WO2020116980A1 - Resin composition for anti-glare coating and anti-glare coating film prepared thereby - Google Patents

Resin composition for anti-glare coating and anti-glare coating film prepared thereby Download PDF

Info

Publication number
WO2020116980A1
WO2020116980A1 PCT/KR2019/017160 KR2019017160W WO2020116980A1 WO 2020116980 A1 WO2020116980 A1 WO 2020116980A1 KR 2019017160 W KR2019017160 W KR 2019017160W WO 2020116980 A1 WO2020116980 A1 WO 2020116980A1
Authority
WO
WIPO (PCT)
Prior art keywords
glare
glare coating
coating layer
film
particles
Prior art date
Application number
PCT/KR2019/017160
Other languages
French (fr)
Korean (ko)
Inventor
안상현
이동희
양필례
백성훈
서원규
김항근
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190160469A external-priority patent/KR20200070117A/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201980080706.4A priority Critical patent/CN113166586A/en
Priority to EP19893597.5A priority patent/EP3892695A4/en
Priority to JP2021524193A priority patent/JP2022506660A/en
Priority to US17/267,748 priority patent/US20210317321A1/en
Publication of WO2020116980A1 publication Critical patent/WO2020116980A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a resin composition for anti-glare coating and an anti-glare coating film prepared by including the same.
  • the anti-glare coating film is defined as a film having a function of reducing the reflection of external light by using diffuse reflection due to surface irregularities, and is applied to the surface of various display panels to prevent the display visibility from being deteriorated by external reflected light and by the reflected light It is used for the purpose of reducing eye fatigue. In addition, it is possible to prevent glare by dispersing the light generated therein. Generally, a method of scattering light is applied by coating a composition containing particles, but the degree of scattering is weak, so a method of using scattering of light through surface irregularities is used. Mainly applied.
  • Anti-reflection (AR) films are also applied to reduce the reflectance of incident light through offset interference in the interfacial reflection process by alternately stacking low-refractive materials and high-refractive materials for the same purpose, but simplifying the process and reducing costs, etc. For this reason, AG films are preferred.
  • Patent Publication No. 2017-0082922 realizes high resolution through high image clarity, exhibits anti-glare properties by forming surface irregularities, and a resin composition for preventing glare and high anti-glare film using the same is also described in thin films have.
  • the size of the agglomerates is 2 to 100 ⁇ m, and the size of the agglomerates is large, there is a very high possibility of sparkling on the display.
  • Patent Registration No. 10-0378340 has been described for an anti-glare coating layer characterized in that it comprises each light-transmitting particle having a different refractive index, but it has a disadvantage of poor scratch resistance due to organic particles.
  • the anti-glare coating layer is characterized in that the inside haze value is 1 to 15 by including a light-transmitting diffuser inside the binder resin, but there is no room for the visibility to be weakened by high internal haze. have.
  • the present invention provides a resin composition for an anti-glare coating containing organic or inorganic particles and an anti-glare coating film prepared by including a siloxane resin containing an epoxy group and an acrylic group, hardness, scratch resistance and processability At the same time, it is possible to impart anti-glare properties by introducing particles.
  • Another object of the present invention is to realize the hardness, abrasion resistance, anti-glare property of the film resin and the film produced therefrom using the resin composition.
  • a preferred embodiment of the present invention for solving the above problems is described; A high hardness coating layer on the substrate; And an anti-glare coating layer on the high-hardness coating layer, wherein the high-hardness coating layer is formed by a first composition comprising a first siloxane resin, and the anti-glare coating layer is formed by a second composition comprising a second siloxane resin and particles.
  • the first siloxane resin and the second siloxane resin are formed, respectively, to provide an anti-glare coating film formed by polymerization of one or more alkoxy silanes of the alkoxy silane represented by the following formula (1) and the alkoxy silane represented by the following formula (2) will be.
  • R 1 is a C1 to C3 linear, branched or alicyclic alkylene group substituted with epoxy or acrylic
  • R 2 is a C1 to C8 linear, branched or alicyclic alkyl group
  • n is 1 to 3 Is an integer.
  • R 3 is a C1 to C4 linear or branched alkyl group.
  • the particles may have an average particle diameter of 0.01 ⁇ m to 5 ⁇ m.
  • Ra surface roughness of the anti-glare coating layer
  • the high hardness coating layer may have a thickness of 10 to 50 ⁇ m.
  • the anti-glare coating layer may have a thickness of 1 to 3 ⁇ m.
  • the particles may be organic particles or inorganic particles.
  • the inorganic particles may include at least one of silica particles and silicon particles.
  • the organic particles may include at least one of styrene beads, acrylic beads, and cross-linked acrylic beads.
  • the particles may be included in an amount of 1 to 5% by weight compared to the solid content of the resin composition for the anti-glare coating layer.
  • the substrate may include at least one of a polyimide film, a polyethylene naphthalate film, a triacetyl cellulose film, a cyclo olefin polymer film, a cyclo olefin copolymer film, and an acrylic film.
  • the anti-glare coating film may have a Gloss unit of 40 to 100.
  • the anti-glare coating film may have a transmittance of 90 or more.
  • the anti-glare coating film may have a haze of 30 or less.
  • the resin composition for anti-glare coatings according to the present invention and the anti-glare coating film manufactured by including the same can secure excellent hardness, scratch resistance and processability, and at the same time, can implement excellent anti-glare properties by introducing particles.
  • FIG. 1 is a schematic cross-sectional view of an anti-glare coating film according to an embodiment of the present invention.
  • FIG 2 is a cross-sectional view of the anti-glare coating film specifically expressing the particles and the matrix of the anti-glare coating layer.
  • FIG 3 is a schematic cross-sectional view of the anti-glare coating film of a comparative example in which a high hardness coating layer is excluded.
  • the resin composition for a high hardness coating layer comprises a first siloxane resin
  • the resin composition for an anti-glare coating layer is a second It comprises a siloxane resin and particles
  • the first siloxane resin and the second siloxane are each formed by polymerization of one or more alkoxy silanes of the alkoxy silane represented by Formula 1 and the alkoxy silane represented by Formula 2 below.
  • R 1 is a C1 to C3 linear, branched or alicyclic alkylene group substituted with epoxy or acrylic
  • R 2 is a C1 to C8 linear, branched or alicyclic alkyl group
  • n is 1 to 3 Is an integer.
  • R 3 is a C1 to C4 linear or branched alkyl group.
  • the resin composition for a high hardness coating layer can be used for preparing a high hardness coating layer, and the resin composition for a high hardness coating layer is called a first composition.
  • the resin composition for an anti-glare coating layer can be used for the production of an anti-glare coating layer, and the resin composition for an anti-glare coating layer is called a second composition.
  • the first composition and the second composition are each independent, and the content of other components except for the content of the particles may be the same or different.
  • the second composition is described as adding only particles to the first composition, but the present invention is not limited thereto.
  • each of the first siloxane resin and the second siloxane resin is independent, and may be the same siloxane resin as each other, or different siloxane resins are possible.
  • the following description describes the first and second siloxane resins as one siloxane resin for convenience of description, but the present invention is not limited thereto.
  • the present invention is preferably a resin composition for a high hardness coating layer comprising a siloxane resin chemically bonded from a compound comprising an alkoxy silane containing an epoxy group or an acrylic group and a trialkoxysilane having a silane T structure.
  • the resin composition for a high hardness coating layer increases the hardness and abrasion resistance of a film or sheet containing a cured product prepared therefrom by including a siloxane resin in which an alkoxy silane containing an epoxy group or an acrylic group is reacted with water.
  • the resin composition for the high hardness coating layer of the present invention has high surface hardness and scratch resistance due to silane
  • the film or sheet containing the high hardness coating cured product according to the present invention is an alkoxy silane containing epoxy or acrylic and water It is produced by a photocuring reaction of a siloxane produced by overreaction.
  • the alkoxy silane containing the epoxy group or the acrylic group may be represented by Chemical Formula 1, more preferably 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane , 3-glycidoxypropyl tripropoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl triethoxysilane, 3-acryloxypropyl trimethoxysilane, 3-acryloxypropyl tree Ethoxysilane, 3-acryloxypropyl tripropoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane and 2- It may be at least one selected from (3,4-epoxycyclohexyl) ethyl tripropoxysilane.
  • siloxane resin including the alkoxy silane represented by Chemical Formula 2
  • high surface hardness can be secured by dense siloxane crosslinking.
  • the synthesis of the siloxane resin may be performed at room temperature, but in order to promote the reaction, it may be performed while stirring at 50 to 120° C. for 1 hour to 120 hours.
  • acid catalysts such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodic acid sulfate, base catalysts such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and ion exchange such as Amberite Resins may be used, and these catalysts may be used alone or in combination.
  • the amount of the catalyst may be added from 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin, but is not particularly limited thereto.
  • water or alcohol is produced as a by-product, and by removing it, the reverse reaction can be reduced to accelerate the forward reaction, thereby controlling the reaction rate.
  • the by-product can be removed by applying heat under reduced pressure.
  • the siloxane resin of the present invention synthesized as described above has a TMS (Tetramethylsilane) of 0 ppm, 29 Si NMR measurement, and the integrated value of T3 range based on 80 is T1 range (-48 to -55 ppm).
  • the integral value of the range (-55 to -62 ppm) may have an integral value of 10 to 20 and the T3 range (-62 to -75 ppm) of 80.
  • the NMR value is a value obtained by measuring and integrating NMR by 29 Si NMR (JEOL FT-NMR). The polymer to be measured is measured by diluting it in CDCl 3 to a concentration of about 10%.
  • T1 structure present inside the siloxane resin polymer is included as 0 to 10% of the entire polymer structure, wherein the T1 structure is It refers to a structure in which the silicon (Si) atom, the central atom of the repeating unit of the polymer, is connected to the siloxane resin polymer chain at only one end.
  • the T1 structure means the terminal end of the polymer.
  • An integral value of 10 to 20 in the T2 range means that the T2 structure present in the siloxane resin polymer is included as 10 to 20% of the total polymer structure, and the T2 structure is a repeat of the polymer It refers to the structure in which the silicon (Si) atom, the central atom of the unit, is connected to the siloxane resin polymer chain at both ends.
  • An integral value of 80 in the T3 range means that the T3 structure present inside the siloxane resin polymer is included as 80% of the total structure of the polymer, and the T3 structure is the central atom of the repeating unit of the polymer. Refers to a structure in which a phosphorus silicon (Si) atom is connected to the siloxane resin polymer chain at three ends by a network structure.
  • the siloxane resin of the present invention is preferably a siloxane resin having a T3 structure in the largest amount by including a trialkoxysilane having a silane T structure.
  • the present invention may further include at least one additive selected from the group consisting of an organic solvent, a photoinitiator, a thermal initiator, an antioxidant, a leveling agent, and a coating aid in addition to the siloxane resin as a component of the first composition.
  • at least one additive selected from the group consisting of an organic solvent, a photoinitiator, a thermal initiator, an antioxidant, a leveling agent, and a coating aid in addition to the siloxane resin as a component of the first composition.
  • the type and content of the additive to be added it can be provided as a first composition suitable for various uses, and in the present invention, for coating, which can specifically increase the hardness, abrasion resistance, flexibility and curl prevention properties of a film or sheet It is preferably provided as a first composition.
  • a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole may be used.
  • the amount of the initiator is preferably included in about 0.01 to 10 parts by weight based on 100 parts by weight of the total siloxane resin.
  • the curing time of the coating layer for obtaining sufficient hardness is increased to decrease efficiency, and when it exceeds 10 parts by weight, the yellowness of the coating layer is increased and it may be difficult to obtain a transparent coating layer.
  • examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, and cyclohexanone; Cellosolves such as methyl cellosolve and butyl cellosolve, or ethers such as ethyl ether and dioxane; Alcohols such as isobutyl alcohol, isopropyl alcohol, butanol, and methanol; Halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene; And it may include one or more selected from solvents consisting of hydrocarbons such as normal hexane, benzene, toluene, and the like, and the type is not particularly limited. Since the organic solvent controls the viscosity of the siloxane resin, the amount of addition can be appropriately controlled to make the processability easier or to control the thickness of the coating film.
  • ketones such as acetone, methyl ethyl ketone, methyl buty
  • the first composition may include an antioxidant to suppress the oxidation reaction resulting from the polymerization reaction, but may not be limited thereto.
  • the first composition may further include a leveling agent or a coating aid, but may not be limited thereto.
  • Polymerization of the siloxane resin may include a light irradiation or heating step, but may not be limited thereto.
  • the resin composition for the anti-glare coating layer comprises particles having an average particle size of 0.01 ⁇ m to 5 ⁇ m and a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively. It is preferred.
  • the resin composition for anti-glare coating according to the present invention includes a siloxane resin chemically bonded from the above-mentioned compound containing an alkoxy silane and particles having an average particle diameter of 0.01 ⁇ m to 5 ⁇ m to realize surface irregularities, thereby providing excellent anti-glare and high hardness. There is an advantage that can be obtained at the same time.
  • the particles have an average particle diameter of 0.01 ⁇ m to 5 ⁇ m, preferably 0.012 ⁇ m to 4 ⁇ m.
  • the average particle diameter is less than 0.01 ⁇ m, it is advantageous for the properties of sparkling, but may be restricted in realizing haze (Hz) and gloss unit (GU), and the content may be required more than necessary.
  • Hz haze
  • GUI gloss unit
  • the average particle diameter exceeds 5 ⁇ m, sparkling may occur, and the visibility of the particles may be visually impaired, resulting in a decrease in display visibility.
  • the particles include organic particles or inorganic particles.
  • the organic particles refer to particles having a functional group composed of hydrocarbons in the particles, and inorganic particles refer to particles having no functional groups composed of hydrocarbons in the particles.
  • organic particles examples include, but are not limited to, Styrenic Beads, Acrylic Beads, and Cross-linked Acrylic Beads.
  • Styrene beads refer to beads having styrene functional groups
  • acrylic beads refer to beads having acrylic functional groups
  • crosslinked acrylic beads refer to beads referring to crosslinked acrylic functional groups.
  • examples of the inorganic particles include silica particles, but are not limited thereto.
  • Silica particles are typically classified into Fumed silica particles and precipitated silica particles, which are distinguished by differences in silica production methods.
  • Fumed silica particles are generally made of quartz sand vaporized in a flame pyrolysis of silicon tetrachloride (SiCl 4 ) or an electric arc of 3000 o C.
  • Fumed silica particles are silica particles obtained after thermal decomposition and are high-purity nanosilica. Fumed silica can be used, for example, commercially available.
  • Precipitated silica particles are silica particles obtained through a process of precipitating using a solvent. Generally, the size of Fumed silica particles is smaller than that of precipitated silica particles.
  • the particles of the present invention may be preferably silica particles, which are advantageous in terms of securing surface hardness among organic or inorganic particles.
  • the particles are preferably contained in an amount of 1 to 5% by weight compared to the solid content of the resin composition for the anti-glare coating layer.
  • the solid content of the resin composition for an anti-glare coating layer refers to the solid content of the resin composition obtained by reacting the alkoxy silanes represented by Chemical Formulas 1 and 2.
  • the surface roughness (Ra) value of the anti-glare layer decreases, and the surface of the anti-glare layer is smooth, resulting in poor anti-glare properties. That is, the GU value exceeds 100.
  • the surface roughness (Ra) value of the anti-glare coating layer becomes large, and irregularities occur on the surface of the anti-glare coating layer, resulting in increased reflection and haze, which increases visibility. Falls. That is, the GU value is less than 40.
  • FIG. 1 is a schematic cross-sectional view of an anti-glare coating film according to an embodiment of the present invention.
  • Another preferred embodiment of the present invention includes a structure in which a high hardness coating layer 120 and an anti-glare coating layer 130 are sequentially stacked from the substrate 110 on the substrate 110, and the anti-glare coating layer 130 has an average particle diameter. It is to provide an anti-glare coating film containing the particles of 0.01 ⁇ m to 5 ⁇ m.
  • Ra surface roughness of the anti-glare coating layer 130 may be 100 to 300 nm.
  • the anti-glare coating film is a structure in which two layers of the high-hardness coating layer 120 and the anti-glare coating layer 130 are stacked.
  • the strength of the film is reduced.
  • the internal haze value becomes 0.9 or more, and visibility is deteriorated.
  • the anti-glare property is deteriorated. Therefore, it is necessary to be an anti-glare coating film having a laminated structure of a high hardness coating layer 120 and an anti-glare coating layer 130.
  • the anti-glare coating film is a substrate 110; A high hardness coating layer 120 on the substrate; And an anti-glare coating layer 130 on the high-hardness coating layer, and the anti-glare coating layer 130 includes particles 131 and a matrix 132.
  • the matrix 132 is a cured product of a material composed of components other than particles among resin composition components for the anti-glare coating layer.
  • the particles 131 may protrude from the matrix 132 to the outside of the anti-glare coating layer 130 or may be included therein. Due to the particles 131 protruding from the matrix 132, the surface roughness Ra of the anti-glare layer 130 increases, thereby increasing the anti-glare property of the anti-glare coating film. However, if the surface roughness (Ra) of the anti-glare coating layer 130 is excessively increased, the result of excessive reflection is less visible.
  • the substrate 110 is preferably a transparent substrate, and can be used without particular limitation if it is transparent.
  • the substrate 110 is a polyimide (PI) film, a polyethylene naphthalate (PEN) film, a triacetyl cellulose (TAC) film, a cyclo olefin polymer (Cyclo Olefin Polymer) , COP) film, cyclo olefin copolymer (Cyclic Olefin Copolymer, COC) film, acrylic (Acryl) film, etc.
  • PI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • COC cyclo olefin copolymer
  • COC Cyclic Olefin Copolymer
  • acrylic (Acryl) film etc.
  • the thickness of the transparent substrate 110 is preferably 10 to 200 ⁇ m, preferably 20 to 100 ⁇ m. If the thickness of the substrate 110 is less than 10 ⁇ m, film handling
  • the high hardness coating layer 120 is prepared from a resin composition for a high hardness coating layer comprising a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively.
  • the anti-glare coating layer 130 includes particles having an average particle diameter of 0.01 ⁇ m to 5 ⁇ m and a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively. It can be prepared from a resin composition for an anti-glare coating layer, the content of the resin composition for a high hardness coating layer and the resin composition for an anti-glare coating layer is the same as described above.
  • Ra (surface roughness) of the anti-glare coating layer 130 is preferably 100 to 300nm, preferably 160 to 300nm.
  • the surface roughness (Ra) is less than 100 nm
  • the surface of the anti-glare layer 130 is smooth without irregularities, and thereby, the anti-glare property of the coating film is deteriorated, and the GU of the anti-glare coating film exceeds 100.
  • the surface roughness (Ra) exceeds 300 nm
  • the unevenness of the surface of the anti-glare coating layer 130 becomes excessively large, thereby increasing the diffuse reflection of light, thereby reducing visibility.
  • the film has a GU of less than 40.
  • the thickness of the high hardness coating layer 120 may be 10 to 50 ⁇ m.
  • the thickness of the high-hardness coating layer 120 is 10 to 50 ⁇ m, a film having pencil strength and haze effective as an anti-glare coating film can be obtained.
  • the thickness of the anti-glare coating layer 130 may be 1 ⁇ m to 3 ⁇ m, preferably 2 ⁇ m to 3 ⁇ m.
  • the thickness of the anti-glare coating layer 130 satisfies 2 to 3 ⁇ m, anti-glare properties are improved, and an effect of preventing the particle from being detached from the film can be obtained.
  • the pencil hardness of the desired level can be achieved by the present invention, and the pencil hardness of 9H is achieved when 50 ⁇ m coating, so it is meaningless to exceed this.
  • the thickness of the anti-glare coating layer 130 is less than 1 ⁇ m, particles contained in the anti-glare coating layer 130 may not be combined with the anti-glare coating layer 130 with sufficient strength, which may cause detachment due to external impact. It is not desirable.
  • the thickness of the anti-glare coating layer 130 exceeds 3 ⁇ m, particles contained in the anti-glare coating layer 130 does not protrude to the surface of the anti-glare coating layer 130, the surface of the anti-glare coating layer 130 is less uneven , Accordingly, the surface roughness (Ra) becomes small.
  • the average particle diameter of the particles 131 of the present invention is 0.01 ⁇ m to 5 ⁇ m, and the thickness of the anti-glare coating layer 130 is 1 ⁇ m to 3 ⁇ m. Accordingly, particles 131 having an average particle diameter greater than the thickness of the anti-glare coating layer 130 protrude from the matrix 132 of the anti-glare coating layer 130, thereby increasing the surface roughness (Ra) of the anti-glare coating layer 130. Will be.
  • the protruding particles 131 irregularly drop light to increase the anti-glare property.
  • a high hardness coating layer 120 and an anti-glare coating layer 130 may be manufactured.
  • a uniform surface may be obtained through heat treatment before light irradiation, which may be performed at a temperature of 40° C. or more and about 300° C. or less, but may not be limited thereto.
  • the irradiation light amount but may be carried out under the conditions of 50mJ / cm 2 or more 20000mJ / cm 2 or less, it may not be limited thereto.
  • Examples 1 to 5 of the present invention relates to an anti-glare coating film comprising a high hardness coating layer, an anti-glare coating layer and a substrate according to Examples 1 to 5 of the present invention.
  • Figure 3 relates to the anti-glare coating film including only the anti-glare coating layer and the substrate, and shows the films of Comparative Examples 2 to 4 with the high hardness coating layer excluded.
  • the molecular weight and molecular weight distribution were obtained by weight permeation molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatography (GPC) (manufactured by Waters, model name e2695). .
  • the polymer to be measured was dissolved in tetrahydrofuran to a concentration of 1%, and 20 ⁇ l was injected into GPC. Tetrahydrofuran was used as the mobile phase of GPC, and flowed at a flow rate of 1.0 mL/min, and analysis was performed at 30°C.
  • the column was connected to two Styragel HR3 from Waters in series.
  • the detector was measured at 40°C using an RI detector (Waters, 2414).
  • PDI molecular weight distribution
  • Anti-glare coating by laminating the anti-glare coating layer in the same manner as in Example 1, except that 12 wt Fumed silica particles (AEROSIL300, EVONIK) were added to the resin composition for the high-hardness coating layer and stirred for 1 hour at room temperature after adding 3 wt% of solid content. A film was produced.
  • 12 wt Fumed silica particles AEROSIL300, EVONIK
  • Anti-glare coating by laminating the anti-glare coating layer in the same manner as in Example 1, except that 5 wt% of 12 nm Fumed silica particles (AEROSIL300, EVONIK) was added to the resin composition for the high-hardness coating layer and stirred at room temperature for 1 hour. A film was produced.
  • AEROSIL300, EVONIK Fumed silica particles
  • the anti-glare coating layer was performed in the same manner as in Example 1, except that the resin composition for the high-hardness coating layer was carried out without adding particles.
  • the anti-glare coating film prepared from the above Examples and Comparative Examples was subjected to physical property evaluation according to the following method, and the results are shown in Table 1 below.
  • Pencil hardness The pencil hardness was measured at a load of 1 kgf at a speed of ASTM D3363, 180 mm/min using a pencil hardness tester manufactured by IMOTO of Japan.
  • Ra surface roughness
  • the double-layer coating film produced using the coating resin composition of the present invention has excellent hardness and scratch resistance, and even provides anti-glare properties, and thus can be suitable as an anti-glare display protective film.

Abstract

The present invention relates to a resin composition for anti-glare coating and an anti-glare coating film prepared thereby. Particularly, provided are a resin composition, for anti-glare coating, which comprises a siloxane resin containing an epoxy group and an acrylic group and comprises organic or inorganic particles, and an anti-glare coating film prepared thereby. Thus, hardness, scratch resistance and processability as well as anti-glare properties due to introduction of particles can be obtained. Another purpose of the present invention is to implement hardness, scratch resistance and anti-glare properties of a film resin and a film prepared thereby by means of the resin composition.

Description

방현성 코팅용 수지 조성물 및 이를 포함하여 제조된 방현성 코팅 필름Resin composition for anti-glare coating and anti-glare coating film prepared therefrom
본 발명은 방현성 코팅용 수지 조성물 및 이를 포함하여 제조된 방현성 코팅 필름에 관한 것이다.The present invention relates to a resin composition for anti-glare coating and an anti-glare coating film prepared by including the same.
방현성 코팅 필름은 표면 요철에 의한 난반사를 이용하여 외부광의 반사를 감소시키는 기능을 가지는 필름으로 정의되며, 각종 디스플레이 패널의 표면에 적용하여 외부 반사광에 의한 디스플레이 시인성 저하를 방지하는 목적과 반사광에 의한 눈의 피로도 감소 효과 목적으로 사용되고 있다. 또한 내부에서 발생되는 빛을 분산시켜 눈부심을 방지할 수 있는데 일반적으로 입자를 포함하는 조성물을 코팅함으로써 빛을 산란시키는 방법을 적용하고 있으나, 산란 정도가 약하여 표면 요철을 통한 빛의 산란을 이용하는 방법을 주로 적용한다. 표면 요철 적용 시 표면 요철이 심할 경우 외부광의 난반사로 방현성은 뛰어나나 디스플레이의 시인성이 떨어질 수 있으며, 표면 요철이 없는 경우 충분한 난반사가 일어나지 않아 방현성이 떨어질 수 있다. 또한 표면 요철은 외부에 노출되어 있으므로, 물리적인 충격에 의한 손상이 발생될 수 있어, Window Cover용 고경도 AG Film의 개발이 필요한 상황이다. 표면 요철에 의한 반짝임으로 시인성 저하가 해결 되어야 할 이슈로 대두되어 있으며, 충분한 방현성, 높은 시인성, 반짝임 문제가 없는 AG 필름 개발이 필수적이다. 동일 목적으로 저굴절 물질과 고굴절 물질을 교대로 적층하여 계면 반사과정에서 상쇄간섭을 통해 입사광의 반사율을 저감시키는 반사방지(Anti-Reflection, AR) 필름도 적용되고 있으나, 공정의 간소화 및 비용 절감 등을 이유로 AG 필름이 선호되고 있다. The anti-glare coating film is defined as a film having a function of reducing the reflection of external light by using diffuse reflection due to surface irregularities, and is applied to the surface of various display panels to prevent the display visibility from being deteriorated by external reflected light and by the reflected light It is used for the purpose of reducing eye fatigue. In addition, it is possible to prevent glare by dispersing the light generated therein. Generally, a method of scattering light is applied by coating a composition containing particles, but the degree of scattering is weak, so a method of using scattering of light through surface irregularities is used. Mainly applied. When the surface irregularities are severe, when the surface irregularities are severe, the anti-glare property is excellent due to the diffuse reflection of external light, and the visibility of the display may be deteriorated. In addition, since the surface irregularities are exposed to the outside, damage due to physical shock may occur, and thus it is necessary to develop a high hardness AG film for window cover. As the glare caused by surface irregularities has emerged as an issue to be resolved, it is essential to develop AG films that do not have sufficient anti-glare properties, high visibility, and glare. Anti-reflection (AR) films are also applied to reduce the reflectance of incident light through offset interference in the interfacial reflection process by alternately stacking low-refractive materials and high-refractive materials for the same purpose, but simplifying the process and reducing costs, etc. For this reason, AG films are preferred.
종래 기술 중 공개특허 2017-0082922는 높은 상선명도를 통해 고해상도를 구현하며, 표면 요철을 형성하여 눈부심 방지 특성을 나타내며, 박막에서도 높은 기계적 물성을 갖는 눈부심 방지용 수지 조성물 및 이를 이용한 눈부심 방지 필름이 기술되어 있다. 그러나 분산 응집체의 크기가 2~100㎛으로 응집체의 크기가 크면 디스플레이에 반짝임이 발생할 가능성이 매우 높다.Among the prior arts, Patent Publication No. 2017-0082922 realizes high resolution through high image clarity, exhibits anti-glare properties by forming surface irregularities, and a resin composition for preventing glare and high anti-glare film using the same is also described in thin films have. However, if the size of the agglomerates is 2 to 100 μm, and the size of the agglomerates is large, there is a very high possibility of sparkling on the display.
한편, 등록특허 10-0378340은 서로 다른 굴절율을 가진 각 투광성 입자를 포함하는 것을 특징으로 하는 방현성 코팅층에 대하여 기재되어 있으나, 유기입자로 인한 내스크래치성이 떨어지는 단점을 가지고 있다.On the other hand, Patent Registration No. 10-0378340 has been described for an anti-glare coating layer characterized in that it comprises each light-transmitting particle having a different refractive index, but it has a disadvantage of poor scratch resistance due to organic particles.
또한, 등록특허 10-0296369의 경우 바인더 수지 내부에 투광성 확산제를 포함하여 내부 헤이즈 값이 1 내지 15인 것을 특징으로 하는 눈부심 방지 코팅층에 대하여 기재되어 있으나, 높은 내부 헤이즈로 시인성이 약화될 여지가 있다.In addition, in the case of registered patent 10-0296369, the anti-glare coating layer is characterized in that the inside haze value is 1 to 15 by including a light-transmitting diffuser inside the binder resin, but there is no room for the visibility to be weakened by high internal haze. have.
이와 같이 방현성을 가지며 고경도 물성을 동시 보유한 Window cover용 코팅재료의 개발은 디스플레이용 고분자 필름의 보다 광범위한 활용을 위한 필수 기술이 될 것으로 기대된다.It is expected that the development of coating materials for window covers that have anti-glare properties and high hardness properties at the same time will be an essential technology for wider use of polymer films for displays.
이에 본 발명에서는 에폭시기 및 아크릴기를 함유하는 실록산 수지를 포함하고 있으며, 유기 또는 무기입자를 포함한 방현성 코팅용 수지 조성물 및 이를 포함하여 제조된 방현성 코팅 필름을 제공하여, 경도, 내스크래치성 및 가공성을 확보하는 동시에 입자 도입으로 방현성을 부여 할 수 있다. 본 발명의 다른 목적은 상기 수지 조성물을 사용하여 필름 수지 및 이를 통해 제작되는 필름의 경도, 내마모성, 방현성을 구현하고자 한다.Accordingly, the present invention provides a resin composition for an anti-glare coating containing organic or inorganic particles and an anti-glare coating film prepared by including a siloxane resin containing an epoxy group and an acrylic group, hardness, scratch resistance and processability At the same time, it is possible to impart anti-glare properties by introducing particles. Another object of the present invention is to realize the hardness, abrasion resistance, anti-glare property of the film resin and the film produced therefrom using the resin composition.
상기 과제를 해결하기 위한 본 발명의 바람직한 일 구현예는 기재; 상기 기재 상의 고경도 코팅층; 및 상기 고경도 코팅층 상의 방현 코팅층을 포함하고, 상기 고경도 코팅층은 제1 실록산 수지를 포함하는 제1 조성물에 의해 형성되고, 상기 방현 코팅층은 제2 실록산 수지 및 입자를 포함하는 제2 조성물에 의해 형성되고, 상기 제1 실록산 수지 및 제2 실록산 수지는 각각 하기 화학식 1로 표현되는 알콕시 실란 및 하기 화학식 2로 표현되는 알콕시 실란 중 1종 이상의 알콕시 실란의 중합에 의해 형성된 방현성 코팅 필름을 제공하는 것이다.A preferred embodiment of the present invention for solving the above problems is described; A high hardness coating layer on the substrate; And an anti-glare coating layer on the high-hardness coating layer, wherein the high-hardness coating layer is formed by a first composition comprising a first siloxane resin, and the anti-glare coating layer is formed by a second composition comprising a second siloxane resin and particles. The first siloxane resin and the second siloxane resin are formed, respectively, to provide an anti-glare coating film formed by polymerization of one or more alkoxy silanes of the alkoxy silane represented by the following formula (1) and the alkoxy silane represented by the following formula (2) will be.
<화학식 1> <Formula 1>
R1 nSi(OR2)4-n R 1 n Si(OR 2 ) 4-n
상기 화학식 1에서 R1은 에폭시 또는 아크릴이 치환된 C1~C3의 선형, 분지형 또는 지환형 알킬렌기이고, R2는 C1~C8의 선형, 분지형 또는 지환형 알킬기며, n은 1 내지 3의 정수이다.In Formula 1, R 1 is a C1 to C3 linear, branched or alicyclic alkylene group substituted with epoxy or acrylic, R 2 is a C1 to C8 linear, branched or alicyclic alkyl group, and n is 1 to 3 Is an integer.
<화학식 2> <Formula 2>
Si(OR3)4 Si(OR 3 ) 4
상기 화학식 2에서 R3는 C1~C4의 선형 또는 분지형 알킬기이다.In Formula 2, R 3 is a C1 to C4 linear or branched alkyl group.
상기 입자는 평균입경이 0.01㎛ 내지 5㎛일 수 있다.The particles may have an average particle diameter of 0.01 μm to 5 μm.
상기 방현 코팅층의 Ra(표면조도)는 100 내지 300㎚일 수 있다.Ra (surface roughness) of the anti-glare coating layer may be 100 to 300 nm.
상기 고경도 코팅층은 10 내지 50㎛의 두께를 가질 수 있다.The high hardness coating layer may have a thickness of 10 to 50㎛.
상기 방현 코팅층은 1 내지 3㎛의 두께를 가질 수 있다.The anti-glare coating layer may have a thickness of 1 to 3㎛.
상기 입자는 유기 입자 또는 무기 입자일 수 있다.The particles may be organic particles or inorganic particles.
상기 무기 입자는 실리카 입자, 실리콘 입자 중 적어도 어느 하나를 포함할 수 있다.The inorganic particles may include at least one of silica particles and silicon particles.
상기 유기 입자는 스틸렌 비드(Styrenic Bead), 아크릴 비드(Acrylic Bead), 가교된 아크릴 비드(Cross-linked Acrylic Bead) 중 적어도 어느 하나를 포함할 수 있다.The organic particles may include at least one of styrene beads, acrylic beads, and cross-linked acrylic beads.
상기 입자는 상기 방편 코팅층용 수지 조성물의 고형분 대비 1 내지 5 중량%의 함량으로 포함할 수 있다.The particles may be included in an amount of 1 to 5% by weight compared to the solid content of the resin composition for the anti-glare coating layer.
상기 기재는 폴리이미드 필름, 폴리에틸렌 나프탈레이트 필름, 트리아세틸 셀룰로오스 필름, 싸이클로 올레핀 폴리머 필름, 싸이클로 올레핀 코폴리머 필름, 아크릴 필름 중 적어도 어느 하나를 포함할 수 있다.The substrate may include at least one of a polyimide film, a polyethylene naphthalate film, a triacetyl cellulose film, a cyclo olefin polymer film, a cyclo olefin copolymer film, and an acrylic film.
상기 방현성 코팅 필름은 40 내지 100의 Gloss unit을 가질 수 있다.The anti-glare coating film may have a Gloss unit of 40 to 100.
상기 방현성 코팅 필름은 90 이상의 투과율을 가질 수 있다.The anti-glare coating film may have a transmittance of 90 or more.
상기 방현성 코팅 필름은 30 이하의 헤이즈를 가질 수 있다.The anti-glare coating film may have a haze of 30 or less.
본 발명에 따른 방현성 코팅용 수지 조성물 및 이를 포함하여 제조된 방현성 코팅 필름은 경도, 내스크래치성 및 가공성을 확보하는 동시에 입자 도입으로 우수한 방현성을 구현할 수 있다.The resin composition for anti-glare coatings according to the present invention and the anti-glare coating film manufactured by including the same can secure excellent hardness, scratch resistance and processability, and at the same time, can implement excellent anti-glare properties by introducing particles.
첨부된 도면은 본 발명의 이해를 돕고 본 명세서의 일부를 구성하기 위한 것으로서, 본 발명의 실시예들을 예시하며, 발명의 상세한 설명과 함께 본 발명의 원리들을 설명한다.The accompanying drawings are intended to help the understanding of the present invention and constitute a part of the present specification, and exemplify embodiments of the present invention, and describe the principles of the present invention together with a detailed description of the present invention.
도 1은 본 발명의 일 실시예에 따른 방현성 코팅 필름의 개략적인 단면도이다.1 is a schematic cross-sectional view of an anti-glare coating film according to an embodiment of the present invention.
도 2은 방현 코팅층의 입자 및 매트릭스를 구체적으로 표현한 방현성 코팅 필름의 단면도이다.2 is a cross-sectional view of the anti-glare coating film specifically expressing the particles and the matrix of the anti-glare coating layer.
도 3는 고경도 코팅층이 제외된 비교예의 방현성 코팅 필름의 개략적인 단면도이다.3 is a schematic cross-sectional view of the anti-glare coating film of a comparative example in which a high hardness coating layer is excluded.
본 발명의 바람직한 일 구현예는, 고경도 코팅층용 수지 조성물 및 방현성 코팅용 수지 조성물을 제공하는 것으로서, 고경도 코팅층용 수지 조성물은 제1 실록산 수지를 포함하고, 방현 코팅층용 수지 조성물은 제2 실록산 수지 및 입자를 포함하며, 제1 실록산 수지 및 제2 실록산는 각각 하기 화학식 1로 표현되는 알콕시 실란 및 하기 화학식 2로 표현되는 알콕시 실란 중 1종 이상의 알콕시 실란의 중합에 의해 형성된다.One preferred embodiment of the present invention, to provide a resin composition for a high hardness coating layer and a resin composition for anti-glare coating, the resin composition for a high hardness coating layer comprises a first siloxane resin, the resin composition for an anti-glare coating layer is a second It comprises a siloxane resin and particles, the first siloxane resin and the second siloxane are each formed by polymerization of one or more alkoxy silanes of the alkoxy silane represented by Formula 1 and the alkoxy silane represented by Formula 2 below.
<화학식 1> <Formula 1>
R1 nSi(OR2)4-n R 1 n Si(OR 2 ) 4-n
상기 화학식 1에서 R1은 에폭시 또는 아크릴이 치환된 C1~C3의 선형, 분지형 또는 지환형 알킬렌기이고, R2는 C1~C8의 선형, 분지형 또는 지환형 알킬기며, n은 1 내지 3의 정수이다.In Formula 1, R 1 is a C1 to C3 linear, branched or alicyclic alkylene group substituted with epoxy or acrylic, R 2 is a C1 to C8 linear, branched or alicyclic alkyl group, and n is 1 to 3 Is an integer.
<화학식 2> <Formula 2>
Si(OR3)4 Si(OR 3 ) 4
상기 화학식 2에서 R3는 C1~C4의 선형 또는 분지형 알킬기이다.In Formula 2, R 3 is a C1 to C4 linear or branched alkyl group.
고경도 코팅층용 수지 조성물은 고경도 코팅층 제조를 위하여 사용될 수 있고, 고경도 코팅층용 수지 조성물은 제1 조성물이라고 부른다. 방현 코팅층용 수지 조성물은 방현 코팅층 제조를 위하여 사용될 수 있고, 방현 코팅층용 수지 조성물은 제2 조성물이라고 부른다. 제1 조성물 및 제2 조성물은 각각 독립적이며, 입자의 함량을 제외한 다른 성분의 함량은 서로 동일할 수도 있고, 다를 수도 있다. 하기의 설명은 설명의 편의를 위하여, 제2 조성물을 제1 조성물에 입자만 추가한 것으로 설명하나, 본 발명이 이에 한정되는 것은 아니다.The resin composition for a high hardness coating layer can be used for preparing a high hardness coating layer, and the resin composition for a high hardness coating layer is called a first composition. The resin composition for an anti-glare coating layer can be used for the production of an anti-glare coating layer, and the resin composition for an anti-glare coating layer is called a second composition. The first composition and the second composition are each independent, and the content of other components except for the content of the particles may be the same or different. In the following description, for convenience of description, the second composition is described as adding only particles to the first composition, but the present invention is not limited thereto.
또한, 제1 실록산 수지 및 제2 실록산 수지는 각각 독립적이며, 서로 동일한 실록산 수지일 수도 있고, 서로 다른 실록산 수지도 가능하다. 하기의 설명은 설명의 편의를 위하여 제1 및 제2 실록산 수지를 하나의 실록산 수지로 설명하나, 본 발명이 이에 한정되는 것은 아니다.In addition, each of the first siloxane resin and the second siloxane resin is independent, and may be the same siloxane resin as each other, or different siloxane resins are possible. The following description describes the first and second siloxane resins as one siloxane resin for convenience of description, but the present invention is not limited thereto.
본 발명은 에폭시기 또는 아크릴기를 포함하는 알콕시 실란과 실란 T 구조의 트리알콕시실란(Trialkoxysilane)을 포함하는 화합물로부터 화학 결합된 실록산 수지를 포함하는 고경도 코팅층용 수지 조성물이 바람직하다.The present invention is preferably a resin composition for a high hardness coating layer comprising a siloxane resin chemically bonded from a compound comprising an alkoxy silane containing an epoxy group or an acrylic group and a trialkoxysilane having a silane T structure.
구체적으로 상기 고경도 코팅층용 수지 조성물은 에폭시기 또는 아크릴기를 포함하는 알콕시 실란을 물과 반응을 시킨 실록산 수지를 포함함으로써 이로부터 제조된 경화물이 포함된 필름 또는 시트의 경도 및 내마모성을 상승시킨다. Specifically, the resin composition for a high hardness coating layer increases the hardness and abrasion resistance of a film or sheet containing a cured product prepared therefrom by including a siloxane resin in which an alkoxy silane containing an epoxy group or an acrylic group is reacted with water.
첨가되는 Reagent의 함량 조절을 통해 경도 및 유연성을 조절할 수 있으며, 이를 통해 용도에 맞는 최적의 수지 조성물을 제공할 수 있다. 따라서 본 발명의 고경도 코팅층용 수지 조성물은 실란으로 인한 높은 표면경도 및 내스크래치성을 가지며, 본 발명에 따른 고경도 코팅 경화물을 포함하는 필름 또는 시트는 에폭시 또는 아크릴을 포함하는 알콕시 실란과 물과 반응에 의해 제조되는 실록산의 광경화 반응에 의해서 제조된다.Hardness and flexibility can be controlled by adjusting the content of added Reagent, and through this, it is possible to provide an optimal resin composition suitable for the application. Therefore, the resin composition for the high hardness coating layer of the present invention has high surface hardness and scratch resistance due to silane, and the film or sheet containing the high hardness coating cured product according to the present invention is an alkoxy silane containing epoxy or acrylic and water It is produced by a photocuring reaction of a siloxane produced by overreaction.
보다 구체적으로 본 발명에서 상기 에폭시기 또는 아크릴기를 포함하는 알콕시 실란은 상기 화학식 1로 표시될 수 있으며, 보다 바람직하게는 3-글리시독시프로필 트리메톡시실란, 3-글리시독시프로필 트리에톡시실란, 3-글리시독시프로필 트리프로폭시실란, 3-메타아크릴옥시프로필 트리메톡시실란, 3-메타아크릴옥시프로필 트리에톡시실란, 3-아크릴옥시프로필 트리메톡시실란, 3-아크릴옥시프로필트리에톡시실란, 3-아크릴옥시프로필 트리프로폭시실란, 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란 및 2-(3,4-에폭시사이클로헥실)에틸트리프로폭시실란 중 선택된 적어도 하나인 것일 수 있다.More specifically, in the present invention, the alkoxy silane containing the epoxy group or the acrylic group may be represented by Chemical Formula 1, more preferably 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane , 3-glycidoxypropyl tripropoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl triethoxysilane, 3-acryloxypropyl trimethoxysilane, 3-acryloxypropyl tree Ethoxysilane, 3-acryloxypropyl tripropoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane and 2- It may be at least one selected from (3,4-epoxycyclohexyl) ethyl tripropoxysilane.
상기 화학식 2로 표시되는 알콕시 실란을 포함하여 실록산 수지를 중합함으로써, 치밀한 실록산 가교에 의해 높은 표면경도를 확보 할 수 있다.By polymerizing the siloxane resin including the alkoxy silane represented by Chemical Formula 2, high surface hardness can be secured by dense siloxane crosslinking.
본 발명에서 실록산 수지의 합성은 상온에서 진행될 수도 있으나, 반응을 촉진하기 위해서는 50 내지 120 ℃에서 1시간에서 120시간 동안 교반하며 진행될 수 있다. 또, 상기 반응을 진행하기 위한 촉매로서, 염산, 아세트산, 불화수소, 질산, 황산 요오드산 등의 산 촉매, 암모니아, 수산화칼륨, 수산화나트륨, 수산화바륨, 이미다졸 등의 염기 촉매 및 Amberite 등 이온교환수지가 사용될 수 있으며, 이들 촉매는 단독으로 사용될 수도 있고, 이들을 조합하여 사용하는 것도 가능하다. 이때, 촉매의 양은 실록산 수지 100 중량부 기준 0.0001 내지 약 10 중량부를 첨가할 수 있으나 특별히 이에 제한되는 것은 아니다. 반응이 진행되면, 부산물로 물 또는 알코올이 생성되는데 이를 제거함으로써 역반응을 줄여 정반응을 보다 빠르게 진행할 수 있으며 이를 통한 반응속도 조절이 가능하다. 또한 반응 종료 후 상기 부산물은 감압하며 열을 가함으로써 제거할 수 있다. In the present invention, the synthesis of the siloxane resin may be performed at room temperature, but in order to promote the reaction, it may be performed while stirring at 50 to 120° C. for 1 hour to 120 hours. In addition, as a catalyst for proceeding the reaction, acid catalysts such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodic acid sulfate, base catalysts such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and ion exchange such as Amberite Resins may be used, and these catalysts may be used alone or in combination. At this time, the amount of the catalyst may be added from 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin, but is not particularly limited thereto. When the reaction proceeds, water or alcohol is produced as a by-product, and by removing it, the reverse reaction can be reduced to accelerate the forward reaction, thereby controlling the reaction rate. In addition, after the reaction is over, the by-product can be removed by applying heat under reduced pressure.
이와 같이 합성된 본 발명의 실록산 수지는 TMS(Tetramethylsilane) 0ppm 기준으로 29Si NMR 측정 후 T3 범위를 80기준으로 적분한 값이 T1 범위(-48~-55ppm)의 적분값이 0~10, T2 범위(-55~-62ppm)의 적분값이 10~20, T3 범위(-62~-75ppm) 80의 적분값을 가질 수 있다. 이때, 상기 NMR 값은 29Si NMR(JEOL FT-NMR)에 의하여 NMR을 측정하고 적분 한 값이다. 측정하는 중합체는 약 10%의 농도가 되도록 CDCl3에 희석하여 측정한다.The siloxane resin of the present invention synthesized as described above has a TMS (Tetramethylsilane) of 0 ppm, 29 Si NMR measurement, and the integrated value of T3 range based on 80 is T1 range (-48 to -55 ppm). The integral value of the range (-55 to -62 ppm) may have an integral value of 10 to 20 and the T3 range (-62 to -75 ppm) of 80. At this time, the NMR value is a value obtained by measuring and integrating NMR by 29 Si NMR (JEOL FT-NMR). The polymer to be measured is measured by diluting it in CDCl 3 to a concentration of about 10%.
T1 범위(-48~-55ppm)의 적분값이 0~10이라는 것은, 실록산 수지 중합체 내부에 존재하는 T1 구조가 중합체 전체 구조의 0 내지 10%로 포함된다는 것을 뜻하고, 여기서, T1 구조란, 중합체의 반복단위의 중심원자인 규소(Si) 원자가 한 쪽 끝에서만 실록산 수지 중합체 사슬과 연결된 구조를 뜻한다. 즉, T1 구조는 중합체의 말단 끝을 의미한다. T2 범위(-55~-62ppm)의 적분값이 10~20이라는 것은, 실록산 수지 중합체 내부에 존재하는 T2 구조가 중합체 전체 구조의 10 내지 20%로 포함된다는 것을 뜻하며, T2 구조란, 중합체의 반복단위의 중심원자인 규소(Si) 원자가 두 쪽 끝에서 실록산 수지 중합체 사슬과 연결된 구조를 뜻한다. T3 범위(-62~-75ppm)의 적분값이 80이라는 것은, 실록산 수지 중합체 내부에 존재하는 T3 구조가 중합체 전체 구조의 80%로 포함된다는 것을 뜻하며, T3 구조란, 중합체의 반복단위의 중심원자인 규소(Si) 원자가 세 쪽 끝에서 실록산 수지 중합체 사슬과 네트워크 구조로 연결된 구조를 뜻한다.An integral value of 0 to 10 in the T1 range (-48 to -55 ppm) means that the T1 structure present inside the siloxane resin polymer is included as 0 to 10% of the entire polymer structure, wherein the T1 structure is It refers to a structure in which the silicon (Si) atom, the central atom of the repeating unit of the polymer, is connected to the siloxane resin polymer chain at only one end. In other words, the T1 structure means the terminal end of the polymer. An integral value of 10 to 20 in the T2 range (-55 to -62 ppm) means that the T2 structure present in the siloxane resin polymer is included as 10 to 20% of the total polymer structure, and the T2 structure is a repeat of the polymer It refers to the structure in which the silicon (Si) atom, the central atom of the unit, is connected to the siloxane resin polymer chain at both ends. An integral value of 80 in the T3 range (-62 to -75 ppm) means that the T3 structure present inside the siloxane resin polymer is included as 80% of the total structure of the polymer, and the T3 structure is the central atom of the repeating unit of the polymer. Refers to a structure in which a phosphorus silicon (Si) atom is connected to the siloxane resin polymer chain at three ends by a network structure.
이와 같이, 본 발명의 실록산 수지는 실란 T 구조의 트리알콕시실란(Trialkoxysilane)을 포함함으로써, T3 구조가 가장 큰 함량으로 포함하는 실록산 수지인 것이 바람직하다.As described above, the siloxane resin of the present invention is preferably a siloxane resin having a T3 structure in the largest amount by including a trialkoxysilane having a silane T structure.
한편, 본 발명은 제1 조성물의 성분으로 상기 실록산 수지 외에 유기용매, 광개시제, 열개시제, 산화방지제, 레벨링제 및 코팅조제로 이루어진 군에서 선택된 1종 이상의 첨가물을 더 포함할 수 있다. 이때, 첨가하는 첨가제의 종류와 함량을 조절함으로써, 다양한 용도에 맞는 제1 조성물로 제공할 수 있으며, 본 발명에서는 특별히 필름 또는 시트의 경도, 내마모성, 유연성 및 컬 방지 특성을 상승시킬 수 있는 코팅용 제1 조성물로 제공되는 것이 바람직하다.Meanwhile, the present invention may further include at least one additive selected from the group consisting of an organic solvent, a photoinitiator, a thermal initiator, an antioxidant, a leveling agent, and a coating aid in addition to the siloxane resin as a component of the first composition. At this time, by controlling the type and content of the additive to be added, it can be provided as a first composition suitable for various uses, and in the present invention, for coating, which can specifically increase the hardness, abrasion resistance, flexibility and curl prevention properties of a film or sheet It is preferably provided as a first composition.
본 발명에서 상기 개시제로는 예를 들어 유기금속염 등 광중합개시제와 아민, 이미다졸 등 열중합 개시제를 사용할 수 있다. 이때, 개시제의 첨가량은 실록산 수지 총 100중량부에 대해 약 0.01 내지 10 중량부로 포함되는 것이 바람직하다. 0.01 중량부 미만으로 포함되면 충분한 경도를 얻기 위한 코팅 층의 경화 시간이 증대되어 효율성이 저하되며, 10 중량부를 초과할 경우 코팅 층의 황색도가 증대되어 투명한 코팅 층을 얻기가 어려워질 수 있다.In the present invention, for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole may be used. At this time, the amount of the initiator is preferably included in about 0.01 to 10 parts by weight based on 100 parts by weight of the total siloxane resin. When included in less than 0.01 parts by weight, the curing time of the coating layer for obtaining sufficient hardness is increased to decrease efficiency, and when it exceeds 10 parts by weight, the yellowness of the coating layer is increased and it may be difficult to obtain a transparent coating layer.
또한, 상기 유기용매로는 아세톤, 메틸에틸케톤, 메틸부틸케톤, 사이클로헥사논 등 케톤류; 메틸셀로솔브, 부틸셀로솔브 등의 셀로솔브류, 또는 에틸에테르, 디옥산 등의 에테르류; 이소부틸알코올, 이소프로필알코올, 부탄올, 메탄올 등 알코올류; 디클로로메탄, 클로로포름, 트리클로로에틸렌 등의 할로겐화 탄화수소류; 및 노르말 헥산, 벤젠, 톨루엔 등의 탄화수소류 등으로 이루어진 용매로부터 선택된 1종 이상을 포함할 수 있으며, 그 종류는 특별히 제한되지 않는다. 유기용매는 실록산 수지의 점도의 제어하므로 가공성을 더욱 용이하거나 코팅막의 두께를 조절하기 위해 첨가량을 적절히 제어할 수 있다.Further, examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, and cyclohexanone; Cellosolves such as methyl cellosolve and butyl cellosolve, or ethers such as ethyl ether and dioxane; Alcohols such as isobutyl alcohol, isopropyl alcohol, butanol, and methanol; Halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene; And it may include one or more selected from solvents consisting of hydrocarbons such as normal hexane, benzene, toluene, and the like, and the type is not particularly limited. Since the organic solvent controls the viscosity of the siloxane resin, the amount of addition can be appropriately controlled to make the processability easier or to control the thickness of the coating film.
제1 조성물은 중합반응으로부터 기인하는 산화반응을 억제하기 위해 산화방지제를 포함할 수 있으나, 이에 제한되지 않을 수 있다.The first composition may include an antioxidant to suppress the oxidation reaction resulting from the polymerization reaction, but may not be limited thereto.
제1 조성물은 레벨링제 또는 코팅조제를 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.The first composition may further include a leveling agent or a coating aid, but may not be limited thereto.
실록산 수지의 중합은 광조사 또는 가열 단계를 포함할 수 있으나, 이에 제한되지 않을 수 있다.Polymerization of the siloxane resin may include a light irradiation or heating step, but may not be limited thereto.
상기 방현 코팅층용 수지 조성물은 상기 화학식 1과 화학식 2로 각각 표시되는 알콕시 실란 중 선택된 1종 이상의 알콕시 실란을 포함하는 화합물로부터 화학 결합된 실록산 수지와 평균입경이 0.01㎛ 내지 5㎛인 입자를 포함하는 것이 바람직하다. The resin composition for the anti-glare coating layer comprises particles having an average particle size of 0.01 μm to 5 μm and a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively. It is preferred.
본 발명에 따른 방현성 코팅용 수지 조성물은 상술한 알콕시 실란을 포함하는 화합물로부터 화학 결합된 실록산 수지와 평균입경이 0.01㎛ 내지 5㎛인 입자를 포함함으로써 표면 요철을 구현하여 우수한 방현성 및 고경도를 동시에 얻을 수 있는 장점이 있다.The resin composition for anti-glare coating according to the present invention includes a siloxane resin chemically bonded from the above-mentioned compound containing an alkoxy silane and particles having an average particle diameter of 0.01 µm to 5 µm to realize surface irregularities, thereby providing excellent anti-glare and high hardness. There is an advantage that can be obtained at the same time.
상기 입자의 평균입경이 0.01㎛ 내지 5㎛, 바람직하게는 0.012㎛ 내지 4㎛이다. The particles have an average particle diameter of 0.01 µm to 5 µm, preferably 0.012 µm to 4 µm.
상기 평균입경이 0.01㎛ 미만인 경우 Sparkling 물성에 유리하나, 헤이즈(Hz) 및 그로스 유닛(gloss unit; GU)을 구현하는데 제약을 받을 수 있고, 함량이 필요 이상으로 많이 필요할 수 있다. 상기 평균입경이 5㎛를 초과하는 경우 Sparkling이 발생할 수 있으며, 육안으로 입자가 시인되어 디스플레이 시인성 저하가 발생할 수 있다.If the average particle diameter is less than 0.01㎛, it is advantageous for the properties of sparkling, but may be restricted in realizing haze (Hz) and gloss unit (GU), and the content may be required more than necessary. When the average particle diameter exceeds 5 μm, sparkling may occur, and the visibility of the particles may be visually impaired, resulting in a decrease in display visibility.
상기 입자는 유기 입자 또는 무기 입자를 포함한다. 유기 입자란, 입자 내에 탄화수소로 이루어진 작용기를 가지고 있는 입자를 말하며, 무기 입자는 입자 내에 탄화수소로 이루어진 작용기를 가지고 있지 않는 입자를 말한다.The particles include organic particles or inorganic particles. The organic particles refer to particles having a functional group composed of hydrocarbons in the particles, and inorganic particles refer to particles having no functional groups composed of hydrocarbons in the particles.
상기 유기 입자로는 일례를 들면 스틸렌 비드(Styrenic Bead), 아크릴 비드(Acrylic Bead), 가교된 아크릴 비드(Cross-linked Acrylic Bead) 등을 들 수 있으나, 이에 한정되는 것은 아니다. 스틸렌 비드는, 스틸렌 작용기를 가지는 비드를 말하고, 아크릴 비드는 아크릴 작용기를 가지는 비드를 말하며, 가교된 아크릴 비드는 가교된 아크릴 작용기를 말하는 비드를 말한다.Examples of the organic particles include, but are not limited to, Styrenic Beads, Acrylic Beads, and Cross-linked Acrylic Beads. Styrene beads refer to beads having styrene functional groups, acrylic beads refer to beads having acrylic functional groups, and crosslinked acrylic beads refer to beads referring to crosslinked acrylic functional groups.
상기 무기 입자로는 일례를 들면 실리카 입자 등을 들 수 있으나, 이에 한정되는 것은 아니다. Examples of the inorganic particles include silica particles, but are not limited thereto.
실리카 입자는 대표적으로 Fumed 실리카 입자 및 침강 실리카 입자로 구분할 수 있고, 이는 실리카 제조방법의 차이에 의하여 구분된다. Fumed 실리카 입자는 일반적으로 사염화 규소(SiCl4)의 화염 열분해(flame pyrolysis) 또는 3000 oC의 전기 아크(electric arc)에서 기화된 석영 모래로 만들어지는 것을 말한다. Fumed 실리카 입자는 열분해 진행 후 얻어지는 실리카 입자로서, 순도가 높은 나노실리카이다. Fumed 실리카는, 예를 들어 상업적으로 이용가능한 것을 사용할 수 있다. 침강 실리카 입자는 용제를 이용하여 침전 시키는 공정을 통하여 얻는 실리카 입자이다. 대체적으로, Fumed 실리카 입자의 크기가 침강 실리카 입자의 크기보다 작다.Silica particles are typically classified into Fumed silica particles and precipitated silica particles, which are distinguished by differences in silica production methods. Fumed silica particles are generally made of quartz sand vaporized in a flame pyrolysis of silicon tetrachloride (SiCl 4 ) or an electric arc of 3000 o C. Fumed silica particles are silica particles obtained after thermal decomposition and are high-purity nanosilica. Fumed silica can be used, for example, commercially available. Precipitated silica particles are silica particles obtained through a process of precipitating using a solvent. Generally, the size of Fumed silica particles is smaller than that of precipitated silica particles.
본 발명의 입자는 유기 또는 무기 입자 중에서 표면경도 확보 측면에서 유리한 실리카 입자가 바람직할 수 있다. The particles of the present invention may be preferably silica particles, which are advantageous in terms of securing surface hardness among organic or inorganic particles.
상기 입자는 상기 방현 코팅층용 수지 조성물의 고형분 대비 1 내지 5중량%의 함량으로 포함되는 것이 바람직하다. 방현 코팅층용 수지 조성물의 고형분이란, 화학식 1 및 2로 표시되는 알콕시 실란을 반응시켜 얻은 수지 조성물의 고형분을 말한다.The particles are preferably contained in an amount of 1 to 5% by weight compared to the solid content of the resin composition for the anti-glare coating layer. The solid content of the resin composition for an anti-glare coating layer refers to the solid content of the resin composition obtained by reacting the alkoxy silanes represented by Chemical Formulas 1 and 2.
상기 입자의 함량이 상기 범위 내에 있는 경우 코팅두께와 적절히 조화되어 안정적인 헤이즈(Hz), GU(Gloss Unit) 값을 확보 할 수 있다. When the content of the particles is within the above range, it is possible to secure a stable haze (Hz) and GU (Gloss Unit) value by being appropriately harmonized with the coating thickness.
방현 코팅층용 수지 조성물의 고형분 대비 입자가 1 중량% 미만인 경우, 방현 코팅층의 표면조도(Ra) 값이 작아지고, 방현 코팅층의 표면이 매끄러워지기 때문에 방현성이 떨어지게 된다. 즉, GU 값이 100을 초과하게 된다. 반면에 입자가 방현 코팅층용 수지 조성물의 고형분 대비 5 중량% 초과하는 경우, 방현 코팅층의 포면조도(Ra) 값이 커지고, 방현 코팅층의 표면에 요철이 지나치게 많이 생겨 난반사 발생 및 헤이즈가 증가하게 되어 시인성이 떨어진다. 즉, GU 값이 40 미만이 된다.When the particles of the resin composition for the anti-glare layer is less than 1% by weight, the surface roughness (Ra) value of the anti-glare layer decreases, and the surface of the anti-glare layer is smooth, resulting in poor anti-glare properties. That is, the GU value exceeds 100. On the other hand, when the particles exceed 5% by weight compared to the solid content of the resin composition for an anti-glare coating layer, the surface roughness (Ra) value of the anti-glare coating layer becomes large, and irregularities occur on the surface of the anti-glare coating layer, resulting in increased reflection and haze, which increases visibility. Falls. That is, the GU value is less than 40.
도 1은 본 발명의 일 실시예에 따른 방현성 코팅 필름의 개략적인 단면도이다.1 is a schematic cross-sectional view of an anti-glare coating film according to an embodiment of the present invention.
본 발명의 바람직한 다른 일 구현예는 기재(110) 상에 고경도 코팅층(120) 및 방현 코팅층(130)이 기재(110)로부터 순차적으로 적층된 구조를 포함하고, 방현 코팅층(130)은 평균입경이 0.01㎛ 내지 5㎛인 입자를 포함하는 방현성 코팅 필름을 제공하는 것이다.Another preferred embodiment of the present invention includes a structure in which a high hardness coating layer 120 and an anti-glare coating layer 130 are sequentially stacked from the substrate 110 on the substrate 110, and the anti-glare coating layer 130 has an average particle diameter. It is to provide an anti-glare coating film containing the particles of 0.01㎛ to 5㎛.
여기서, 방현 코팅층(130)의 Ra(표면조도)는 100~300nm일 수 있다.Here, Ra (surface roughness) of the anti-glare coating layer 130 may be 100 to 300 nm.
방현성 코팅 필름은 고경도 코팅층(120) 및 방현 코팅층(130) 두개의 층이 적층된 구조로, 고경도 코팅층(120)이 없이 방현 코팅층(130)의 단층 구조인 경우, 필름의 강도가 떨어지고 내부 헤이즈 값이 0.9 이상이 되어 시인성이 떨어지게 된다. 반면에, 방현 코팅층(130)이 없이 고경도 코팅층(120)의 단층 구조인 경우, 방현성이 떨어지게 된다. 따라서, 고경도 코팅층(120) 및 방현 코팅층(130)의 적층 구조의 방현성 코팅 필름일 필요가 있다.The anti-glare coating film is a structure in which two layers of the high-hardness coating layer 120 and the anti-glare coating layer 130 are stacked. In the case of the single-layer structure of the anti-glare coating layer 130 without the high-hardness coating layer 120, the strength of the film is reduced. The internal haze value becomes 0.9 or more, and visibility is deteriorated. On the other hand, in the case of a single layer structure of the high hardness coating layer 120 without the anti-glare coating layer 130, the anti-glare property is deteriorated. Therefore, it is necessary to be an anti-glare coating film having a laminated structure of a high hardness coating layer 120 and an anti-glare coating layer 130.
도 2를 참고하여, 본 발명의 방현성 코팅 필름의 세부적인 구조를 구체적으로 설명하면, 방현성 코팅 필름은 기재(110); 기재 상의 고경도 코팅층(120); 및 고경도 코팅층 상의 방현 코팅층(130)을 포함하고, 방현 코팅층(130)은 입자(131) 및 매트릭스(132)를 포함한다. 여기서 매트릭스(132)는 방현 코팅층용 수지 조성물 성분들 중 입자를 제외한 다른 성분들로 구성된 물질의 경화물이다. Referring to Figure 2, the detailed structure of the anti-glare coating film of the present invention in detail, the anti-glare coating film is a substrate 110; A high hardness coating layer 120 on the substrate; And an anti-glare coating layer 130 on the high-hardness coating layer, and the anti-glare coating layer 130 includes particles 131 and a matrix 132. Here, the matrix 132 is a cured product of a material composed of components other than particles among resin composition components for the anti-glare coating layer.
도 2에서 알 수 있듯이, 입자(131)는 매트릭스(132)로부터 방현 코팅층(130)의 외부로 돌출될 수도 있고, 내부로 포함될 수도 있다. 매트릭스(132)로부터 돌출된 입자(131)로 인하여, 방현 코팅층(130)의 표면조도(Ra)가 증가하고, 그로 인해 방현성 코팅 필름의 방현성이 증가한다. 다만, 방현 코팅층(130)의 표면조도(Ra)가 지나치게 증가하면, 난반사가 지나치게 일어나게 되는 결과 오히려 시인성이 떨어지게 된다.As can be seen in FIG. 2, the particles 131 may protrude from the matrix 132 to the outside of the anti-glare coating layer 130 or may be included therein. Due to the particles 131 protruding from the matrix 132, the surface roughness Ra of the anti-glare layer 130 increases, thereby increasing the anti-glare property of the anti-glare coating film. However, if the surface roughness (Ra) of the anti-glare coating layer 130 is excessively increased, the result of excessive reflection is less visible.
기재(110)는 투명한 기재가 바람직하고, 투명하다면 특별히 한정하지는 않고 사용될 수 있다. 상기 기재(110)는 폴리이미드(Poly-imide, PI) 필름, 폴리에틸렌 나프탈레이트(Poly-Ethylene Naphthalate, PEN) 필름, 트리아세틸 셀룰로오스(Tri-Acetyl Cellulose, TAC) 필름, 싸이클로 올레핀 폴리머(Cyclo Olefin Polymer, COP) 필름, 싸이클로 올레핀 코폴리머(Cyclic Olefin Copolymer, COC) 필름, 아크릴(Acryl) 필름 등의 필름들을 사용할 수 있으며, 특히 투명 폴리이미드를 기재로 사용하는 경우에는 열적 특성이 우수하며, 모듈러스가 높고, 필름 자체의 경도가 높은 장점을 가질 수 있어 바람직하다. 상기 투명한 기재(110)의 두께는 10 내지 200㎛, 바람직하게는 20 내지 100㎛인 것이 좋다. 상기 기재(110)의 두께가 10㎛ 미만의 경우 필름 취급이 힘들며, 200㎛를 초과하는 경우 경제성을 얻을 수 없다.The substrate 110 is preferably a transparent substrate, and can be used without particular limitation if it is transparent. The substrate 110 is a polyimide (PI) film, a polyethylene naphthalate (PEN) film, a triacetyl cellulose (TAC) film, a cyclo olefin polymer (Cyclo Olefin Polymer) , COP) film, cyclo olefin copolymer (Cyclic Olefin Copolymer, COC) film, acrylic (Acryl) film, etc. can be used, especially when using a transparent polyimide as a substrate, excellent thermal properties, modulus It is preferable because it can have the advantages of high and high hardness of the film itself. The thickness of the transparent substrate 110 is preferably 10 to 200㎛, preferably 20 to 100㎛. If the thickness of the substrate 110 is less than 10 μm, film handling is difficult, and if it exceeds 200 μm, economic efficiency cannot be obtained.
상기 고경도 코팅층(120)은 상기 화학식 1과 화학식 2로 각각 표시되는 알콕시 실란 중 선택된 1종 이상의 알콕시 실란을 포함하는 화합물로부터 화학 결합된 실록산 수지를 포함하는 고경도 코팅층용 수지 조성물로부터 제조된 것이고, 상기 방현 코팅층(130)은 상기 화학식 1과 화학식 2로 각각 표시되는 알콕시 실란 중 선택된 1종 이상의 알콕시 실란을 포함하는 화합물로부터 화학 결합된 실록산 수지와 평균입경이 0.01㎛ 내지 5㎛인 입자를 포함하는 방현 코팅층용 수지 조성물로부터 제조될 수 있으며, 상기 고경도 코팅층용 수지 조성물 및 방현 코팅층용 수지 조성물에 대한 내용은 상술한 바와 동일하다. The high hardness coating layer 120 is prepared from a resin composition for a high hardness coating layer comprising a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively. , The anti-glare coating layer 130 includes particles having an average particle diameter of 0.01 µm to 5 µm and a siloxane resin chemically bonded from a compound containing at least one alkoxy silane selected from alkoxy silanes represented by Formula 1 and Formula 2, respectively. It can be prepared from a resin composition for an anti-glare coating layer, the content of the resin composition for a high hardness coating layer and the resin composition for an anti-glare coating layer is the same as described above.
상기 방현 코팅층(130)의 Ra(표면조도)는 100 내지 300nm, 바람직하게는 160 내지 300nm인 것이 좋다.Ra (surface roughness) of the anti-glare coating layer 130 is preferably 100 to 300nm, preferably 160 to 300nm.
상기 표면조도가 상기 범위 내에 있는 경우 표면 감성과 GU(Gloss Unit) 확보에 유리한 장점을 가진다. When the surface roughness is within the above range, it has the advantage of securing the surface sensitivity and the GU (Gloss Unit).
표면조도(Ra)가 100nm 미만인 경우, 방현 코팅층(130)의 표면이 요철 없이 매끄러운 상태를 말하며, 그로 인해, 코팅필름의 방현성이 떨어지게 되어, 방현성 코팅 필름의 GU가 100을 초과하게 된다. 반면에 표면조도(Ra)가 300nm 초과하는 경우, 방현 코팅층(130)의 표면의 요철이 지나치게 많아지게 되고, 그로 인해 빛의 난반사가 많아져 시인성이 감소하게 된다. 필름의 GU는 40 미만이 된다.When the surface roughness (Ra) is less than 100 nm, the surface of the anti-glare layer 130 is smooth without irregularities, and thereby, the anti-glare property of the coating film is deteriorated, and the GU of the anti-glare coating film exceeds 100. On the other hand, when the surface roughness (Ra) exceeds 300 nm, the unevenness of the surface of the anti-glare coating layer 130 becomes excessively large, thereby increasing the diffuse reflection of light, thereby reducing visibility. The film has a GU of less than 40.
고경도 코팅층(120)의 두께는 10 내지 50㎛이 될 수 있다.The thickness of the high hardness coating layer 120 may be 10 to 50㎛.
고경도 코팅층(120)의 두께가 10 내지 50㎛인 경우에 방현성 코팅 필름으로서 유효한 연필강도 및 헤이즈를 갖는 필름을 얻을 수 있다..When the thickness of the high-hardness coating layer 120 is 10 to 50 μm, a film having pencil strength and haze effective as an anti-glare coating film can be obtained.
방현 코팅층(130)의 두께는 1㎛ 내지 3㎛, 바람직하게는 2㎛ 내지 3㎛이 될 수 있다.The thickness of the anti-glare coating layer 130 may be 1 μm to 3 μm, preferably 2 μm to 3 μm.
방현 코팅층(130)의 두께가 2 내지 3㎛를 만족하는 경우 방현성이 향상되고, 입자가 필름에서 탈착되는 문제를 방지하는 효과를 얻을 수 있다. When the thickness of the anti-glare coating layer 130 satisfies 2 to 3 μm, anti-glare properties are improved, and an effect of preventing the particle from being detached from the film can be obtained.
구체적으로 고경도 코팅층(120)의 두께가 상기 범위 내에 있는 경우 본 발명이 목적하는 수준의 연필경도를 달성할 수 있으며, 50㎛ 코팅 시 연필경도 9H 달성되므로 이를 초과하는 것은 무의미하다. 또한, 방현 코팅층(130)의 두께가 1㎛ 미만인 경우에는 방현 코팅층(130)에 포함되는 입자가 방현 코팅층(130)과 충분한 세기로 결합하지 못하여, 외부의 충격에 의해 탈착되는 문제가 발생할 수 있어 바람직하지 않다. 반면에 방현 코팅층(130)의 두께가 3㎛ 초과하는 경우에는 방현 코팅층(130)에 포함되는 입자가 방현 코팅층(130)의 표면으로 돌출되지 못하여, 방현 코팅층(130)의 표면에 요철이 적어지고, 그에 따라 표면조도(Ra)가 작아진다.Specifically, when the thickness of the high hardness coating layer 120 is within the above range, the pencil hardness of the desired level can be achieved by the present invention, and the pencil hardness of 9H is achieved when 50 μm coating, so it is meaningless to exceed this. In addition, when the thickness of the anti-glare coating layer 130 is less than 1 μm, particles contained in the anti-glare coating layer 130 may not be combined with the anti-glare coating layer 130 with sufficient strength, which may cause detachment due to external impact. It is not desirable. On the other hand, when the thickness of the anti-glare coating layer 130 exceeds 3㎛, particles contained in the anti-glare coating layer 130 does not protrude to the surface of the anti-glare coating layer 130, the surface of the anti-glare coating layer 130 is less uneven , Accordingly, the surface roughness (Ra) becomes small.
본 발명의 입자(131)의 평균입경은 0.01㎛ 내지 5㎛이고, 방현 코팅층(130)의 두께는 1㎛ 내지 3㎛이다. 그에 따라, 평균입경이 방현 코팅층(130)의 두께보다 큰 입자(131)는 방현 코팅층(130)의 매트릭스(132)로부터 돌출되고, 그로 인하여 방현 코팅층(130)의 표면조도(Ra)는 증가하게 되는 것이다. 돌출된 입자(131)는 빛을 불규칙적으로 반하시켜 방현성이 증가하게 된다.The average particle diameter of the particles 131 of the present invention is 0.01 µm to 5 µm, and the thickness of the anti-glare coating layer 130 is 1 µm to 3 µm. Accordingly, particles 131 having an average particle diameter greater than the thickness of the anti-glare coating layer 130 protrude from the matrix 132 of the anti-glare coating layer 130, thereby increasing the surface roughness (Ra) of the anti-glare coating layer 130. Will be. The protruding particles 131 irregularly drop light to increase the anti-glare property.
상기 수지 조성물을 이용하여 코팅, 캐스팅, 몰딩 등 성형 후 광중합, 열중합에 의해 경화물을 형성함으로써, 고경도 코팅층(120) 및 방현 코팅층(130)을 제조할 수 있다. 광중합의 경우 광조사전 열처리를 통해 균일한 표면을 얻을 수 있으며, 이는 40 ℃이상 약 300 ℃이하의 온도에서 수행될 수 있으나, 이에 제한되지 않을 수 있다. 또한 조사 광량의 경우 50mJ/cm2 이상 20000mJ/cm2 이하의 조건에서 수행될 수 있으나, 이에 제한되지 않을 수 있다.By forming a cured product by photopolymerization or thermal polymerization after molding such as coating, casting, molding, etc., using the resin composition, a high hardness coating layer 120 and an anti-glare coating layer 130 may be manufactured. In the case of photopolymerization, a uniform surface may be obtained through heat treatment before light irradiation, which may be performed at a temperature of 40° C. or more and about 300° C. or less, but may not be limited thereto. In addition, if the irradiation light amount, but may be carried out under the conditions of 50mJ / cm 2 or more 20000mJ / cm 2 or less, it may not be limited thereto.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 본 발명의 실시예 및 비교예는 도 1 및 2를 참조하여 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail through examples. Examples and comparative examples of the present invention will be described in detail with reference to FIGS. 1 and 2.
도 1은 본 발명의 실시예 1 내지 5에 따른 고경도 코팅층, 방현 코팅층 및 기재를 포함하는 방현성 코팅 필름에 관한 것이다. 1 relates to an anti-glare coating film comprising a high hardness coating layer, an anti-glare coating layer and a substrate according to Examples 1 to 5 of the present invention.
반면에, 도 3은 방현 코팅층 및 기재만 포함한 방현성 코팅 필름에 관한 것으로, 고경도 코팅층이 제외된 비교예 2 내지 4의 필름을 나타낸 것이다.On the other hand, Figure 3 relates to the anti-glare coating film including only the anti-glare coating layer and the substrate, and shows the films of Comparative Examples 2 to 4 with the high hardness coating layer excluded.
이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다. These examples are only intended to illustrate the present invention in more detail, and the present invention is not limited thereby.
<실시예 1> <Example 1>
KBM-403(Shinetsu社) 및 TEOS(Sigmaaldrich社), 증류수를 80:20:160 몰 비율로 혼합하여 1,000mL 플라스크에 넣은 후 수산화나트륨 0.1g(in H2O 1g)을 촉매로 첨가하고, 65 ℃에서 6시간 동안 100rpm의 속도로 교반하였다. 이 후, 2-butanone에 고형분 50wt%로 희석 후, 0.45㎛ 테프론 필터를 사용해 여과하여 중량평균분자량 7,400 PDI 1.7(GPC)의 실록산 수지를 얻었다. 이때, 분자량 및 분자량 분포도(다분산 지수, PDI)는, 겔 투과 크로마토그래피 (GPC) (Waters사 제품, 모델명 e2695)에 의해 폴리스티렌 환산 중량평균분자량(Mw) 및 수평균분자량(Mn)을 구한 것이다. 측정하는 중합체는 1%의 농도가 되도록 테트라히드로푸란에 용해시켜 GPC에 20㎕를 주입하였다. GPC의 이동상은 테트라히드로푸란을 사용하고, 1.0mL/분의 유속으로 유입하였으며, 분석은 30 ℃에서 수행하였다. 컬럼은 Waters사 Styragel HR3 2개를 직렬로 연결하였다. 검출기로는 RI 검출기 (Waters사 제품, 2414)를 이용하여 40℃에서 측정하였다. 이때, PDI(분자량 분포도)는 측정된 중량평균분자량을 수평균분자량으로 나누어 산출하였다.KBM-403 (Shinetsu company) and TEOS (Sigmaaldrich company), distilled water was mixed in a 80:20:160 molar ratio, placed in a 1,000 mL flask, and 0.1 g of sodium hydroxide (in H2O 1 g) was added as a catalyst, and at 65°C. It was stirred for 6 hours at a rate of 100 rpm. Thereafter, after diluting 2-butanone with 50 wt% of solid content, it was filtered using a 0.45 μm Teflon filter to obtain a siloxane resin having a weight average molecular weight of 7,400 PDI 1.7 (GPC). At this time, the molecular weight and molecular weight distribution (polydispersity index, PDI) were obtained by weight permeation molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatography (GPC) (manufactured by Waters, model name e2695). . The polymer to be measured was dissolved in tetrahydrofuran to a concentration of 1%, and 20 µl was injected into GPC. Tetrahydrofuran was used as the mobile phase of GPC, and flowed at a flow rate of 1.0 mL/min, and analysis was performed at 30°C. The column was connected to two Styragel HR3 from Waters in series. The detector was measured at 40°C using an RI detector (Waters, 2414). At this time, PDI (molecular weight distribution) was calculated by dividing the measured weight average molecular weight by the number average molecular weight.
다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여, 고경도 코팅층용 수지 조성물을 얻었다. 상기 고경도 코팅층용 수지 조성물을 폴리이미드 기재 표면 위에 Mayer Bar를 이용하여 도포한 후, 건조 오븐을 이용하여 100 ℃ 10분 건조 후 315nm 파장의 자외선 램프에 30초간 노출하여 10㎛의 두께를 가지는 고경도 코팅층을 제작하였다. Next, 3 parts by weight of the photoinitiator IRGACURE 250 (BASF) was added to 100 parts by weight of the siloxane resin to obtain a resin composition for a high hardness coating layer. After applying the resin composition for the high hardness coating layer on the surface of the polyimide substrate using a Mayer Bar, drying it at 100° C. for 10 minutes using a drying oven and then exposing it to a UV lamp having a wavelength of 315 nm for 30 seconds to obtain a high hardness having a thickness of 10 μm. A coating layer was also prepared.
또한 상기 고경도 코팅층용 수지 조성물에 평균입경이 4㎛인 침강 실리카 입자(ACEMATT OK607, EVONIK社)를 고형분 대비 1wt% 첨가한 후 상온에서 1시간 동안 100rpm의 속도로 교반하여 방현 코팅층용 수지 조성물을 얻었다. In addition, 1 wt% of precipitated silica particles (ACEMATT OK607, EVONIK) having an average particle diameter of 4 µm was added to the resin composition for the high hardness coating layer, and stirred at 100 rpm for 1 hour at room temperature for 1 hour to prepare a resin composition for an anti-glare coating layer. Got.
상기 방현 코팅층용 수지 조성물을 상기 고경도 코팅층 상단에 Mayer Bar를 이용하여 도포 후, 건조 오븐을 이용하여 100 ℃ 10분 건조 후 315nm 파장의 자외선 램프에 30초간 노출하여 2㎛의 두께를 가지는 방현 코팅층을 적층하여 방현성 코팅필름을 제작하였다.After applying the resin composition for the anti-glare coating layer to the top of the high-hardness coating layer using a Mayer Bar, drying it at 100° C. for 10 minutes using a drying oven, and then exposing it to a UV lamp having a wavelength of 315 nm for 30 seconds to have an anti-glare coating layer having a thickness of 2 μm. Was laminated to prepare an anti-glare coating film.
<실시예 2> <Example 2>
상기 고경도 코팅층용 수지 조성물에 4㎛ 침강 실리카 입자(ACEMATT OK607, EVONIK社)를 고형분 대비 3wt% 첨가한 후 상온에서 1시간 동안 교반한 것을 제외하고 실시예 1과 동일하게 방현 코팅층을 적층하여 방현성 코팅필름을 제작하였다.After adding 4 wt.% precipitated silica particles (ACEMATT OK607, EVONIK) to solid resin composition for 3% by weight compared to solid content, and then stirring at room temperature for 1 hour, the anti-glare coating layer was laminated in the same manner as in Example 1. A Hyunsung coating film was produced.
<실시예 3> <Example 3>
상기 고경도 코팅층용 수지 조성물에 4㎛ 침강 실리카 입자(ACEMATT OK607, EVONIK社)를 고형분 대비 5wt% 첨가한 후 상온에서 1시간 동안 교반한 것을 제외하고 실시예 1과 동일하게 방현 코팅층을 적층하여 방현성 코팅필름을 제작하였다.After adding 4wt% of precipitated silica particles (ACEMATT OK607, EVONIK) to the resin composition for the high hardness coating layer compared to solid content, and stirring at room temperature for 1 hour, the anti-glare coating layer was laminated in the same manner as in Example 1 A Hyunsung coating film was produced.
<실시예 4> <Example 4>
상기 고경도 코팅층용 수지 조성물에 12nm Fumed 실리카 입자(AEROSIL300, EVONIK社)를 고형분 대비 3wt% 첨가한 후 상온에서 1시간 동안 교반한 것을 제외하고 실시예 1과 동일하게 방현 코팅층을 적층하여 방현성 코팅필름을 제작하였다.Anti-glare coating by laminating the anti-glare coating layer in the same manner as in Example 1, except that 12 wt Fumed silica particles (AEROSIL300, EVONIK) were added to the resin composition for the high-hardness coating layer and stirred for 1 hour at room temperature after adding 3 wt% of solid content. A film was produced.
<실시예 5> <Example 5>
상기 고경도 코팅층용 수지 조성물에 12nm Fumed 실리카 입자(AEROSIL300, EVONIK社)를 고형분 대비 5wt% 첨가한 후 상온에서 1시간 동안 교반한 것을 제외하고 실시예 1과 동일하게 방현 코팅층을 적층하여 방현성 코팅필름을 제작하였다.Anti-glare coating by laminating the anti-glare coating layer in the same manner as in Example 1, except that 5 wt% of 12 nm Fumed silica particles (AEROSIL300, EVONIK) was added to the resin composition for the high-hardness coating layer and stirred at room temperature for 1 hour. A film was produced.
<비교예 1> <Comparative Example 1>
상기 고경도 코팅층용 수지 조성물에 입자 첨가 없이 실시한 것을 제외하고 실시예 1과 동일하게 방현 코팅층을 실시하였다.The anti-glare coating layer was performed in the same manner as in Example 1, except that the resin composition for the high-hardness coating layer was carried out without adding particles.
<비교예 2> <Comparative Example 2>
상기 고경도 코팅층용 수지 조성물에 12nm Fumed 실리카 입자(AEROSIL300, EVONIK社)를 고형분 대비 1wt% 첨가한 후 상온에서 1시간 동안 교반하여 방현 코팅층용 수지 조성물을 얻은 후, 폴리이미드 표면 위에 도포하여 100 ℃ 10분 건조 후 315nm 파장의 자외선 램프에 30초간 노출하여 2㎛의 두께의 방현 코팅층이 적층된 방현성 코팅필름을 제작하였다.After adding 1 wt% of 12nm Fumed silica particles (AEROSIL300, EVONIK) to the resin composition for the high hardness coating layer compared to the solid content, and stirring for 1 hour at room temperature to obtain a resin composition for an anti-glare coating layer, and then coating it on the polyimide surface to 100 ℃ After drying for 10 minutes, exposure to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds was performed to prepare an anti-glare coating film having a 2 μm thick anti-glare coating layer.
<비교예 3> <Comparative Example 3>
상기 고경도 코팅층용 수지 조성물에 12nm Fumed 실리카 입자(AEROSIL300, EVONIK社)를 고형분 대비 3wt% 첨가한 후 상온에서 1시간 동안 교반하여 방현 코팅층용 수지 조성물을 얻은 후, 폴리이미드 표면위에 도포하여 100 ℃ 10분 건조 후 315nm 파장의 자외선 램프에 30초간 노출하여 2㎛의 두께의 방현 코팅층이 적층된 방현성 코팅필름을 제작하였다.12nm Fumed silica particles (AEROSIL300, EVONIK) were added to the resin composition for high hardness coating layer (AEROSIL300, EVONIK) compared to solid content and stirred at room temperature for 1 hour to obtain a resin composition for anti-glare coating layer, and then coated on a polyimide surface to 100 ℃ After drying for 10 minutes, exposure to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds was performed to prepare an anti-glare coating film having a 2 μm-thick anti-glare coating layer.
<비교예 4> <Comparative Example 4>
상기 고경도 코팅층용 수지 조성물에 12nm Fumed 실리카 입자(AEROSIL300, EVONIK社)를 고형분 대비 5wt% 첨가한 후 상온에서 1시간 동안 교반하여 방현 코팅층용 수지 조성물을 얻은 후, 폴리이미드 표면위에 도포하여 100 ℃ 10분 건조 후 315nm 파장의 자외선 램프에 30초간 노출하여 2㎛의 두께의 방현 코팅층이 적층된 방현성 코팅필름을 제작하였다.After adding 5 wt% of 12 nm Fumed silica particles (AEROSIL300, EVONIK) to the resin composition for the high hardness coating layer compared to the solid content, stirring for 1 hour at room temperature to obtain a resin composition for an anti-glare coating layer, and then applying it on the surface of the polyimide at 100°C. After drying for 10 minutes, exposure to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds was performed to prepare an anti-glare coating film having a 2 μm thick anti-glare coating layer.
<측정예><Measurement Example>
상기 실시예 및 비교예로부터 제조한 방현성 코팅 필름을 대상으로 하여 하기 방법에 따라 물성 평가를 실시하여 그 결과를 하기 표 1에 나타내었다. The anti-glare coating film prepared from the above Examples and Comparative Examples was subjected to physical property evaluation according to the following method, and the results are shown in Table 1 below.
(1) 투과율(%): MURAKAMI사 HM-150 장비로 ASTM D1003 측정 규격으로 측정하였다.(1) Transmittance (%): It was measured by ASTM D1003 measurement standard with MURAKAMI HM-150 equipment.
(2) 헤이즈: MURAKAMI사 HM-150 장비로 ASTM D1003 측정 규격으로 측정하였다.(2) Haze: It was measured by ASTM D1003 measurement standard with HM-150 equipment of MURAKAMI.
(3) Gloss unit(GU): MURAKAMI사 GLOSS METER GM-3D 장비로 60º 측정하였다.(3) Gloss unit (GU): Measured at 60º with GLOSS METER GM-3D equipment manufactured by MURAKAMI.
(4) 표면조도(Ra): NANOSYSTEM사 NV-2000 장비로 표면조도를 측정하였다.(4) Surface roughness (Ra): Surface roughness was measured using NVNO 2000 equipment manufactured by NANOSYSTEM.
(5) Sparkling: AG 미처리 디스플레이에 제작된 필름을 부착하여 RGB 광원을 각각 육안으로 측정하였다.(5) Sparkling: The RGB light source was measured with the naked eye by attaching the film produced to the AG untreated display.
(강) : R, G, B 모든 광원에서 Sparkling 관찰 (Strong): R, G, B observation of sparkling in all light sources
(중) : R, G, B 광원 중 2개의 광원에서 Sparkling 관찰 (Medium): Observe sparkling from 2 of R, G, and B light sources
(약) : R, G, B 광원 중 1개의 광원에서 Sparkling 관찰 (Approx.): Sparkling observation from one of the R, G, and B light sources
O.K : Sparkling 관찰 안되는 경우 O.K: Sparkling is not observed
(6) 연필경도: 일본 IMOTO사의 연필경도 측정기를 사용하여 ASTM D3363, 180mm/min의 속도로 하중을 1kgf로 연필경도를 측정하였다.(6) Pencil hardness: The pencil hardness was measured at a load of 1 kgf at a speed of ASTM D3363, 180 mm/min using a pencil hardness tester manufactured by IMOTO of Japan.
(7) 스크래치성: 1kg 하중으로 #0000 Steel Wool로 10회 왕복하여 육안으로 스크래치 발생 여부를 확인하여 하기 기준에 의하여 스크래치성을 평가하였다.(7) Scratchability: The scratch resistance was evaluated according to the following criteria by confirming whether or not scratches occurred visually by reciprocating 10 times with #0000 Steel Wool under a 1kg load.
-OK: 스크래치 미 발생 -OK: No scratch
-NG: 스크래치 발생 -NG: scratch occurs
EntriesEntries TT(투과율)TT (Transmittance) HazeHaze 내부HazeInside Haze GUGU Ra(nm)Ra(nm) SparklingSparkling 연필경도Pencil hardness 내스크래치Scratch resistant
실시예 1Example 1 91.691.6 2.42.4 0.50.5 98.598.5 110110 about 5H5H O.KO.K
실시예 2Example 2 90.990.9 14.214.2 0.70.7 64.064.0 159159 about 5H5H O.KO.K
실시예 3Example 3 90.690.6 29.829.8 0.80.8 42.842.8 260260 O.KO.K 5H5H O.KO.K
실시예 4Example 4 91.891.8 4.64.6 0.60.6 97.697.6 180180 about 5H5H O.KO.K
실시예 5Example 5 91.591.5 10.710.7 0.70.7 74.674.6 200200 about 5H5H O.KO.K
비교예 1Comparative Example 1 92.092.0 0.40.4 0.30.3 150.5150.5 2020 O.KO.K 4H4H O.KO.K
비교예 2Comparative Example 2 91.391.3 2.72.7 0.90.9 120.5120.5 8080 about 5H5H O.KO.K
비교예 3Comparative Example 3 90.990.9 5.05.0 1.11.1 120.8120.8 150150 about 5H5H O.KO.K
비교예 4Comparative Example 4 90.790.7 11.211.2 1.71.7 102.3102.3 200200 about 5H5H O.KO.K
상기 표 1을 통해 확인할 수 있듯이, 실리카 입자의 함량 증가에 따라 내부Haze가 상승하고, 그에 따라 Gloss Unit(GU) 값이 하락하는 것을 확인하였으며, 비교예 1 대비 연필경도 상승을 확인하였다. Haze의 경우 30 이상일 경우 디스플레이 시인성이 떨어질 수 있으며, GU의 경우 100 이상일 때 방현성이 없어 눈부심 방지에 효과가 없으며, 40 이하의 경우 난반사 증가로 시인성이 떨어 질 수 있다. 이중층이 아닌 단일층으로 실시한 비교예 2 내지 4는 내부 Haze가 이중층보다 높아 시인성이 떨어질 수 있고, GU값이 이중층 대비 상대적으로 높아, 반사방지 능력이 하락한 것으로 판단된다. Ra(표면조도)는 함량이 높을수록 Ra 상승을 확인 할 수 있었고, 입자 종류에 따라 값이 서로 다름을 확인 할 수 있었다. Ra는 낮을 경우 시인성은 높아지나 방현성이 떨어지고, 높을 경우 방현성에 유리하나 시인성이 떨어질 수 있어 100~300nm 범위가 바람직하다. As can be seen through Table 1, it was confirmed that the internal haze increases as the content of silica particles increases, and the Gloss Unit (GU) value decreases accordingly, and the pencil hardness increases compared to Comparative Example 1. In the case of Haze, the display visibility may deteriorate when it is 30 or more, and in the case of GU or more, it is not effective in preventing glare because it is not anti-glare. In Comparative Examples 2 to 4 performed as a single layer rather than a double layer, the internal Haze is higher than the double layer, so visibility may be deteriorated, and the GU value is relatively high compared to the double layer, and thus it is determined that the anti-reflection ability is reduced. The higher the Ra (surface roughness), the higher the Ra could be confirmed, and the different the values were depending on the particle type. When Ra is low, the visibility is high but the anti-glare property is poor, and when it is high, the anti-glare property is advantageous, but the visibility may be deteriorated, so the range of 100 to 300 nm is preferable.
따라서, 본 발명의 코팅 수지 조성물을 이용하여 제조된 이중층 코팅 필름은 경도 및, 내스크래치성이 우수하며 방현성까지 부여하여, 방현성 디스플레이 보호용 필름으로 적합할 수 있다는 것을 실험을 통하여 확인할 수 있었다.Therefore, it was confirmed through experiments that the double-layer coating film produced using the coating resin composition of the present invention has excellent hardness and scratch resistance, and even provides anti-glare properties, and thus can be suitable as an anti-glare display protective film.
[부호의 설명][Description of codes]
110: 기재110: description
120: 고경도 코팅층120: high hardness coating layer
130: 방현 코팅층130: anti-glare coating layer
131: 입자131: particle
132: 매트릭스132: Matrix

Claims (13)

  1. 기재;materials;
    상기 기재 상의 고경도 코팅층; 및A high hardness coating layer on the substrate; And
    상기 고경도 코팅층 상의 방현 코팅층을 포함하고,An anti-glare coating layer on the high hardness coating layer,
    상기 고경도 코팅층은 제1 실록산 수지를 포함하는 제1 조성물에 의해 형성되고,The high hardness coating layer is formed by a first composition comprising a first siloxane resin,
    상기 방현 코팅층은 제2 실록산 수지 및 입자를 포함하는 제2 조성물에 의해 형성되고,The anti-glare coating layer is formed by a second composition comprising a second siloxane resin and particles,
    상기 제1 실록산 수지 및 제2 실록산 수지는 각각 하기 화학식 1로 표현되는 알콕시 실란 및 하기 화학식 2로 표현되는 알콕시 실란 중 1종 이상의 알콕시 실란의 중합에 의해 형성된,The first siloxane resin and the second siloxane resin are each formed by polymerization of at least one alkoxy silane of the alkoxy silane represented by Formula 1 and the alkoxy silane represented by Formula 2 below,
    방현성 코팅 필름.Anti-glare coating film.
    <화학식 1> <Formula 1>
    R1 nSi(OR2)4-n R 1 n Si(OR 2 ) 4-n
    상기 화학식 1에서 R1은 에폭시 또는 아크릴이 치환된 C1~C3의 선형, 분지형 또는 지환형 알킬렌기이고, R2는 C1~C8의 선형, 분지형 또는 지환형 알킬기며, n은 1 내지 3의 정수이다.In Formula 1, R 1 is a C1 to C3 linear, branched or alicyclic alkylene group substituted with epoxy or acrylic, R 2 is a C1 to C8 linear, branched or alicyclic alkyl group, and n is 1 to 3 Is an integer.
    <화학식 2> <Formula 2>
    Si(OR3)4 Si(OR 3 ) 4
    상기 화학식 2에서 R3는 C1~C4의 선형 또는 분지형 알킬기이다.In Formula 2, R 3 is a C1 to C4 linear or branched alkyl group.
  2. 제1항에 있어서, According to claim 1,
    상기 입자는 평균입경이 0.01㎛ 내지 5㎛인 방현성 코팅 필름.The particles are anti-glare coating film having an average particle diameter of 0.01㎛ to 5㎛.
  3. 제1항에 있어서, According to claim 1,
    상기 방현 코팅층의 Ra(표면조도)는 100 내지 300㎚인 방현성 코팅 필름.The anti-glare coating film of Ra (surface roughness) of the anti-glare coating layer is 100 to 300 nm.
  4. 제1항에 있어서, According to claim 1,
    상기 고경도 코팅층은 10 내지 50㎛의 두께를 갖는 방현성 코팅 필름.The high hardness coating layer is an anti-glare coating film having a thickness of 10 to 50㎛.
  5. 제1항에 있어서, According to claim 1,
    상기 방현 코팅층은 1 내지 3㎛의 두께를 갖는 방현성 코팅 필름 .The anti-glare coating layer has an anti-glare coating film having a thickness of 1 to 3㎛.
  6. 제1항에 있어서, According to claim 1,
    상기 입자는 유기 입자 또는 무기 입자인 방현성 코팅 필름 .The particles are organic particles or inorganic particles anti-glare coating film.
  7. 제6항에 있어서, The method of claim 6,
    상기 무기 입자는 실리카 입자를 포함하는 방현성 코팅 필름.The inorganic particles are anti-glare coating film containing silica particles.
  8. 제6항에 있어서, The method of claim 6,
    상기 유기 입자는 스틸렌 비드(Styrenic Bead), 아크릴 비드(Acrylic Bead), 가교된 아크릴 비드(Cross-linked Acrylic Bead) 중 적어도 어느 하나를 포함하는 방현성 코팅 필름.The organic particles are anti-glare coating film comprising at least one of styrene beads (Styrenic Bead), acrylic beads (Acrylic Bead), cross-linked acrylic beads (Cross-linked Acrylic Bead).
  9. 제1항에 있어서, According to claim 1,
    상기 입자는 상기 방현 코팅층용 수지 조성물의 고형분 대비 1 내지 5 중량%의 함량으로 포함되는 방현성 코팅 필름.The particles are anti-glare coating film contained in an amount of 1 to 5% by weight compared to the solid content of the resin composition for the anti-glare layer.
  10. 제1항에 있어서, According to claim 1,
    상기 기재는 폴리이미드 필름, 폴리에틸렌 나프탈레이트 필름, 트리아세틸 셀룰로오스 필름, 싸이클로 올레핀 폴리머 필름, 싸이클로 올레핀 코폴리머 필름, 아크릴 필름 중 적어도 어느 하나를 포함하는 방현성 코팅 필름.The substrate is an anti-glare coating film comprising at least one of a polyimide film, a polyethylene naphthalate film, a triacetyl cellulose film, a cyclo olefin polymer film, a cyclo olefin copolymer film, and an acrylic film.
  11. 제1항에 있어서, According to claim 1,
    40 내지 100의 Gloss unit을 갖는 방현성 코팅 필름.Anti-glare coating film having 40 to 100 Gloss units.
  12. 제1항에 있어서, According to claim 1,
    90 이상의 투과율을 갖는 방현성 코팅 필름.Anti-glare coating film having a transmittance of 90 or more.
  13. 제1항에 있어서, According to claim 1,
    30 이하의 헤이즈를 갖는 방현성 코팅 필름.Anti-glare coating film having a haze of 30 or less.
PCT/KR2019/017160 2018-12-07 2019-12-06 Resin composition for anti-glare coating and anti-glare coating film prepared thereby WO2020116980A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980080706.4A CN113166586A (en) 2018-12-07 2019-12-06 Resin composition for anti-glare coating and anti-glare coating film prepared therefrom
EP19893597.5A EP3892695A4 (en) 2018-12-07 2019-12-06 Resin composition for anti-glare coating and anti-glare coating film prepared thereby
JP2021524193A JP2022506660A (en) 2018-12-07 2019-12-06 Anti-glare coating resin composition and anti-glare coating film produced containing the same.
US17/267,748 US20210317321A1 (en) 2018-12-07 2019-12-06 Resin composition for anti-glare coating and anti-glare coating film prepared thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0156565 2018-12-07
KR20180156565 2018-12-07
KR1020190160469A KR20200070117A (en) 2018-12-07 2019-12-05 Anti-glare coating resin composition and anti-glare coating film manufatured by including the same
KR10-2019-0160469 2019-12-05

Publications (1)

Publication Number Publication Date
WO2020116980A1 true WO2020116980A1 (en) 2020-06-11

Family

ID=70974723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017160 WO2020116980A1 (en) 2018-12-07 2019-12-06 Resin composition for anti-glare coating and anti-glare coating film prepared thereby

Country Status (2)

Country Link
JP (1) JP2022506660A (en)
WO (1) WO2020116980A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296369B1 (en) 1998-02-17 2001-07-12 기타지마 요시토시 Anti-glare film and polarizing element and display device using them
KR100378340B1 (en) 1998-12-18 2003-03-29 다이니폰 인사츠 가부시키가이샤 A film preventing for the dizziness and use thereof
JP2005099778A (en) * 2003-08-28 2005-04-14 Dainippon Printing Co Ltd Antireflection laminate
JP2006145736A (en) * 2004-11-18 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and image display
KR20100039869A (en) * 2007-08-01 2010-04-16 다이니폰 인사츠 가부시키가이샤 Antireflection laminate
KR20120126068A (en) * 2010-02-15 2012-11-20 제이에스알 가부시끼가이샤 Outdoor device, and antireflective layer for outdoor device
KR20160138101A (en) * 2014-03-26 2016-12-02 린텍 가부시키가이샤 Double-sided adhesive sheet
KR20170082922A (en) 2016-01-07 2017-07-17 주식회사 엘지화학 Resin composition for anti-glare and anti-glare film using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909187B1 (en) * 2006-11-23 2009-01-02 Essilor Int OPTICAL ARTICLE COMPRISING A BICOUCHE ANTI-ABRASION AND ANTI-SCRATCH COATING AND METHOD OF MANUFACTURE
JP5480608B2 (en) * 2009-12-10 2014-04-23 富士フイルム株式会社 Optical film and manufacturing method thereof
US8992786B2 (en) * 2010-04-30 2015-03-31 Corning Incorporated Anti-glare surface and method of making
JP6623505B2 (en) * 2014-05-20 2019-12-25 東洋インキScホールディングス株式会社 Method for producing inorganic fine particle dispersion, inorganic fine particle dispersion, coating film, and laminate
JP6986339B2 (en) * 2015-08-18 2021-12-22 日本精化株式会社 Antireflection film forming composition, antireflection film and its forming method
WO2018221980A1 (en) * 2017-05-31 2018-12-06 코오롱인더스트리 주식회사 Resin composition for coating, and coating film comprising cured product thereof as coating layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296369B1 (en) 1998-02-17 2001-07-12 기타지마 요시토시 Anti-glare film and polarizing element and display device using them
KR100378340B1 (en) 1998-12-18 2003-03-29 다이니폰 인사츠 가부시키가이샤 A film preventing for the dizziness and use thereof
JP2005099778A (en) * 2003-08-28 2005-04-14 Dainippon Printing Co Ltd Antireflection laminate
JP2006145736A (en) * 2004-11-18 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and image display
KR20100039869A (en) * 2007-08-01 2010-04-16 다이니폰 인사츠 가부시키가이샤 Antireflection laminate
KR20120126068A (en) * 2010-02-15 2012-11-20 제이에스알 가부시끼가이샤 Outdoor device, and antireflective layer for outdoor device
KR20160138101A (en) * 2014-03-26 2016-12-02 린텍 가부시키가이샤 Double-sided adhesive sheet
KR20170082922A (en) 2016-01-07 2017-07-17 주식회사 엘지화학 Resin composition for anti-glare and anti-glare film using the same

Also Published As

Publication number Publication date
JP2022506660A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
WO2013187699A1 (en) Siloxane hard coating resin composition
CN107635772B (en) Resin film, laminated film, optical member, display member, front panel, and method for producing laminated film
WO2014163352A1 (en) Polyimide cover substrate
WO2017159997A1 (en) Highly functional af hard coating film
WO2015009114A1 (en) Polycarbonate glazing and method for producing same
WO2012008780A2 (en) Antireflective and antiglare coating composition, antireflective and antiglare film, and method for producing same
WO2017116103A1 (en) Polyimide substrate and display substrate module comprising same
WO2017116171A1 (en) Polysilsesquioxane resin composition for flexible substrate
WO2020149597A1 (en) Optical laminate
WO2014133287A1 (en) Resin composition for encapsulating optical element
WO2014069808A1 (en) Anti-reflective coating composition including siloxane compound, and anti-reflective film of which surface energy is adjusted using same
WO2016060476A1 (en) Optical film coating composition and optical film comprising same
WO2020013461A1 (en) Siloxane oligomer having organic metal, method for producing siloxane oligomer, hard coating composition comprising siloxane oligomer, hard coating film and display device
WO2012173459A2 (en) Composition having high refraction
WO2020116980A1 (en) Resin composition for anti-glare coating and anti-glare coating film prepared thereby
WO2014193199A1 (en) Gas barrier film, and preparation method therefor
WO2014092344A1 (en) Coating composition for layer having low refractive index, and transparent conductive film including same
WO2016108676A1 (en) Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer
WO2014163376A1 (en) Coating composition comprising bis-type silane compound
WO2013147443A1 (en) Resin composition containing ladder-like silsesquioxane polymer for optical film
WO2018221980A1 (en) Resin composition for coating, and coating film comprising cured product thereof as coating layer
WO2018124826A1 (en) Coating compositions capable of realizing low curl and film manufactured therefrom
WO2020235846A1 (en) Uv-curable, highly transparent, and amphiphobic fluorinated silica hybrid material having anti-fingerprint and anti-fouling properties
KR20200070117A (en) Anti-glare coating resin composition and anti-glare coating film manufatured by including the same
WO2013019040A2 (en) Photo-curable organic-inorganic hybrid resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893597

Country of ref document: EP

Effective date: 20210707