that the uplink data packet to be transmitted is an uplink data packet sent by the terminal device in the non-connected state on the first uplink carrier or the supplemental uplink SUL carrier.
  • the method further includes: the second network device determines, according to a downlink data transmission threshold and a downlink data packet size to be transmitted, the The network device sends the downlink data packet to be transmitted.
  • the downlink data packet to be transmitted is downlink data that the first network device needs to directly send to the terminal device when the terminal device is in a disconnected state
  • the second network device sends the downlink data packet to be transmitted to the first network device.
  • the method before the second network device sends the downlink data packet to be transmitted to the first network device, the method further includes: The second network device sends fifth indication information to the first network device, where the fifth indication information is used to instruct the first network device to receive a downlink data packet receiving address.
  • the method further includes: the second network device sends sixth indication information to the first network device, where the sixth indication information is used to indicate In the non-connected state, the terminal device has the downlink data packet to be received.
  • the method further includes: the second network device sends seventh indication information to the first network device, where the seventh indication information is used to indicate The terminal device uses a first key to decrypt the downlink data packet, where the first key is a key determined by the terminal device according to at least one of the following information:
  • a key used by the terminal device in the second network device being a source network device that configures the terminal device to enter the non-connected state
  • Cell information of the first network device includes cell frequency information and/or physical cell identification of the first network device, and the first network device is a target for random access of the terminal device Network equipment;
  • the terminal device may use the key related to the source base station to quickly transmit the uplink data packet. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • a communication method including: a second network device determines that the downlink data packet to be transmitted needs to be sent to the first network device according to a downlink data transmission threshold and a size of a downlink data packet to be transmitted.
  • the downlink data packet to be transmitted is a downlink data packet that the first network device needs to directly send to the terminal device when the terminal device is in a disconnected state; the second network device The downlink data packet is sent to the first network device.
  • the method further includes: the second network device sends sixth indication information to the first network device, where the sixth indication information is used to indicate In the non-connected state, the terminal device has the downlink data packet to be received.
  • the method further includes:
  • the second network device sends seventh indication information to the first network device, where the seventh indication information is used to instruct the terminal device to decrypt the downlink data packet using a first key, where the first
  • the key is a key determined by the terminal device according to at least one of the following information:
  • a key used by the terminal device in the second network device being a source network device that configures the terminal device to enter the non-connected state
  • Cell information of the first network device includes cell frequency information and/or physical cell identification of the first network device, and the first network device is a target for random access of the terminal device Network equipment;
  • a communication device including a module, component, or circuit for implementing the method of the first aspect.
  • the communication device of the fifth aspect may be a terminal device or a component (such as a chip or a circuit) that can be used for the terminal device.
  • a communication device including a module, component, or circuit for implementing the method of the second aspect.
  • the communication apparatus of the sixth aspect may be a network device, or may be a component (such as a chip or a circuit) that can be used in the network device.
  • a communication device including a module, component, or circuit for implementing the method of the third aspect.
  • the communication apparatus of the seventh aspect may be a network device or a component (such as a chip or a circuit) that can be used in the network device.
  • a communication device including a module, component or circuit for implementing the method of the fourth aspect.
  • the communication apparatus of the eighth aspect may be a network device, or may be a component (such as a chip or a circuit) that can be used in the network device.
  • a communication device including: a memory, a processor, and a transceiver,
  • the processor can be communicatively connected with the transceiver.
  • the memory can be used to store program codes and data of the terminal device. Therefore, the memory may be a storage unit inside the processor, an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may Integrated in the processor, it can be located outside the processor and exist independently.
  • the processor executes the method as described in the first aspect or any possible implementation manner of the first aspect through the transceiver.
  • a communication device including: a memory, a processor, and a transceiver,
  • the processor can be communicatively connected with the transceiver.
  • the memory can be used to store program codes and data of the terminal device. Therefore, the memory may be a storage unit inside the processor, an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may Integrated in the processor, it can be located outside the processor and exist independently.
  • the processor executes the method as described in the second aspect or any possible implementation manner of the second aspect through the transceiver.
  • a communication device including: a memory, a processor, and a transceiver,
  • the processor can be communicatively connected with the transceiver.
  • the memory can be used to store program codes and data of the terminal device. Therefore, the memory may be a storage unit inside the processor, an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may Integrated in the processor, it can be located outside the processor and exist independently.
  • the processor executes the method as described in the third aspect or any possible implementation manner of the third aspect through the transceiver.
  • a communication device including: a memory, a processor, and a transceiver,
  • the processor can be communicatively connected with the transceiver.
  • the memory can be used to store program codes and data of the terminal device. Therefore, the memory may be a storage unit inside the processor, an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may Integrated in the processor, it can be located outside the processor and exist independently.
  • the processor executes the method as described in the fourth aspect or any possible implementation manner of the fourth aspect through the transceiver.
  • a computer-readable storage medium including a computer program, which, when the computer program runs on a terminal device, causes the communication apparatus to execute the first aspect or any implementation manner of the first aspect The method.
  • a computer-readable storage medium which includes a computer program, which when executed on a communication device, causes the communication device to perform the second aspect or any one of the implementation manners of the second aspect Methods.
  • a computer-readable storage medium which includes a computer program, which when executed on a communication device, causes the communication device to perform the third aspect or any of the implementation manners of the third aspect Methods.
  • a computer-readable storage medium which includes a computer program, which when executed on a communication device, causes the communication device to perform the fourth aspect or any one of the implementation manners of the fourth aspect Methods.
  • a computer program product which, when the computer program product runs on a computer, causes the computer to execute the method as described in the first aspect or any implementation manner of the first aspect.
  • a computer program product which when run on a computer, causes the computer to execute the method as described in the second aspect or any implementation manner of the second aspect.
  • a computer program product which when run on a computer, causes the computer to execute the method as described in the third aspect or any implementation manner of the third aspect.
  • a computer program product which when run on a computer, causes the computer to perform the method as described in the fourth aspect or any implementation manner of the fourth aspect.
  • FIG. 1 is a schematic diagram of a scenario of a communication system 100 that can be applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a possible application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic schematic flowchart of a communication method provided by an embodiment of the present application.
  • CE level is a schematic diagram of the CE level (CE level) of an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a possible fast uplink data packet transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a possible method for transmitting an uplink data packet provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a possible fast transmission method of a downlink data packet provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a possible method for transmitting a downlink data packet provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device 900 provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device 1400 provided by an embodiment of the present application.
  • GSM global system of mobile
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code
  • GSM global system of mobile
  • GPRS general packet radio service
  • LTE long term evolution
  • TDD LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Fifth Generation of Microwave Access
  • the type of terminal equipment is not specifically limited, for example, it may be user equipment (user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile Equipment, user terminal, wireless network equipment, user agent or user device.
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile Equipment user terminal
  • wireless network equipment user agent or user device.
  • Terminals may include, but are not limited to, mobile stations (MS), mobile phones (mobile phones), user equipment (UE), mobile phones (handset), portable devices (portable equipment), cellular phones, cordless phones, conversations Initiating protocol (session) protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital processing (personal digital assistant (PDA), radio frequency identification (RFID) terminal equipment for logistics, Handheld devices with wireless communication capabilities, computing devices or other devices connected to wireless modems, in-vehicle devices, wearable devices, Internet of Things, terminal devices in vehicle networks, and terminal devices in future 5G networks or public land mobile evolved in the future Terminal equipment in a public (mobile) network (PLMN) network.
  • MS mobile stations
  • UE user equipment
  • PDA personal digital assistant
  • RFID radio frequency identification
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. It is a general term for applying wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smartphones, such as: smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smartphones Use, such as various smart bracelets and smart jewelry for sign monitoring.
  • the type of network device is not specifically limited, and may be any device used to communicate with a terminal device.
  • the network device may be, for example, global mobile communication (GSM) or code division multiple access.
  • the base station (base transceiver) (BTS) in (code division multiple access, CDMA) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or it can be a long-term
  • the evolved base station (evolutional Node B, eNB or eNodeB) in a long term evolution (LTE) system can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network
  • the device may be, for example, a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network.
  • the network equipment may be composed of a centralized unit (CU) and a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • One CU can be connected to one DU, or multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • the CU and DU can be divided according to the protocol stack.
  • One possible way is to divide the radio resource control (radio resource control (RRC), service data mapping protocol stack (service data adaptation protocol, SDAP) and packet data aggregation protocol
  • RRC radio resource control
  • service data mapping protocol stack service data adaptation protocol, SDAP
  • the (packet, data, protocol, PDCP) layer is deployed in the CU, and the rest of the radio link control (RLC) layer, media access control (MAC) layer, and physical layer are deployed in the DU.
  • RLC radio link control
  • MAC media access control
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a cell corresponding to a network device (such as a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell (small cell), where the small cell may include: a city cell (Metro cell) and a micro cell ( Micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the method provided in the embodiments of the present application may be applied to a terminal device or a network device.
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the specific structure of the execution body of the signal transmission method is not particularly limited in the embodiment of the present application, as long as the program that records the code of the signal transmission method of the embodiment of the present application can be run by Communication may be performed according to the signal transmission method according to the embodiment of the present application.
  • the execution subject of the wireless communication method according to the embodiment of the present application may be a terminal device or a network device, or a terminal device or a network device capable of calling a program and Function module to execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CD), digital universal discs (digital discs, DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a scenario of a communication system 100 that can be applied in an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 106 and 110, and an additional group may include antennas 112 and 114.
  • Each antenna group in FIG. 1 shows 2 antennas, however, more or fewer antennas can be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain, and those of ordinary skill in the art will understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, and demultiplexers). Tuner, demultiplexer or antenna, etc.).
  • the network device 102 can communicate with multiple terminal devices (eg, terminal device 116 and terminal device 122). However, it can be understood that the network device 102 can communicate with any number of terminal devices similar to the terminal devices 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable devices for communicating on the wireless communication system 100 equipment.
  • the terminal device 116 communicates with the antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 116 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, where the antennas 104 and 106 transmit information to the terminal device 122 via the forward link 124 and receive information from the terminal device 122 via the reverse link 126.
  • the forward link 116 may utilize different frequency bands than the reverse link 120, and the forward link 124 may utilize the reverse link 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 116 and the reverse link 120 may use a common frequency band
  • the link 126 may use a common frequency band.
  • Each group of antennas and/or areas designed for communication is called a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in sectors in the coverage area of the network device 102.
  • the transmit antenna of the network device 102 may use beamforming to improve the signal-to-noise ratio of the forward links 116 and 124.
  • the network device 102 uses beamforming to transmit signals to randomly distributed terminal devices 116 and 122 in the relevant coverage area, the network device 102 sends signals to all its terminal devices through a single antenna. Mobile devices will experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be transmitted to the wireless communication receiving device through the channel.
  • Such data bits may be contained in a transport block (or multiple transport blocks) of data, which may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device-to-device (D2D) network or a machine-to-machine (M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • FIG. 1 is only an example for ease of understanding.
  • the simplified schematic diagram of the network may also include other network devices, which are not shown in FIG. 1.
  • the uplink carrier of the terminal device belongs to a high-frequency scene in a high-frequency band. Due to the power of the terminal device or the transceiver antenna, there may be an uplink of the terminal device (uplink, UL) carrier coverage is smaller than the downlink (DL) carrier coverage of network equipment. As an example, since the UL power of the terminal device is generally less than the DL power of the network device, there may be a UL carrier coverage of the terminal device smaller than the DL carrier coverage of the network device. As another example, since the number of transmitting and receiving antennas of the terminal device is smaller than the number of transmitting and receiving antennas of the network device, there may be a UL carrier coverage of the terminal device smaller than the DL carrier coverage of the network device.
  • the high frequency band spectrum includes centimeter wave (centimeter wave) frequency band and millimeter wave (millimeter wave) frequency band.
  • the centimeter wave band may include a spectrum in the range of 3 GHz-30 GHz, for example, and the millimeter wave band may include a spectrum in the range of 30 GHz-300 GHz, for example.
  • a low-frequency supplementary uplink (SUP) carrier is introduced.
  • a cell includes at least one first link carrier and at least one SUL carrier.
  • the frequency of the first link carrier is higher than that of the SUL carrier.
  • the coverage of the SUL and the coverage of the DL carrier are relatively consistent.
  • FIG. 2 is a schematic diagram of a possible application scenario provided by an embodiment of the present application.
  • the scenario shown in FIG. 2 may include: NRUL 210 and SUL 220.
  • the frequency of NRUL 210 is higher than that of SUL 220.
  • the terminal device When the terminal device is in the non-connected state, the terminal device can quickly send the uplink data packet to be transmitted to the target base station without entering the connected state or before entering the connected state.
  • the state of the terminal device may include an active state, an inactive state, an idle state, or an enhanced idle state (the access network device saves the context information of the terminal device in the enhanced idle state, and/or the core The network device saves the context information of the terminal device).
  • the activated state may also be called a connected state (connected), and other states may be called a disconnected state.
  • the above inactive state can be understood as an energy-saving state of the terminal device.
  • the inactive state the RRC connection between the terminal device and the network device is released, and the terminal device and the network device that configures the terminal device to enter the inactive state can retain the terminal The context of the access layer and/or non-access layer of the device. It can be understood that the inactive state may also be called a deactivated state.
  • inactive state active state
  • enhanced idle state reference may also be made to the definition in TS38.300 v15.3.0, which will not be repeated here.
  • fast uplink data packet transmission can be understood as that the terminal device transmits uplink data packets in a non-connected state. It can be understood that fast uplink data packet transmission may also be referred to as direct uplink data packet transmission.
  • the communication method provided by the embodiment of the present application can enable the terminal device to quickly transmit data packets under the scenario of introducing SUL.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiments of the present application, and these steps or operations are merely examples, and the embodiments of the present application may also perform other operations or various Operational deformation.
  • various steps may be performed in different orders presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • FIG. 3 is a schematic schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method shown in FIG. 3 may include steps 310-320, and steps 310-320 will be described in detail below.
  • Step 310 The terminal device receives the uplink data transmission threshold from the first network device.
  • the first network device may be a base station where the terminal device is currently located, and the first network device may also be called a target base station.
  • step 310 of the embodiment of the present application the terminal device is in a non-connected state.
  • the uplink data transmission threshold in the embodiment of the present application may include a first transmission threshold and a second transmission threshold, or only include the second transmission threshold.
  • the first transmission threshold is used to indicate the maximum transmission packet size supported by the terminal device on the first uplink carrier in the non-connected state
  • the second transmission threshold is used to indicate that the terminal device is in the non-connected state.
  • the maximum UL data packet size supported by different UL carrier frequencies may be different or the same, which is not limited in this embodiment.
  • the first transmission threshold and the second transmission threshold may be represented by only one common transmission threshold.
  • the first transmission threshold is smaller than the second transmission threshold.
  • the first uplink (for example, NR UL 210) carrier has a smaller coverage area. If it supports larger uplink data packets for fast transmission, its UL coverage area will be smaller.
  • the SUL 220 frequency point because of its large coverage, can support the rapid transmission of larger upstream data packets.
  • the network device may send the first transmission threshold and the second transmission threshold in the form of broadcast.
  • the network device may send the first transmission threshold and the second transmission threshold to the terminal device through a system message.
  • Step 320 The terminal device determines to transmit the uplink data packet on the first uplink carrier or the SUL carrier in the non-connected state according to the uplink data transmission threshold and the size of the uplink data packet to be transmitted.
  • the terminal device may determine, according to the size of the uplink data packet to be transmitted and the uplink data transmission threshold, whether to quickly transmit the uplink data packet on the first uplink carrier or the uplink on the SUL carrier in the non-connected state data pack.
  • the terminal device may be configured in a connected state, and then data transmission is performed. That is to say, when the size of the uplink data packet to be transmitted is large, the fast transmission scheme of the embodiment of the present application may not be used.
  • the terminal device may quickly transmit the uplink data packet on the SUL carrier.
  • the terminal device can quickly transmit the uplink data packet on the first uplink carrier, or can quickly transmit the uplink data packet on the SUL carrier.
  • the UL data fast transmission threshold for NR is 50 bits, and SUL is 100 bits. If the size of the uplink data packet to be transmitted by the terminal device is less than 50 bits, the UE can quickly transmit the uplink data packet on NR UL or SUL. If the size of the uplink data packet to be transmitted by the terminal device is 80bit, higher than 50bit but lower than 100bit, the terminal device may choose to quickly transmit the uplink data packet on the SUL.
  • the terminal device may be configured in a connected state, and then data transmission is performed. That is to say, when the uplink data packet to be transmitted is large, the fast transmission scheme of the embodiment of the present application may not be used.
  • the terminal device may quickly transmit the uplink data packet on the first uplink carrier.
  • the terminal device may quickly transmit the uplink data packet on the first uplink carrier or the uplink data on the SUL carrier. package.
  • the UL data fast transmission threshold of NR UL is 100bit, and SUL is 50bit. If the size of the uplink data packet to be transmitted by the terminal device is less than 50 bits, the UE can quickly transmit the uplink data packet on NR UL or SUL. If the size of the uplink data packet to be transmitted by the terminal device is 80bit, higher than 50bit but lower than 100bit, the terminal device may choose to quickly transmit the uplink data packet on the NR UL.
  • the terminal device may determine whether the size of the uplink data packet to be transmitted is less than the second transmission threshold. If it is determined that the size of the uplink data packet to be transmitted is less than the second transmission threshold, the terminal device can quickly transmit the uplink data packet on the SUL carrier. If it is determined that the size of the uplink data packet to be transmitted is greater than the second transmission threshold, the terminal device may be configured in a connected state, and then data transmission is performed. That is to say, when the uplink data packet to be transmitted is large, the fast transmission scheme of the embodiment of the present application may not be used.
  • the terminal device can implement rapid transmission of uplink data packets under the scenario of introducing SUL.
  • the following description uses the first network device as the target base station and the second network device as the source base station as an example for description.
  • first network device and the second network device may be the same network device or different network devices, which is not specifically limited in this embodiment of the present application.
  • the terminal device when the size of the uplink data packet to be transmitted by the terminal device is less than or equal to the smaller value of the first transmission threshold and the second transmission threshold. That is, the size of the uplink data packet to be transmitted by the terminal device is less than or equal to min ⁇ first transmission threshold, second transmission threshold ⁇ , the terminal device can quickly transmit the uplink data packet on the first uplink carrier, or on the SUL carrier Fast upstream transmission of data packets. Then, the terminal device may further determine whether to quickly transmit the uplink data packet on the first uplink carrier or the SUL carrier according to the downlink signal quality threshold.
  • the terminal device can quickly transmit uplink data on the first uplink carrier During packet processing, the terminal device may further determine whether the uplink data packet can be quickly transmitted on the first uplink carrier according to the downlink signal quality threshold.
  • the network device may send a downlink signal quality threshold to the terminal device, or the network device may send information to the terminal device to determine the downlink signal quality threshold, such as quality deviation.
  • the terminal device may determine the downlink signal quality threshold according to the quality deviation and an existing quality threshold. Referring to FIG. 2, if the terminal device measures that the cell quality of the target base station is higher than the downlink signal quality threshold, it means that the terminal device may be in the uplink coverage area of NR UL 210 and SUL 220.
  • the terminal device may further select whether to perform fast transmission of uplink data packets on the NR UL210 or the SUL 220 according to the first transmission threshold and the second transmission threshold.
  • the terminal device may only be in the uplink coverage area of SUL 220.
  • the terminal device may further determine whether fast uplink data packet transmission can be performed at SUL 220 according to the second transmission threshold.
  • the uplink coverage area in this application may be an uplink coverage area that supports fast transmission.
  • the terminal device determines that the terminal device may be in the uplink coverage area of NR UL 210 and SUL 220 through the downlink signal quality threshold, and determines that the size of the uplink data packet to be transmitted by the terminal device is less than or equal to the transmission threshold In the case of the smaller value of the first transmission threshold and the second transmission threshold.
  • the terminal device may choose to perform fast transmission of uplink data packets on NR UL 210 or fast transmission of upstream data packets on SUL 220.
  • the specific selection mechanism may be based on the network device configuration or the predefined protocol.
  • the terminal device judges through the quality threshold and the transmission threshold, it can choose either NR UL 210 or SUL 220 for fast transmission of uplink data packets, the network device can use the NR UL 210 or The load situation on SUL 220 sends instruction information to instruct the terminal device to preferentially select a certain carrier frequency point (NR UL 210 or SUL 220) for fast uplink data transmission.
  • NR UL 210 or SUL 220 carrier frequency point
  • the embodiment of the present application does not specifically limit the sequence of the terminal device to determine the fast uplink data packet transmission on the NR UL 210 or SUL 220 through the downlink signal quality threshold and the uplink data transmission threshold.
  • the terminal device may first determine the uplink data transmission threshold based on the uplink data transmission threshold. If the terminal device determines that it can perform fast uplink data packet transmission on the NR UL 210 or SUL 220, and then determine whether it is in the NR UL 210 or SUL 220 based on the downlink signal quality threshold For fast upstream data packet transmission.
  • the terminal device can first determine according to the uplink data transmission threshold that it can be in NR UL 210 For fast upstream data packet transmission. The terminal device further determines whether the terminal device can perform fast uplink data packet transmission on the NR UL 210 in conjunction with the downlink signal quality threshold.
  • the terminal device may first determine whether the terminal device is within the uplink coverage area of NR UL 210 according to the downlink signal quality threshold. If the terminal equipment is in the uplink coverage area of NR UL 210 and SUL 220, then it is determined based on the uplink data transmission threshold that fast uplink data packet transmission can be performed on NR UL 210 or SUL 220.
  • the terminal device when there are multiple carriers, can select a suitable carrier for uplink data transmission.
  • the embodiments of the present application may be applicable to a terminal device in an idle state, a terminal device in an inactive state, an enhanced terminal device in an idle state, or any other terminal device that is not in a connected state.
  • the embodiment of the present application does not specifically limit the implementation manner of the terminal device to quickly transmit the uplink data packet.
  • the terminal device may send the uplink data packet to be transmitted on the first uplink carrier or the SUL carrier according to the random access configuration.
  • the terminal device may send message 1 and the uplink data packet to be transmitted according to the random access configuration.
  • the terminal device sends a message 1 (msg1) according to the random access configuration, and the target base station confirms that the terminal device needs to send an uplink data packet according to the received message 1.
  • the terminal device sends message 3 (msg3) and the uplink data packet to be transmitted.
  • the terminal device sends a message 3 (msg3), and may carry the uplink data packet to be transmitted in the message 3, and the message 3 includes a cell, and the cell may be used to indicate that the message 3 carries the message to be transmitted Upstream packets.
  • the terminal device sends message 5 (msg5) and the uplink data packet to be transmitted.
  • the terminal device sends a message 5 (msg5), and may carry the uplink data packet to be transmitted in the message 5, the message 5 includes a cell, and the cell may be used to indicate that the message 5 carries the message to be transmitted Upstream packets.
  • the target base station may send the random access configuration to the terminal device before the terminal device initiates the random access request.
  • the random access configuration is a random access configuration used by the terminal device to perform random access when initiating fast uplink data transmission.
  • msg5 can be RRC establishment complete message, RRC resume complete message, RRC reestablishment complete message or other messages.
  • the terminal device sending the message 1 and the uplink data packet to be transmitted according to the random access configuration can be understood as that the terminal device can send the message 1 and the uplink data packet to be transmitted on the same uplink authorized resource.
  • the terminal device sending the message 3 and the uplink data packet to be transmitted according to the random access configuration can be understood that the terminal device can send the message 3 and the uplink data packet to be transmitted on the same uplink authorized resource.
  • the terminal device sending the message 5 and the uplink data packet to be transmitted according to the random access configuration can be understood that the terminal device can send the message 5 and the uplink data packet to be transmitted on the same uplink authorized resource.
  • the random access configuration in the embodiment of the present application may include but is not limited to at least one of the following: random access preamble information and random access resources.
  • the random access resources may include: indication information of time-frequency resources (for example, physical random access channel (PRACH) resources) used to send the preamble.
  • the random access preamble information includes but is not limited to at least one of the following: a preamble index (index), used to allocate preamble resources.
  • the indication information of the root sequence is used to generate the preamble.
  • Indication information of the receive window for the response to message 1 (MSG1) where MSG usually refers to a preamble.
  • Indication information of the subcarrier interval of the preamble is used to determine the delay time before the terminal device initiates retransmission of the preamble when random access is not completed.
  • msg1 may be a preamble sent by the terminal device in the random access process.
  • msg3 may be a radio resource control (RRC) message sent in a random access process, and the RRC message is a message sent after receiving a random access response (RAR) sent by a network device.
  • RRC radio resource control
  • the communication system introduces a coverage enhancement (CE) mechanism.
  • the coverage enhancement mechanism may include different CE levels to indicate the signal quality of the uplink and downlink carriers at different locations.
  • different CE levels may correspond to different repetition times and/or modulation methods.
  • the network device and the terminal device may repeatedly transmit or receive uplink and downlink data according to the number of repetitions corresponding to the CE level. For example, for areas with a high CE level, the number of repetitions of the uplink and/or downlink data transmission of the terminal device may be reduced or not repeated. For areas with a low CE level, the number of repetitions of the uplink and/or downlink data transmission of the terminal device can be increased.
  • CE level of an embodiment of the present application.
  • multiple CE levels may be used to indicate carrier coverage or coverage capability, where carrier coverage may be characterized by signal quality.
  • the CE mechanism may include CE levels 0-3.
  • the signal quality corresponding to CE level 0 to CE level 3 in turn is from high to low.
  • CE level 0 corresponds to the best signal quality
  • CE level 3 corresponds to the worst signal quality.
  • the CE level and the signal quality may also correspond to other association relationships, for example, the signal quality corresponding to the CE levels 0-3 in turn may be from low to high.
  • the signal quality corresponding to the CE levels 0-3 in turn is described as an example from high to low.
  • more or less CE levels can also be used to indicate the coverage capability of the signal, which is not limited in this application.
  • the terminal device can compare the downlink signal quality and CE level quality threshold of the serving cell actually measured.
  • the CE level quality threshold can be obtained through a system message broadcast by a network device.
  • the uplink data transmission threshold may include an uplink data transmission threshold corresponding to at least one CE level; and/or, the random access configuration may include a random access configuration corresponding to at least one CE level.
  • the upstream data transmission threshold includes at least one uplink data transmission threshold corresponding to the CE level.
  • the network device may send at least one uplink data transmission threshold corresponding to the CE level to the terminal device.
  • the terminal device may determine the current terminal device's current threshold based on the comparison between the actual measured downlink signal quality of the serving cell and the CE level quality threshold above.
  • CE level The terminal device may determine the NR UL carrier or SUL by comparing the size of the uplink data packet to be transmitted with the uplink data transmission threshold corresponding to the current CE level according to the current CE level and the uplink data transmission threshold corresponding to at least one CE level Fast transmission on the carrier.
  • the communication system in order to support greater coverage depth and capacity performance, introduces a coverage enhancement CE mechanism.
  • the coverage enhancement mechanism may include different CE levels to indicate the signal quality of the uplink and downlink carriers at different locations.
  • the terminal device when the terminal device can send the uplink data packet to be transmitted to the target base station, it can use a key to encrypt the uplink data packet that needs to be quickly transmitted or to perform encryption and integrity protection.
  • the terminal device may use the key related to the target base station to encrypt the uplink data packet that needs to be quickly transmitted.
  • the terminal device may use the key related to the source base station to encrypt the uplink data packet that needs to be quickly transmitted.
  • the embodiment of the present application can not change the anchor base station during data transmission (that is, the terminal device can use the key related to the source base station to encrypt uplink data packets that need to be quickly transmitted), thereby avoiding unnecessary exchange of the anchor base station.
  • the anchor base station may also be called a source base station.
  • the source base station and the target base station in the embodiment of the present application are only an example of network equipment or access network equipment, and the specific equipment names of the network equipment or access network equipment are not limited in the embodiment of the present application.
  • radio access network notification area update radio access network notification area data, RNAU
  • RNAU radio access network notification area data
  • the terminal device accesses the network, it receives the configuration information sent by the source base station and enters the inactive state, and the source base station can store the context information of the terminal device. If a terminal device in the inactive state initiates random access by another network device (for example, the target base station), the source base station may decide whether to forward the context information of the terminal device to the terminal device according to the reason why the terminal device in the inactive state accesses the network The current target base station. If the source base station does not forward the context information of the terminal device, it can be understood that the source base station still maintains the context of the terminal device, and it can be said that the terminal device in the inactive state does not replace the source base station. The mechanism of not replacing the source base station can avoid unnecessary signaling overhead caused by the terminal device replacing the source base station.
  • the terminal device after determining that the uplink data packet is quickly transmitted in NR UL210 or SUL 220 according to the transmission threshold and the downlink signal quality threshold, the terminal device can quickly transmit the uplink data packet using a key related to the source base station. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • the target base station may send the first indication information to the terminal device, which may be used to instruct the terminal device to use the key related to the source base station during the rapid transmission of uplink data. That is, when the terminal device receives the first indication information, the terminal device uses the key related to the source base station to encrypt the uplink data that needs to be quickly transmitted or to perform encryption and integrity protection. Otherwise, the terminal device uses the key related to the target base station to encrypt the uplink data that needs to be quickly transmitted or to perform encryption and integrity protection.
  • the terminal device may decide to use the key related to the source base station to encrypt the uplink data that needs to be quickly transmitted or to perform encryption and integrity protection.
  • the terminal device may send second indication information to the target base station, which is used to instruct the terminal device to encrypt or encrypt the uplink data that needs to be quickly transmitted using a key related to the source base station during the fast transmission of uplink data And integrity protection.
  • the key related to the source base station mentioned in the embodiments of the present application is not specifically limited.
  • the key related to the source base station may be a key used by the terminal device at the source base station.
  • the key related to the source base station may be a key determined by the terminal device according to the key used at the source base station and the cell information of the target base station, and the cell information may include frequency information and/or physical information of the cell Cell ID.
  • the key related to the source base station may be a key that the terminal device determines laterally based on the key used at the source base station and the cell information of the target base station.
  • the key used at the source base station may also be called an old key
  • the key related to the target base station may be called a new key.
  • the target base station may send the uplink data packet to be transmitted to the source base station.
  • the target base station may send indication information to the source base station, and the indication information may be used to request the source base station to send a data packet reception address. After receiving the receiving address of the data packet sent by the source base station, the target base station may send the uplink data packet to be transmitted to the source base station according to the receiving address.
  • the target base station may directly carry the uplink data packet to be transmitted in the signaling sent to the source base station (the signaling may be, for example, a “get terminal device uplink request” message). The following will describe in detail with reference to FIG. 5 and will not be repeated here.
  • FIG. 5 is a schematic flowchart of a possible fast uplink data packet transmission method provided by an embodiment of the present application.
  • the flowchart shown in FIG. 5 may include steps 500-580, and steps 500-580 will be described in detail below.
  • the target base station in FIG. 5 corresponds to the first network device above, and the source base station corresponds to the second network device above.
  • target base station and the source base station may be the same base station or different base stations.
  • Step 500 The target base station sends a random access configuration to the UE.
  • step 500 is an optional step.
  • the random access configuration may be a physical random access channel PRACH configuration
  • the random access configuration may be a random access configuration used for random access when the terminal device initiates fast uplink data transmission.
  • the UE may initiate a random access request to the target base station through the PRACH resources reserved by the target base station.
  • the random access configuration may be a random access configuration for fast transmission on the NR UL carrier.
  • the random access configuration may include a first random access configuration on the NR UL carrier for fast transmission and a second random access configuration on the SUL carrier for fast transmission Random access configuration.
  • the NR UL carriers and SUL carriers can use the first random access configuration and the second random access configuration for fast transmission of uplink data packets, or can be shared.
  • a random access configuration is not specifically limited in this application.
  • the first random access configuration includes the first random access configuration corresponding to at least one CE level of the NR UL carrier.
  • the second random access configuration includes a second random access configuration corresponding to at least one CE level of the SUL carrier.
  • the CE mechanism may include CE levels 0-3 as an example. Taking a random access resource containing only a preamble as an example, the preamble corresponding to CE level 0 is 0, the preamble corresponding to CE level 1 is 1, the preamble corresponding to CE level 2 is 2, and the preamble corresponding to CE level 3 is 3. .
  • Step 510 The target base station sends a data transmission threshold to the UE.
  • the target base station may send a data transmission threshold to the UE, and the data transmission threshold may be used by the UE to determine whether the uplink data packet to be transmitted can be quickly transmitted.
  • the data transmission threshold may be the size of the largest data packet that the UE supports for fast transmission on the NR UL carriers.
  • the data transmission threshold may include a first transmission threshold and a second transmission threshold, or may include only the second transmission threshold.
  • the first transmission threshold is used to indicate the size of the largest data packet supported by the terminal device on the NR UL carrier in the non-connected state.
  • the second transmission threshold is used to indicate the size of the largest data packet supported by the terminal device on the SUL carrier in the disconnected state.
  • the first transmission threshold includes a transmission threshold corresponding to at least one CE level of the NR UL carrier.
  • the second transmission threshold includes a transmission threshold corresponding to at least one CE level of the SUL carrier.
  • the CE mechanism may include CE levels 0-3 as an example.
  • the transmission threshold corresponding to CE 0 is 100 bits
  • the transmission threshold corresponding to CE 1 is 80 bits
  • the transmission threshold corresponding to CE 2 is 60 bits
  • the transmission threshold corresponding to CE 3 is 30 bits.
  • the first transmission threshold may include at least one of 100bit, 80bit, 60bit, and 30bit.
  • the second transmission threshold may include at least one of 100bit, 80bit, 60bit, and 30bit.
  • Step 520 The target base station sends a downlink signal quality threshold to the UE.
  • the target base station may also send a downlink signal quality deviation to the UE.
  • the downlink signal quality threshold or the downlink signal quality deviation includes the downlink signal quality threshold or the downlink signal quality deviation corresponding to at least one CE level.
  • the target base station sending the random access configuration to the UE may be reserved by the target base station for the UE in advance, and the UE may perform fast uplink data packet transmission through the reserved random access configuration.
  • the target base station may perform fast uplink data packet transmission through other random access configurations.
  • Step 530 The UE determines that the uplink data packet performs fast uplink data transmission on the NR UL carrier or SUL carrier according to the downlink signal quality and the data transmission threshold.
  • the UE determines the corresponding data transmission threshold according to its CE level.
  • Step 540 The UE sends an uplink data packet to be transmitted to the target base station.
  • the UE may send the uplink data packet to be transmitted on the NR UL carrier or SUL carrier according to the random access configuration.
  • the terminal device may send the uplink data packet to be transmitted according to the random access configuration.
  • the terminal device may send message 1 and the uplink data packet to be transmitted according to the random access configuration.
  • the terminal device sends a message 1 (msg1) according to the random access configuration, and the target base station confirms that the terminal device needs to send an uplink data packet according to the received message 1.
  • the terminal device sends message 3 (msg3) and the uplink data packet to be transmitted.
  • the terminal device sends a message 3 (msg3), which carries the uplink data packet to be transmitted, and the message 3 includes a cell, which can be used to indicate that the message 3 carries the uplink to be transmitted. data pack.
  • msg3 message 1
  • the target base station confirms that the terminal device needs to send an uplink data packet according to the received message 1.
  • the terminal device sends message 3 (msg3) and the uplink data packet to be transmitted.
  • the terminal device sends a message 3 (msg3), which
  • the terminal device sends message 5 (msg5) and the uplink data packet to be transmitted.
  • the terminal device sends a message 5 (msg5), which carries the uplink data packet to be transmitted, and the message 5 includes a cell, which can be used to indicate that the message 5 carries the uplink to be transmitted data pack.
  • the target base station may send the random access configuration to the terminal device before the terminal device initiates the random access request.
  • the random access configuration is a random access configuration used by the terminal device to perform random access when initiating fast uplink data transmission.
  • the UE may send the uplink data packet to the target base station according to the random access configuration.
  • the uplink data packet sent by the UE may be encrypted using a key related to the source base station, or encryption and integrity protection.
  • the target base station may instruct the UE to use the key related to the source base station for fast uplink data packet transmission.
  • the UE itself decides to use the key related to the source base station for fast uplink data packet transmission.
  • Step 550 The target base station sends the first message to the source base station.
  • step 550 is an optional step.
  • the target base station may send a first message to the source base station after determining that the data packet to be transmitted sent by the UE uses a key related to the source base station .
  • the first message may carry third indication information, and the third indication information may be used to instruct the source base station that the UE initiates fast data transmission at the target base station, or the third indication information is used to instruct the source base station to send a receiving address,
  • the target base station may send the uplink data packet to be transmitted sent by the UE to the source base station according to the receiving address.
  • the first message may be a request message for acquiring a UE context.
  • the target base station may also directly carry the fast-transmitted uplink data packet received from the UE side to the source base station in the first message.
  • the uplink data packet to be transmitted may also be forwarded to the source base station in steps 560 and 570.
  • Step 560 The source base station sends a second message to the target base station.
  • step 560 is an optional step.
  • the source base station may send a second message to the target base station.
  • the second message may carry the receiving address of the uplink data packet to be transmitted.
  • the target base station forwards the fast-transmitted uplink data packet sent by the UE to the source base station according to the receiving address.
  • the source base station may determine that the UE chooses not to change the anchor base station (the source base station still maintains the context of the UE). It may also be determined according to the third indication information that the UE uses a key related to the source base station. For a specific description about the key related to the source base station, please refer to the previous description, and it will not be repeated here.
  • the second message may be a "Failed to obtain UE context" message.
  • This message may carry an RRC release (RRC release) message and the receiving address information of the uplink data packet to be transmitted.
  • RRC release RRC release
  • the RRC release message is generated by the source base station and encrypted and/or integrity protected.
  • the second message may be a "Failed to obtain UE context" message, which carries the RRC release message; the RRC release message is generated by the source base station and encrypted and/or Or integrity protection.
  • the source base station may send the receiving address of the uplink data packet to be transmitted to the target base station in the case of not changing the anchor base station, and the target base station may send the uplink data packet to be transmitted sent by the UE to the source according to the receiving address Base station.
  • the source base station also needs to send an RRC release message to the UE, and the RRC release message may instruct the UE to disconnect the target base station.
  • the RRC release message needs to be sent by the source base station to the target base station, and transparently transmitted by the target base station to the UE.
  • step 570 the target base station forwards the uplink data packet to the source base station.
  • step 570 is an optional step.
  • the target base station after receiving the receiving address of the uplink data packet to be transmitted sent by the source base station, the target base station may, according to the receiving address, receive the fast data received from the UE side The transmitted uplink data packet is forwarded to the source base station.
  • Step 580 The target base station sends an RRC release message to the UE.
  • the target base station may forward the RRC release message to the UE after receiving the RRC release message carried in the "Failed to obtain UE context" message sent by the source base station.
  • the anchor base station when the UE can support the rapid transmission of uplink data packets, the anchor base station may not be changed, thereby avoiding unnecessary signaling overhead and large data transmission delay caused by changing the anchor base station. .
  • the terminal device judges that the fast transmission mechanism cannot be used according to the downlink signal quality and the uplink data transmission threshold. That is, it is impossible to send all the uplink data packets to be transmitted in one fast-transmitted uplink data packet, and the terminal device can perform data transmission with the target base station (it can be understood that the terminal device needs to replace the anchor base station).
  • the terminal device may use the key related to the target base station for uplink data packet transmission.
  • the embodiment of the present application does not specifically limit the implementation manner in which the terminal device can use the key related to the target base station for uplink data packet transmission.
  • the terminal device may determine that fast uplink transmission can be performed on NR UL 210 or SUL 220 through the transmission threshold and the downlink quality threshold, and then the data packet may be sent by fast data transmission first. . Then, after the transition state of the terminal device is changed to the connected state, other uplink data packets to be transmitted can be sent. As another example, the terminal device may send all uplink data packets to be transmitted after transitioning to the connected state.
  • the embodiment of the present application does not specifically limit the key related to the target base station used by the terminal device for uplink data packet transmission.
  • the key related to the target base station may be a key determined by the terminal device according to the key used at the source base station and the cell information of the target base station, and the cell information may include frequency information of the cell and/or physical cell Logo.
  • the key related to the target base station may be a secret key determined by the terminal device according to the key used at the source base station, the cell information of the target base station, and the next hop chaining counter (NCC) key.
  • NCC next hop chaining counter
  • the terminal device compares the first NCC used by the terminal device at the source base station (that is, the NCC used before receiving the release message, or may be understood as the NCC corresponding to the key used by the terminal device at the source base station) and the slave The second NCC carried in the release message received by the source base station. If they are the same, the key related to the target base station may be a key determined by the terminal device according to the key used at the source base station and the cell information of the target base station, that is, a horizontally derived key. If the first NCC and the second NCC are different, the key related to the target base station may be a key determined by the terminal device according to the key used at the source base station, the cell information of the target base station, and the NCC.
  • the terminal device may first determine the next hop key based on the key used at the source base station, the first NCC, and the second NCC, and then determine the information related to the target base station based on the next hop key and the cell information of the target base station Key, that is, a vertically derived key.
  • FIG. 6 is a schematic flowchart of a possible method for transmitting an uplink data packet provided by an embodiment of the present application.
  • the flowchart described in FIG. 6 may include steps 600-650, and steps 600-650 will be described in detail below.
  • the target base station in FIG. 6 corresponds to the first network device above, and the source base station corresponds to the second network device above.
  • target base station and the source base station may be the same base station or different base stations.
  • step 600 the target base station sends a random access configuration to the UE.
  • step 500 Corresponds to step 500. For details, please refer to the description in step 500, which will not be repeated here.
  • Step 610 The target base station sends a data transmission threshold to the UE.
  • step 510 Corresponds to step 510.
  • step 510 corresponds to the description in step 510, which will not be repeated here.
  • Step 620 The target base station sends a downlink signal quality threshold to the UE.
  • the target base station may also send a downlink signal quality deviation to the UE.
  • step 520 Corresponds to step 520. For details, please refer to the description in step 520, which is not repeated here.
  • Step 630 The UE judges, according to the downlink signal quality and the data transmission threshold, whether all uplink data packets to be transmitted can be sent through fast transmission.
  • step 530 For the specific judgment method, please refer to the description in step 530, which will not be repeated here.
  • the size of the uplink data packet to be transmitted by the UE is greater than the maximum data transmission threshold, it means that the uplink data packet to be transmitted by the UE cannot send all the data packets to be transmitted by one fast transmission.
  • the first transmission threshold is greater than the second transmission threshold
  • the size of the uplink data packet to be transmitted by the UE is greater than the second transmission threshold but less than the first transmission threshold, and the terminal device determines that the terminal device is not in the uplink of NR UL 210 based on the downlink signal quality threshold In the coverage area, it is impossible to send all the data packets to be transmitted in one fast transmission.
  • the target base station may configure the UE in a connected state, and the UE may directly perform data transmission with the target base station.
  • the UE may use the key related to the target base station to protect the uplink data packet to be transmitted.
  • the key related to the target base station please refer to the description above, which will not be repeated here.
  • the UE may transmit the first data packet by fast transmission, and then after the state of the UE transitions to the connected state Then send other uplink data packets to be transmitted.
  • the UE may send all the uplink data packets to be transmitted to the target base station after being changed to the connected state.
  • Step 640 The UE initiates a random access procedure to the target base station and transmits uplink data packets.
  • the UE sends the first uplink data packet to be transmitted through the fast transmission mechanism, and then the state transitions to the active state. After the UE enters the active state, it may continue to send other uplink data packets to be transmitted to the target base station.
  • the UE can determine the first uplink data packet that can be quickly uplink-transmitted on the NR UL 210 or SUL 220 through the transmission threshold and the downlink quality threshold. Send the first upstream packet.
  • the UE initiates a random access procedure to the target base station according to the random access configuration of uplink data transmission.
  • the target base station can determine that the UE initiated the random access procedure for uplink data transmission according to the random access configuration for uplink data transmission.
  • the UE may send status indication information, which is used by the target base station to determine to configure the UE to enter the connected state.
  • the status indication information may indicate that there is still an uplink data packet to be transmitted on the UE side, or may indicate the size of the uplink data packet to be transmitted on the UE side.
  • Step 650 After the UE turns into the active state, the uplink data packet is transmitted.
  • the UE may determine that the size of the uplink data packet to be transmitted is greater than the larger value of the first transmission threshold and the second transmission threshold. That is, the uplink data packet to be transmitted by the terminal device is greater than max ⁇ first transmission threshold, second transmission threshold ⁇ , and the network device may configure the UE to enter an active state. After the UE enters the active state, it can perform uplink data transmission with the target base station.
  • FIG. 7 is a schematic flowchart of a possible fast transmission method of a downlink data packet provided by an embodiment of the present application.
  • the flowchart described in FIG. 7 may include steps 700-780, and steps 700-780 will be described in detail below.
  • the target base station in FIG. 7 corresponds to the first network device above, and the source base station corresponds to the second network device above.
  • target base station and the source base station may be the same base station or different base stations.
  • step 700 the source base station and the target base station perform capability interaction.
  • step 700 is an optional step.
  • the source base station may confirm whether the target base station has the capability of rapid transmission of downlink data packets and/or supports fast transmission of downlink before the downlink data packet arrives Data packet transmission threshold.
  • the target base station may directly send the downlink data packet to the terminal device in the inactive state.
  • the target base station may configure the terminal device to enter an active state after receiving the downlink data packet sent by the source base station. And after the terminal device enters the active state, the downlink data packet to be transmitted can be sent to the terminal device.
  • Step 710 The source base station pages the UE.
  • the source base station may send a "RAN paging" message to page the UE after the downlink data packet arrives.
  • the source base station directly initiates RAN paging to the UE within its coverage area.
  • the source base station initiates RAN paging to other base stations, so that the other base stations page the UE within their respective coverage areas.
  • the source base station may carry fourth indication information in the paging message sent to the target base station, which is used to indicate the arrival of the downlink data packet.
  • Step 720 The source base station receives the third message sent by the target base station.
  • step 720 is an optional step.
  • the target base station is the base station that receives the UE paging response. That is, before step 720, the target base station receives the access request message of the UE, and the access request message is used to respond to the paging message sent by the target base station to the UE.
  • the third message may include a downlink data packet transmission threshold.
  • the downlink data packet transmission threshold is used to indicate the size of the largest downlink data packet for fast data transmission supported by the target base station.
  • the third message may include the data receiving address of the target base station.
  • the source base station may forward the downlink data packet to be transmitted to the target base station according to the receiving address.
  • the third message in the embodiment of the present application may be a request message for acquiring a UE context.
  • Step 730 The source base station sends a fourth message to the target base station.
  • step 730 is an optional step.
  • the source base station may determine whether to replace the anchor base station according to the downlink data packet transmission threshold and the downlink data to be transmitted.
  • the downlink data packet transmission threshold may be set by the source base station itself, or may be received by the source base station from the target base station.
  • the source base station may feed back a fourth message to the target base station (for example, send a "Failed to obtain UE context" message to the target base station).
  • the source base station may also determine whether to replace the anchor base station according to other factors, which is not limited in this embodiment of the present application.
  • the anchor base station may decide whether to replace the anchor base station for the UE according to its own resource usage. For example, if the anchor base station itself uses more resources, consider replacing the anchor base station for the UE.
  • the anchor base station may also decide whether to replace the anchor base station for the UE according to the congestion situation. For example, if the anchor base station is more congested, the anchor base station considers replacing the anchor base station for the UE.
  • the source base station may directly carry the downlink data packet to be transmitted to the UE in the fourth message.
  • the fourth message may carry an RRC message generated by the source base station and encrypted and/or integrity protected.
  • the RRC message may be an RRC release message.
  • the fourth message may carry indication information.
  • the indication information may include at least one of fifth indication information, sixth indication information, and seventh indication information.
  • the fifth indication information may be used to instruct the target base station to send and receive a downlink data packet receiving address.
  • the sixth indication information may be used to indicate that the terminal device needs to receive the sent downlink data packet.
  • the seventh indication information may be used to indicate that the terminal device needs to decrypt the sent downlink data packet using the old key related to the source base station.
  • the sixth indication information and/or the seventh indication information may be carried in the RRC message in the fourth message.
  • step 740 the target base station sends a receiving address to receive the downlink data packet to the source base station.
  • step 570 is an optional step.
  • the target base station may send a data forwarding address indication (data forwarding address indication) message to the source base station.
  • data forwarding address indication data forwarding address indication
  • the target base station may perform step 740.
  • step 750 the source base station sends a downlink data packet to the target base station.
  • step 570 is an optional step.
  • the source base station may forward the downlink data packet to the target base station after receiving the receiving address of the downlink data packet sent by the target base station.
  • the source base station may perform step 750.
  • Step 760 The target base station sends an access response message to the UE.
  • the access response message may include layer 2 control information and RRC messages, or only RRC messages.
  • the target base station receives the RRC message in the fourth message sent by the source base station, and may forward the RRC message to the UE as an access response message.
  • the RRC message may carry sixth indication information and/or seventh indication information.
  • the layer 2 control information may carry sixth indication information and/or seventh indication information.
  • the layer 2 control information may be downlink control information (downlink control information, DCI).
  • Step 770 The target base station sends a downlink data packet to the UE.
  • the target base station may send a downlink data packet to the UE while sending an access response message.
  • the target base station may also send the downlink data packet to the UE after sending the access response message.
  • Step 780 The UE receives the downlink data packet.
  • the UE may start a timer. If the UE can monitor the PDCCH before the timer expires, the UE can receive the downlink data packet sent on the physical downlink shared channel (PDSCH) according to the scheduling information in the PDCCH, and the UE stops the timer.
  • PDSCH physical downlink shared channel
  • the UE determines to process the received downlink data using a key related to the source base station.
  • a key related to the source base station please refer to the description above, and no more details will be given here.
  • the UE saves the temporary cell radio network temporary identifier (C-RNTI) allocated by the target base station during the random access process, and uses the saved temporary C-RNTI Monitor the PDCCH.
  • C-RNTI temporary cell radio network temporary identifier
  • the temporary identifier of the cell wireless network may be a dynamic identifier assigned to the UE by the network device and uniquely identifies the UE under the air interface of a cell.
  • the indication information indicating the existence of the downlink data transmission can be introduced during the transmission of the downlink data packet, which can prevent the terminal device from being unaware of the existence of the downlink transmission data, thereby avoiding the data caused by missing the downlink data Pair lost.
  • FIG. 8 is a schematic flowchart of a possible method for transmitting a downlink data packet provided by an embodiment of the present application.
  • the flowchart described in FIG. 8 may include steps 810-840, and steps 810-840 will be described in detail below.
  • the target base station in FIG. 8 corresponds to the first network device above, and the source base station corresponds to the second network device above.
  • target base station and the source base station may be the same base station or different base stations.
  • Step 810 The source base station pages the UE, forwards the UE context, and forwards the data.
  • step 570 is an optional step.
  • the source base station may send a "RAN paging" message to page the UE after the downlink data packet arrives.
  • a "RAN paging" message For the specific paging mechanism, refer to the description in step 720.
  • the source base station may send a fourth message to the target base station, where the fourth message carries UE context information.
  • the fourth message may be a UE context response message.
  • the fourth message may also carry indication information.
  • the indication information may include at least one of fifth indication information, sixth indication information, and seventh indication information. For the description of the specific fifth indication information, sixth indication information, and seventh indication information, refer to the description in step 730.
  • the source base station may directly carry the downlink transmission packet to be transmitted of the UE in the fourth message.
  • the mechanism for the source base station to send the downlink data packet to the target base station, and/or the specific implementation process of the source base station acquiring the address of the received downlink data packet sent by the target base station please refer to the description in Embodiment 7 of the present application, here No longer.
  • the target base station is the base station that receives the UE paging response.
  • the source base station decides to replace the anchor base station for the UE. Specifically, the source base station may determine whether to replace the anchor base station for the UE according to the cause of random access by the UE (which may be understood as whether to continue to maintain the UE context). Or, if the downlink data packet to be transmitted is smaller than the downlink data packet transmission threshold, the source base station may decide to replace the anchor base station for the UE. Or, when the source base station is congested, the source base station may decide to replace the anchor base station for the UE. At this time, the source base station can forward the maintained UE context to the target base station, where the target base station can maintain the UE context and can serve as the new anchor base station of the UE.
  • the source base station may forward the downlink data packet to be transmitted to the target base station when it is determined that the anchor base station is replaced for the UE.
  • the source base station may send the downlink data packet to be transmitted to the UE at one time.
  • the source base station uses more resources or is congested, so the source base station still decides to replace the anchor base station for the UE.
  • the target base station only needs to send the downlink data packet to the UE directly.
  • Step 820 The target base station sends an access response message to the UE.
  • the target base station may send an access response message to the UE.
  • the access response message may include layer 2 control information and RRC messages, or only RRC messages.
  • the RRC message is generated by the target base station and encrypted and/or integrity protected.
  • the target base station may carry sixth indication information and/or seventh indication information in the layer 2 control information or the RRC message.
  • Layer 2 control information may be downlink control information (downlink control information, DCI).
  • Step 830 The target base station sends a downlink data packet to the UE.
  • the target base station may send an access response message while sending a downlink data packet to the UE.
  • the target base station may send an access response message and then send a downlink data packet to the UE.
  • Step 840 The UE receives the downlink data packet.
  • the UE may start a timer. If the UE can monitor the PDCCH before the timer expires, the UE can receive downlink data packets sent on the physical downlink shared channel (PDSCH) according to the scheduling information in the PDCCH, and the UE stops the timer.
  • PDSCH physical downlink shared channel
  • the UE determines to use the key related to the target base station to process the received downlink data packet.
  • the key related to the target base station please refer to the description above, and it will not be repeated here.
  • the UE saves the temporary cell radio network temporary identifier (C-RNTI) allocated by the target base station during the random access process, and uses the saved temporary C-RNTI Monitor the PDCCH.
  • C-RNTI temporary cell radio network temporary identifier
  • the steps implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used for the terminal device.
  • the steps implemented by the first network device may also be implemented by components (such as chips or circuits) that can be used for the first network device.
  • the steps implemented by the second network device may also be implemented by components (such as chips or circuits) that can be used for the second network device.
  • FIG. 9 is a schematic block diagram of a communication device 900 provided by an embodiment of the present application. It can be understood that the communication device 900 may be a terminal device or a component that can be used for the terminal device.
  • the communication device 900 may include a receiving module 910 and a determining module 920.
  • the receiving module 910 is configured to receive an uplink data transmission threshold from the first network device.
  • the uplink data transmission threshold includes a first transmission threshold and a second transmission threshold, or includes a second transmission threshold.
  • the determining module 920 is configured to determine the first uplink carrier or SUL of the first network device in the non-connected state according to the uplink data transmission threshold and the size of the uplink data packet to be transmitted The uplink data packet is quickly transmitted on the carrier.
  • the first network device in the embodiment of the present application may be understood as a target base station.
  • the first transmission threshold is used to indicate the maximum data packet size supported by the communication device 900 on the first uplink carrier in the non-connected state.
  • the second transmission threshold is used to indicate the maximum data packet size that the communication device 900 supports for transmission on the supplemental uplink SUL carrier in the non-connected state.
  • the frequency of the first uplink carrier is higher than the SUL carrier.
  • the first uplink carrier may be, for example, a new radio uplink (NRUL) carrier.
  • the determination module 920 is specifically configured to: the second transmission threshold is greater than the first transmission threshold, and the size of the uplink data packet to be transmitted is greater than the first transmission When the threshold is smaller than the second transmission threshold, the communication apparatus 900 quickly transmits the uplink data packet on the SUL carrier of the first network device.
  • the determination module 920 is specifically configured to: when the size of the uplink data packet to be transmitted is smaller than the smaller value of the first transmission threshold and the second transmission threshold Next, the communication device 900 quickly transmits the uplink data packet on the first uplink carrier or SUL carrier in the non-connected state.
  • the determination module 920 is specifically configured to: when the size of the uplink data packet to be transmitted is smaller than the smaller value of the first transmission threshold and the second transmission threshold Next, it is determined that the uplink data packet is transmitted on the first uplink carrier or the SUL carrier of the first network device in the non-connected state.
  • the determining module 920 performs the following operations through the receiving module 910: receiving a downlink signal quality threshold from the first network device; In the connected state, the uplink data packet is transmitted on the first uplink carrier or SUL carrier.
  • it further includes: a sending module 930, configured to send the uplink data packet through a random access process in the non-connected state.
  • the sending module 930 is specifically configured to: determine to send the message 1 and the uplink data packet to be transmitted in the non-connected state; or,
  • a message 5 is sent, and the message 5 carries the uplink data packet to be transmitted.
  • the receiving module 910 is specifically configured to: receive first indication information from the first network device, and the first indication information is used to indicate that the communication device 900 is in the non-connected state Next, the first key is used to transmit the uplink data packet, where the first key is a key determined by the communication device 900 according to at least one of the following information:
  • a key used by the communication device 900 in a second network device being a source network device that configures the communication device 900 to enter the non-connected state;
  • Cell information of the first network device includes cell frequency information and/or physical cell identification of the first network device, the first network device is used for random access by the communication device 900 Target network equipment;
  • modules in the embodiments of the present application may also be referred to as units or circuits, etc., which are not limited in the embodiments of the present application.
  • the communication device 900 may use the key related to the source base station to quickly transmit the uplink data packet, thereby avoiding the signaling overhead and large data transmission caused by the replacement of the anchor base station by the communication device 900 in the inactive state Delay.
  • the receiving module 910 is further configured to: receive a random access configuration from the first network device; the communication device 900 determines that in the non-connected state, according to the random access Configured to transmit the uplink data packet on the first uplink carrier or the SUL carrier.
  • the random access configuration includes at least one of the following: random access preamble information and random access resources.
  • the random access configuration includes a random access configuration corresponding to at least one coverage enhancement level.
  • the uplink data transmission threshold includes at least one uplink data transmission threshold corresponding to at least one coverage enhancement level.
  • the above-mentioned different CE levels may correspond to different maximum data transmission repetition times and/or modulation methods to achieve a balance between coverage and capacity.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by an embodiment of the present application. It can be understood that the communication device 1000 may be a network device or a component that can be used for a network device.
  • the communication device 1000 may include a sending module 1010 and a receiving module 1020.
  • the sending module 1010 is configured to send an uplink data transmission threshold to a terminal device, where the uplink data transmission threshold includes a first transmission threshold and a second transmission threshold.
  • the receiving module 1020 is configured to receive the uplink data packet transmitted by the terminal device in the non-connected state on the first uplink carrier or SUL carrier, or include a second transmission threshold.
  • the communication device 1000 in the embodiment of the present application may be understood as a target base station.
  • the first transmission threshold is used to indicate the maximum data packet size that the terminal device supports for transmission on the first uplink carrier in the disconnected state
  • the second transmission threshold is used to indicate the terminal device In the non-connected state, the size of the largest data packet supported for transmission on the supplemental uplink SUL carrier, the frequency of the first uplink carrier is higher than that of the SUL carrier.
  • the sending module 1010 is further configured to: send a downlink signal quality threshold to the terminal device, and the downlink signal quality threshold is used by the terminal device to determine in the non-connected state , Transmitting the uplink data on the first uplink carrier or the SUL carrier.
  • the sending module 1010 is further configured to: send a random access configuration to the terminal device, where the random access configuration is used by the terminal device to determine that it is in the non-connected state , Transmitting the uplink data packet on the first uplink carrier or the SUL carrier according to the random access configuration.
  • the random access configuration includes at least one of the following: random access preamble information and random access resources.
  • the random access configuration includes a random access configuration corresponding to at least one coverage enhancement level.
  • the above-mentioned different CE levels may correspond to different maximum data transmission repetition times and/or modulation modes to achieve a balance between coverage and capacity.
  • the sending module 1010 is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate that the terminal device is in the non-connected state , Use the first key to transmit the uplink data packet.
  • the first key in the embodiment of the present application may be a key determined by the terminal device according to at least one of the following information: a key used by the terminal device in the second network device, the second network
  • the device is a source network device that configures the terminal device to enter the non-connected state; cell information of the first network device, the cell information includes cell frequency information and/or physical cell identification of the first network device ,
  • the first network device is a target network device for random access by the terminal device; the next hop chain count value NCC.
  • the terminal device may use the key related to the source base station to quickly transmit the uplink data packet. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • the receiving module 1020 is further configured to: receive a second message sent by the second network device, where the second message includes a receiving address of the uplink data packet; the communication The apparatus 1000 forwards the received uplink data packet transmitted by the terminal device to the second network device according to the receiving address.
  • the sending module 1010 is further configured to: send a first message to the second network device, where the first message includes third indication information, and the third indication information is used Instructing the second network device to send a receiving address, or instructing the terminal device to use the first key to transmit the uplink data packet, the receiving address is the communication device 1000 to the second The network device sends the address of the uplink data packet transmitted by the terminal device in the non-connected state.
  • modules in the embodiments of the present application may also be referred to as units or circuits, etc., which are not limited in the embodiments of the present application.
  • FIG. 11 is a schematic block diagram of a communication device 1100 provided by an embodiment of the present application. It can be understood that the communication device 1100 may be a network device or a component that can be used for a network device.
  • the communication apparatus 1100 in the embodiment of the present application may be understood as a source base station, and may correspond to the above-mentioned second network device.
  • the communication device 1100 may include a first receiving module 1110 and a second receiving module 1120.
  • the first receiving module 1110 is configured to receive the uplink data packet to be transmitted sent by the first network device.
  • the second receiving module 1120 is configured to receive third indication information sent by the first network device, where the third indication information is used to indicate that the uplink data packet to be transmitted is that the terminal device is in a non-connected state.
  • it further includes: a processing module 1130, a sending module 1140,
  • the processing module 1130 is configured to: according to the downlink data transmission threshold and the size of the downlink data packet to be transmitted, determine that the downlink data packet to be transmitted needs to be sent to the first network device.
  • the downlink data packet to be transmitted is the The first network device needs to directly send the downlink data packet to the terminal device when the terminal device is in a disconnected state.
  • the sending module 1140 is configured to send the downlink data packet to be transmitted to the first network device.
  • the sending module 1140 is further configured to: send fifth indication information to the first network device, where the fifth indication information is used to instruct the first network device to send and receive The receiving address of the downstream data packet.
  • the sending module 1140 is further configured to: send sixth indication information to the first network device, where the sixth indication information is used to indicate that the terminal device is in the non-connected state , The downlink data packet to be received.
  • the sending module 1140 is further configured to: send seventh indication information to the first network device, where the seventh indication information is used to instruct the terminal device to decrypt the location using the first key
  • the downlink data packet, wherein the first key is a key determined by the terminal device according to at least one of the following information:
  • a key used by the terminal device in the second network device being a source network device that configures the terminal device to enter the non-connected state
  • Cell information of the first network device includes cell frequency information and/or physical cell identification of the first network device, and the first network device is a target for random access of the terminal device Network equipment;
  • modules in the embodiments of the present application may also be referred to as units or circuits, etc., which are not limited in the embodiments of the present application.
  • the terminal device may use the key related to the source base station to quickly transmit the uplink data packet. Therefore, the signaling overhead and the large data transmission delay caused by the replacement of the anchor base station of the terminal device in the inactive state can be avoided.
  • FIG. 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 may include a processor 1201, a transceiver 1202, and a memory 1203.
  • the processor 1201 can be connected to the transceiver 1202 in communication.
  • the memory 1203 may be used to store program codes and data of the communication device 1200. Therefore, the memory 1203 may be a storage unit inside the processor 1201, an external storage unit independent of the processor 1201, or a storage unit including an internal storage unit of the processor 1001 and an external storage unit independent of the processor 1201 part.
  • the communication device 1200 may further include a bus 1204.
  • the transceiver 1202 and the memory 1203 can be connected to the processor 1201 through a bus 1204;
  • the bus 1204 can be a peripheral component interconnection standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard structure (Extended Industry Standard Architecture, EISA) Bus etc.
  • the bus 1205 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1201 may be, for example, a central processor (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or a field programmable gate.
  • Array Field Programmable Gate Array, FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the transceiver 1202 may be a circuit including the above-mentioned antenna and transmitter chain and receiver chain, and the two may be independent circuits or the same circuit.
  • the transceiver 1202 may correspond to the receiving module 910 in FIG. 9 above, and the transceiver 1102 is used to perform all steps performed by the receiving module 910 in FIG. 9.
  • the processor 1201 may correspond to the processing module 920 in FIG. 9 above.
  • the processor 1201 is used to execute all the steps performed by the processing module 920 in FIG. 9.
  • modules in the embodiments of the present application may also be referred to as units or circuits, etc., which are not limited in the embodiments of the present application.
  • the communication device 1300 may include a processor 1301, a transceiver 1302, and a memory 1303.
  • the processor 1301 can be connected to the transceiver 1302 in communication.
  • the memory 1303 may be used to store program codes and data of the communication device 1300. Therefore, the memory 1303 may be a storage unit inside the processor 1301, an external storage unit independent of the processor 1301, or a storage unit including the internal storage unit of the processor 1301 and an external storage unit independent of the processor 1301 part.
  • the communication device 1300 may further include a bus 1304.
  • the transceiver 1302 and the memory 1303 can be connected to the processor 1301 through the bus 1304;
  • the bus 1304 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard Architecture, EISA) Bus etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1305 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1301 may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or a field programmable gate.
  • Array Field Programmable Gate Array, FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the transceiver 1302 may be a circuit including the above-mentioned antenna and transmitter chain and receiver chain, and the two may be independent circuits or the same circuit.
  • the transceiver 1302 is configured to send an uplink data transmission threshold to a terminal device, where the uplink data transmission threshold includes a first transmission threshold and a second transmission threshold, or includes a second transmission threshold.
  • the transceiver 1302 is configured to receive, on the first uplink carrier or SUL carrier, the uplink data packet transmitted by the terminal device in the non-connected state.
  • the transceiver 1302 corresponds to the sending module 1010 and the receiving module 1020 in FIG. 10 above.
  • the transceiver 1302 is used to perform all the steps performed by the sending module 1010 and the receiving module 1020 in FIG. 10.
  • FIG. 14 is a schematic block diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may include a processor 1401, a transceiver 1402, and a memory 1403.
  • the processor 1401 can be connected to the transceiver 1402 in communication.
  • the memory 1403 may be used to store program codes and data of the communication device 1400. Therefore, the memory 1403 may be a storage unit inside the processor 1401, or an external storage unit independent of the processor 1401, or may include a storage unit inside the processor 1401 and an external storage unit independent from the processor 1401. part.
  • the communication device 1400 may further include a bus 1404.
  • the transceiver 1402 and the memory 1403 can be connected to the processor 1401 through a bus 1404;
  • the bus 1404 can be a peripheral component interconnection standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard structure (Extended Industry Standard Architecture, EISA) Bus etc.
  • the bus 1405 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the processor 1401 may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or a field programmable gate.
  • Array Field Programmable Gate Array, FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the transceiver 1402 may be a circuit including the above-mentioned antenna and transmitter chain and receiver chain, and the two may be independent circuits or the same circuit.
  • the transceiver 1402 is configured to receive the uplink data packet to be transmitted sent by the first network device.
  • the transceiver 1402 is configured to receive first indication information sent by the first network device, where the first indication information is used to indicate that the uplink data packet to be transmitted is that the terminal device is in a disconnected state, Uplink carriers or uplink data packets sent on supplemental uplink SUL carriers.
  • the transceiver 1402 corresponds to the first receiving module 1110 and the second receiving module 1120 in FIG. 11 above.
  • the transceiver 1402 is used to perform all steps performed by the first receiving module 1110 and the second receiving module 1120 in FIG. 11.
  • modules in the embodiments of the present application may also be referred to as units or circuits, etc., which are not limited in the embodiments of the present application.
  • the terminal device or the network device may perform some or all of the steps in the foregoing embodiments, and these steps or operations are merely examples, and other operations or variations of various operations may be performed in the embodiments of the present application.
  • the various steps may be performed in different orders presented in the above embodiments, and it is possible that not all operations in the above embodiments are to be performed.
  • Embodiments of the present application also provide a computer-readable medium for storing a computer program, where the computer program includes instructions for executing the method in any possible implementation manner of any of the above aspects.
  • An embodiment of the present application also provides a computer program product, which is applied to a terminal device, and the computer program product includes: computer program code, which when the computer program code is executed by a computer, causes the computer to perform any possibility of any of the above aspects Method in the implementation.
  • An embodiment of the present application also provides a chip system, which is applied to a communication device.
  • the chip system includes: at least one processor, at least one memory, and an interface circuit, and the interface circuit is responsible for information interaction between the chip system and the outside world.
  • the at least one memory, the interface circuit and the at least one processor are interconnected by a line, and the at least one memory stores instructions; the instructions are executed by the at least one processor to perform all the above aspects The operation of the network element in the method described.
  • An embodiment of the present application also provides a computer program product, which is applied to a communication device, and the computer program product includes a series of instructions, and when the instructions are executed to perform the methods described in the above aspects The operation of the network element.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes an associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, exist alone B these three cases.
  • the character "/" in this article generally indicates that the related objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, and B may also be determined based on A and/or other information.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、设备及计算机可读存储介质。所述方法包括:从第一网络设备接收上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者,包括第二传输门限,第一传输门限用于指示所述终端设备在非连接状态下,第一上行链路载波上所支持传输的最大数据包大小,第二传输门限用于指示终端设备在所述非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包大小;根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在第一上行链路载波或SUL载波上传输所述上行数据包。本申请提供的技术方案可以在引入SUL场景下,上行数据包可以进行快速传输。

Description

一种通信方法、装置及计算机可读存储介质
本申请要求于2018年12月10日提交中国专利局、申请号为201811502034.5、申请名称为“一种通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、装置及计算机可读存储介质。
背景技术
在终端设备与网络设备进行通信的过程中,可能会存在上行链路UL载波覆盖范围小于下行链路DL载波覆盖范围的情况。为了使UL载波的覆盖范围和DL载波覆盖范围保持一致,引入了低频的补充上行(supplementary uplink,SUL)载波。一个小区包括至少一个第一上行链路载波以及至少一个SUL载波,第一上行链路载波的频率高于SUL载波的频率,SUL的覆盖范围和DL载波的覆盖范围相对一致。
现有技术中,在第五代移动通信技术标准中引入的SUL载波场景中,对于在SUL场景下如何进行终端设备上行数据包的快速传输机制还没有讨论方案。
因此,在SUL载波场景,如何进行上行数据包的快速传输成为当前亟需解决的问题。
发明内容
本申请提供一种通信方法、装置及计算机可读存储介质,可以在引入SUL场景下,实现上行数据包的快速传输。
第一方面,提供了一种通信方法,包括:从第一网络设备接收上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括第二传输门限,根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或SUL载波上快速传输所述上行数据包。
本申请实施例中的第一网络设备可以理解为目标基站。
本申请实施例中第一传输门限用于指示所述终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包大小。第二传输门限用于指示所述终端设备在非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包大小。第一上行链路载波的频率高于所述SUL载波,第一上行载波例如可以是新空口上行链路(new radio uplink,NRUL)载波。
本申请实施例中,可以在引入SUL场景下,实现上行数据包的快速传输。
结合第一方面,在第一方面的某些可能的实现方式中,所述第二传输门限大于所述第一传输门限,在所述待传输的上行数据包的大小大于所述第一传输门限,小于所述第二传 输门限的情况下,所述终端设备确定在所述非连接状态下,在所述第一网络设备的SUL载波上传输所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,在所述待传输的上行数据包大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,所述终端设备在所述非连接状态下,在所述第一网络设备的第一上行链路载波或SUL载波上传输所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,在所述待传输的上行数据包的大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,所述终端设备从所述第一网络设备接收下行信号质量门限;所述终端设备根据所述下行信号质量门限,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或SUL载波上传输所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,所述终端设备确定在所述非连接状态下,通过随机接入流程发送所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,所述终端设备确定在所述非连接状态下,发送消息1和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息3和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息3,所述消息3中携带待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息5和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息5,所述消息5中携带待传输的上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,还包括:所述终端设备从所述第一网络设备接收第一指示信息,所述第一指示信息用于指示所述终端设备在所述非连接状态下,使用第一密钥传输所述上行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:
所述终端设备在第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;
所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;
下一跳链计数值NCC。
本申请实施例中,终端设备可以使用与源基站相关的密钥传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
结合第一方面,在第一方面的某些可能的实现方式中,还包括:所述终端设备从所述第一网络设备接收随机接入配置;所述终端设备确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上根据所述随机接入配置传输所述上行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
结合第一方面,在第一方面的某些可能的实现方式中,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
结合第一方面,在第一方面的某些可能的实现方式中,所述上行数据传输门限包括至少一个覆盖增强等级对应的上行数据传输门限。
本申请实施例中,上述不同的CE等级可以对应不同的数据传输最大重复次数和/或调制方式,以达到覆盖与容量的平衡。
结合第一方面,在第一方面的某些可能的实现方式中,还包括:所述终端设备从所述第一网络设备接收第三指示信息,所述第三指示信息用于指示所述终端设备接收待传输的下行数据包;所述终端设备所述第二指示信息,确定在所述非连接状态下,从所述第一网络设备接收待传输的下行数据包。
结合第一方面,在第一方面的某些可能的实现方式中,还包括:所述终端设备从所述第一网络设备接收第四指示信息,所述第四指示信息用于指示所述终端设备使用所述第一密钥解密所述下行数据包。
第二方面,提供了一种通信方法,包括:第一网络设备向终端设备发送上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括第二传输门限,其中,所述第一传输门限用于指示所述终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包大小,所述第二传输门限用于指示所述终端设备在所述非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包大小,所述第一上行链路载波的频率高于所述SUL载波;所述第一网络设备在所述第一上行链路载波或所述SUL载波上接收所述终端设备在所述非连接状态下传输的所述上行数据包。
本申请实施例中,可以在引入SUL场景下,实现上行数据包的快速传输。
结合第二方面,在第二方面的某些可能的实现方式中,还包括:所述第一网络设备向所述终端设备发送下行信号质量门限,所述下行信号质量门限用于所述终端设确定在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上传输所述上行数据包。
结合第二方面,在第二方面的某些可能的实现方式中,还包括:所述第一网络设备向所述终端设备发送随机接入配置,所述随机接入配置用于所述终端设备在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上根据所述随机接入配置传输所述上行数据包。
结合第二方面,在第二方面的某些可能的实现方式中,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
结合第二方面,在第二方面的某些可能的实现方式中,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
本申请实施例中,上述不同的CE等级可以对应不同的数据传输最大重复次数和/或调制方式,以达到覆盖与容量的平衡。
结合第二方面,在第二方面的某些可能的实现方式中,还包括:所述第一网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备在所述非连接状态下,使用所述第一密钥快速传输所述上行数据包。
本申请实施例中的第一密钥可以为所述终端设备根据以下信息中的至少一种确定的密钥:所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端 设备进入所述非连接状态的源网络设备;所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;下一跳链计数值NCC。
本申请实施例中,终端设备可以使用与源基站相关的密钥快速传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
结合第二方面,在第二方面的某些可能的实现方式中,还包括:所述第一网络设备接收所述第二网络设备发送的第二消息,所述第二消息包括所述上行数据包的接收地址;所述第一网络设备根据所述接收地址,将接收到的所述终端设备快速传输的所述上行数据包转发至所述第二网络设备。
结合第二方面,在第二方面的某些可能的实现方式中,在所述第一网络设备接收所述第二网络设备发送的第二消息之前,还包括:所述第一网络设备向所述第二网络设备发送第一消息,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二网络设备发送接收地址,或用于指示所述所述终端设备使用所述第一密钥快速传输所述上行数据包,所述接收地址为所述第一网络设备向所述第二网络设备发送所述终端设备在所述非连接状态下传输的所述上行数据包的地址。
第三方面,提供了一种通信方法,包括:第二网络设备接收第一网络设备发送的待传输的上行数据包;所述第二网络设备接收所述第一网络设备发送的第三指示信息,所述第三指示信息用于指示所述待传输的上行数据包为终端设备在非连接状态,在第一上行链路载波或补充上行链路SUL载波上发送的上行数据包。
本申请实施例中,可以在引入SUL场景下,实现上行数据包的快速传输。
结合第三方面,在第三方面的某些可能的实现方式中,所述方法还包括:所述第二网络设备根据下行数据传输门限和待传输的下行数据包大小确定需要向所述第一网络设备发送所述待传输的下行数据包,所述待传输的下行数据包为所述第一网络设备需要在所述终端设备在非连接的状态下,直接发送至所述终端设备的下行数据包;所述第二网络设备将所述待传输的下行数据包发送给所述第一网络设备。
结合第三方面,在第三方面的某些可能的实现方式中,在所述第二网络设备将所述待传输的下行数据包发送给所述第一网络设备之前,所述方法还包括:所述第二网络设备向所述第一网络设备发送第五指示信息,所述第五指示信息用于指示所述第一网络设备发送下行数据包的接收地址。
结合第三方面,在第三方面的某些可能的实现方式中,还包括:所述第二网络设备向所述第一网络设备发送第六指示信息,所述第六指示信息用于指示所述终端设备在所述非连接状态下,有待接收的所述下行数据包。
结合第三方面,在第三方面的某些可能的实现方式中,还包括:所述第二网络设备向所述第一网络设备发送第七指示信息,所述第七指示信息用于指示所述终端设备使用第一密钥解密所述下行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:
所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;
所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;
下一跳链计数值NCC。
本申请实施例中,终端设备可以使用与源基站相关的密钥快速传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
第四方面,提供了一种通信方法,包括:第二网络设备根据下行数据传输门限和待传输的下行数据包大小确定需要向所述第一网络设备发送所述待传输的下行数据包,所述待传输的下行数据包为所述第一网络设备需要在所述终端设备在非连接的状态,直接发送至所述终端设备的下行数据包;所述第二网络设备将所述待传输的下行数据包发送给所述第一网络设备。
结合第四方面,在第四方面的某些可能的实现方式中,还包括:所述第二网络设备向所述第一网络设备发送第六指示信息,所述第六指示信息用于指示所述终端设备在所述非连接状态下,有待接收的所述下行数据包。
结合第四方面,在第四方面的某些可能的实现方式中,还包括:
所述第二网络设备向所述第一网络设备发送第七指示信息,所述第七指示信息用于指示所述终端设备使用第一密钥解密所述下行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:
所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;
所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;
下一跳链计数值NCC。
第五方面,提供了一种通信装置,包括用于实现第一方面的方法的模块,部件或者电路。
可以理解的是,第五方面的通信装置可以是终端设备,也可以是可用于终端设备的部件(例如芯片或者电路)。
第六方面,提供了一种通信装置,包括用于实现第二方面的方法的模块,部件或者电路。
可以理解的是,第六方面的通信装置可以是网络设备,也可以是可用于网络设备的部件(例如芯片或者电路)。
第七方面,提供了一种通信装置,包括用于实现第三方面的方法的模块,部件或者电路。
可以理解的是,第七方面的通信装置可以是网络设备,也可以是可用于网络设备的部件(例如芯片或者电路)。
第八方面,提供了一种通信装置,包括用于实现第四方面的方法的模块,部件或者电路。
可以理解的是,第八方面的通信装置可以是网络设备,也可以是可用于网络设备的部件(例如芯片或者电路)。
第九方面,提供了一种通信装置,包括:存储器、处理器和收发器,
其中,该处理器可以与收发器通信连接。该存储器可以用于存储该终端设备的程序代码和数据。因此,该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
当程序被执行时,所述处理器通过所述收发器执行如第一方面或第一方面任意一种可能的实现方式中所述的方法。
第十方面,提供了一种通信装置,包括:存储器、处理器和收发器,
其中,该处理器可以与收发器通信连接。该存储器可以用于存储该终端设备的程序代码和数据。因此,该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
当程序被执行时,当程序被执行时,所述处理器通过所述收发器执行如第二方面或第二方面任意一种可能的实现方式中所述的方法。
第十一方面,提供了一种通信装置,包括:存储器、处理器和收发器,
其中,该处理器可以与收发器通信连接。该存储器可以用于存储该终端设备的程序代码和数据。因此,该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
当程序被执行时,当程序被执行时,所述处理器通过所述收发器执行如第三方面或第三方面任意一种可能的实现方式中所述的方法。
第十二方面,提供了一种通信装置,包括:存储器、处理器和收发器,
其中,该处理器可以与收发器通信连接。该存储器可以用于存储该终端设备的程序代码和数据。因此,该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
当程序被执行时,当程序被执行时,所述处理器通过所述收发器执行如第四方面或第 四方面任意一种可能的实现方式中所述的方法。
第十三方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在终端设备上运行时,使得该通信装置执行如第一方面或第一方面的任意一种实现方式中所述的方法。
第十四方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第二方面或第二方面任意一种实现方式中所述的方法。
第十五方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第三方面或第三方面任意一种实现方式中所述的方法。
第十六方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第四方面或第四方面任意一种实现方式中所述的方法。
第十七方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第一方面或第一方面任意一种实现方式中所述的方法。
第十八方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第二方面或第二方面任意一种实现方式中所述的方法。
第十九方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第三方面或第三方面任意一种实现方式中所述的方法。
第二十方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第四方面或第四方面任意一种实现方式中所述的方法。
附图说明
图1是本申请实施例可应用的通信***100的场景示意图。
图2是本申请实施例提供的一种可能的应用场景的示意图。
图3是本申请实施例提供的一种通信方法的示意性示意性流程图。
图4是本申请实施例的CE等级(CE level)的示意图。
图5是本申请实施例提供的一种可能的上行数据包快速传输的方法的示意性流程图。
图6是本申请实施例提供的一种可能的传输上行数据包的方法的示意性流程图。
图7是本申请实施例提供的一种可能的下行数据包快速传输的方法的示意性流程图。
图8是本申请实施例提供的一种可能的传输下行数据包的方法的示意性流程图。
图9是本申请实施例提供的一种通信装置900的示意性框图。
图10是本申请实施例提供的一种通信装置1000的示意性框图。
图11是本申请实施例提供的一种通信装置1100的示意性框图。
图12是本申请实施例提供的一种通信装置1200的示意性框图。
图13是本申请实施例提供的一种通信装置1300的示意性框图。
图14是本申请实施例提供的一种通信装置1400的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
本申请实施例中对终端设备的类型不做具体限定,例如可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。终端可以包括但不限于移动台(mobile station,MS)、移动电话(mobile telephone)、用户设备(user equipment,UE)、手机(handset)、便携设备(portable equipment)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、物流用的射频识别(radio frequency identification,RFID)终端设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、物联网、车辆网中的终端设备以及未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中对网络设备的类型不做具体限定,可以是用于与终端设备通信的任何设备,该网络设备例如可以是全球移动通讯(global system of mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)***中的演进型基站(evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备例如可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
作为一种可能的方式,网络设备可以由集中式单元(centralized unit,CU)和分布式单 元(distributed unit,DU)构成。一个CU可以连接一个DU,或者也可以多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)、服务数据映射协议栈(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理层部署在DU。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
本申请实施例提供的方法,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,传输信号的方法的执行主体的具体结构,本申请实施例并未特别限定,只要能够通过运行记录有本申请实施例的传输信号的方法的代码的程序,以根据本申请实施例的传输信号的方法进行通信即可,例如,本申请实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例可应用的通信***100的场景示意图。如图1所示,该通信***100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线106和110,附加组可包括天线112和114。图1中每个天线组示出了2个天线,然而对于每个组可使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而, 可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122例如可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路116向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)***中,例如,前向链路116可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)***和全双工(full duplex)***中,前向链路116和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路116和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路116和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信***100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
在终端设备与网络设备进行通信的过程中,终端设备的上行载波属于高频频段的高频场景下,由于终端设备的功率或收发天线等因素,可能会存在终端设备的上行链路(uplink,UL)载波覆盖范围小于网络设备的下行链路(downlink,DL)载波覆盖范围。作为一个示例,由于终端设备的UL功率一般小于网络设备的DL功率,从而可能会存在终端设备的UL载波覆盖范围小于网络设备的DL载波覆盖范围。作为另一个示例,由于终端设备的收发天线个数小于网络设备的收发天线个数,从而可能会存在终端设备的UL载波覆盖范围小于网络设备的DL载波覆盖范围。
可选的,高频段频谱包括厘米波(centimeter wave)频段和毫米波(millimeter wave)频段。厘米波频段例如可以包括3GHz-30GHz范围内的频谱,毫米波频段例如可以包括30GHz-300GHz范围内的频谱。
为了使UL载波的覆盖范围和DL载波覆盖范围相同,引入了低频的补充上行链路(supplementary uplink,SUL)载波。一个小区包括至少一个第一链路载波以及至少一个SUL载波,第一链路载波的频率高于SUL载波的频率,SUL的覆盖范围和DL载波的覆盖范围相对一致。
作为一个示例,以第一链路载波为新无线上行链路(new radio uplink,NRUL)作为为例。参见图2,图2是本申请实施例提供的一种可能的应用场景的示意图。图2所示的场景可以包括:NRUL 210以及SUL 220。NRUL 210的频率高于SUL 220的频率。
当终端设备处于非连接态时,该终端设备可以在不需要进入连接态或进入连接态之前,将待传输的上行数据包快速的发送至目标基站。
应理解,终端设备的状态可以包括激活(active)状态、非激活(inactive)状态、空闲态或增强的空闲态(增强的空闲态下接入网设备保存终端设备的上下文信息,和/或核心网设备保存终端设备的上下文信息)。其中,激活状态也可以称为连接态(connected),其它状态可以称为非连接态。
上文中的inactive状态可以理解为终端设备的一种节能状态,在inactive状态下,终端设备和网络设备之间的RRC连接被释放,终端设备和配置该终端设备进入inactive状态的网络设备可以保留终端设备的接入层和/或非接入层的上下文。可以理解的是,inactive态也可以称为去激活态。
可选的,关于inactive状态、active状态、增强的空闲态的描述还可以参考TS38.300 v15.3.0中的定义,此处不再赘述。
需要说明的是,快速的上行数据包传输可以理解为该终端设备在非连接态下,进行上行数据包的传输。可以理解的是,快速的上行数据包传输也可以称为直接上行数据包传输。
目前,对于在引入SUL场景下如何进行终端设备上行数据包的快速传输机制还没有讨论方案。
本申请实施例提供的通信方法可以实现终端设备在引入SUL的场景下快速传输数据包。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
图3是本申请实施例提供的一种通信方法的示意性示意性流程图。图3所示的方法可以包括步骤310-320,下面对步骤310-320进行详细描述。
步骤310:终端设备从第一网络设备接收上行数据传输门限。
本申请实施例中第一网络设备可以是终端设备当前所在的基站,该第一网络设备也可以称为目标基站。
本申请实施例的步骤310中,终端设备处于非连接态。
本申请实施例中的上行数据传输门限可以包括第一传输门限以及第二传输门限,或者仅包括第二传输门限。第一传输门限用于指示终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包的大小,第二传输门限用于指示终端设备在非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包的大小。
可以理解地,参见图2,不同的UL载波频点,其支持的UL快速传输的最大数据包的大小可能不同,也可能相同,本实施例对此不作限定。
作为一种可能的实现方式,当不同的UL载波频点支持的UL快速传输的最大数据包的大小相同时,第一传输门限以及第二传输门限可以仅用一个公共传输门限表示。
作为另一种可能的实现方式,第一传输门限小于第二传输门限。比如,第一上行链路(例如,NR UL 210)载波由于其本身覆盖范围较小,如果支持较大的上行数据包进行快速传输,其UL覆盖范围会更小。而SUL 220频点由于其覆盖范围大,因此可以支持更大的上行数据包的快速传输。
应理解,作为一个示例,网络设备可以通过广播的形式发送第一传输门限和第二传输门限。例如,网络设备可以通过***消息向终端设备发送第一传输门限和第二传输门限。
步骤320:终端设备根据上行数据传输门限以及待传输的上行数据包的大小,确定在所述非连接状态下,在第一上行链路载波或SUL载波上传输上行数据包。
本申请实施例中终端设备可以根据待传输的上行数据包的大小以及上行数据传输门限确定在所述非连接状态,在第一上行链路载波快速传输上行数据包还是在SUL载波上快速传输上行数据包。
以第一传输门限小于第二传输门限作为示例。如果确定出待传输的上行数据包的大小大于第二传输门限,可以将该终端设备配置为连接态,然后进行数据传输。也就是说,在待传输的上行数据包的大小在较大的情况下,可以不使用本申请实施例的快速传输方案。作为另一个示例,如果确定出待传输的上行数据包的大小小于第二传输门限但是大于第一传输门限,该终端设备可以在SUL载波上快速传输上行数据包。作为另一个示例,如果传输的上行数据包的大小小于第一传输门限,该终端设备可以在第一上行链路载波上快速传输上行数据包,也可以在SUL载波上快速传输上行数据包。
例如,NR UL的UL数据快速传输门限为50比特(bit),SUL为100bit。如果终端设备待传输的上行数据包的大小低于50bit,UE可以在NR UL或SUL上快速传输上行数据包。如果终端设备待传输的上行数据包的大小为80bit,高于50bit但低于100bit,终端设备可以选择在SUL上快速传输上行数据包。
以第一传输门限大于第二传输门限作为示例。如果确定出待传输的上行数据包的大小大于第一传输门限,可以将该终端设备配置为连接态,然后进行数据传输。也就是说,在待传输的上行数据包较大的情况下,可以不使用本申请实施例的快速传输方案。作为另一个示例,如果确定出待传输的上行数据包的大小小于第一传输门限但是大于第二传输门限,该终端设备可以在第一上行链路载波上快速传输上行数据包。作为另一个示例,如果确定出待传输的上行数据包的大小小于第二传输门限,该终端设备可以在第一上行链路载波上快速传输上行数据包,也可以在SUL载波上快速传输上行数据包。
例如,NR UL的UL数据快速传输门限为100bit,SUL为50bit。如果终端设备待传输的上行数据包的大小低于50bit,UE可以在NR UL或SUL上快速传输上行数据包。如果终端设备待传输的上行数据包的大小为80bit,高于50bit但低于100bit,终端设备可以选择在NR UL上快速传输上行数据包。
可选的,在一些实施例中,如果网络设备向终端设备发送的上行数据传输门限仅包括第二传输门限。可以理解为第一上行链路载波不支持数据包的快速传输,仅SUL载波上 支持数据包的快速传输。本申请实施例中终端设备可以判断待传输的上行数据包的大小是否小于第二传输门限。如果确定出待传输的上行数据包的大小小于第二传输门限,该终端设备可以在SUL载波上快速传输上行数据包。如果确定出待传输的上行数据包的大小大于第二传输门限,可以将该终端设备配置为连接态,然后进行数据传输。也就是说,在待传输的上行数据包较大的情况下,可以不使用本申请实施例的快速传输方案。
本申请实施例中,终端设备可以在引入SUL的场景下,实现上行数据包的快速传输。
为了便于描述,后文以第一网络设备为目标基站,第二网络设备为源基站作为示例进行描述。
需要说明的是,第一网络设备和第二网络设备可以是相同的网络设备,也可以是不同的网络设备,本申请实施例对此不作具体限定。
可选地,在一些实施例中,在终端设备待传输的上行数据包的大小小于或等于第一传输门限和第二传输门限的较小值的情况下。即终端设备待传输的上行数据包的大小小于或等于min{第一传输门限,第二传输门限},该终端设备可以在第一上行链路载波上快速传输上行数据包,也可以在SUL载波上快速传输上行数据包。那么该终端设备可以进一步根据下行信号质量门限确定在第一上行链路载波上还是在SUL载波上快速传输上行数据包。或者,当第一传输门限大于第二传输门限,且待传输的上行数据包的大小小于第一传输门限但是大于第二传输门限,该终端设备可以在第一上行链路载波上快速传输上行数据包时,该终端设备可以进一步根据下行信号质量门限确定是否可以在第一上行链路载波上快速传输上行数据包。
可选的,网络设备可以向终端设备发送一个下行信号质量门限,或者网络设备会向终端设备发送一个用于终端设备确定该下行信号质量门限的信息,比如质量偏差。终端设备可以根据该质量偏差和已有的某个质量门限,确定该下行信号质量门限。参见图2,如果终端设备测量到目标基站的小区质量高于该下行信号质量门限,意味着该终端设备可能处于NR UL 210和SUL 220的上行覆盖区域。该终端设备可以进一步的根据第一传输门限和第二传输门限选择是在NR UL210上还是在SUL 220上进行上行数据包的快速传输。如果终端设备测量到目标基站的小区质量低于该下行信号质量门限,意味着该终端设备可能仅处于SUL 220的上行覆盖区域。该终端设备可以进一步的根据第二传输门限确定是否可以在SUL 220进行上行数据包的快速传输。可选地,本申请中的上行覆盖区域可以是支持快速传输的上行覆盖区域。
应理解,在该终端设备通过下行信号质量门限判断该终端设备可能处于NR UL 210和SUL 220的的上行覆盖区域内,并且通过传输门限判断该终端设备待传输的上行数据包的大小小于或等于第一传输门限和第二传输门限的较小值的情况下。该终端设备可以选择在NR UL 210上进行上行数据包的快速传输,也可以在SUL 220上进行上行数据包的快速传输。具体的选择机制可以基于网络设备配置或者协议的预定义。作为一个示例,若终端设备通过质量门限以及传输门限判断既可以选择在NR UL 210上,也可以选择在SUL 220上进行上行数据包的快速传输的情况下,网络设备可以根据NR UL 210上或SUL 220上的负载情况,发送指示信息,指示该终端设备优先选择在某个载波频点(NR UL 210或SUL 220)进行快速上行数据传输。
需要说明的是,本申请实施例对终端设备通过下行信号质量门限以及上行数据传输门 限确定在NR UL 210或SUL 220上进行快速上行数据包传输的先后顺序不做具体限定。
作为一个示例,终端设备可以先根据上行数据传输门限,如果终端设备判断可以在NR UL 210或SUL 220上进行快速上行数据包传输,再基于下行信号质量门限确定是在NR UL 210还是在SUL 220上进行快速上行数据包传输。
例如,假设第一传输门限大于第二传输门限且终端设备待传输的上行数据包的大小大于第二传输门限但是小于第一传输门限,终端设备可以先根据上行数据传输门限判断可以在NR UL 210上进行快速上行数据包传输。该终端设备再结合下行信号质量门限进一步确定终端设备是否可以在NR UL 210上进行快速上行数据包传输。
作为另一个示例,该终端设备可以先根据下行信号质量门限确定终端设备是否在NR UL 210的上行覆盖区域内。如果终端设备在NR UL 210和SUL 220的上行覆盖区域内,再基于上行数据传输门限确定可以在NR UL 210或SUL 220上进行快速上行数据包传输。
本申请实施例中在存在多个载波的情况下,使得终端设备可以选择合适的载波进行上行数据传输。可选地,本申请实施例可以适用空闲态的终端设备、非激活态的终端设备、增强的空闲态的终端设备或者其它任意不处于连接态的终端设备。
本申请实施例对终端设备快速传输上行数据包的实现方式不做具体限定。
作为一个示例,该终端设备可以在第一上行链路载波或所述SUL载波上根据随机接入配置发送待传输的上行数据包。例如,该终端设备可以根据随机接入配置发送消息1和待传输的上行数据包。又如,该终端设备根据随机接入配置发送消息1(msg1),目标基站根据收到的该消息1,确认该终端设备需要发送上行数据包。又如。该终端设备发送消息3(msg3)和待传输的上行数据包。又如,该终端设备发送消息3(msg3),并可以在该消息3中携带待传输的上行数据包,该消息3中包括一个信元,该信元可以用于指示消息3中携带有待传输的上行数据包。又如。该终端设备发送消息5(msg5)和待传输的上行数据包。又如,该终端设备发送消息5(msg5),并可以在该消息5中携带待传输的上行数据包,该消息5中包括一个信元,该信元可以用于指示消息5中携带有待传输的上行数据包。应理解,目标基站可以在终端设备发起随机接入请求之前,可以向该终端设备发送随机接入配置。该随机接入配置为终端设备在发起快速上行数据传输时进行随机接入所使用的随机接入配置。msg5可以为RRC建立完成消息、RRC恢复完成消息、RRC重建立完成消息或者其它消息。
作为一种实现方式,终端设备根据随机接入配置发送消息1和待传输的上行数据包可以理解为,该终端设备可以在同一个上行授权资源上发送消息1和待传输的上行数据包。终端设备根据随机接入配置发送消息3和待传输的上行数据包可以理解为,该终端设备可以在同一个上行授权资源上发送消息3和待传输的上行数据包。终端设备根据随机接入配置发送消息5和待传输的上行数据包可以理解为,该终端设备可以在同一个上行授权资源上发送消息5和待传输的上行数据包。
本申请实施例中随机接入配置可以包括但不限于以下至少一项:随机接入前导码信息、随机接入资源。其中随机接入资源可以包括:用于发送前导码的时频资源(例如,物理随机接入信道(physical random access channel,PRACH)资源)的指示信息。随机接入前导码信息包括但不限于以下至少一项:前导码索引(index),用于分配前导码资源。根序列的指示信息,用于生成前导码。前导码的最大传输次数的指示信息。针对消息1(MSG1) 的响应的接收窗口的指示信息,其中MSG 1通常指前导码(preamble)。前导码的功率攀升步长的指示信息。前导码的子载波间隔的指示信息。退避指示(backoff indication)的缩放因子(scaling factor)的指示信息,用于在随机接入未完成时,终端设备发起前导码重传之前,确定的延迟时间。
应理解,msg1可以是终端设备在随机接入流程中发送的前导码。msg3可以是在随机接入流程中发送的无线资源控制(radio resource control,RRC)消息,该RRC消息是在接收到网络设备发送的随机接入响应(random access response,RAR)后发送的消息。
为了支持更大的覆盖深度和容量性能,通信***引入了覆盖增强(coverage enhancement,CE)机制。覆盖增强机制可包括不同的CE等级,以指示上下行载波在不同位置的信号质量。
可选地,不同的CE等级可以对应不同的重复次数和/或调制方式。网络设备和终端设备可以根据CE等级对应的重复次数进行上下行数据的重复发送或接收。例如,对CE等级较高的区域,终端设备的上行和/或下行数据传输的重复次数可以减少或者不重复发送。对于CE等级较低的区域,终端设备的上行和/或下行数据传输的重复次数可以增加。
图4是本申请实施例的CE等级(CE level)的示意图。在采用CE机制的情况下,可以采用多个CE等级表示载波的覆盖情况或覆盖能力,其中载波的覆盖情况可以通过信号质量表征。如图4所示,作为示例而非限定,CE机制可以包括CE等级0-3。其中,CE等级0至CE等级3依次对应的信号质量由高到低。例如,CE等级0对应信号质量最好的情况,CE等级3对应信号质量最差的情况。应理解,CE等级与信号质量也可以采用其他关联关系对应,例如,CE等级0-3依次对应的信号质量可以由低至高。本申请实施例中以CE等级0-3依次对应的信号质量由高至低为例进行说明。另外,也可以使用更多或更少的CE等级表示信号的覆盖能力,本申请不作限定。
终端设备可以根据实际测量的服务小区的下行信号质量和CE等级质量门限进行比较。一种可能的实现方式中,该CE等级质量门限可以通过网络设备广播的***消息获取。该CE等级质量门限可以包括至少一个门限。例如,针对上述4个CE等级,可以有三个CE等级质量门限。假设上述三个质量门限分别为:门限1=100,门限2=60,门限3=30,当测量的下行信号质量高于100时,则CE等级为CE等级0;当下行信号质量小于100但高于60时,则CE等级为CE等级1,依次类推。
结合CE机制,上述上行数据传输门限可以包括指示至少一个CE等级对应的上行数据传输门限;和/或,上述随机接入配置可以包括至少一个CE等级对应的随机接入配置。
具体的,以上行数据传输门限包括至少一个CE等级对应的上行数据传输门限为例。网络设备可以向终端设备发送至少一个CE等级对应的上行数据传输门限,该终端设备可以根据上文中根据实际测量的服务小区的下行信号质量和CE等级质量门限的比较结果,确定该终端设备当前的CE等级。该终端设备可以根据当前的CE等级以及至少一个CE等级对应的上行数据传输门限,通过比较待传输的上行数据包的大小与当前的CE等级对应的上行数据传输门限,确定在NR UL载波或SUL载波上进行快速传输。
本申请实施例中,为了支持更大的覆盖深度和容量性能,通信***引入了覆盖增强CE机制。覆盖增强机制可包括不同的CE等级,以指示上下行载波在不同位置的信号质量。
本申请实施例中终端设备可以在向目标基站发送待传输的上行数据包时,可以使用密钥对需要快速传输的上行数据包进行加密或者进行加密和完整性保护。作为一个示例,该终端设备可以使用与目标基站相关的密钥对需要快速传输的上行数据包进行加密。作为另一个示例,该终端设备可以使用与源基站相关的密钥对需要快速传输的上行数据包进行加密。
可选地,在一些实施例中,在终端设备可以支持不换锚点(anchor)基站(anchor基站即为配置该终端设备进入非激活(inactive)状态的基站)的情况下,本申请实施例提供的技术方案可以在数据传输的过程中不换anchor基站(即终端设备可以使用与源基站相关的密钥对需要快速传输的上行数据包进行加密),从而可以避免不必要的换anchor基站所带来的信令开销。可以理解的是,anchor基站也可以称为源基站。
下面对本申请实施例中提及的技术方案进行详细描述。本申请实施例中源基站和目标基站仅为网络设备或接入网设备的一种示例,本申请实施例对网络设备或接入网设备的具体设备名称并不限定。
处于inactive态的终端设备在发起位置更新(例如,无线接入网通知区更新(radio access network notification area updata,RNAU))时,可以支持不更换anchor基站。
应理解,终端设备接入网络之后,接收源基站发送的配置信息进入inactive状态,源基站可以存储该终端设备的上下文信息。inactive状态的终端设备如果在其他网络设备(例如,目标基站)发起随机接入时,源基站可以根据inactive状态的终端设备接入网络的原因决定是否需要将终端设备的上下文信息转发至该终端设备当前的目标基站。如果源基站不转发终端设备的上下文信息,可以理解为源基站依然维护终端设备的上下文,可以称inactive状态的终端设备不更换源基站。不更换源基站的机制可以避免终端设备更换源基站带来的不必要的信令开销。
本申请实施例中终端设备可以在根据传输门限以及下行信号质量门限判断在NR UL210或SUL 220中进行上行数据包的快速传输之后,可以使用与源基站相关的密钥快速传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
本申请实施例对终端设备使用与源基站相关的密钥进行快速上行数据包传输的具体实现方式不做限定。作为一个示例,目标基站可以向终端设备发送第一指示信息,可以用于指示该终端设备在快速传输上行数据过程中,使用与源基站相关的密钥。即当终端设备收到该第一指示信息时,该终端设备使用与源基站相关的密钥对需要快速传输的上行数据进行加密或者进行加密和完整性保护。否则,终端设备使用与目标基站相关的密钥对需要快速传输的上行数据进行加密或者进行加密和完整性保护。作为另一个示例,终端设备可以自己决定使用与源基站相关的密钥对需要快速传输的上行数据进行加密或者进行加密和完整性保护。可选地,终端设备可以向目标基站发送第二指示信息,用于指示该终端设备在快速传输上行数据过程中,使用与源基站相关的密钥对需要快速传输的上行数据进行加密或者进行加密和完整性保护。
应理解,本申请实施例中提及的与源基站相关的密钥不做具体限定。作为一个示例,该与源基站相关的密钥可以是终端设备在源基站使用过的密钥。作为另一个示例,该与源基站相关的密钥可以是终端设备根据在源基站使用过的密钥以及目标基站的小区信息确 定的密钥,小区信息可以包括小区的频点信息和/或物理小区标识。可选地,该与源基站相关的密钥可以是终端设备根据在源基站使用过的密钥以及目标基站的小区信息进行横向衍生确定的密钥。本申请实施例中,也可以将在源基站使用过的密钥称为旧密钥,与目标基站相关的密钥称为新密钥。
本申请实施例中目标基站在接收到终端设备使用与源基站相关的密钥发送的待传输的上行数据包之后,可以将该待传输的上行数据包发送至源基站。
本申请实施例对目标基站向源基站发送待传输的上行数据包的实现过程不做具体限定。可选地,在一些实施例中,该目标基站可以向源基站发送指示信息,该指示信息可以用于请求源基站发送数据包接收地址。该目标基站接收源基站发送的数据包的接收地址之后,可以根据接收地址将待传输的上行数据包发送至源基站。可选地,在一些实施例中,该目标基站可以在向源基站发送的信令(该信令例如可以是“获取终端设备上行文请求”消息)中直接携带该待传输的上行数据包。下面会结合图5进行详细描述,此处不再赘述。
需要说明的是,上述各个实施例可以独立实施,也可以相互结合。
下面结合图5中具体的实施例,以第一上行链路载波为NR载波为例,描述本申请实施例中的上行数据包的快速传输过程的一种可能的实现过程。应注意,图5的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图5的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
图5是本申请实施例提供的一种可能的上行数据包快速传输的方法的示意性流程图。图5所述的流程图可以包括步骤500-580,下面分别对步骤500-580进行详细描述。
应理解,图5中的目标基站对应于上文中的第一网络设备,源基站对应于上文中的第二网络设备。
需要说明的是,目标基站和源基站可以是相同的基站,也可以是不同的基站。
步骤500:目标基站向UE发送随机接入配置。
可以理解的是,步骤500是可选步骤。
此处的,随机接入配置可以是物理随机接入信道PRACH配置,该随机接入配置可以为终端设备发起快速上行数据传输时进行随机接入所使用的随机接入配置。UE在向目标基站发起用于快速上行数据传输的随机接入时,可以通过目标基站预留的PRACH资源向目标基站发起随机接入请求。
作为一个示例,在只有NR UL载波的场景下,该随机接入配置可以为NR UL载波上用于快速传输的随机接入配置。作为另一个示例,在有NR UL载波以及SUL载波的场景下,该随机接入配置可以包括NR UL载波上用于快速传输的第一随机接入配置以及SUL载波上用于快速传输的第二随机接入配置。
需要说明的是,在有NR UL载波以及SUL载波的场景下,NR UL载波和SUL载波可以分别使用第一随机接入配置以及第二随机接入配置进行上行数据包的快速传输,也可以共享一个随机接入配置,本申请对此不作具体限定。
可选地,如果考虑覆盖增强机制,第一随机接入配置包括NR UL载波的至少一个CE等级对应的第一随机接入配置。第二随机接入配置包括SUL载波的至少一个CE等级对应的第二随机接入配置。
如图4所示,作为示例而非限定,以CE机制可以包括CE等级0-3作为示例。以随机接入资源仅包含前导码(preamble)为例,CE等级0对应的preamble是0,CE等级1对应的preamble是1,CE等级2对应的preamble是2,CE等级3对应的preamble是3。
步骤510:目标基站向UE发送数据传输门限。
目标基站可以向UE发送数据传输门限,该数据传输门限可以用于UE判断待传输的上行数据包是否可以进行快速传输。
本申请实施例对数据传输门限不做具体限定。作为一个示例,在只有NR UL载波的场景下,该数据传输门限可以为UE在NR UL载波上所支持的快速传输的最大数据包的大小。作为另一个示例,在有NR UL载波以及SUL载波的场景下,该数据传输门限可以包括第一传输门限和第二传输门限,也可以仅包括第二传输门限。其中,第一传输门限用于指示终端设备在非连接状态下,在NR UL载波上所支持传输的最大数据包的大小。第二传输门限用于指示所述终端设备在所述非连接状态下,在SUL载波上所支持传输的最大数据包的大小。
可选地,如果考虑覆盖增强机制,第一传输门限包括NR UL载波的至少一个CE等级对应的传输门限。第二传输门限包括SUL载波的至少一个CE等级对应的传输门限。
如图4所示,作为示例而非限定,以CE机制可以包括CE等级0-3作为示例。CE 0对应的传输门限为100bit,CE 1对应的传输门限为80bit,CE 2对应的传输门限为60bit,CE 3对应的传输门限为30bit。第一传输门限可以包括100bit、80bit、60bit、30bit中的至少一个。第二传输门限可以包括100bit、80bit、60bit、30bit中的至少一个。
步骤520:目标基站向UE发送下行信号质量门限。
可替换地,目标基站还可以向UE发送下行信号质量偏差。
可选地,如果考虑覆盖增强机制,下行信号质量门限或下行信号质量偏差包括至少一个CE等级对应的下行信号质量门限或下行信号质量偏差。
可以理解的,本申请实施例对于步骤500、510和520的执行顺序不做限定,三者也可以同时执行。
需要说明的是,步骤500中,目标基站向UE发送随机接入配置可以是目标基站提前为UE预留的,该UE可以通过预留的随机接入配置进行快速上行数据包的传输。可选的,在一些实施例中,如果目标基站没有为UE预留专用的快速传输上行数据包的随机接入配置,该UE可以通过其他随机接入配置进行快速上行数据包的传输。
步骤530:UE根据下行信号质量和数据传输门限判断上行数据包在NR UL载波或SUL载波上进行快速上行数据传输。
可以理解地,如果考虑覆盖增强机制,UE根据其所在的CE等级确定对应的数据传输门限。
具体的可以参考上文中的描述,此处不再赘述。
步骤540:UE向目标基站发送待传输的上行数据包。
UE可以在步骤530中确定出在NR UL载波或SUL载波上进行快速上行数据传输之后,可以在NR UL载波或SUL载波上根据随机接入配置发送待传输的上行数据包。
作为一个示例,该终端设备可以根据随机接入配置发送待传输的上行数据包。例如,该终端设备可以根据随机接入配置发送消息1和待传输的上行数据包。又如,该终端设备 根据随机接入配置发送消息1(msg1),目标基站根据收到的该消息1,确认该终端设备需要发送上行数据包。又如。该终端设备发送消息3(msg3)和待传输的上行数据包。又如,该终端设备发送消息3(msg3),在该消息3中携带待传输的上行数据包,该消息3中包括一个信元,该信元可以用于指示消息3中携带有待传输的上行数据包。又如。该终端设备发送消息5(msg5)和待传输的上行数据包。又如,该终端设备发送消息5(msg5),在该消息5中携带待传输的上行数据包,该消息5中包括一个信元,该信元可以用于指示消息5中携带有待传输的上行数据包。应理解,目标基站可以在终端设备发起随机接入请求之前,可以向该终端设备发送随机接入配置。该随机接入配置为终端设备在发起快速上行数据传输时进行随机接入所使用的随机接入配置。
可选地,UE可以根据随机接入配置向目标基站发送上行数据包。UE发送的上行数据包可以使用与源基站相关的密钥进行加密,或者加密和完整性保护。例如,可以是目标基站指示UE使用与源基站相关的密钥进行快速上行数据包传输。或者可以是UE自己决定使用与源基站相关的密钥进行快速上行数据包传输。具体的请参考上文中的描述,此处不再赘述。
步骤550:目标基站向源基站发送第一消息。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤550是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,目标基站可以在确定UE发送的待传输的数据包使用的是与源基站相关的密钥之后,可以向源基站发送第一消息。该第一消息中可以携带第三指示信息,该第三指示信息可以用于指示源基站该UE在目标基站发起了快速数据传输,或者该第三指示信息用于指示源基站发送一个接收地址,目标基站可以根据该接收地址,将UE发送的待传输的上行数据包发送至源基站。其中,第一消息可以为获取UE上下文请求消息。
可选地,在一些实施例中,该目标基站还可以在第一消息中直接携带从UE侧接收的快速传输的上行数据包给源基站。
可以理解的是,如果不是通过第一消息携带该待传输的上行数据包的话,也可以通过步骤560和570的方式将该待传输的上行数据包转发至源基站。
步骤560:源基站向目标基站发送第二消息。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤560是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,源基站可以向目标基站发送第二消息。
可选地,如果第一消息中没有携带该待传输的上行数据包,该第二消息中可以携带待传输的上行数据包的接收地址。目标基站根据该接收地址,将UE发送的快速传输的上行数据包转发至源基站。
源基站可以在接收到目标基站发送的第一消息中携带的第三指示信息之后,可以确定UE选择不换anchor基站(该源基站依然维护UE的上下文)。还可以根据第三指示信息确定UE使用的是与源基站相关的密钥。具体的有关与源基站相关的密钥的描述请参考前文的描述,此处不再赘述。
第二消息可以是“获取UE上下文失败”消息。该消息中可以携带RRC释放(RRC release)消息以及待传输的上行数据包的接收地址信息。
RRC释放消息是由源基站生成并进行加密和/或完整性保护的。
可选地,如果第一消息中携带该上行数据包,第二消息中可以是“获取UE上下文失败”消息,该消息中携带RRC释放消息;RRC释放消息是由源基站生成并进行加密和/或完整性保护的。
应理解,源基站在确定不换anchor基站的情况下,可以向目标基站发送待传输的上行数据包的接收地址,目标基站可以根据该接收地址将UE发送的待传输的上行数据包发送至源基站。此外,该源基站还需要向UE发送RRC释放消息,该RRC释放消息可以指示UE断开与目标基站的连接。该RRC释放消息需要由源基站发送给目标基站,并由目标基站透传至UE。
可选地,步骤570:目标基站将上行数据包转发至源基站。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤570是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,目标基站在接收到源基站发送的待传输的上行数据包的接收地址之后,可以根据该接收地址,将从UE侧接收的快速传输的上行数据包转发至源基站。
步骤580:目标基站向UE发送RRC释放消息。
目标基站可以在接收到源基站发送的“获得UE上下文失败”消息携带的RRC释放消息之后,可以将该RRC释放消息转发至UE。
本申请实施例中,UE在可以支持进行快速传输上行数据包的情况下,可以不换anchor基站,从而可以避免不必要的换anchor基站所带来的信令开销以及较大的数据传输时延。
可选地,在一些实施例中,如果终端设备根据下行信号质量和上行数据传输门限判断无法使用快速传输的机制。即无法在一个快速传输的上行数据包中发送全部待传输的上行数据包,该终端设备可以与目标基站进行数据传输(可以理解为该终端设备需要更换anchor基站)。该终端设备可以使用与目标基站相关的密钥进行上行数据包传输。
本申请实施例对终端设备可以使用与目标基站相关的密钥进行上行数据包传输的实现方式不做具体限定。作为一个示例,该终端设备可以在非连接态下,通过传输门限和下行质量门限确定可以在NR UL 210上或SUL 220上进行快速上行传输后,可以先通过快速数据传输的方式发送该数据包。然后可以在终端设备的转换状态转入到连接态之后再发送其它的待传输的上行数据包。作为另一个示例,该终端设备可以在转入连接态之后,发送所有待传输的上行数据包。
本申请实施例对终端设备进行上行数据包传输使用的与目标基站相关的密钥不做具体限定。作为一个示例,该与目标基站相关的密钥可以是终端设备根据在源基站使用过的密钥以及目标基站的小区信息确定的密钥,小区信息可以包括小区的频点信息和/或物理小区标识。作为另一个示例,该与目标基站相关的密钥可以是终端设备根据在源基站使用过的密钥、目标基站的小区信息以及下一跳链计数值(next hop chaining counter,NCC)确定的密钥。
具体地,终端设备比较该终端设备在源基站使用的第一NCC(即在收到释放消息之前使用的NCC,或者,可以理解为终端设备在源基站使用过的密钥对应的NCC)和从源基站接收的释放消息中携带的第二NCC。如果相同,则该与目标基站相关的密钥可以是终端设备根据在源基站使用过的密钥、目标基站的小区信息确定与目标基站相关的密钥, 即横向衍生的密钥。如果第一NCC和第二NCC不同,该与目标基站相关的密钥可以是终端设备根据在源基站使用过的密钥、目标基站的小区信息以及NCC确定的密钥。具体地,终端设备可以先根据在源基站使用过的密钥、第一NCC和第二NCC确定下一跳密钥,然后根据下一跳密钥和目标基站的小区信息确定与目标基站相关的密钥,即纵向衍生的密钥。
下面结合图6中具体的实施例,以第一上行链路载波为NR载波为例,描述本申请实施例中的上行数据包传输过程的一种可能的实现过程。应注意,图6的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图6的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
图6是本申请实施例提供的一种可能的传输上行数据包的方法的示意性流程图。图6所述的流程图可以包括步骤600-650,下面分别对步骤600-650进行详细描述。
应理解,图6中的目标基站对应于上文中的第一网络设备,源基站对应于上文中的第二网络设备。
需要说明的是,目标基站和源基站可以是相同的基站,也可以是不同的基站。
可选地,步骤600:目标基站向UE发送随机接入配置。
与步骤500对应,具体的请参考步骤500中的描述,此处不再赘述。
步骤610:目标基站向UE发送数据传输门限。
与步骤510对应,具体的请参考步骤510中的描述,此处不再赘述。
步骤620:目标基站向UE发送下行信号质量门限。
可替换地,目标基站还可以向UE发送下行信号质量偏差。
与步骤520对应,具体的请参考步骤520中的描述,此处不再赘述。
可以理解的,本申请实施例对于步骤600、610和620的执行顺序不做限定,也可以同时执行。
步骤630:UE根据下行信号质量和数据传输门限判断是否可以通过快速传输发送完全部的待传输的上行数据包。
具体的判断方法请参考步骤530中的描述,此处不再赘述。
如果UE待传输的上行数据包的大小大于最大的数据传输门限,就意味着该UE待传输的上行数据包不可以通过一次快速传输发送完全部的待传输数据包。或者,第一传输门限大于第二传输门限时,UE待传输的上行数据包的大小大于第二传输门限但是小于第一传输门限,终端设备基于下行信号质量门限确定终端设备不在NR UL 210的上行覆盖区域内,从而无法通过一次快速传输发送完全部的待传输数据包。目标基站可以将该UE配置为连接态,该UE可以直接与目标基站之间进行数据传输。UE在与目标基站之间进行数据传输的过程中,可以使用与目标基站相关的密钥对待传输的上行数据包进行保护。有关与目标基站相关的密钥的描述请参考上文中的说明,此处不再赘述。
本申请实施例中在UE与目标基站之间进行数据传输的实现方式可以有多种,例如,该UE可以通过快速传输的方式传输第一个数据包,然后在UE的状态转换到连接态之后再发送其它的待传输的上行数据包。又如,该UE可以在转为连接态之后,再向目标基站发送所有待传输的上行数据包。
实现方式1:步骤640:UE向目标基站发起随机接入流程并传输上行数据包。
一种情况下,UE通过快速传输的机制发送待传输的第一个上行数据包,然后状态转换为active状态。等UE进入active态之后,可以继续向目标基站发送其他待传输的上行数据包。
具体的,UE可以通过传输门限和下行质量门限确定可以在NR UL 210上或SUL 220上进行快速上行传输的第一个上行数据包之后,UE可以先在非连接态下通过快速数据传输的方式发送该第一个上行数据包。
可选地,UE根据上行数据传输的随机接入配置,向目标基站发起随机接入流程。相应的,目标基站可以根据上行数据传输的随机接入配置,确定UE发起了上行数据传输的随机接入流程。可选地,UE可以发送状态指示信息,该状态指示信息用于目标基站确定配置UE进入连接态。该状态指示信息可以指示UE侧还有待传输的上行数据包,或者可以指示UE侧待传输的上行数据包的大小。
实现方式2:步骤650:UE转入active状态之后进行上行数据包的传输。
另一种情况下,UE可以在判断待传输的上行数据包的大小大于第一传输门限和第二传输门限的较大值的情况下。即终端设备待传输的上行数据包大于max{第一传输门限,第二传输门限},网络设备可以配置UE进入active状态。在UE进入active状态之后,可以与目标基站之间进行上行数据传输。
下面结合图7中具体的实施例,更加详细地描述本申请实施例中的下行数据包的快速传输过程的具体实现过程。应注意,图7的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
图7是本申请实施例提供的一种可能的下行数据包快速传输的方法的示意性流程图。图7所述的流程图可以包括步骤700-780,下面分别对步骤700-780进行详细描述。
应理解,图7中的目标基站对应于上文中的第一网络设备,源基站对应于上文中的第二网络设备。
需要说明的是,目标基站和源基站可以是相同的基站,也可以是不同的基站。
可选地,步骤700:源基站与目标基站之间进行能力交互。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤700是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,源基站可以在下行数据包到达之前,源基站确认目标基站是否具备下行数据包快速传输的能力和/或支持的快速传输的下行数据包传输门限。作为一个示例,如果目标基站可以支持下行数据包的快速传输,目标基站在接收到源基站发送的下行数据包之后,可以将该下行数据包直接发送至处于inactive态的终端设备。作为另一个示例,如果目标基站不支持下行数据包的快速传输,目标基站在接收到源基站发送的下行数据包之后,可以配置终端设备进入active状态。并可以在终端设备进入active态之后,将待传输的下行数据包发送至终端设备。
步骤710:源基站寻呼UE。
源基站可以在下行数据包到达之后,发送“RAN寻呼(RAN paging)”消息寻呼UE。
一种可能的方式中,源基站在自己的覆盖范围内向UE直接发起RAN paging。
另一种可能的方式中,源基站向其他基站发起RAN paging,以便于其他基站在各自的覆盖范围内寻呼UE。可选地,源基站可以在发送给目标基站的寻呼消息中携带第四指示信息,用于指示下行数据包到达。
步骤720:源基站接收目标基站发送的第三消息。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤720是可选步骤。
目标基站为接收到UE寻呼响应的基站。即在步骤720之前,目标基站接收到UE的接入请求消息,该接入请求消息用于响应目标基站发送给该UE的寻呼消息。
可选地,第三消息中可以包括下行数据包传输门限。该下行数据包传输门限用于指示目标基站支持的快速数据传输的最大的下行数据包的大小。
可选地,第三消息中可以包括目标基站的数据接收地址。源基站可以根据该接收地址,将待传输的下行数据包转发至目标基站。
应理解,本申请实施例中的第三消息可以为获取UE上下文请求消息。
步骤730:源基站向目标基站发送第四消息。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤730是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,源基站可以根据下行数据包传输门限和待传输的下行数据确定是否更换anchor基站。该下行数据包传输门限可以源基站自己设置的,也可以是源基站从目标基站接收的。在源基站确定不更换anchor基站时,可以向目标基站反馈第四消息(例如,向目标基站发送“获取UE上下文失败”消息)。
可以理解的是,源基站也可以根据其他因素确定是否更换anchor基站,本申请实施例对此不做限定。作为一个示例,anchor基站可以根据自身资源的使用情况,决定是否为UE更换anchor基站。例如,如果anchor基站自身的资源使用较多,可以考虑为UE更换anchor基站。作为另一个示例,anchor基站还可以根据拥塞情况,决定是否为UE更换anchor基站。例如,如果anchor基站处较拥塞,则该anchor基站考虑为UE更换anchor基站。
可选地,源基站可以在第四消息中直接携带待传输给UE的下行数据包。
该第四消息中可以携带源基站生成并进行加密和/或完整性保护的RRC消息。RRC消息可以是RRC释放消息。
可选地,该第四消息中可以携带指示信息。该指示信息可以包括第五指示信息、第六指示信息、第七指示信息中的至少一个。第五指示信息可以用于指示目标基站发送接收下行数据包的接收地址。第六指示信息可以用于指示终端设备需要接收发送的下行数据包。第七指示信息可以用于指示终端设备需要使用与源基站之间相关的旧密钥解密发送的下行数据包。第六指示信息和/或第七指示信息可以携带在第四消息中的RRC消息中。
可选地,步骤740:目标基站向源基站发送接收下行数据包的接收地址。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤570是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,目标基站可以向源基站发送数据转发地址指示(data forwarding address indication)消息。
若步骤720中目标基站向源基站发送的第三消息中不包括目标基站接收下行数据包的接收地址,目标基站可以执行步骤740。
可选地,步骤750:源基站向目标基站发送下行数据包。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤570是可选步骤。
可选的,在目标基站和源基站是不同基站的情况下,源基站可以在接收到目标基站发送的下行数据包的接收地址之后,可以将该下行数据包转发至目标基站。
若步骤740中源基站向目标基站发送的第四消息不包括下行数据包,源基站可以执行步骤750。
步骤760:目标基站向UE发送接入响应消息。
该接入响应消息可以包括层2控制信息和RRC消息,或者仅包括RRC消息。
目标基站接收源基站发送的第四消息中的RRC消息,可以将该RRC消息作为接入响应消息转发至UE。可选地,该RRC消息中可以携带第六指示信息和/或第七指示信息。
可选地,该层2控制信息中可以携带第六指示信息和/或第七指示信息。该层2控制信息可以是下行控制信息(downlink control information,DCI)。
步骤770:目标基站向UE发送下行数据包。
可选地,目标基站可以发在送接入响应消息的同时发送下行数据包给UE。
可选地,目标基站还可以在发送接入响应消息后发送下行数据包给UE。
步骤780:UE接收下行数据包。
若UE收到第六指示信息,UE可以启动定时器。如果该UE可以在定时器运行到期前监听到PDCCH,UE可以根据PDCCH中的调度信息接收在物理下行共享信道(physical downlink Shared channel,PDSCH)上发送的下行数据包,UE停止定时器。
可选地,UE根据第七指示信息,确定采用与源基站相关的密钥处理接收到的下行数据。具体的有关与源基站相关的密钥的描述请参考上文中的说明,此处不再赘述。
可以理解地,在定时器运行时间内,UE保存目标基站在随机接入过程中分配的临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),用保存的临时的C-RNTI对PDCCH进行监听,当定时器超时或者UE接收到下行数据后,UE删除临时的C-RNTI。
还应理解,小区无线网络临时标识,可以是由网络设备分配给UE的一个动态标识,唯一标识了一个小区空口下的UE。
本申请实施例中,可以在下行数据包传输的过程中,引入指示存在下行数据传输的指示信息,可以避免终端设备无法获知下行传输数据的存在,从而可以避免因漏接下行数据而造成的数据对丢失。
下面结合图8中具体的实施例,以第一上行链路载波为NR载波为例,描述本申请实施例中的传输下行数据包过程的一种可能的实现过程。应注意,图8的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图8的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
图8是本申请实施例提供的一种可能的传输下行数据包的方法的示意性流程图。图8所述的流程图可以包括步骤810-840,下面分别对步骤810-840进行详细描述。
应理解,图8中的目标基站对应于上文中的第一网络设备,源基站对应于上文中的第二网络设备。
需要说明的是,目标基站和源基站可以是相同的基站,也可以是不同的基站。
步骤810:源基站寻呼UE,并转发UE上下文,转发数据。
可以理解的是,在目标基站和源基站是相同基站的情况下,步骤570是可选步骤。
源基站可以在下行数据包到达之后,发送“RAN寻呼(RAN paging)”消息寻呼UE。具体寻呼机制参考步骤720中的描述。
可选的,在目标基站和源基站是不同基站的情况下,源基站可以向目标基站发送第四消息,在该第四消息中携带UE上下文信息。该第四消息可以是获取UE上下文响应消息。可选地,该第四消息中还可以携带指示信息。该指示信息可以包括第五指示信息、第六指示信息、第七指示信息中的至少一个。具体第五指示信息、第六指示信息和第七指示信息的描述参考步骤730中的描述。
可选地,源基站可以在第四消息中直接携带UE的待传输的下行传输包。
可以理解地,源基站向目标基站发送下行数据包的机制,和/或,源基站获取目标基站发送的接收下行数据包的地址的具体实现过程请参考本申请实施例7中的描述,此处不再赘述。
应理解,目标基站为接收到UE寻呼响应的基站。
本申请实施例中,源基站决定为UE更换anchor基站。具体地,源基站可以根据UE随机接入的原因确定是否为该UE更换anchor基站(可以理解为是否继续维护UE上下文)。或者,如果待传输的下行数据包小于下行数据包传输门限,该源基站可以决定为UE更换anchor基站。或者,源基站拥塞时,源基站可以决定为UE更换anchor基站。此时,源基站可以将维护的UE上下文转发给目标基站,此处目标基站可以维护UE上下文,并可以作为UE新的anchor基站。
源基站可以在确定为UE更换anchor基站的情况下,可以将该待传输的下行数据包转发至目标基站。
可选地,在一些实施例中,即使源基站确定待传输给UE的下行数据包为快速下行数据传输过程,即,源基站可以一次性将待传输的下行数据包发给UE。但是源基站自身资源使用较多,或者拥塞,因此源基站依然决定为UE更换anchor基站。此时下行数据包到达目标基站之后,目标基站只需要通过下行数据包直传发送给UE。
步骤820:目标基站向UE发送接入响应消息。
目标基站在接收到源基站转发的下行传输数据之后,可以向UE发送接入响应消息。该接入响应消息可以包括层2控制信息和RRC消息,或者仅包括RRC消息。该RRC消息是目标基站生成并进行加密和/或完整性保护。
可选地,目标基站可以在层2控制信息或该RRC消息中携带第六指示信息和/或第七指示信息。层2控制信息可以是下行控制信息(downlink control information,DCI)。
步骤830:目标基站向UE发送下行数据包。
可选地,目标基站可以发送接入响应消息的同时发送下行数据包给UE。
可选地,目标基站可以发送接入响应消息后发送下行数据包给UE。
步骤840:UE接收下行数据包。
若UE收到第六指示信息,UE可以启动定时器。如果该UE可以在定时器运行到期前监听到PDCCH,UE可以根据PDCCH中的调度信息接收物理下行共享信道(physical downlink Shared channel,PDSCH)上发送的下行数据包,UE停止定时器。
可选地,UE根据第七指示信息,确定采用与目标基站相关的密钥处理接收到的下行 数据包。具体的有关与目标基站相关的密钥的描述请参考上文中的说明,此处不再赘述。
可以理解地,在定时器运行时间内,UE保存目标基站在随机接入过程中分配的临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),用保存的临时的C-RNTI对PDCCH进行监听,当定时器超时或者UE接收到下行数据后,UE删除临时的C-RNTI。
需要说明的是,下行数据传输的实施例可以独立实施,也可以与上文中描述的上行数据传输的各个实施例进行相互组合进行实施,本申请实施例对此不作具体限定。
可以理解的是,本申请中各个实施例中的通信方法中,由终端设备实现的步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现。由第一网络设备实现的步骤,也可以由可用于第一网络设备的部件(例如芯片或者电路)实现。由第二网络设备实现的步骤,也可以由可用于第二网络设备的部件(例如芯片或者电路)实现。
上文结合图1至图8,详细描述了本申请实施例提供的通信方法,下面将结合图9至图14,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图9是本申请实施例提供的一种通信装置900的示意性框图。可以理解的是,该通信装置900可以是终端设备,也可以是可用于终端设备的部件。
该通信装置900可以包括:接收模块910、确定模块920。
所述接收模块910用于:从第一网络设备接收上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括第二传输门限。
所述确定模块920用于:根据所述上行数据传输门限以及待传输的上行数据包的大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或SUL载波上快速传输所述上行数据包。
本申请实施例中的第一网络设备可以理解为目标基站。
本申请实施例中第一传输门限用于指示所述通信装置900在非连接状态下,在第一上行链路载波上所支持传输的最大数据包的大小。第二传输门限用于指示所述通信装置900在非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包的大小。第一上行链路载波的频率高于所述SUL载波,第一上行载波例如可以是新空口上行链路(new radio uplink,NRUL)载波。
本申请实施例中,可以在引入SUL场景下,实现上行数据包的快速传输。
可选地,在一些实施例中,所述确定模块920具体用于:所述第二传输门限大于所述第一传输门限,在所述待传输的上行数据包的大小大于所述第一传输门限,小于所述第二传输门限的情况下,所述通信装置900在所述第一网络设备的SUL载波上快速传输所述上行数据包。
可选地,在一些实施例中,所述确定模块920具体用于:在所述待传输的上行数据包的大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,所述通信设备900在所述非连接状态下,在所述第一上行链路载波或SUL载波上快速传输所述上行数据包。
可选地,在一些实施例中,所述确定模块920具体用于:在所述待传输的上行数据包的大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据 包。
可选地,在一些实施例中,所述确定模块920通过所述接收模块910执行以下操作:从所述第一网络设备接收下行信号质量门限;根据所述下行信号质量门限确定在所述非连接状态下,在所述第一上行链路载波或SUL载波上传输所述上行数据包。
可选地,在一些实施例中,还包括:发送模块930,用于在所述非连接状态下,通过随机接入流程发送所述上行数据包。
可选地,在一些实施例中,发送模块930具体用于:确定在所述非连接状态下,发送消息1和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息3和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息3,所述消息3中携带待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息5和待传输的上行数据包;或者,
确定在所述非连接状态下,发送消息5,所述消息5中携带待传输的上行数据包。
可选地,在一些实施例中,接收模块910具体用于:从所述第一网络设备接收第一指示信息,所述第一指示信息用于指示所述通信设备900在所述非连接状态下,使用第一密钥传输所述上行数据包,其中,所述第一密钥为所述通信设备900根据以下信息中的至少一种确定的密钥:
所述通信设备900在第二网络设备使用的密钥,所述第二网络设备为配置所述通信设备900进入所述非连接状态的源网络设备;
所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述通信设备900进行随机接入的目标网络设备;
下一跳链计数值NCC。
可以理解的是,本申请实施例中的通信装置的各个模块的功能和对应的操作可以参考方法实施例中的相关描述。此外,本申请实施例中的模块也可以称为单元或者电路等,本申请实施例对此不做限定。
本申请实施例中,通信设备900可以使用与源基站相关的密钥快速传输该上行数据包,从而可以避免inactive状态的通信设备900由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
可选地,在一些实施例中,接收模块910还用于:从所述第一网络设备接收随机接入配置;所述通信设备900确定在所述非连接状态下,根据所述随机接入配置在所述第一上行链路载波或所述SUL载波上传输所述上行数据包。
可选地,在一些实施例中,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
可选地,在一些实施例中,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
可选地,在一些实施例中,所述上行数据传输门限包括至少一个覆盖增强等级对应的上行数据传输门限。
本申请实施例中,上述不同的CE等级可以对应不同的数据传输最大重复次数和/或调 制方式,以达到覆盖与容量的平衡。
图10是本申请实施例提供的一种通信装置1000的示意性框图。可以理解的是,该通信装置1000可以是网络设备,也可以是可用于网络设备的部件。
该通信装置1000可以包括:发送模块1010、接收模块1020。
所述发送模块1010用于:向终端设备发送上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限。
所述接收模块1020用于:在所述第一上行链路载波或SUL载波上接收所述终端设备在所述非连接状态下传输的所述上行数据包,或者包括第二传输门限。
本申请实施例中的通信装置1000可以理解为目标基站。
所述第一传输门限用于指示所述终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包的大小,所述第二传输门限用于指示所述终端设备在所述非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包的大小,所述第一上行链路载波的频率高于所述SUL载波。
可选地,在一些实施例中,所述发送模块1010还用于:向所述终端设备发送下行信号质量门限,所述下行信号质量门限用于所述终端设备确定在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上传输所述上行数据。
可选地,在一些实施例中,所述发送模块1010还用于:向所述终端设备发送随机接入配置,所述随机接入配置用于所述终端设备确定在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上根据所述随机接入配置传输所述上行数据包。
可选地,在一些实施例中,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
可选地,在一些实施例中,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
本申请实施例中,上述不同的CE等级可以对应不同的数据传输最大重复次数和/或调制方式,以达到覆盖与容量的平衡。
可选地,在一些实施例中,所述发送模块1010还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备在所述非连接状态下,使用所述第一密钥传输所述上行数据包。
本申请实施例中的第一密钥可以为所述终端设备根据以下信息中的至少一种确定的密钥:所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;下一跳链计数值NCC。
本申请实施例中,终端设备可以使用与源基站相关的密钥快速传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
可选地,在一些实施例中,所述接收模块1020还用于:接收所述第二网络设备发送的第二消息,所述第二消息包括所述上行数据包的接收地址;所述通信装置1000根据所述接收地址,将接收到的所述终端设备传输的所述上行数据包转发至所述第二网络设备。
可选地,在一些实施例中,所述发送模块1010还用于:向所述第二网络设备发送第一消息,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二网络设备发送接收地址,或用于指示所述所述终端设备使用所述第一密钥传输所述上行数据包,所述接收地址为所述通信装置1000向所述第二网络设备发送所述终端设备在所述非连接状态下,传输的所述上行数据包的地址。
可以理解的是,本申请实施例中的通信装置的各个模块的功能和对应的操作可以参考方法实施例中的相关描述。此外,本申请实施例中的模块也可以称为单元或者电路等,本申请实施例对此不做限定。
图11是本申请实施例提供的一种通信装置1100的示意性框图。可以理解的是,该通信装置1100可以是网络设备,也可以是可用于网络设备的部件。
本申请实施例中的通信装置1100可以理解为源基站,可以对应于上文中的第二网络设备。
该通信装置1100可以包括:第一接收模块1110、第二接收模块1120。
所述第一接收模块1110用于:接收第一网络设备发送的待传输的上行数据包。
所述第二接收模块1120用于:接收所述第一网络设备发送的第三指示信息,所述第三指示信息用于指示所述待传输的上行数据包为终端设备在非连接状态,在第一上行链路载波或补充上行链路SUL载波上发送的上行数据包。
本申请实施例中,可以在引入SUL场景下,实现上行数据包的快速传输。
可选地,在一些实施例中,还包括:处理模块1130,发送模块1140,
处理模块1130用于:根据下行数据传输门限和待传输的下行数据包的大小确定需要向所述第一网络设备发送所述待传输的下行数据包,所述待传输的下行数据包为所述第一网络设备需要在所述终端设备在非连接的状态下,直接发送至所述终端设备的下行数据包。
发送模块1140用于:将所述待传输的下行数据包发送给所述第一网络设备。
可选地,在一些实施例中,发送模块1140还用于:向所述第一网络设备发送第五指示信息,所述第五指示信息用于指示所述第一网络设备发送接收待传输的下行数据包的接收地址。
可选地,在一些实施例中,发送模块1140还用于:向所述第一网络设备发送第六指示信息,所述第六指示信息用于指示所述终端设备在所述非连接状态下,有待接收的所述下行数据包。
可选地,在一些实施例中,发送模块1140还用于:向所述第一网络设备发送第七指示信息,所述第七指示信息用于指示所述终端设备使用第一密钥解密所述下行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:
所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;
所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;
下一跳链计数值NCC。
可以理解的是,本申请实施例中的通信装置的各个模块的功能和对应的操作可以参考 方法实施例中的相关描述。此外,本申请实施例中的模块也可以称为单元或者电路等,本申请实施例对此不做限定。
本申请实施例中,终端设备可以使用与源基站相关的密钥快速传输该上行数据包。从而可以避免inactive状态的终端设备由于更换anchor基站而导致的信令开销以及较大的数据传输时延。
图12是本申请实施例提供的一种通信装置1200的示意性框图。该通信装置1200可以包括:处理器1201、收发器1202以及存储器1203。
其中,该处理器1201可以与收发器1202通信连接。该存储器1203可以用于存储该通信装置1200的程序代码和数据。因此,该存储器1203可以是处理器1201内部的存储单元,也可以是与处理器1201独立的外部存储单元,还可以是包括处理器1001内部的存储单元和与处理器1201独立的外部存储单元的部件。
可选的,通信装置1200还可以包括总线1204。其中,收发器1202、以及存储器1203可以通过总线1204与处理器1201连接;总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线1205可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1201例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器1202可以是包括上述天线和发射机链和接收机链的电路,二者可以是独立的电路,也可以是同一个电路。
收发器1202可以对应于上文图9中的接收模块910,收发器1102用于执行图9中的接收模块910执行的所有步骤。
处理器1201可以对应于上文图9中的处理模块920。处理器1201用于执行图9中的处理模块920执行的所有步骤。
可以理解的是,本申请实施例中的通信装置的各个模块的功能和对应的操作可以参考方法实施例中的相关描述。此外,本申请实施例中的模块也可以称为单元或者电路等,本申请实施例对此不做限定。
图13是本申请实施例提供的一种通信装置1300的示意性框图。该通信装置1300可以包括:处理器1301、收发器1302以及存储器1303。
其中,该处理器1301可以与收发器1302通信连接。该存储器1303可以用于存储该通信装置1300的程序代码和数据。因此,该存储器1303可以是处理器1301内部的存储单元,也可以是与处理器1301独立的外部存储单元,还可以是包括处理器1301内部的存储单元和与处理器1301独立的外部存储单元的部件。
可选的,通信装置1300还可以包括总线1304。其中,收发器1302、以及存储器1303可以通过总线1304与处理器1301连接;总线1304可以是外设部件互连标准(Peripheral  Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线1305可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1301例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器1302可以是包括上述天线和发射机链和接收机链的电路,二者可以是独立的电路,也可以是同一个电路。
所述收发器1302用于:向终端设备发送上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括第二传输门限。
所述收发器1302用于:在所述第一上行链路载波或SUL载波上接收所述终端设备在所述非连接状态下,传输的所述上行数据包。
收发器1302对应于上文图10中的发送模块1010、接收模块1020,收发器1302用于执行图10中的发送模块1010、接收模块1020执行的所有步骤。
图14是本申请实施例提供的一种通信装置1400的示意性框图。该通信装置1400可以包括:处理器1401、收发器1402以及存储器1403。
其中,该处理器1401可以与收发器1402通信连接。该存储器1403可以用于存储该通信装置1400的程序代码和数据。因此,该存储器1403可以是处理器1401内部的存储单元,也可以是与处理器1401独立的外部存储单元,还可以是包括处理器1401内部的存储单元和与处理器1401独立的外部存储单元的部件。
可选的,通信装置1400还可以包括总线1404。其中,收发器1402、以及存储器1403可以通过总线1404与处理器1401连接;总线1404可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线1405可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1401例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器1402可以是包括上述天线和发射机链和接收机链的电路,二者可以是独立的电路,也可以是同一个电路。
所述收发器1402用于:接收第一网络设备发送的待传输的上行数据包。
所述收发器1402用于:接收所述第一网络设备发送的第一指示信息,所述第一指示信息用于指示所述待传输的上行数据包为终端设备在非连接状态,在第一上行链路载波或 补充上行链路SUL载波上发送的上行数据包。
收发器1402对应于上文图11中的第一接收模块1110、第二接收模块1120,收发器1402用于执行图11中的第一接收模块1110、第二接收模块1120执行的所有步骤。
可以理解的是,本申请实施例中的通信装置的各个模块的功能和对应的操作可以参考方法实施例中的相关描述。此外,本申请实施例中的模块也可以称为单元或者电路等,本申请实施例对此不做限定。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
本申请实施例还提供了计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述任一方面的任意可能的实现方式中的方法的指令。
本申请实施例还提供了一种计算机程序产品,应用于终端设备中,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被计算机运行时,使得该计算机执行上述任一方面的任意可能的实现方式中的方法。
本申请实施例还提供了一种芯片***,应用于通信设备中,该芯片***包括:至少一个处理器、至少一个存储器和接口电路,所述接口电路负责所述芯片***与外界的信息交互,所述至少一个存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行,以进行上述各个方面的所述的方法中所述网元的操作。
本申请实施例还提供了一种计算机程序产品,应用于通信设备中,所述计算机程序产品包括一系列指令,当所述指令被运行时,以进行上述各个方面的所述的方法中所述网元的操作。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是 计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    从第一网络设备接收上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括所述第二传输门限,其中,所述第一传输门限用于指示终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包大小,所述第二传输门限用于指示所述终端设备在所述非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包大小,所述第一上行链路载波的频率高于所述SUL载波;
    根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    在所述上行数据传输门限仅包括所述第二传输门限的情况下,若所述待传输的上行数据包的大小小于所述第二传输门限,确定在所述非连接状态下,在所述第一网络设备的SUL载波上传输所述上行数据包。
  3. 根据权利要求1所述的方法,其特征在于,所述第二传输门限大于所述第一传输门限,所述根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    在所述待传输的上行数据包的大小大于所述第一传输门限,小于所述第二传输门限的情况下,所述终端设备确定在所述非连接状态下,在所述第一网络设备的SUL载波上传输所述上行数据包。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    在所述待传输的上行数据包的大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包。
  5. 根据权利要求4所述的方法,其特征在于,所述在所述待传输的上行数据包的大小小于所述第一传输门限和所述第二传输门限的较小值的情况下,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    从所述第一网络设备接收下行信号质量门限;
    根据所述下行信号质量门限,确定在所述非连接状态下,在第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述上行数据 传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    确定在所述非连接状态下,通过随机接入流程发送所述上行数据包。
  7. 根据权利要求6所述的方法,其特征在于,所述确定在所述非连接状态下,通过随机接入流程发送所述上行数据包,包括:
    确定在所述非连接状态下,发送消息1和待传输的上行数据包;或者,
    确定在所述非连接状态下,发送消息3和待传输的上行数据包;或者,
    确定在所述非连接状态下,发送消息3,所述消息3中携带待传输的上行数据包。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,还包括:
    从所述第一网络设备接收第一指示信息,所述第一指示信息用于指示所述终端设备在所述非连接状态下,使用第一密钥传输所述上行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:所述终端设备在第二网络设备使用的密钥,所述第一网络设备的小区信息,下一跳链计数值NCC;其中,所述第二网络设备为配置所述终端设备进入所述非连接状态的网络设备,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,还包括:
    从所述第一网络设备接收随机接入配置;
    根据所述上行数据传输门限以及待传输的上行数据包大小,确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上传输所述上行数据包,包括:
    确定在所述非连接状态下,在所述第一网络设备的第一上行链路载波或所述SUL载波上根据所述随机接入配置传输所述上行数据包。
  10. 根据权利要求9所述的方法,其特征在于,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
  11. 根据权利要求9或10所述的方法,其特征在于,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述上行数据传输门限包括至少一个覆盖增强等级对应的上行数据传输门限。
  13. 一种通信方法,其特征在于,包括:
    向终端设备发送上行数据传输门限,所述上行数据传输门限包括第一传输门限和第二传输门限,或者包括所述第二传输门限,其中,所述第一传输门限用于指示所述终端设备在非连接状态下,在第一上行链路载波上所支持传输的最大数据包大小,所述第二传输门限用于指示所述终端设备在所述非连接状态下,在补充上行链路SUL载波上所支持传输的最大数据包大小,所述第一上行链路载波的频率高于所述SUL载波;
    在所述第一上行链路载波或所述SUL载波上接收所述终端设备在所述非连接状态下,传输的所述上行数据包。
  14. 根据权利要求13所述的方法,其特征在于,还包括:
    向所述终端设备发送下行信号质量门限,所述下行信号质量门限用于所述终端设备确 定在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上传输所述上行数据包。
  15. 根据权利要求13或14所述的方法,其特征在于,还包括:
    向所述终端设备发送随机接入配置,所述随机接入配置用于所述终端设备确定在所述非连接状态下,在所述第一上行链路载波或所述SUL载波上根据所述随机接入配置传输所述上行数据包。
  16. 根据权利要求15所述的方法,其特征在于,所述随机接入配置包括以下中的至少一项:随机接入前导码信息、随机接入资源。
  17. 根据权利要求15或16所述的方法,其特征在于,所述随机接入配置包括至少一个覆盖增强等级对应的随机接入配置。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备在所述非连接状态下,使用所述第一密钥传输所述上行数据包,其中,所述第一密钥为所述终端设备根据以下信息中的至少一种确定的密钥:
    所述终端设备在所述第二网络设备使用的密钥,所述第二网络设备为配置所述终端设备进入所述非连接状态的源网络设备;
    所述第一网络设备的小区信息,所述小区信息包括所述第一网络设备的小区频点信息和/或物理小区标识,所述第一网络设备为所述终端设备进行随机接入的目标网络设备;
    下一跳链计数值NCC。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,还包括:
    接收所述第二网络设备发送的第二消息,所述第二消息包括所述上行数据包的接收地址;
    根据所述接收地址,将接收到的所述终端设备传输的所述上行数据包转发至所述第二网络设备。
  20. 根据权利要求19所述的方法,其特征在于,在所述接收所述第二网络设备发送的第二消息之前,还包括:
    向所述第二网络设备发送第一消息,所述第一消息用于指示所述第二网络设备发送接收上行数据包的地址,或用于指示所述所述终端设备使用所述第一密钥传输所述上行数据包,所述上行数据包的接收地址为所述第二网络设备发送的所述终端设备在所述非连接状态下传输的所述上行数据包的地址。
  21. 一种通信装置,其特征在于,用于实现如权利要求1至12中任一项所述的方法。
  22. 一种通信装置,其特征在于,用于实现如权利要求13至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得通信装置执行如权利要求1至12中任一项所述的方法或者如权利要求13至20中任一项所述的方法。
PCT/CN2019/123930 2018-12-10 2019-12-09 一种通信方法、装置及计算机可读存储介质 WO2020119615A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19895012.3A EP3883316A4 (en) 2019-12-09 Communication method and apparatus and computer readable storage medium
JP2021532926A JP7270737B2 (ja) 2018-12-10 2019-12-09 通信方法および装置、ならびにコンピュータ可読記憶媒体
US17/342,619 US20210298092A1 (en) 2018-12-10 2021-06-09 Communications method and apparatus, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811502034.5 2018-12-10
CN201811502034.5A CN111294931B (zh) 2018-12-10 2018-12-10 一种通信方法、装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/342,619 Continuation US20210298092A1 (en) 2018-12-10 2021-06-09 Communications method and apparatus, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020119615A1 true WO2020119615A1 (zh) 2020-06-18

Family

ID=71024732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123930 WO2020119615A1 (zh) 2018-12-10 2019-12-09 一种通信方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20210298092A1 (zh)
JP (1) JP7270737B2 (zh)
CN (2) CN115665866A (zh)
WO (1) WO2020119615A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973372A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种信息发送和接收方法及装置
CN114071552A (zh) * 2020-07-29 2022-02-18 维沃移动通信有限公司 传输辅助信息的方法、终端设备和网络设备
CN114828269A (zh) * 2021-01-21 2022-07-29 大唐移动通信设备有限公司 数据传输方法及装置、终端、接入网设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594666A (zh) * 2008-05-30 2009-12-02 大唐移动通信设备有限公司 接入方式选择方法与装置、上行数据发送方法与装置
CN103763748A (zh) * 2014-01-23 2014-04-30 中国联合网络通信集团有限公司 一种数据传输方法及装置
CN104105214A (zh) * 2013-04-01 2014-10-15 电信科学技术研究院 一种数据传输方法及装置
CN108521883A (zh) * 2018-04-19 2018-09-11 北京小米移动软件有限公司 控制网络接入的方法及装置
WO2018214903A1 (en) * 2017-05-24 2018-11-29 Qualcomm Incorporated Uplink small data transmission in inactive state

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322832B2 (ja) * 2009-08-06 2013-10-23 シャープ株式会社 移動局装置、基地局装置、無線通信システムおよびランダムアクセス方法
US9820179B2 (en) * 2014-05-22 2017-11-14 Qualcomm Incorporated Devices and methods for facilitating uplink transmissions on two or more carriers
CN108235377A (zh) * 2016-12-14 2018-06-29 中兴通讯股份有限公司 一种上行数据的传输方法、装置及设备
US20180324854A1 (en) * 2017-05-04 2018-11-08 Qualcomm Incorporated Uplink small data transmission for enhanced machine-type-communication (emtc) and internet of things (iot) communication
EP3656166A1 (en) * 2017-08-10 2020-05-27 Sony Corporation Wireless communications system, communications device and wireless network infrastructure
CA3082641C (en) * 2017-11-14 2024-06-11 Idac Holdings, Inc. Supplementary uplink in wireless systems
CN117641576A (zh) * 2017-11-14 2024-03-01 交互数字专利控股公司 在不活动状态中运行双连接
WO2019099361A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Supplementary uplink transmissions in wireless systems
US20220417804A1 (en) * 2017-11-14 2022-12-29 Idac Holdings, Inc. Supplementary uplink in wireless systems
CN117377123A (zh) * 2017-11-15 2024-01-09 交互数字专利控股公司 用于无线***中的辅助上行链路接入的方法
CN108055700B (zh) * 2017-12-13 2021-03-12 中国联合网络通信集团有限公司 一种上行数据传输的方法及装置
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法
US11039331B2 (en) * 2018-03-28 2021-06-15 Samsung Electronics Co., Ltd. Apparatus and method for measurement in wireless communication system
CN110365805A (zh) * 2018-04-04 2019-10-22 中兴通讯股份有限公司 地址分配方法、装置、核心网、节点、网络***及介质
US11509442B2 (en) * 2018-08-09 2022-11-22 Lg Electronics Inc. Method for transmitting and receiving signals in wireless communication system and device therefor
WO2020060203A1 (ko) * 2018-09-18 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 멀티-협대역을 이용하는 스탠드얼론 mtc의 동작을 지원하기 위한 방법 및 그 장치
WO2020111836A1 (ko) * 2018-11-28 2020-06-04 엘지전자 주식회사 무선 통신 시스템에서 동작하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594666A (zh) * 2008-05-30 2009-12-02 大唐移动通信设备有限公司 接入方式选择方法与装置、上行数据发送方法与装置
CN104105214A (zh) * 2013-04-01 2014-10-15 电信科学技术研究院 一种数据传输方法及装置
CN103763748A (zh) * 2014-01-23 2014-04-30 中国联合网络通信集团有限公司 一种数据传输方法及装置
WO2018214903A1 (en) * 2017-05-24 2018-11-29 Qualcomm Incorporated Uplink small data transmission in inactive state
CN108521883A (zh) * 2018-04-19 2018-09-11 北京小米移动软件有限公司 控制网络接入的方法及装置

Also Published As

Publication number Publication date
US20210298092A1 (en) 2021-09-23
JP7270737B2 (ja) 2023-05-10
CN111294931A (zh) 2020-06-16
EP3883316A1 (en) 2021-09-22
CN115665866A (zh) 2023-01-31
JP2022511921A (ja) 2022-02-01
CN111294931B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US11997758B2 (en) Command indication method and apparatus and information interaction method and apparatus
US10623981B2 (en) Information transmission method, apparatus, and system
US20210076436A1 (en) Device-to-device communication method, terminal device, and network device
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2019183848A1 (zh) 监听pdcch的方法、终端设备和网络设备
WO2019242670A1 (zh) 通信方法、通信设备、网络设备及通信***
US20210298092A1 (en) Communications method and apparatus, and computer-readable storage medium
TWI739897B (zh) 確定終端裝置狀態的方法和裝置
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2021062730A1 (zh) 无线通信方法和装置
WO2019072170A1 (zh) 通信方法和通信装置
US20230413087A1 (en) Flexible Downlink Control Signal Monitoring in Wireless Communications
WO2019096232A1 (zh) 通信方法和通信装置
WO2019023851A1 (zh) 通信方法、通信装置和***
WO2019076347A1 (zh) 通信方法和通信装置
US20230107139A1 (en) Relay discovery method and terminal
WO2019210813A1 (zh) 一种无线网络的通信方法及设备
WO2022183356A1 (zh) 一种定时器运行方法、终端设备和网络设备
CN115668838B (zh) 无线通信方法、终端设备和网络设备
US11166149B2 (en) Device-to-device communication method, terminal device, and network device
WO2021138955A1 (zh) 通知发送时间信息的方法以及装置
WO2023141858A1 (en) Managing user equipment capabilities for multiple subscriber identity modules
WO2021159599A1 (zh) 传输优先级的确定方法和终端设备
WO2020133469A1 (zh) 随机接入方法、终端设备和网络设备
KR20210009323A (ko) 정보 전송 방법, 단말기 디바이스 및 네트워크 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895012

Country of ref document: EP

Effective date: 20210615