WO2020116817A1 - 전력 변환 방법 - Google Patents

전력 변환 방법 Download PDF

Info

Publication number
WO2020116817A1
WO2020116817A1 PCT/KR2019/015757 KR2019015757W WO2020116817A1 WO 2020116817 A1 WO2020116817 A1 WO 2020116817A1 KR 2019015757 W KR2019015757 W KR 2019015757W WO 2020116817 A1 WO2020116817 A1 WO 2020116817A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
primary
transformer
duty
Prior art date
Application number
PCT/KR2019/015757
Other languages
English (en)
French (fr)
Inventor
정병환
서해원
변병주
김현준
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US17/299,140 priority Critical patent/US11742765B2/en
Priority to EP19893926.6A priority patent/EP3893376B1/en
Publication of WO2020116817A1 publication Critical patent/WO2020116817A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a method for converting power in a DC-DC converter, and specifically, an isolated bidirectional DC-DC that enables high-efficiency control in an isolated bidirectional DC-DC converter connected between a DC grid system and a battery.
  • a switching control of a converter it relates to a power conversion method.
  • energy storage devices can be used to store surplus energy generated through renewable sources such as solar and wind power, or when the DC distribution system is unstable or outage As it can be used as a standard DC power source, it can be expected to have an effect of reducing the reliability and stability deterioration due to a disruption in the power supply.
  • bi-directional DC-DC converters are classified into non-isolated or insulated type depending on the type of insulation. In most cases, an isolated bi-directional DC-DC converter is mainly used for system stability.
  • the main method used to improve efficiency is a software method, which is a suitable modulation technique.
  • modulation techniques include a phase shift modulation (PSM) technique that uses only the phase difference between the primary and secondary sides, and a single PWM (SPWM) technique that uses one duty ratio on the primary or secondary side and the phase difference between the two.
  • PSM phase shift modulation
  • SPWM single PWM
  • DPWM Dual PWM
  • PSM PSM is the easiest and most efficient method to apply, but this technique has a disadvantage that efficiency decreases when the light load and I/O voltage ratio increases. Therefore, modulation techniques with additional techniques such as SPWM and DPWM are also used to overcome this disadvantage.
  • SPWM is easier to apply than DPWM, but has the disadvantage of lower efficiency than DPWM at low power.
  • DPWM is difficult to apply than SPWM, but has a higher efficiency at low power. Therefore, in order to obtain high efficiency in all areas, DPWM and SPWM should be properly used.
  • DPWM when lower than a predetermined reference power value, DPWM may be applied, and when higher, SPWM may be used. Even in the case of such a simple hybrid method, conversion efficiency is improved rather than using a single SPWM or DPWM method.
  • the present invention is to provide a power conversion method in a DC-DC converter employing a model-based power calculation technique.
  • the present invention seeks to provide a hybrid power conversion method of SPWM and DPWM that does not require offline calculation.
  • the method of determining the method of converting power and converting the power in the determined manner for each power conversion control cycle, the method of determining the method of converting power and converting the power in the determined manner,
  • a DPWM method having a maximum duty in a step-up or step-down condition given in a control cycle may be selected.
  • the transformer primary side voltage may be driven by a square wave with a first duty phase applied, and the transformer secondary side voltage may be driven by a square wave with a second duty phase applied.
  • the transformer secondary side voltage may be driven by a square wave
  • the transformer primary side voltage may be driven by a square wave with a duty phase applied thereto.
  • the average power is obtained according to the following equation,
  • V pri Primary voltage
  • ⁇ sw angular velocity at the switching frequency of the switching element
  • I s1 I 1
  • I s2 I 2
  • I s3 I 3
  • the average power may be obtained according to the following equation.
  • V pri Primary voltage
  • Duty phase of primary voltage
  • Duty phase of secondary voltage
  • ⁇ sw angular velocity at the switching frequency of the switching element
  • I d1 I 1
  • I d2 I 2
  • I d3 I 3
  • the transformer primary side voltage can be driven by a square wave
  • the transformer secondary side voltage can be driven by a square wave with a duty phase applied.
  • the average power is obtained according to the following equation,
  • V pri V p: primary voltage
  • V sec secondary voltage
  • ⁇ sw angular velocity at the switching frequency of the switching element
  • I s1 I 1
  • I s2 I 2
  • I s3 I 3
  • the average power may be obtained according to the following equation.
  • V pri V p : Primary voltage
  • V sec Secondary voltage
  • Duty phase of primary voltage
  • Duty phase of secondary voltage
  • ⁇ sw angular velocity at the switching frequency of the switching element
  • I d1 I 1
  • I d2 I 2
  • I d3 I 3
  • a step of checking whether soft switching is performed may be further included.
  • the step of checking whether the soft switching is performed may be performed in a manner of checking whether I d1 , I d2 , and I d3 according to the above equation have a corresponding sign.
  • the power conversion method of the present invention has an advantage of selecting a more suitable modulation optimal technique for improving efficiency by calculating power at every control period based on a model of the modulation technique.
  • the power conversion method of the present invention has an advantage in that efficiency can be increased at a lower power than the SPWM technique, thereby increasing the reliability of the DC-DC converter product and lowering the heat dissipation burden.
  • the power conversion method of the present invention has an advantage in that it is unnecessary to perform repetitive calculations offline when developing a new product because it is judged online each time.
  • FIG. 1 is a block diagram of a DC-DC converter capable of performing a power conversion method according to the spirit of the present invention.
  • FIG. 2 is a flowchart illustrating a power conversion method according to the spirit of the present invention.
  • FIG. 3 is a flowchart illustrating a process of selecting an optimal first duty and second duty combination among power conversion methods according to the spirit of the present invention.
  • FIG. 4 is a circuit diagram mainly showing transformers and switching elements that are insulated in the DC-DC converter of FIG. 1.
  • 5A and 5B are waveform diagrams showing the current flowing through the transformer inductor when the primary/secondary coils of the transformer are driven by the SPMW method and the DPWM method during the step-down operation.
  • 6A and 6B are waveform diagrams showing the current flowing through the transformer inductor when the primary/secondary coils of the transformer are driven by the SPMW method and the DPWM method during the step-up operation.
  • 7A and 7B are graphs showing the relationship between the second duty and the RMS current of the inductor when conversion is performed in the DPWM method at the time of step-up and step-down, respectively.
  • FIG. 8 is a simulation circuit diagram for simulating a power conversion method according to the spirit of the present invention.
  • 9A is a graph showing the results of simulation under the conditions of an input voltage of 700V, an output voltage of 820V, and a switching frequency of 8kHz.
  • FIG. 9B is an enlarged graph of part 1 of the graph of FIG. 9A.
  • FIG. 9C is an enlarged graph of part 2 of the graph of FIG. 9A.
  • 10A is a graph showing the results of simulation under the conditions of an input voltage of 750V, an output voltage of 6000V, and a switching frequency of 8kHz.
  • FIG. 10B is an enlarged graph of part 1 of the graph of FIG. 10A.
  • FIG. 10C is an enlarged graph of part 2 of the graph of FIG. 10A.
  • 11C is a waveform diagram illustrating primary and secondary voltages and inductor currents when converting 3kW power under the conditions of FIG. 11A.
  • 11D is a waveform diagram illustrating primary/secondary voltage and inductor current when converting 4.5kW power under the conditions of FIG. 11B.
  • FIG. 12C is a waveform diagram illustrating primary/secondary voltage and inductor current when converting 3kW power under the conditions of FIG. 12A.
  • FIG. 12D is a waveform diagram illustrating primary and secondary voltages and inductor currents when converting 4.5kW power under the conditions of FIG. 12B.
  • first and second may be used to describe various components, but components may not be limited by terms. The terms are only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • FIG. 1 is a configuration diagram of a DC-DC converter capable of performing a power conversion method according to the spirit of the present invention.
  • the illustrated DC-DC converter is an isolated bidirectional converter, of course, the power conversion method of the present invention can be applied to other DC-DC converters.
  • the isolated bi-directional DC-DC converter 100 controls the bi-directional current flow through switching between the DC grid system 10 and the battery 20.
  • a first switch 107 for charging the voltage supplied from the DC grid system 10 a first switch composed of a plurality of switches (109a ⁇ 109d) in parallel connected to the first capacitor (107)
  • the output terminal of the first switching unit 109 is a transformer 110 connected to the primary winding, a secondary output terminal of the transformer 110 and a plurality of switches 113a to 113d are full-bridged
  • a second switching unit 113 composed of, the second capacitor 114 to store the output voltage of the second switching unit 113 to charge the battery 20, the switching of the first and second switching unit 109,113 Switching control unit 122 for controlling, the second
  • the isolated bidirectional DC-DC converter 100 supplies the voltage from the DC grid system 10 to the battery 20 or supplies the voltage stored in the battery 20 to the DC grid system 10, the DC grid system ( 10) A bidirectional DC-DC voltage conversion is performed between the battery 20 and the battery 20.
  • the DC grid system 10 receives the energy stored in the battery 20 when a large load (medium load) is connected while supplying power to a load (not shown) connected to it, and handles a large load, and, conversely, a small load ( At light load), the remaining energy is stored in the battery 20.
  • the battery 20 is switched to a charging mode so that the DC grid system 10 supplies a voltage to the battery 20 for charging.
  • the first capacitor 107 is connected in parallel to the DC grid system 10 to charge a voltage output from the DC grid system 10 or to charge a voltage for supplying the DC grid system 10.
  • the first wiring breaker 104 protects devices and circuits by blocking the line in the event of a short circuit or overload, thereby preventing a fire or accident that may occur due to a short circuit, overload, or the like.
  • the voltage output from the DC grid system 10 is charged to the capacitor 107 by turning on the first wiring breaker 104.
  • the first line blocking unit 125 is connected in parallel to the first wiring blocking unit 104 and is turned off according to the operation of the DC-DC converter 100 to cut off the line as necessary. Of course, when turned on, the line is connected to supply power from the DC grid system 10.
  • the first charging resistor 123 is connected in parallel to the (+) terminal of the first wiring breaker 104, and the second charging resistor 124 is connected in parallel to the (-) terminal.
  • the first line blocking unit 125 is connected to the first and second charging resistors 123 and 124 in series.
  • the first switching unit 109 includes a first switch 109a, a second switch 109b, a third switch 109c and a fourth switch 109d connected in the form of a full bridge. At this time, the contact of the first switch 109a and the second switch 109b is connected to one side of the first capacitor 107, and the contact of the third switch 109c and the fourth switch 109d is the first capacitor 107 ) To the other side.
  • the first to fourth switches 109a to 109d may be implemented as MOSFET or IGBT switches.
  • the transformer 110 transfers a voltage from the primary side to the secondary side or from the secondary side to the primary side, and one side of the primary side winding 110a is a contact point N1 to which the first switch 109a and the third switch 109c are connected. ), and the other side of the primary side winding 110a is connected to the N2 of which the second switch 109b and the fourth switch 109d are connected.
  • the second switching unit 113 includes a fifth switch 113a, a sixth switch 113b, a seventh switch 113c and an eighth switch 113d connected in the form of a full bridge.
  • the contact (N3) of the fifth switch (113a) and the seventh switch (113c) is connected to one side of the secondary winding (110b) of the transformer 110, the sixth switch (113b) and the eighth switch (113d)
  • the contact (N4) of the transformer 110 is connected to the other side of the secondary winding 110b.
  • the fifth to eighth switches 113a to 113d may also be implemented as MOSFET or IGBT switches.
  • the second capacitor 114 has one side connected to the contacts of the fifth switch 113a and the sixth switch 113b and the other side connected to the contacts of the seventh switch 113c and the eighth switch 113d.
  • the voltage stored in the second capacitor 114 is charged to the battery 20.
  • the second wiring breaker 118 protects the equipment and circuits by blocking the line in the event of a short circuit or overload to prevent a fire or accident that may occur due to a short circuit, overload, or the like.
  • the second wiring blocker 118 is turned on to charge the battery 20 with the voltage charged in the second capacitor 114 or to charge the voltage of the battery 20 to the second capacitor 114.
  • the second line blocking unit 128 is connected in parallel to the second wiring blocking unit 118, and is turned off according to the operation of the DC-DC converter 100 to cut off the line as necessary. Of course, when turned on, the line is connected to charge the voltage to the battery 20 or to discharge the voltage from the battery 20.
  • the third charging resistor 126 is connected in parallel to the (+) terminal of the second wiring breaker 118, and the fourth charging resistor 127 is connected in parallel to the (-) terminal.
  • the second line blocking unit 128 is connected to the third and fourth charging resistors 126 and 127 in series.
  • the isolated bidirectional DC-DC converter 100 is a first fuse unit 101, a second fuse unit 102, a first EMCC between the DC grid system 10 and the first capacitor 107
  • the voltage detection unit 115, the second inductor 116, the second current detection unit 117, the second EMC filter unit 119, the third fuse unit 120 and the fourth fuse unit 121 may be further included. .
  • the first fuse unit 101 and the second fuse unit 102 are respectively installed on each line connected to the (+) terminal and the (-) terminal of the DC grid system 10, so that an overcurrent of a predetermined reference current or higher is applied to the corresponding line. When flowing, each line is opened.
  • the DC grid system 10 supplies DC voltage to a connected load (not shown) or charges the battery 20 by supplying a voltage.
  • the first EMC filter unit 103 is connected to the DC grid system 10 in parallel to protect the DC-DC converter 100 so that electromagnetic waves or noise signals from nearby devices do not interfere with the performance of other devices or devices. At the same time, it removes electromagnetic or noise signals from other nearby devices to protect the converter from the effects of electromagnetic waves so that it can provide normal performance.
  • the first inductor 105 is connected in series to the first fuse unit 101 and is used to control the current provided by the DC grid system 10.
  • the first current measuring unit 106 detects a current flowing through the first inductor 105.
  • the first current measuring unit 106 may use a current transformer (CT).
  • CT current transformer
  • the first voltage detector 108 detects the voltage charged in the first capacitor 107.
  • the first voltage detector 108 may use a transformer PT.
  • the first auxiliary inductor 111 has the other side connected to the primary side winding 110a of the transformer 110, one side connected to the N1 contact, and the other side connected to one side of the primary side winding 110a.
  • the second auxiliary inductor 112 is connected in series to the secondary side winding 110b of the transformer 110, one side is connected to one side of the secondary side winding 11b, and the other side is connected to the second switching portion 113. .
  • the second voltage detector 115 detects the voltage stored in the second capacitor 114.
  • the second voltage detection unit 115 may be implemented by, for example, a transformer PT.
  • the second inductor 116 has one side connected to the contact point to which the fifth switch 113a and the sixth switch 113b are connected, and the other side is connected to the second wiring blocking portion 118 at the rear end.
  • the second current detector 117 detects a current flowing through the second inductor 116.
  • the second current detection unit 117 may be implemented as a current transformer (CT).
  • the second EMC filter unit 119 is connected in parallel to the second wiring blocking unit 118, and the performance of a device or device having different electromagnetic or noise signals from various devices generating electromagnetic waves, such as the first EMC filter unit 103 It protects the device not to disturb the device and at the same time removes electromagnetic or noise signals from other devices to protect the device from the effects of electromagnetic waves so that normal performance can be provided.
  • the third fuse unit 120 and the fourth fuse unit 121 are respectively installed on the lines connected to the (+) and (-) terminals of the battery 20, and when an overcurrent exceeding a preset reference current flows in the respective lines.
  • the track is opened.
  • the switching control unit 122 is the switching control unit 122, the first to fourth switches 109a to 109d and the second switching of the first switching unit 109
  • the switching control unit 122 By controlling the switching of the fifth to eighth switches 113a to 113d of the unit 113 independently, the bidirectional power flow between the DC grid system 10 and the battery 20 is controlled.
  • the switching control by the switching control unit 122 is the voltage of the DC grid system 10, that is, the charging voltage charged in the first capacitor 107 and the voltage of the battery 20, that is charged in the second capacitor 114 Depending on the size of the charging voltage, PSM switching control, SPWM switching control and DPWM switching control are used in combination. This is to detect the voltage of the DC grid system 10 and the voltage of the battery 20 and use the PSM, SPWM, and DPWM switching controls in combination depending on the difference between the two voltages when the battery 20 is charged or discharged.
  • FIG. 2 is a flowchart illustrating a power conversion method according to the spirit of the present invention.
  • the illustrated power conversion method is a method of determining power conversion method for each power conversion control cycle and converting power in a determined manner, and may be performed centering on the switching control unit 122 of FIG. 1.
  • the power conversion method includes: calculating an average power in a transformer inductor when converting SPWM power in a control cycle (S120); Calculating the average power in the transformer inductor when converting the power of the DPWM method in the control cycle (S140); And converting power in a manner in which the average power of the calculated transformer inductor is large (S160).
  • duty refers to a time period in which a square wave alternating a + region and a-region maintains 0 while in progress
  • a duty phase means a phase interval of a square wave during the duty period
  • the transformer secondary side voltage is driven by a square wave
  • the transformer primary side voltage is driven by a square wave with a duty phase applied
  • the transformer primary side voltage is driven by a square wave
  • the transformer The secondary voltage means a method of driving a square wave with a duty phase applied thereto.
  • driving the primary and secondary sides of the transformer means operating the switching elements connected to each 1/2-side coil (winding wire).
  • the DPWM method means that the transformer primary side voltage is driven by a square wave with a first duty (delay) phase applied, and the transformer secondary side voltage is driven by a square wave with a second duty phase applied.
  • driving the primary and secondary sides of the transformer means operating the switching elements connected to each 1/2-side coil (winding wire).
  • the second duty (and the second duty phase) is greater than the first duty (and the first duty phase) in the step-up operation, and the second duty is greater than the first duty (and the first duty phase) in the step-down operation. (And the second duty phase) become smaller.
  • the smaller of the first duty and the second duty will be referred to as the duty duty and the larger one will be referred to as the primary duty.
  • the average power in the transformer inductor is calculated during power conversion of the SPWM method and the DPWM method by applying the primary side voltage value and the secondary side voltage value of the transformer. .
  • step of calculating the average power in the inductor when converting the power of the SPWM scheme shown (S120) only one fixed power value needs to be calculated, but the step of calculating the average power of the inductor during the power conversion of the illustrated DPWM scheme (S140) In ), the most suitable among the average powers obtained for various combinations of the first duty and the second duty is selected.
  • a DPWM method having a maximum duty is selected under a step-up or step-down condition given in a control cycle. More specifically, in the calculation process, the DPWM method is selected when the smaller of the first duty and the second duty has the maximum duty.
  • step of converting the power the average power of the SPWM inductor calculated in step S120 and the average power of the inductor of the DPWM method using the first/second duty combination calculated and selected in step S140 are compared (S162). ). As a result of the comparison, a power conversion operation is performed in a corresponding control period in a manner that the average power is large (S164, S168). If the DPWM method is selected (S164), the power conversion operation is performed in the corresponding control cycle in the DPWM method using the first/second duty combination selected in step S140. In the figure, if the DPWM method is selected, it is examined whether soft switching is performed when controlling the selected method (S166). However, in step S140, when selecting the combination having the longest duty among the various first and second duty combinations, it is possible to examine whether each of the first duty and the second duty combination is soft switched, in this case, S166 Steps may be omitted.
  • FIG. 3 is a flowchart mainly showing a process of selecting an optimal first duty and second duty combination among power conversion methods according to the spirit of the present invention.
  • the process of selecting the optimal first and second duty combinations illustrated is an example, and it goes without saying that the same idea can be implemented in different ways.
  • Max_Theta is a variable related to the above-mentioned priority duty
  • Duty_S is a variable related to the above-mentioned duty.
  • FIG. 4 is a circuit diagram mainly showing transformers and switching elements that are insulated in the DC-DC converter of FIG. 1.
  • (112) is omitted, and the primary and secondary winding ratios of the transformer are 1:1, and a more specific implementation is expressed.
  • FIGS. 5A and 5B show primary/secondary coils of a transformer in a step-down operation using a SPMW method and a DPWM method. It shows the current that flows through the transformer inductor when driven.
  • the switching elements at both ends of the transformer are controlled so that the voltage of the second coil is lower than that of the first coil, and the width is larger than that of the first coil in both the SPMW and DPWM methods.
  • the inductor current value at the rising point ( ⁇ 0 ) of the secondary voltage waveform without duty is called I 2
  • the inductor current value at the polling time ( ⁇ 2 ) of the primary voltage waveform is I 3 .
  • the polling timing ( ⁇ 3 ) of the secondary voltage waveform is also shown.
  • the inductor current can be modeled in the form of a triangular wave with I1, I2, and I3 current values as vertices.
  • I1, I2, and I3 current values as vertices.
  • Equation 1 a specific calculation formula of the current values of I1, I2, and I3 is as shown in Equation 1 below.
  • V pri is the primary-side voltage
  • V sec is the secondary-side voltage
  • is the phase difference between the primary-side voltage and the secondary-side voltage.
  • V pri can be briefly expressed as V p .
  • is the duty phase of the primary voltage
  • ⁇ sw is the angular velocity at the switching frequency of the switching element
  • g is the input/output voltage ratio of the primary and secondary sides.
  • Vpri is the primary-side voltage
  • Vsec is the secondary-side voltage
  • is the phase difference between the primary-side voltage and the secondary-side voltage.
  • the s1 , I s2 , I s3 to s is to emphasize that the s is SPWM, and can also be briefly expressed as I 1 , I 2 , I 3 .
  • Equation 2 Using the current values of I 1 , I 2 , and I 3 , a specific calculation formula for calculating the average power (P ave ) in the inductor when converting power of the SPWM method is expressed by Equation 2 below.
  • the inductor current value at the rising point ( ⁇ 0 ) before the duty of the secondary voltage waveform is called I 2
  • the inductor current value at the rising time ( ⁇ 2 ) after the duty of the primary voltage waveform is called I 1
  • the inductor current value at the polling time ( ⁇ 3 ) of the primary voltage waveform was referred to as I 3 .
  • I 2 is maintained until the rising time ( ⁇ 1 ) after the duty of the secondary voltage waveform.
  • the inductor current may be modeled as a combination of a square wave and a triangular wave using I 1 , I 2 , and I 3 current values as vertices.
  • I 1 , I 2 , and I 3 current values are as follows.
  • V pri is the primary-side voltage
  • V sec is the secondary-side voltage
  • is the phase difference between the primary-side voltage and the secondary-side voltage.
  • is the duty phase of the primary side voltage
  • is the duty phase of the secondary side voltage
  • ⁇ sw is the angular velocity at the switching frequency of the switching element
  • g is the input/output voltage ratio of the primary side and the secondary side.
  • I d1 , I d2 , and I d3 s is for emphasizing that it is DPWM, and can also be briefly expressed as I 1 , I 2 , and I 3 .
  • Equation 4 Using the current values of I 1 , I 2 , and I 3 , a specific calculation formula for calculating the average power (P ave ) in the inductor when converting the power of the DPWM method is expressed by Equation 4 below.
  • step (S166) (S1166) of examining whether the soft switching is performed at the time of step-down is, for example, I1, I2, and I3 shown in FIG. It can also be performed quickly by checking whether it is negative or not. Rather than checking the current value, which is a real value, almost only binary values are checked for + and -, so a very quick review is possible.
  • FIGS. 6A and 6B show primary/secondary coils of the transformer in the SPMW method and the DPWM method in the step-up operation. It shows the current that flows through the transformer inductor when driven.
  • the switching elements at both ends of the transformer are controlled such that both the SPWM method and the DPWM method have a lower voltage of the first coil than the second coil, while the width has a larger waveform.
  • the inductor current value at the rising point ( ⁇ 0 ) of the primary voltage waveform without duty is called I 1
  • the inductor current value at the polling time point ⁇ 2 of the secondary voltage waveform is I 3 .
  • the polling time ( ⁇ 3 ) of the primary voltage waveform is also shown.
  • the inductor current can be modeled in the form of a triangular wave with I 1 , I 2 , and I 3 current values as vertices.
  • I 1 , I 2 , and I 3 current values as vertices.
  • Equation 5 a specific calculation formula of the current values of I 1 , I 2 , and I 3 is as shown in Equation 5 below.
  • V pri is the primary-side voltage
  • V sec is the secondary-side voltage
  • is the phase difference between the primary-side voltage and the secondary-side voltage.
  • V sec can be briefly expressed as V s .
  • is the duty phase of the primary voltage
  • ⁇ sw is the angular velocity at the switching frequency of the switching element
  • g is the input/output voltage ratio of the primary and secondary sides.
  • the s1 , I s2 , I s3 to s is to emphasize that the s is SPWM, and can also be briefly expressed as I 1 , I 2 , I 3 .
  • Equation 6 Using the current values of I 1 , I 2 , and I 3 , a specific calculation formula for calculating the average power (P ave ) in the inductor when converting the power of the SPWM method is expressed by Equation 6 below.
  • the inductor current value at the rising point ( ⁇ 0 ) before the duty of the primary voltage waveform is called I 1 ,
  • I 2 The inductor current value at the rising time ( ⁇ 2 ) after the duty of the secondary voltage waveform was referred to as I 2
  • I 3 the inductor current value at the polling time ( ⁇ 3 ) of the secondary voltage waveform was referred to as I 3
  • I 1 is maintained until the rising time ( ⁇ 1 ) after the duty of the primary voltage waveform.
  • the inductor current may be modeled as a combination of a square wave and a triangular wave using I 1 , I 2 , and I 3 current values as vertices.
  • I 1 , I 2 , and I 3 current values as vertices.
  • Equation 7 a specific calculation formula of the current values of I 1 , I 2 , and I 3 is as shown in Equation 7.
  • V pri is the primary-side voltage
  • V sec is the secondary-side voltage
  • is the phase difference between the primary-side voltage and the secondary-side voltage.
  • V sec can be briefly expressed as V s .
  • is the duty phase of the primary side voltage
  • is the duty phase of the secondary side voltage
  • ⁇ sw is the angular velocity at the switching frequency of the switching element
  • g is the input/output voltage ratio of the primary side and the secondary side.
  • s is for emphasizing that DPWM, and may be simply expressed as I 1 , I 2 , and I 3 .
  • Equation 8 Using the current values of I 1 , I 2 , and I 3 , a specific calculation formula for calculating the average power (P ave ) in the inductor when converting the power of the DPWM method is represented by Equation 8 below.
  • step (S166) (S1166) of examining whether the soft switching is performed at the time of step-down is, for example, whether I 1 , I 2 , and I 3 shown in FIG. 6B have a sign shown in FIG. It can also be done quickly by inspection.
  • FIG. 7A and 7B are graphs showing a relationship between an RMS current of an inductor and an average duty (referred to as Socond Duty in the graph) when conversion is performed in the DPWM method at the time of step-up and step-down, respectively. It can be seen from the graph that the RMS value of the inductor current decreases when the same duty increases at the same power. That is, the larger the duty (Socond Duty), the higher the reduction in conduction loss.
  • FIG. 8 is a simulation circuit diagram for simulating a power conversion method according to the spirit of the present invention.
  • the illustrated simulation circuit diagram is for simulating the transformer and switching elements in which the insulation of FIG. 4 is made.
  • the input voltage is 700-800 V
  • the output voltage is 580-850 V
  • the switching frequency is 8 khz
  • the inductance of the auxiliary inductor at the transformer input stage is simulated to be 110 ⁇ H.
  • FIG. 9A is a graph showing the results of simulation under the conditions of 700V input voltage, 820V output voltage, and 8kHz switching frequency
  • FIG. 9B is an enlarged portion 1 of the graph of FIG. 9A
  • FIG. 9C is a graph of FIG. 9A It is an enlarged part of part 2.
  • a second duty is formed, during the current duty, the output current increases almost linearly, and a significant current is induced in the auxiliary inductor. Looking more specifically, it can be seen that when the output current is continuously increased from 0 to 20, the second duty is output without being interrupted accordingly.
  • FIG. 10A is a graph showing the results of simulation under the conditions of 750V input voltage, 6000V output voltage, and 8kHz switching frequency
  • FIG. 10B is an enlarged portion 1 of the graph of FIG. 10A
  • FIG. 10C is a graph of FIG. 10A It is an enlarged part of part 2.
  • a second duty is formed, during the current duty, the output current increases almost linearly, and a significant current is induced in the auxiliary inductor. Looking more specifically, it can be seen that when the output current is continuously increased from 0 to 20, the second duty is output without being interrupted accordingly.
  • 11A is a hybrid method of DPWM and SPWM according to the present invention, and a conventional SPWM single method in a condition that the input voltage is 750V, the output voltage is 600V, the switching frequency is 4khz, and the inductance of the auxiliary inductor of the transformer input terminal is 110 ⁇ H.
  • the conversion efficiency at the time of each conversion is shown. As shown, when the hybrid scheme of DPWM and SPWM according to the present invention is used at low power (ie, current), efficiency is clearly improved, and it can be seen that at high power, the conversion efficiency of both schemes is almost the same.
  • 11B is a hybrid method of DPWM and SPWM according to the present invention and a conventional SPWM single method in a condition that the input voltage is 700 V, the output voltage is 820 V, the switching frequency is 4 khz, and the inductance of the auxiliary inductor of the transformer input terminal is 110 ⁇ H.
  • the conversion efficiency at the time of each conversion is shown. As shown in the figure, when the hybrid scheme of DPWM and SPWM according to the present invention is used at low power (ie, current), efficiency is clearly improved, and efficiency can be clearly improved even at high power.
  • FIG. 11C illustrates the primary/secondary side voltage and inductor current when converting 3kW power under the conditions of FIG. 11A
  • FIG. 11D illustrates the primary/secondary side voltage and inductor current when converting 4.5kW power under the conditions of FIG. 11B Did.
  • the input voltage is 750V
  • the output voltage is 600V
  • the switching frequency is 8khz
  • the inductance of the auxiliary inductor of the transformer input stage is 110 ⁇ H
  • efficiency is greatly improved when the hybrid method of the DPWM and SPWM according to the present invention is used at low power (ie, current), and the efficiency is clearly improved when the hybrid method of the DPWM and SPWM according to the present invention is used even at high power. It can be seen that it improves.
  • the input voltage is 700V
  • the output voltage is 820V
  • the switching frequency is 8khz
  • the inductance of the auxiliary inductor of the transformer input terminal is 110 ⁇ H
  • the conversion efficiency at the time of each conversion is shown. As shown in the figure, when the hybrid scheme of DPWM and SPWM according to the present invention is used at low power (ie, current), efficiency is greatly improved, and it can be seen that efficiency is greatly improved even at high power.
  • FIG. 12C illustrates the primary/secondary side voltage and inductor current when converting 3kW power under the conditions of FIG. 12A
  • FIG. 12D illustrates the primary/secondary side voltage and inductor current when converting 4.5kW power under the conditions of FIG. 12B.
  • first switching unit 110 transformer
  • the present invention relates to a method for converting power in a DC-DC converter, and can be used in the converter field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명의 전력 변환 제어 주기 마다, 전력을 변환하는 방식을 결정하고, 결정된 방식으로 전력을 변환하는 방법은, 제어 주기에서 SPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계; 제어 주기에서 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계; 및 산정된 변압기 인덕터 평균 전력이 큰 방식으로 전력을 변환하는 단계를 포함할 수 있다. 여기서, 상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 제어 주기에 주어진 승압 또는 강압 조건에서 최대 듀티를 가지는 DPWM 방식을 선택할 수 있다.

Description

전력 변환 방법
본 발명은 DC-DC 컨버터에서의 전력 변환 방법에 관한 것으로서, 상세하게는 DC 그리드(Grid) 시스템과 배터리 간에 연결된 절연형 양방향 DC-DC 컨버터에서 고효율의 제어가 가능하도록 하는 절연형 양방향 DC-DC 컨버터의 스위칭 제어로서, 전력 변환 방법에 관한 것이다.
최근 디지털 부하, 전기차 등의 증가로 인하여 전력의 소비 패턴이 교류전력에서 직류전력으로 변환되고 있는 추세이며, 더불어 태양광, 풍력, 에너지저장장치(ESS) 분산전원의 효과를 극대화할 수 있는 DC 그리드(Grid) 시스템에 대한 관심이 높아지고 있다.
이러한 DC 그리드 시스템이 분산전원 시스템과 같이 연계되어 있는 경우 에너지저장장치(ESS)를 활용하여 태양광, 풍력 등 신재생원을 통해 발생한 잉여의 에너지를 저장할 수도 있고 직류배전계통이 불안전하거나 정전일 경우 기준 직류전원으로 활용할 수 있어 전력 공급에 차질이 생겨 신뢰성 및 안정성의 저하를 줄일 수 있는 효과를 기대할 수 있다.
이에, DC 그리드와 ESS 장치(또는 배터리)를 연결하기 위해 양방향 DC-DC 컨버터의 보급이 확대되고 있다. 일반적으로 양방향 DC-DC 컨버터는 절연형태에 따라 비절연형 또는 절연형으로 구분되는데, 대부분 시스템의 안정성을 위해 절연형 양방향(Dual Active) DC-DC 컨버터가 주로 사용되고 있다.
듀얼 액티브 DC-DC 컨버터에서 효율 향상을 위해서 사용되는 주된 방법은 소프트웨어적인 방법인 적절한 모듈레이션 기법을 적용한다. 이러한 모듈레이션 기법은 1차측과 2차측의 위상차이만 사용하는 Phase shift Modulation(PSM) 기법과 1차측 또는 2차측의 1개의 듀티비와 이 둘 사이의 위상차이를 이용하는 Single PWM(SPWM) 기법, 1차측과 2차측 둘다의 듀티비와 이 둘 사이의 위상차이를 이용하는 Dual PWM(DPWM) 기법이 있다.
이중 가장 적용하기 쉬우면서 효율이 좋은 것은 PSM 기법이지만 이 기법의 경우 경부하와 입출력 전압비가 커질 경우 효율이 낮아진다는 단점이 존재한다. 따라서, 이러한 단점을 극복하기 위해서 SPWM과 DPWM과 같이 추가적인 기법들이 들어간 모듈레이션 기법들을 사용하기도 한다.
SPWM의 경우 DPWM보다 좀더 적용하기 쉽지만 낮은 전력에서 DPWM보다 효율이 낮다는 단점이 존재하고, DPWM의 경우 SPWM 보다 적용하기는 어렵지만 낮은 전력에서 효율이 좀더 높다는 장점이 존재한다. 따라서, 전 영역에서 높은 효율을 얻기 위해서는 DPWM과 SPWM을 적절히 사용해야 한다.
매우 간략하게, 소정 기준 전력값 보다 낮은 경우는 DPWM을 적용하고, 보다 높은 경우에는 SPWM을 사용하도록 구현할 수 있다. 이러한 단순한 하이브리드 방식의 경우에도, SPWM 또는 DPWM 단일 방식으로 사용하는 것보다는 변환 효율이 개선된다.
그러나, DPWM의 경우 변수가 많기 때문에 기존의 하이브리드 방식들의 경우 오프라인으로 값들을 구해놓고 적용하는 방식들이 대다수이며, 미리 구해진 값들이 정확하지 않으면, 정확한 경우보다 현저한 효율 저하가 나타난다. 따라서 입출력 전압 및 컨버터의 변수들이 변하면 반복적으로 다시 구해줘야 한다는 구현상 난점이 존재한다.
본 발명은 모델 기반의 전력계산 기법을 도입한 DC-DC 컨버터에서의 전력 변환 방법을 제공하고자 한다.
보다 구체적으로, 각 모듈레이션 간의 전력비교를 통해 적합한 모듈레이션 기법을 실시간으로 적용할 수 있는 전력 변환 방법을 제공하고자 한다.
본 발명은 오프라인 계산 필요 없는 SPWM과 DPWM의 하이브리드 방식의 전력 변환 방법을 제공하고자 한다.
본 발명의 일 측면에 따른 전력 변환 방법은, 전력 변환 제어 주기 마다, 전력을 변환하는 방식을 결정하고, 결정된 방식으로 전력을 변환하는 방법에 있어서,
제어 주기에서 SPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계; 제어 주기에서 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계; 및 산정된 변압기 인덕터 평균 전력이 큰 방식으로 전력을 변환하는 단계를 포함할 수 있다.
여기서, 상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 제어 주기에 주어진 승압 또는 강압 조건에서 최대 듀티를 가지는 DPWM 방식을 선택할 수 있다.
여기서, 변압기의 1차측 전압값과 2차측 전압값을 적용하여, 상기 SPWM 방식 및 상기 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정할 수 있다.
여기서, 상기 DPWM 방식은, 변압기 1차측 전압은 제1 듀티 위상이 가해진 구형파로 구동시키며, 변압기 2차측 전압은 제2 듀티 위상이 가해진 구형파로 구동시킬 수 있다.
여기서, 승압 동작시 SPWM 방식은, 변압기 2차측 전압은 구형파로 구동시키며, 변압기 1차측 전압은 듀티 위상이 가해진 구형파로 구동시킬 수 있다.
여기서, 상기 SPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하고,
Figure PCTKR2019015757-appb-img-000001
Figure PCTKR2019015757-appb-img-000002
(V pri : 1차측 전압, V sec = V s : 2차측 전압,
φ : 1차측 전압과 2차측 전압의 위상차,
α : 1차측 전압의 듀티 위상,
ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
g : 1차측과 2차측의 입출력 전압비
I s1 = I 1, I s2 = I 2, I s3 = I 3
P ave : 평균 전력)
상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구할 수 있다.
Figure PCTKR2019015757-appb-img-000003
Figure PCTKR2019015757-appb-img-000004
(V pri : 1차측 전압, V sec = V s : 2차측 전압,
φ : 1차측 전압과 2차측 전압의 위상차,
α : 1차측 전압의 듀티 위상, β : 2차측 전압의 듀티 위상
ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
g : 1차측과 2차측의 입출력 전압비
I d1 = I 1, I d2 = I 2, I d3 = I 3
P ave : 평균 전력)
여기서, 강압 동작시 SPWM 방식은, 변압기 1차측 전압은 구형파로 구동시키며, 변압기 2차측 전압은 듀티 위상이 가해진 구형파로 구동시킬 수 있다.
여기서, 상기 SPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하고,
Figure PCTKR2019015757-appb-img-000005
Figure PCTKR2019015757-appb-img-000006
(V pri = V p : 1차측 전압, V sec : 2차측 전압,
φ : 1차측 전압과 2차측 전압의 위상차,
α : 1차측 전압의 듀티 위상,
ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
g : 1차측과 2차측의 입출력 전압비
I s1 = I 1, I s2 = I 2, I s3 = I 3
P ave : 평균 전력)
상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구할 수 있다.
Figure PCTKR2019015757-appb-img-000007
Figure PCTKR2019015757-appb-img-000008
(V pri = V p : 1차측 전압, V sec : 2차측 전압,
φ : 1차측 전압과 2차측 전압의 위상차,
α : 1차측 전압의 듀티 위상, β : 2차측 전압의 듀티 위상
ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
g : 1차측과 2차측의 입출력 전압비
I d1 = I 1, I d2 = I 2, I d3 = I 3
P ave : 평균 전력)
여기서, 상기 DPWM 방식을 선택한 경우, 선택된 방식으로 제어할 때, 소프트 스위칭이 이루어지는지 확인하는 단계를 더 포함할 수 있다.
여기서, 상기 소프트 스위칭이 이루어지는지 확인하는 단계는, 상기 수학식에 따른 I d1, I d2, I d3가 해당 부호를 가지는지 검사하는 방식으로 수행될 수 있다.
상술한 구성의 본 발명의 전력 변환 방법을 실시하면, DC-DC 컨버터에서의 전력 변환 효율을 높일 수 있는 이점이 있다.
구체적으로, 본 발명의 전력 변환 방법은, 모듈레이션 기법의 모델을 기반으로 매 제어 주기마다 전력을 계산하여 효율 향상을 위한 더 적합한 모듈레이션 최적 기법을 선택할 수 있는 이점이 있다.
본 발명의 전력 변환 방법은, SPWM 기법보다 저전력에서 효율이 올라 갈수 있어, DC - DC 컨버터 제품 신뢰도를 높이고, 방열 부담을 낮출 수 있는 이점이 있다.
본 발명의 전력 변환 방법은, 온라인으로 매번 판단하기 때문에 신규 제품의 개발 시 오프라인으로 반복적인 계산을 수행할 필요가 없다는 이점이 있다.
도 1은 본 발명의 사상에 따른 전력 변환 방법을 수행할 수 있는 DC-DC 컨버터의 구성도.
도 2는 본 발명의 사상에 따른 전력 변환 방법을 도시한 흐름도.
도 3은 본 발명의 사상에 따른 전력 변환 방법 중 최적의 제1 듀티 및 제2 듀티 조합을 선택하는 과정을 중심으로 도시한 흐름도.
도 4는 도 1의 DC-DC 컨버터에서 절연이 이루어지는 변압기 및 스위칭 소자들을 중심으로 표현한 회로도.
도 5a 및 5b는 강압 동작시에 SPMW 방식 및 DPWM 방식으로 변압기의 1차/2차측 코일들을 구동시킬 때, 변압기 인덕터에 흐르게 되는 전류를 도시한 파형도.
도 6a 및 6b는 승압 동작시에 SPMW 방식 및 DPWM 방식으로 변압기의 1차/2차측 코일들을 구동시킬 때, 변압기 인덕터에 흐르게 되는 전류를 도시한 파형도.
도 7a 및 7b는 각각 승압시와 강압시에 DPWM 방식으로 변환을 수행하였을 때, 버금 듀티(Second Duty)와 인덕터의 RMS 전류와의 관계를 도시한 그래프.
도 8은 본 발명의 사상에 따른 전력 변환 방법을 시뮬레이션하기 위한 시뮬레이션 회로도.
도 9a는 입력 전압이 700V, 출력 전압이 820V, 스위칭주파수 8kHz의 조건으로 시뮬레이션한 결과를 나타낸 그래프.
도 9b는 도 9a의 그래프 중 1번 부분을 확대한 그래프.
도 9c는 도 9a의 그래프 중 2번 부분을 확대한 그래프.
도 10a는 입력 전압이 750V, 출력 전압이 6000V, 스위칭주파수 8kHz의 조건으로 시뮬레이션한 결과를 나타낸 그래프.
도 10b는 도 10a의 그래프 중 1번 부분을 확대한 그래프.
도 10c는 도 10a의 그래프 중 2번 부분을 확대한 그래프.
도 11a는 입력전압이 750V, 출력전압이 600V이고, 스위칭 주파수는 4khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한 그래프.
도 11b는 입력전압이 700V, 출력전압이 820V이고, 스위칭 주파수는 4khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한 그래프.
도 11c는 도 11a의 조건에서 3kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 파형도.
도 11d는 도 11b의 조건에서 4.5kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 파형도.
도 12a는 입력전압이 750V, 출력전압이 600V이고, 스위칭 주파수는 8khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한 그래프.
도 12b는 입력전압이 700V, 출력전압이 820V이고, 스위칭 주파수는 8khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한 그래프.
도 12c는 도 12a의 조건에서 3kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 파형도.
도 12d는 도 12b의 조건에서 4.5kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 파형도.
이하, 본 발명의 실시를 위한 구체적인 실시예를 첨부된 도면들을 참조하여 설명한다.
본 발명을 설명함에 있어서 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지 않을 수 있다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 연결되어 있다거나 접속되어 있다고 언급되는 경우는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해될 수 있다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 명세서에서, 포함하다 또는 구비하다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다.
또한, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1은 본 발명의 사상에 따른 전력 변환 방법을 수행할 수 있는 DC-DC 컨버터의 구성도이다. 도시한 DC-DC 컨버터는 절연성 양방향 컨버터인데, 다른 방식의 DC-DC 컨버터에서 본 발명의 전력 변환 방법이 적용될 수 있음은 물론이다.
도 1을 참조하면, 본 발명에 따른 절연형 양방향 DC-DC 컨버터(100)는 DC 그리드 시스템(10)과 배터리((20) 사이에서 스위칭을 통해 양방향 전류 흐름을 제어한다. 이를 위해 기본적으로 고장발생시 DC 그리드 시스템(10)에 연결된 선로를 차단하는 제1배선용차단부(104), 상기 제1배선용차단부(104)에 병렬연결되어 동작에 따라 선로를 차단하는 제1선로차단부(125), 상기 DC 그리드 시스템(10)에서 공급된 전압을 충전하는 제1커패시터(107), 상기 제1커패시터(107)에 병렬연결되고 다수의 스위치(109a~109d)가 풀브릿지 형태로 구성된 제1스위칭부(109), 상기 제1스위칭부(109)의 출력단이 1차측 권선에 연결된 변압기(110), 상기 변압기(110)의 2차측 출력단에 연결되고 다수의 스위치(113a~113d)가 풀브릿지 형태로 구성된 제2스위칭부(113), 상기 제2스위칭부(113)의 출력전압을 저장하여 배터리(20)를 충전하는 제2커패시터(114), 상기 제1,2스위칭부(109,113)의 스위칭을 제어하는 스위칭 제어부(122), 고장발생시 상기 배터리(20)에 연결된 선로를 차단하는 제2배선용차단부(118), 상기 제2배선용차단부(118에 병렬연결되어 동작에 따라 선로를 차단하는 제2선로차단부(128)를 포함하여 구성된다.
이러한 절연형 양방향 DC-DC 컨버터(100)는 DC 그리드 시스템(10)에서 전압을 배터리(20)로 공급하거나 배터리(20)에 저장된 전압을 DC 그리드 시스템(10)으로 공급할 때, DC 그리드 시스템(10)과 배터리(20) 사이에서 양방향 DC-DC 전압의 변환을 수행한다.
이러한 DC 그리드 시스템(10)은 자신에 연결된 부하(미도시)에 전원을 공급하는 중에 큰 부하(중부하)가 연결될 경우 배터리(20)에 저장된 에너지를 받아서 큰 부하를 감당하고, 반대로 작은 부하(경부하)시 남은 에너지를 배터리(20)에 저장하도록 한다. 또한, 배터리(20)의 잔량 중전전압이 기설정된 기준치 이하로 떨어지는 경우 배터리(20)의 충전모드로 전환되어 DC 그리드 시스템(10)에서 배터리(20)에 전압을 공급하여 충전하도록 한다.
이때, DC 그리드 시스템(10)에서 전압을 배터리(20)로 공급하는 배터리(20)의 충전모드 또는 배터리(20)에서 DC 그리드 시스템(10)으로 전압을 공급하는 배터리(20)의 방전모드에서 연결되는 부하의 크기에 따라 다양한 스위칭제어를 통해 제1 및 제2 스위칭부(109,113)를 스위칭 제어함으로써 양방향 DC-DC 컨버터(100)의 효율을 높이고자 한다
제1커패시터(107)는 DC 그리드 시스템(10)에 병렬로 연결되어 DC 그리드 시스템(10)에서 출력되는 전압을 충전하거나 또는 DC 그리드 시스템(10)으로 공급하기 위한 전압을 충전하도록 한다.
제1배선용차단부(104)는 단락이나 과부하시 선로를 차단하여 기기 및 회로를 보호함으로써 단락, 과부하 등으로 인해 발생할 수 있는 화재나 사고 등을 예방하도록 한다. 또한, 제1배선용차단부(104)가 턴온됨으로써 DC 그리드 시스템(10)에서 출력되는 전압이 커패시터(107)에 충전되도록 한다.
제1선로차단부(125)는 제1배선용차단부(104)에 병렬로 연결되며, DC-DC 컨버터(100)의 동작에 따라 턴오프되어 필요에 따라 선로를 차단하도록 한다. 물론 턴온되면 선로를 연결하여 DC 그리드 시스템(10)으로부터 전력이 공급되도록 한다.
제1배선용차단부(104)의 (+)단에는 제1충전저항(123)이 병렬연결되고 (-)단에는 제2충전저항(124)이 병렬 연결된다. 이들 제1,2충전저항(123,124)에 직렬로 제1선로차단부(125)가 연결된다.
제1스위칭부(109)는 풀브릿지(full bridge) 형태로 연결된 제1스위치(109a), 제2스위치(109b), 제3스위치(109c) 및 제4스위치(109d)를 포함한다. 이때, 제1스위치(109a)와 제2스위치(109b)의 접점은 제1커패시터(107)의 일측에 연결되고 제3스위치(109c)와 제4스위치(109d)의 접점이 제1커패시터(107)의 타측에 연결된다. 이러한 제1~제4스위치(109a~109d)는 MOSFET 또는 IGBT 스위치로 구현될 수 있다.
변압기(110)는 1차측에서 2차측으로 또는 2차측에서 1차측으로 전압을 전달하며, 1차측 권선(110a)의 일측이 제1스위치(109a)와 제3스위치(109c)가 연결된 접점(N1)에 연결되고 1차측 권선(110a)의 타측이 제2스위치(109b)와 제4스위치(109d)가 연결된 점점(N2)에 연결된다.
제2스위칭부(113)는 풀브릿지(full bridge) 형태로 연결된 제5스위치(113a), 제6스위치(113b), 제7스위치(113c) 및 제8스위치(113d)를 포함한다. 이때, 제5스위치(113a)와 제7스위치(113c)의 접점(N3)은 변압기(110)의 2차측 권선(110b)의 일측에 연결되고 제6스위치(113b)와 제8스위치(113d)의 접점(N4)은 변압기(110)의 2차측 권선(110b)의 타측에 연결된다. 이러한 제5~제8스위치(113a~113d)도 MOSFET 또는 IGBT 스위치로 구현될 수 있다.
제2커패시터(114)는 일측이 제5스위치(113a)와 제6스위치(113b)의 접점에 연결되고 타측이 제7스위치(113c)와 제8스위치(113d)의 접점에 연결된다. 이러한 제2커패시터(114)에 저장된 전압이 배터리(20)에 충전된다.
제2배선용차단부(118)는 단락이나 과부하시 선로를 차단하여 기기 및 회로를 보호함으로써 단락, 과부하 등으로 인해 발생할 수 있는 화재나 사고 등을 예방하도록 한다. 또한, 제2배선용차단부(118)가 턴온됨으로써 제2커패시터(114)에 충전된 전압으로 배터리(20)를 충전하거나 배터리(20)의 전압을 제2커패시터(114)에 충전되도록 한다.
제2선로차단부(128)는 제2배선용차단부(118)에 병렬로 연결되며, DC-DC 컨버터(100)의 동작에 따라 턴오프되어 필요에 따라 선로를 차단하도록 한다. 물론 턴온되면 선로를 연결하여 배터리(20)에 전압을 충전하거나 배터리(20)로부터 전압이 방전되도록 한다.
제2배선용차단부(118)의 (+)단에는 제3충전저항(126)이 병렬연결되고 (-)단에는 제4충전저항(127)이 병렬연결된다. 이들 제3,4충전저항(126,127)에 직렬로 제2선로차단부(128)가 연결된다.
한편, 구현에 따라, 절연형 양방향 DC-DC 컨버터(100)는 DC 그리드 시스템(10)과 제1커패시터(107) 사이에 제1퓨즈부(101), 제2퓨즈부(102), 제1EMC필터부(103), 제1인덕터(105), 제1전류검출부(106), 제1전압검출부(108)를 더 포함할 수 있고, 제2커패시터(114)와 배터리(20) 사이에 제2전압검출부(115), 제2인덕터(116), 제2전류검출부(117), 제2EMC필터부(119), 제3퓨즈부(120) 및 제4퓨즈부(121)를 더 포함할 수도 있다.
제1퓨즈부(101) 및 제2퓨즈부(102)는 DC 그리드 시스템(10)의 (+)단 및 (-)단에 연결된 각 선로에 각각 설치되어 해당 선로에 기설정된 기준전류 이상의 과전류가 흐를 때 각 선로를 개방(open)시킨다. 이러한 DC 그리드 시스템(10)은 연결되는 부하(미도시)로 직류전압을 공급하거나 배터리(20)에도 전압을 공급하여 충전시키도록 한다.
제1EMC필터부(103)는 DC 그리드 시스템(10)에 병렬연결되어 주변의 기기로부터 나오는 전자파 또는 노이즈 신호가 다른 기기나 소자의 성능에 장애를 주지 않도록 DC-DC 컨버터(100)를 보호함과 동시에 주변의 다른 기기에서 나오는 전자파나 노이즈 신호를 제거하여 전자파에 의한 영향으로부터 컨버터를 보호하여 정상적인 성능을 제공할 수 있도록 한다.
제1인덕터(105)는 제1퓨즈부(101)에 직렬연결되며 DC 그리드 시스템(10)에서 제공되는 전류를 제어하는데 사용된다.
제1전류측정부(106)는 제1인덕터(105)를 통해 흐르는 전류를 검출한다. 이러한 제1전류측정부(106)는 변류기(CT)를 사용할 수 있다.
제1전압검출부(108)는 제1커패시터(107)에 충전된 전압을 검출한다. 이러한 제1전압검출부(108)는 변성기(PT)를 사용할 수 있다.
제1보조인덕터(111)는 타측이 변압기(110)의 1차측 권선(110a)에 연결되며, 일측이 상기 N1 접점에 연결되고 타측이 1차측 권선(110a)의 일측에 연결된다. 제2보조인덕터(112)는 변압기(110)의 2차측 권선(110b)에 직렬로 연결되며, 일측이 2차측 권선(11b)의 일측에 연결되고 타측은 제2스위칭부(113)에 연결된다.
제2전압검출부(115)는 제2커패시터(114)에 저장된 전압을 검출한다. 이러한 제2전압검출부(115)는 예컨대 변성기(PT)로 구현될 수 있다.
제2인덕터(116)는 제5스위치(113a)와 제6스위치(113b)가 연결된 접점에 일측이 연결되고 타측은 후단의 제2배선용차단부(118)에 연결된다.
제2전류검출부(117)는 제2인덕터(116)에 흐르는 전류를 검출한다. 이러한 제2전류검출부(117)는 변류기(CT)로 구현될 수 있다.
제2EMC필터부(119)는 제2배선용차단부(118)에 병렬로 연결되며 상기 제1EMC필터부(103)과 같이 전자파를 발생시키는 각종 기기로부터 나오는 전자파 또는 노이즈 신호가 다른 기기나 소자의 성능에 장애를 주지 않도록 기기를 보호함과 동시에 다른 기기에서 나오는 전자파나 노이즈 신호를 제거하여 전자파에 의한 영향으로부터 기기를 보호하여 정상적인 성능을 제공할 수 있도록 한다.
제3퓨즈부(120) 및 제4퓨즈부(121)는 배터리(20)의 (+)단 및 (-)단에 연결된 선로에 각각 설치되어 해당 선로에 기설정된 기준전류 이상의 과전류가 흐를 때 각 선로를 개방(open)시킨다.
본 발명에 따른 절연형 양방향 DC-DC 컨버터(100)에서는 스위칭제어부(122)가 스위칭제어부(122)는 제1스위칭부(109)의 제1~제4스위치(109a~109d) 및 제2스위칭부(113)의 제5~제8스위치(113a~113d)의 스위칭을 각각 독립적으로 제어함으로써 DC 그리드 시스템(10)과 배터리(20) 간의 양방향 전력 흐름을 제어한다.
이러한 스위칭제어부(122)에 의한 스위칭제어는 DC 그리드 시스템(10)의 전압, 즉 제1커패시터(107)에 충전된 충전전압과 배터리(20)의 전압, 즉 제2커패시터(114)에 충전된 충전전압의 크기에 따라 PSM 스위칭제어, SPWM 스위칭제어 및 DPWM 스위칭제어를 혼용하여 사용한다. 이는 DC 그리드 시스템(10)의 전압과 배터리(20)의 전압을 검출하여 배터리(20)의 충전 또는 방전시 두 전압의 차이에 따라 PSM, SPWM 및 DPWM 스위칭제어를 혼용하여 사용하는 것이다
도 2는 본 발명의 사상에 따른 전력 변환 방법을 도시한 흐름도이다.
도시한 전력 변환 방법은, 전력 변환 제어 주기 마다, 전력을 변환하는 방식을 결정하고, 결정된 방식으로 전력을 변환하는 방법으로서, 도 1의 스위칭 제어부(122)를 중심으로 수행될 수 있다.
상기 전력 변환 방법은, 제어 주기에서 SPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계(S120); 제어 주기에서 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계(S140); 및 산정된 변압기 인덕터 평균 전력이 큰 방식으로 전력을 변환하는 단계(S160)를 포함할 수 있다.
본 발명에서 듀티는 + 영역과 - 영역을 교번하는 구형파가 진행 중 0을 계속 유지하는 시간적 구간을 의미하며, 듀티 위상은 상기 듀티 구간 동안 구형파의 위상 간격을 의미한다.
본 발명에서 SPWM 방식은, 승압 동작시, 변압기 2차측 전압은 구형파로 구동시키며, 변압기 1차측 전압은 듀티 위상이 가해진 구형파로 구동시키고, 강압 동작시, 변압기 1차측 전압은 구형파로 구동시키며, 변압기 2차측 전압은 듀티 위상이 가해진 구형파로 구동시키는 방식을 의미한다. 여기서, 변압기 1차측 및 2차측을 구동시키는 것은 각 1/2차측 코일(권선)에 연결된 스위칭 소자들을 동작시키는 것을 의미한다.
본 발명에서 DPWM 방식은, 변압기 1차측 전압은 제1 듀티(지연) 위상이 가해진 구형파로 구동시키며, 변압기 2차측 전압은 제2 듀티 위상이 가해진 구형파로 구동시키는 방식을 의미한다. 여기서, 변압기 1차측 및 2차측을 구동시키는 것은 각 1/2차측 코일(권선)에 연결된 스위칭 소자들을 동작시키는 것을 의미한다.
상기 DPWM 방식에서, 승압 동작시 제1 듀티(및 제1 듀티 위상) 보다 제2 듀티(및 제2 듀티 위상)이 더 크고, 강압 동작시 제1 듀티(및 제1 듀티 위상) 보다 제2 듀티(및 제2 듀티 위상)이 더 작게 된다.
상기 DPWM 방식에서, 제1 듀티 및 제2 듀티 중 작은 것을 버금 듀티, 큰 것을 으뜸 듀티라 칭하겠다.
상술한 바에 따르면, 도시한 S120 단계 및 S140 단계에서는, 변압기의 1차측 전압값과 2차측 전압값을 적용하여, SPWM 방식 및 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 것을 알 수 있다.
도시한 SPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계(S120)에서는, 하나의 고정된 전력값만을 산출하면 되나, 도시한 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계(S140)에서는, 제1 듀티 및 제2 듀티의 다양한 조합들에 대하여 구해진 평균 전력들 중 가장 적합한 것을 선택한다.
즉, 상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계(S140)에서는, 제어 주기에 주어진 승압 또는 강압 조건에서 최대 듀티를 가지는 DPWM 방식을 선택한다. 보다 구체적으로 연산과정에서는 상기 제1 듀티 및 제2 듀티 중 작은 것을 버금 듀티를 최대로 가질 때의 DPWM 방식을 선택한다.
상기 전력을 변환하는 단계(S160)에서는, S120 단계에서 산정된 SPWM 방식의 인덕터 평균 전력과, S140 단계에서 산정 및 선택된 제1/제2 듀티 조합을 이용한 DPWM 방식의 인덕터 평균 전력을 비교한다(S162). 상기 비교 결과 평균 전력이 큰 방식으로 해당 제어 주기에서 전력 변환 동작을 수행한다(S164, S168). 만약, DPWM 방식이 선정된 경우(S164), 상기 S140 단계에서 선택된 제1/제2 듀티 조합을 이용한 DPWM 방식으로 해당 제어 주기에서 전력 변환 동작을 수행한다. 도면에서는 DPWM 방식을 선택한 경우, 선택된 방식으로 제어하는 경우 소프트 스위칭이 이루어지는지 검토한다(S166). 그런데 상기 S140 단계에서, 다양한 제1 듀티 및 제2 듀티 조합들 중 가장 듀티가 긴 조합을 선택할 때, 각 제1 듀티 및 제2 듀티 조합의 소프트 스위칭 여부를 검토할 수 있으며, 이 경우, 상기 S166 단계는 생략될 수도 있다.
도 3은 본 발명의 사상에 따른 전력 변환 방법 중 최적의 제1 듀티 및 제2 듀티 조합을 선택하는 과정을 중심으로 도시한 흐름도이다. 도시한 최적의 제1 듀티 및 제2 듀티 조합을 선택하는 과정은 일례이며, 동일한 사상을 다른 방식으로도 구현할 수 있음은 물론이다.
도면에서 Max_Theta는 상술한 으뜸 듀티에 관련된 변수이며, Duty_S가 상술한 버금 듀티에 관련된 변수이다.
도 4는 도 1의 DC-DC 컨버터에서 절연이 이루어지는 변압기 및 스위칭 소자들을 중심으로 표현한 회로도이다. 도시한 회로도에서 (112)는 생략되고, 변압기의 1차측과 2차측 권선비는 1:1인 경우로 보다 구체화한 구현을 표현하였다.
도 4의 회로 구성에 대하여 도 2에 도시한 본 발명의 사상에 따른 전력 변환 방법을 적용함에 있어서, 도 5a 및 5b는 강압 동작시에 SPMW 방식 및 DPWM 방식으로 변압기의 1차/2차측 코일들을 구동시킬 때, 변압기 인덕터에 흐르게 되는 전류를 도시한 것이다.
도시한 바와 같이, 강압 동작시에는 SPMW 방식 및 DPWM 방식 모두, 제1 코일 보다 제2 코일의 전압이 더 낮은 반면, 폭은 더 큰 파형을 가지도록, 변압기 양단의 스위칭 소자들이 제어된다.
강압 동작시에 SPWM 방식에서는 듀티가 없는 2차측 전압 파형의 라이징 시점(θ 0)에서의 인덕터 전류값을 I 2라 하고, 1차측 전압 파형의 듀티 후 라이징 시점(θ 1)에서의 인덕터 전류값을 I 1이라 하고, 1차측 전압 파형의 폴링 시점(θ 2)에서의 인덕터 전류값을 I 3라고 하였다. 2차측 전압 파형의 폴링 시점(θ 3)도 도시하였다.
도시한 바와 같이, 인덕터 전류는 I1, I2, I3 전류값들을 꼭지점으로 하는 삼각파 형태로 모델링할 수 있다. SPWM 방식의 경우 상기 I1, I2, I3 전류값들의 구체적인 계산식은 하기 수학식 1과 같다.
Figure PCTKR2019015757-appb-img-000009
상기 수학식에서 V pri는 1차측 전압이며, V sec는 2차측 전압이며, φ는 1차측 전압과 2차측 전압의 위상차이다. V pri는 간략히 V p라 표현할 수 있다.
상기 수학식에서 α는 1차측 전압의 듀티 위상이며, ω sw는 스위칭 소자의 스위칭 주파수에서의 각속도이며, g는 1차측과 2차측의 입출력 전압비이다.
상기 수학식에서 Vpri는 1차측 전압이며, Vsec는 2차측 전압이며, φ는 1차측 전압과 2차측 전압의 위상차이다.
상기 부호 I s1, I s2, I s3에서 s는 SPWM임을 강조하기 위한 것으로, 간략히 I 1, I 2, I 3라 표현할 수도 있다.
상기 I 1, I 2, I 3 전류값들을 이용하여, SPWM 방식의 전력 변환시 인덕터에서의 평균 전력(P ave)을 산정하는 구체적인 계산식은 하기 수학식 2와 같다.
Figure PCTKR2019015757-appb-img-000010
강압 동작시에 DPMW 방식에서는 2차측 전압 파형의 듀티 전 라이징 시점(θ 0)에서의 인덕터 전류값을 I 2라 하고, 1차측 전압 파형의 듀티 후 라이징 시점(θ 2)에서의 인덕터 전류값을 I 1이라 하고, 1차측 전압 파형의 폴링 시점(θ 3)에서의 인덕터 전류값을 I 3라고 하였다. I 2은 2차측 전압 파형의 듀티 후 라이징 시점(θ 1)까지 유지된다.
도시한 바와 같이, 인덕터 전류는 I 1, I 2, I 3 전류값들을 꼭지점으로 하는 구형파 및 삼각파의 조합 형태로 모델링할 수 있다. DPWM 방식의 경우 상기 I 1, I 2, I 3 전류값들의 구체적인 계산식은 하기 수학식 3과 같다.
Figure PCTKR2019015757-appb-img-000011
상기 수학식에서 V pri는 1차측 전압이며, V sec는 2차측 전압이며, φ는 1차측 전압과 2차측 전압의 위상차이다.
상기 수학식에서 α는 1차측 전압의 듀티 위상이며, β는 2차측 전압의 듀티 위상이며, ω sw는 스위칭 소자의 스위칭 주파수에서의 각속도이며, g는 1차측과 2차측의 입출력 전압비이다.
상기 부호 I d1, I d2, I d3에서 s는 DPWM임을 강조하기 위한 것으로, 간략히 I 1, I 2, I 3라 표현할 수도 있다.
상기 I 1, I 2, I 3 전류값들을 이용하여, DPWM 방식의 전력 변환시 인덕터에서의 평균 전력(P ave)을 산정하는 구체적인 계산식은 하기 수학식 4와 같다.
Figure PCTKR2019015757-appb-img-000012
도 2 및/또는 도 3에서 강압시에 상기 소프트 스위칭이 이루어지는지 검토하는 단계(S166)(S1166)는, 예컨대, 도 5b에 도시한 I1, I2, I3가 도시한 부호(즉, 플러스인지, 마이너스인지 만을 확인)를 가지는지 검사하는 방식으로 신속하게 수행할 수도 있다. 실수값인 전류값을 확인하는 것이 아닌, 거의 이진값은 +, -만을 확인하므로, 매우 신속한 검토가 가능하다.
도 4의 회로 구성에 대하여 도 2에 도시한 본 발명의 사상에 따른 전력 변환 방법을 적용함에 있어서, 도 6a 및 6b는 승압 동작시에 SPMW 방식 및 DPWM 방식으로 변압기의 1차/2차측 코일들을 구동시킬 때, 변압기 인덕터에 흐르게 되는 전류를 도시한 것이다.
도시한 바와 같이, 승압 동작시에는 SPWM 방식 및 DPWM 방식 모두, 제2 코일 보다 제1 코일의 전압이 더 낮은 반면, 폭은 더 큰 파형을 가지도록, 변압기 양단의 스위칭 소자들이 제어된다.
승압 동작시에 SPWM 방식에서는 듀티가 없는 1차측 전압 파형의 라이징 시점(θ 0)에서의 인덕터 전류값을 I 1라 하고, 2차측 전압 파형의 듀티 후 라이징 시점(θ 1)에서의 인덕터 전류값을 I 2라 하고, 2차측 전압 파형의 폴링 시점(θ 2)에서의 인덕터 전류값을 I 3라고 하였다. 1차측 전압 파형의 폴링 시점(θ 3)도 도시하였다.
도시한 바와 같이, 인덕터 전류는 I 1, I 2, I 3 전류값들을 꼭지점으로 하는 삼각파 형태로 모델링할 수 있다. SPWM 방식의 경우 상기 I 1, I 2, I 3 전류값들의 구체적인 계산식은 하기 수학식 5와 같다.
Figure PCTKR2019015757-appb-img-000013
상기 수학식에서 V pri는 1차측 전압이며, V sec는 2차측 전압이며, φ는 1차측 전압과 2차측 전압의 위상차이다. V sec는 간략히 V s라 표현할 수 있다.
상기 수학식에서 α는 1차측 전압의 듀티 위상이며, ω sw는 스위칭 소자의 스위칭 주파수에서의 각속도이며, g는 1차측과 2차측의 입출력 전압비이다.
상기 부호 I s1, I s2, I s3에서 s는 SPWM임을 강조하기 위한 것으로, 간략히 I 1, I 2, I 3라 표현할 수도 있다.
상기 I 1, I 2, I 3 전류값들을 이용하여, SPWM 방식의 전력 변환시 인덕터에서의 평균 전력(P ave)을 산정하는 구체적인 계산식은 하기 수학식 6와 같다.
Figure PCTKR2019015757-appb-img-000014
승압 동작시에 DPMW 방식에서는 1차측 전압 파형의 듀티 전 라이징 시점(θ 0)에서의 인덕터 전류값을 I 1라 하고,
2차측 전압 파형의 듀티 후 라이징 시점(θ 2)에서의 인덕터 전류값을 I 2라 하고, 2차측 전압 파형의 폴링 시점(θ 3)에서의 인덕터 전류값을 I 3라고 하였다. I 1은 1차측 전압 파형의 듀티 후 라이징 시점(θ 1)까지 유지된다.
도시한 바와 같이, 인덕터 전류는 I 1, I 2, I 3 전류값들을 꼭지점으로 하는 구형파 및 삼각파의 조합 형태로 모델링할 수 있다. 승압 조건 DPWM 방식의 경우 상기 I 1, I 2, I 3 전류값들의 구체적인 계산식은 하기 수학식 7과 같다.
Figure PCTKR2019015757-appb-img-000015
상기 수학식에서 V pri는 1차측 전압이며, V sec는 2차측 전압이며, φ는 1차측 전압과 2차측 전압의 위상차이다. V sec는 간략히 V s라 표현할 수 있다.
상기 수학식에서 α는 1차측 전압의 듀티 위상이며, β는 2차측 전압의 듀티 위상이며, ω sw는 스위칭 소자의 스위칭 주파수에서의 각속도이며, g는 1차측과 2차측의 입출력 전압비이다.
상기 부호 I d1, I d2, I d3에서 s는 DPWM임을 강조하기 위한 것으로, 간략히 I 1, I 2, I 3라 표현할 수도 있다.
상기 I 1, I 2, I 3 전류값들을 이용하여, DPWM 방식의 전력 변환시 인덕터에서의 평균 전력(P ave)을 산정하는 구체적인 계산식은 하기 수학식 8과 같다.
Figure PCTKR2019015757-appb-img-000016
도 2 및/또는 도 3에서 강압시에 상기 소프트 스위칭이 이루어지는지 검토하는 단계(S166)(S1166)는, 예컨대, 도 6b에 도시한 I 1, I 2, I 3가 도시한 부호를 가지는지 검사하는 방식으로 신속하게 수행할 수도 있다.
도 7a 및 7b는 각각 승압시와 강압시에 DPWM 방식으로 변환을 수행하였을 때, 버금 듀티(그래프에서는 Socond Duty라 표현함)와 인덕터의 RMS 전류와의 관계를 도시한 그래프이다. 그래프에서 동일 전력에서 버금 듀티(Socond Duty)가 증가하면 인덕터 전류의 RMS값이 감소함을 알 수 있다. 즉, 버금 듀티(Socond Duty)가 클수록 도통 손실이 저감 정도가 높아진다.
도 8은 본 발명의 사상에 따른 전력 변환 방법을 시뮬레이션하기 위한 시뮬레이션 회로도이다. 도시한 시뮬레이션 회로도는 도 4의 절연이 이루어지는 변압기 및 스위칭 소자들을 중심으로 시뮬레이션하기 위한 것이다.
도시한 시뮬레이션 회로도에서, 입력전압은, 700~800V, 출력전압은, 580~850V, 스위칭 주파수는 8khz인 상태, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 상태로 시뮬레이션 한다.
도 9a는 입력 전압이 700V, 출력 전압이 820V, 스위칭주파수 8kHz의 조건으로 시뮬레이션한 결과를 나타낸 그래프이고, 도 9b는 도 9a의 그래프 중 1번 부분을 확대한 것이며, 도 9c는 도 9a의 그래프 중 2번 부분을 확대한 것이다. 도시한 바와 같이, 약간의 리플이 존재하지만, 버금(Second) 듀티가 형성되고, 버금 듀티 동안 출력 전류가 선형에 가깝게 증가하며, 보조 인덕터에 상당한 전류가 유발됨을 알 수 있다. 보다 구체적으로 살펴보면, 출력 전류를 0부터 20까지 계속 높아지는 경우, 버금(Second) 듀티가 이에 따라 끊기지 않고 출력되고 있음을 알 수 있다.
도 10a는 입력 전압이 750V, 출력 전압이 6000V, 스위칭주파수 8kHz의 조건으로 시뮬레이션한 결과를 나타낸 그래프이고, 도 10b는 도 10a의 그래프 중 1번 부분을 확대한 것이며, 도 10c는 도 10a의 그래프 중 2번 부분을 확대한 것이다. 도시한 바와 같이, 약간의 리플이 존재하지만, 버금(Second) 듀티가 형성되고, 버금 듀티 동안 출력 전류가 선형에 가깝게 증가하며, 보조 인덕터에 상당한 전류가 유발됨을 알 수 있다. 보다 구체적으로 살펴보면, 출력 전류를 0부터 20까지 계속 높아지는 경우, 버금(Second) 듀티가 이에 따라 끊기지 않고 출력되고 있음을 알 수 있다.
도 11a는 입력전압이 750V, 출력전압이 600V이고, 스위칭 주파수는 4khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한다. 도시한 바와 같이 낮은 전력(즉, 전류)에서 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식을 이용하면 효율이 뚜렷하게 개선되며, 높은 전력에서는 양 방식의 변환 효율이 거의 동일함을 알 수 있다.
도 11b는 입력전압이 700V, 출력전압이 820V이고, 스위칭 주파수는 4khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한다. 도시한 바와 같이 낮은 전력(즉, 전류)에서 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식을 이용하면 효율이 뚜렷하게 개선되며, 높은 전력에서도 효율이 뚜렷하게 개선됨을 알 수 있다.
한편, 도 11c는 도 11a의 조건에서 3kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 것이며, 도 11d는 도 11b의 조건에서 4.5kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 것이다.
도 12a는 입력전압이 750V, 출력전압이 600V이고, 스위칭 주파수는 8khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한다. 도시한 바와 같이 낮은 전력(즉, 전류)에서 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식을 이용하면 효율이 크게 개선되며, 높은 전력에서도 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식을 이용하면 효율이 뚜렷하게 개선됨을 알 수 있다.
도 12b는 입력전압이 700V, 출력전압이 820V이고, 스위칭 주파수는 8khz이고, 변압기 입력단의 보조 인덕터의 인덕턴스는 110μH인 조건에서, 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식과, 기존 SPWM 단일 방식으로 각각 변환하였을 때의 변환 효율을 도시한다. 도시한 바와 같이 낮은 전력(즉, 전류)에서 본 발명에 따른 DPWM과 SPWM의 하이브리드 방식을 이용하면 효율이 매우 크게 개선되며, 높은 전력에서도 효율이 크게 개선됨을 알 수 있다.
한편, 도 12c는 도 12a의 조건에서 3kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 것이며, 도 12d는 도 12b의 조건에서 4.5kW 전력 변환시 1차측/2차측 전압 및 인덕터 전류를 예시한 것이다.
한편, 도 11b 및 도 12b 를 도 11a 및 도 12a 에 대해 비교하면, 스위칭주파수가 높을수록 본 발명의 사상에 따른 DPWM과 SPWM의 하이브리드 방식의 전력 효율 개선 효과가 약간 증대되나(12KW이하에서), 전체적으로는 스위칭 주파주 증가에 따른 효율 개선보다 본 발명의 사상에 따른 하이브리드 방식의 효율 개선 효과가 더 큼을 알 수 있다.
상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
* 부호의 설명
109 : 제1스위칭부 110 : 변압기
111 : 제1보조인덕터 112 : 제2보조인덕터
113 : 제2스위칭부 114 : 제2커패시터
115 : 제2전압검출부 116 : 제2인덕터
122 : 스위칭 제어부
본 발명은 DC-DC 컨버터에서의 전력 변환 방법에 관한 것으로서, 컨버터 분야에 이용 가능하다.

Claims (10)

  1. 전력 변환 제어 주기 마다, 전력을 변환하는 방식을 결정하고, 결정된 방식으로 전력을 변환하는 방법에 있어서,
    제어 주기에서 SPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계;
    제어 주기에서 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 단계; 및
    산정된 변압기 인덕터 평균 전력이 큰 방식으로 전력을 변환하는 단계
    를 포함하는 전력 변환 방법.
  2. 제1항에 있어서,
    상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 제어 주기에 주어진 승압 또는 강압 조건에서 최대 듀티를 가지는 DPWM 방식을 선택하는 것을 특징으로 하는 전력 변환 방법.
  3. 제1항에 있어서,
    변압기의 1차측 전압값과 2차측 전압값을 적용하여, 상기 SPWM 방식 및 상기 DPWM 방식의 전력 변환시 변압기 인덕터에서의 평균 전력을 산정하는 것을 특징으로 하는 전력 변환 방법.
  4. 제1항에 있어서,
    상기 DPWM 방식은, 변압기 1차측 전압은 제1 듀티 위상이 가해진 구형파로 구동시키며, 변압기 2차측 전압은 제2 듀티 위상이 가해진 구형파로 구동시키는 것을 특징으로 하는 전력 변환 방법.
  5. 제4항에 있어서,
    승압 동작시 SPWM 방식은, 변압기 2차측 전압은 구형파로 구동시키며, 변압기 1차측 전압은 듀티 위상이 가해진 구형파로 구동시키는 것을 특징으로 하는 전력 변환 방법.
  6. 제5항에 있어서,
    상기 SPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하고,
    Figure PCTKR2019015757-appb-img-000017
    Figure PCTKR2019015757-appb-img-000018
    (V pri : 1차측 전압, V sec = V s : 2차측 전압,
    φ : 1차측 전압과 2차측 전압의 위상차,
    α : 1차측 전압의 듀티 위상,
    ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
    g : 1차측과 2차측의 입출력 전압비
    I s1 = I 1, I s2 = I 2, I s3 = I 3
    P ave : 평균 전력)
    상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하는 것을 특징으로 하는 전력 변환 방법.
    Figure PCTKR2019015757-appb-img-000019
    Figure PCTKR2019015757-appb-img-000020
    (V pri : 1차측 전압, V sec = V s : 2차측 전압,
    φ : 1차측 전압과 2차측 전압의 위상차,
    α : 1차측 전압의 듀티 위상, β : 2차측 전압의 듀티 위상
    ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
    g : 1차측과 2차측의 입출력 전압비
    I d1 = I 1, I d2 = I 2, I d3 = I 3
    P ave : 평균 전력)
  7. 제4항에 있어서,
    강압 동작시 SPWM 방식은, 변압기 1차측 전압은 구형파로 구동시키며, 변압기 2차측 전압은 듀티 위상이 가해진 구형파로 구동시키는 것을 특징으로 하는 전력 변환 방법.
  8. 제7항에 있어서,
    상기 SPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하고,
    Figure PCTKR2019015757-appb-img-000021
    Figure PCTKR2019015757-appb-img-000022
    (V pri = V p : 1차측 전압, V sec : 2차측 전압,
    φ : 1차측 전압과 2차측 전압의 위상차,
    α : 1차측 전압의 듀티 위상,
    ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
    g : 1차측과 2차측의 입출력 전압비
    I s1 = I 1, I s2 = I 2, I s3 = I 3
    P ave : 평균 전력)
    상기 DPWM 방식의 전력 변환시 인덕터에서의 평균 전력을 산정하는 단계에서는, 하기 수학식에 따라 평균 전력을 구하는 것을 특징으로 하는 전력 변환 방법.
    Figure PCTKR2019015757-appb-img-000023
    Figure PCTKR2019015757-appb-img-000024
    (V pri = V p : 1차측 전압, V sec : 2차측 전압,
    φ : 1차측 전압과 2차측 전압의 위상차,
    α : 1차측 전압의 듀티 위상, β : 2차측 전압의 듀티 위상
    ω sw : 스위칭 소자의 스위칭 주파수에서의 각속도,
    g : 1차측과 2차측의 입출력 전압비
    I d1 = I 1, I d2 = I 2, I d3 = I 3
    P ave : 평균 전력)
  9. 제6항 또는 제8항에 있어서,
    상기 DPWM 방식을 선택한 경우, 선택된 방식으로 제어할 때, 소프트 스위칭이 이루어지는지 확인하는 단계를 더 포함하는 전력 변환 방법.
  10. 제9항에 있어서,
    상기 소프트 스위칭이 이루어지는지 확인하는 단계는, 상기 수학식에 따른 I d1, I d2, I d3가 해당 부호를 가지는지 검사하는 방식으로 수행되는 것을 특징으로 하는 전력 변환 방법.
PCT/KR2019/015757 2018-12-07 2019-11-18 전력 변환 방법 WO2020116817A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/299,140 US11742765B2 (en) 2018-12-07 2019-11-18 Power conversion method
EP19893926.6A EP3893376B1 (en) 2018-12-07 2019-11-18 Power conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180156771A KR102200284B1 (ko) 2018-12-07 2018-12-07 전력 변환 방법
KR10-2018-0156771 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020116817A1 true WO2020116817A1 (ko) 2020-06-11

Family

ID=70974361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015757 WO2020116817A1 (ko) 2018-12-07 2019-11-18 전력 변환 방법

Country Status (4)

Country Link
US (1) US11742765B2 (ko)
EP (1) EP3893376B1 (ko)
KR (1) KR102200284B1 (ko)
WO (1) WO2020116817A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177142B1 (ko) * 2020-01-09 2020-11-10 주식회사 효성 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법
JP7491080B2 (ja) * 2020-06-22 2024-05-28 富士電機株式会社 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115087A (ko) * 2009-04-17 2010-10-27 서울과학기술대학교 산학협력단 양방향 dc-dc 컨버터 및 그의 제어방법
US20110249472A1 (en) * 2010-04-01 2011-10-13 Peregrine Power LLC Pwm control of dual active bridge converters
US20120019220A1 (en) * 2008-11-20 2012-01-26 Silergy Technology Hybrid power converter
KR20160140064A (ko) * 2015-05-29 2016-12-07 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
KR20180079021A (ko) * 2016-12-30 2018-07-10 주식회사 효성 절연형 양방향 dc-dc 컨버터의 스위칭 제어방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101106A (en) * 1999-02-05 2000-08-08 The Boeing Company Pulse width modulated controller for high temperature power conversion
US6995537B1 (en) * 2005-02-14 2006-02-07 Texas Instruments Incorporated Closed-loop control system to mitigate PWM switching noise
US7495875B2 (en) * 2007-06-05 2009-02-24 Fsp Technology Inc. Power abnormal protection circuit
EP2408096A1 (en) * 2010-07-12 2012-01-18 ABB Oy Current-fed converter with quadratic conversion ratio
KR101388698B1 (ko) * 2012-04-27 2014-04-24 성균관대학교산학협력단 전력 변환 장치와 그 동작 방법 및 태양광 발전 시스템
US10073512B2 (en) * 2014-11-19 2018-09-11 General Electric Company System and method for full range control of dual active bridge
JP6414491B2 (ja) * 2015-03-06 2018-10-31 住友電気工業株式会社 変換装置
KR101794858B1 (ko) 2015-03-12 2017-11-07 (주)지필로스 회생 에너지 전력변환장치
US10050531B1 (en) * 2017-01-24 2018-08-14 General Electric Company Direct flux control power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019220A1 (en) * 2008-11-20 2012-01-26 Silergy Technology Hybrid power converter
KR20100115087A (ko) * 2009-04-17 2010-10-27 서울과학기술대학교 산학협력단 양방향 dc-dc 컨버터 및 그의 제어방법
US20110249472A1 (en) * 2010-04-01 2011-10-13 Peregrine Power LLC Pwm control of dual active bridge converters
KR20160140064A (ko) * 2015-05-29 2016-12-07 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
KR20180079021A (ko) * 2016-12-30 2018-07-10 주식회사 효성 절연형 양방향 dc-dc 컨버터의 스위칭 제어방법

Also Published As

Publication number Publication date
US20220077759A1 (en) 2022-03-10
EP3893376A4 (en) 2022-08-17
KR102200284B1 (ko) 2021-01-08
US11742765B2 (en) 2023-08-29
EP3893376B1 (en) 2024-01-03
KR20200069577A (ko) 2020-06-17
EP3893376A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2019066214A1 (ko) 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
WO2017069555A1 (en) Power supply device and power supply system including the same
WO2018026233A1 (ko) 변류기 모듈 및 이를 포함하는 전력 공급 장치
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2020116817A1 (ko) 전력 변환 방법
WO2012173408A2 (ko) 파워 릴레이 어셈블리 구동 장치 및 그 구동 방법
WO2019156373A1 (ko) 계통 연계형 인버터 시스템
WO2023140566A1 (ko) 성능 상태 회로와 우회 회로가 장착된 태양광 모듈용 직렬 연결 차동 전력 변환기
WO2014073932A1 (en) Power supplying apparatus and wireless power transmitterpower transmitter
WO2018124521A1 (ko) 절연형 양방향 dc-dc 컨버터의 스위칭 제어방법
WO2014119871A1 (en) Wireless power transmitting apparatus and method thereof
CN107112767A (zh) 充电控制电路、充电装置、充电***及充电控制方法
WO2022119278A1 (en) Arrangement and method for discharging a dc link capacitor
WO2024043679A1 (ko) 이차전지 충전시스템 및 방법
WO2020251273A1 (ko) 모니터링 장치, 및 이를 구비하는 태양광 시스템
WO2021071241A1 (ko) 태양광 발전기용 전류 보상 시스템, 품질 측정 장치, 이의 측정 방법 및 이의 기록매체
WO2015060644A1 (ko) 단권변압기를 이용한 zvzcs 스위칭 컨버터
WO2015020463A1 (ko) 전원 장치
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
WO2020027502A1 (ko) 직류-직류 컨버터 및 이를 포함하는 광원 구동 장치
WO2021040197A1 (ko) 독립 마이크로그리드 시스템 및 인버터 장치
WO2019059487A1 (ko) 에너지 저장 시스템
WO2021095967A1 (ko) 모듈러 멀티레벨 컨버터의 서브모듈 전류 및 전압 제어방법 및 이를 수행하는 제어모듈
WO2015026096A1 (ko) 전원 장치
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893926

Country of ref document: EP

Effective date: 20210707