WO2020118809A1 - Oled显示屏及其制作方法 - Google Patents

Oled显示屏及其制作方法 Download PDF

Info

Publication number
WO2020118809A1
WO2020118809A1 PCT/CN2019/070380 CN2019070380W WO2020118809A1 WO 2020118809 A1 WO2020118809 A1 WO 2020118809A1 CN 2019070380 W CN2019070380 W CN 2019070380W WO 2020118809 A1 WO2020118809 A1 WO 2020118809A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
pixel definition
hole
anode
Prior art date
Application number
PCT/CN2019/070380
Other languages
English (en)
French (fr)
Inventor
丁武
李松杉
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/333,232 priority Critical patent/US20200194524A1/en
Publication of WO2020118809A1 publication Critical patent/WO2020118809A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L2021/775Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate comprising a plurality of TFTs on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the invention relates to the field of electronic display, in particular to an OLED display screen and a manufacturing method thereof.
  • each light-emitting unit includes an anode located above the thin film transistor layer, an organic light emitting material located above the anode, and a cathode located above the light emitting material.
  • Each adjacent light-emitting unit is isolated from each other by an insulating layer, and this insulating layer is called a pixel definition layer.
  • the manufacturing method of the pixel definition layer is: depositing an insulating layer above the thin film transistor, patterning the insulating layer by photolithography, and forming a plurality of through holes for manufacturing the light emitting unit. In this way, each light-emitting unit is surrounded by an insulating material to achieve electrical insulation from adjacent light-emitting units.
  • the material forming the pixel definition layer is usually silicon oxide or silicon nitride, and the transmittance of the two materials to visible light is about 70%.
  • the OLED emits light upward, a part of the light tilts through the PDL layer, which reduces the luminous efficiency of the OLED device and seriously affects the luminous characteristics of the OLED.
  • the invention provides an OLED display screen and a manufacturing method thereof to solve the technical problem that light is absorbed by the pixel definition layer and affects the luminous efficiency of the OLED display screen.
  • the present invention provides an OLED display, which includes:
  • a pixel definition layer located above the thin film transistor layer, the pixel definition layer having a through hole;
  • a light emitting unit located in the through hole of the pixel definition layer including an anode at the bottom of the through hole, an organic light emitting material located above the anode, a cathode located above the organic light emitting material, and the organic light emitting A first reflective metal layer between the material and the pixel definition layer;
  • the cross section of the through hole of the pixel definition layer along the direction parallel to the substrate is rectangular, and the cross section along the direction perpendicular to the substrate is inverted trapezoid; wherein, the inverted trapezoid is an isosceles trapezoid, the inverted trapezoid
  • the angle between the waist and the vertical direction is greater than or equal to 5 °.
  • the anode of the light-emitting unit has a laminated structure of a first transparent conductive layer/second reflective metal layer/second transparent conductive layer.
  • the material of the first reflective metal layer and the second reflective metal layer is silver.
  • the present invention provides an OLED display screen, including:
  • a pixel definition layer located above the thin film transistor layer, the pixel definition layer having a through hole;
  • a light emitting unit located in the through hole of the pixel definition layer including an anode at the bottom of the through hole, an organic light emitting material located above the anode, a cathode located above the organic light emitting material, and the organic light emitting
  • the first reflective metal layer between the material and the pixel definition layer.
  • the anode of the light-emitting unit has a laminated structure of a first transparent conductive layer/second reflective metal layer/second transparent conductive layer.
  • the material of the first reflective metal layer and the second reflective metal layer is silver.
  • the cross section of the through hole of the pixel definition layer along the direction parallel to the substrate is rectangular, and the cross section along the direction perpendicular to the substrate is inverted trapezoid; wherein, the inverted trapezoid is an isosceles trapezoid, the The angle between the waist of the inverted trapezoid and the vertical direction is greater than or equal to 5°.
  • the present invention also provides a method for manufacturing an OLED display, which includes the following steps:
  • the light emitting unit includes an anode at the bottom of the through hole, an organic light emitting material above the anode, a cathode above the organic light emitting material, and a first reflective metal between the organic light emitting material and the pixel definition layer Floor.
  • the method for forming a patterned pixel definition layer above the thin film transistor layer includes the following steps:
  • the insulating material layer not covered by the photoresist is removed by etching to form a through hole penetrating the insulating material layer to expose the thin film transistor layer under the insulating material layer.
  • the method for etching the insulating material layer is dry etching, which includes ion milling etching, plasma etching and reactive ion etching.
  • the method of forming the light emitting unit in the through hole of the pixel definition layer includes the following steps:
  • the anode is evaporated at the bottom of the through hole
  • first reflective metal layer Forming a first reflective metal layer on the sidewall of the through hole of the pixel definition layer, the first reflective metal layer being located above the anode;
  • the side wall of the organic light-emitting material is immediately adjacent to the first reflective metal layer;
  • a cathode is formed above the organic light emitting material.
  • the method of vapor-depositing the anode at the bottom of the through hole includes the following steps:
  • the stacked structure including a first transparent conductive layer at the bottom of the pixel definition layer, and a second reflective metal above the first transparent conductive layer A layer and a second transparent conductive layer located above the second reflective metal layer;
  • the stacked structure above the photoresist is also removed, forming an anode at the bottom of the through hole.
  • the method for forming the first reflective metal layer on the sidewall of the through hole of the pixel definition layer includes the following steps:
  • a photolithography method is used to remove the metal layer not covered by the photoresist, and then the photoresist is removed.
  • a reflective metal layer is formed on the side wall adjacent to the pixel-defining layer and the light-emitting material, so that the light emitted by the light-emitting unit is reflected by the pixel-defining layer above the display screen, rather than being absorbed by the pixel-defining layer.
  • the reflectivity of light is enhanced, the luminous efficiency of the OLED device is greatly improved, and the luminous characteristics of the OLED device are improved.
  • 1 to 5 are schematic structural diagrams of the OLED display screen in each step of the method for manufacturing the OLED display screen in a specific embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an OLED display screen in a specific embodiment of the present invention.
  • the invention provides an OLED display screen and a manufacturing method thereof to solve the technical problem that light is absorbed by the pixel definition layer and affects the luminous efficiency of the OLED display screen.
  • the present invention will be described in detail below with reference to the drawings.
  • FIG. 6 is a schematic structural diagram of an OLED display screen in a specific embodiment of the present invention.
  • the present invention provides an OLED display screen, which includes: a substrate 10; a thin film transistor layer (not shown) on the substrate 10; a pixel definition layer 12 above the thin film transistor layer, the pixels
  • the definition layer 12 has a through hole; a light emitting unit located in the through hole of the pixel definition layer 12, the light emitting unit includes an anode 14 at the bottom of the through hole, an organic light emitting material 18 above the anode 14, and an organic light emitting The cathode 20 above the material 18 and the first reflective metal layer 16 between the organic light emitting material 18 and the pixel definition layer 12.
  • the anode 14 of the light-emitting unit has a stacked structure of a first transparent conductive layer 142 / a second reflective metal layer 144 / a second transparent conductive layer 146.
  • the second reflective metal layer 144 can reflect the light emitted by the light emitting unit in the direction of the substrate 10 toward the top of the OLED display screen, further enhancing the light emitting efficiency.
  • the material of the first reflective metal layer 16 and the second reflective metal layer 144 is silver.
  • the cross section of the through hole of the pixel definition layer 12 along the direction parallel to the substrate 10 is rectangular, and the cross section along the direction perpendicular to the substrate 10 is inverted trapezoid; wherein, the inverted trapezoid It is an isosceles trapezoid, and the angle between the waist of the inverted trapezoid and the vertical direction is greater than or equal to 5°.
  • the inverted trapezoidal design increases the area of the opening area where the light emitting unit is located, which can further increase the light output efficiency of the OLED display screen; meanwhile, the inclined surface is more conducive to the formation of the first metal reflective layer than the vertical surface.
  • FIGS. 1 to 5 are schematic structural diagrams of the OLED display screen in each step of the method for manufacturing the OLED display screen in a specific embodiment of the invention.
  • the present invention also provides a method for manufacturing an OLED display screen, which includes the following steps:
  • the light emitting unit includes an anode 14 at the bottom of the through hole, an organic light emitting material 18 above the anode 14, a cathode 20 above the organic light emitting material 18, and the organic light emitting material 18 and the pixel definition layer 12
  • the first reflective metal layer 16 in between.
  • a substrate 10 is provided, and a thin film transistor layer (not shown in the figure) is formed on the substrate 10.
  • a patterned pixel definition layer 12 is formed above the thin film transistor layer, and the pixel definition layer 12 has through holes.
  • the method of forming the patterned pixel definition layer 12 above the thin film transistor layer includes: depositing an insulating material layer above the thin film transistor; coating photoresist on the insulating material layer; Develop the photoresist with a set mask plate to remove the photoresist above the area where the through hole is to be formed; remove the insulating material layer not covered by the photoresist by etching to form a penetration of the insulating material The through hole of the layer exposes the thin film transistor layer under the insulating material layer.
  • the method for etching the insulating material layer is dry etching, which includes ion milling etching, plasma etching, and reactive ion etching.
  • the cross section of the through hole of the pixel definition layer 12 along the direction parallel to the substrate 10 is rectangular, and the cross section along the direction perpendicular to the substrate 10 is inverted trapezoid; wherein, the inverted trapezoid It is an isosceles trapezoid, and the angle between the waist of the inverted trapezoid and the vertical direction is greater than or equal to 5°.
  • the inverted trapezoidal design increases the area of the opening area where the light emitting unit is located, which can further increase the light output efficiency of the OLED display screen; meanwhile, the inclined surface is more conducive to the formation of the first metal reflective layer than the vertical surface.
  • a light-emitting unit is formed in the through hole of the pixel definition layer 12, the light-emitting unit includes an anode 14 at the bottom of the through hole, an organic light-emitting material 18 above the anode 14, and a cathode above the organic light-emitting material 18 20, and a first reflective metal layer 16 between the organic light emitting material 18 and the pixel definition layer 12.
  • a method of forming a light-emitting unit in the through hole of the pixel definition layer 12 includes: vapor-depositing an anode 14 at the bottom of the through hole; and forming a sidewall on the through hole of the pixel definition layer 12 A first reflective metal layer 16, the first reflective metal layer 16 is located above the anode 14; forming an organic light-emitting material 18 located above the anode 14, the side wall of the organic light-emitting material 18 is adjacent to the first Reflective metal layer 16; forming a cathode 20 above the organic light emitting material 18.
  • the method of vapor-depositing the anode 14 at the bottom of the through hole includes the following steps: forming a photoresist covering the top and side walls of the pixel definition layer 12; forming a photoresist covering the photoresist A laminated structure of glue and through holes, the laminated structure includes a first transparent conductive layer 142 at the bottom of the pixel definition layer 12, a second reflective metal layer 144 above the first transparent conductive layer 142, and A second transparent conductive layer 146 located above the second reflective metal layer 144; when the photoresist is removed, the stacked structure above the photoresist is also removed, forming a layer at the bottom of the through hole Anode 14
  • the anode 14 of the light-emitting unit has a stacked structure of a first transparent conductive layer 142 / a second reflective metal layer 144 / a second transparent conductive layer 146.
  • the second reflective metal layer 144 can reflect the light emitted by the light emitting unit in the direction of the substrate 10 toward the top of the OLED display screen, further enhancing the light emitting efficiency.
  • the material of the first reflective metal layer 16 and the second reflective metal layer 144 is silver.
  • the method includes the following steps: forming a metal layer covering the anode 14, the top and the side walls of the pixel definition layer 12, as shown in FIG. 4; forming a photoresist covering the metal layer, and The photoresist is patterned so that it only covers the metal layer located on the side wall of the pixel definition layer 12; a photolithography method is used to remove the metal layer not covered by the photoresist, and then the light is removed The resist, as shown in Figure 5.
  • an organic light emitting material 18 located above the anode 14 and a cathode 20 located above the organic light emitting material 18 are formed to form the OLED device shown in FIG. 6.
  • a reflective metal layer is formed on the side wall adjacent to the pixel-defining layer and the light-emitting material, so that the light emitted by the light-emitting unit is reflected by the pixel-defining layer above the display screen, rather than being absorbed by the pixel-defining layer.
  • the reflectivity of light is enhanced, the luminous efficiency of the OLED device is greatly improved, and the luminous characteristics of the OLED device are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种OLED显示屏及其制作方法。所述OLED显示屏包括:基板;位于所述基板上的薄膜晶体管层;位于所述薄膜晶体管层上方的像素定义层,所述像素定义层具有通孔;位于所述像素定义层的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层。

Description

OLED显示屏及其制作方法 技术领域
本发明涉及电子显示领域,尤其涉及一种OLED显示屏及其制作方法。
背景技术
在顶发光式OLED中,每个发光单元包括位于薄膜晶体管层上方的阳极、位于阳极上方的有机发光材料和位于发光材料上方的阴极。每个相邻的发光单元之间通过绝缘层彼此隔离,这一绝缘层称为像素定义层。像素定义层制作方法为:在薄膜晶体管上方淀积绝缘层,通过光刻将所述绝缘层图形化,形成多个用于制作发光单元的通孔。通过这种方法,每个发光单元都被绝缘材料包围,实现与相邻的发光单元之间的电绝缘。
现有技术中,形成像素定义层的材料通常为氧化硅或氮化硅,而这两种材料对可见光的穿透率为70%左右。在OLED向上发光时,会有一部分光倾斜着穿过PDL层,使OLED器件的发光效率降低,严重影响OLED的发光特性。
技术问题
本发明提供一种OLED显示屏及其制作方法,以解决光线被像素定义层吸收而影响OLED显示屏的发光效率的技术问题。
技术解决方案
第一方面,本发明提供了一种OLED显示屏,其包括:
基板;
位于所述基板上的薄膜晶体管层;
位于所述薄膜晶体管层上方的像素定义层,所述像素定义层具有通孔;
位于所述像素定义层的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层;其中,
所述像素定义层的通孔沿平行于所述基板的方向的截面为矩形,沿垂直于所述基板的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。
其中,所述发光单元的阳极为第一透明导电层/第二反光金属层/第二透明导电层的叠层结构。
其中,所述第一反光金属层和第二反光金属层的材料为银。
第二方面,本发明提供了一种OLED显示屏,其包括:
基板;
位于所述基板上的薄膜晶体管层;
位于所述薄膜晶体管层上方的像素定义层,所述像素定义层具有通孔;
位于所述像素定义层的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层。
其中,所述发光单元的阳极为第一透明导电层/第二反光金属层/第二透明导电层的叠层结构。
其中,所述第一反光金属层和第二反光金属层的材料为银。
其中,所述像素定义层的通孔沿平行于所述基板的方向的截面为矩形,沿垂直于所述基板的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。
第三方面,本发明还提供了一种OLED显示屏的制作方法,其包括以下步骤:
提供基板;
在基板上形成薄膜晶体管层;
在所述薄膜晶体管层上方形成图形化的像素定义层,所述像素定义层具有通孔;
在所述像素定义层的通孔中形成发光单元;其中,
所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层。
其中,在所述薄膜晶体管层上方形成图形化的像素定义层的方法包括以下步骤:
在所述薄膜晶体管上方淀积绝缘材料层;
在所述绝缘材料层上方涂覆光刻胶;
采用设定的掩膜版对所述光刻胶进行显影,去除将要形成通孔的区域上方的光刻胶;
通过刻蚀去除未被光刻胶覆盖的绝缘材料层,形成贯穿所述绝缘材料层的通孔,暴露出绝缘材料层下方的薄膜晶体管层。
其中,刻蚀所述绝缘材料层的方法为干法刻蚀,包括离子铣刻蚀、等离子刻蚀和反应离子刻蚀。
其中,在所述像素定义层的通孔中形成发光单元的方法包括以下步骤:
在所述通孔底部蒸镀阳极;
形成位于所述像素定义层的通孔的侧壁上的第一反光金属层,所述第一反光金属层位于所述阳极上方;
形成位于所述阳极上方的有机发光材料,所述有机发光材料的侧壁紧邻所述第一反光金属层;
形成位于所述有机发光材料上方的阴极。
其中,在所述通孔底部蒸镀阳极的方法包括以下步骤:
形成覆盖所述像素定义层的顶部和侧壁的光刻胶;
形成覆盖所述光刻胶和通孔的叠层结构,所述叠层结构包括位于所述像素定义层的底部的第一透明导电层、位于所述第一透明导电层上方的第二反光金属层和位于所述第二反光金属层上方的第二透明导电层;
去除所述光刻胶,位于所述光刻胶上方的叠层结构也随之被去除,形成位于所述通孔底部的阳极。
其中,形成位于所述像素定义层的通孔的侧壁上的第一反光金属层的方法包括以下步骤:
形成覆盖所述阳极、所述像素定义层的顶部和侧壁的金属层;
形成覆盖所述金属层的光刻胶,并对所述光刻胶进行图形化,使其仅覆盖位于所述像素定义层的侧壁的金属层;
采用光刻的方法去除未被所述光刻胶覆盖的金属层,之后去除所述光刻胶。
有益效果
本发明通过在像素定义层与发光材料相邻的侧壁上形成一层反光金属层,使得发光单元发出的光线被像素定义层反射至显示屏上方,而不是被像素定义层吸收。从而增强了光线的反射率,大幅度提高了OLED器件的发光效率,改善OLED器件的发光特性。
附图说明
图1至图5为本发明的一个具体实施例中的OLED显示屏的制作方法各个步骤中的OLED显示屏的结构示意图;
图6为本发明的一个具体实施例中的OLED显示屏的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明提供一种OLED显示屏及其制作方法,以解决光线被像素定义层吸收而影响OLED显示屏的发光效率的技术问题。下面将结合附图对本发明进行详细说明。
参见图6,图6为本发明的一个具体实施例中的OLED显示屏的结构示意图。本发明提供了一种OLED显示屏,其包括:基板10;位于所述基板10上的薄膜晶体管层(图中未示出);位于所述薄膜晶体管层上方的像素定义层12,所述像素定义层12具有通孔;位于所述像素定义层12的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极14、位于阳极14上方的有机发光材料18、位于所述有机发光材料18上方的阴极20、以及位于所述有机发光材料18和所述像素定义层12之间的第一反光金属层16。
在本实施例中,所述发光单元的阳极14为第一透明导电层142/第二反光金属层144/第二透明导电层146的叠层结构。第二反光金属层144能够将发光单元射向基板10方向的光线反射向OLED显示屏上方,进一步增强发光效率。
优选的,由于银具有优良的导电性和反光性,在本实施例中,所述第一反光金属层16和第二反光金属层144的材料为银。
在本实施例中,所述像素定义层12的通孔沿平行于所述基板10的方向的截面为矩形,沿垂直于所述基板10的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。倒梯形的设计使得发光单元所在的开口区面积增大,能够进一步增大OLED显示屏的出光效率;同时,倾斜的表面相比于垂直的表面更利于第一金属反光层的形成。
相应的,参见图1至图5,图1至图5为本发明的一个具体实施例中的OLED显示屏的制作方法各个步骤中的OLED显示屏的结构示意图。具体的,本发明还提供了一种OLED显示屏的制作方法,其包括以下步骤:
提供基板10;
在基板10上形成薄膜晶体管层;
在所述薄膜晶体管层上方形成图形化的像素定义层12,所述像素定义层12具有通孔;
在所述像素定义层12的通孔中形成发光单元;其中,
所述发光单元包括位于通孔底部的阳极14、位于阳极14上方的有机发光材料18、位于所述有机发光材料18上方的阴极20、以及位于所述有机发光材料18和所述像素定义层12之间的第一反光金属层16。
在本实施例中,首先,参见图1,提供基板10,并在基板10上形成薄膜晶体管层(图中未示出)。
之后,如图2所示,在在所述薄膜晶体管层上方形成图形化的像素定义层12,所述像素定义层12具有通孔。在本实施例中,在所述薄膜晶体管层上方形成图形化的像素定义层12的方法包括:在所述薄膜晶体管上方淀积绝缘材料层;在所述绝缘材料层上方涂覆光刻胶;采用设定的掩膜版对所述光刻胶进行显影,去除将要形成通孔的区域上方的光刻胶;通过刻蚀去除未被光刻胶覆盖的绝缘材料层,形成贯穿所述绝缘材料层的通孔,暴露出绝缘材料层下方的薄膜晶体管层。在本实施例中,刻蚀所述绝缘材料层的方法为干法刻蚀,包括离子铣刻蚀、等离子刻蚀和反应离子刻蚀。
在本实施例中,所述像素定义层12的通孔沿平行于所述基板10的方向的截面为矩形,沿垂直于所述基板10的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。倒梯形的设计使得发光单元所在的开口区面积增大,能够进一步增大OLED显示屏的出光效率;同时,倾斜的表面相比于垂直的表面更利于第一金属反光层的形成。
之后,在所述像素定义层12的通孔中形成发光单元,所述发光单元包括位于通孔底部的阳极14、位于阳极14上方的有机发光材料18、位于所述有机发光材料18上方的阴极20、以及位于所述有机发光材料18和所述像素定义层12之间的第一反光金属层16。
在本实施例中,在所述像素定义层12的通孔中形成发光单元的方法包括:在所述通孔底部蒸镀阳极14;形成位于所述像素定义层12的通孔的侧壁上的第一反光金属层16,所述第一反光金属层16位于所述阳极14上方;形成位于所述阳极14上方的有机发光材料18,所述有机发光材料18的侧壁紧邻所述第一反光金属层16;形成位于所述有机发光材料18上方的阴极20。
参见图3,在本实施例中,在所述通孔底部蒸镀阳极14的方法包括以下步骤:形成覆盖所述像素定义层12的顶部和侧壁的光刻胶;形成覆盖所述光刻胶和通孔的叠层结构,所述叠层结构包括位于所述像素定义层12的底部的第一透明导电层142、位于所述第一透明导电层142上方的第二反光金属层144和位于所述第二反光金属层144上方的第二透明导电层146;去除所述光刻胶,位于所述光刻胶上方的叠层结构也随之被去除,形成位于所述通孔底部的阳极14。
在本实施例中,所述发光单元的阳极14为第一透明导电层142/第二反光金属层144/第二透明导电层146的叠层结构。第二反光金属层144能够将发光单元射向基板10方向的光线反射向OLED显示屏上方,进一步增强发光效率。优选的,由于银具有优良的导电性和反光性,在本实施例中,所述第一反光金属层16和第二反光金属层144的材料为银。
形成阳极14之后,如图4和图5所示,在所述像素定义层12的通孔的侧壁上的第一反光金属层16。具体的,该方法包括以下步骤:形成覆盖所述阳极14、所述像素定义层12的顶部和侧壁的金属层,如图4所示;形成覆盖所述金属层的光刻胶,并对所述光刻胶进行图形化,使其仅覆盖位于所述像素定义层12的侧壁的金属层;采用光刻的方法去除未被所述光刻胶覆盖的金属层,之后去除所述光刻胶,如图5所示。
之后,形成位于阳极14上方的有机发光材料18和位于所述有机发光材料18上方的阴极20,形成如图6所示的OLED器件。
本发明通过在像素定义层与发光材料相邻的侧壁上形成一层反光金属层,使得发光单元发出的光线被像素定义层反射至显示屏上方,而不是被像素定义层吸收。从而增强了光线的反射率,大幅度提高了OLED器件的发光效率,改善OLED器件的发光特性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种OLED显示屏,其包括:
    基板;
    位于所述基板上的薄膜晶体管层;
    位于所述薄膜晶体管层上方的像素定义层,所述像素定义层具有通孔;
    位于所述像素定义层的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层;其中,
    所述像素定义层的通孔沿平行于所述基板的方向的截面为矩形,沿垂直于所述基板的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。
  2. 根据权利要求1所述的OLED显示屏,其中所述发光单元的阳极为第一透明导电层/第二反光金属层/第二透明导电层的叠层结构。
  3. 根据权利要求2所述的OLED显示屏,其中所述第一反光金属层和第二反光金属层的材料为银。
  4. 一种OLED显示屏,其包括:
    基板;
    位于所述基板上的薄膜晶体管层;
    位于所述薄膜晶体管层上方的像素定义层,所述像素定义层具有通孔;
    位于所述像素定义层的通孔中的发光单元,所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层。
  5. 根据权利要求4所述的OLED显示屏,其中所述发光单元的阳极为第一透明导电层/第二反光金属层/第二透明导电层的叠层结构。
  6. 根据权利要求5所述的OLED显示屏,其中所述第一反光金属层和第二反光金属层的材料为银。
  7. 根据权利要求4所述的OLED显示屏,其中所述像素定义层的通孔沿平行于所述基板的方向的截面为矩形,沿垂直于所述基板的方向的截面为倒梯形;其中,所述倒梯形为等腰梯形,所述倒梯形的腰与垂直方向的夹角大于等于5°。
  8. 一种OLED显示屏的制作方法,其包括以下步骤:
    提供基板;
    在基板上形成薄膜晶体管层;
    在所述薄膜晶体管层上方形成图形化的像素定义层,所述像素定义层具有通孔;
    在所述像素定义层的通孔中形成发光单元;其中,
    所述发光单元包括位于通孔底部的阳极、位于阳极上方的有机发光材料、位于所述有机发光材料上方的阴极、以及位于所述有机发光材料和所述像素定义层之间的第一反光金属层。
  9. 根据权利要求8所述的OLED显示屏的制作方法,其中在所述薄膜晶体管层上方形成图形化的像素定义层的方法包括以下步骤:
    在所述薄膜晶体管上方淀积绝缘材料层;
    在所述绝缘材料层上方涂覆光刻胶;
    采用设定的掩膜版对所述光刻胶进行显影,去除将要形成通孔的区域上方的光刻胶;
    通过刻蚀去除未被光刻胶覆盖的绝缘材料层,形成贯穿所述绝缘材料层的通孔,暴露出绝缘材料层下方的薄膜晶体管层。
  10. 根据权利要求9所述的OLED显示屏的制作方法,其中刻蚀所述绝缘材料层的方法为干法刻蚀,包括离子铣刻蚀、等离子刻蚀和反应离子刻蚀。
  11. 根据权利要求8所述的OLED显示屏的制作方法,其中在所述像素定义层的通孔中形成发光单元的方法包括以下步骤:
    在所述通孔底部蒸镀阳极;
    形成位于所述像素定义层的通孔的侧壁上的第一反光金属层,所述第一反光金属层位于所述阳极上方;
    形成位于所述阳极上方的有机发光材料,所述有机发光材料的侧壁紧邻所述第一反光金属层;
    形成位于所述有机发光材料上方的阴极。
  12. 根据权利要求11所述的OLED显示屏的制作方法,其中在所述通孔底部蒸镀阳极的方法包括以下步骤:
    形成覆盖所述像素定义层的顶部和侧壁的光刻胶;
    形成覆盖所述光刻胶和通孔的叠层结构,所述叠层结构包括位于所述像素定义层的底部的第一透明导电层、位于所述第一透明导电层上方的第二反光金属层和位于所述第二反光金属层上方的第二透明导电层;
    去除所述光刻胶,位于所述光刻胶上方的叠层结构也随之被去除,形成位于所述通孔底部的阳极。
  13. 根据权利要求11所述的OLED显示屏的制作方法,其中形成位于所述像素定义层的通孔的侧壁上的第一反光金属层的方法包括以下步骤:
    形成覆盖所述阳极、所述像素定义层的顶部和侧壁的金属层;
    形成覆盖所述金属层的光刻胶,并对所述光刻胶进行图形化,使其仅覆盖位于所述像素定义层的侧壁的金属层;
    采用光刻的方法去除未被所述光刻胶覆盖的金属层,之后去除所述光刻胶。
PCT/CN2019/070380 2018-12-13 2019-01-04 Oled显示屏及其制作方法 WO2020118809A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/333,232 US20200194524A1 (en) 2018-12-13 2019-01-04 Organic light emitting diode display and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811522887.5A CN109671749A (zh) 2018-12-13 2018-12-13 Oled显示屏及其制作方法
CN201811522887.5 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020118809A1 true WO2020118809A1 (zh) 2020-06-18

Family

ID=66145016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070380 WO2020118809A1 (zh) 2018-12-13 2019-01-04 Oled显示屏及其制作方法

Country Status (2)

Country Link
CN (1) CN109671749A (zh)
WO (1) WO2020118809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420973A (zh) * 2020-12-04 2021-02-26 深圳市芯视佳半导体科技有限公司 一种可以提高亮度的硅基oled微显示器制备方法和微显示器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183436A1 (en) * 2003-03-20 2004-09-23 Masato Ito Organic EL display device
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252297B2 (ja) * 2002-12-12 2009-04-08 株式会社日立製作所 発光素子およびこの発光素子を用いた表示装置
CN103681769B (zh) * 2013-12-24 2016-06-08 京东方科技集团股份有限公司 显示装置、有机电致发光器件及其制作方法
CN104362257B (zh) * 2014-10-22 2017-10-17 京东方科技集团股份有限公司 一种顶发射oled器件及其制作方法、显示设备
CN105633115B (zh) * 2014-11-27 2018-11-09 昆山国显光电有限公司 Oled器件及其制造方法、显示装置
CN106531768A (zh) * 2016-12-07 2017-03-22 厦门天马微电子有限公司 一种有机电致发光显示面板及其制备方法
CN106654047B (zh) * 2016-12-22 2019-02-01 武汉华星光电技术有限公司 Oled显示面板及其制作方法
CN106848095A (zh) * 2017-01-24 2017-06-13 上海天马微电子有限公司 一种有机电致发光显示面板及其制备方法和电子设备
CN108183156A (zh) * 2017-12-26 2018-06-19 深圳市华星光电技术有限公司 微型发光二极管显示面板及其制作方法
CN108461651A (zh) * 2018-03-28 2018-08-28 京东方科技集团股份有限公司 像素结构及其制备方法、显示面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183436A1 (en) * 2003-03-20 2004-09-23 Masato Ito Organic EL display device
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法

Also Published As

Publication number Publication date
CN109671749A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
KR101245217B1 (ko) 전계발광소자 및 그 제조방법
WO2021254059A1 (zh) 显示基板及其制备方法、显示装置
WO2020206977A1 (zh) 显示面板及其制备方法和半导体结构
WO2020134007A1 (zh) 显示面板、电子设备及显示面板的制作方法
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2020206824A1 (zh) 一种有机发光二极管显示器及其制作方法
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
WO2021254058A1 (zh) 显示基板及其制备方法、显示装置
TW200833164A (en) Organic electroluminescent display device and method for fabricating thereof
WO2021114471A1 (zh) 一种阵列基板及其制备方法、显示面板
WO2019010986A1 (zh) 显示面板及其制造方法、显示装置
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
WO2019227930A1 (zh) 电致发光显示面板、其制作方法及显示装置
WO2020233531A1 (zh) 显示基板及其制造方法、显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2020199008A1 (zh) 发光基板及其制作方法、电子装置
WO2020019583A1 (zh) Oled面板及其制作方法
WO2023015627A1 (zh) 显示面板和显示装置
WO2020113749A1 (zh) Oled 显示面板的制作方法及 oled 显示面板
WO2022077771A1 (zh) 显示面板及其制作方法
WO2023098293A1 (zh) 显示基板及其制作方法和显示装置
WO2021012399A1 (zh) 显示面板、显示装置及其制作方法
WO2021017106A1 (zh) 阵列基板及采用该阵列基板的制备方法、显示装置
WO2020056869A1 (zh) 一种有机发光二极管显示器及其制作方法
WO2020118809A1 (zh) Oled显示屏及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896515

Country of ref document: EP

Kind code of ref document: A1