WO2023141858A1 - Managing user equipment capabilities for multiple subscriber identity modules - Google Patents

Managing user equipment capabilities for multiple subscriber identity modules Download PDF

Info

Publication number
WO2023141858A1
WO2023141858A1 PCT/CN2022/074215 CN2022074215W WO2023141858A1 WO 2023141858 A1 WO2023141858 A1 WO 2023141858A1 CN 2022074215 W CN2022074215 W CN 2022074215W WO 2023141858 A1 WO2023141858 A1 WO 2023141858A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless network
group
carriers
network
network carriers
Prior art date
Application number
PCT/CN2022/074215
Other languages
French (fr)
Inventor
Prateek Basu Mallick
Joachim Löhr
Lianhai WU
Colin Frank
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/074215 priority Critical patent/WO2023141858A1/en
Publication of WO2023141858A1 publication Critical patent/WO2023141858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • SIMs Subscriber Identity Modules
  • UEs User Equipment devices
  • MNO Mobile Network Operator
  • Multi-USIM devices typically address use cases where (1) the user has both a personal and a business subscription and wishes to use them both from the same device; and (2) the user has multiple personal subscriptions and chooses which one to use based on the selected service (e.g., use one individual subscription and one “family circle” plan) .
  • Multi-SIM operation is currently handled in an implementation-specific manner without any support from 3GPP specifications, resulting in a variety of implementations and UE behaviors (e.g., Dual SIM Single Standby, Dual SIM Dual Standby, Dual SIM Dual Active, etc. ) .
  • UE behaviors e.g., Dual SIM Single Standby, Dual SIM Dual Standby, Dual SIM Dual Active, etc.
  • a multi-USIM device implementation typically uses common radio and baseband components that are shared among the multiple USIMs, which can lead to several issues that impact the 3GPP system performance.
  • a first apparatus includes a processor that determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device.
  • the first apparatus includes a transceiver that transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the transceiver receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  • a first method determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the first method transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the first method receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  • a second apparatus includes a transceiver that receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the second apparatus includes a processor that determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the transceiver transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
  • RRC radio resource control
  • a second method receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the second method determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the second method transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
  • RRC radio resource control
  • a third apparatus includes a processor that determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the processor determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third apparatus includes a transceiver that transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
  • a third method determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the third method determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third method transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
  • Figure 1 is a block diagram illustrating one embodiment of a wireless communication system for multiple USIM operation
  • Figure 2A is a block diagram illustrating one embodiment of a single USIM UE and a multi-USIM UE;
  • Figure 2B is a block diagram illustrating one embodiment of a protocol stack of a multi-USIM UE
  • Figure 2C is a diagram illustrating one embodiment of a NR protocol stack
  • Figure 3 is a flowchart diagram illustrating one embodiment of a procedure for providing UE Assistance Information managing UE capabilities for multiple subscriber identity modules
  • Figure 4 is a diagram illustrating one example of carrier aggregation and/or dual connectivity using multi-USIM operation
  • Figure 5 is a flowchart diagram illustrating one embodiment of a procedure for providing UE capability information for managing UE capabilities for multiple subscriber identity modules
  • Figure 6 is a block diagram illustrating one embodiment of a user equipment apparatus that may be used for multiple USIM operation
  • Figure 7 is a block diagram illustrating one embodiment of a network apparatus that may be used for multiple USIM operation
  • Figure 8 is a flowchart diagram illustrating one embodiment of a first method for multiple USIM operation
  • Figure 9 is a flowchart diagram illustrating one embodiment of a second method for multiple USIM operation
  • Figure 10 is a flowchart diagram illustrating one embodiment of a third method for multiple USIM operation.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
  • the disclosed embodiments may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • the disclosed embodiments may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, or the like.
  • the disclosed embodiments may include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function.
  • embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code.
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • the storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) , wireless LAN ( “WLAN” ) , or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider ( “ISP” ) ) .
  • LAN local area network
  • WLAN wireless LAN
  • WAN wide area network
  • ISP Internet Service Provider
  • a list with a conjunction of “and/or” includes any single item in the list or a combination of items in the list.
  • a list of A, B and/or C includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C.
  • a list using the terminology “one or more of” includes any single item in the list or a combination of items in the list.
  • one or more of A, B and C includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C.
  • a list using the terminology “one of” includes one and only one of any single item in the list.
  • “one of A, B and C” includes only A, only B or only C and excludes combinations of A, B and C.
  • amember selected from the group consisting of A, B, and C, includes one and only one of A, B, or C, and excludes combinations of A, B, and C.
  • “amember selected from the group consisting of A, B, and C and combinations thereof” includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C.
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the flowchart diagrams and/or block diagrams.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart diagrams and/or block diagrams.
  • each block in the flowchart diagrams and/or block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the present disclosure describes systems, methods, and apparatus for managing UE capabilities for multiple subscriber identity modules.
  • the methods may be performed using computer code embedded on a computer-readable medium.
  • an apparatus or system may include a computer-readable medium containing computer-readable code which, when executed by a processor, causes the apparatus or system to perform at least a portion of the below described solutions.
  • Multi-USIM “MUSIM”
  • MUSIM Multi-USIM
  • the user has both a personal and a business subscription and wishes to use them both from the same device.
  • the user has multiple personal subscriptions and chooses which one to use based on the selected service (e.g., use one individual subscription and one “family circle” plan) .
  • the USIMs may be from the same or from different Mobile Network Operators ( “MNOs” ) .
  • MNOs Mobile Network Operators
  • a MUSIM device implementation typically uses common radio and baseband components that are shared among the multiple USIMs, which can lead to several issues that impact the 3GPP system performance.
  • a multi-USIM device that is actively engaged in communication with a 3GPP system.
  • Figure 1 depicts a wireless communication system 100 for multiple USIM operation, according to embodiments of the disclosure.
  • the wireless communication system 100 includes at least one remote unit 105, a 5G-RAN 115, and a mobile core network 140.
  • the 5G-RAN 115 and the mobile core network form a mobile communication network.
  • the 5G-RAN 115 may be composed of a 3GPP access network 120 containing at least one cellular base unit 121 and/or a non-3GPP access network 130 containing at least one access point 131.
  • the remote unit communicates with the 3GPP access network 120 using 3GPP communication links 123 and communicates with the non-3GPP access network 130 using non-3GPP communication links 133.
  • remote units 105, 3GPP access networks 120, cellular base units 121, 3GPP communication links 123, non-3GPP access networks 130, access points 131, non-3GPP communication links 133, and mobile core networks 140 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 105, 3GPP access networks 120, cellular base units 121, 3GPP communication links 123, non-3GPP access networks 130, access points 131, non-3GPP communication links 133, and mobile core networks 140 may be included in the wireless communication system 100.
  • the RAN 115 is compliant with the 5G system specified in the Third Generation Partnership Project ( “3GPP” ) specifications.
  • the 5G-RAN 115 may include a 3GPP access network 120 such as a Next Generation Radio Access Network ( “NG-RAN” ) , implementing New Radio ( “NR” ) Radio Access Technology ( “RAT” ) and/or Long-Term Evolution ( “LTE” ) RAT.
  • the RAN 120 may include a non-3GPP access network 130 implementing non-3GPP RAT (e.g., or Institute of Electrical and Electronics Engineers ( “IEEE” ) 802.11-family compliant WLAN) .
  • non-3GPP RAT e.g., or Institute of Electrical and Electronics Engineers ( “IEEE” ) 802.11-family compliant WLAN
  • the wireless communication system 100 may implement some other open or proprietary communication network, for example Worldwide Interoperability for Microwave Access ( “WiMAX” ) or IEEE 802.16-family standards, among other networks.
  • WiMAX Worldwide Interoperability for Microwave Access
  • IEEE 802.16-family standards among other networks.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the remote units 105 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , smart appliances (e.g., appliances connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like.
  • the remote units 105 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the remote units 105 may be referred to as the UEs, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, wireless transmit/receive unit ( “WTRU” ) , a device, or by other terminology used in the art.
  • WTRU wireless transmit/receive unit
  • the remote unit 105 includes multiple universal subscriber identity and/or identification modules ( “USIMs” ) and the mobile equipment ( “ME” ) providing mobile termination functions (e.g., radio transmission, handover, speech encoding and decoding, error detection and correction, signaling and access to the SIM (s) ) .
  • the remote unit 105 may include a terminal equipment ( “TE” ) and/or be embedded in an appliance or device (e.g., a computing device, as described above) .
  • the remote unit 105 includes the USIM-A107 and the USIM-B 109.
  • the USIM-A107 and USIM-B 109 are depicted as associated with the same mobile network operator ( “MNO” ) and/or Public Land Mobile Network ( “PLMN” ) .
  • MNO mobile network operator
  • PLMN Public Land Mobile Network
  • an MNO also known as a wireless service provider, wireless carrier, cellular company, or mobile network carrier, is a provider of wireless communications services that owns or controls the elements necessary to sell and deliver services to an end user, including radio spectrum allocation, wireless network infrastructure, back haul infrastructure, billing, customer care, provisioning computer systems, and marketing and repair organizations.
  • the USIM-A107 and USIM-B 109 may be associated with the same or different network slices of the same MNO/PLMN.
  • the MNO/PLMN may interpret the remote unit 105 as two different remote units having each own registration with the network.
  • the USIM-A107 and USIM-B 109 may be associated with different MNOs/PLMNs.
  • the remote units 105 may communicate directly with one or more of the base units 121 in the 5G-RAN 115 via uplink ( “UL” ) and downlink ( “DL” ) communication signals. Furthermore, the UL and DL communication signals may be carried over the wireless communication links 123.
  • the 5G-RAN 115 is an intermediate network that provides the remote units 105 with access to the mobile core network 140.
  • the remote units 105 communicate with an application server 151 (or other communication peer) via a network connection with the mobile core network 140.
  • an application e.g., web browser, media client, telephone and/or Voice-over-Internet-Protocol ( “VoIP” ) application
  • VoIP Voice-over-Internet-Protocol
  • a remote unit 105 may trigger the remote unit 105 to establish a protocol data unit ( “PDU” ) session (or other data connection) with the mobile core network 140 via the RAN 120.
  • the mobile core network 140 then relays traffic between the remote unit 105 and the application server 151 in the packet data network 150 using the PDU session.
  • the PDU session represents a logical connection between the remote unit 105 and the User Plane Function ( “UPF” ) 141.
  • UPF User Plane Function
  • the remote unit 105 In order to establish the PDU session (or PDN connection) , the remote unit 105 must be registered with the mobile core network 140 (also referred to as “attached to the mobile core network” in the context of a Fourth Generation ( “4G” ) system) . Note that the remote unit 105 may establish one or more PDU sessions (or other data connections) with the mobile core network 140. As such, the remote unit 105 may have at least one PDU session for communicating with the packet data network 150. The remote unit 105 may establish additional PDU sessions for communicating with other data networks and/or other communication peers.
  • the mobile core network 140 also referred to as “attached to the mobile core network” in the context of a Fourth Generation ( “4G” ) system
  • the remote unit 105 may establish one or more PDU sessions (or other data connections) with the mobile core network 140.
  • the remote unit 105 may have at least one PDU session for communicating with the packet data network 150.
  • the remote unit 105 may establish additional PDU sessions for communicating with other
  • PDU Session refers to a data connection that provides end-to-end ( “E2E” ) user plane ( “UP” ) connectivity between the remote unit 105 and a specific Data Network ( “DN” ) through the UPF 141.
  • a PDU Session supports one or more Quality of Service ( “QoS” ) Flows.
  • QoS Quality of Service
  • EPS Evolved Packet System
  • PDN Packet Data Network
  • PDN connectivity procedure establishes an EPS Bearer, i.e., a tunnel between the remote unit 105 and a Packet Gateway ( “PGW” , not shown) in the mobile core network 140.
  • PGW Packet Gateway
  • QCI QoS Class Identifier
  • the cellular base units 121 may be distributed over a geographic region.
  • a cellular base unit 121 may also be referred to as an access terminal, a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, a device, or by any other terminology used in the art.
  • the cellular base units 121 are generally part of a radio access network ( “RAN” ) , such as the 3GPP access network 120, that may include one or more controllers communicably coupled to one or more corresponding cellular base units 121. These and other elements of radio access network are not illustrated but are well known generally by those having ordinary skill in the art.
  • the cellular base units 121 connect to the mobile core network 140 via the 3GPP access network 120.
  • the cellular base units 121 may serve a number of remote units 105 within a serving area, for example, a cell or a cell sector, via a 3GPP communication link 123.
  • the cellular base units 121 may communicate directly with one or more of the remote units 105 via communication signals.
  • the cellular base units 121 transmit DL communication signals to serve the remote units 105 in the time, frequency, and/or spatial domain.
  • the DL communication signals may be carried over the 3GPP communication links 123.
  • the 3GPP communication links 123 may be any suitable carrier in licensed or unlicensed radio spectrum.
  • the 3GPP communication links 123 facilitate communication between one or more of the remote units 105 and/or one or more of the cellular base units 121. Note that during NR operation on unlicensed spectrum (referred to as “NR-U” ) , the base unit 121 and the remote unit 105 communicate over unlicensed (i.e., shared) radio frequency bands.
  • NR-U unlicensed spectrum
  • the non-3GPP access networks 130 may be distributed over a geographic region. Each non-3GPP access network 130 may serve a number of remote units 105 with a serving area. Typically, a serving area of the non-3GPP access network 130 is smaller than the serving area of a cellular base unit 121.
  • An access point 131 in a non-3GPP access network 130 may communicate directly with one or more remote units 105 by receiving UL communication signals and transmitting DL communication signals to serve the remote units 105 in the time, frequency, and/or spatial domain. Both DL and UL communication signals are carried over the non-3GPP communication links 133.
  • the 3GPP communication links 123 and non-3GPP communication links 133 may employ different frequencies and/or different communication protocols.
  • an access point 131 may communicate using unlicensed radio spectrum.
  • the mobile core network 140 may provide services to a remote unit 105 via the non-3GPP access networks 130, as described in greater detail herein.
  • a non-3GPP access network 130 connects to the mobile core network 140 via an interworking function 135.
  • the interworking function 135 provides interworking between the remote unit 105 and the mobile core network 140.
  • the interworking function 135 is a Non-3GPP Interworking Function ( “N3IWF” ) and, in other embodiments, it is a Trusted Non-3GPP Gateway Function ( “TNGF” ) .
  • N3IWF Non-3GPP Interworking Function
  • TNGF Trusted Non-3GPP Gateway Function
  • the interworking function 135 supports connectivity to the mobile core network 140 via the “N2” and “N3” interfaces, and it relays “N1” signaling between the remote unit 105 and the AMF 143. As depicted, both the 3GPP access network 120 and the interworking function 135 communicate with the AMF 143 using a “N2” interface. The interworking function 135 also communicates with the UPF 141 using a “N3” interface.
  • a non-3GPP access network 130 may be controlled by an MNO of the mobile core network 140 and may have direct access to the mobile core network 140.
  • a non-3GPP AN deployment is referred to as a “trusted non-3GPP access network. ”
  • a non-3GPP access network 130 is considered as “trusted” when it is operated by the MNO, or a trusted partner, and supports certain security features, such as strong air-interface encryption.
  • a non-3GPP AN deployment that is not controlled by an operator (or trusted partner) of the mobile core network 140 does not have direct access to the mobile core network 140, or does not support the certain security features is referred to as a “non-trusted” non-3GPP access network.
  • the mobile core network 140 is a Fifth Generation Core network ( “5GC” ) or an Evolved Packet Core network ( “EPC” ) , which may be coupled to a packet data network 150, like the Internet and private data networks, among other data networks.
  • a remote unit 105 may have a subscription or other account with the mobile core network 140.
  • each mobile core network 140 belongs to a single MNO and/or PLMN. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the mobile core network 140 includes several network functions ( “NFs” ) . As depicted, the mobile core network 140 includes at least one UPF 141. Here, the mobile core network 140 includes at least a UPF 141 that serves the 3GPP access network 120 and the non-3GPP access network 130. Note that in certain embodiments, the mobile core network may contain one or more intermediate UPFs, for example a first intermediate UPF that serves the non-3GPP access network 130 and the second intermediate UPF that serves the 3GPP access network 120. In such embodiments, the UPF 141 would be an anchor UPF receiving UP traffic of both intermediate UPFs.
  • NFs network functions
  • the mobile core network 140 also includes multiple control plane ( “CP” ) functions including, but not limited to, an Access and Mobility Management Function ( “AMF” ) 143 that serves the RAN 120, a Session Management Function ( “SMF” ) 145, a Policy Control Function ( “PCF” ) 147, a Unified Data Management function ( “UDM” ” ) and a User Data Repository ( “UDR” ) .
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • UDM Unified Data Management function
  • UDR User Data Repository
  • the UPF (s) 141 is/are responsible for packet routing and forwarding, packet inspection, QoS handling, and external PDU session for interconnecting Data Network (DN) , in the 5G architecture.
  • the AMF 143 is responsible for termination of NAS signaling, NAS ciphering &integrity protection, registration management, connection management, mobility management, access authentication and authorization, security context management.
  • the SMF 145 is responsible for session management (i.e., session establishment, modification, release) , remote unit (i.e., UE) IP address allocation &management, DL data notification, and traffic steering configuration of the UPF 141 for proper traffic routing.
  • the PCF 147 is responsible for unified policy framework, providing policy rules to CP functions, access subscription information for policy decisions in UDR.
  • the UDM is responsible for generation of Authentication and Key Agreement ( “AKA” ) credentials, user identification handling, access authorization, subscription management.
  • AKA Authentication and Key Agreement
  • the UDR is a repository of subscriber information and may be used to service a number of network functions. For example, the UDR may store subscription data, policy-related data, subscriber-related data that is permitted to be exposed to third party applications, and the like.
  • the UDM is co-located with the UDR, depicted as combined entity “UDM/UDR” 149.
  • the mobile core network 140 may also include a Network Repository Function ( “NRF” ) (which provides Network Function ( “NF” ) service registration and discovery, enabling NFs to identify appropriate services in one another and communicate with each other over Application Programming Interfaces ( “APIs” ) ) , a Network Exposure Function ( “NEF” ) (which is responsible for making network data and resources easily accessible to customers and network partners) , an Authentication Server Function ( “AUSF” ) , or other NFs defined for the 5GC.
  • the AUSF may act as an authentication server and/or authentication proxy, thereby allowing the AMF 143 to authenticate a remote unit 105.
  • the mobile core network 140 may include an authentication, authorization, and accounting ( “AAA” ) server.
  • AAA authentication, authorization, and accounting
  • the mobile core network 140 supports different types of mobile data connections and different types of network slices, wherein each mobile data connection utilizes a specific network slice.
  • a “network slice” refers to a portion of the mobile core network 140 optimized for a certain traffic type or communication service.
  • one or more network slices may be optimized for enhanced mobile broadband ( “eMBB” ) service.
  • one or more network slices may be optimized for ultra-reliable low-latency communication ( “URLLC” ) service.
  • a network slice may be optimized for machine-type communication ( “MTC” ) service, massive MTC ( “mMTC” ) service, Internet-of-Things ( “IoT” ) service.
  • a network slice may be deployed for a specific application service, a vertical service, a specific use case, etc.
  • a network slice instance may be identified by a single-network slice selection assistance information ( “S-NSSAI” ) while a set of network slices for which the remote unit 105 is authorized to use is identified by network slice selection assistance information ( “NSSAI” ) .
  • NSSAI refers to a vector value including one or more S-NSSAI values.
  • the various network slices may include separate instances of network functions, such as the SMF 145 and UPF 141.
  • the different network slices may share some common network functions, such as the AMF 143. The different network slices are not shown in Figure 1 for ease of illustration, but their support is assumed.
  • Figure 1 depicts components of a 5G RAN and a 5G core network
  • the described embodiments for multiple USIM operation apply to other types of communication networks and RATs, including IEEE 802.11 variants, Global System for Mobile Communications ( “GSM” , i.e., a 2G digital cellular network) , General Packet Radio Service ( “GPRS” ) , Universal Mobile Telecommunications System ( “UMTS” ) , LTE variants, CDMA 2000, Bluetooth, ZigBee, Sigfox, and the like.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • CDMA 2000 Code Division Multiple Access 2000
  • Bluetooth ZigBee
  • ZigBee ZigBee
  • Sigfox and the like.
  • the depicted network functions may be replaced with appropriate EPC entities, such as a Mobility Management Entity ( “MME” ) , a Serving Gateway ( “SGW” ) , a PGW, a Home Subscriber Server ( “HSS” ) , and the like.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • PGW Packet Data Network
  • HSS Home Subscriber Server
  • the AMF 143 may be mapped to an MME
  • the SMF 145 may be mapped to a control plane portion of a PGW and/or to an MME
  • the UPF 141 may be mapped to an SGW and a user plane portion of the PGW
  • the UDM/UDR 149 may be mapped to an HSS, etc.
  • the term “RAN node” is used for the base station/base unit, but it is replaceable by any other radio access node, e.g., gNB, ng-eNB, eNB, Base Station ( “BS” ) , Access Point ( “AP” ) , etc.
  • the term “UE” is used for the mobile station/remote unit, but it is replaceable by any other remote device, e.g., remote unit, MS, ME, etc.
  • the operations are described mainly in the context of 5G NR. However, the below described solutions/methods are also equally applicable to other mobile communication systems for multiple USIM operation.
  • FIG. 2A depicts both a single USIM UE 200 and a multi-USIM UE 205, according to embodiments of the disclosure.
  • the UE 200 comprises a Mobile Equipment ( “ME” ) 210 with a single USIM 203 registered for use at a time
  • the multi-USIM UE 205 includes an ME with multiple USIMs (e.g., a first USIM ( “USIM-A” ) 207 and a second USIM ( “USIM-B”) 209) registered for use at the same time.
  • the USIM-A207 is associated with a first communication system ( “System-A” ) 223, while the USIM-B 209 is associated with a second communication system ( “System-B” ) 225.
  • the USIM-A207 and USIM-B 209 may be associated with different PLMNs, i.e., where System-A223 and System-B 225 represent different PLMNs. In other embodiments, the USIM-A207 and USIM-B 209 are associated with the same PLMN. For example, the USIM-A207 and USIM-B 209 may be associated with different network slices of the same PLMN. Note that both USIM-A207 and USIM-B 209 can be used for idle mode network connection at the same time.
  • Each ME 210 (e.g., transceiver or modem) includes (1) one or more Mobile Terminations ( “MT” ) 215 specific to management of the PLMN access interface (3GPP or non-3GPP) ; and (2) one or more Terminal Equipment ( “TE” ) 220 functions necessary for the operation of the access protocols by the user.
  • MT Mobile Terminations
  • TE Terminal Equipment
  • the single USIM UE 200 and multi-USIM UE 205 can implement the universal subscriber identity module (s) ( “USIM” , sometimes referred as subscriber identification module, “SIM” ) as an integrated circuit or card which needs to be inserted in the UE, and/or as embedded-SIM ( “eSIM” ) or embedded universal integrated circuit card ( “eUICC” ) –a form of programmable SIM that is embedded directly into a device, and/or the USIM profile can be stored on tamper-resistant platform or secure domain on the device.
  • the USIM profile can be at least one of non-telecom profile, operational profile, a provisioning profile, or a test profile.
  • FIG. 2B depicts an arrangement of components and protocol layers of the multi-USIM ( “MUSIM” ) UE 205, according to embodiments of the disclosure.
  • the protocol layers include the upper layers 227 (e.g., Internet Protocol ( “IP” ) layer, transport (e.g., User Datagram Protocol ( “UDP” ) , Transmission Control Protocol ( “TCP” ) ) layer (s) , etc. ) .
  • the protocol layers include the 5GS Session Management ( “5GSM” ) sublayer 229 and the 5GS Mobility Management ( “5GMM” ) sublayer 230, which comprise the Non-Access Stratum ( “NAS” ) layer 231.
  • 5GSM 5GS Session Management
  • 5GMM 5GS Mobility Management
  • the AMF 143 includes a NAS layer may establish a NAS signaling connection with the MUSIM UE 205.
  • the AS layer 232 (also referred to as the “Radio Protocol” of the protocol stack) includes the RRC layer 233, the Service Data Adaptation Protocol ( “SDAP” ) layer 235, the Packet Data Convergence Protocol ( “PDCP” ) layer 237, the RLC layer 239, the MAC layer 241, and the PHY layer 243 (baseband) .
  • the RAN node e.g., base unit 121) includes corresponding AS layers and may establish an AS signaling connection with the MUSIM UE 205.
  • the MUSIM UE 205 (e.g., the ME 210 part of the MUSIM UE 205) , needs to implement at least as many NAS protocol stacks and radio protocol stacks (e.g., abbreviated as “NAS/RP” stack) as the number of USIMs which can be simultaneously registered with the same or different PLMN.
  • NAS/RP radio protocol stacks
  • each NAS/RP stack has its own receiver (e.g., a first receiver ( “Rx-1” ) 247 for the USIM-A207 and a second receiver ( “Rx-2” ) 249 for the USIM-B 209) , but the MUSIM UE 205 has a single transmitter 245. Transmitted and received signals are communicated via the duplexer 251 and antenna 253.
  • the 5GMM sublayer 230 is used to track the location of the MUSIM UE 205 (e.g., Cell Identity ( “Cell-ID” ) or Tracking Area) and to manage UE registration in the 5GS.
  • the 5GMM sublayer 230 also manages 5G NAS security and temporary identities of the MUSIM UE 205, such as the 5G Globally Unique Temporary UE Identity ( “5G-GUTI” ) .
  • 5GMM procedures include (but are not limited to) the 5G NAS Registration, 5G NAS Deregistration, 5G NAS service, 5G NAS paging, UE configuration update, and 5G NAS Authentication procedures.
  • Various 5GMM states and procedures are defined in 3GPP TS 24.501, clause 5.
  • Figure 2C depicts a NR protocol stack 260, according to embodiments of the disclosure. While Figure 2C shows the multi-USIM ( “MUSIM” ) UE 205, a RAN node 265 and the 5G core network ( “5GC” ) 267, these are representative of a set of remote units 105 interacting with a base unit 121 (or access point 131) in a 5G-RAN 115 and a mobile core network 140.
  • the protocol stack 260 comprises a User Plane protocol stack 261 and a Control Plane protocol stack 263.
  • the User Plane protocol stack 261 includes a physical ( “PHY” ) layer 243, a Medium Access Control ( “MAC” ) sublayer 241, the Radio Link Control ( “RLC” ) sublayer 239, a Packet Data Convergence Protocol ( “PDCP” ) sublayer 237, and Service Data Adaptation Protocol ( “SDAP” ) layer 235.
  • the Control Plane protocol stack 263 includes a physical layer 243, a MAC sublayer 241, a RLC sublayer 239, and a PDCP sublayer 237.
  • the Control Plane protocol stack 263 also includes a Radio Resource Control ( “RRC” ) layer 233 and a Non-Access Stratum ( “NAS” ) layer 231.
  • RRC Radio Resource Control
  • NAS Non-Access Stratum
  • the AS layer 232 (also referred to as “AS protocol stack” ) for the User Plane protocol stack 261 consists of at least SDAP, PDCP, RLC and MAC sublayers, and the physical layer.
  • the AS layer 232 for the Control Plane protocol stack 263 consists of at least RRC, PDCP, RLC and MAC sublayers, and the physical layer.
  • the Layer-2 ( “L2” ) is split into the SDAP, PDCP, RLC and MAC sublayers.
  • the Layer-3 ( “L3” ) includes the RRC sublayer 233 and the NAS layer 231 for the control plane and includes, e.g., an Internet Protocol ( “IP” ) layer and/or PDU Layer (not depicted) for the user plane.
  • IP Internet Protocol
  • L1 and L2 are referred to as “lower layers, ” while L3 and above (e.g., transport layer, application layer) are referred to as “higher layers” or “upper layers. ”
  • the physical layer 243 offers transport channels to the MAC sublayer 241.
  • the physical layer 243 may perform a Clear Channel Assessment and/or Listen-Before-Talk ( “CCA/LBT” ) procedure using energy detection thresholds, as described herein.
  • the physical layer 243 may send a notification of UL Listen-Before-Talk ( “LBT” ) failure to a MAC entity at the MAC sublayer 241.
  • the MAC sublayer 241 offers logical channels to the RLC sublayer 239.
  • the RLC sublayer 239 offers RLC channels to the PDCP sublayer 237.
  • the PDCP sublayer 237 offers radio bearers to the SDAP sublayer 235 and/or RRC layer 233.
  • the SDAP sublayer 235 offers QoS flows to the core network (e.g., 5GC 267) .
  • the RRC layer 233 provides for the addition, modification, and release of Carrier Aggregation and/or Dual Connectivity.
  • the RRC layer 233 also manages the establishment, configuration, maintenance, and release of Signaling Radio Bearers ( “SRBs” ) and Data Radio Bearers ( “DRBs” ) .
  • SRBs Signaling Radio Bearers
  • DRBs Data Radio Bearers
  • the NAS layer 231 is between the UE 205 and the 5GC 267 (i.e., AMF 143) . NAS messages are passed transparently through the 5G-RAN 115.
  • the NAS layer 231 is used to manage the establishment of communication sessions and for maintaining continuous communications with the UE 205 as it moves between different cells of the 5G-RAN 115.
  • the AS layer 232 is between the UE 205 and the 5G-RAN 115 (i.e., RAN node 265) and carries information over the wireless portion of the network.
  • a MUSIM UE s hardware capabilities are shared by the SIMs, and to use the hardware efficiently and economically, the related capabilities may need to be dynamically split between the two SIMs. This can lead to a temporary hardware conflict for the UE, which may require the UE to release some resources (e.g., secondary cell ( “SCell” ) , secondary cell group ( “SCG” ) , and/or the like) from one SIM.
  • some resources e.g., secondary cell ( “SCell” ) , secondary cell group ( “SCG” ) , and/or the like
  • the two radio frequency ( “RF” ) chains will be occupied by the SIM A for the communication in NW A.
  • RRC radio resource control
  • NW network
  • RF radio frequency
  • Figure 3 depicts a procedure 300 for providing UE assistance information to inform the network of various UE parameters.
  • the procedure 300 includes a UE device 305 and a network 310.
  • RRCReconfiguration information may be shared between the UE 305 and the network 310 (see messaging 320) in response to the UE 305 transmitting UEAssistanceInformation to the network 310 (see messaging 315) .
  • the UEAssistanceInformation may include:
  • x. configured grant assistance information for NR sidelink communication
  • a UE 305 capable of providing MUSIM assistance information may initiate the procedure 300 if it was configured to do so, upon determining that it needs to leave RRC_CONNECTED state, or upon determining it needs the gaps, or upon change of the gap information without leaving RRC_CONNECTED state.
  • a UE is RRC Connected in Network A using (U) SIM A and there are one or more data bearers established.
  • the same UE is in RRC Idle or Inactive in Network B using (U) SIM B.
  • Some arts describe the same Physical UE as UE A and UE B corresponding to the UE parts connecting to Network A and Network B respectively. Further, the UE may need to perform some activity in Network B e.g., start a mobile originated call, respond to a mobile terminating call, or the like.
  • the UE may need to shift some capabilities in use for Network A towards Network B.This may be required since a UE has finite capability e.g., in terms of its processing capability or its hardware/software buffer, memory, and RF chain, which may include a cascade of electronic components and sub-units including antennas, antenna panels, power amplifiers, filters, mixers, attenuators, detectors, and/or the like. In the absence of any active data connection and/or an RRC Connection the UE may tend to use its capability to (near) full extent/capacity in Network A.
  • a UE determines a mapping between its capability and the current radio carriers in use.
  • the carriers 402 may be in carrier aggregation grouped by node 404 or in dual connectivity (or even multi connectivity) 406.
  • Each carrier may be used for different transmission ( “Tx” ) chains (as an example of capability) , which are exposed to the network (as one example implementation) .
  • Tx transmission
  • the network can make judicious decision on which carriers can be released or deactivated to allow the UE to shift some of its capability towards another network.
  • the UE determines a mapping between its capability and the current radio carriers 402 in use.
  • the carriers 402 e.g., a cell or base station using a particular frequency in uplink ( “UL” ) /downlink ( “DL” ) for communication
  • UL uplink
  • DL downlink
  • the carriers 402 may either be terminating in the same network node, for carrier aggregation 404, or could terminate in more than one network node e.g., when a dual connectivity (or even multi connectivity) 406 feature is in use, as shown in Figure 4.
  • the capabilities mapping from first step can look like:
  • Tx Chain-1 Node 1 (f1, f2, f3)
  • Tx Chain-2 Node 2 (f4, f5, f6)
  • the UE determines which Tx chain it can release from Network A and move to Network B. This determination could be based on several factors, including, but not limited to:
  • the frequency of operation in Network B determines the Tx chain to be moved, e.g., if the UE needs to operate on FR2 in Network B, it can only move a Tx chain on FR2 in Network A;
  • the UE may determine a Tx chain to be released from Network A based on the data bearer (s) mapped to the Tx chain serving data of lower priority compared with the data bearer (s) mapped to the other Tx chain. This is only possible for Dual Connectivity situations where the DRBs are mapped to a particular Node (called Cell group) .
  • Another possible rule could be to remove (or not remove) a Tx Chain serving one or more split bearers.
  • the UE makes suggestions to its base station or gNB about which carriers it would release or make dormant, e.g., as defined in 3GPP TS 38.321.
  • the UE indicates the list of carriers and/or the cell-group (e.g., network node) that it is willing to release to the serving cell (e.g., PCell) or to the corresponding intended-to-be-released cell/node.
  • the serving cell e.g., PCell
  • the network can agree with the UE’s suggestion or may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation medium access control control elements ( “MAC CEs” ) , or by configuring a bandwidth part ( “BWP” ) corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the UE’s suggestions, which allows the UE to free one of its Tx chains.
  • RRCReconfiguration SCell Activation/Deactivation medium access control control elements
  • BWP bandwidth part
  • a UE determines two or more carrier groups where each group is mapped to a unique part of the UE capability. Thereafter, the UE indicates the groups of carriers to the network, along with the need to reduce its capability in the current network and waits for a response from the network.
  • “part of the UE capability” is the UE’s Tx chain dedicated to transmission on one or more carriers.
  • the UE puts those carriers in the same group that uses the same part of the UE capability.
  • the UE sends the groups of carriers to the network using RRC signaling. Afterwards, the UE expects to receive a response that involves receiving and acting on an RRC Reconfiguration message from the network.
  • the network (e.g., the gNB or base station) , after receiving the groups of carriers along with the need to reduce the UE’s capability in the current network, determines which group of carriers can be reconfigured. The determination may be based on at least one of the priorities of the data bearers served using these groups and/or the coverage area being served by these groups, e.g., the network may want to keep a cell group serving higher priority data bearers or having a larger coverage area to provide a better and more stable signaling connection.
  • the network transmits an RRC Reconfiguration message to the UE with a reconfigured carrier list, which includes carriers that can be released, deactivated, or made dormant to free-up Tx or Rx capabilities of the UE.
  • a UE signals a partial capability in addition to full capability to the network.
  • a UE 505 includes all its capabilities (see messaging 520) requested using a UE capability enquiry (see messaging 515) from the network 510 (e.g., gNB) as shown in Figure 5.
  • a solution that provides more granular information may have at least two possible implementations: one where the network 510 sends an enquiry (see messaging 515) about the “partial UE capability” and the UE 505 includes only those capability towards Network A that it will not use towards another Network B, when the need comes (e.g., as part of the UECapabilityInformation in messaging 520) .
  • the UE 505 indicates that it can now work in partial capability to the serving cell, e.g., PCell.
  • the network 510 may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation MAC CEs, or by configuring a BWP corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the partial or remaining capability available for Network A.
  • the UE 505 itself includes such partial capability only when it needs to move some of the capability to Network B.
  • the network 510 may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation MAC CEs, or by configuring a BWP corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the partial or remaining capability available for Network A.
  • the UE when the UE needs to start communication on another network, it indicates such need to the serving cell, e.g., PCell.
  • the serving cell decides which CG/FR2/FR1 is important to keep and sends reconfiguration information to the UE releasing the remaining cells/carriers.
  • the network can transmit SCell Activation/Deactivation MAC CEs to the UE or configure a BWP corresponding to the suggested carriers as dormantBWP-Id by RRC signalling or make an SCell (group) dormant using SCell dormancy indication in DCI format 2-6 (e.g., as in 3GPP TS 38.213, clause 10.3) or by using DCI format 1_1 indicating SCell dormancy.
  • DCI format 2-6 e.g., as in 3GPP TS 38.213, clause 10.3
  • every carrier configuration is configured as releasable or not-releasable.
  • the UE releases, makes-dormant, and/or deactivates those carriers indicated as “releasable” in the RRCConfiguration when configuring the added carrier that the UE capabilities are transferred to.
  • a fifth embodiment which applies to other previously disclosed embodiments, teaches the signaling used by the UE for informing its intention to shift or release capability, carrier (s) , cell-group (s) , or the like to the gNB.
  • the UE sends RRC signaling directly to the PCell or more generally to special cell ( “spCell” ; primary cell of a cell group) . This can be done either before the UE has “shifted” its capability to Network B, or after the shift.
  • the UE can be active quicker on Network B, but may miss some UL/DL activity in the released or dormant or deactivated carrier (s) .
  • This can be useful if the UE needs to respond in Network B very quickly e.g., to serve an application with strict latency requirement.
  • the UE shifts the capability first (e.g., release carriers autonomously in Network A) before it initiates or completes the signaling procedure via the PCell to inform Network A of its capability reduction.
  • the indication about actual capability transfer could be from a to-be-removed Scell itself.
  • a UE indicates to the network that it is capable of changing, reducing, and/or shifting its capability and may in addition also have a reduced set of capability indications that can be considered by Network A when the UE needs to be active in Network B. Based on this capability, the network may send the UECapabilityEnquiry to seek the partial or reduced capability of the UE e.g., a reduced bandwidth combination set, MIMO layers, antennas, antenna panels, and/or the like.
  • the UE may signal a smaller supportedBandwidthCombinationSet and/or BandCombination.
  • Figure 6 depicts a user equipment apparatus 600 that may be used for multiple USIM operation, according to embodiments of the disclosure.
  • the user equipment apparatus 600 is used to implement one or more of the solutions described above.
  • the user equipment apparatus 600 may be one embodiment of the remote unit 105 and/or the UE 205, described above.
  • the user equipment apparatus 600 may include a processor 605, a memory 610, an input device 615, an output device 620, and a transceiver 625.
  • the input device 615 and the output device 620 are combined into a single device, such as a touchscreen.
  • the user equipment apparatus 600 may not include any input device 615 and/or output device 620.
  • the user equipment apparatus 600 may include one or more of: the processor 605, the memory 610, and the transceiver 625, and may not include the input device 615 and/or the output device 620.
  • the transceiver 625 includes at least one transmitter 630 and at least one receiver 635.
  • the transceiver 625 communicates with one or more cells (or wireless coverage areas) supported by one or more base units 121.
  • the transceiver 625 is operable on unlicensed spectrum.
  • the transceiver 625 may include multiple UE panels supporting one or more beams.
  • the transceiver 625 may support at least one network interface 640 and/or application interface 645.
  • the application interface (s) 645 may support one or more APIs.
  • the network interface (s) 640 may support 3GPP reference points, such as Uu, N1, PC5, etc. Other network interfaces 640 may be supported, as understood by one of ordinary skill in the art.
  • the processor 605 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 605 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller.
  • the processor 605 executes instructions stored in the memory 610 to perform the methods and routines described herein.
  • the processor 605 is communicatively coupled to the memory 610, the input device 615, the output device 620, and the transceiver 625.
  • the processor 605 controls the user equipment apparatus 600 to implement the above-described UE behaviors.
  • the processor 605 may include an application processor (also known as “main processor” ) which manages application-domain and operating system ( “OS” ) functions and a baseband processor (also known as “baseband radio processor” ) which manages radio functions.
  • the user equipment apparatus 600 includes multiple USIMs, e.g., a first SIM 650 and a second SIM 655.
  • the processor 605 controls the transceiver 625 to perform the various operations of the user equipment apparatus 600.
  • the processor 605 determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device.
  • the transceiver 625 transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the transceiver 625 receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  • the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
  • each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
  • the processor 605 determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
  • the transceiver 625 transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
  • RRC radio resource control
  • the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
  • the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
  • the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
  • the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
  • RRC radio resource control
  • MAC CE medium access control control elements
  • BWP bandwidth part
  • the transceiver 625 transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the transceiver 625 transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the transceiver 625 transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
  • a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
  • the processor 605 determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the processor 605 determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the transceiver 625 transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
  • the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.
  • the memory 610 in one embodiment, is a computer readable storage medium.
  • the memory 610 includes volatile computer storage media.
  • the memory 610 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 610 includes non-volatile computer storage media.
  • the memory 610 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 610 includes both volatile and non-volatile computer storage media.
  • the memory 610 stores data related to multiple USIM operation and/or mobile operation.
  • the memory 610 may store various parameters, panel/beam configurations, resource assignments, policies, and the like as described above.
  • the memory 610 also stores program code and related data, such as an operating system or other controller algorithms operating on the apparatus 600.
  • the input device 615 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 615 may be integrated with the output device 620, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 615 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 615 includes two or more different devices, such as a keyboard and a touch panel.
  • the output device 620 in one embodiment, is designed to output visual, audible, and/or haptic signals.
  • the output device 620 includes an electronically controllable display or display device capable of outputting visual data to a user.
  • the output device 620 may include, but is not limited to, a Liquid Crystal Display ( “LCD” ) , a Light-Emitting Diode ( “LED” ) display, an Organic LED ( “OLED” ) display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • LCD Liquid Crystal Display
  • LED Light-Emitting Diode
  • OLED Organic LED
  • the output device 620 may include a wearable display separate from, but communicatively coupled to, the rest of the user equipment apparatus 600, such as a smart watch, smart glasses, a heads-up display, or the like. Further, the output device 620 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the output device 620 includes one or more speakers for producing sound.
  • the output device 620 may produce an audible alert or notification (e.g., a beep or chime) .
  • the output device 620 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the output device 620 may be integrated with the input device 615.
  • the input device 615 and output device 620 may form a touchscreen or similar touch-sensitive display. In other embodiments, the output device 620 may be located near the input device 615.
  • the transceiver 625 communicates with one or more network functions of a mobile communication network via one or more access networks.
  • the transceiver 625 operates under the control of the processor 605 to transmit messages, data, and other signals and also to receive messages, data, and other signals.
  • the processor 605 may selectively activate the transceiver 625 (or portions thereof) at particular times in order to send and receive messages.
  • the transceiver 625 includes at least transmitter 630 and at least one receiver 635.
  • One or more transmitters 630 may be used to provide UL communication signals to a base unit 121, such as the UL transmissions described herein.
  • one or more receivers 635 may be used to receive DL communication signals from the base unit 121, as described herein.
  • the user equipment apparatus 600 may have any suitable number of transmitters 630 and receivers 635.
  • the transmitter (s) 630 and the receiver (s) 635 may be any suitable type of transmitters and receivers.
  • the transceiver 625 includes a first transmitter/receiver pair used to communicate with a mobile communication network over licensed radio spectrum and a second transmitter/receiver pair used to communicate with a mobile communication network over unlicensed radio spectrum.
  • the first transmitter/receiver pair used to communicate with a mobile communication network over licensed radio spectrum and the second transmitter/receiver pair used to communicate with a mobile communication network over unlicensed radio spectrum may be combined into a single transceiver unit, for example a single chip performing functions for use with both licensed and unlicensed radio spectrum.
  • the first transmitter/receiver pair and the second transmitter/receiver pair may share one or more hardware components.
  • certain transceivers 625, transmitters 630, and receivers 635 may be implemented as physically separate components that access a shared hardware resource and/or software resource, such as for example, the network interface 640.
  • one or more transmitters 630 and/or one or more receivers 635 may be implemented and/or integrated into a single hardware component, such as a multi-transceiver chip, a system-on-a-chip, an Application-Specific Integrated Circuit ( “ASIC” ) , or other type of hardware component.
  • one or more transmitters 630 and/or one or more receivers 635 may be implemented and/or integrated into a multi-chip module.
  • other components such as the network interface 640 or other hardware components/circuits may be integrated with any number of transmitters 630 and/or receivers 635 into a single chip.
  • the transmitters 630 and receivers 635 may be logically configured as a transceiver 625 that uses one more common control signals or as modular transmitters 630 and receivers 635 implemented in the same hardware chip or in a multi-chip module.
  • Figure 7 depicts a network apparatus 700 that may be used for multiple USIM operation, according to embodiments of the disclosure.
  • network apparatus 700 may be one implementation of an evaluation device, such as the base unit 121 and/or the RAN node 205, as described above.
  • the base network apparatus 700 may include a processor 705, a memory 710, an input device 715, an output device 720, and a transceiver 725.
  • the input device 715 and the output device 720 are combined into a single device, such as a touchscreen.
  • the network apparatus 700 may not include any input device 715 and/or output device 720.
  • the network apparatus 700 may include one or more of: the processor 705, the memory 710, and the transceiver 725, and may not include the input device 715 and/or the output device 720.
  • the transceiver 725 includes at least one transmitter 730 and at least one receiver 735.
  • the transceiver 725 communicates with one or more remote units 105.
  • the transceiver 725 may support at least one network interface 740 and/or application interface 745.
  • the application interface (s) 745 may support one or more APIs.
  • the network interface (s) 740 may support 3GPP reference points, such as Uu, N1, N2 and N3. Other network interfaces 740 may be supported, as understood by one of ordinary skill in the art.
  • the processor 705, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 705 may be a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or similar programmable controller.
  • the processor 705 executes instructions stored in the memory 710 to perform the methods and routines described herein.
  • the processor 705 is communicatively coupled to the memory 710, the input device 715, the output device 720, and the transceiver 725.
  • the network apparatus 700 is a RAN node (e.g., gNB) that communicates with one or more UEs, as described herein.
  • the processor 705 controls the network apparatus 700 to perform the above-described RAN behaviors.
  • the processor 705 may include an application processor (also known as “main processor” ) which manages application-domain and operating system ( “OS” ) functions and a baseband processor (also known as “baseband radio processor” ) which manages radio functions.
  • an application processor also known as “main processor”
  • OS application-domain and operating system
  • baseband radio processor also known as “baseband radio processor”
  • the processor 705 controls the transceiver 725 to perform the various functions of the network apparatus 700.
  • the transceiver 725 receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the processor 705 determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the transceiver transmits 725, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
  • RRC radio resource control
  • determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
  • a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
  • the memory 710 in one embodiment, is a computer readable storage medium.
  • the memory 710 includes volatile computer storage media.
  • the memory 710 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 710 includes non-volatile computer storage media.
  • the memory 710 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 710 includes both volatile and non-volatile computer storage media.
  • the memory 710 stores data related to mobile operation and/or multiple USIM operation.
  • the memory 710 may store parameters, configurations, resource assignments, policies, and the like, as described above.
  • the memory 710 also stores program code and related data, such as an operating system or other controller algorithms operating on the apparatus 700.
  • the input device 715 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 715 may be integrated with the output device 720, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 715 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 715 includes two or more different devices, such as a keyboard and a touch panel.
  • the output device 720 in one embodiment, is designed to output visual, audible, and/or haptic signals.
  • the output device 720 includes an electronically controllable display or display device capable of outputting visual data to a user.
  • the output device 720 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • the output device 720 may include a wearable display separate from, but communicatively coupled to, the rest of the network apparatus 700, such as a smart watch, smart glasses, a heads-up display, or the like.
  • the output device 720 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the output device 720 includes one or more speakers for producing sound.
  • the output device 720 may produce an audible alert or notification (e.g., a beep or chime) .
  • the output device 720 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the output device 720 may be integrated with the input device 715.
  • the input device 715 and output device 720 may form a touchscreen or similar touch-sensitive display.
  • the output device 720 may be located near the input device 715.
  • the transceiver 725 includes at least transmitter 730 and at least one receiver 735.
  • One or more transmitters 730 may be used to communicate with the UE, as described herein.
  • one or more receivers 735 may be used to communicate with network functions in the PLMN and/or RAN, as described herein.
  • the network apparatus 700 may have any suitable number of transmitters 730 and receivers 735.
  • the transmitter (s) 730 and the receiver (s) 735 may be any suitable type of transmitters and receivers.
  • Figure 8 depicts one embodiment of a method 800 for multiple USIM operation, according to embodiments of the disclosure.
  • the method 800 is performed by a user equipment device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, as described above.
  • the method 800 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 800 begins and determines 805 a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the method 800 transmits 810, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to. In one embodiment, the method 800 transmits 815, to the mobile wireless communication network, an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the method 800 receives 820, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier, and the method 800 ends.
  • Figure 9 depicts one embodiment of a method 900 for multiple USIM operation, according to embodiments of the disclosure.
  • the method 900 is performed by a RAN device, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 700, as described above.
  • the method 900 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 900 begins and receives 905, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the method 900 determines 910 that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the method 900 transmits 915, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers, and the method 900 ends.
  • RRC radio resource control
  • Figure 10 depicts one embodiment of a method 1000 for multiple USIM operation, according to embodiments of the disclosure.
  • the method 1000 is performed by a user equipment device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, as described above.
  • the method 1000 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1000 begins and determines 1005 capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, the method 1000, for each of the plurality of wireless network carriers, determines 1010 a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the method 1000 transmits 1015, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier, and the method 1000 ends.
  • the first apparatus may be implemented by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
  • the first apparatus includes a processor and a transceiver.
  • the processor determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device.
  • the transceiver transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the transceiver receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  • the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
  • each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
  • the processor determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
  • the transceiver transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
  • RRC radio resource control
  • the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
  • the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
  • the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
  • the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
  • RRC radio resource control
  • MAC CE medium access control control elements
  • BWP bandwidth part
  • the transceiver transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the transceiver transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the transceiver transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
  • a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
  • the first method may be performed by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
  • the first method determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the first method transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers.
  • the first method receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  • the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
  • each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
  • the first method determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
  • the first method transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
  • RRC radio resource control
  • the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
  • the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
  • the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
  • the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
  • RRC radio resource control
  • MAC CE medium access control control elements
  • BWP bandwidth part
  • the first method transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the first method transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  • RRC radio resource control
  • the first method transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
  • a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
  • the second apparatus may be implemented by a radio access network ( “RAN” ) entity in a first communication network, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 700, described above.
  • the second apparatus includes a processor and a transceiver.
  • the transceiver receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the processor determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the transceiver transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
  • RRC radio resource control
  • determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
  • a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
  • the second method may be performed by a RAN node in a first communication network, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 900, described above.
  • the second method receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers.
  • the second method determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured.
  • the second method transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
  • RRC radio resource control
  • determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
  • a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
  • the third apparatus may be implemented by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
  • the third apparatus includes a processor and a transceiver.
  • the processor determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the processor determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the transceiver transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
  • the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.
  • the third method may be performed by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
  • the third method determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the third method determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third method transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
  • the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatuses, methods, and systems are disclosed for managing UE capabilities for multiple subscriber identity modules. An apparatus (600) includes a processor (605) that determines a plurality of groups of wireless network carriers, each of the plurality of groups mapped to capabilities of the UE device. An apparatus includes a transceiver (625) that transmits the plurality of groups of wireless network carriers and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. The transceiver (625) receives a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.

Description

MANAGING USER EQUIPMENT CAPABILITIES FOR MULTIPLE SUBSCRIBER IDENTITY MODULES FIELD
The subject matter disclosed herein relates generally to wireless communications and more particularly relates to operation in mobile communication network using multiple Subscriber Identity Modules ( “SIMs” ) .
BACKGROUND
Certain User Equipment devices ( “UEs” ) support multiple Universal Subscriber Identity Modules ( “USIMs” ) -e.g., USIM-1 and USIM-2 -either to the same Mobile Network Operator ( “MNO” ) or different MNOs. Multi-USIM devices typically address use cases where (1) the user has both a personal and a business subscription and wishes to use them both from the same device; and (2) the user has multiple personal subscriptions and chooses which one to use based on the selected service (e.g., use one individual subscription and one “family circle” plan) .
Support for multi-SIM operation is currently handled in an implementation-specific manner without any support from 3GPP specifications, resulting in a variety of implementations and UE behaviors (e.g., Dual SIM Single Standby, Dual SIM Dual Standby, Dual SIM Dual Active, etc. ) . Furthermore, for cost efficiency reasons, a multi-USIM device implementation typically uses common radio and baseband components that are shared among the multiple USIMs, which can lead to several issues that impact the 3GPP system performance.
BRIEF SUMMARY
Disclosed are procedures for deactivation behavior for multiple USIM operation. Said procedures may be implemented by apparatus, systems, methods, or computer program products.
In one embodiment, a first apparatus includes a processor that determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the first apparatus includes a transceiver that transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to  for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the transceiver receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
In one embodiment, a first method determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the first method transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the first method receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
In one embodiment, a second apparatus includes a transceiver that receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the second apparatus includes a processor that determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured. In one embodiment, the transceiver transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
In one embodiment, a second method receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the second method determines that the at least a first group of wireless network  carriers that the UE device is connected to can be reconfigured. In one embodiment, the second method transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
In one embodiment, a third apparatus includes a processor that determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the processor determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third apparatus includes a transceiver that transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
In one embodiment, a third method determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the third method determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third method transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 is a block diagram illustrating one embodiment of a wireless communication system for multiple USIM operation;
Figure 2A is a block diagram illustrating one embodiment of a single USIM UE and a multi-USIM UE;
Figure 2B is a block diagram illustrating one embodiment of a protocol stack of a multi-USIM UE;
Figure 2C is a diagram illustrating one embodiment of a NR protocol stack;
Figure 3 is a flowchart diagram illustrating one embodiment of a procedure for providing UE Assistance Information managing UE capabilities for multiple subscriber identity modules;
Figure 4 is a diagram illustrating one example of carrier aggregation and/or dual connectivity using multi-USIM operation;
Figure 5 is a flowchart diagram illustrating one embodiment of a procedure for providing UE capability information for managing UE capabilities for multiple subscriber identity modules;
Figure 6 is a block diagram illustrating one embodiment of a user equipment apparatus that may be used for multiple USIM operation;
Figure 7 is a block diagram illustrating one embodiment of a network apparatus that may be used for multiple USIM operation;
Figure 8 is a flowchart diagram illustrating one embodiment of a first method for multiple USIM operation;
Figure 9 is a flowchart diagram illustrating one embodiment of a second method for multiple USIM operation;
Figure 10 is a flowchart diagram illustrating one embodiment of a third method for multiple USIM operation.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
For example, the disclosed embodiments may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. The disclosed embodiments may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, or the like. As another example, the disclosed embodiments may include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function.
Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (anon-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random-access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM, ” also known as “Flash memory” ) , a portable compact disc read-only memory ( “CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) , wireless LAN ( “WLAN” ) , or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider ( “ISP” ) ) .
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits,  hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
As used herein, a list with a conjunction of “and/or” includes any single item in the list or a combination of items in the list. For example, a list of A, B and/or C includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C. As used herein, a list using the terminology “one or more of” includes any single item in the list or a combination of items in the list. For example, one or more of A, B and C includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C. As used herein, a list using the terminology “one of” includes one and only one of any single item in the list. For example, “one of A, B and C” includes only A, only B or only C and excludes combinations of A, B and C. As used herein, “amember selected from the group consisting of A, B, and C, ” includes one and only one of A, B, or C, and excludes combinations of A, B, and C. ” As used herein, “amember selected from the group consisting of A, B, and C and combinations thereof” includes only A, only B, only C, a combination of A and B, a combination of B and C, a combination of A and C or a combination of A, B and C.
Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code.  This code may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart diagrams and/or block diagrams.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the flowchart diagrams and/or block diagrams.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart diagrams and/or block diagrams.
The call-flow diagrams, flowchart diagrams and/or block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods, and program products according to various embodiments. In this regard, each block in the flowchart diagrams and/or block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
Although various arrow types and line types may be employed in the call-flow, flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose  hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Generally, the present disclosure describes systems, methods, and apparatus for managing UE capabilities for multiple subscriber identity modules. In certain embodiments, the methods may be performed using computer code embedded on a computer-readable medium. In certain embodiments, an apparatus or system may include a computer-readable medium containing computer-readable code which, when executed by a processor, causes the apparatus or system to perform at least a portion of the below described solutions.
Many commercially deployed devices support more than one USIM card (typically two) . Multi-USIM ( “MUSIM” ) devices typically address the following two use cases:
i. The user has both a personal and a business subscription and wishes to use them both from the same device.
ii. The user has multiple personal subscriptions and chooses which one to use based on the selected service (e.g., use one individual subscription and one “family circle” plan) .
In either of the two use cases the USIMs may be from the same or from different Mobile Network Operators ( “MNOs” ) .
Support for MUSIM is currently handled in an implementation-specific manner without any support from 3GPP specifications, resulting in a variety of implementations and UE behaviors (e.g., Dual SIM Single Standby, Dual SIM Dual Standby, Dual SIM Dual Active, etc. ) .
Furthermore, for cost efficiency reasons, a MUSIM device implementation typically uses common radio and baseband components that are shared among the multiple USIMs, which can lead to several issues that impact the 3GPP system performance. Consider, for example, a multi-USIM device that is actively engaged in communication with a 3GPP system.
Conventional solutions may have the UE seek Rel. 17-like gaps to be active on the second network, however these would provide only very minimal opportunities for transmission and reception in both systems and will lose time in the UE frequently tuning away and into one system from another.
Figure 1 depicts a wireless communication system 100 for multiple USIM operation, according to embodiments of the disclosure. In one embodiment, the wireless communication system 100 includes at least one remote unit 105, a 5G-RAN 115, and a mobile  core network 140. The 5G-RAN 115 and the mobile core network form a mobile communication network. The 5G-RAN 115 may be composed of a 3GPP access network 120 containing at least one cellular base unit 121 and/or a non-3GPP access network 130 containing at least one access point 131. The remote unit communicates with the 3GPP access network 120 using 3GPP communication links 123 and communicates with the non-3GPP access network 130 using non-3GPP communication links 133. Even though a specific number of remote units 105, 3GPP access networks 120, cellular base units 121, 3GPP communication links 123, non-3GPP access networks 130, access points 131, non-3GPP communication links 133, and mobile core networks 140 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 105, 3GPP access networks 120, cellular base units 121, 3GPP communication links 123, non-3GPP access networks 130, access points 131, non-3GPP communication links 133, and mobile core networks 140 may be included in the wireless communication system 100.
In one implementation, the RAN 115 is compliant with the 5G system specified in the Third Generation Partnership Project ( “3GPP” ) specifications. For example, the 5G-RAN 115 may include a 3GPP access network 120 such as a Next Generation Radio Access Network ( “NG-RAN” ) , implementing New Radio ( “NR” ) Radio Access Technology ( “RAT” ) and/or Long-Term Evolution ( “LTE” ) RAT. In another example, the RAN 120 may include a non-3GPP access network 130 implementing non-3GPP RAT (e.g., 
Figure PCTCN2022074215-appb-000001
or Institute of Electrical and Electronics Engineers ( “IEEE” ) 802.11-family compliant WLAN) . More generally, however, the wireless communication system 100 may implement some other open or proprietary communication network, for example Worldwide Interoperability for Microwave Access ( “WiMAX” ) or IEEE 802.16-family standards, among other networks. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
In one embodiment, the remote units 105 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , smart appliances (e.g., appliances connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like. In some embodiments, the remote units 105 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the remote units 105 may be referred to as the UEs, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, wireless transmit/receive unit ( “WTRU” ) , a device, or by other terminology used in the art.
In various embodiments, the remote unit 105 includes multiple universal subscriber identity and/or identification modules ( “USIMs” ) and the mobile equipment ( “ME” ) providing mobile termination functions (e.g., radio transmission, handover, speech encoding and decoding, error detection and correction, signaling and access to the SIM (s) ) . In certain embodiments, the remote unit 105 may include a terminal equipment ( “TE” ) and/or be embedded in an appliance or device (e.g., a computing device, as described above) .
As depicted, the remote unit 105 includes the USIM-A107 and the USIM-B 109. For ease of illustration, the USIM-A107 and USIM-B 109 are depicted as associated with the same mobile network operator ( “MNO” ) and/or Public Land Mobile Network ( “PLMN” ) . As used herein, an MNO, also known as a wireless service provider, wireless carrier, cellular company, or mobile network carrier, is a provider of wireless communications services that owns or controls the elements necessary to sell and deliver services to an end user, including radio spectrum allocation, wireless network infrastructure, back haul infrastructure, billing, customer care, provisioning computer systems, and marketing and repair organizations.
Moreover, the USIM-A107 and USIM-B 109 may be associated with the same or different network slices of the same MNO/PLMN. In such a situation, the MNO/PLMN may interpret the remote unit 105 as two different remote units having each own registration with the network. In other embodiments, the USIM-A107 and USIM-B 109 may be associated with different MNOs/PLMNs.
The remote units 105 may communicate directly with one or more of the base units 121 in the 5G-RAN 115 via uplink ( “UL” ) and downlink ( “DL” ) communication signals. Furthermore, the UL and DL communication signals may be carried over the wireless communication links 123. Here, the 5G-RAN 115 is an intermediate network that provides the remote units 105 with access to the mobile core network 140.
In some embodiments, the remote units 105 communicate with an application server 151 (or other communication peer) via a network connection with the mobile core network 140. For example, an application (e.g., web browser, media client, telephone and/or Voice-over-Internet-Protocol ( “VoIP” ) application) in a remote unit 105 may trigger the remote unit 105 to establish a protocol data unit ( “PDU” ) session (or other data connection) with the mobile core network 140 via the RAN 120. The mobile core network 140 then relays traffic between the remote unit 105 and the application server 151 in the packet data network 150 using the PDU session. The PDU session represents a logical connection between the remote unit 105 and the User Plane Function ( “UPF” ) 141.
In order to establish the PDU session (or PDN connection) , the remote unit 105 must be registered with the mobile core network 140 (also referred to as “attached to the mobile core network” in the context of a Fourth Generation ( “4G” ) system) . Note that the remote unit 105 may establish one or more PDU sessions (or other data connections) with the mobile core network 140. As such, the remote unit 105 may have at least one PDU session for communicating with the packet data network 150. The remote unit 105 may establish additional PDU sessions for communicating with other data networks and/or other communication peers.
In the context of a 5G system ( “5GS” ) , the term “PDU Session” refers to a data connection that provides end-to-end ( “E2E” ) user plane ( “UP” ) connectivity between the remote unit 105 and a specific Data Network ( “DN” ) through the UPF 141. A PDU Session supports one or more Quality of Service ( “QoS” ) Flows. In certain embodiments, there may be a one-to-one mapping between a QoS Flow and a QoS profile, such that all packets belonging to a specific QoS Flow have the same 5G QoS Identifier ( “5QI” ) .
In the context of a 4G/LTE system, such as the Evolved Packet System ( “EPS” ) , a Packet Data Network ( “PDN” ) connection (also referred to as EPS session) provides E2E UP connectivity between the remote unit and a PDN. The PDN connectivity procedure establishes an EPS Bearer, i.e., a tunnel between the remote unit 105 and a Packet Gateway ( “PGW” , not shown) in the mobile core network 140. In certain embodiments, there is a one-to-one mapping between an EPS Bearer and a QoS profile, such that all packets belonging to a specific EPS Bearer have the same QoS Class Identifier ( “QCI” ) .
The cellular base units 121 may be distributed over a geographic region. In certain embodiments, a cellular base unit 121 may also be referred to as an access terminal, a base, a base station, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, a device, or by any other terminology used in the art. The cellular base units 121 are generally part of a radio access network ( “RAN” ) , such as the 3GPP access network 120, that may include one or more controllers communicably coupled to one or more corresponding cellular base units 121. These and other elements of radio access network are not illustrated but are well known generally by those having ordinary skill in the art. The cellular base units 121 connect to the mobile core network 140 via the 3GPP access network 120.
The cellular base units 121 may serve a number of remote units 105 within a serving area, for example, a cell or a cell sector, via a 3GPP communication link 123. The cellular base units 121 may communicate directly with one or more of the remote units 105 via communication signals. Generally, the cellular base units 121 transmit DL communication signals to serve the remote units 105 in the time, frequency, and/or spatial domain. Furthermore, the DL  communication signals may be carried over the 3GPP communication links 123. The 3GPP communication links 123 may be any suitable carrier in licensed or unlicensed radio spectrum. The 3GPP communication links 123 facilitate communication between one or more of the remote units 105 and/or one or more of the cellular base units 121. Note that during NR operation on unlicensed spectrum (referred to as “NR-U” ) , the base unit 121 and the remote unit 105 communicate over unlicensed (i.e., shared) radio frequency bands.
The non-3GPP access networks 130 may be distributed over a geographic region. Each non-3GPP access network 130 may serve a number of remote units 105 with a serving area. Typically, a serving area of the non-3GPP access network 130 is smaller than the serving area of a cellular base unit 121. An access point 131 in a non-3GPP access network 130 may communicate directly with one or more remote units 105 by receiving UL communication signals and transmitting DL communication signals to serve the remote units 105 in the time, frequency, and/or spatial domain. Both DL and UL communication signals are carried over the non-3GPP communication links 133. The 3GPP communication links 123 and non-3GPP communication links 133 may employ different frequencies and/or different communication protocols. In various embodiments, an access point 131 may communicate using unlicensed radio spectrum. The mobile core network 140 may provide services to a remote unit 105 via the non-3GPP access networks 130, as described in greater detail herein.
In some embodiments, a non-3GPP access network 130 connects to the mobile core network 140 via an interworking function 135. The interworking function 135 provides interworking between the remote unit 105 and the mobile core network 140. In some embodiments, the interworking function 135 is a Non-3GPP Interworking Function ( “N3IWF” ) and, in other embodiments, it is a Trusted Non-3GPP Gateway Function ( “TNGF” ) . The N3IWF supports the connection of “untrusted” non-3GPP access networks to the mobile core network (e.g., 5GC) , whereas the TNGF supports the connection of “trusted” non-3GPP access networks to the mobile core network. The interworking function 135 supports connectivity to the mobile core network 140 via the “N2” and “N3” interfaces, and it relays “N1” signaling between the remote unit 105 and the AMF 143. As depicted, both the 3GPP access network 120 and the interworking function 135 communicate with the AMF 143 using a “N2” interface. The interworking function 135 also communicates with the UPF 141 using a “N3” interface.
In certain embodiments, a non-3GPP access network 130 may be controlled by an MNO of the mobile core network 140 and may have direct access to the mobile core network 140. Such a non-3GPP AN deployment is referred to as a “trusted non-3GPP access network. ” A non-3GPP access network 130 is considered as “trusted” when it is operated by the MNO, or a trusted  partner, and supports certain security features, such as strong air-interface encryption. In contrast, a non-3GPP AN deployment that is not controlled by an operator (or trusted partner) of the mobile core network 140, does not have direct access to the mobile core network 140, or does not support the certain security features is referred to as a “non-trusted” non-3GPP access network.
In one embodiment, the mobile core network 140 is a Fifth Generation Core network ( “5GC” ) or an Evolved Packet Core network ( “EPC” ) , which may be coupled to a packet data network 150, like the Internet and private data networks, among other data networks. A remote unit 105 may have a subscription or other account with the mobile core network 140. In various embodiments, each mobile core network 140 belongs to a single MNO and/or PLMN. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The mobile core network 140 includes several network functions ( “NFs” ) . As depicted, the mobile core network 140 includes at least one UPF 141. Here, the mobile core network 140 includes at least a UPF 141 that serves the 3GPP access network 120 and the non-3GPP access network 130. Note that in certain embodiments, the mobile core network may contain one or more intermediate UPFs, for example a first intermediate UPF that serves the non-3GPP access network 130 and the second intermediate UPF that serves the 3GPP access network 120. In such embodiments, the UPF 141 would be an anchor UPF receiving UP traffic of both intermediate UPFs.
Additionally, the mobile core network 140 also includes multiple control plane ( “CP” ) functions including, but not limited to, an Access and Mobility Management Function ( “AMF” ) 143 that serves the RAN 120, a Session Management Function ( “SMF” ) 145, a Policy Control Function ( “PCF” ) 147, a Unified Data Management function ( “UDM” ” ) and a User Data Repository ( “UDR” ) . Although specific numbers and types of network functions are depicted in Figure 1, one of skill in the art will recognize that any number and type of network functions may be included in the mobile core network 140.
The UPF (s) 141 is/are responsible for packet routing and forwarding, packet inspection, QoS handling, and external PDU session for interconnecting Data Network (DN) , in the 5G architecture. The AMF 143 is responsible for termination of NAS signaling, NAS ciphering &integrity protection, registration management, connection management, mobility management, access authentication and authorization, security context management. The SMF 145 is responsible for session management (i.e., session establishment, modification, release) , remote unit (i.e., UE) IP address allocation &management, DL data notification, and traffic steering configuration of the UPF 141 for proper traffic routing.
The PCF 147 is responsible for unified policy framework, providing policy rules to CP functions, access subscription information for policy decisions in UDR. The UDM is responsible for generation of Authentication and Key Agreement ( “AKA” ) credentials, user identification handling, access authorization, subscription management. The UDR is a repository of subscriber information and may be used to service a number of network functions. For example, the UDR may store subscription data, policy-related data, subscriber-related data that is permitted to be exposed to third party applications, and the like. In some embodiments, the UDM is co-located with the UDR, depicted as combined entity “UDM/UDR” 149.
In various embodiments, the mobile core network 140 may also include a Network Repository Function ( “NRF” ) (which provides Network Function ( “NF” ) service registration and discovery, enabling NFs to identify appropriate services in one another and communicate with each other over Application Programming Interfaces ( “APIs” ) ) , a Network Exposure Function ( “NEF” ) (which is responsible for making network data and resources easily accessible to customers and network partners) , an Authentication Server Function ( “AUSF” ) , or other NFs defined for the 5GC. When present, the AUSF may act as an authentication server and/or authentication proxy, thereby allowing the AMF 143 to authenticate a remote unit 105. In certain embodiments, the mobile core network 140 may include an authentication, authorization, and accounting ( “AAA” ) server.
In various embodiments, the mobile core network 140 supports different types of mobile data connections and different types of network slices, wherein each mobile data connection utilizes a specific network slice. Here, a “network slice” refers to a portion of the mobile core network 140 optimized for a certain traffic type or communication service. For example, one or more network slices may be optimized for enhanced mobile broadband ( “eMBB” ) service. As another example, one or more network slices may be optimized for ultra-reliable low-latency communication ( “URLLC” ) service. In other examples, a network slice may be optimized for machine-type communication ( “MTC” ) service, massive MTC ( “mMTC” ) service, Internet-of-Things ( “IoT” ) service. In yet other examples, a network slice may be deployed for a specific application service, a vertical service, a specific use case, etc.
A network slice instance may be identified by a single-network slice selection assistance information ( “S-NSSAI” ) while a set of network slices for which the remote unit 105 is authorized to use is identified by network slice selection assistance information ( “NSSAI” ) . Here, “NSSAI” refers to a vector value including one or more S-NSSAI values. In certain embodiments, the various network slices may include separate instances of network functions, such as the SMF 145 and UPF 141. In some embodiments, the different network slices may share some common  network functions, such as the AMF 143. The different network slices are not shown in Figure 1 for ease of illustration, but their support is assumed.
While Figure 1 depicts components of a 5G RAN and a 5G core network, the described embodiments for multiple USIM operation apply to other types of communication networks and RATs, including IEEE 802.11 variants, Global System for Mobile Communications ( “GSM” , i.e., a 2G digital cellular network) , General Packet Radio Service ( “GPRS” ) , Universal Mobile Telecommunications System ( “UMTS” ) , LTE variants, CDMA 2000, Bluetooth, ZigBee, Sigfox, and the like.
Moreover, in an LTE variant where the mobile core network 140 is an EPC, the depicted network functions may be replaced with appropriate EPC entities, such as a Mobility Management Entity ( “MME” ) , a Serving Gateway ( “SGW” ) , a PGW, a Home Subscriber Server ( “HSS” ) , and the like. For example, the AMF 143 may be mapped to an MME, the SMF 145 may be mapped to a control plane portion of a PGW and/or to an MME, the UPF 141 may be mapped to an SGW and a user plane portion of the PGW, the UDM/UDR 149 may be mapped to an HSS, etc.
In the following descriptions, the term “RAN node” is used for the base station/base unit, but it is replaceable by any other radio access node, e.g., gNB, ng-eNB, eNB, Base Station ( “BS” ) , Access Point ( “AP” ) , etc. Additionally, the term “UE” is used for the mobile station/remote unit, but it is replaceable by any other remote device, e.g., remote unit, MS, ME, etc. Further, the operations are described mainly in the context of 5G NR. However, the below described solutions/methods are also equally applicable to other mobile communication systems for multiple USIM operation.
Figure 2A depicts both a single USIM UE 200 and a multi-USIM UE 205, according to embodiments of the disclosure. The UE 200 comprises a Mobile Equipment ( “ME” ) 210 with a single USIM 203 registered for use at a time, while the multi-USIM UE 205 includes an ME with multiple USIMs (e.g., a first USIM ( “USIM-A” ) 207 and a second USIM ( “USIM-B”) 209) registered for use at the same time. Here, the USIM-A207 is associated with a first communication system ( “System-A” ) 223, while the USIM-B 209 is associated with a second communication system ( “System-B” ) 225.
In certain embodiments, the USIM-A207 and USIM-B 209 may be associated with different PLMNs, i.e., where System-A223 and System-B 225 represent different PLMNs. In other embodiments, the USIM-A207 and USIM-B 209 are associated with the same PLMN. For example, the USIM-A207 and USIM-B 209 may be associated with different network slices of  the same PLMN. Note that both USIM-A207 and USIM-B 209 can be used for idle mode network connection at the same time.
Each ME 210 (e.g., transceiver or modem) includes (1) one or more Mobile Terminations ( “MT” ) 215 specific to management of the PLMN access interface (3GPP or non-3GPP) ; and (2) one or more Terminal Equipment ( “TE” ) 220 functions necessary for the operation of the access protocols by the user. Please note that the single USIM UE 200 and multi-USIM UE 205 can implement the universal subscriber identity module (s) ( “USIM” , sometimes referred as subscriber identification module, “SIM” ) as an integrated circuit or card which needs to be inserted in the UE, and/or as embedded-SIM ( “eSIM” ) or embedded universal integrated circuit card ( “eUICC” ) –a form of programmable SIM that is embedded directly into a device, and/or the USIM profile can be stored on tamper-resistant platform or secure domain on the device. The USIM profile can be at least one of non-telecom profile, operational profile, a provisioning profile, or a test profile.
Figure 2B depicts an arrangement of components and protocol layers of the multi-USIM ( “MUSIM” ) UE 205, according to embodiments of the disclosure. The protocol layers include the upper layers 227 (e.g., Internet Protocol ( “IP” ) layer, transport (e.g., User Datagram Protocol ( “UDP” ) , Transmission Control Protocol ( “TCP” ) ) layer (s) , etc. ) . The protocol layers include the 5GS Session Management ( “5GSM” ) sublayer 229 and the 5GS Mobility Management ( “5GMM” ) sublayer 230, which comprise the Non-Access Stratum ( “NAS” ) layer 231. Note that the AMF 143 includes a NAS layer may establish a NAS signaling connection with the MUSIM UE 205. The AS layer 232 (also referred to as the “Radio Protocol” of the protocol stack) includes the RRC layer 233, the Service Data Adaptation Protocol ( “SDAP” ) layer 235, the Packet Data Convergence Protocol ( “PDCP” ) layer 237, the RLC layer 239, the MAC layer 241, and the PHY layer 243 (baseband) . The RAN node (e.g., base unit 121) includes corresponding AS layers and may establish an AS signaling connection with the MUSIM UE 205.
Note that the MUSIM UE 205 (e.g., the ME 210 part of the MUSIM UE 205) , needs to implement at least as many NAS protocol stacks and radio protocol stacks (e.g., abbreviated as “NAS/RP” stack) as the number of USIMs which can be simultaneously registered with the same or different PLMN. In Figure 2B, there are two NAS/RP stacks and 2 USIM cards/profiles. Note that each NAS/RP stack has its own receiver (e.g., a first receiver ( “Rx-1” ) 247 for the USIM-A207 and a second receiver ( “Rx-2” ) 249 for the USIM-B 209) , but the MUSIM UE 205 has a single transmitter 245. Transmitted and received signals are communicated via the duplexer 251 and antenna 253.
The 5GMM sublayer 230 is used to track the location of the MUSIM UE 205 (e.g., Cell Identity ( “Cell-ID” ) or Tracking Area) and to manage UE registration in the 5GS. The 5GMM sublayer 230 also manages 5G NAS security and temporary identities of the MUSIM UE 205, such as the 5G Globally Unique Temporary UE Identity ( “5G-GUTI” ) . 5GMM procedures include (but are not limited to) the 5G NAS Registration, 5G NAS Deregistration, 5G NAS service, 5G NAS paging, UE configuration update, and 5G NAS Authentication procedures. Various 5GMM states and procedures are defined in 3GPP TS 24.501, clause 5.
Figure 2C depicts a NR protocol stack 260, according to embodiments of the disclosure. While Figure 2C shows the multi-USIM ( “MUSIM” ) UE 205, a RAN node 265 and the 5G core network ( “5GC” ) 267, these are representative of a set of remote units 105 interacting with a base unit 121 (or access point 131) in a 5G-RAN 115 and a mobile core network 140. As depicted, the protocol stack 260 comprises a User Plane protocol stack 261 and a Control Plane protocol stack 263. The User Plane protocol stack 261 includes a physical ( “PHY” ) layer 243, a Medium Access Control ( “MAC” ) sublayer 241, the Radio Link Control ( “RLC” ) sublayer 239, a Packet Data Convergence Protocol ( “PDCP” ) sublayer 237, and Service Data Adaptation Protocol ( “SDAP” ) layer 235. The Control Plane protocol stack 263 includes a physical layer 243, a MAC sublayer 241, a RLC sublayer 239, and a PDCP sublayer 237. The Control Plane protocol stack 263 also includes a Radio Resource Control ( “RRC” ) layer 233 and a Non-Access Stratum ( “NAS” ) layer 231.
The AS layer 232 (also referred to as “AS protocol stack” ) for the User Plane protocol stack 261 consists of at least SDAP, PDCP, RLC and MAC sublayers, and the physical layer. The AS layer 232 for the Control Plane protocol stack 263 consists of at least RRC, PDCP, RLC and MAC sublayers, and the physical layer. The Layer-2 ( “L2” ) is split into the SDAP, PDCP, RLC and MAC sublayers. The Layer-3 ( “L3” ) includes the RRC sublayer 233 and the NAS layer 231 for the control plane and includes, e.g., an Internet Protocol ( “IP” ) layer and/or PDU Layer (not depicted) for the user plane. L1 and L2 are referred to as “lower layers, ” while L3 and above (e.g., transport layer, application layer) are referred to as “higher layers” or “upper layers. ” 
The physical layer 243 offers transport channels to the MAC sublayer 241. The physical layer 243 may perform a Clear Channel Assessment and/or Listen-Before-Talk ( “CCA/LBT” ) procedure using energy detection thresholds, as described herein. In certain embodiments, the physical layer 243 may send a notification of UL Listen-Before-Talk ( “LBT” ) failure to a MAC entity at the MAC sublayer 241. The MAC sublayer 241 offers logical channels to the RLC sublayer 239. The RLC sublayer 239 offers RLC channels to the PDCP sublayer 237.  The PDCP sublayer 237 offers radio bearers to the SDAP sublayer 235 and/or RRC layer 233. The SDAP sublayer 235 offers QoS flows to the core network (e.g., 5GC 267) . The RRC layer 233 provides for the addition, modification, and release of Carrier Aggregation and/or Dual Connectivity. The RRC layer 233 also manages the establishment, configuration, maintenance, and release of Signaling Radio Bearers ( “SRBs” ) and Data Radio Bearers ( “DRBs” ) .
The NAS layer 231 is between the UE 205 and the 5GC 267 (i.e., AMF 143) . NAS messages are passed transparently through the 5G-RAN 115. The NAS layer 231 is used to manage the establishment of communication sessions and for maintaining continuous communications with the UE 205 as it moves between different cells of the 5G-RAN 115. In contrast, the AS layer 232 is between the UE 205 and the 5G-RAN 115 (i.e., RAN node 265) and carries information over the wireless portion of the network.
As background, in certain embodiments, a MUSIM UE’s hardware capabilities are shared by the SIMs, and to use the hardware efficiently and economically, the related capabilities may need to be dynamically split between the two SIMs. This can lead to a temporary hardware conflict for the UE, which may require the UE to release some resources (e.g., secondary cell ( “SCell” ) , secondary cell group ( “SCG” ) , and/or the like) from one SIM. For example, when the UE’s SIM A is in radio resource control ( “RRC” ) connected state in network ( “NW” ) A while the UE’s SIM B is in RRC Idle or RRC Inactive in NW B, the two radio frequency ( “RF” ) chains will be occupied by the SIM A for the communication in NW A. Once the UE’s SIM B enters RRC connected state, one of the RF chains may need to be switched to SIM B. In this case, if the NW A is not aware of the UE’s reduced capability change in RF chain, there may be data loss due to demodulation failure and wasting radio resources in NW A. To avoid this, assistance from the UE to network A on these (temporary) UE capability restrictions can be beneficial.
Figure 3 depicts a procedure 300 for providing UE assistance information to inform the network of various UE parameters. The procedure 300 includes a UE device 305 and a network 310. RRCReconfiguration information may be shared between the UE 305 and the network 310 (see messaging 320) in response to the UE 305 transmitting UEAssistanceInformation to the network 310 (see messaging 315) . The UEAssistanceInformation may include:
i. its delay budget report carrying desired increment/decrement in the connected mode DRX cycle length;
ii. its overheating assistance information;
iii. its IDC assistance information;
iv. its preference on DRX parameters for power saving;
v. its preference on the maximum aggregated bandwidth for power saving;
vi. its preference on the maximum number of secondary component carriers for power saving;
vii. its preference on the maximum number of MIMO layers for power saving;
viii. its preference on the minimum scheduling offset for cross-slot scheduling for power saving;
ix. its preference on the RRC state;
x. configured grant assistance information for NR sidelink communication;
xi. its preference in being provisioned with reference time information; and/or
xii. its MUSIM assistance information.
A UE 305 capable of providing MUSIM assistance information may initiate the procedure 300 if it was configured to do so, upon determining that it needs to leave RRC_CONNECTED state, or upon determining it needs the gaps, or upon change of the gap information without leaving RRC_CONNECTED state.
The MUSIM assistance information, in one embodiment, allows the UE 305 to seek some gaps to go away and perform some activity like listening to paging channel and come back. It however does not allow the UE 305 to go to the other system and start transmissions for a longer time especially when the UE’s transmitter chain is already dedicated to the current network, as is the intention for Rel. 18 MUSIM work. In a more generalized problem, if the UE 305 is using its full or near-full capability in the current network, it is not clear how the UE 305 can be active in the other network and perform data reception as well as transmission there for a longer time frame not optimally manage-able using only current MUSIM gaps. The solutions proposed herein address this issue.
For the proposed solution, the following scenario is used as background for the different embodiments:
A UE is RRC Connected in Network A using (U) SIM A and there are one or more data bearers established. The same UE is in RRC Idle or Inactive in Network B using (U) SIM B. Some arts describe the same Physical UE as UE A and UE B corresponding to the UE parts connecting to Network A and Network B respectively. Further, the UE may need to perform some activity in Network B e.g., start a mobile originated call, respond to a mobile terminating call, or the like. For the call establishment itself or for the establishment and maintenance of data bearers in network B, the UE may need to shift some capabilities in use for Network A towards Network B.This may be required since a UE has finite capability e.g., in terms of its processing capability or its hardware/software buffer, memory, and RF chain, which may include a cascade of electronic components and sub-units including antennas, antenna panels, power amplifiers, filters, mixers,  attenuators, detectors, and/or the like. In the absence of any active data connection and/or an RRC Connection the UE may tend to use its capability to (near) full extent/capacity in Network A. Therefore, when it realizes that it needs to be active in Network B, some capabilities in use towards Network A for transmission and reception needs to be shifted or transferred to activities in Network B. The solution embodiments below describe a transmission related capability mostly, but the same is also applicable to reception related capability, unless stated otherwise.
In a first embodiment, a UE determines a mapping between its capability and the current radio carriers in use. As shown in Figure 4, the carriers 402 may be in carrier aggregation grouped by node 404 or in dual connectivity (or even multi connectivity) 406. Each carrier may be used for different transmission ( “Tx” ) chains (as an example of capability) , which are exposed to the network (as one example implementation) . Based on this information, the network can make judicious decision on which carriers can be released or deactivated to allow the UE to shift some of its capability towards another network. This embodiment can be realized using following steps:
As a first step, the UE determines a mapping between its capability and the current radio carriers 402 in use. The carriers 402 (e.g., a cell or base station using a particular frequency in uplink ( “UL” ) /downlink ( “DL” ) for communication) may either be terminating in the same network node, for carrier aggregation 404, or could terminate in more than one network node e.g., when a dual connectivity (or even multi connectivity) 406 feature is in use, as shown in Figure 4.
The capabilities mapping from first step can look like:
Tx Chain-1 f2, f4, f6
Tx Chain-2 f1, f3, f5
Or it could be done on a node basis:
Tx Chain-1 Node 1 (f1, f2, f3)
Tx Chain-2 Node 2 (f4, f5, f6)
As a second step, the UE determines which Tx chain it can release from Network A and move to Network B. This determination could be based on several factors, including, but not limited to:
i. The Tx chain used towards a primary cell ( “PCell” ) of its connection to Network A can’ t be moved;
ii. The frequency of operation in Network B determines the Tx chain to be moved, e.g., if the UE needs to operate on FR2 in Network B, it can only move a Tx chain on FR2 in Network A;
iii. The UE may determine a Tx chain to be released from Network A based on the data bearer (s) mapped to the Tx chain serving data of lower priority compared with the data bearer (s) mapped to the other Tx chain. This is only possible for Dual  Connectivity situations where the DRBs are mapped to a particular Node (called Cell group) .
iv. Another possible rule could be to remove (or not remove) a Tx Chain serving one or more split bearers.
As a third step, based on the above determination, the UE makes suggestions to its base station or gNB about which carriers it would release or make dormant, e.g., as defined in 3GPP TS 38.321. When the UE needs to start communication on the other network, in one embodiment, the UE indicates the list of carriers and/or the cell-group (e.g., network node) that it is willing to release to the serving cell (e.g., PCell) or to the corresponding intended-to-be-released cell/node.
In one embodiment, the network can agree with the UE’s suggestion or may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation medium access control control elements ( “MAC CEs” ) , or by configuring a bandwidth part ( “BWP” ) corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the UE’s suggestions, which allows the UE to free one of its Tx chains.
In an alternative implementation of the first embodiment, a UE determines two or more carrier groups where each group is mapped to a unique part of the UE capability. Thereafter, the UE indicates the groups of carriers to the network, along with the need to reduce its capability in the current network and waits for a response from the network. Here “part of the UE capability” is the UE’s Tx chain dedicated to transmission on one or more carriers. The UE, in one embodiment, puts those carriers in the same group that uses the same part of the UE capability. The UE sends the groups of carriers to the network using RRC signaling. Afterwards, the UE expects to receive a response that involves receiving and acting on an RRC Reconfiguration message from the network.
In one embodiment, the network (e.g., the gNB or base station) , after receiving the groups of carriers along with the need to reduce the UE’s capability in the current network, determines which group of carriers can be reconfigured. The determination may be based on at least one of the priorities of the data bearers served using these groups and/or the coverage area being served by these groups, e.g., the network may want to keep a cell group serving higher priority data bearers or having a larger coverage area to provide a better and more stable signaling connection. The network, in one embodiment, accordingly, transmits an RRC Reconfiguration message to the UE with a reconfigured carrier list, which includes carriers that can be released, deactivated, or made dormant to free-up Tx or Rx capabilities of the UE.
In a second embodiment, a UE signals a partial capability in addition to full capability to the network. Currently, e.g., in TS 38.331, in a UE Capability transfer procedure, a UE 505 includes all its capabilities (see messaging 520) requested using a UE capability enquiry (see messaging 515) from the network 510 (e.g., gNB) as shown in Figure 5.
A solution that provides more granular information may have at least two possible implementations: one where the network 510 sends an enquiry (see messaging 515) about the “partial UE capability” and the UE 505 includes only those capability towards Network A that it will not use towards another Network B, when the need comes (e.g., as part of the UECapabilityInformation in messaging 520) . When the need comes, the UE 505 indicates that it can now work in partial capability to the serving cell, e.g., PCell. At this point, the network 510 may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation MAC CEs, or by configuring a BWP corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the partial or remaining capability available for Network A.
In a second implementation, the UE 505 itself includes such partial capability only when it needs to move some of the capability to Network B. At this point, the network 510 may provide a new configuration using RRCReconfiguration, SCell Activation/Deactivation MAC CEs, or by configuring a BWP corresponding to the suggested carriers with dormantBWP-Id by RRC signaling based on the partial or remaining capability available for Network A.
In a third embodiment, when the UE needs to start communication on another network, it indicates such need to the serving cell, e.g., PCell. The serving cell then decides which CG/FR2/FR1 is important to keep and sends reconfiguration information to the UE releasing the remaining cells/carriers. In a different implementation, the network can transmit SCell Activation/Deactivation MAC CEs to the UE or configure a BWP corresponding to the suggested carriers as dormantBWP-Id by RRC signalling or make an SCell (group) dormant using SCell dormancy indication in DCI format 2-6 (e.g., as in 3GPP TS 38.213, clause 10.3) or by using DCI format 1_1 indicating SCell dormancy.
In a fourth embodiment, while adding a carrier, every carrier configuration is configured as releasable or not-releasable. The UE releases, makes-dormant, and/or deactivates those carriers indicated as “releasable” in the RRCConfiguration when configuring the added carrier that the UE capabilities are transferred to.
A fifth embodiment, which applies to other previously disclosed embodiments, teaches the signaling used by the UE for informing its intention to shift or release capability, carrier (s) , cell-group (s) , or the like to the gNB. In one implementation, the UE sends RRC signaling directly to the PCell or more generally to special cell ( “spCell” ; primary cell of a cell  group) . This can be done either before the UE has “shifted” its capability to Network B, or after the shift.
In the latter case, the UE can be active quicker on Network B, but may miss some UL/DL activity in the released or dormant or deactivated carrier (s) . This can be useful if the UE needs to respond in Network B very quickly e.g., to serve an application with strict latency requirement. In one embodiment, except when responding to a paging message, the UE shifts the capability first (e.g., release carriers autonomously in Network A) before it initiates or completes the signaling procedure via the PCell to inform Network A of its capability reduction. In one implementation of this embodiment, the indication about actual capability transfer could be from a to-be-removed Scell itself.
In a sixth embodiment, a complementary aspect of a new MUSIM capability, supported band combinations, is described where a UE indicates to the network that it is capable of changing, reducing, and/or shifting its capability and may in addition also have a reduced set of capability indications that can be considered by Network A when the UE needs to be active in Network B. Based on this capability, the network may send the UECapabilityEnquiry to seek the partial or reduced capability of the UE e.g., a reduced bandwidth combination set, MIMO layers, antennas, antenna panels, and/or the like.
As one example, the UE may indicate a ReducedAggregatedBandwidth that has lower value compared with the full or original reducedAggregatedBandwidth, where, for example, the reducedAggregatedBandwidth : : = ENUMERATED {mhz0, mhz10, mhz20, mhz30, mhz40, mhz50, mhz60, mhz80, mhz100, mhz200, mhz300, mhz400} . As another example, the UE may signal a smaller supportedBandwidthCombinationSet and/or BandCombination.
Figure 6 depicts a user equipment apparatus 600 that may be used for multiple USIM operation, according to embodiments of the disclosure. In various embodiments, the user equipment apparatus 600 is used to implement one or more of the solutions described above. The user equipment apparatus 600 may be one embodiment of the remote unit 105 and/or the UE 205, described above. Furthermore, the user equipment apparatus 600 may include a processor 605, a memory 610, an input device 615, an output device 620, and a transceiver 625.
In some embodiments, the input device 615 and the output device 620 are combined into a single device, such as a touchscreen. In certain embodiments, the user equipment apparatus 600 may not include any input device 615 and/or output device 620. In various embodiments, the user equipment apparatus 600 may include one or more of: the processor 605, the memory 610, and the transceiver 625, and may not include the input device 615 and/or the output device 620.
As depicted, the transceiver 625 includes at least one transmitter 630 and at least one receiver 635. In some embodiments, the transceiver 625 communicates with one or more cells (or wireless coverage areas) supported by one or more base units 121. In various embodiments, the transceiver 625 is operable on unlicensed spectrum. Moreover, the transceiver 625 may include multiple UE panels supporting one or more beams. Additionally, the transceiver 625 may support at least one network interface 640 and/or application interface 645. The application interface (s) 645 may support one or more APIs. The network interface (s) 640 may support 3GPP reference points, such as Uu, N1, PC5, etc. Other network interfaces 640 may be supported, as understood by one of ordinary skill in the art.
The processor 605, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 605 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller. In some embodiments, the processor 605 executes instructions stored in the memory 610 to perform the methods and routines described herein. The processor 605 is communicatively coupled to the memory 610, the input device 615, the output device 620, and the transceiver 625.
In various embodiments, the processor 605 controls the user equipment apparatus 600 to implement the above-described UE behaviors. In certain embodiments, the processor 605 may include an application processor (also known as “main processor” ) which manages application-domain and operating system ( “OS” ) functions and a baseband processor (also known as “baseband radio processor” ) which manages radio functions. In one embodiment, the user equipment apparatus 600 includes multiple USIMs, e.g., a first SIM 650 and a second SIM 655.
In one embodiment, the processor 605 controls the transceiver 625 to perform the various operations of the user equipment apparatus 600. In one embodiment, the processor 605 determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the transceiver 625 transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the transceiver 625 receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that  the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
In one embodiment, the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
In one embodiment, each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
In one embodiment, the processor 605 determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
In one embodiment, the transceiver 625 transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
In one embodiment, the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
In one embodiment, the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
In one embodiment, the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
In one embodiment, the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
In one embodiment, the transceiver 625 transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting  the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the transceiver 625 transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the transceiver 625 transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
In one embodiment, a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
In one embodiment, the processor 605 determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the processor 605 determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the transceiver 625 transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
In one embodiment, the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.
The memory 610, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 610 includes volatile computer storage media. For example, the memory 610 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 610 includes non-volatile computer storage media. For example, the memory 610 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 610 includes both volatile and non-volatile computer storage media.
In some embodiments, the memory 610 stores data related to multiple USIM operation and/or mobile operation. For example, the memory 610 may store various parameters, panel/beam configurations, resource assignments, policies, and the like as described above. In  certain embodiments, the memory 610 also stores program code and related data, such as an operating system or other controller algorithms operating on the apparatus 600.
The input device 615, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 615 may be integrated with the output device 620, for example, as a touchscreen or similar touch-sensitive display. In some embodiments, the input device 615 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 615 includes two or more different devices, such as a keyboard and a touch panel.
The output device 620, in one embodiment, is designed to output visual, audible, and/or haptic signals. In some embodiments, the output device 620 includes an electronically controllable display or display device capable of outputting visual data to a user. For example, the output device 620 may include, but is not limited to, a Liquid Crystal Display ( “LCD” ) , a Light-Emitting Diode ( “LED” ) display, an Organic LED ( “OLED” ) display, a projector, or similar display device capable of outputting images, text, or the like to a user. As another, non-limiting, example, the output device 620 may include a wearable display separate from, but communicatively coupled to, the rest of the user equipment apparatus 600, such as a smart watch, smart glasses, a heads-up display, or the like. Further, the output device 620 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the output device 620 includes one or more speakers for producing sound. For example, the output device 620 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the output device 620 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of the output device 620 may be integrated with the input device 615. For example, the input device 615 and output device 620 may form a touchscreen or similar touch-sensitive display. In other embodiments, the output device 620 may be located near the input device 615.
The transceiver 625 communicates with one or more network functions of a mobile communication network via one or more access networks. The transceiver 625 operates under the control of the processor 605 to transmit messages, data, and other signals and also to receive messages, data, and other signals. For example, the processor 605 may selectively activate the transceiver 625 (or portions thereof) at particular times in order to send and receive messages.
The transceiver 625 includes at least transmitter 630 and at least one receiver 635. One or more transmitters 630 may be used to provide UL communication signals to a base unit  121, such as the UL transmissions described herein. Similarly, one or more receivers 635 may be used to receive DL communication signals from the base unit 121, as described herein. Although only one transmitter 630 and one receiver 635 are illustrated, the user equipment apparatus 600 may have any suitable number of transmitters 630 and receivers 635. Further, the transmitter (s) 630 and the receiver (s) 635 may be any suitable type of transmitters and receivers. In one embodiment, the transceiver 625 includes a first transmitter/receiver pair used to communicate with a mobile communication network over licensed radio spectrum and a second transmitter/receiver pair used to communicate with a mobile communication network over unlicensed radio spectrum.
In certain embodiments, the first transmitter/receiver pair used to communicate with a mobile communication network over licensed radio spectrum and the second transmitter/receiver pair used to communicate with a mobile communication network over unlicensed radio spectrum may be combined into a single transceiver unit, for example a single chip performing functions for use with both licensed and unlicensed radio spectrum. In some embodiments, the first transmitter/receiver pair and the second transmitter/receiver pair may share one or more hardware components. For example, certain transceivers 625, transmitters 630, and receivers 635 may be implemented as physically separate components that access a shared hardware resource and/or software resource, such as for example, the network interface 640.
In various embodiments, one or more transmitters 630 and/or one or more receivers 635 may be implemented and/or integrated into a single hardware component, such as a multi-transceiver chip, a system-on-a-chip, an Application-Specific Integrated Circuit ( “ASIC” ) , or other type of hardware component. In certain embodiments, one or more transmitters 630 and/or one or more receivers 635 may be implemented and/or integrated into a multi-chip module. In some embodiments, other components such as the network interface 640 or other hardware components/circuits may be integrated with any number of transmitters 630 and/or receivers 635 into a single chip. In such embodiment, the transmitters 630 and receivers 635 may be logically configured as a transceiver 625 that uses one more common control signals or as modular transmitters 630 and receivers 635 implemented in the same hardware chip or in a multi-chip module.
Figure 7 depicts a network apparatus 700 that may be used for multiple USIM operation, according to embodiments of the disclosure. In one embodiment, network apparatus 700 may be one implementation of an evaluation device, such as the base unit 121 and/or the RAN node 205, as described above. Furthermore, the base network apparatus 700 may include a processor 705, a memory 710, an input device 715, an output device 720, and a transceiver 725.
In some embodiments, the input device 715 and the output device 720 are combined into a single device, such as a touchscreen. In certain embodiments, the network apparatus 700 may not include any input device 715 and/or output device 720. In various embodiments, the network apparatus 700 may include one or more of: the processor 705, the memory 710, and the transceiver 725, and may not include the input device 715 and/or the output device 720.
As depicted, the transceiver 725 includes at least one transmitter 730 and at least one receiver 735. Here, the transceiver 725 communicates with one or more remote units 105. Additionally, the transceiver 725 may support at least one network interface 740 and/or application interface 745. The application interface (s) 745 may support one or more APIs. The network interface (s) 740 may support 3GPP reference points, such as Uu, N1, N2 and N3. Other network interfaces 740 may be supported, as understood by one of ordinary skill in the art.
The processor 705, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 705 may be a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or similar programmable controller. In some embodiments, the processor 705 executes instructions stored in the memory 710 to perform the methods and routines described herein. The processor 705 is communicatively coupled to the memory 710, the input device 715, the output device 720, and the transceiver 725.
In various embodiments, the network apparatus 700 is a RAN node (e.g., gNB) that communicates with one or more UEs, as described herein. In such embodiments, the processor 705 controls the network apparatus 700 to perform the above-described RAN behaviors. When operating as a RAN node, the processor 705 may include an application processor (also known as “main processor” ) which manages application-domain and operating system ( “OS” ) functions and a baseband processor (also known as “baseband radio processor” ) which manages radio functions.
In one embodiment, the processor 705 controls the transceiver 725 to perform the various functions of the network apparatus 700. In one embodiment, the transceiver 725 receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the processor 705 determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured. In one embodiment, the transceiver transmits 725, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers  to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
In one embodiment, determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
In one embodiment, a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
The memory 710, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 710 includes volatile computer storage media. For example, the memory 710 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 710 includes non-volatile computer storage media. For example, the memory 710 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 710 includes both volatile and non-volatile computer storage media.
In some embodiments, the memory 710 stores data related to mobile operation and/or multiple USIM operation. For example, the memory 710 may store parameters, configurations, resource assignments, policies, and the like, as described above. In certain embodiments, the memory 710 also stores program code and related data, such as an operating system or other controller algorithms operating on the apparatus 700.
The input device 715, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 715 may be integrated with the output device 720, for example, as a touchscreen or similar touch-sensitive display. In some embodiments, the input device 715 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 715 includes two or more different devices, such as a keyboard and a touch panel.
The output device 720, in one embodiment, is designed to output visual, audible, and/or haptic signals. In some embodiments, the output device 720 includes an electronically controllable display or display device capable of outputting visual data to a user. For example, the output device 720 may include, but is not limited to, an LCD display, an LED display, an OLED display, a projector, or similar display device capable of outputting images, text, or the like to a user. As another, non-limiting, example, the output device 720 may include a wearable display separate from, but communicatively coupled to, the rest of the network apparatus 700, such as a  smart watch, smart glasses, a heads-up display, or the like. Further, the output device 720 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the output device 720 includes one or more speakers for producing sound. For example, the output device 720 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the output device 720 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of the output device 720 may be integrated with the input device 715. For example, the input device 715 and output device 720 may form a touchscreen or similar touch-sensitive display. In other embodiments, the output device 720 may be located near the input device 715.
The transceiver 725 includes at least transmitter 730 and at least one receiver 735. One or more transmitters 730 may be used to communicate with the UE, as described herein. Similarly, one or more receivers 735 may be used to communicate with network functions in the PLMN and/or RAN, as described herein. Although only one transmitter 730 and one receiver 735 are illustrated, the network apparatus 700 may have any suitable number of transmitters 730 and receivers 735. Further, the transmitter (s) 730 and the receiver (s) 735 may be any suitable type of transmitters and receivers.
Figure 8 depicts one embodiment of a method 800 for multiple USIM operation, according to embodiments of the disclosure. In various embodiments, the method 800 is performed by a user equipment device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, as described above. In some embodiments, the method 800 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In one embodiment, the method 800 begins and determines 805 a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the method 800 transmits 810, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to. In one embodiment, the method 800 transmits 815, to the mobile wireless communication network, an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the method 800 receives 820, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device  capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier, and the method 800 ends.
Figure 9 depicts one embodiment of a method 900 for multiple USIM operation, according to embodiments of the disclosure. In various embodiments, the method 900 is performed by a RAN device, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 700, as described above. In some embodiments, the method 900 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In one embodiment, the method 900 begins and receives 905, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the method 900 determines 910 that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured. In one embodiment, the method 900 transmits 915, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers, and the method 900 ends.
Figure 10 depicts one embodiment of a method 1000 for multiple USIM operation, according to embodiments of the disclosure. In various embodiments, the method 1000 is performed by a user equipment device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, as described above. In some embodiments, the method 1000 is performed by a processor, such as a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In one embodiment, the method 1000 begins and determines 1005 capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, the method 1000, for each of the plurality of wireless network carriers, determines 1010 a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the method 1000 transmits 1015, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier, and the method 1000 ends.
Disclosed herein is a first apparatus for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The first apparatus may be implemented by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above. The first apparatus includes a processor and a transceiver.
In one embodiment, the processor determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device. In one embodiment, the transceiver transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the transceiver receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
In one embodiment, the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
In one embodiment, each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
In one embodiment, the processor determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
In one embodiment, the transceiver transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
In one embodiment, the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
In one embodiment, the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
In one embodiment, the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
In one embodiment, the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
In one embodiment, the transceiver transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the transceiver transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the transceiver transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
In one embodiment, a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
Disclosed herein is a first method for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The first method may be performed by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
In one embodiment, the first method determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to  capabilities of the UE device. In one embodiment, the first method transmits, to the mobile wireless communication network, the plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers. In one embodiment, the first method receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
In one embodiment, the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
In one embodiment, each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
In one embodiment, the first method determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
In one embodiment, the first method transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
In one embodiment, the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
In one embodiment, the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
In one embodiment, the at least a first group of wireless network carriers to be released is dependent on one or more of whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved, frequency of operation for the wireless network carriers, a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain, and whether resources for a transmission or reception chain is serving one or more split data bearers.
In one embodiment, the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
In one embodiment, the first method transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the first method transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
In one embodiment, the first method transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
In one embodiment, a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
Disclosed herein is a second apparatus for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The second apparatus may be implemented by a radio access network ( “RAN” ) entity in a first communication network, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 700, described above. The second apparatus includes a processor and a transceiver.
In one embodiment, the transceiver receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the processor determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured. In one embodiment, the transceiver transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
In one embodiment, determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
In one embodiment, a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
Disclosed herein is a second method for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The second method may be performed by a RAN node in a first communication network, such as the base unit 121, the access point 131, the RAN node 265 and/or the network apparatus 900, described above.
In one embodiment, the second method receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers. In one embodiment, the second method determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured. In one embodiment, the second method transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
In one embodiment, determining that the at least a first group of wireless network carriers can be reconfigured is based on at least one of a priority of data bearers served using the wireless network carriers within the at least a first group and a coverage area being served by the wireless network carriers within the at least a first group.
In one embodiment, a reconfigured wireless network carrier within a group can be at least one of released, deactivated, and made dormant.
Disclosed herein is a third apparatus for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The third apparatus may be implemented by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above. The third apparatus includes a processor and a transceiver.
In one embodiment, the processor determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers,  the processor determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the transceiver transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
In one embodiment, the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.
Disclosed herein is a third method for managing UE capabilities for multiple subscriber identity modules, according to embodiments of the disclosure. The third method may be performed by a UE device, such as the remote unit 105, the MUSIM UE 205, and/or the user equipment apparatus 600, described above.
In one embodiment, the third method determines capabilities of the UE device for each of a plurality of wireless network carriers that the UE device is connected to via a mobile wireless communication network. In one embodiment, for each of the plurality of wireless network carriers, the third method determines a partial UE capability list comprising the mapped capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier. In one embodiment, the third method transmits, to the mobile wireless communication network, the partial UE capability list comprising the capabilities of the UE device that are used by one wireless network carrier and not by a different wireless network carrier.
In one embodiment, the partial UE capability list is transmitted in response to one of a request for the partial UE capability list from the mobile wireless communication network and switching from a current wireless network carrier to a different wireless network carrier.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A user equipment ( “UE” ) device apparatus, the apparatus comprising:
    a processor that determines a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device; and
    a transceiver that:
    transmits, to the mobile wireless communication network:
    the plurality of groups of wireless network carriers that the UE device is connected to; and
    an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers; and
    receives, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  2. The apparatus of claim 1, wherein the capabilities of the UE device comprise resources used for one or more of data transmission and data reception on one or more groups of wireless network carriers.
  3. The apparatus of claim 1, wherein each wireless network carrier within each group of the plurality of groups of wireless network carriers uses the same capabilities of the UE device.
  4. The apparatus of claim 1, wherein the processor determines one or more suggestions of groups of wireless network carriers to reconfigure and transmitting the one or more suggestions to the mobile wireless communication network.
  5. The apparatus of claim 1, wherein the transceiver transmits the plurality of groups of wireless network carriers to the mobile wireless communication network using radio resource control ( “RRC” ) signaling.
  6. The apparatus of claim 1, wherein the wireless network carriers are one of terminating in a same network node for carrier aggregation and terminating in more than one network node for multi-connectivity.
  7. The apparatus of claim 1, wherein the mapping of UE device capabilities is done on a per-network node basis where different capabilities of a transmission or reception chain are grouped by network node.
  8. The apparatus of claim 1, wherein the at least a first group of wireless network carriers to be released is dependent on one or more of:
    whether resources for a data transmission or data reception chain of a primary cell of the UE device’s connection to the at least a first group of wireless network carriers cannot be moved;
    frequency of operation for the wireless network carriers;
    a data bearer mapped to resources for a transmission or reception chain service data of lower priority compared with the data bearer mapped to resources of another transmission or reception chain; and
    whether resources for a transmission or reception chain is serving one or more split data bearers.
  9. The apparatus of claim 1, wherein the response message comprises one or more of a radio resource control ( “RRC” ) reconfiguration response message, medium access control control elements ( “MAC CE” ) for secondary cell activation or deactivation, a configuration for a bandwidth part ( “BWP” ) corresponding to a suggested group of wireless network carriers to be released or made dormant, and an indication of a secondary cell to make dormant.
  10. The apparatus of claim 1, wherein the transceiver transmits radio resource control ( “RRC” ) signaling to a primary serving cell of the second group of wireless network carriers prior to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  11. The apparatus of claim 1, wherein the transceiver transmits radio resource control ( “RRC” ) signaling to a serving cell of the second group of wireless network carriers in response to shifting the UE device capabilities from the at least a first group of wireless network carriers to a network for the second group of wireless network carriers.
  12. The apparatus of claim 1, wherein the transceiver transmits a capability indication to indicate that the UE supports reduced capability and transmitting a subset of the UE device capabilities in response to a request from the mobile wireless communication network for the subset.
  13. The apparatus of claim 1, wherein a group of wireless network carriers is tagged as one of releasable and non-releasable such that the group of wireless network carriers is released based on its releasable tag.
  14. A method of a user equipment ( “UE” ) device, the method comprising:
    determining a plurality of groups of wireless network carriers that the UE device is connected to via a mobile wireless communication network, each of the plurality of groups comprising one or more network carriers that are mapped to capabilities of the UE device;
    transmitting, to the mobile wireless communication network:
    the plurality of groups of wireless network carriers that the UE device is connected to; and
    an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers; and
    receiving, from the mobile wireless communication network, a response message for reconfiguring the at least a first group of wireless network carriers such that the UE device capabilities associated with the at least a first group of wireless network carriers are available for use with a second group of wireless network carrier.
  15. A network node apparatus, the apparatus comprising:
    a transceiver that receives, from a user equipment ( “UE” ) device, a plurality of groups of wireless network carriers that the UE device is connected to and an indication to reconfigure at least a first group of wireless network carriers that the UE device is connected to for reducing UE device capabilities associated with the at least a first group of wireless network carriers, each of the plurality of groups comprising one or more network carriers; and
    a processor that determines that the at least a first group of wireless network carriers that the UE device is connected to can be reconfigured,
    wherein the transceiver transmits, to the UE device, a radio resource control ( “RRC” ) reconfiguration response message comprising the at least a first group of wireless network carriers to reconfigure for reducing UE device capabilities for use with a second group of wireless network carriers.
PCT/CN2022/074215 2022-01-27 2022-01-27 Managing user equipment capabilities for multiple subscriber identity modules WO2023141858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074215 WO2023141858A1 (en) 2022-01-27 2022-01-27 Managing user equipment capabilities for multiple subscriber identity modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074215 WO2023141858A1 (en) 2022-01-27 2022-01-27 Managing user equipment capabilities for multiple subscriber identity modules

Publications (1)

Publication Number Publication Date
WO2023141858A1 true WO2023141858A1 (en) 2023-08-03

Family

ID=87469881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074215 WO2023141858A1 (en) 2022-01-27 2022-01-27 Managing user equipment capabilities for multiple subscriber identity modules

Country Status (1)

Country Link
WO (1) WO2023141858A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219648A1 (en) * 2015-01-23 2016-07-28 Qualcomm Incorporated User equipment having a multiple subscriber identity module capability understood by one or more networks
CN111434153A (en) * 2018-09-25 2020-07-17 联发科技(新加坡)私人有限公司 Carrier-specific and frequency-specific capability restrictions
US10904937B1 (en) * 2019-06-24 2021-01-26 Sprint Spectrum L.P. Control of UE connectivity including carrier transition before transition from standalone connectivity to dual connectivity
WO2021127835A1 (en) * 2019-12-23 2021-07-01 Qualcomm Incorporated Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
WO2022009029A1 (en) * 2020-07-10 2022-01-13 Nokia Technologies Oy Communication of user terminal having multiple subscription identities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219648A1 (en) * 2015-01-23 2016-07-28 Qualcomm Incorporated User equipment having a multiple subscriber identity module capability understood by one or more networks
CN111434153A (en) * 2018-09-25 2020-07-17 联发科技(新加坡)私人有限公司 Carrier-specific and frequency-specific capability restrictions
US10904937B1 (en) * 2019-06-24 2021-01-26 Sprint Spectrum L.P. Control of UE connectivity including carrier transition before transition from standalone connectivity to dual connectivity
WO2021127835A1 (en) * 2019-12-23 2021-07-01 Qualcomm Incorporated Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
WO2022009029A1 (en) * 2020-07-10 2022-01-13 Nokia Technologies Oy Communication of user terminal having multiple subscription identities

Similar Documents

Publication Publication Date Title
US20220141920A1 (en) System Enablers for Multi-SIM Devices
US20230093965A1 (en) Paging for multiple sims
US20230098840A1 (en) Measurement configuration for non-public radio cell
US20230262599A1 (en) Power efficient pdcch monitoring
US20230112588A1 (en) Communication method and related device
US20220278835A1 (en) Application Function Key Derivation and Refresh
WO2020119615A1 (en) Communication method and apparatus and computer readable storage medium
WO2023002454A1 (en) Group-based mobility configuration
US20230292399A1 (en) Releasing user plane resources of a data connection
WO2023141858A1 (en) Managing user equipment capabilities for multiple subscriber identity modules
US20230176162A1 (en) Generating a measurement report from positioning reference signals
US20230217529A1 (en) Methods and apparatus for inactive state initial uplink transmission using pre-configured grant at a user equipment in wireless communication
US12028287B2 (en) Parallel transmission of segmented RRC messages
US20240147574A1 (en) User equipment power saving for v2x communications
US20240196468A1 (en) Keeping a terminal in a connected state while the terminal is away from a communication network
US20230422341A1 (en) Configuring discontinuous reception for pc5 interface
US20240023192A1 (en) Lch configuration for small data transmission
US20230198716A1 (en) Parallel transmission of segmented rrc messages
US20230300725A1 (en) Acquiring on-demand system information
WO2022061845A1 (en) Methods and apparatus for inactive state initial uplink transmission using pre-configured grant at a base station in wireless communication
WO2022070169A1 (en) Leaving a wireless network by a multi-sim ue for a stipulated time after receiving a paging message
WO2023170611A1 (en) Signaling slice to slice group mapping to a user equipment device
WO2023117148A1 (en) Slice-based network selection information
WO2023047334A1 (en) Decision testing in automated networks
WO2023199294A1 (en) Techniques for signal repetition using reconfigurable intelligent surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922707

Country of ref document: EP

Kind code of ref document: A1