WO2020119078A1 - 一种新型石墨烯三元复合直接载流板 - Google Patents

一种新型石墨烯三元复合直接载流板 Download PDF

Info

Publication number
WO2020119078A1
WO2020119078A1 PCT/CN2019/093373 CN2019093373W WO2020119078A1 WO 2020119078 A1 WO2020119078 A1 WO 2020119078A1 CN 2019093373 W CN2019093373 W CN 2019093373W WO 2020119078 A1 WO2020119078 A1 WO 2020119078A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
direct current
plate
carrying plate
composite layer
Prior art date
Application number
PCT/CN2019/093373
Other languages
English (en)
French (fr)
Inventor
刘杨
王双飞
覃程荣
刘新亮
聂双喜
姚双全
梁辰
王志伟
Original Assignee
广西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西大学 filed Critical 广西大学
Publication of WO2020119078A1 publication Critical patent/WO2020119078A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Definitions

  • the invention relates to a direct current carrying plate, in particular to a novel graphene ternary composite direct current carrying plate.
  • Sodium chlorate electrolysis is produced by electrolysis of industrial brine and is the main industrial production method. This method consumes a large amount of electricity, and consumes about 5500kW ⁇ h/t in the electrolysis process, and the electricity consumption accounts for about 60% of the product cost.
  • the power consumption for the production of sodium chlorate depends on the level of the electrolysis device, the choice of the electrolysis cell type and the advancement of the electrolysis technology.
  • the current-carrying plate is an important part of the electrolytic cell.
  • the traditional busbar connection electrolysis technology uses bolts or busbars to connect the copper bar and the aluminum bar. This technology has a large current loss, and there is a short circuit in the electrolytic cell, which seriously affects the normal operation of the equipment.
  • the direct current carrying technology of the deflector is mostly used, which requires the deflector to have good chemical stability and mechanical strength.
  • the deflector must have a certain porosity and the ohmic voltage drop should be low.
  • the present invention provides a novel graphene ternary composite direct current carrying plate, which has a small thickness, a reduced ohmic voltage, a good porosity, and a small current loss.
  • the novel graphene ternary composite direct current-carrying plate of the present invention includes: a titanium plate; a graphene composite layer, which is arranged between an anode plate and a cathode plate; the graphene composite layer is incorporated in an aluminum mesh frame structure A certain percentage of graphene has high electron mobility, carrier transmission efficiency and current density; and steel plates.
  • the anode plate is a titanium plate
  • the cathode plate is a steel plate
  • the aluminum mesh frame structure of the graphene composite layer is rhombic, square, circular or elliptical.
  • the graphene accounts for no more than 10% by mass of the graphene composite layer.
  • the thickness of the direct current carrying plate is 12-25 mm.
  • the thickness of the graphene composite layer is 3-5 mm.
  • the titanium plate is ternary coated with a titanium substrate and has a thickness of 1-5 mm;
  • the steel plate is a thin steel plate and has a thickness of 8-15 mm.
  • the present invention has the following beneficial effects:
  • the present invention uses the direct current-carrying technology of the deflector, which requires the deflector to have good chemical stability and mechanical strength, have a certain porosity, and have a low ohmic voltage drop.
  • the present invention relates to a new type of graphene ternary composite direct current carrying plate, which uses a ternary coating of titanium matrix and thin steel plate to achieve high chemical stability and mechanical strength of the deflector; meanwhile, titanium plate and In the middle of the steel plate, a graphene composite layer of aluminum mesh structure doped with a certain proportion of graphene is used.
  • the composite layer has good porosity and mechanical strength, and significantly reduces the thickness of the deflector.
  • the novel graphene ternary composite direct current-carrying plate of the present invention has a small thickness, reduced ohmic voltage, good porosity, and small current loss.
  • the present invention significantly reduces electrolysis power consumption, thereby significantly reduces product cost, and effectively promotes the industrial production market of sodium chlorate electrolysis.
  • the present invention reduces energy consumption and is beneficial to environmental protection.
  • FIG. 1 is a schematic structural view of the novel graphene ternary composite direct current carrying plate of the present invention
  • a novel graphene ternary composite direct current-carrying plate includes: a titanium plate 1; a graphene composite layer 2 disposed between an anode plate and a cathode plate; wherein, the graphene composite layer 2 is The aluminum mesh frame structure 4 is doped with a certain proportion of graphene 5 and has high electron mobility, carrier transmission efficiency and current density; and a steel plate 3.
  • the anode plate is a titanium plate, and the cathode plate is a steel plate.
  • the aluminum mesh frame structure of the graphene composite layer is a circular hole mesh aluminum layer structure.
  • the composite layer is doped with a certain proportion of graphene, and graphene accounts for 5% of the mass of the composite layer;
  • the thickness of the direct current-carrying plate is 20 mm, wherein: the thickness of the graphene composite layer is 3 mm; the titanium plate is a ternary coating of a titanium substrate with a thickness of 3 mm; the steel plate is a thin steel plate with a thickness of 14 mm.
  • a novel graphene ternary composite direct current-carrying plate includes: a titanium plate 1; a graphene composite layer 2 disposed between an anode plate and a cathode plate; wherein, the graphene composite layer is aluminum
  • the mesh frame structure 4 is doped with a certain proportion of graphene 5 and has high electron mobility, carrier transmission efficiency and current density; and steel plate 3.
  • the anode plate is a titanium plate, and the cathode plate is a steel plate.
  • the aluminum mesh frame structure of the graphene composite layer is a circular hole mesh aluminum layer structure.
  • the composite layer is doped with a certain proportion of graphene, and the percentage of graphene in the composite layer is 3%;
  • the thickness of the direct current-carrying plate is 16mm, wherein: the thickness of the graphene composite layer is 2mm; the titanium plate is a ternary coating of a titanium substrate with a thickness of 2mm; the steel plate is a thin steel plate with a thickness of 12mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种新型石墨烯三元复合直接载流板,包括:钛板(1);石墨烯复合层(2),其设于钛板(1)和钢板(3)之间;以及钢板(3);所述的石墨烯复合层(2)为铝网框架结构(4)中掺入一定比例的石墨烯(5)。该新型石墨烯三元复合直接载流板厚度小、欧姆电压降低,具有良好的孔隙率,电流损失小;显著降低电解电耗,从而显著降低产品成本,有效促进氯酸钠电解法的工业生产市场;减少能源消耗,有利于环保。

Description

一种新型石墨烯三元复合直接载流板 技术领域
本发明涉及一种直接载流板,具体涉及一种新型石墨烯三元复合直接载流板。
背景技术
氯酸钠电解法是通过电解工业盐水进行生产,是主要的工业生产方法。该方法耗电量大,在电解过程中耗费电5500kW·h/t左右,电耗约占产品成本的60%。
生产氯酸钠的电耗取决于电解装置水平的高低、电解槽型式的选择及电解技术的先进性。载流板是电解槽重要组成部分,传统的母排连接电解技术采用螺栓或母线连接铜排和铝排,该技术电流损失较大,且有电解槽短路现象,严重影响设备的正常运行。现在多采用导流板直接载流技术,该技术要求导流板有良好的化学稳定性和机械强度,导流板需具有一定孔隙率,且欧姆电压降要低。
发明内容
针对上述现有技术的不足,本发明提供一种新型石墨烯三元复合直接载流板,该载流板厚度小、欧姆电压降低,具有良好的孔隙率,电流损失小。
本发明的上述目的通过以下技术方案予以实现:
本发明一种新型石墨烯三元复合直接载流板包括:钛板;石墨烯复合层,其设于阳极板和阴极板之间;所述的石墨烯复合层为铝网框架结构中掺入一定比例的石墨烯,具有高电子迁移率、载流子传输效率与电流密度;以及钢 板。
作为优选,所述的阳极板为钛板,所述的阴极板为钢板。
作为优选,所述石墨烯复合层的铝网框架结构为菱形、方形、圆形或椭圆形。
作为优选,所述石墨烯占所述石墨烯复合层的质量百分比不大于10%。
作为优选,所述的直接载流板的厚度为12-25mm。
作为优选,所述石墨烯复合层的厚度为3-5mm。
作为优选,所述钛板为钛基体三元涂覆,厚度为1-5mm;所述的钢板为薄钢板,厚度为8-15mm。
与现有技术相比,本发明有以下有益效果:
(1)本发明采用导流板直接载流技术,要求导流板有良好的化学稳定性和机械强度,具有一定孔隙率,且欧姆电压降要低。针对以上要求,本发明涉及的一种新型石墨烯三元复合直接载流板,采用钛基体三元涂覆、薄钢板以实现导流板的高化学稳定性和机械强度;同时,钛板和钢板中间采用掺入一定比例石墨烯的铝网结构的石墨烯复合层,该复合层具有良好的孔隙率和机械强度,且显著减小了导流板厚度。
(2)本发明的新型石墨烯三元复合直接载流板厚度小、欧姆电压降低,具有良好的孔隙率,电流损失小。
(3)本发明显著降低电解电耗,从而显著降低产品成本,有效促进氯酸钠电解法的工业生产市场。
(4)本发明减少能源消耗,有利于环保。
附图说明
图1为本发明的新型石墨烯三元复合直接载流板的结构示意图;
有关附图标记的说明:
1-钛板;2-石墨烯复合层;3-钢板;4-铝网框架结构;5-石墨烯。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。在不背离本发明精神和本质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
实施例1
如图1所示,一种新型石墨烯三元复合直接载流板,包括:钛板1;置于阳极板和阴极板之间的石墨烯复合层2;其中,该石墨烯复合层2为铝网框架结构4中掺入一定比例的石墨烯5,具有高电子迁移率、载流子传输效率与电流密度;以及钢板3。
所述的阳极板为钛板,所述的阴极板为钢板。所述的石墨烯复合层的铝网框架结构为圆形孔网状铝层结构,该复合层中掺入一定比例石墨烯,石墨烯占所述复合层的质量百分比为5%;
所述的直接载流板的厚度为20mm,其中:石墨烯复合层的厚度为3mm;钛板为钛基体三元涂覆,厚度为3mm;钢板为薄钢板,厚度为14mm。
实施例2
如图1所示,一种新型石墨烯三元复合直接载流板,包括:钛板1;置于阳极板和阴极板之间的石墨烯复合层2;其中,该石墨烯复合层为铝网框架结构4中掺入一定比例的石墨烯5,具有高电子迁移率、载流子传输效率与电流密度;以及钢板3。
所述的阳极板为钛板,所述的阴极板为钢板。所述的石墨烯复合层的铝网框架结构为圆形孔网状铝层结构,该复合层中掺入一定比例石墨烯,石墨烯占所述复合层的质量百分比为3%;
所述的直接载流板的厚度为16mm,其中:石墨烯复合层的厚度为2mm;钛板为钛基体三元涂覆,厚度为2mm;钢板为薄钢板,厚度为12mm。
对上述实施例1-2中得到的石墨烯三元复合直接载流板的电解电耗及电解效率进行测定,结果见表1。
表1 本发明的新型石墨烯三元复合直接载流板的电解性能测定
处理 电解电耗(kW·h/t) 电解效率(%)
实施例1 4960 97
实施例2 5100 95
由表1可知,本发明的石墨烯三元复合直接载流板的电解电耗均在4960kW·h/t以上,电解效率均在95%以上。

Claims (6)

  1. 一种新型石墨烯三元复合直接载流板,其特征在于,包括:钛板;石墨烯复合层,其设于钛板和钢板之间;所述的石墨烯复合层为铝网框架结构中掺入一定比例的石墨烯;以及钢板。
  2. 根据权利要求1所述的新型石墨烯三元复合直接载流板,其特征在于,所述石墨烯复合层的铝网框架结构为菱形、方形、圆形或椭圆形。
  3. 根据权利要求1所述的新型石墨烯三元复合直接载流板,其特征在于,所述石墨烯占所述石墨烯复合层的质量百分比不大于10%。
  4. 根据权利要求1所述的新型石墨烯三元复合直接载流板,其特征在于,所述的直接载流板的厚度为12-25mm。
  5. 根据权利要求1所述的新型石墨烯三元复合直接载流板,其特征在于,所述石墨烯复合层的厚度为3-5mm。
  6. 根据权利要求1所述的新型石墨烯三元复合直接载流板,其特征在于,所述钛板为钛基体三元涂覆,厚度为1-5mm;所述的钢板为薄钢板,厚度为8-15mm。
PCT/CN2019/093373 2018-12-14 2019-06-27 一种新型石墨烯三元复合直接载流板 WO2020119078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811536160.2A CN109594099A (zh) 2018-12-14 2018-12-14 一种新型石墨烯三元复合直接载流板
CN201811536160.2 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020119078A1 true WO2020119078A1 (zh) 2020-06-18

Family

ID=65962579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093373 WO2020119078A1 (zh) 2018-12-14 2019-06-27 一种新型石墨烯三元复合直接载流板

Country Status (4)

Country Link
US (1) US20200190676A1 (zh)
CN (1) CN109594099A (zh)
CA (1) CA3038189A1 (zh)
WO (1) WO2020119078A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594099A (zh) * 2018-12-14 2019-04-09 广西大学 一种新型石墨烯三元复合直接载流板
JP7425718B2 (ja) * 2020-12-14 2024-01-31 本田技研工業株式会社 電動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102194A (zh) * 1985-03-07 1987-01-28 奥罗茨奥·诺拉电化学工厂联合股票公司 单、双极电解槽及其电极结构
CN103526235A (zh) * 2013-10-11 2014-01-22 昆明理工大学 一种钛/石墨烯/氧化物复合电极
WO2017053204A1 (en) * 2015-09-21 2017-03-30 Garmor Inc. Low-cost, high-performance composite bipolar plate
CN106702421A (zh) * 2017-02-27 2017-05-24 广西博世科环保科技股份有限公司 大产能自然循环的氯酸钠电解***
CN107546393A (zh) * 2017-09-28 2018-01-05 陈莉 一种质子交换膜燃料电池双极板结构、燃料电池电堆及其控制方法
CN107819137A (zh) * 2016-09-12 2018-03-20 中国科学院金属研究所 一种柔性石墨双极板及其制备方法
US20180145342A1 (en) * 2016-11-24 2018-05-24 Seoul National University, R&DB Foundation Flow field for fuel cell including graphene foam
CN109594099A (zh) * 2018-12-14 2019-04-09 广西大学 一种新型石墨烯三元复合直接载流板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602984A (en) * 1984-12-17 1986-07-29 The Dow Chemical Company Monopolar electrochemical cell having a novel electric current transmission element
CN101942671A (zh) * 2010-09-07 2011-01-12 苏州卓群钛镍设备有限公司 一种氯酸钠电解槽
CN206814855U (zh) * 2017-03-30 2017-12-29 苏州卓群钛镍设备有限公司 一种氯酸盐电解槽

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102194A (zh) * 1985-03-07 1987-01-28 奥罗茨奥·诺拉电化学工厂联合股票公司 单、双极电解槽及其电极结构
CN103526235A (zh) * 2013-10-11 2014-01-22 昆明理工大学 一种钛/石墨烯/氧化物复合电极
WO2017053204A1 (en) * 2015-09-21 2017-03-30 Garmor Inc. Low-cost, high-performance composite bipolar plate
CN107819137A (zh) * 2016-09-12 2018-03-20 中国科学院金属研究所 一种柔性石墨双极板及其制备方法
US20180145342A1 (en) * 2016-11-24 2018-05-24 Seoul National University, R&DB Foundation Flow field for fuel cell including graphene foam
CN106702421A (zh) * 2017-02-27 2017-05-24 广西博世科环保科技股份有限公司 大产能自然循环的氯酸钠电解***
CN107546393A (zh) * 2017-09-28 2018-01-05 陈莉 一种质子交换膜燃料电池双极板结构、燃料电池电堆及其控制方法
CN109594099A (zh) * 2018-12-14 2019-04-09 广西大学 一种新型石墨烯三元复合直接载流板

Also Published As

Publication number Publication date
CA3038189A1 (en) 2020-06-14
US20200190676A1 (en) 2020-06-18
CN109594099A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN101800318B (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
WO2020119078A1 (zh) 一种新型石墨烯三元复合直接载流板
CN101604756B (zh) 双极板与燃料电池
CN101950688A (zh) 用于铝电解电容器的中高压阳极铝箔的制造方法
CN101483103A (zh) 铝电解电容器阳极箔的腐蚀方法
WO2017054391A1 (zh) 一种直接连接镀膜电极的电解臭氧水装置
CN102828206A (zh) 节能电解用阳极板或阴极板
CN203284488U (zh) 一种铝合金阳极氧化装置
CN201089802Y (zh) 一种电容器用铝箔的电解腐蚀装置
CN102751505A (zh) 一种铅酸蓄电池极板板栅
WO2012092868A1 (zh) 一种氯化镁电解装置及电解方法
CN203270071U (zh) 一种高压电极箔化成馈电装置
CN204111886U (zh) 一种不溶性阳极板
CN204022956U (zh) 一种旋流电解***导电软连接装置
CN204474784U (zh) 生箔电解阳极槽正极铜排导电结构
CN203639589U (zh) 用于酸性锌镍合金的双阳极结构双整流器***的电镀装置
CN202712335U (zh) 铅酸蓄电池极板板栅
CN102978629B (zh) Mo/Ag层状金属基复合材料作为SERS基底的制备及应用
CN106319577A (zh) 节能环保阳极板
CN203270070U (zh) 一种优良电流分布高压电极箔化成馈电装置
CN202786448U (zh) 复合电极
CN103276427A (zh) 一种高压电极箔化成馈电装置
CN106000842A (zh) 一种贵金属钛电极的链式生产工艺
CN202688494U (zh) 钛塑复合型铜箔电解槽
CN103103578A (zh) 电解铜阴极板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019752066

Country of ref document: EP

Effective date: 20190823

122 Ep: pct application non-entry in european phase

Ref document number: 19752066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE