WO2015020463A1 - 전원 장치 - Google Patents

전원 장치 Download PDF

Info

Publication number
WO2015020463A1
WO2015020463A1 PCT/KR2014/007339 KR2014007339W WO2015020463A1 WO 2015020463 A1 WO2015020463 A1 WO 2015020463A1 KR 2014007339 W KR2014007339 W KR 2014007339W WO 2015020463 A1 WO2015020463 A1 WO 2015020463A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
amplifier
turned
power supply
Prior art date
Application number
PCT/KR2014/007339
Other languages
English (en)
French (fr)
Inventor
이재삼
허동영
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US14/910,812 priority Critical patent/US9899935B2/en
Priority to CN201480044997.9A priority patent/CN105453400B/zh
Publication of WO2015020463A1 publication Critical patent/WO2015020463A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device.
  • a rectifier circuit of a capacitor input type is used as a switching power source used as a power source for electronic devices. Due to these capacitors, pulsed input currents are generated, and pulsed input currents are generated simultaneously at the inputs of respective electronic, information, and communication devices, so they are added in the same phase on the distribution line, causing harmonic distortion and power factor of the commercial power supply. Causes deterioration.
  • 1 is a diagram of a conventional boost converter type power supply.
  • an input power source is connected across the rectifier 2, and an inductor 3, which is an energy storage element, is connected between the rectifier 2 and the switching device 4.
  • an inductor 3 which is an energy storage element, is connected between the rectifier 2 and the switching device 4.
  • a diode is connected between the switching element 4 and the capacitor.
  • the power supply 1 amplifies the voltage on the input side by a predetermined ratio and outputs it to the output terminal 5.
  • IGBT Insulated Gate Bipolar Transistor
  • Embodiments provide a power supply that reduces the voltage stress of a semiconductor element in the power supply.
  • the embodiment provides a power supply for constantly controlling the output voltages of the first and second outputs in the power supply.
  • the power supply apparatus includes an input power supply rectifying the AC power; And an amplifier configured to amplify the input voltage by n times (n is a real number greater than 1), wherein the amplifier includes first and second amplifiers and an inductor, and the first amplifier is configured to operate the first switching element. Accordingly outputting a first output voltage corresponding to n1 (n1 is a positive real number) times the input voltage to the first output unit.
  • the second amplifier outputs a second output voltage corresponding to n2 (n2 is a positive real number) times the input voltage to the second output unit according to the operation of the second switching element.
  • the first amplifier, the second amplifier and the inductor of the power supply apparatus according to the embodiment are connected in series with each other, the inductor is connected between the first amplifier and the second amplifier.
  • the first and second amplifiers of the power supply apparatus according to the embodiment have the same configuration.
  • the input power supply unit of the power supply apparatus includes a rectifier, and the rectifier is a bridge rectifier.
  • the first amplifier of the power supply apparatus includes a first output connected in parallel with the first switching element, the second amplifier includes a second output connected in parallel with the second switching device.
  • the first output part of the power supply apparatus includes a first diode and a first capacitor-resistance part connected in series with each other, and the second output part includes a second diode and a second capacitor-resistor part connected in series with each other.
  • the capacitor and the resistor included in the first and second capacitor-resistor portions of the power supply apparatus according to the embodiment are connected in parallel with each other.
  • n, n1 and n2 of the power supply according to the embodiment satisfies the equation (1).
  • n n1 + n2
  • the n1 and the n2 of the power supply apparatus according to the embodiment have the same value.
  • the first and second switching elements of the power supply apparatus according to the embodiment are turned on at the same time and are turned off at the same time.
  • the first and second switching elements of the power supply according to the embodiment are turned on at the same time, the first switching element is turned off at a first time point, and the second switching element is turned off at a second time point
  • n1 has a value larger than n2
  • the first time point comes after the second time point.
  • the power supply apparatus includes a rectifier for rectifying AC power to a first voltage, and an amplifier for receiving and boosting the first voltage from the rectifier, distributing the boosted voltage, and outputting the boosted voltage as a second voltage and a third voltage. Include.
  • the amplifying unit of the power supply apparatus is connected in series with the first amplifying unit, the first amplifying unit for receiving and amplifying the first voltage and outputting the second voltage, and receives the first voltage and amplifies the And a second amplifier for outputting three voltages, and an inductor connected in series with the first and second amplifiers.
  • the inductor of the power supply apparatus according to the embodiment is connected between the first and second amplifiers.
  • the second and third voltages of the power supply apparatus according to the embodiment are the same voltage.
  • the first and second amplifiers of the power supply apparatus include first and second switching elements, respectively, and the second and third voltages are controlled according to operating frequencies of the first and second switching elements. .
  • the first and second switching elements of the power supply according to the embodiment are turned on and off at the same time.
  • the first and second switching elements are turned on and off at the same time.
  • the first and second switching elements are simultaneously turned on and off during the first period in which the second and third voltages are the same, and the second and third voltages are different from each other.
  • the first switching device is turned off at a first time point
  • the second switching device is turned off at a second time point.
  • the first and second switching elements are turned on at the same time.
  • the voltage stress of the semiconductor device may be reduced by using a power supply device including first and second amplifiers sharing the energy storage device.
  • the amplification ratios of the first and second amplifying units may be individually adjusted to maintain a constant output voltage output to the first and second amplifying units.
  • FIG. 1 is a diagram of a conventional boost converter type power supply device.
  • FIG. 2 is a block diagram of a power supply 1000 according to an embodiment of the present invention.
  • FIG. 3 illustrates a power supply device according to an embodiment of the present invention
  • FIG. 4 is a view illustrating an operation method when the first and second switching elements Qs and Qm of the power supply apparatus according to the first embodiment of the present invention are turned on.
  • FIG. 5 is a view illustrating an operation method when the first and second switching elements Qs and Qm of the power supply apparatus according to the first embodiment of the present invention are turned off.
  • FIG. 6 is a view illustrating an operation method when the first switching element Qs of the power supply device according to the first embodiment of the present invention is turned on and the second switching element Qm is turned off.
  • FIG. 7 is a view illustrating an operation method when the first switching element Qs of the power supply device according to the first embodiment of the present invention is turned off and the second switching element Qm is turned on.
  • FIG. 8 is a diagram illustrating a balanced output power supply device according to a second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a controller of a balance output power supply device according to a second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an analog controller of a balanced output power supply device according to a second embodiment of the present invention.
  • 11 is a circuit diagram illustrating a first dual feedback unit.
  • 12 and 13 are circuit diagrams of a power supply device and a controller for driving the power supply device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a power supply device 1000 according to an embodiment of the present invention
  • FIG. 3 is a view showing a power supply device 1000 according to an embodiment of the present invention.
  • the power supply device 1000 may be used in a system that requires an output voltage higher than an input voltage, that is, a power boost.
  • it can be used in batteries, solar panels, rectifiers, and direct current generators, and can be used as a voltage supply for light-emitting diode (LED) panels or as a gate drive voltage for liquid crystal display device (LCD) panels. It may be used as a device for boosting, but is not limited thereto.
  • LED light-emitting diode
  • LCD liquid crystal display device
  • the power supply device 1000 is a power supply unit 11 including a rectifier 10, first and second amplifiers 20 and 30, and an energy storage element. It may include an inductor 40.
  • the rectifier 10 receives an input AC power and rectifies and outputs it.
  • the rectifier 10 may be a bridge rectifier, and may include first to fourth diodes D1 to D4.
  • the rectifier 10 may be rectified by receiving input AC power to the first and second nodes and output the rectified power to the third and fourth nodes.
  • a connection relationship between the first to fourth diodes D1 to D4 of the rectifying unit 10 will be described.
  • An anode which is an electrode connected to the P regions of the first to fourth diodes D1 to D4, and a cathode, which is an electrode connected to the N region, are included.
  • the anode terminal of the first diode D1 is connected to the first node N1, and the cathode terminal is connected to the third node N3.
  • the anode terminal of the second diode D2 is connected to the fourth node N4, and the cathode terminal is connected to the second node N2.
  • the anode terminal of the third diode D3 is connected to the second node N2, and the cathode terminal is connected to the third node N3.
  • the anode terminal of the fourth diode D4 is connected to the fourth node N4, and the cathode terminal is connected to the second node N2.
  • the inductor 40 which is an energy storage element synchronized with the operation of the first and second switching elements Qs and Qm, accumulates energy and supplies the accumulated energy to the first and second amplifiers 20 and 30. To repeat the operation.
  • the first and second amplifiers 20 and 30 may be synchronized with the inductor 40 and may amplify and output the input voltage.
  • the first amplifier 20, the second amplifier 30, and the inductor 40 may be connected in series with each other.
  • the inductor 40 is disposed between the first amplifier 20 and the second amplifier 30, but is not limited thereto.
  • the inductor 40, the first amplifier 20, and the second amplifier 30 are arranged in series, or the first amplifier 20, the second amplifier 30, and the inductor 40 are arranged in series. Can be.
  • the first and second amplifiers 20 and 30 may have a circuit configuration as shown in FIG. 3.
  • the fifth node N5 is defined as a supernode SuperNode of the sixth node N6 and the seventh node N7.
  • the first amplifier 20 may be connected between the third node N3 and the fifth node N5.
  • the second amplifier 30 may be connected between the fifth node N5 and the fourth node N4. Therefore, the first and second amplifiers 20 and 30 may be connected in series.
  • An inductor 40 may be connected between the sixth node N6 and the seventh node N7.
  • the position of the inductor 40 is not limited to the above.
  • the inductor 40 may be connected on the third node N3 between the rectifier 10 and the first amplifier 20, and the fourth node between the rectifier 10 and the second amplifier 30. May be connected on (N4). Therefore, the rectifier 10, the first and second amplifiers 20 and 30, and the inductor 40 may be connected in series.
  • the first amplifier 20 may include a first switching element Qs and a first output unit 21 connected in parallel thereto.
  • the second amplifier 30 may include a second switching element Qm and a second output unit 31 connected in parallel thereto.
  • the first output part 21 may include a first capacitor 22, a first resistor 23, and a first output part diode 24.
  • the first capacitor 22 and the first resistor 23 may be connected in parallel with each other, and the first output diode 24 may be connected in series with them.
  • the first output diode 24 is connected between the fifth node N5 and the eighth node N8, but is not limited thereto.
  • the first output diode 24 may include the first switching element Qs.
  • the first capacitor 22 may be connected on the third node N3 in the forward direction.
  • the second output part 31 may include a second capacitor 32, a second resistor 33, and a second output part diode 34.
  • the second capacitor 32 and the second resistor 33 may be connected in parallel with each other, and the second output diode 34 may be connected in series with them.
  • the second output diode 34 is connected between the fifth node N5 and the ninth node N9, but is not limited thereto.
  • the second output diode 34 may be connected on the fourth node N4 in the forward direction between the second switching element Qm and the second capacitor 32.
  • first and second capacitors 22 and 32 may stabilize the current supplied to the first and second resistors 23 and 33, and the first and second output diodes 24 and 34 may be stabilized.
  • the rectifier diode functions to prevent reverse current from flowing.
  • the first and second switching elements Qs and Qm control the currents supplied from the inductor 40 to the first and second output units 21 and 31.
  • the first and second switching elements Qs and Qm repeat the on or off operation by the pulse width modulated signal PWM, and thus, the first and second output units 21 and 31 from the inductor 40. It is possible to control the amount of current supplied to
  • first and second switching elements Qs and Qm are merely labeled as power MOSFETs for convenience, but are not limited thereto. Accordingly, the first and second switching elements Qs and Qm may be on-off controllable elements according to power capacity.
  • the power supply device 1000 receives an input voltage.
  • the first output voltage Vo1 may be generated by the first output unit 21 according to the operation of the first switching element Qs.
  • the second output voltage Vo2 may be generated by the second output unit 31 according to the operation of the second switching element Qm.
  • the first amplifier 20 and the second amplifier 30 may amplify n times the input voltage from the input power supply 11.
  • the power supply 1000 may have an output voltage greater than the input voltage. Therefore, n may have a real value greater than one. And it may have a voltage transfer ratio as shown in equation (1).
  • Equation 1 Means input voltage Denotes an output voltage of the amplifier 50.
  • Duty ratio for ideal device May be changed from 0 to 1 to control the output voltage of the amplifier 50.
  • the first amplifier 20 may output the first output voltage Vo1 corresponding to n1 times the input voltage to the first output unit 21.
  • the second amplifier 30 may output a second output voltage Vo2 corresponding to n2 times the input voltage to the second output unit 31.
  • the amplification ratio of the first amplifier 20 may be controlled according to the switching frequency of the first switching element Qs, and the amplification ratio of the second amplifier 20 is the operation of the second switching element Qm. Can be controlled according to.
  • the amplification ratio of the amplifying unit 50 and the amplification ratios of the first and second amplifying units 20 and 30 constituting the amplifying unit 50 have a relationship as in Equation (2).
  • the amplifier 50 may amplify the input voltage n times.
  • the amplification voltage is equal to the sum of the input voltage amplified by n1 times by the first amplifier 20 and the input voltage amplified by n2 times by the second amplifier 30.
  • the n1 and n2 may have the same value or different values.
  • the amplification degree of the input voltage is the same in each of the first and second amplifiers 20 and 30. Therefore, the same output voltage can be obtained from the first and second output units 21 and 31.
  • n1 and n2 have different values, the amplification degree of the input voltage is different in each of the first and second amplifiers 20 and 30. Therefore, different output voltages can be obtained from the first and second output units 21 and 31.
  • the first and second operating modes may have four operating modes, such as the first to fourth operating modes.
  • the output voltages of the first and second output units 21 and 31 may be controlled by turning on and off the first and second switching elements Qs and Qm.
  • FIG. 4 is a diagram illustrating an operation method when the first and second switching elements Qs and Qm of the power supply device 1000 according to the first embodiment of the present invention are turned on.
  • the first and second switching elements Qs and Qm are turned on at the same time.
  • the voltage applied to the first and second switching elements Qs and Qm may be 0V.
  • the current flowing through the first and second switching elements Qs and Qm may be a current flowing through the inductor 40.
  • a rectified input voltage is applied to the inductor 40 and the current flowing through the inductor 40 increases.
  • FIG. 5 is a diagram illustrating an operation method when the first and second switching elements Qs and Qm of the power supply device 1000 according to the first embodiment of the present invention are turned off.
  • the first and second switching elements Qs and Qm are turned off at the same time.
  • an input voltage is applied to the first and second switching elements Qs and Qm by voltage division.
  • the current flowing through the first and second switching elements Qs and Qm becomes 0A.
  • the voltage across the first and second output diodes 24 and 34 becomes 0V.
  • the current flowing through the first and second output diodes 24 and 34 becomes the current flowing through the inductor 40.
  • the voltage applied to the inductor 40 is a voltage obtained by subtracting the voltage of the first output unit 21 and the voltage of the second output unit 31 from the input voltage, a negative voltage is applied. Therefore, the current flowing in the inductor 40 is reduced.
  • the current flowing in the inductor 40 increases.
  • the voltage across the inductor 40 is increased to maintain the current flowing through the inductor 40.
  • the first and second switching elements Qs and Qm are turned on to increase the current flowing through the inductor 40 when the current of the inductor 40 gradually decreases and then switches back to the first operation mode.
  • the off ratio is determined by sensing output voltages of the first and second output units 21 and 31.
  • the input voltage may be amplified, and the amplified voltage may be equally divided among the first and second output units 21 and 31.
  • Equation 3 The equation regarding the voltage transfer ratio at which the input voltage is transmitted to the first and second output units 21 and 31 satisfies Equation 3 below.
  • the amplified input voltage is divided and applied to the first and second output units 21 and 31. Therefore, the voltage stress of the circuit element is reduced. Therefore, not only IGBT but also FET element can be used as a switching element.
  • the power supply device 1000 In addition to the effect of lowering the voltage stress of various devices, power can be transferred to a circuit side having different functions for each output unit by dividing the output unit into two output units.
  • the power supply device 1000 according to the embodiment of the present invention has an advantage of providing a plurality of power supplies by using one power supply source, thereby reducing the size of the entire circuit and reducing costs. .
  • the first and second switching elements Qs and Qm are described as being turned on at the same time and turned off at the same time, but are not limited thereto.
  • the first and second switching elements Qs and Qm can be driven separately. That is, the first and second switching elements Qs and Qm may be individually controlled by separately supplying PWM signals applied to the first and second switching elements Qs and Qm. Thus, different voltages may be output to the first and second output units 21 and 31.
  • FIG. 6 is a view illustrating an operation method when the first switching element Qs of the power supply device 1000 according to the first embodiment of the present invention is turned on and the second switching element Qm is turned off. to be.
  • the first switching element Qs may be turned on by the third operation mode, and at the same time, the second switching element Qm may be turned off.
  • the voltage across the first switching element Qs becomes 0V and the current flowing through the inductor 40 flows. It becomes a current.
  • the input voltage is amplified and applied to the second switching element Qm, and the current flowing is 0A.
  • the difference between the input voltage and the voltage applied to the second switching element Qm is applied to the inductor 40, and the current flowing through the inductor 40 decreases while the difference voltage becomes a negative voltage.
  • FIG. 7 is a view illustrating an operation method when the first switching element Qs of the power supply device 1000 according to the first embodiment of the present invention is turned off and the second switching element Qm is turned on. to be.
  • the first switching element Qs may be turned off and the second switching element Qm may be turned on by the fourth operation mode.
  • the degree of amplification of the voltage applied to the first and second output units 21 and 31 may be adjusted according to the duty ratio.
  • the power supply apparatus 1000 may operate in various ways according to the combination of the first to fourth operating mode methods.
  • the voltage stress of the semiconductor device may be reduced by distributing an amplification voltage to the first and second output units 21 and 31.
  • the voltages output from the first and second output units 21 and 31 may be used for one purpose or different purposes.
  • the duty ratios of the PWM signals applied to the first and second switching elements Qs and Qm are mutually different. By doing so, you can achieve that goal.
  • an amplification voltage having the same value may be applied to the first and second output units 21 and 31.
  • amplification voltages having the same magnitude in the first and second output units 21 and 31 may not be sustained due to non-ideal characteristics or external factors of the circuit device.
  • the amplification voltage having the same magnitude may be maintained in the first and second output units 21 and 31 while adding the third and fourth operation mode methods.
  • the second embodiment of the present invention is referred to as a balance output power supply device 3000.
  • the input voltage may be divided to be provided to two output units, and the input voltage may be equally distributed through the first to fourth operating modes to be applied to the two output units. .
  • the amplified input voltages of the two output parts may be differently distributed.
  • the amplified input voltage may be equally distributed to the two output units for a predetermined time, and the amplified input voltage may be distributed to different values for the two output units for a predetermined time.
  • a balanced output power supply 1000 for distributing an input voltage evenly is provided to two output stages and correcting a voltage imbalance at the output stages of the two stages.
  • the amount of current flowing to the load side of the first and second output units 21 and 31 may be different.
  • the energy that is charged in the capacitor of the output current flowing a lot may be relatively small compared to the energy charged in the capacitor of the other output.
  • the output voltage of the output including the capacitor which has charged relatively little energy can be lowered.
  • the voltage stress of a semiconductor device in a circuit in which a high voltage is applied may increase as one semiconductor device receives a relatively high voltage.
  • FIG. 8 shows a balanced output power supply apparatus according to a second embodiment of the present invention
  • FIG. 9 is a circuit diagram showing the detailed configuration of the control section of FIG.
  • the balance output power supply device 3000 may include a power supply unit 1000 and a control unit 2000.
  • the power supply unit 1000 may be the power supply device 1000 described with reference to FIGS. 2 to 7, and the control unit 2000 generates a control signal for turning on and off the switching elements Qs and Qm of the power supply device 1000. do.
  • the balance output power supply device 3000 may include a voltage controller 100, a power factor improvement circuit 200, a triangular wave generator circuit 400, and a first comparator 310. ), A second comparator 320, a first fine displacement controller 610, and a second fine displacement controller 620. In addition, the first to third adders 510, 520, and 530 may be included.
  • the first adder 510 may be connected between the terminal where the first and second output voltages Vo1 and Vo2 are human and the input terminal of the voltage controller 100. have.
  • the voltage controller 100 may be connected between a first reference voltage terminal Vref1, an output terminal of the first adder 510, and an input terminal of the power factor improvement circuit 200.
  • the power factor correction circuit 200 includes an output terminal of the voltage controller 100, a terminal to which sensed input voltage is applied, a terminal to which sensed output current is applied, and second and third electrodes. It may be connected between the input terminals of the adders 520 and 530.
  • the second adder 520 may be connected between an output terminal of the first fine displacement controller 610 and an input terminal of the first comparator 310, and the third adder 530 may be a second fine displacement controller.
  • the first fine displacement controller 610 is a terminal to which the second output voltage Vo2 and the second reference voltage ( The second fine displacement controller 610 may be connected between the terminal to which the first output voltage Vo1 is applied and the terminal to which the third reference voltage Vref3 is applied.
  • the signal may be output to the third adder 530.
  • the first comparator 310 may be connected between an output signal terminal of the triangular wave generator circuit 400, an output signal terminal of the second adder 520, and a control terminal of the first switching element Qs.
  • the comparator 320 may be connected between the output signal terminal of the triangle wave generator circuit 400, the output signal terminal of the third adder 530, and the control terminal of the second switching element Qm.
  • the peak value of the input AC voltage is 400V
  • the output voltage is doubled by 400V from the first and second output units 21 and 31, respectively.
  • the numerical values given are for convenience of description only and are not limited thereto.
  • the voltage controller 100 receives the sum signal of the output voltages of the first and second output units 21 and 31 and compares it with the first reference voltage Vref1.
  • the voltage controller 100 amplifies the difference between the first reference voltage Vref1 applied to the non-inverting terminal and the output voltages of the first and second output units 21 and 31 applied to the inverting terminal.
  • 1 may be configured as an operational amplifier for outputting a control signal.
  • the first reference voltage Vref1 may be 800V obtained by doubling the peak value 400V of the input AC voltage.
  • the first control signal obtained by comparing the sum signal of the first reference voltage Vref1 and the output voltages of the first and second output units 21 and 31 and amplifying the difference may be output to the power factor improving circuit 200. have.
  • output voltages of the first and second output units 21 and 31 may be sum signals by the first adder 510.
  • the power factor correction circuit 200 may receive a first control signal output from the voltage controller 100, a sensed input voltage Vi, and a sensed output current to output a second control signal.
  • the power factor improving circuit 200 is an operational amplifier that amplifies the difference between the sensed input voltage signal applied to the non-inverting terminal and the sensing current signal applied to the inverting terminal and outputs the difference as the second control signal. Can be configured.
  • the sensed output current may be defined as a current flowing in the inductor 40.
  • the sensed output current may be an average current flowing in the inductor 40 and may be a current flowing in the first switching element Qs or the second switching element Qm.
  • the first fine displacement controller 610 compares the output voltage of the first output unit 21 with the second reference voltage Vref2 and outputs a first microdisplacement signal
  • the second fine displacement controller 620 is a second
  • the second fine displacement signal may be output by comparing the output voltage of the output unit 31 with the third reference voltage Vref2.
  • the first fine displacement controller 610 receives the output of the second output unit through the non-inverting terminal, receives the second reference voltage Vref2 through the inverting terminal, amplifies the difference, and outputs the first fine displacement signal. It can be configured as an operational amplifier.
  • the second fine displacement controller 620 receives the output of the first output unit through the non-inverting terminal, receives the third reference voltage Vref2 through the inverting terminal, amplifies the difference, and outputs the second fine displacement signal. It can be configured as an operational amplifier.
  • the second and third reference voltages Vref2 and Vref3 may have the same value.
  • the second and third reference voltages Vref2 and Vref3 have the first and second output parts when the input voltage is amplified and the amplified voltages are equally caught by the first and second output parts 21 and 31.
  • the voltage shown in 21 and 31 will be 400V, and the 400V voltage can be used as the second and third reference voltages Vref2 and Vref3.
  • the second control signal and the first fine displacement signal output from the power factor improvement circuit 200 may be converted into a first comparison signal that is a sum signal by the second adder 520 and supplied to the first comparator 310.
  • the second control signal and the second fine displacement signal output from the power factor improving circuit 200 are converted into a second comparison signal that is a sum signal by the third adder 530 and supplied to the second comparator 320. Can be.
  • the first and second comparators 310 and 320 are circuits for comparing an analog signal with a reference signal and outputting the binary signal.
  • the first and second comparators 310 and 320 are used in a process of converting an analog signal into a digital signal.
  • the first and second comparators 310 and 320 have almost the same characteristics as a general operational amplifier having a high gain.
  • the first comparator 310 compares the triangular wave signal output from the triangular wave generator circuit 400 with the first comparison signal and supplies a first PWM signal to the first switching element Qs to supply the first switching element Qs.
  • Control the turn-off of the second comparator 320, and the second comparator 320 compares the triangular wave signal output from the triangular wave generator circuit 400 with the second comparison signal to transmit a second PWM signal to the second switching element Qm. By supplying it may be controlled to turn on / off the second switching element (Qm).
  • the first fine displacement signal and the second control signal are applied to the non-inverting terminal of the operational amplifier of the first comparator 310, the triangular wave signal is applied to the inverting terminal, and the two signals are compared to output the first PWM signal.
  • the second fine displacement signal and the second control signal are applied to the non-inverting terminal of the operational amplifier of the second comparator 320, the triangular wave signal is applied to the inverting terminal, and the two PWM signals are compared to each other.
  • the first and second PWM signals become signals for adjusting the on / off times of the first and second switching elements. That is, it can be linearly controlled by adjusting the duty ratio of the first and second PWM signals, that is, within the range of 1% to 100%.
  • the triangular wave generated by the triangular wave generating circuit 400 may be set to an appropriate period and magnitude in order to adjust the pulse width modulation duty ratio according to the second control signal and the first and second fine displacement signals.
  • the first to eighth impedances Z1 to Z8 included in the voltage controller 100, the power factor improvement circuit 200, the first fine displacement controller 610, and the second fine displacement controller 620 of FIG. 9 are in order. It can be a resistive element and a capacitive element.
  • the first, third, fifth and seventh impedances Z1, Z3, Z5, Z7 may be resistors, in particular the second, fourth, sixth and eighth impedances Z2, Z4, Z6, Z8.
  • n is a positive real number
  • the first amplifier 20 included in the amplifier 50 outputs the first output voltage Vo1 corresponding to n1 (n1 is a positive real number) times the input voltage, and the second amplifier ( 30 outputs a second output voltage Vo2 corresponding to n2 (n2 is a positive real number) times the input voltage.
  • the output voltages of the two output units 21 and 31 can be adjusted to be balanced.
  • the output voltage of the second output unit 31 decreases due to non-ideal characteristics and external factors of the internal circuit elements.
  • the output voltage of the first and second output units 21 and 31 may be adjusted by temporarily switching to the third operation mode as shown in FIG. 6.
  • the voltage applied to the inverting terminal of the first fine displacement controller 610 decreases. Accordingly, the voltage of the first fine displacement signal, which is the output voltage of the first fine displacement controller 610, may be increased (high signal) and output.
  • the second fine displacement signal which is an output voltage of the second fine displacement controller 620, may increase (a low signal).
  • each of the first fine displacement signal having increased voltage and the second fine displacement signal having reduced voltage is converted into first and second comparison signals, which are sum signals of the second control signal, respectively, so that each of the first and second comparators ( 310, 320 may be applied.
  • the first and second comparators 310 and 320 receiving the first and second comparison signals compare the applied first and second comparison signals with a triangular wave signal to generate and output a PWM output signal having a changed pulse width. can do.
  • the magnitude of the signal applied to the inverting terminal of the first comparator 310 may be increased by the first fine displacement signal, which is a high signal, and accordingly, the duty ratio of the first PWM output signal may be increased.
  • the magnitude of the signal applied to the inverting terminal of the second comparator 320 may be reduced by the displacement signal, thereby reducing the duty ratio of the second PWM output signal.
  • the turn-on time of the first switching device Qs may be longer and the turn-on time of the second switching device Qm may be shortened by the first PWM output signal having the increased duty ratio. That is, the turn-on time points of the first and second switching elements Qs and Qm are the same, and the turn-off time points can be adjusted differently, so that the voltages of the first and second output parts 21 and 31 are increased. It can be controlled to balance.
  • Comparators 310 and 320 perform the opposite operation while first comparator 310 generates a first PWM output signal with reduced duty ratio, and second comparator 320 generates a second PWM output signal with increased duty ratio. Can be generated.
  • the bandwidth of the power factor correction circuit 200 is the largest, followed by the voltage controller. It is desirable to increase the bandwidth of (100).
  • controller 2000 of the balanced output power supply 1000 has been described as a digital controller, the controller 2000 may be implemented using an analog PFC IC (Power Factor Controller Intergrated circuit).
  • PFC IC Power Factor Controller Intergrated circuit
  • FIG. 10 is a diagram illustrating an analog controller 2000 of the balance output power supply device 3000 according to the second embodiment of the present invention.
  • the controller 2000 of the balance output power supply device 3000 may include the first and second PFC ICs 1100 and 1200, the first and second adders 1300, and the like. 1400).
  • the first and second PFC ICs 1100 and 1200 receive a sensed AC input voltage, a sensed current and a triangle wave, and receive feedback signals from the first and second adders 1300 and 1400, respectively.
  • the first and second PWM signals for controlling the second switching elements Qs and Qm may be respectively output.
  • the first adder 1300 may add an output voltage of the second output unit 31 and input voltages of the first and second output units 21 and 31 to output the first PFC IC 1100.
  • the second adder 1400 may add the output voltage of the first output unit 21 and the input voltages of the first and second output units 21 and 31 to output the second PFC IC 1200. .
  • the first and second dual feedback units 1500 and 1600 may be implemented using a 431 series element that may serve to feed back an output voltage. Can be.
  • 11 is a circuit diagram illustrating a first dual feedback unit.
  • a detailed circuit configuration of the first and second dual feedback units 1500 and 1600 will be described with reference to FIG. 11.
  • any one of the first and second dual feedback units 1500 and 1600 having the output voltage feedback structure may be the same as the other one, the first dual feedback unit 1500 will be described.
  • the first dual feedback unit 1500 may include first to fourth resistors R1 to R4, a capacitor C, and a zener diode ZD.
  • the first resistor R1 is connected between the tenth node N10 and a terminal to which the output voltages of the first and second output units 21 and 31 are applied.
  • the second resistor R2 is connected between the eighth node N10 and a terminal to which the output voltage of the second output unit 31 is applied.
  • the third resistor R3 and the capacitor C connected in series with each other are connected between the tenth node N8 and the eleventh node N11.
  • the zener diode ZD is connected between the tenth node N10, the eleventh node N11, and the ground.
  • the feedback output to the first PFC IC 1100 is applied on the eleventh node N11.
  • the size of the first resistor R1 may be smaller than the size of the resistor of the second resistor R2 to give a weight.
  • FIG. 14 shows a simulation result of the balanced output power supply 3000 of FIGS. 12 and 13.
  • the first fine displacement signal which is a high signal from the first fine displacement controller 610
  • the magnitude of the signal applied to the inverting terminal of the first comparator 310 is increased, and accordingly,
  • the duty ratio may increase, and the magnitude of the signal applied to the inverting terminal of the second comparator 320 is reduced by the second fine displacement signal, which is a low signal from the second fine displacement controller 620, and accordingly, the second PWM
  • the duty ratio of the output signal is reduced, it can be confirmed that the output voltages Vo1 and Vo2 of the first and second output units 21 and 31 become equal to each other after the time point T2.
  • the voltage Vo1 of the first output unit 21 becomes unbalanced. It can be seen that the voltage V02 of the second output unit 31 decreases.
  • the first fine displacement signal which is a low signal from the first fine displacement controller 610, is output, and accordingly, the magnitude of the signal applied to the inverting terminal of the first comparator 310 is reduced, and accordingly, the first PWM output signal.
  • Duty ratio of the second comparator 320 may be reduced, and the magnitude of the signal applied to the inverting terminal of the second comparator 320 is increased by the second fine displacement signal, which is a high signal from the second fine displacement controller 620. As the duty ratio of the two PWM output signals is increased, it can be confirmed through the graph that the output voltages Vo1 and Vo2 of the first and second output units 21 and 31 become equal to each other after the time point T4.
  • the balanced output power supply 1000 may have the first and second fine displacement parts 610 and 620 and the first and second values when the output voltages of the first and second output parts 21 and 31 become uneven.
  • the duty ratios of the first and second PWM signals are adjusted according to the operations of the second comparators 310 and 320, and the output voltages of the first and second output units 21 and 31 are equally adjusted.
  • the power supply device according to the present invention can be used in the power field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명의 실시예에 따르면 에너지 저장 소자를 공유하는 제1 및 제2 증폭부를 구비한 전원 장치를 이용하여 반도체 소자의 전압 스트레스를 저감할 수 있고, 상기 제1 및 제2 증폭부의 증폭 비율을 개별적으로 조절하면서 상기 제1 및 제2 증폭부에 출력되는 출력 전압을 일정하게 유지할 수 있다.

Description

전원 장치
본 발명은 전원 장치에 관한 것이다.
일반적으로 전자기기용 전원으로 이용되는 스위칭 전원으로 대부분 커패시터 입력형의 정류 회로가 사용된다. 이러한 커패시터로 인해 펄스 형태의 입력 전류가 발생하고, 펄스 형태의 입력 전류는 각각의 전자, 정보, 통신 기기의 입력에서 동시에 발생하기 때문에 배전선에서 동 위상으로 더해져 전력 계통에 고조파 왜곡 및 상용 전원의 역률 저하를 초래한다.
이러한 문제를 해결하기 위해 역률 보정 기능을 가지는 부스트(boost) 형 PFC(Power Factor Corrections)의 제어회로에 대한 연구가 활발하다.
도 1은 종래의 부스트 컨버터(Boost Converter) 타입의 전원 장치에 대한 도면이다.
도 1을 참조하면, 종래의 전원 장치(1)는 정류기(2) 양단에 입력 전원이 연결되고, 상기 정류기(2)와 스위칭 소자(4) 사이에는 에너지 저장 소자인 인덕터(3)가 연결되고, 상기 스위칭 소자(4)와 커패시터 사이에는 다이오드가 연결되는 구조를 가진다.
이러한 전원 장치(1)는 입력 측의 전압을 일정 비율만큼 증폭 시켜 출력단(5)으로 출력한다.
3상 계통에서의 선간 전압과 같은 고전압이 전원 장치(1)에 인가되는 경우 출력 단(5)에는 매우 큰 고 전압이 인가된다. 따라서 출력 단의 반도체 소자의 전압 스트레스가 높아져 스위칭 소자로 FET(Field Effect Transistor) 소자 보다 IGBT(Insulated Gate Bipolar Transistor) 소자를 사용하게 된다. 따라서 상기 IGBT 소자를 사용함에 따라 낮은 스위칭 주파수를 사용해야 하는 단점이 있다. 또한 수동 소자의 사이즈 증가 및 제반 비용 상승 등 전원 장치 설계에 제약이 있다.
실시예는 전원 장치 내의 반도체 소자의 전압 스트레스를 줄이는 전원 장치를 제공한다.
실시예는 전원 장치의 내의 제1 및 제2 출력부의 출력 전압을 일정하게 제어하는 전원 장치를 제공한다.
실시예에 따른 전원 장치는 교류 전원을 정류하는 입력 전원부; 및 상기 입력 전압을 n(n은 1보다 큰 실수)배 증폭하는 증폭부를 포함하고, 상기 증폭부는 제1 및 제2 증폭부 및 인덕터를 포함하고, 상기 제1 증폭부는 제1 스위칭 소자의 동작에 따라 제1 출력부로 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압을 출력하고. 상기 제2 증폭부는 제2 스위칭 소자의 동작에 따라 제2 출력부로 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압을 출력한다.
실시예에 따른 전원 장치의 상기 제1 증폭부, 제2 증폭부 및 인덕터는 서로 직렬 연결되고, 상기 인덕터는 상기 제1 증폭부와 상기 제2 증폭부 사이에 연결된 전원 장치.
실시예에 따른 전원 장치의 상기 제1 및 제2 증폭부는 서로 동일한 구성을 가진다.
실시예에 따른 전원 장치의 상기 입력 전원부는 정류기를 포함하고, 상기 정류기는 브릿지 정류기이다.
실시예에 따른 전원 장치의 상기 제1 증폭부는 상기 제1 스위칭 소자와 병렬로 연결된 제1 출력부를 포함하고, 상기 제2 증폭부는 상기 제2 스위칭 소자와 병렬로 연결된 제2 출력부를 포함한다.
실시예에 따른 전원 장치의 상기 제1 출력부는 서로 직렬 연결된 제1 다이오드와 제1 커패시터-저항부를 포함하고, 상기 제2 출력부는 서로 직렬 연결된 제2 다이오드와 제2 커패시터-저항부를 포함한다.
실시예에 따른 전원 장치의 상기 제1 및 제2 커패시터-저항부에 포함된 커패시터와 저항은 서로 병렬 연결된다.
실시예에 따른 전원 장치의 상기 n, n1 및 n2는 수학식 1을 충족한다.
수학식 1
n=n1+n2
실시예에 따른 전원 장치의 상기 n1과 상기 n2는 서로 동일한 값을 가진다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온(Turn-On)되고 동시에 턴-오프(Turn-Off)된다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온되고, 상기 제1 스위칭 소자는 제1 시점에 턴-오프되고, 상기 제2 스위칭 소자는 제2 시점에 턴-오프되며, 상기 n1이 n2보다 큰 값을 가지는 경우, 상기 제1 시점은 제2 시점 이후에 도래한다.
실시예에 따른 전원 장치는 교류 전원을 제1 전압으로 정류하는 정류부, 그리고 상기 정류부로부터 상기 제1 전압을 받아 승압하고, 상기 승압된 전압을 분배하여 제2 전압 및 제3 전압으로 출력하는 증폭부를 포함한다.
실시예에 따른 전원 장치의 상기 증폭부는 상기 제1 전압을 받아 증폭하여 상기 제2 전압을 출력하는 제1 증폭부, 상기 제1 증폭부와 직렬 연결되며, 상기 제1 전압을 받아 증폭하여 상기 제3 전압을 출력하는 제2 증폭부, 그리고 상기 제1 및 제2 증폭부와 직렬 연결되어 있는 인덕터를 포함한다.
실시예에 따른 전원 장치의 상기 인덕터는 제1 및 제2 증폭부 사이에 연결된다.
실시예에 따른 전원 장치의 상기 제2 및 제3 전압은 동일한 전압이다.
실시예에 따른 전원 장치의 상기 제1 및 제2 증폭부는 각각 제1 및 제2 스위칭 소자를 포함하고, 상기 제1 및 제2 스위칭 소자의 동작 주파수에 따라 상기 제2 및 제3 전압이 제어된다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 된다.
실시예에 따른 전원 장치의 상기 제2 및 제3 전압이 동일한 경우, 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 된다.
실시예에 따른 전원 장치는 상기 제2 및 제3 전압이 동일한 제1 구간 동안, 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프되고, 상기 제2 및 제3 전압이 상이한 제2 구간 동안, 상기 제1 스위칭 소자는 제1 시점에 턴-오프 되고, 상기 제2 스위칭 소자는 제2 시점에 턴-오프된다.
실시예에 따른 전원 장치의 상기 제2 구간 동안 제1 및 제2 스위칭 소자는 동시에 턴-온 된다.
실시예에 따르면 에너지 저장 소자를 공유하는 제1 및 제2 증폭부를 구비한 전원 장치를 이용하여 반도체 소자의 전압 스트레스를 줄일 수 있다. 그리고 상기 제1 및 제2 증폭부의 증폭 비율을 개별적으로 조절하여 상기 제1 및 제2 증폭부에 출력되는 출력 전압을 일정하게 유지할 수 있다.
도 1은 종래의 부스트 컨버터(Boost Converter) 타입의 전원 장치에 대한 도면
도 2는 본 발명의 실시예에 따른 전원 장치(1000)의 블록도
도 3은 본 발명의 실시예에 따른 전원 장치를 나타낸 도면
도 4는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 5는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 6은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-온 되고, 제2 스위칭 소자(Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 7은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-오프 되고, 제2 스위칭 소자(Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 8은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치를 나타낸 도면
도 9는 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 제어부를 나타낸 도면
도 10은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 아날로그 제어부를 나타낸 도면
도 11은 제1 및 제2 듀얼 피드백부의 회로도를 나타낸 도면이다.
도 12 및 13은 본 발명의 실시예에 따른 전원 장치 및 상기 전원 장치를 구동하기 위한 제어부의 회로도
이하, 본 발명의 실시예에 의한 전원 장치의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 2는 본 발명의 실시예에 따른 전원 장치(1000)의 블록도이고, 도 3은 본 발명의 실시예에 따른 전원 장치(1000)를 나타낸 도면이다.
본 발명의 실시예에 따른 전원 장치(1000)는 특히 입력 전압보다 높은 출력 전압, 즉 전력 승압을 필요로 하는 시스템에서 사용될 수 있다.
예를 들어 배터리, 솔라 패널(Solar panel), 정류기 및 직류 생성 장치 등에서 사용될 수 있으며, LED(Light-emitting diode)패널의 전압 공급 장치로 사용되거나, LCD(Liquid Crystal Display Device) 패널의 게이트 드라이브 전압 승압용 장치로 사용될 수 있으나 이에 한정되는 것은 아니다.
도 2 및 3을 참조하면, 본 발명의 실시예에 따른 전원 장치(1000)는 정류부(10)를 포함하는 전원부(11), 제1 및 제2 증폭부(20, 30) 및 에너지 저장 소자인 인덕터(40)를 포함할 수 있다.
정류부(10)는 입력 교류 전원을 인가 받아 정류하여 출력한다. 상기 정류부(10)는 브릿지 정류기일 수 있으며, 제1 내지 제4 다이오드(D1~D4)를 포함할 수 있다.
상기 정류부(10)는 제1 및 제2 노드로 입력 교류 전원을 인가 받아 정류하여 제3 노드 및 제4 노드로 출력할 수 있다.
상기 정류부(10)의 제1 내지 제4 다이오드(D1~D4)의 연결관계를 설명한다.
상기 제1 내지 제4 다이오드(D1~D4)의 P영역에 연결된 전극인 애노드(anode)와 N영역에 연결된 전극인 캐소드(cathode)를 포함한다.
상기 제1 다이오드(D1)의 애노드 단자는 제1 노드(N1)에 연결되고, 캐소드 단자는 제3 노드(N3)에 연결된다.
상기 제2 다이오드(D2)의 애노드 단자는 제4 노드(N4)에 연결되고, 캐소드 단자는 제2 노드(N2)에 연결된다.
상기 제3 다이오드(D3)의 애노드 단자는 제2 노드(N2)에 연결되고, 캐소드 단자는 제3 노드(N3)에 연결된다.
상기 제4 다이오드(D4)의 애노드 단자는 제4 노드(N4)에 연결되고, 캐소드 단자는 제2 노드(N2)에 연결된다.
제1 및 제2 스위칭 소자(Qs, Qm)의 동작에 동기되는 에너지 저장 소자인 인덕터(40)는 에너지를 축적하고, 이 축적한 에너지를 제1 및 제2 증폭부(20, 30)로 공급하는 동작을 반복할 수 있다.
제1 및 제2 증폭부(20, 30)는 인덕터(40)와 동기화되고 입력 전압을 증폭하여 출력할 수 있다.
제1 증폭부(20), 제2 증폭부(30) 및 인덕터(40)는 서로 직렬 연결될 수 있다. 도면 상으로 인덕터(40)가 제1 증폭부(20) 및 제2 증폭부(30) 사이에 배치되고 있으나 이에 한정되는 것은 아니다.
인덕터(40), 제1 증폭부(20) 및 제2 증폭부(30) 순으로 직렬 배치되거나, 제1 증폭부(20), 제2 증폭부(30) 및 인덕터(40) 순으로 직렬 배치될 수 있다.
상기 제1 및 제2 증폭부(20, 30)는 도3과 같은 회로 구성을 가질 수 있다.
이하 제5 노드(N5)는 제6 노드(N6) 및 제7 노드(N7)의 슈퍼노드(SuperNode)라고 정의한다.
상기 제1 증폭부(20)는 제 3노드(N3) 및 제5 노드(N5) 사이에 연결될 수 있다.
제2 증폭부(30)는 제5 노드(N5) 및 제4 노드(N4) 사이에 연결될 수 있다. 따라서 상기 제1 및 제2 증폭부(20, 30)는 서로 직렬 연결일 수 있다.
상기 제6 노드(N6) 및 제7 노드(N7) 사이에는 인덕터(40)가 연결될 수 있다.
상기 인덕터(40)의 위치는 전술한 바에 한정되는 것은 아니다.
상기 인덕터(40)는 정류기(10)와 제1 증폭부(20) 사이의 제3 노드(N3) 상에 연결될 수 있고, 상기 정류기(10)와 제2 증폭부(30) 사이의 제4 노드(N4) 상에 연결될 수도 있다. 따라서 상기 정류기(10)와 제1 및 제2 증폭부(20, 30) 및 인덕터(40)는 서로 직렬 연결일 수 있다.
상기 제1 증폭부(20)는 제1 스위칭 소자(Qs) 및 이와 병렬 연결인 제1 출력부(21)를 포함할 수 있다.
상기 제2 증폭부(30)는 제2 스위칭 소자(Qm) 및 이와 병렬 연결인 제2 출력부(31)를 포함할 수 있다.
상기 제1 출력부(21)는 제1 커패시터(22), 제1 저항(23) 및 제1 출력부 다이오드(24)를 포함할 수 있다.
상기 제1 커패시터(22)와 제1 저항(23)은 서로 병렬 연결될 수 있으며, 이들과 직렬로 상기 제1 출력부 다이오드(24)가 연결될 수 있다.
도면 상으로는 제1 출력부 다이오드(24)가 제5 노드(N5)와 제8 노드(N8)사이에 연결되어 있지만 이에 한정되는 것은 아니고 상기 제1 출력부 다이오드(24)가 제1 스위칭 소자(Qs)와 제1 커패시터(22) 사이에서 순방향으로 제3 노드(N3) 상에 연결될 수 있다.
상기 제2 출력부(31)는 제2 커패시터(32), 제2 저항(33) 및 제2 출력부 다이오드(34)를 포함할 수 있다.
상기 제2 커패시터(32)와 제2 저항(33)은 서로 병렬 연결될 수 있고, 이들과 직렬로 상기 제2 출력부 다이오드(34)가 연결될 수 있다.
도면 상으로는 제2 출력부 다이오드(34)가 제5 노드(N5)와 제9 노드(N9)사이에 연결되어 있지만 이에 한정되는 것은 아니다.
상기 제2 출력부 다이오드(34)는 제2 스위칭 소자(Qm)와 제2 커패시터(32) 사이에서 순방향으로 제4 노드(N4) 상에 연결될 수 있다.
한편 상기 제1 및 제2 커패시터(22, 32)는 제1 및 제2 저항(23, 33)에 공급되는 전류를 안정화 시킬 수 있고, 상기 제1 및 제2 출력부 다이오드(24, 34)는 정류 다이오드 기능을 하여 역방향 전류가 흐르지 않도록 할 수 있다.
제1 및 제2 스위칭 소자(Qs, Qm)는 인덕터(40)로부터 제1 및 제2 출력부(21, 31)로 공급되는 전류를 제어하는 역할을 한다.
즉, 제1 및 제2 스위칭 소자(Qs, Qm)는 펄스폭 변조신호(PWM)에 의해 온 또는 오프 동작을 반복함으로써, 상기 인덕터(40)로부터 상기 제1 및 제2 출력부(21, 31)로 공급되는 전류의 크기를 제어할 수 있다.
도면 상에서 제1 및 제2 스위칭 소자(Qs, Qm)는 편의상 전력용 MOSFET으로 표기되어 있을 뿐 이에 한정되는 것은 아니다. 따라서 상기 제1 및 제2 스위칭 소자(Qs, Qm)는 전력 용량에 따라 온-오프 제어 가능한 소자가 될 수 있다.
전원 장치(1000)는 입력 전압을 인가 받는다. 그리고 제1 스위칭 소자(Qs)의 동작에 따라 제1 출력부(21)로 제1 출력 전압(Vo1)을 발생할 수 있다. 또한 제2 스위칭 소자(Qm)의 동작에 따라 제2 출력부(31)로 제2 출력 전압(Vo2)을 발생할 수 있다.
다시 말해 상기 제1 증폭부(20) 및 제2 증폭부(30)는 입력 전원부(11)로부터의 입력 전압을 n배 증폭할 수 있다.
출력 전압이 입력 전압보다 낮은 Buck 컨버터와는 달리 실시예에 따른 전원 장치(1000)는 출력 전압이 입력 전압보다 클 수 있다. 따라서 상기 n은 1보다 큰 실수 값을 가질 수 있다. 그리고 수학식1과 같은 전압 전달비를 가질 수 있다.
수학식 1
Figure PCTKR2014007339-appb-M000001
수학식1에서
Figure PCTKR2014007339-appb-I000001
는 입력 전압을 의미하고
Figure PCTKR2014007339-appb-I000002
는 증폭부(50)의 출력 전압을 의미한다.
전압전달비
Figure PCTKR2014007339-appb-I000003
와 듀티비
Figure PCTKR2014007339-appb-I000004
의 관계는
Figure PCTKR2014007339-appb-I000005
에 반비례한다.
전압전달비
Figure PCTKR2014007339-appb-I000006
는 듀티비
Figure PCTKR2014007339-appb-I000007
가 0일 때 최소인 1이되며, 듀티비
Figure PCTKR2014007339-appb-I000008
가 1일 때 최대인 무한대의 값이 된다.
이상적인 소자의 경우 듀티비
Figure PCTKR2014007339-appb-I000009
를 0에서 1까지 변경시켜 증폭부(50)의 출력 전압을 제어할 수 있다.
상기 제1 증폭부(20)는 입력 전압의 n1배에 해당하는 제1 출력 전압(Vo1)을 제1 출력부(21)로 출력할 수 있다. 그리고 상기 제2 증폭부(30)는 제2 출력부(31)로 입력 전압의 n2배에 해당하는 제2 출력 전압(Vo2)을 출력할 수 있다.
상기 제1 증폭부(20)의 증폭비는 제1 스위칭 소자(Qs)의 스위칭 주파수에 따라서 제어될 수 있고, 상기 제2 증폭부(20)의 증폭비는 제2 스위칭 소자(Qm)의 동작에 따라 제어될 수 있다.
증폭부(50)의 증폭비와 상기 증폭부(50)를 구성하는 제1 및 제2 증폭부(20, 30)의 증폭비는 수학식2과 같은 관계가 성립한다.
수학식 2
Figure PCTKR2014007339-appb-M000002
즉 증폭부(50)는 입력 전압을 n배 증폭할 수 있다. 이렇게 증폭 전압은 제1 증폭부(20)에 의하여 n1배 증폭된 입력 전압과 제2 증폭부(30)에 의하여 n2배 증폭된 입력 전압의 합과 같다.
상기 n1 및 n2는 서로 동일한 값을 가지거나 상이한 값을 가질 수 있다.
상기 n1 및 n2가 동일한 값을 가지는 경우에는 제1 및 제2 증폭부(20, 30) 각각에서 입력 전압의 증폭 정도가 동일하다. 따라서 제1 및 제2 출력부(21, 31)로부터 동일한 출력 전압을 얻을 수 있다.
상기 n1 및 n2가 서로 상이한 값을 가지는 경우에는 제1 및 제2 증폭부(20, 30) 각각에서 입력 전압의 증폭 정도가 다르다. 따라서 제1 및 제2 출력부(21, 31)로부터 서로 상이한 출력 전압을 얻을 수 있다.
이하에서는 도면 4 내지 7을 통해서 본 발명 제1 실시예에 따른 전원 장치(1000)의 동작 방식을 설명한다. 다만 설명의 편의를 위하여 각 소자는 이상적인 특성에 가까운 것으로 전제하고 설명한다.
제1 및 제2 스위칭 소자(Qs, Qm)의 동작 방식에 따라서 제1 동작 모드 내지 제4 동작 모드와 같은 4가지 동작모드를 가질 수 있다.
제1 및 제2 스위칭 소자(Qs, Qm)의 온 오프에 의해 제1 및 제2 출력부(21, 31)의 출력 전압을 제어할 수 있다.
[제1 동작 모드]
도 4는 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면이다.
도 4를 참조하면, 제1 동작 모드에서 제1 및 제2 스위칭 소자(Qs, Qm)가 동시에 턴-온된다. 이 경우 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 걸리는 전압은 0V가 될 수 있다. 그리고 제1 및 제2 스위칭 소자(Qs, Qm)에 흐르는 전류는 인덕터(40)에 흐르는 전류가 될 수 있다.
인덕터(40)에는 정류된 입력 전압이 인가되고 상기 인덕터(40)에 흐르는 전류는 증가한다.
[제2 동작 모드]
도 5는 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면이다.
도 5를 참조하면, 제2 동작 모드에서 제1 및 제2 스위칭 소자(Qs, Qm)가 동시에 턴 오프된다. 이 경우 상기 제1 및 제2 스위칭 소자(Qs, Qm)에는 입력 전압이 전압 분배되어 걸리게 된다. 그리고 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 흐르는 전류는 0 A가된다.
제1 및 제2 출력부 다이오드(24, 34)는 온 되므로 상기 제1 및 제2 출력부 다이오드(24, 34)에 걸리는 전압은 0V가 된다. 그리고 상기 제1 및 제2 출력부 다이오드(24, 34)에 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다.
상기 인덕터(40)에 인가되는 전압은 입력 전압에서 제1 출력부(21)의 전압과 제2 출력부(31)의 전압을 뺀 전압이 되므로 음의 전압이 걸리게 된다. 따라서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
이하 제1 및 제2 동작 모드가 교번하는 경우를 설명한다.
제1 동작 모드 시 인덕터(40)에 흐르는 전류는 증가한다. 이 때 전원장치(1000)가 제2 동작 모드로 들어가는 경우 상기 인덕터(40)에 흐르는 전류를 유지하기 위하여 상기 인덕터(40) 양단 전압이 높아진다. 그리고 제1 및 제2 출력부(21, 31) 상에 전류가 흐르게 된다. 그리고 상기 인덕터(40) 전류가 점점 감소하는 중에 다시 제1 동작 모드로 전환 시 상기 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온되어 상기 인덕터(40)에 흐르는 전류는 증가한다.
전술한 바와 같이 상기 제1 및 제2 스위칭 소자가 동시에 턴-온 및 턴-오프 되어 제1 및 제2 동작 모드가 반복할 때, 즉 제1 및 제2 스위칭 소자(Qs, Qm)의 온/오프 비율은 제1 및 제2 출력부(21, 31)의 출력 전압을 감지하여 결정하게 된다. 따라서 일정한 제1 및 제2 출력 전압을 얻을 수 있다. 또한 입력 전압이 증폭되고, 상기 증폭된 전압은 제1 및 제2 출력부(21, 31)에 균등하게 전압 분배될 수 있다.
입력전압이 제1 및 제2 출력부(21, 31)에 전달되는 전압 전달 비에 관한 식은 다음과 같은 수학식 3을 충족한다.
수학식 3
Figure PCTKR2014007339-appb-M000003
이 때, 듀티비 D를 0에서 1사이 범위 내에서 변경함으로써 제1 및 제2 출력부(21, 31)의 전압을 조절할 수 있다.
전술한 바와 같이 본 발명의 전원 장치(1000)에 따르면 입력 전압을 증폭하여 증폭된 전압을 제1 및 제2 출력부(21, 31)에 분배하여 인가한다. 따라서 회로 소자의 전압 스트레스가 감소된다. 따라서 스위칭 소자로서 IGBT뿐만 아니라 FET소자를 이용할 수가 있다.
즉, 본 발명에 적용될 부품 소자의 선택의 제한이 완화되어 각종 소자의 사이즈나 비용 증가 등을 회피할 수 있도록 설계 가능성을 높여준다.
각종 소자의 전압 스트레스를 낮추는 효과뿐만 아니라 출력부를 두 개로 분할 구동함으로써 각 출력부 서로 다른 기능을 가지는 회로 측에 각각 전력을 전달할 수 있다. 이로써 본 발명의 실시예에 따른 전원 장치(1000)는 하나의 전력 공급원을 이용하여 복수의 전력 공급원을 제공할 수 있는 이점을 가지고 이를 통해 회로 전체의 사이즈 축소 및 비용 절감 등의 효과를 가질 수 있다.
전술한 바에 의하면 제1 및 제2 스위칭 소자(Qs, Qm)는 동시에 턴온되고, 동시에 턴 오프되는 것으로 설명되어 있으나 이에 한정되는 것은 아니다.
전원 장치(1000)가 사용되는 제품에 따라서 서로 다른 전압을 가지는 두 개의 출력부가 필요할 수 있다. 따라서 이 경우는 상기 제1 및 제2 스위칭 소자(Qs, Qm)를 개별적으로 구동시킬 수 있다. 즉, 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 인가되는 PWM 신호를 개별적으로 공급하여 상기 제1 및 제2 스위칭 소자(Qs, Qm)를 개별적 제어할 수 있다. 그리하여 제1 및 제2 출력부(21, 31)에 서로 상이한 전압이 출력되도록 할 수 있다.
[제3 동작 모드]
도 6은 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 스위칭 소자(Qs)가 턴-온 되고, 제2 스위칭 소자(Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면이다.
도 6을 참조하면, 제3 동작모드에 의하여 제1 스위칭 소자(Qs)는 턴 온 되고, 동시에 제2 스위칭 소자(Qm)는 턴 오프 될 수 있다.
상기 제1 스위칭 소자(Qs)가 턴 온 되고, 제2 스위칭 소자(Qm)가 턴 오프 되는 경우, 상기 제1 스위칭 소자(Qs)에 걸리는 전압은 0V가 되고 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다. 그리고 상기 제2 스위칭 소자(Qm)에는 입력 전압이 증폭되어 걸리게 되고 흐르는 전류는 0A가 된다. 또한 상기 인덕터(40)에는 입력전압과 제2 스위칭 소자(Qm)에 걸리는 전압의 차 전압이 걸리게 되고, 상기 차 전압은 음의 전압이 되면서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
[제4 동작 모드]
도 7은 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 스위칭 소자(Qs)가 턴-오프 되고, 제2 스위칭 소자(Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면이다.
도 7을 참조하면, 제4 동작모드에 의하여 제1 스위칭 소자(Qs)는 턴 오프되고, 동시에 제2 스위칭 소자(Qm)는 턴 온 될 수 있다.
상기 제1 스위칭 소자(Qs)가 턴 오프되고, 제2 스위칭 소자(Qm)가 턴 온 되는 경우, 상기 제1 스위칭 소자(Qs)에는 입력 전압이 증폭되어 걸리게 되고 흐르는 전류는 0A가된다. 그리고 상기 제2 스위칭 소자(Qm)에 걸리는 전압은 0V가 되고, 이에 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다. 또한 상기 인덕터(40)에는 입력전압과 제1 스위칭 소자(Qs)에 걸리는 전압의 차 전압이 걸리게 되고, 상기 차 전압은 음의 전압이 되면서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
전술한 제3 및 제4 동작 모드에서도 듀티비에 따라서 제1 및 제2 출력부(21, 31)에 걸리는 전압의 증폭 정도를 조절할 수 있다.
종합하면, 본 발명에 제1 실시예에 따른 전원 장치(1000)는 제1 내지 제4 동작 모드 방식의 조합에 따라서 다양한 방식으로 동작하도록 할 수 있다. 예를 들어 제1 및 제2 동작 모드 방식을 주 동작 모드 방식으로 하는 경우에는 제1 및 제2 출력부(21, 31)에 증폭 전압을 분배 시켜 반도체 소자의 전압 스트레스를 감소 시킬 수 있고, 제1 및 제2 출력부(21, 31)에서 출력되는 전압을 하나의 용도 또는 서로 다른 용도로 사용할 수 있다. 그리고, 상기 제1 및 제2 출력부(21, 31)에 출력되는 전압을 간헐적으로 서로 달리하는 경우에는 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 인가되는 PWM 신호의 듀티비를 서로 달리함으로써 그 목적을 달성 할 수 있다. 그리고 제1 및 제2 동작 모드 방식을 주 동작 모드 방식으로 사용하는 경우 제1 및 제2 출력부(21, 31)에 서로 동일한 값을 가지는 증폭 전압이 인가될 것이다. 그러나 회로 소자의 비 이상적 특성이나 외부적 요인에 의하여 상기 제1 및 제2 출력부(21, 31)에 서로 동일한 크기를 가지는 증폭 전압이 지속되지 못할 수 있다. 이러한 경우 제3 및 제4 동작모드 방식을 추가하면서 상기 제1 및 제2 출력부(21, 31)에 서로 동일한 크기를 가지는 증폭 전압이 유지되도록 할 수 있다.
이하에서는 본 발명의 제2 실시예에 따른 전원 장치(3000)를 설명한다.
다만 본 발명의 제2 실시예는 밸런스(Balance) 출력 전원 장치(3000)로 명명한다.
전술한 제1 실시예의 전원 장치(1000)에 따르면 입력 전압을 분압하여 두 출력부 측에 제공하고, 제1 내지 제4 동작 모드를 통해서 입력 전압을 균등히 분배하여 두 출력부 측에 걸리게 할 수 있다.
이와 달리 두 출력부 측에 증폭된 입력 전압이 서로 상이하게 분배되도록 동작하는 방식이 될 수 있다. 또한 일정 시간 동안은 증폭된 입력 전압이 두 출력부 측에 균등 분배되고, 또 일정 시간 동안은 증폭된 입력 전압이 두 출력부 측에 서로 상이한 값으로 분배되도록 할 수 있다.
제2 실시예에서는 입력 전압을 균등하게 분배하여 두 단의 출력 단에 제공하고, 상기 두 단의 출력단에 전압 불균형이 생긴 경우 이를 바로 잡는 밸런스 출력 전원 장치(1000)에 대해서 설명한다.
제1 실시 예에서 설명한 전원 장치(1000)가 제1 및 제2 동작 모드로 교번적으로 동작하는 경우에 제1 및 제2 출력부(21, 31)의 부하측에 흐르는 전류 량이 상이해질 수 있다. 이 경우 전류가 많이 흐르는 출력부의 커패시터에 충전되는 에너지는 다른 출력부의 커패시터에 충전된 에너지와 비교해 상대적으로 적을 수 있다. 그리하여 상대적으로 적은 에너지를 충전한 커패시터를 포함하는 출력부의 출력 전압이 낮아질 수 있다. 이 경우 입력 전압의 균등 분배가 일어나지 않게 되고 밸런스 출력이 나타나지 않게 된다. 그리고 어느 한 쪽 반도체 소자에 상대적으로 높은 전압이 걸리면서 높은 전압이 걸린 회로 내의 반도체 소자의 전압 스트레스가 증가할 수 있다.
본 발명의 제2 실시예에 따르면 제1 및 제2 출력부(21, 31)에 흐르는 전류가 상이하여 출력 전압이 불균형 해지는 경우 이를 바로 잡을 수 있다.
이하 도면을 참조하여 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 동작 방식을 설명한다.
도 8은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치를 도시한 것이고, 도9는 도8의 제어부의 상세 구성을 나타내는 회로도이다.
도 8 및 도 9를 참고하면, 밸런스 출력 전원 장치(3000)는 전원부(1000) 및 제어부(2000)를 포함할 수 있다.
상기 전원부(1000)는 도 2 내지 도 7에서 설명한 전원 장치(1000)일 수 있으며, 제어부(2000)는 상기 전원 장치(1000)의 스위칭 소자(Qs, Qm)를 온-오프하는 제어 신호를 생성한다.
도 8 및 9를 참조하면, 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)는 전압 제어기(100), 역률개선회로(200), 삼각파 발생회로(400), 제1 비교기(310), 제2 비교기(320), 제1 미세 변위 제어기(610) 및 제2 미세 변위 제어기(620)를 포함할 수 있다. 그리고 추가적으로 제1 내지 제3 덧셈기(510, 520, 530)를 포함할 수 있다.
제어부(2000)를 이루는 각 구성의 연결관계를 살펴보면, 제1 덧셈기(510)는 제1 및 제2 출력 출압(Vo1, Vo2)이 인간되는 단자 및 전압 제어기(100)의 입력 단자 사이에 연결될 수 있다.
상기 전압 제어기(100)는 제1 기준 전압 단자(Vref1), 제1 덧셈기(510)의 출력 단자 및 역률개선회로(200)의 입력 단자 사이에 연결될 수 있다.
상기 역률개선회로(200)는 상기 전압 제어기(100)의 출력 단자, 센싱된 입력 전압(AC voltage sensing)이 인가된 단자, 센싱된 출력 전류(Current sensing)가 인가되는 단자 및 제2 및 제3 덧셈기(520, 530)의 입력 단자 사이에 연결될 수 있다. 그리고 상기 제2 덧셈기(520)는 제1 미세 변위 제어기(610)의 출력 단자와 제1 비교기(310)의 입력 단자 사이에 연결 될 수 있고, 상기 제3 덧셈기(530)는 제2 미세 변위 제어기(620)의 출력 단자와 제2 비교기(320)의 입력 단자 사이에 연결 될 수 있고, 상기 제1 미세 변위 제어기(610)는 제2 출력 전압(Vo2)이 인가되는 단자와 제2 기준 전압(Vref2)이 인가되는 단자 사이에 연결 될 수 있고, 제2 미세 변위 제어기(610)는 제1 출력 전압(Vo1)이 인가되는 단자와 제3 기준 전압(Vref3)이 인가되는 단자 사이에 연결되어 상기 제3 덧셈기(530)로 신호를 출력할 수 있다.
또한 상기 제1 비교기(310)는 삼각파 발생회로(400)의 출력 신호 단자와 제2 덧셈기(520)의 출력 신호 단자 및 제1 스위칭 소자(Qs)의 제어 단자 사이에 연결될 수 있고, 상기 제2 비교기(320)는 삼각파 발생회로(400)의 출력 신호 단자와 제3 덧셈기(530)의 출력 신호 단자 및 제2 스위칭 소자(Qm)의 제어 단자 사이에 연결될 수 있다.
이하 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 동작 방식을 설명한다. 이 경우 예로써 입력 교류 전압의 피크치가 400V이고 이를 두 배 증폭하여 제1 및 제2 출력부(21, 31)에서 각각 400V씩 출력되는 경우를 살펴본다. 제시된 수치는 발명의 설명의 편의를 위한 것일 뿐 이에 한정되는 것은 아니다.
전압 제어기(100)은 제1 및 제2 출력부(21, 31)의 출력 전압의 합 신호를 인가 받아 제1 기준 전압(Vref1)과 비교한다.
즉, 상기 전압 제어기(100)는 비반전 단자에 인가되는 제1 기준 전압(Vref1)과, 반전 단자에 인가되는 제1 및 제2 출력부(21,31)의 출력 전압의 차를 증폭하여 제1 제어 신호를 출력하는 연산 증폭기로 구성될 수 있다.
상기 제1 기준 전압(Vref1)은 입력 교류 전압의 피크치 400V를 두 배 증폭한 800V가 될 수 있다. 상기 제1 기준 전압(Vref1)과 제1 및 제2 출력부(21, 31)의 출력 전압의 합 신호와 비교하고 그 차이를 증폭한 제1 제어 신호를 역률개선회로(200) 측으로 출력할 수 있다.
한편 상기 제1 및 제2 출력부(21, 31)의 출력 전압은 제1 덧셈기(510)에 의하여 합 신호가 될 수 있다.
역률개선회로(200)는 전압 제어기(100)로부터 출력된 제1 제어신호와 센싱된 입력 전압(Vi)과 센싱된 출력 전류를 받아드려 제2 제어 신호를 출력할 수 있다.
즉, 역률개선회로(200)는 비반전 단자에 인가되는 센싱된 입력 전압 신호 및 상기 제1 제어 신호와 반전 단자에 인가되는 센싱 전류 신호의 차를 증폭하여 제2 제어 신호로 출력하는 연산 증폭기로 구성될 수 있다.
상기 센싱된 출력 전류는 인덕터(40)에 흐르는 전류로 정의될 수 있다. 또는 상기 센싱된 출력 전류를 인덕터(40)에 흐르는 평균 전류가 될 수 있고, 제1 스위칭 소자(Qs) 또는 제2 스위칭 소자(Qm)에 흐르는 전류가 될 수 있다.
제1 미세 변위 제어기(610)는 제1 출력부(21)의 출력 전압과 제2 기준 전압(Vref2)을 비교하여 제1 미세변위 신호를 출력하고, 제2 미세 변위 제어기(620)는 제2 출력부(31)의 출력 전압과 제3 기준 전압(Vref2)를 비교하여 제2 미세 변위 신호를 출력할 수 있다.
한편 제1 미세 변위 제어기(610)는 비반전 단자로 제2 출력부의 출력을 인가 받고, 반전 단자로 제2 기준 전압(Vref2)를 인가 받아 이들의 차이를 증폭하여 제1 미세 변위 신호를 출력하는 연산증폭기로 구성될 수 있다. 그리고 제2 미세 변위 제어기(620)는 비반전 단자로 제1 출력부의 출력을 인가 받고, 반전 단자로 제3 기준 전압(Vref2)를 인가 받아 이들의 차이를 증폭하여 제2 미세 변위 신호를 출력하는 연산증폭기로 구성될 수 있다.
상기 제2 및 제3 기준 전압(Vref2, Vref3)은 서로 동일한 값을 가질 수 있다.
한편 상기 제2 및 제3 기준 전압(Vref2, Vref3)은 입력 전압이 증폭되고 증폭된 전압이 균등하게 제1 및 제2 출력부(21,31)에 걸렸을 때 상기 제1 및 제2 출력부(21, 31)에 나타나는 전압이 되는 400V가 될 것이고 상기 400V 전압을 상기 제2 및 제3 기준 전압(Vref2, Vref3)으로 삼을 수 있다.
역률개선회로(200)로부터 출력된 제2 제어 신호와 상기 제1 미세 변위신호는 제2 덧셈기(520)에 의하여 합 신호인 제1 비교 신호로 전환되어 제1 비교기(310)로 공급될 수 있고, 상기 역률개선회로(200)로부터 출력된 제2 제어 신호와 상기 제2 미세 변위신호는 제3 덧셈기(530)에 의하여 합 신호인 제2 비교 신호로 전환되어 제2 비교기(320)로 공급될 수 있다.
상기 제1 및 제2 비교기(310, 320)는 아날로그 신호와 기준 신호를 비교하여 이진 신호로 출력하는 회로로서, 아날로그 신호를 디지털 신호로 변환하는 과정에서 사용된다. 그리고 상기 제1 및 제2 비교기(310, 320)는 높은 이득을 갖는 일반적인 연산 증폭기와 대부분 동일한 특성을 가진다.
제1 비교기(310)는 삼각파 발생 회로(400)로부터 출력된 삼각파 신호와 상기 제1 비교 신호를 비교하여 제1 PWM 신호를 제1 스위칭 소자(Qs)에 공급하여 상기 제1 스위칭 소자(Qs)의 턴/오프를 제어할 수 있고, 제2 비교기(320)는 삼각파 발생 회로(400)로부터 출력된 삼각파 신호와 상기 제2 비교 신호를 비교하여 제2 PWM 신호를 제2 스위칭 소자(Qm)에 공급하여 상기 제2 스위칭 소자(Qm)의 턴/오프를 제어할 수 있다.
구체적으로 제1 비교기(310)의 연산 증폭기의 비반전 단자에 제1 미세 변위 신호 및 제2 제어 신호를 인가 받고, 반전 단자에 삼각파 신호를 인가 받아 이 두 신호를 비교하여 제1 PWM 신호를 출력할 수 있고, 제2 비교기(320)의 연산 증폭기의 비반전 단자에 제2 미세 변위 신호 및 제2 제어 신호를 인가 받고, 반전 단자에 삼각파 신호를 인가 받아 이 두 신호를 비교하여 제2 PWM 신호를 출력할 수 있다.
상기 제1 및 제2 PWM 신호는 제1 및 제2 스위칭 소자의 온/오프의 시간을 조절하는 신호가 된다. 즉 제1 및 제2 PWM 신호의 듀티비, 즉 1%~100% 범위 내에서 조절함으로써 선형적으로 제어될 수 있다.
한편 상기 삼각파 발생 회로(400)에서 발생되는 삼각파는 제2 제어 신호와 제1 및 제2 미세 변위 신호에 따라 펄스폭 변조 듀티비를 조절하기 위해 적절한 주기와 크기로 설정될 수 있다.
한편 도면 9의 전압 제어부(100), 역률개선회로(200), 제1 미세 변위 제어기(610) 및 제2 미세 변위 제어기(620)에 포함된 제1 내지 제8 임피던스(Z1~Z8)는 순 저항 소자 및 용량성 소자가 될 수 있다. 특히 제1, 제3, 제5 및 제7 임피던스(Z1, Z3, Z5, Z7)는 저항이 될 수 있고, 특히 제2, 제4, 제6 및 제8 임피던스(Z2, Z4, Z6, Z8)는 연산 증폭기의 음의 피드백으로서 저항과 상기 저항에 직렬 연결된 커패시터로 구성될 수 있다.
도 4 내지 도7을 참조하여, 출력이 언밸런스(Unbalance)한 경우 이를 밸런스(Balance)하도록 조절하는 동작 방식을 설명한다.
예를 들어 증폭부(50)가 입력 전원부(11)로부터의 입력 전압을 n(n은 양의 실수) 배 증폭하는 경우를 살펴본다.
상기 증폭부(50)에 포함된 제1 증폭부(20)가 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압(Vo1)을 출력하고, 상기 제2 증폭부(30)가 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압(Vo2)을 출력한다.
이 때 상기 제2 증폭부(30)에 포함된 제2 출력부(31)의 출력 전압이 감소하여 n1의 값이 n2보다 큰 값, 즉 n1>n2라는 관계가 되는 경우, 제1 출력부(21)의 제1 스위칭 소자(Qs)의 온 시간을 증가, 즉 제1 스위칭 소자(Qs)의 턴-오프 시점을 제2 스위칭 소자(Qm)의 턴-오프 시점보다 뒤지도록 함으로서 제1 및 제2 출력부(21, 31)의 출력 전압이 균형을 이루도록 조절할 수 있다.
즉, 도면 4 및 5와 같이 전원 장치(1000)가 제1 및 제2 동작 모드를 교번하는 경우에 회로 내부 소자의 비 이상적인 특성 및 외부 요인에 의하여 제2 출력부(31)의 출력 전압이 감소하는 현상이 발생하는 경우 일시적으로 도면 6과 같은 제3 동작 모드로 전환하는 방식을 통해 제1 및 제2 출력부(21, 31)의 출력 전압을 조절할 수 있다.
이하 제1 및 제2 출력부(21, 31)의 출력 전압이 불 균등한 경우 제어부의 동작 방식을 살펴본다.
예로써 제2 출력부(31)의 출력 전압이 감소하면, 제1 미세 변위 제어부(610)의 반전 단자에 인가되는 전압이 감소한다. 그리고 그에 따라 제1 미세 변위 제어부(610)의 출력 전압인 제1 미세 변위 신호의 전압이 증가(하이(High) 신호)되어 출력될 수 있다. 그리고 제2 출력부(31)의 출력 전압이 감소하면, 제1 출력부(21)의 출력 전압은 증가를 하고, 제2 미세 변위 제어부(620)의 반전 단자에 인가되는 전압이 증가한다. 따라서 제2 미세 변위 제어부(620)의 출력 전압인 제2 미세 변위 신호가 증가(로우(Low) 신호)할 수 있다.
이와 같이 전압이 증가한 제1 미세 변위 신호와 전압이 감소한 제2 미세 변위 신호 각각은 제2 제어 신호와의 합 신호인 제1 및 제2 비교 신호로 전환되어 이들 각각은 제1 및 제2 비교기(310, 320)에 인가될 수 있다.
상기 제1 및 제2 비교 신호를 인가 받은 제1 및 제2 비교기(310, 320)는 인가된 제1 및 제2 비교 신호 각각을 삼각파 신호와 비교하여 펄스 폭이 변화된 PWM 출력 신호를 생성하여 출력할 수 있다.
구체적으로 하이 신호인 제1 미세 변위 신호에 의하여 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 커지고 그에 따라 제1 PWM 출력 신호의 듀티비가 증가할 수 있고, 로우 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 감소되고 그에 따라 제2 PWM 출력 신호의 듀티비가 감소할 수 있다.
이와 같이 듀티비가 증가된 제1 PWM 출력 신호에 의하여 제1 스위칭 소자(Qs)의 턴-온 시간은 길어지게 되고, 제2 스위칭 소자(Qm)의 턴-온 시간은 짧아지게 될 수 있다. 즉, 제1 및 제2 스위칭 소자(Qs, Qm)의 턴-온 시점은 동일하게 하면서 턴-오프 시점은 상이하게 조절할 수 있고 그에 따라 제1 및 제2 출력부(21, 31)의 전압이 균형을 이루도록 제어할 수 있다.
한편 상기 제1 및 제2 비교기(310, 320)에 인가되는 신호를 반대로 하여 제1 및 제2 비교 신호가 반전 단자에 인가되고, 삼각파 신호가 비 반전 단자가 되는 경우, 상기 제1 및 제2 비교기(310, 320)은 반대의 동작을 수행하면서 제1 비교기(310)는 듀티비가 감소하는 제1 PWM 출력 신호를 생성하고, 제2 비교기(320)는 듀티비가 증가하는 제2 PWM 출력 신호를 생성할 수 있다.
또한 상기 전압 제어기(100), 역률 개선 회로(200), 제1 및 제2 미세 변위 제어기(610, 620)의 대역폭을 선정하면 상기 역률 개선 회로(200)의 대역폭이 가장 크고, 다음으로 전압 제어기(100)의 대역폭을 크게 하는 것이 바람직하다.
본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(1000)의 제어부(2000)는 디지털 제어기로서 설명되었으나, 이와 달리 아날로그 PFC IC(Power Factor Controller Intergrated circuit)를 이용하여 구현 할 수 있다.
도 10은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 아날로그 제어부(2000)를 나타낸 도면이다.
도 10을 참고하면, 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 제어부(2000)는 제1 및 제2 PFC IC(1100, 1200), 제1 및 제2 덧셈기(1300, 1400)를 포함할 수 있다.
상기 제1 및 제2 PFC IC(1100, 1200)은 센싱된 교류 입력 전압과 센싱된 전류 및 삼각파를 인가 받고, 제1 및 제2 덧셈기(1300, 1400) 각각으로부터 피드백 신호를 인가 받아 제1 및 제2 스위칭 소자(Qs, Qm)를 제어하는 제1 및 제2 PWM 신호를 각각 출력할 수 있다.
상기 제1 덧셈기(1300)는 제2 출력부(31)의 출력 전압 및 제1 및 제2 출력부(21, 31)의 입력 전압을 더하여 상기 제1 PFC IC(1100)으로 출력 할 수 있다. 그리고 상기 제2 덧셈기(1400)는 제1 출력부(21)의 출력 전압 및 제1 및 제2 출력부(21, 31)의 입력 전압을 더하여 상기 제2 PFC IC(1200)으로 출력 할 수 있다.
상기 제1 및 제2 덧셈기(1300, 1400)를 대신하여 출력 전압을 피드백하는 역할을 할 수 있는 431계열의 소자를 이용하여 제1 및 제2 듀얼(Dual) 피드백부(1500, 1600)을 구현할 수 있다.
도 11은 제1 및 제2 듀얼 피드백부의 회로도를 나타낸 도면이다.
도 11을 참조하여 제1 및 제2 듀얼 피드백부(1500. 1600)의 구체적인 회로 구성을 살펴본다.
출력 전압 피드백 구조를 가진 제1 및 제2 듀얼 피드백부(1500, 1600) 중 어느 하나의 회로 구조는 나머지 하나와 동일할 수 있으므로 제1 듀얼 피드백부(1500)를 중심으로 설명한다.
제1 듀얼 피드백부(1500)는 제1 내지 제4 저항(R1~R4), 커패시터(C) 및 제너 다이오드(ZD)를 포함할 수 있다.
상기 제1 저항(R1)은 제10 노드(N10)와 제1 및 제2 출력부(21, 31)의 출력전압이 인가되는 단자 사이에 연결된다.
상기 제2 저항(R2)은 상기 제8 노드(N10)와 제2 출력부(31)의 출력 전압이 인가되는 단자 사이에 연결된다.
서로 직렬 연결된 제3 저항(R3) 및 커패시터(C)는 상기 제10 노드(N8)과 제11 노드(N11) 사이에 연결된다.
상기 제너 다이오드(ZD)는 상기 제10 노드(N10), 제11 노드(N11) 및 접지 사이에 연결된다. 제1 PFC IC(1100)로 피드백 출력은 상기 제11 노드(N11) 상에 인가된다.
상기 제1 저항(R1)의 크기는 제2 저항(R2)의 저항의 크기보다 작은 것으로 선택함으로써 가중치를 줄 수 있다.
도 12 및 13은 본 발명에 제2 실시예에 따른 밸런스 출력 전원 장치(3000)를 시뮬레이션 하기 위한 회로를 나타내었다.
도 12 및 13의 밸런스 출력 전원 장치(3000)에 따른 시뮬레이션 결과를 나타낸 도 14을 참조하여 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(2000)의 동작 방식과 효과를 설명한다.
도 14를 참조하면, T1 시점에 제1 출력부(21)에 흐르는 전류가 증가하여 제1 및 제2 출력부(21, 31)에 흐르는 전류가 불균형 해질 때, 제2 출력부(31)의 전압(Vo2)이 증가하고, 제1 출력부(21)의 전압(Vo1)이 감소하는 것을 알 수 있다. 이 경우 제1 미세 변위 제어부(610)으로부터의 하이 신호인 제1 미세 변위 신호가 출력되고 그에 따라 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 커지고 그에 따라 제1 PWM 출력 신호의 듀티비가 증가할 수 있고, 제2 미세 변위 제어부(620)으로부터의 로우 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 감소되고 그에 따라 제2 PWM 출력 신호의 듀티비가 감소되면서 제1 및 제2 출력부(21, 31)의 출력 전압(Vo1, Vo2)이 T2 시점 이후로 서로 균등해지는 것을 확인 할 수 있다.
반대로 T3 시점에 제2 출력부(31)에 흐르는 전류가 증가하여 제1 및 제2 출력부(21, 31)에 흐르는 전류가 불균형 해질 때, 제1 출력부(21)의 전압(Vo1)이 증가하고, 제2 출력부(31)의 전압(V02)이 감소하는 것을 알 수 있다. 이 경우 제1 미세 변위 제어부(610)으로부터의 로우 신호인 제1 미세 변위 신호가 출력되고 그에 따라 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 작아지고 그에 따라 제1 PWM 출력 신호의 듀티비가 감소할 수 있고, 제2 미세 변위 제어부(620)으로부터의 하이 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 증가하게 되고 그에 따라 제2 PWM 출력 신호의 듀티비가 증가되면서 제1 및 제2 출력부(21, 31)의 출력 전압(Vo1, Vo2)이 T4 시점 이후로 서로 균등해지는 것을 그래프를 통해서 확인 할 수 있다.
이와 같이 본 발명에 따른 밸런스 출력 전원 장치(1000)는 제1 및 제2 출력부(21, 31)의 출력 전압이 불균등 해지는 경우 제1 및 제2 미세 변위부(610, 620)와 제1 및 제2 비교기(310, 320)의 동작에 따라서 제1 및 제2 PWM 신호의 듀티비가 조절되면서 상기 제1 및 제2 출력부(21, 31)의 출력 전압을 균등하게 조절하는 효과를 가진다.
이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.
본 발명에 따른 전원 장치는 파워 분야에서 이용될 수 있다.

Claims (20)

  1. 교류 전원을 정류하는 입력 전원부; 및
    상기 입력 전압을 n(n은 1보다 큰 실수)배 증폭하는 증폭부를 포함하고,
    상기 증폭부는 제1 및 제2 증폭부 및 인덕터를 포함하고,
    상기 제1 증폭부는 제1 스위칭 소자의 동작에 따라 제1 출력부로 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압을 출력하고.
    상기 제2 증폭부는 제2 스위칭 소자의 동작에 따라 제2 출력부로 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압을 출력하는 전원 장치.
  2. 제1 항에 있어서,
    상기 제1 증폭부, 제2 증폭부 및 인덕터는 서로 직렬 연결되고,
    상기 인덕터는 상기 제1 증폭부와 상기 제2 증폭부 사이에 연결된 전원 장치.
  3. 제1 항에 있어서,
    상기 제1 및 제2 증폭부는 서로 동일한 구성을 가지는 전원 장치.
  4. 제1 항에 있어서,
    상기 입력 전원부는 정류기를 포함하고,
    상기 정류기는 브릿지 정류기인 전원 장치.
  5. 제1 항에 있어서,
    상기 제1 증폭부는 상기 제1 스위칭 소자와 병렬로 연결된 제1 출력부를 포함하고,
    상기 제2 증폭부는 상기 제2 스위칭 소자와 병렬로 연결된 제2 출력부를 포함하는 전원 장치.
  6. 제5 항에 있어서,
    상기 제1 출력부는 서로 직렬 연결된 제1 다이오드와 제1 커패시터-저항부를 포함하고,
    상기 제2 출력부는 서로 직렬 연결된 제2 다이오드와 제2 커패시터-저항부를 포함하는 전원 장치.
  7. 제6 항에 있어서,
    상기 제1 및 제2 커패시터-저항부에 포함된 커패시터와 저항은 서로 병렬 연결되는 전원 장치.
  8. 제1 항에 있어서,
    상기 n, n1 및 n2는 수학식 1을 충족하는 전원 장치.
    수학식 1
    n=n1+n2
  9. 제1 항에 있어서,
    상기 n1과 상기 n2는 서로 동일한 값을 가지는 전원 장치.
  10. 제1 항에 있어서,
    상기 제1 및 제2 스위칭 소자는 동시에 턴-온(Turn-On)되고 동시에 턴-오프(Turn-Off)되는 전원 장치.
  11. 제1 항에 있어서,
    상기 제1 및 제2 스위칭 소자는 동시에 턴-온되고,
    상기 제1 스위칭 소자는 제1 시점에 턴-오프되고,
    상기 제2 스위칭 소자는 제2 시점에 턴-오프되며,
    상기 n1이 n2보다 큰 값을 가지는 경우, 상기 제1 시점은 제2 시점 이후에 도래하는 전원 장치.
  12. 교류 전원을 제1 전압으로 정류하는 정류부, 그리고
    상기 정류부로부터 상기 제1 전압을 받아 승압하고, 상기 승압된 전압을 분배하여 제2 전압 및 제3 전압으로 출력하는 증폭부
    를 포함하는 전원 장치.
  13. 제12 항에 있어서,
    상기 증폭부는
    상기 제1 전압을 받아 증폭하여 상기 제2 전압을 출력하는 제1 증폭부,
    상기 제1 증폭부와 직렬 연결되며, 상기 제1 전압을 받아 증폭하여 상기 제3 전압을 출력하는 제2 증폭부, 그리고
    상기 제1 및 제2 증폭부와 직렬 연결되어 있는 인덕터
    를 포함하는 전원 장치.
  14. 제13 항에 있어서,
    상기 인덕터는 제1 및 제2 증폭부 사이에 연결되는 전원 장치.
  15. 제13 항에 있어서,
    상기 제2 및 제3 전압은 동일한 전압인 전원 장치.
  16. 제12 항에 있어서,
    상기 제1 및 제2 증폭부는 각각 제1 및 제2 스위칭 소자를 포함하고,
    상기 제1 및 제2 스위칭 소자의 동작 주파수에 따라 상기 제2 및 제3 전압이 제어되는 전원 장치.
  17. 제16 항에 있어서,
    상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 되는 전원 장치.
  18. 제16 항에 있어서,
    상기 제2 및 제3 전압이 동일한 경우,
    상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 되는 전원 장치.
  19. 제16 항에 있어서,
    상기 제2 및 제3 전압이 동일한 제1 구간 동안,
    상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프되고,
    상기 제2 및 제3 전압이 상이한 제2 구간 동안,
    상기 제1 스위칭 소자는 제1 시점에 턴-오프 되고,
    상기 제2 스위칭 소자는 제2 시점에 턴-오프되는 전원 장치.
  20. 제19 항에 있어서,
    상기 제2 구간 동안 제1 및 제2 스위칭 소자는 동시에 턴-온 되는 전원 장치.
PCT/KR2014/007339 2013-08-07 2014-08-07 전원 장치 WO2015020463A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/910,812 US9899935B2 (en) 2013-08-07 2014-08-07 Power factor correction device with first and second output parts
CN201480044997.9A CN105453400B (zh) 2013-08-07 2014-08-07 供电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0093854 2013-08-07
KR1020130093854A KR102091584B1 (ko) 2013-08-07 2013-08-07 전원 장치

Publications (1)

Publication Number Publication Date
WO2015020463A1 true WO2015020463A1 (ko) 2015-02-12

Family

ID=52461686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007339 WO2015020463A1 (ko) 2013-08-07 2014-08-07 전원 장치

Country Status (4)

Country Link
US (1) US9899935B2 (ko)
KR (1) KR102091584B1 (ko)
CN (1) CN105453400B (ko)
WO (1) WO2015020463A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160122921A (ko) * 2015-04-14 2016-10-25 엘에스산전 주식회사 인버터의 구동을 위한 게이트 드라이버
CN106067738B (zh) * 2015-04-23 2020-04-14 松下知识产权经营株式会社 电力变换装置
GB2566479B (en) * 2017-09-14 2019-10-23 Eltek As DC-DC Converter
CN107769538A (zh) * 2017-12-07 2018-03-06 深圳市华星光电技术有限公司 功率因素校正电路及反激电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239584B1 (en) * 2000-06-20 2001-05-29 Delta Electronics, Inc. Two-inductor boost converter
JP2004023982A (ja) * 2002-06-20 2004-01-22 Nec Tokin Corp 昇圧型充電装置
JP2004350471A (ja) * 2003-05-26 2004-12-09 Hitachi Medical Corp 電圧分圧回路
JP2005073454A (ja) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd 電源回路
JP4745234B2 (ja) * 2006-03-29 2011-08-10 三菱電機株式会社 電源装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9703088D0 (en) * 1997-02-14 1997-04-02 Switched Reluctance Drives Ltd Power supply circuit for a control circuit
US5847949A (en) 1997-10-07 1998-12-08 Lucent Technologies Inc. Boost converter having multiple outputs and method of operation thereof
US5894214A (en) * 1997-11-20 1999-04-13 Lucent Technologies Inc. Dual-output boost converter having enhanced input operating range
JP3888895B2 (ja) * 2001-12-21 2007-03-07 富士通株式会社 正負電源発生装置および半導体装置
US6950319B2 (en) 2003-05-13 2005-09-27 Delta Electronics, Inc. AC/DC flyback converter
KR100577325B1 (ko) * 2003-11-14 2006-05-10 마쯔시다덴기산교 가부시키가이샤 Dc-dc 변환기
JP4599959B2 (ja) 2004-09-17 2010-12-15 富士電機ホールディングス株式会社 マルチレベルコンバータ及びその制御方法
US7276886B2 (en) * 2005-10-03 2007-10-02 Texas Instruments Incorporated Dual buck-boost converter with single inductor
JP4824524B2 (ja) 2006-10-25 2011-11-30 日立アプライアンス株式会社 単方向dc−dcコンバータおよびその制御方法
US8026697B2 (en) 2007-04-27 2011-09-27 Broadcom Corporation Multi-mode power management unit with shared inductor
US8823342B2 (en) * 2008-07-07 2014-09-02 Advanced Analogic Technologies Incorporated Multiple-output dual-polarity DC/DC converters and voltage regulators
TWI401871B (zh) * 2008-12-26 2013-07-11 Richtek Technology Corp 多重輸出之切換式電源供應器及其控制方法
KR20130008103A (ko) 2011-06-27 2013-01-22 삼성전기주식회사 공용 인덕터를 이용한 다중 구조의 부스트 회로
KR101241564B1 (ko) 2011-08-04 2013-03-11 전주대학교 산학협력단 커플 인덕터, 커플 변압기 및 이를 이용한 커플 인덕터-변압기
EP2566026A1 (de) * 2011-09-02 2013-03-06 voltwerk electronics GmbH Gleichspannungssteller
CN104008737B (zh) * 2013-02-27 2016-04-13 奕力科技股份有限公司 单电感双输出转换器、控制方法及开关控制电路
DE102013005070B4 (de) * 2013-03-22 2015-03-26 Platinum Gmbh Hoch-Tiefsetzsteller
KR102199331B1 (ko) * 2013-08-22 2021-01-06 엘지이노텍 주식회사 전원 장치
WO2015164970A1 (en) * 2014-05-02 2015-11-05 Peter Waldemar Lehn Multi-port converter structure for dc/dc power conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239584B1 (en) * 2000-06-20 2001-05-29 Delta Electronics, Inc. Two-inductor boost converter
JP2004023982A (ja) * 2002-06-20 2004-01-22 Nec Tokin Corp 昇圧型充電装置
JP2004350471A (ja) * 2003-05-26 2004-12-09 Hitachi Medical Corp 電圧分圧回路
JP2005073454A (ja) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd 電源回路
JP4745234B2 (ja) * 2006-03-29 2011-08-10 三菱電機株式会社 電源装置

Also Published As

Publication number Publication date
KR102091584B1 (ko) 2020-03-20
CN105453400B (zh) 2019-02-15
US20160190952A1 (en) 2016-06-30
US9899935B2 (en) 2018-02-20
KR20150017639A (ko) 2015-02-17
CN105453400A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2015037949A1 (ko) 충전 제어 장치, 충전 제어 방법 및 이를 구비한 무선전력 수신장치
WO2012144800A2 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
WO2015105334A1 (ko) 무선 전력 송신 장치 및 무선 전력 전송 시스템
WO2015020463A1 (ko) 전원 장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2017131436A1 (ko) 청소기 및 그 제어 방법
WO2019172643A1 (ko) 전원 장치
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2019088678A1 (en) Air conditioner and rectifier
WO2014119871A1 (en) Wireless power transmitting apparatus and method thereof
WO2015026096A1 (ko) 전원 장치
WO2014098279A1 (ko) 수신단의 유효 로드저항 변조를 이용하여 효율과 전달전력을 향상시키는 무선전력수신 장치
WO2017004849A1 (zh) 一种扫描驱动电路
WO2018236088A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
EP3676945A1 (en) Air conditioner and rectifier
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2020251273A1 (ko) 모니터링 장치, 및 이를 구비하는 태양광 시스템
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
WO2020027502A1 (ko) 직류-직류 컨버터 및 이를 포함하는 광원 구동 장치
WO2010008188A2 (ko) 다중 전원 혼합형 증폭기
WO2011159048A2 (ko) Led 형광 램프

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044997.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14910812

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14834511

Country of ref document: EP

Kind code of ref document: A1