WO2020118782A1 - 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法 - Google Patents

一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法 Download PDF

Info

Publication number
WO2020118782A1
WO2020118782A1 PCT/CN2018/124232 CN2018124232W WO2020118782A1 WO 2020118782 A1 WO2020118782 A1 WO 2020118782A1 CN 2018124232 W CN2018124232 W CN 2018124232W WO 2020118782 A1 WO2020118782 A1 WO 2020118782A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas hydrate
siphon
tower
hydrate slurry
Prior art date
Application number
PCT/CN2018/124232
Other languages
English (en)
French (fr)
Inventor
李栋梁
梁德青
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2020118782A1 publication Critical patent/WO2020118782A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0084Enhancing liquid-particle separation using the flotation principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid

Definitions

  • the invention relates to a gas hydrate slurry separation device and method based on synergy of air floatation and siphon.
  • the gas hydrate method uses seawater desalination to generate gas hydrate crystals by using small molecular substances that easily generate gas hydrates and water in seawater. After solid-liquid separation, the gas hydrates are decomposed to obtain fresh water.
  • the biggest advantages of seawater desalination technology by gas hydrate method are low energy consumption, simple and compact equipment; low solubility in water or brine; non-toxic, cheap and easy to obtain, and no danger of explosion.
  • the gas hydrate method can also be attributed to the freezing method, so it has the advantages of the freezing method such as no pretreatment of seawater and less corrosion.
  • the solid-state storage and transportation of natural gas and the use of gas hydrates for storage and transportation are also emerging technologies with broad application prospects.
  • the transportation methods of gas hydrates can be divided into two types: the first type is dry gas hydrate transportation technology.
  • the production of dry gas hydrate transportation technology is applied to the actual work of natural gas gas hydrate transportation.It needs to be transported in the transportation ship of the dry gas hydrate natural gas device.After reaching the transportation destination, it needs to be directly gasified on the transportation ship.
  • the free water generated during the gasification process can be used as ballast water during the return of the transport ship;
  • the second type is the pumping transport mode.
  • the pumping transportation method mainly refers to the gas hydrate slurry that has undergone two or more dehydration treatments and has an average consistency of 1:1 ratio after dehydration is pumped to the insulated and sealed cabin in the transportation ship (transport The ship should be a double-hull transport ship) for transport operations.
  • transport The ship should be a double-hull transport ship) for transport operations.
  • the transportation efficiencies of the two transportation modes are not much different, and the technical requirements are not high, so they can be widely used.
  • the object of the present invention is to provide a gas hydrate slurry separation device and method based on the synergy of air floatation and siphon, which realizes the rapid and continuous separation of gas hydrate solids and solution in the gas hydrate slurry, and improves the separation of gas hydrate effectiveness.
  • a gas hydrate slurry solid-separation device based on synergy of air floatation and siphon, the device includes an air float and siphon synergy system, a gas hydrate solid collection system and a brine collection system.
  • the air float and siphon synergy system includes Air float tower, liquid level gauge, slag scraper, siphon tube, siphon pump; the air float tower is connected to the gas hydrate slurry of the gas hydrate generation system through the gas hydrate slurry transport system, and in turn is pressurized by gas
  • the pump and check valve are in communication with the unreacted gas outlet of the gas hydrate generation system.
  • the gas hydrate slurry is under the action of the gas hydrate slurry delivery system and after being pressurized by the gas booster pump, the gas hydrate generation system unreacted gas Mixing into the air floatation tower;
  • the liquid level gauge is connected to the air floatation tower through a pipeline to detect the liquid level in the air floatation tower;
  • the slag scraper is located at the top of the air floatation tower, and the slag scraper outlet is connected to the gas hydrate solid
  • the collection system is connected; the air floatation tower is in turn connected to the brine collection system via a siphon tube and a siphon pump.
  • the gas hydrate slurry delivery system includes a flow monitoring system, a gas hydrate slurry delivery pump, and a corresponding pipeline.
  • the gas hydrate generation system includes a gas hydrate synthesis tower, a sprayer and agitator provided in the tower, a high-pressure gas inlet at the bottom of the tower, a high-pressure solution inlet at the top of the tower, and a pressure monitoring system and a temperature monitoring system .
  • the pressure monitoring system and the temperature monitoring system are installed in the gas hydrate synthesis tower and are used to monitor the pressure and temperature in the gas hydrate synthesis tower.
  • the gas hydrate solid collection system is a high-pressure-resistant container with thermal insulation effect.
  • the brine collection system includes a brine pool and a resistance monitoring system.
  • the resistance monitoring system is used to monitor the salinity of the solution in the brine pool.
  • a gas hydrate slurry separation method based on synergy of air floatation and siphon using the above gas-hydrate slurry-solid separation device based on synergy of air floatation and siphon, includes the following steps:
  • the gas hydrate slurry is mixed with the unreacted gas in the gas hydrate generation system after being pressurized by the gas booster pump under the action of the gas hydrate slurry delivery system and enters the air float tower;
  • the gas hydrate solid in the gas hydrate slurry is less dense than water, plus it moves upward in the air floatation tower under the action of air floatation, and then it is fed into the gas hydrate solid through the slag scraper at the top of the air floatation tower Collection system; the solution with increased concentration in the gas hydrate slurry enters the brine collection system under the effect of siphon.
  • a seawater desalination device includes a seawater extraction system, a gas hydrate generation system, the gas hydrate slurry-solid separation system, a gas hydrate decomposition system, and a fresh water storage tank, wherein the gas hydrate is formed by low-temperature high-pressure gas and low-temperature high-pressure seawater .
  • Example 1 is a schematic diagram of the system structure of Example 1 of the present invention.
  • a gas-hydrate slurry-solid separation device based on the cooperative action of air floatation and siphon, the device includes an air floatation and siphon synergy system, a gas hydrate solid collection system 16 and a brine collection system.
  • the floating and siphon synergy system includes an air float tower 11, a liquid level gauge 12, a slag scraper 13, a siphon pipe 14, and a siphon pump 15; the air float tower 11 passes through a gas hydrate slurry delivery system and a gas hydrate generation system.
  • the gas hydrate slurry is communicated, and in turn, through the gas booster pump 7 and the check valve 8 to the unreacted gas outlet of the gas hydrate generation system.
  • the gas hydrate slurry is passed through the gas under the action of the gas hydrate slurry delivery system.
  • the unreacted gas of the gas hydrate generation system mixes and enters the air floatation tower 11;
  • the liquid level gauge 12 is connected to the air floatation tower 11 through a pipeline to detect the liquid level in the air floatation tower 11
  • the slag scraper 13 is located at the top of the air floatation tower 11, and the outlet of the slag scraper 13 communicates with the gas hydrate solid collection system 16;
  • the air floatation tower 11 communicates with the brine pool 17 of the brine collection system through the siphon pipe 14 and the siphon pump 15 in sequence.
  • the gas hydrate slurry delivery system includes a flow monitoring system 9, a gas hydrate slurry delivery pump 10, and corresponding pipes.
  • the gas hydrate generation system includes a gas hydrate synthesis tower 2, a sprayer 4 and an agitator 6 provided in the tower, a high-pressure gas inlet at the bottom of the tower 1, a high-pressure solution inlet 5 at the top of the tower, and pressure monitoring System P and temperature monitoring system T.
  • the pressure monitoring system and the temperature monitoring system are installed in the gas hydrate synthesis tower and are used to monitor the pressure and temperature in the gas hydrate synthesis tower.
  • the gas hydrate solid collection system 16 is a high-pressure-resistant container with thermal insulation effect.
  • the brine collection system includes a brine tank 17 and a resistance monitoring system R.
  • the resistance monitoring system R is used to monitor the salinity change of the solution in the brine tank.
  • a gas hydrate slurry separation method based on synergy of air floatation and siphon using the above gas-hydrate slurry-solid separation device based on synergy of air floatation and siphon, includes the following steps:
  • gas inlet 1 gas hydrate synthesis tower 2 and through high-pressure solution inlet 5 into low-temperature and high-pressure seawater or aqueous solution sprayed from a high place through sprayer 4 to form gas hydrate.
  • the gas can be methane, ethane, propane, etc. but not limited to methane, ethane, propane.
  • the gas can form gas hydrates and the gas hydrates formed are less dense than water and insoluble in water; gas and aqueous solutions can be pre-cooled LNG cold energy or cold energy obtained by other means;
  • the gas hydrate solid in the gas hydrate slurry is less dense than water, plus it moves upward in the air floatation tower under the action of air floatation, and then it is fed into the gas through the slag scraper 13 at the top of the air floatation tower 11
  • the hydrate solid collection system 16; the solution with increased concentration in the gas hydrate slurry is siphoned into the brine collection system through the siphon pipe 14 under the action of the siphon pump 15; continuous and efficient separation of hydrate solids is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Water Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法,包括气浮及虹吸协同作用***、气体水合物固体收集***(16)和卤水收集***,气浮及虹吸协同作用***包括气浮塔(11)、液位计(12)、刮渣机(13)、虹吸管(14)、虹吸泵(15);气浮塔(11)经气体水合物浆输送***跟气体水合物生成***的气体水合物浆连通,另外还依次经气体增压泵(7)和止回阀(8)跟气体水合物生成***未反应的气体出口连通,实现气体水合物浆中气体水合物固体与溶液的快速连续分离。

Description

一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法 技术领域:
本发明涉及一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法。
背景技术:
目前,随着我国改革开放步伐的逐渐深入,科学技术的迅猛发展,人民生活水平有了很大提高,沿海城市和地区作为我国对外开放的窗口,经济文化发展更是日新月异,有力地带动了内陆地区经济的发展,但与此同时,我国水资源短缺的问题也日益突出。我国是一个有着宽广海疆的海洋大国。拥有全长18000多千米的海岸线,北起中朝交界的鸭绿江口,南到中越边界的北仑河口,拥有渤海(内海)、黄海、东海和南海四大海域。如此庞大而丰富的海洋资源如果得到充分的开发利用将从根本上解决我国沿海城市和地区甚至上大陆内部地区的生活及工业用水问题,缓解陆地淡水资源紧缺的资源危机。也会给我国带来丰厚的经济效益和良好的社会效益。因此,海水淡化技术的市场需求很大。
海水淡化有多种方法,如蒸馏法、薄膜反渗透法、离子交换法、电渗析法、压渗法、冷冻法、气体水合物法、溶剂萃取法等,其中能耗是直接决定其成本高低的关键。国内外对冷冻法的研究开始于食品的浓缩技术,近年来由于能源短缺,冷冻法能够节省大量能源,引起许多的研究者的关注,例如,Muller等人对运用渐进冷冻法处理废水进行了研究,以总有机碳、COD和电导率等指标,对生活废水进行处理,可以达到99%的纯化率。Cravalho等人则提出了基于LNG(液化天然气)冷能的海水淡化的零功耗***,该***理论最大淡水输出量达到6.7kg水/1kgLNG。Antonelli等人也提出了利用LNG冷能进行海水淡化的方法,该蒸发冷冻工艺的二次冷媒采用正丁烷。Yoshihito等人对溶液结晶的过程进行 了研究实验,分析了在结晶的过程中晶种对结晶纯度的影响。Qin等研究了冰和冰浆分离过程,发现在冰的洗涤过程中存在如窜漏、粘性指进、堵塞、液体夹带等现象,适当的操作是洗涤成功的关键。气体水合物法海水淡化利用较易生成气体水合物的小分子物质与海水中的水生成气体水合物晶体,固液分离后,分解气体水合物即可得到淡水。气体水合物法海水淡化技术的最大优点是能耗低、设备简单、紧凑;在水或盐水中溶解度低;无毒,价廉易得,无***危险。气体水合物法也可归结为冷冻法,因此具有冷冻法的优点如不需对海水进行预处理、腐蚀较轻等。
另外,天然气的固态储运及使用气体水合物来储运也是一项新兴技术,具有广阔的应用前景。在当前技术条件支持下,有关气体水合物的运输方式主要可以分为两种类型:第一种类型为干气体水合物运输技术。生产干气体水合物运输技术在应用于天然气气体水合物运输实际工作的过程当中,需要将干气体水合物天然气装置运输船中进行运送,达到运输目的地后需要直接在运输船上进行气化处理,气化过程当中所产生的游离水能够充当运输船返航过程中的压舱水;第二种类型为泵送运输方式。泵送运输方式主要是指将经过两次或两次以上脱水处理,脱水后平均稠度为1:1比例的气体水合物浆液以泵送的方式输送至运输船中的隔热密封舱当中(运输船为应当为双壳运输船)进行运输作业。这两种运输方式的运输效率相差不大,且工艺技术要求不高,均能够广泛使用。
但是,气体水合物的分离和洗涤存在技术难点,制约了气体水合物海水淡化和气体水合物储运的技术发展。因此,开发新的气体水合物分离工艺对气体水合物冷冻海水淡化技术和气体水合物储运技术的发展至关重要。
发明内容:
本发明的目的是提供一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法,实现了气体水合物浆中气体水合物固体与溶液的快速连续分离,提高了气体水合物的分离效率。
本发明是通过以下技术方案予以实现的:
一种基于气浮与虹吸协同作用的气体水合物浆液固分离装置,该装置包括气浮及虹吸协同作用***、气体水合物固体收集***和卤水收集***,所述气浮及虹吸协同作用***包括气浮塔、液位计、刮渣机,虹吸管、虹吸泵;所述的气浮塔经气体水合物浆输送***跟气体水合物生成***的气体水合物浆连通,另外还依次经气体增压泵和止回阀跟气体水合物生成***未反应的气体出口连通,气体水合物浆在气体水合物浆输送***的作用下和经过气体增压泵增压后气体水合物生成***未反应的气体混合进入气浮塔;所述的液位计通过管道与气浮塔相连,用于检测气浮塔内的液位;刮渣机设在气浮塔顶部,刮渣机出口跟气体水合物固体收集***连通;气浮塔依次经虹吸管、虹吸泵跟卤水收集***连通。
所述的气体水合物浆输送***包括流量监测***、气体水合物浆输送泵和相应的管道。
所述的气体水合物生成***包括气体水合物合成塔、塔内设置的喷淋器和搅拌器、塔底的高压气体进口、塔顶的高压溶液进口,此外还包括压力监测***和温度监测***。所述的压力监测***和温度监测***安装于气体水合物合成塔内,用于监测气体水合物合成塔内的压力和温度。
所述气体水合物固体收集***为一个具有保温作用的耐高压容器。
所述的卤水收集***包括一个卤水池和电阻监测***,电阻监测***用于监测卤水池内溶液的盐度变化情况。
一种基于气浮与虹吸协同作用的气体水合物浆分离方法,利用上述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,包括以下步骤:
1)气体水合物浆在气体水合物浆输送***的作用下和经过气体增压泵增压后气体水合物生成***未反应的气体混合进入气浮塔;
2)气体水合物浆中的气体水合物固体由于密度小于水,加上在气浮的作用下在气浮塔中向上运移,然后经气浮塔顶部的刮渣机送入气体水合物固体收集***;气体水合物浆中浓度增加的溶液则在虹吸的作用下进入卤水收集***。
一种海水淡化装置,包括海水提取***、气体水合物生成***、所述气体水合物浆液固分离***、气体水合物分解***和淡水储存罐,其中气体水合物由低温高压气体和低温高压海水形成。
本发明的有益效果如下:
1、实现了气体水合物浆中气体水合物固体和液体的快速连续分离,分离效率高,可推动该技术的应用示范和商业化。
2、应用范围广,可用于水合物法海水淡化或天然气固态储运中的水合物固体分离。
附图说明:
图1是本发明实施例1***结构示意图;
其中,1、高压气体进口,2、气体水合物合成塔,3、水合物浆,4、喷淋器,5、高压溶液进口,6、搅拌器,7、气体增压泵,8、止回阀,9、流量监测***,10、气体水合物浆输送泵,11、气浮塔,12、液位计,13、刮渣机,14、虹吸管,15、虹吸泵,16、气体水合物固体收集***,17、卤水池,P、压力监测***,T、温度检测***,R、电阻监测 ***。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
如图1所示的一种基于气浮与虹吸协同作用的气体水合物浆液固分离装置,该装置包括气浮及虹吸协同作用***、气体水合物固体收集***16和卤水收集***,所述气浮及虹吸协同作用***包括气浮塔11、液位计12、刮渣机13、虹吸管14、虹吸泵15;所述的气浮塔11经气体水合物浆输送***跟气体水合物生成***的气体水合物浆连通,另外还依次经气体增压泵7和止回阀8跟气体水合物生成***未反应的气体出口连通,气体水合物浆在气体水合物浆输送***的作用下和经过气体增压泵7增压后气体水合物生成***未反应的气体混合进入气浮塔11;所述的液位计12通过管道与气浮塔11相连,用于检测气浮塔11内的液位;刮渣机13设在气浮塔11顶部,刮渣机13出口跟气体水合物固体收集***16连通;气浮塔11依次经虹吸管14、虹吸泵15跟卤水收集***卤水池17连通。
所述的气体水合物浆输送***包括流量监测***9、气体水合物浆输送泵10和相应的管道。
所述的气体水合物生成***包括气体水合物合成塔2、塔内设置的喷淋器4和搅拌器6,塔底的高压气体进口1、塔顶的高压溶液进口5,此外还包括压力监测***P和温度监测***T。所述的压力监测***和温度监测***安装于气体水合物合成塔内,用于监测气体水合物合成塔内的压力和温度。
所述气体水合物固体收集***16为一个具有保温作用的耐高压容器。
所述的卤水收集***包括一个卤水池17和电阻监测***R,电阻监测***R用于监测卤水池内溶液的盐度变化情况。
一种基于气浮与虹吸协同作用的气体水合物浆分离方法,利用上述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,包括以下步骤:
(1)将低温高压气体通过高压气体进口1导入气体水合物合成塔2和通过高压溶液进口5进入经喷淋器4从高处喷淋而下的低温高压海水或水溶液形成气体水合物,所述气体可以为甲烷、乙烷、丙烷等但不局限于甲烷、乙烷、丙烷,气体满足可形成气体水合物且形成的气体水合物密度小于水且不溶于水;气体和水溶液的预冷可利用LNG冷能或利用其他方式获得的冷能;
(2)气体水合物在搅拌的作用下形成水合物浆;
(3)气体水合物浆在气体水合物浆输送泵10的作用下和经过气体增压泵7增压的气体水合物合成塔2未反应气体混合进入气浮塔11;
(4)气体水合物浆中的气体水合物固体由于密度小于水,加上在气浮的作用下在气浮塔中向上运移,然后经气浮塔11顶部的刮渣机13送入气体水合物固体收集***16;气体水合物浆中浓度增加的溶液则在虹吸泵15的作用下经虹吸管14虹吸进入卤水收集***;达到水合物固体的连续高效分离。

Claims (7)

  1. 一种基于气浮与虹吸协同作用的气体水合物浆液固分离装置,其特征在于,该装置包括气浮及虹吸协同作用***、气体水合物固体收集***和卤水收集***,所述气浮及虹吸协同作用***包括气浮塔、液位计、刮渣机,虹吸管、虹吸泵;所述的气浮塔经气体水合物浆输送***跟气体水合物生成***的气体水合物浆连通,另外还依次经气体增压泵和止回阀跟气体水合物生成***未反应的气体出口连通,气体水合物浆在气体水合物浆输送***的作用下和经过气体增压泵增压后未反应的气体混合进入气浮塔;所述的液位计通过管道与气浮塔相连,用于检测气浮塔内的液位;刮渣机设在气浮塔顶部,刮渣机出口跟气体水合物固体收集***连通;气浮塔依次经虹吸管、虹吸泵跟卤水收集***连通。
  2. 根据权利要求1所述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,其特征在于,所述的气体水合物浆输送***包括流量监测***、气体水合物浆输送泵和相应的管道。
  3. 根据权利要求1或2所述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,其特征在于,所述的气体水合物生成***包括气体水合物合成塔、塔内设置的喷淋器和搅拌器、塔底的高压气体进口、塔顶的高压溶液进口,此外还包括压力监测***和温度监测***。
  4. 根据权利要求1或2所述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,其特征在于,所述气体水合物固体收集***为一个具有保温作用的耐高压容器。
  5. 根据权利要求1或2所述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,其 特征在于,所述的卤水收集***包括一个卤水池和电阻监测***,电阻监测***用于监测卤水池内溶液的盐度变化情况。
  6. 一种基于气浮与虹吸协同作用的气体水合物浆分离方法,其特征在于,利用权利要求1-5中任意一项权利要求所述基于气浮与虹吸协同作用的气体水合物浆液固分离装置,包括以下步骤:气体水合物浆在气体水合物浆输送***的作用下和经过气体增压泵增压后气体水合物生成***未反应的气体混合进入气浮塔,气体水合物浆中的气体水合物固体由于密度小于水,加上在气浮的作用下在气浮塔中向上运移,然后经气浮塔顶部的刮渣机送入气体水合物固体收集***;气体水合物浆中浓度增加的溶液则在虹吸的作用下进入卤水收集***。
  7. 一种海水淡化装置,其特征在于,包括海水提取***、气体水合物生成***、权利要求1所述气体水合物浆液固分离***、气体水合物分解***和淡水储存罐,其中气体水合物由低温高压气体和低温高压海水形成。
PCT/CN2018/124232 2018-12-14 2018-12-27 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法 WO2020118782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811536990.5 2018-12-14
CN201811536990.5A CN109589654B (zh) 2018-12-14 2018-12-14 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法

Publications (1)

Publication Number Publication Date
WO2020118782A1 true WO2020118782A1 (zh) 2020-06-18

Family

ID=65962060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124232 WO2020118782A1 (zh) 2018-12-14 2018-12-27 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法

Country Status (2)

Country Link
CN (1) CN109589654B (zh)
WO (1) WO2020118782A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374297B (en) * 2001-04-11 2003-03-12 Michael John Leigh Chapman Dynamic sedimentation system
CN1962043A (zh) * 2006-10-27 2007-05-16 中国科学院广州能源研究所 一种气体水合物的高速制备方法及装置
CN2937105Y (zh) * 2006-08-16 2007-08-22 贵州绿色环保设备工程有限责任公司 综合气浮一体化***
CN201283249Y (zh) * 2008-09-24 2009-08-05 李维福 水力自动气浮过滤一体机
EP1391228B1 (fr) * 2002-08-12 2009-08-26 Hydroconcept Installation de décantage des eaux de ruissellement avec un répartiteur hydraulique
CN101941765A (zh) * 2010-07-23 2011-01-12 东北电力大学 气浮与沉淀固液分离装置
CN102182666A (zh) * 2011-03-02 2011-09-14 上海理工大学 一种水合物吸收式气体增压装置及方法
CN104140172A (zh) * 2014-08-14 2014-11-12 中冶海水淡化投资有限公司 一种海水淡化预处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341615C (zh) * 2004-12-15 2007-10-10 中国科学院广州能源研究所 用超声波生产水合物及水合物浆的装置与方法
JP4885592B2 (ja) * 2006-03-31 2012-02-29 三井造船株式会社 天然ガスハイドレート生成プラントにおける脱水装置
CN102358856A (zh) * 2006-04-05 2012-02-22 三井造船株式会社 气体水合物制造装置和脱水装置
JP4917945B2 (ja) * 2007-03-30 2012-04-18 三井造船株式会社 ガスハイドレートの脱水装置
JP5307429B2 (ja) * 2008-03-28 2013-10-02 三井造船株式会社 ガスハイドレート生成プラントにおける脱水器の運転制御装置
CN101289231B (zh) * 2008-06-05 2010-06-02 中国科学院广州能源研究所 一种水合物法海水淡化试验装置
CN105670725B (zh) * 2016-01-06 2018-02-16 大连理工大学 一种基于气体节流技术的连续式气体水合物浆合成方法与装置
CN206670123U (zh) * 2017-04-12 2017-11-24 南京工程学院 基于水合物法实现溶液再生的热源塔热泵***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374297B (en) * 2001-04-11 2003-03-12 Michael John Leigh Chapman Dynamic sedimentation system
EP1391228B1 (fr) * 2002-08-12 2009-08-26 Hydroconcept Installation de décantage des eaux de ruissellement avec un répartiteur hydraulique
CN2937105Y (zh) * 2006-08-16 2007-08-22 贵州绿色环保设备工程有限责任公司 综合气浮一体化***
CN1962043A (zh) * 2006-10-27 2007-05-16 中国科学院广州能源研究所 一种气体水合物的高速制备方法及装置
CN201283249Y (zh) * 2008-09-24 2009-08-05 李维福 水力自动气浮过滤一体机
CN101941765A (zh) * 2010-07-23 2011-01-12 东北电力大学 气浮与沉淀固液分离装置
CN102182666A (zh) * 2011-03-02 2011-09-14 上海理工大学 一种水合物吸收式气体增压装置及方法
CN104140172A (zh) * 2014-08-14 2014-11-12 中冶海水淡化投资有限公司 一种海水淡化预处理方法

Also Published As

Publication number Publication date
CN109589654A (zh) 2019-04-09
CN109589654B (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
CN104261498B (zh) 一种波浪能驱动的海水温差能海水淡化装置及方法
CN103864243B (zh) 一种基于水合物法的两级式海水淡化方法与装置
CN101659451B (zh) 一种气提式膜蒸馏高盐水处理方法
CN101033087A (zh) 一种海水淡化与海洋天然气水合物开采联产方法
CN101289231B (zh) 一种水合物法海水淡化试验装置
CN104893660A (zh) 一种复合型气体水合物促进剂及其使用方法
CN203360034U (zh) 一种真空蒸馏式海水淡化设备
CN208234579U (zh) 一种利用太阳能的海水淡化装置
CN110845065A (zh) 一种基于船用发动机的新型海水制淡***
WO2020118782A1 (zh) 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法
CN103991985A (zh) 一种利用lng气化冷能的水合物法海水淡化装置与方法
CN106830136B (zh) 基于涡流管制冷的海水淡化***
CN201517039U (zh) 一种热泵式海水淡化装置
CN112047415A (zh) 液态co2循环冷冻海水淡化矿化装备***及方法
CN101746840B (zh) 一种利用lng冷能进行海水淡化的***
CN104261497B (zh) 一种鼓泡负压蒸发海水淡化装置及生产方法
CN102351255A (zh) 一种海水淡化装置和海水淡化方法
CN106800351A (zh) 全膜法海水淡化及浓盐水综合利用***
CN114772665B (zh) 一种连续式水合物法海水淡化装置及方法
CN102874950B (zh) 余能回用风力发电气囊式水处理***
CN112047555B (zh) 利用超声波阵雾化气旋淡化海水的装备***及其淡化方法
CN204958445U (zh) 一种船舶用造水机
CN201596467U (zh) 反渗透机组浓水回用***
CN102320675A (zh) 一种海水淡化装置和海水淡化方法
CN212769948U (zh) 液态co2循环冷冻海水淡化矿化装备***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943173

Country of ref document: EP

Kind code of ref document: A1